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Abstract 

Computational fluid dynamics is used to study two distinct areas of 

engineering interest: microfluidic systems involving superhydrophobic surfaces 

and blood pumps.  Superhydrophobic surfaces, which can induce slip at fluid-

solid interfaces, are modeled using mixed free-shear and no-slip boundary 

conditions.  Despite remarkable effort to include the effects of surface topology 

and various flow and physical properties in models describing fluid slip over these 

surfaces, the mathematical description of flow over mixed slip boundaries is still 

incomplete.  Critical configurations of roughness necessary to achieve drag 

reduction in micro-channels are established.  The effects of roughness shape and 

size on drag for both Newtonian and non-Newtonian fluid flow are also 

considered in depth.  Based on these findings, similarity theory is used to develop 

a model to describe drag reduction as a function of channel geometry.  The 

principles used in the development of these models are then applied to the more 

complicated system of a centrifugal blood pump.  The effects of the non-

Newtonian rheological behavior, hematocrit, temperature, and turbulence on 

pump performance and subsequent blood damage is quantified over a wide 

range of operating conditions.
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Chapter 1: Introduction and Background 

 The invention of the modern computer has transformed the entire 

discipline of engineering.  In particular, fluid dynamics, which often involves the 

study of flow described by large systems of partial differential equations, has 

benefited greatly from the technological developments of the last century.  

Mathematical problems that would have once taken scientists months or even 

years to answer may now be solved in a matter of minutes, thanks to these 

remarkable advances in computing science.  As the processing power of 

computers increases exponentially and the cost associated with computational 

resources continues to decrease, a new area of engineering called computational 

fluid dynamics (CFD) has emerged to supplement and complement the 

developments of theoretical analysis and experimentation (Tu, Heng Yeoh, and 

Liu, 2012). 

1.1. Scope of Study 

1) To facilitate the advancement of CFD in the study of transport 

phenomena, numerical simulations are used in this study to 

characterize flow in micro-channels with superhydrophobic walls in 

plane-Couette and pressure-driven flow.   

2) To demonstrate the power of CFD in the development of new 

mathematical relationships to describe flow, the numerical 

predictions obtained are used to develop models to estimate slip 

velocity and drag reduction a priori.   
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3) To advance the use of CFD in the development and optimization of 

biomedical devices, flow through a centrifugal blood pump is 

modeled and presented for future validation with experimental 

results. 

1.2. Computational Fluid Dynamics 

 CFD takes advantage of the fact that any physical system is governed by 

mass conservation, energy conservation, and Newton’s second law.  Rather than 

solving these equations analytically, however, this computational approach 

replaces the partial differential equations with numbers and then advances the 

values throughout space and time (Anderson et al., 2009).  While computational 

fluid dynamics does not provide a closed form, analytical solution to engineering 

problems, the numerical description of systems can provide remarkable insight 

into the fundamentals of fluid dynamics applications and are analogous to 

laboratory experiments (Anderson et al., 2009).  Furthermore, numerical 

simulation are an efficient, effective, and powerful tool for providing solutions to 

physical phenomena that cannot be solved analytically.   

1.2.1. Basic Equations of Motion 

 The foundation of fluid mechanics is based on a collection of equations 

known as the conservation laws.  Navier (1822) originally discovered the 

equations of fluid mechanics using a significant amount of physical intuition and 

with relatively little attention to mathematical proof (Darrigol, 2002).  Over the next 

few decades, Cauchy, Poisson, and Saint-Venant proposed new derivations of 

the equations using various methods and approaches (Darrigol, 2002; Galdi, 
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2011).  The equations were not entirely justified, however, until Stokes 

reinterpreted them using a continuum mechanics approach (Darrigol, 2002; 

Galdi, 2011).  These fundamental physical equations, collectively known as the 

Navier-Stokes equations, mathematically describe viscous flow and are 

applicable at the molecular, microscopic, and macroscopic levels (Cebeci, 2005; 

Galdi, 2011; Theodore, 2011).   

Viscous Stresses 

Viscous stresses are due to friction between a fluid and solid surface and 

are defined using the viscous stress tensor (�̿�): 

�̿� =
𝟏

𝛒
(
𝟐

𝟑
𝛍 − 𝛋) (�⃑⃑� ∙ �⃑⃑� )𝛅 − 𝛎 [�⃑⃑�  �⃑⃑� + (�⃑⃑�  �⃑⃑� )

𝐓
] (1.2-1) 

where 𝛒 is the fluid density, 𝛍 is the fluid dynamic viscosity, 𝛋 is the dilatational 

viscosity, 𝛎 is the fluid dynamic viscosity, 𝛅 is the Kronecker delta, and �⃑⃑�  is the 

flow velocity vector (Blazek, 2001; Bird, Stewart, and Lightfoot, 2002).  

Conservation Laws 

Although the concept of the conservation of mass can be traced back to 

Bernoulli, the equation was first expressed (in limited form) as a partial differential 

equation by a d’Alembert in 1747 (Craik, 2013; Groth, 2015).  A few years later, 

Euler derived and expressed the conservation of mass as (Blazek, 2001; 

Darrigol, 2002; Craik, 2013; Groth, 2015): 

𝛛𝛒

𝛛𝐭
+ �⃑⃑� ∙ (𝛒�⃑⃑� ) = 𝟎 (1.2-2) 

where 𝐭 is time. 

Equation 1.2-2, or the continuity equation, expressed in integral form: 
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𝛛

𝛛𝐭
∫𝛒𝐝𝐕 + ∮𝛒(�⃑⃑� ∙ �⃑⃑� ) 𝐝𝐀 = 𝟎 (1.2-3) 

where �⃑⃑�  is the unit normal vector, 𝐕  is the control volume, and 𝐀 is the surface 

area of the control element. 

Euler then went on to develop the equations of motion using Newton’s 

second law (Darrigol, 2002; Galdi, 2011): 

𝐅 = 𝐦�⃑�  (1.2-4) 

where 𝐅  is the net force acting on an element, 𝐦 is the mass of the element, and 

�⃑�  is the acceleration of the element. 

 By equating the forces acting on a square element of fluid, Euler 

developed an equation for the conservation of momentum (Blazek, 2001; 

Darrigol, 2002): 

𝛛(𝛒�⃑⃑� )

𝛛𝐭
+ �⃑⃑� ∙ (𝛒�⃑⃑�  �⃑⃑� + 𝐩𝛅 − �̿�) = 𝛒𝐟  (1.2-5) 

where 𝐟  is acceleration due to body forces and 𝐩 is the isotropic pressure. 

 The integral form of the conservation of momentum is: 

𝛛

𝛛𝐭
∫𝛒�⃑⃑� 𝐝𝐕 = −∮(𝛒�⃑⃑� �⃑⃑� + 𝐩𝛅 − �̿�) ∙ �⃑⃑�  𝐝𝐀 + ∫𝛒𝐅 𝐝𝐕 (1.2-6) 

 An additional law for the conservation of energy also exists. but, as thermal 

effects are not considered in this study, only Equations 1.2-1 and 1.2-4 are 

considered further.     

Navier-Stokes Equations 

The Navier-Stokes equations may be obtained by substituting Equation 

1.2-1 into Equations 1.2-2 and 1.2-5 to yield (Sayma, 2009): 
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𝐃�⃑⃑� 

𝐃𝐭
= 𝛎�⃑⃑� 𝟐�⃑⃑� −

𝟏

𝛒
�⃑⃑� 𝐩 (1.2-7) 

1.2.2. Spatial Discretization of Governing Equations 

 Although the CFD software (ANSYS® Fluent®) used in this study employs 

a finite-volume method, a brief discussion of two other common approaches (the 

finite difference and finite element methods) for discretizing the flow domain is 

given below.  In theory, all computational methods should result in the same final 

solutions, although there may be discrepancies between approaches for 

complicated problems (Chung, 2010). 

 In addition to the computational methods discussed below, there are 

several numerical schemes available with which the spatial discretization can be 

performed.  For viscous fluxes, a central scheme is typically used to average 

conservative variables and evaluate the flux at a control volume.  Another option, 

however, are upwind schemes, which are more advanced because they consider 

the physics of the governing equations.  In general, central schemes require less 

effort than upwind schemes, although the latter are more accurate for capturing 

discontinuities and, in many cases, can require less grid points than central 

schemes (Blazek, 2000). 

Finite Difference Method 

In the finite difference method, one discrete unknown variable is assigned 

to each discretization point in the flow domain.  Using Taylor series expansions, 

the equations associated with each variable are then expressed as forward 

difference, backward difference, or central difference equations such that the 
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local truncation error is minimized at each point (Eymard, Gallouet, and Herbin, 

200; Veldman, 2012; Chung, 2010).   

In some cases, the finite difference method is simple and easy to 

implement and can obtain high-order approximations.  This approach can present 

challenges, however, if there are discontinuities in the equations to be solved 

(Eymard, Gallouet, and Herbin, 2006).  The method also requires a structured 

grid (discussed below) and cannot be applied to curvilinear coordinates, which 

can greatly restrict the systems it is capable of modeling (Blazek, 2006).  Due to 

these limitations, the finite difference method is no longer widely used. 

Finite Element Method 

The finite element method utilizes piecewise polynomial interpolation to 

develop a set of algebraic equations that must be simultaneously solved.  

Weighted residuals are also used to measure the errors associated with these 

approximations.   Although the finite element method may be used on complex 

geometries, it requires greater computational resources and processing power 

than other methods and is therefore not used extensively in most fluid dynamics 

applications (Tu, Yeoh, and Liu, 2013).   

Finite Volume Method 

When using the finite volume method, a control volume is created around 

each discretized cell in the simulated geometry, within which all fluxes are 

balanced using the integral forms of the conservation laws (Eymard, Gallouet, 

and Herbin, 2006; Anderson et al., 2009).  A cell-centered scheme, in which the 

control volumes are identical to the grid cells in the geometry, or a cell-vertex 
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scheme, in which the control volume is either a union of all cells that share a 

particular grid point or is centered around a grid point, are two of the most 

common approaches to defining the shape and position of the control volume 

(Blazek, 2006).   

The finite volume method is capable of numerically solving elliptic, 

parabolic, and hyperbolic conservation laws and can be used on arbitrary 

geometries involving structured or unstructured meshes.  This discretization 

method ensures that the discretization is locally and globally conservative and is 

thus one of the more robust options for modeling fluid dynamics applications 

(Eymard, Gallouet, and Herbin, 2006).  As stated previously, the finite volume 

method is utilized by the CFD software package ANSYS® Fluent® and is used in 

the studies outlined herein.  

Grid Generation 

 Many methods are available to numerically solve the Navier-Stokes 

equations.  Meshes may be either structured, in which the cells are regularly 

distributed or unstructured, in which the cells are distributed according to areas 

of interest in the flow and, thus, may assume a number of different geometrical 

shapes (Tu, Yeoh, and Liu, 2013).   

A structured mesh (Figure 1.2-1) uses a set of indices (𝐢, 𝐣, 𝐤) that are 

equal to spatial dimensions such that adjacent element indices differ by a value 

of one.  As a consequence, each element corresponds to a unique index set.  

Structured meshes offer the advantage of easier data management and 

programming (Tu, Heng Yeoh, and Liu, 2012).  In complex geometries, however, 
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structured meshes may become extremely skewed, which can lead to unphysical 

and inaccurate solutions and can also cause increased computational time (Tu, 

Heng Yeoh, and Liu, 2012; Pletcher, Tannehil, and Anderson, 2013).  

An unstructured mesh (Figure 1.2-2), on the other hand, uses cell-to-cell 

pointers.  Thus, there is no direct relationship between the spatial dimension and 

the location of a cell.  In general, unstructured meshes do not have regular 

arrangements of cells or lines that correspond to curvilinear coordinates (Tu, 

Heng Yeoh, and Liu, 2012; Pletcher, Tannehil, and Anderson, 2013).  Thanks to 

the flexibility and simplicity of this approach, unstructured grids are used by most 

commercial CFD codes (including ANSYS® Fluent®).  

Solutions obtained using computational fluid dynamics must be 

independent of the grid or mesh used in the numerical calculations.  To ensure 

such independence is obtained, an independence analysis must be conducted 

using various grids of increasing node density.  Grid independence is obtained 

when predictions for the flow variables of interest (e.g. velocities, pressures, wall 

stresses) no longer change when the number of nodes in the mesh is increased. 

Figure 1.2-1: Schematic of a structured body-fitted grid around a circular 
body and its corresponding 2-dimensional representation in physical and 
computational spaces .  
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It is important to note that the node density necessary for grid independence will 

depend on the system and type of flow.  A graphical example of grid 

independence analyses for laminar and turbulent channel flow are shown in 

Figures 1.2-3 and 1.2-4, respectively.  

1.2.3. Temporal Discretization of Governing Equations 

 Since many types of flow problems are unsteady, the solution at a point 

with the flow domain will vary with time.  Time-stepping schemes may be explicit 

or implicit.  With an explicit scheme, only one unknown term appears in each 

equation to be solved at every time step (Blazek, 2001; Sayma, 2009; Pletcher, 

Tannehill, and Anderson, 2013).  With an implicit scheme, however, a system of 

algebraic equations must be solved simultaneously at each new time step 

(Pletcher, Tannehill, and Anderson, 2013).   

The choice of an explicit or implicit time-stepping method is generally 

based on the stability of the solution.  Several techniques have been proposed 

for determining stability, such as the discrete perturbation stability analysis or the 

von Neumann stability analysis or (Hoffmann and Chiang, 2000; Pletcher, 

Figure 1.2-2: Schematic of an unstructured body-fitted grid around a 
circular body and its corresponding 2-dimensional representations in 
physical and computational spaces. 
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Tannehill, and Anderson, 2013).  In the discrete perturbation stability analysis, a 

disturbance is introduced to the system.  The numerical method is considered 

unstable if the disturbance grows with the solution and stable if the disturbance 

dies out (Hoffmann and Chiang, 2000).  In a von Neumann stability analysis, the 

solution to a linear finite difference equation is expanded using a Fourier series.  

The amplification factor is then monitored for decay or growth, which indicates 

stability (Hoffmann and Chiang, 2000).   

A convenient criterion for determining the appropriate time-stepping 

scheme is based on the Courant-Friedrichs-Lewy (CFL) condition.  According to 

the CFL condition for the one-dimensional linear convection equation, the time 

step (𝚫𝐭) is found according to: 

Figure 1.2-3: Differences in numerical laminar (Re≈350) velocity profile 
predictions due to node number for flow of water in a 5 μm x 6 μm x 2.5 μm 
micro-duct. 
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𝚫𝐭 = 𝛔
𝚫𝐱

|𝚲𝐜|
 (1.2-8) 

where 𝚫𝐱 is the cell size, 𝚲𝐜 is the maximum eigenvalue of the convective flux 

Jacobian, and 𝛔 is a positive coefficient called the CFL number (Blazek, 2001).  

In general, explicit time-stepping is best for applications in which the CFL number 

is on the order of unity.  On the other hand, implicit time-stepping is a more 

appropriate choice when the CFL number is much larger than one (Blazek, 2001).    

1.2.4. Numerical Solution Processing 

CFD can provide remarkably accurate and useful insight into complex and 

elaborate systems.  It should be noted, however, that results obtained using 

computational fluid dynamics are only as accurate as the physical models used 

to describe the system and are subject to both truncation and round-off errors 

(Anderson et al., 2009).  Numerical simulation analysis is an involved process 

Figure 1.2-4: Differences in numerical turbulent (Re≈3,500) velocity profile 
predictions due to node number for flow of water in a 5 μm x 6 μm x 2.5 μm 
micro-duct using the standard k-ε model for turbulence. 
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that consists of three stages, each of which is crucial if an accurate solution is to 

be obtained.   

In the first stage of analysis, commonly referred to as the pre-processing 

stage, the geometry of the region of flow, known as the computational domain, is 

defined and created.  Once the geometry is created, a mesh is generated by 

dividing the domain geometry into a finite number of smaller subdomains.   

The accuracy of solutions obtained using CFD is greatly influenced by the 

number of nodes in the grid, as well as the quality of and type of mesh.  

Computational cost and calculation turnover are also highly sensitive to these 

properties and will generally increase with increasing cell size and complexity.  

Thus, a trade-off exists between numerical accuracy and computational 

efficiency.  The final steps in the pre-processing stage are the selection of the 

physics and fluid properties associated with the system to be modeled, followed 

by the specification of boundary conditions that realistically represent the physical 

system (Tu, Yeoh, and Liu, 2013). 

In the next stage of the analysis, a solver is chosen, the solution is 

initialized, and a discretization scheme is selected.  The solver is then allowed to 

begin calculating the solution.  During this stage, convergence is monitored by 

tracking the advancement of the residuals of the calculations of the equations 

being solved through each iteration step.  A solution may be considered 

converged once these residuals fall below some pre-determined criteria (Tu, 

Yeoh, and Liu, 2013). 
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Once a solution has been obtained, the results are processed in the stage 

of CFD analysis known as the post-process stage.  Many commercial CFD 

programs offer visualization tools to assist in analyzing the relevant physical 

characteristics of the flow (Tu, Yeoh, and Liu, 2013). 
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1.3. Turbulent Flow 

Turbulent flows are the most common flows that occur in nature and 

engineering applications (Tennekes and Lumley, 1972).  The primary objective 

in the study of turbulent flows is to obtain a tractable theory or model that can be 

applied to practical applications.  While an exact definition for turbulent flow 

cannot be given without significantly restricting the defined system, turbulence is 

a continuum phenomenon which occurs at high Reynolds numbers and is 

rotational, three-dimensional, and irregular, with diffusive and dissipative 

characteristics (Tennekes and Lumley, 1972).  Numerous techniques have been 

employed to understand systems involving this type of flow, yet, due in large part 

to the closure problem, turbulence still remains “one of the great unsolved 

problems of classical physics” (Tennekes and Lumley, 1972). 

1.3.1. Reynolds Equations 

Reynolds Decomposition 

When involving constant property Newtonian fluids, turbulent flow is 

governed by the Navier-Stokes equations, as given in Equation 1.2-7.  In laminar 

flow, these equations can be used to directly calculate the velocity at a specific 

point in space and time.  In turbulent flow, however, the velocity field is random 

and is consequently inherently unpredictable (Pope, 2000).  Thus, statistical 

quantities, such as means and correlations, must be employed to describe the 

turbulent velocity fields.  The Reynolds decomposition may be used to describe 

the velocity (�⃑⃑� ) as a composition of a mean component (〈�⃑⃑� 〉) and a fluctuating 

component (�⃑⃑� ), according to (Pope, 2000): 
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�⃑⃑� = 〈�⃑⃑� 〉 + �⃑⃑�  (1.3-2) 

The equation for the evolution of the mean velocity field may be derived 

from the Navier-Stokes equations (Equation 1.2-7) to yield the Reynolds 

equations: 

�̅�〈�⃑⃑� 〉

�̅�𝐭
= 𝛎�⃑⃑� 𝟐〈�⃑⃑� 〉 −

𝟏

𝛒
�⃑⃑� 〈𝐩〉 − �⃑⃑� 〈�⃑⃑� �⃑⃑� 〉 (1.3-3) 

where the brackets denote the mean value of the variable inside, 𝛎 is the fluid 

kinematic viscosity, 𝛒 is the fluid density, 〈𝐩〉 is the mean pressure, and 〈�⃑⃑� �⃑⃑� 〉 is 

the velocity covariance, also known as the Reynolds stresses. 

The Reynolds stresses are used to describe momentum transfer due to 

the fluctuating velocity field in turbulent flows and play an important role in the 

equations for the mean velocity field of turbulent flow (Pope, 2000). 

Closure Problem 

In general, for a three-dimensional turbulent flow, there are four 

independent equations governing the system:  three components of the Reynolds 

equations and either the mean continuity equation or the Poisson equation.  The 

closure problem in turbulence arises from the fact that these four equations 

contain more than four unknowns: the four quantities associated with 〈𝐔〉 and 〈𝐩〉, 

as well as the Reynolds stresses.  Consequently, the Reynolds equations are 

unclosed and cannot be solved in the absence of separate information (Pope, 

2000; Pletcher, Tannehill, and Anderson, 2013).  Two of the most popular ways 

to relate the Reynolds stresses to the mean velocity gradients are the turbulent-

viscosity hypothesis and the gradient-diffusion hypothesis (Pope, 2000).   
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The turbulent-viscosity hypothesis is defined as: 

〈�⃑⃑� �⃑⃑� 〉 =
𝟐

𝟑
𝐤𝛅 − 𝛎𝐓 [�⃑⃑� 〈�⃑⃑� 〉 + (�⃑⃑� 〈�⃑⃑� 〉)

𝐓
] (1.3-4) 

where 𝛅 is the Kronecker delta, 𝛎𝐓 is the turbulent kinematic viscosity, and 𝐤 is 

the turbulent kinetic energy. 

 The gradient-diffusion hypothesis is given by: 

〈�⃑⃑� 𝛟〉 = −𝚪𝐓�⃑⃑� 〈𝛟〉 (1.3-5) 

where 〈�⃑⃑� 𝛟〉 is the scalar flux, 𝚪𝐓 is the turbulent diffusivity, and 〈𝛟〉 is the mean 

of a conserved passive scalar field. 

The Boussinesq hypothesis offers the advantage of a low computational 

cost associated with the calculation of the turbulent viscosity, but the hypothesis 

assumes the turbulent viscosity is an isotropic scalar quantity, which is not always 

valid.  This model is generally accurate, however, for many technical flows, 

boundary layers, mixing layers, and jets (Pope, 2000).  In the gradient-diffusion 

hypothesis, the scalar flux is described as scaling with the mean scalar gradient 

field, which is not true.  Due to this inconsistency, the hypothesis is usually only 

used in simple two-dimensional flows (Pope, 2000). 

1.3.2. Viscous Scales 

 When considering wall-bounded turbulent flows (such as those considered 

in this study), the characteristic velocity and length scales may be described 

using dimensionless variables called viscous scales (Pope, 2000).   

The friction velocity (𝐮𝛕) is given as: 
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𝐮𝛕 ≡ √
𝛕𝐰

𝛒
 (1.3-6) 

where 𝛕𝐰 is the wall shear stress. 

Using the friction velocity, the viscous velocity (𝐮+) may be defined as: 

𝐮+ ≡
〈�⃑⃑� 〉

𝐮𝛕
 (1.3-7) 

Similarly, the viscous length scale (𝐥∗) is: 

𝐥∗ ≡
𝛎

𝐮𝛕
 (1.3-8) 

The friction Reynolds number (𝐑𝐞𝛕) would then be: 

𝐑𝐞𝛕 ≡
𝐮𝛕𝐥

𝛎
=

𝐥

𝐥∗
 (1.3-9) 

where 𝐥 is the characteristic length scale of the system. 

Finally, the viscous length (𝐲+) is: 

𝐲+ ≡
𝐲

𝐥∗
=

𝐮𝛕𝐲

𝛎
 (1.3-10) 

where 𝐲 is the distance from the wall.   

 Equation 1.3-10 is particularly useful for defining near-wall regions, for 

which mean velocity profiles and certain flow properties can be predicted, 

according to: 

𝐝〈�⃑⃑� 〉

𝐝𝐲
=

𝐮𝛕

𝐲
𝐟 (𝐲+,

𝐲

𝐥
) (1.3-11) 

where 𝐟 is a universal dimensionless function. 
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 The area closest to the wall is known as the inner layer (𝐲 𝐥⁄ < 𝟎. 𝟏) and is 

made up of two regions called the viscous sublayer (𝐲+ < 𝟓) and the buffer layer.  

In the inner layer, the mean velocity profile is described by: 

𝐝〈�⃑⃑� 〉

𝐝𝐲
=

𝐮𝛕

𝐲
𝐟𝐈(𝐲

+) (1.3-12) 

where 

𝐟𝐈(𝐲
+) = 𝐥𝐢𝐦

𝐲 𝐥⁄ →𝟎
𝐟 (𝐲+,

𝐲

𝐥
) (1.3-13) 

 The friction velocity in the viscous sublayer follows the relationship: 

𝐮+ = 𝐲+ (1.3-14) 

 In the buffer layer (𝟓 < 𝐲+ < 𝟑𝟎), the flow will transition from viscous-

dominated to turbulence-dominated before entering the outer layer.   

The next region (𝐲+ > 𝟑𝟎) is the log-law region, which has a mean velocity 

described by: 

𝐮+ =
𝟏

𝛋
𝐥𝐧(𝐲+) + 𝐁 (1.3-15) 

where 𝛋 = 𝟎. 𝟒𝟏 is the von Kármán constant and 𝐁 = 𝟓. 𝟐 is a constant. 

 In the outer layer (𝐲+ > 𝟓𝟎), the effects of viscosity on the mean velocity 

become negligible and the mean velocity profile is described by: 

𝐝〈�⃑⃑� 〉

𝐝𝐲
=

𝐮𝛕

𝐲
𝐟𝐎 (

𝐲

𝐥
) (1.3-16) 

where 



19 

𝐟𝐎 (
𝐲

𝐥
) = 𝐥𝐢𝐦

𝐲+→∞
𝐟 (𝐲+,

𝐲

𝐥
) (1.3-17) 

At large Reynolds numbers (𝐑𝐞 > 𝟐𝟎, 𝟎𝟎𝟎), an overlap region will exist 

between the inner and outer layers.  In this region, 𝐟𝐈(𝐲
+) and 𝐟𝐎 (

𝐲

𝐥
) are both 

equal and constant (Pope, 2000). 

Figure 1.3-1 illustrates the relationships given in Equations 1.3-14 and 

1.3-15 using velocity estimates obtained from several popular turbulent flow 

models (see Section 1.3.3.).  All models are able to accurate capture the 

predicted flow profiles in the viscous sublayer and log-law regions. 

 

Figure 1.3-1: Numerical velocity profiles in viscous wall (y+<5) and log-law 
(y+>30) regions for turbulent flow of water between two infinite parallel 
plates separated at a distance of 360 μm for Reτ = 180.  DNS data obtained 
from Martell, Perot, and Rothstein (2009). 
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1.3.3. Models for Turbulence 

 Turbulent flow presents many modeling challenges to the development of 

an analytical theory or numerical model.  For instance, the pressure-gradient is 

non-linear and non-local, while the velocity field is three-dimensional, time-

dependent, and random.  Turbulent structures can also include an array of time- 

and length-scales and are influenced by the geometry of the system and 

boundaries (Pope, 2000).   

Because of the closure problem associated with turbulent flow 

calculations, an assumption must be made about the apparent turbulent stress 

quantities before numerical solutions may be obtained.  Numerous models for 

closing the Reynolds equations have been developed, all of which have unique 

advantages and limitations.  In general, these models can be classified as 

algebraic, one-equation, multiple-equation, second-order closures, and large-

eddy simulation (Blazek, 2001). 

Algebraic Models 

Most algebraic models for turbulence utilize a mixing length (𝐥𝐦) to 

estimate the turbulent viscosity.   In such models, the mixing length is dependent 

on the velocity gradients in the system, according to: (Pope, 2000; Pletcher, 

Tannehill, and Anderson, 2013): 

𝛎𝐓 = 𝐥𝐦
𝟐 |

𝛛〈�⃑⃑� 〉

𝛛𝐲
| (1.3-18) 

The mixing-length model is typically applicable to all turbulent flows and, 

though incomplete, is perhaps the simplest solution to the closure problem.  
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Because the mixing length must be specified, however, this task can prove to be 

quite involved for complex flow.  (Pope, 2000; Pletcher, Tannehill, and Anderson, 

2013). 

One-Equation Models 

Numerous models have been developed to offer closure to the turbulence 

kinetic energy equation (Wilcox, 1994).  Among the most popular one-equation 

models is the Spalart-Allmaras model, which offers model equations for the eddy 

viscosity.   

To account for the non-zero value of the turbulent velocity scale when the 

velocity gradient is zero, both Kolmogorov and Prandtl developed a model for the 

turbulent viscosity based on the turbulent kinetic energy (Pope, 2000): 

𝛎𝐓 = 𝟎. 𝟓𝟓𝐤
𝟏
𝟐𝐥𝐦 (1.3-19) 

The turbulent kinetic energy may then be described by the model transport 

equation: 

�̅�𝐤

�̅�𝐭
= �⃑⃑� ∙ (

𝛎𝐓

𝛔𝐤
�⃑⃑� 𝐤) + 𝓟 − 𝛆 (1.3-20) 

where 𝛔𝐤 = 𝟏. 𝟎.  In these models, the production of turbulent kinetic energy (𝓟) 

and the dissipation of turbulent kinetic energy (ε) are given as (Pope, 2000): 

𝓟 = −〈�⃑⃑� �⃑⃑� 〉𝛁〈�⃑⃑� 〉 (1.3-21) 

𝛆 =
𝐂𝐃𝐤

𝟑
𝟐

𝐥𝐦
 (1.3-22) 

where 𝐂𝐃 is a model constant. 



22 

A one-equation model has been shown to be more accurate than a mixing-

length model, but is nonetheless still limited by the necessity of specifying the 

mixing length scale (Pope, 2000).  Since they do not account for the effects of 

transport on the turbulence length scale, more rigorous and universal two-

equation models are commonly used (Wilcox, 1994).   

Two-Equation Models 

 Two-equation models can be used to predict properties of turbulent flow 

without prior knowledge of the turbulence structure and, as a consequence, are 

the turbulence models best suited to study many types of flows (Wilcox 1994).  

Two of the most popular Reynolds-Averaged Navier-Stokes (RANS) models are 

the k-epsilon (k-ε) and the k-omega (k-ω) models for turbulence.  These two-

equation models are used to solve for the turbulent kinetic energy, along with an 

additional transport variable (Pope, 2000).  In the k-ε model, a model transport 

equation for the dissipation of turbulent kinetic energy is defined as: 

�̅�𝛆

�̅�𝐭
= �⃑⃑� ∙ (

𝛎𝐓

𝛔𝛆
�⃑⃑� 𝛆) + 𝐂𝛆𝟏

𝓟ε

𝐤
− 𝐂ε2

ε2

𝐤
 (1.3-11) 

where the constants are 𝛔𝛆 = 𝟏. 𝟑, 𝐂𝛆𝟏 = 𝟏. 𝟒𝟒, and 𝐂ε2 = 𝟏. 𝟗𝟐 (Pope, 2000).  All 

other terms are defined previously.  

An exact equation for the turbulent dissipation rate in the dissipative range 

can also be derived.  However, ε is best considered in the energy-containing 

range of the energy cascade, thus making the exact equation impractical for use 

in a turbulence model (Pope, 2000).   As a consequence, it is generally more 

useful to use the empirical relationship given in Equation 1.3-11 for the standard 

model equation for 𝛆. The k- 𝛆 model is generally accurate for simple flows but 
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can provide qualitatively incorrect flow patterns for complex flows due to the 

turbulent-viscosity hypothesis and the empirical nature of Equation 1.3-11 

(Pope, 2000). 

In the k- 𝛚 model, a model transport equation for the specific dissipation 

rate is introduced according to (Pope, 2000): 

�̅�𝛚

�̅�𝐭
= �⃑⃑� ∙ (

𝛎𝐓

𝛔𝛚
�⃑⃑� 𝛚) + 𝐂𝛚𝟏

𝓟𝛚

𝐤
− 𝐂𝛚2

𝛚2

𝐤
 (1.3-12) 

Where, for homogeneous turbulence, the constants are 𝛔𝛚 = 𝟏. 𝟑, 𝐂𝛚𝟏 =

𝐂𝛆𝟏 − 𝟏, 𝐂𝛚𝟐 = 𝐂𝛆𝟐 − 𝟏.   

The k- 𝛚 model is the most accurate two equation model for viscous near-

wall regions of boundary layer flows and for accounting for the effects of stream-

wise pressure gradients but is sensitive to the boundary condition for 𝛚, which 

can pose a problem for non-turbulent free-stream boundaries (Pope, 2000).  

1.3.4. Alternative Computational Methods 

Direct Numerical Simulations 

Direct numerical simulations (DNS) are used to solve for the turbulent 

velocity field by solving the Navier-Stokes momentum equations without the use 

of any turbulence model.  As a consequence, all spatial scales, ranging from the 

smallest Kolmogorov scales to the largest integral scales, must be resolved in 

the computational mesh.  To sufficiently resolve the dissipative scales, the grid 

spacing (𝚫𝐱) should be on the order of (Pope, 2000):  

𝚫𝐱 =
𝝅

𝟏. 𝟓
𝛈 (1.3-13) 

Where 𝛈 is the Kolmogorov length scale. 
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For a three-dimensional system, the spatial-resolution requirement given 

in Equation 1.3-13 requires the total number of grid nodes (𝐍) to be (Pope, 

2000): 

𝐍𝟑~𝟒.𝟒𝐑𝐞𝟗 𝟒⁄  (1.3-14) 

where 𝐑𝐞 is the Reynolds number.  

If the solution is to be advanced in time as well as space, the time step 

(𝚫𝐭) may only be a small fraction of the grid spacing.  A useful measure to ensure 

the accuracy and stability of the solution is given by the Courant number (𝐂) 

(Pope, 2000):  

𝐂 =
𝐤

𝟏
𝟐⁄ 𝚫𝐭

𝚫𝐱
=

𝟏

𝟐𝟎
 (1.3-15) 

Because the computational cost associated with DNS increases 

significantly with increasing Reynolds number, this approach is generally only 

suitable for flows with low Reynolds numbers.  Since all scales of motion are 

resolved, however, DNS provides the most accurate realizations of flow and are 

the simplest numerical method for simulating turbulent flows (Modi, 1999).  

The friction velocity obtained using DNS is compared with those from the 

standard k-ε (SKE) and the standard k-ω (SKW) models for turbulence 

(discussed previously), as well as another popular model called the Transition 

Shear Stress Transport (Trans SST) model in Figure 1.3-2.  The SKE, SKW, and 

Trans SST models predict friction velocities with maximum errors of 8%, 6%, and 

7%, when compared to DNS solutions.  Figure 1.3-3 compares the Reynolds 
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stress profiles from DNS and the SKE, SKW, and Trans SST models.  The 

maximum error associated with all numerical models is less than 1%. 

Large Eddy Simulations 

Large eddy simulations (LES) are another method used in computational 

fluid dynamics to model turbulence.  These simulations are closely related to 

direct numerical simulation, in which all of the scales of motion of turbulence are 

computed.  While direct numerical simulations usually require a large number of 

grid points and can result in substantial expenses, large eddy simulations 

explicitly represent only the largest scales of motion, while treating smaller scales 

using an approximate parameterization or model (Ferziger, 1996; Fröhlich and 

Rodi, 2002).  This approach to modeling flows in Fluent® allows for coarser grids 

and larger time steps than direct numerical simulations (ANSYS® Fluent®, 2006).  

Nevertheless, LES tends to require finer meshes than those used in more 

Figure 1.3-2: Numerical mean velocity profiles in turbulent flow between 
two infinite parallel plates separated at a distance of 360 μm for Reτ = 180.  
DNS data obtained from Martell, Perot, and Rothstein (2009). 
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generalized turbulence models and must be run for a sufficiently long period of 

time to obtain stable statistics.  Therefore, it is advantageous, when practical, to 

use other models for turbulence, such as the Reynolds-Averaged Navier Stokes 

models discussed in Chapter 1.2.3, to model flow in simple geometries (Pope, 

2000).  

 

 

 

 

 

 

 

 

Figure 1.3-3: Numerical Reynolds stresses in in turbulent flow between two 
infinite parallel plates separated at a distance of 360 μm for Reτ = 180.  DNS 
data obtained from Martell, Perot, and Rothstein (2009). 



27 

 
1.4. Superhydrophobic Surfaces 

1.4.1. Introduction and Background 

Examples of the importance of roughness elements in superhydrophobic 

surfaces (SHSs) can be seen frequently in nature, such as in the case of the self-

cleaning lotus leaf and the water strider (Barthlott and Neinhuis, 1997; Gao and 

Jiang, 2004; Voronov et al., 2008).  It has further been shown by Bhushan and 

Jung (2006) that a thin wax film and roughness elements are responsible for the 

superhydrophobicity of many types of leaves, including the lotus.  Similarly, the 

SH nature of the legs of the water strider can be shown to be due to the micro- 

and nano-structures that cover the legs of the insect (Gao and Jiang, 2004).  

Quéré and Reyssat (2008) later concluded that all SH materials found in nature 

are coated with some form of a waxy substance.  In cases where nano-scale 

secondary roughness covers parts of the surface, SH effects are augmented, 

since gas can be trapped within the nanoscale while the space between the 

microscale roughness is wetted by the fluid—this is the case in the ‘‘rose-petal 

effect’’ (Bhushan and Nosonovsky, 2010). 

The behavior of SHSs was first observed over 2,000 years ago, when the 

leaves of some plants were seen to possess a self-cleaning characteristic that 

enabled the fauna to survive in dirty environments (Guo, Liu, and Su, 2011).  The 

most popular example of such plants is the lotus leaf, on which water may be 

seen to form distinct droplets or beads that naturally roll off the leaf surface, while 

also removing dirt particles and other debris8.  Despite this observation, however, 

the true mechanism of the lotus leaf’s self-cleaning ability could not be examined 
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further until the invention of the scanning electron microscope in the 1960s (Guo, 

Liu, and Su, 2011).  After the development of the microscope, the surface of the 

lotus leaf was discovered to consist of microstructures in the shape of conical 

posts of 3-10 μm in size, on which were nanometer-sized roughness between 70-

100 nm in size.  Since the first observation of the behavior of water droplets on 

the lotus leaf, many other plants, insects, and even animals, such as rice leaves, 

water striders, and fast-swimming sharks, have been found to exhibit similar self-

cleaning and water-repellency characteristics.  These natural SHSs have inspired 

the development of artificial surfaces that utilize micro- and nanostructures to 

create anti-icing, self-cleaning, and corrosion-resistant surfaces for use in a 

variety of commercial and industrial applications, including biomedicine, 

separation processes, and fluid transport (Guo, Liu, and Su, 2011; Voronov and 

Papavassiliou, 2008).   

1.4.2. Surface Wettability 

The hydrophobic or hydrophilic character of a surface is largely dependent 

on the surface’s degree of wetting, or wettability, which is determined based on 

whether a liquid will spread over the surface.  The wettability of a surface is 

influenced by the chemical composition of the surface, the presence of roughness 

elements, and the surface energy.  If a surface is hydrophilic, or “water-loving,” 

the interactions between the surface and the water will dominate over the 

cohesive forces of the bulk fluid, and the water will spread over the surface.  On 

the other hand, if a surface is hydrophobic, or “water-fearing,” the surface will 
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actually repel the water molecules and the cohesive forces of the bulk fluid will 

dominate, resulting in the formation of water droplets on the surface.  

The wettability of a surface may be best defined in terms of the measured 

contact angle (𝛉) between a drop of fluid and the surface, as shown in Figure 

1.4-1.  For a three-phase system consisting of water, air, and solid surface, the 

contact angle may be related to the solid-vapor (𝛄𝐒𝐕), solid-liquid (𝛄𝐋𝐒), and the 

liquid-vapor (𝛄𝐋𝐕) interfacial tensions, by the modified Young’s equation 

(Rothstein, 2009): 

𝛉 = 𝐜𝐨𝐬−𝟏 (
𝛄𝐒𝐕 − 𝛄𝐋𝐒

𝛄𝐋𝐕
) (1.4-1) 

A fluid is said to exhibit wetting behavior solid is 0 ≤ θ ≤ 90°.  If the contact 

angle between the fluid and solid is 𝟗𝟎° < 𝛉 ≤ 𝟏𝟖𝟎°, then the fluid is said to 

exhibit non-wetting behavior (Voronov and Papavassiliou, 2008).  if the measured 

contact angle between a drop of the fluid and a solid is 𝟎 ≤ 𝛉 ≤ 𝟗𝟎°.  If the contact 

angle between the fluid and solid is 𝟗𝟎° < 𝛉 ≤ 𝟏𝟖𝟎°, then the fluid is said to 

exhibit non-wetting behavior (Voronov and Papavassiliou, 2008).   

In the presence of roughness elements, two distinct states of wetting, 

known as the Wenzel state and the Cassie state (Figure 4-1) may exist.  In the 

Figure 1.4-1: Schematic of Cassie, transitional, and Wenzel wetting states, 

where 𝛉𝐂 is the Cassie state contact angle, 𝛉𝐓 is the transition state contact 

angle,and 𝛉𝐖 is the Wenzel state contact angle. 
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Wenzel state, water penetrates between the roughness elements (Rothstein, 

2009).  In the Cassie state, water droplets are suspended on top of the roughness 

elements, resulting in an air-water interface that is supported by the roughness 

(Dorrer and Rühe, 2007; Rothstein, 2009).  If a maximum static pressure (𝚫𝐩𝐦𝐚𝐱) 

that can be supported by the air-water interface is exceeded, as described in 

Equation 1.4-2 by the Young equation the system will revert to the Wenzel state 

(Dorrer and Rühe, 2007; Rothstein, 2009). 

𝚫𝐩𝐦𝐚𝐱 = 𝐩𝐰𝐚𝐭𝐞𝐫 − 𝐩𝐚𝐢𝐫 = −
𝟐𝛄 𝐜𝐨𝐬 𝛉𝐀

𝐰
 (1.4-2) 

where 𝐩𝐰𝐚𝐭𝐞𝐫 and 𝐩𝐚𝐢𝐫are the pressure of the water and air, respectively, 𝛄 is the 

surface tension between the water and air, 𝛉𝐀 is the advancing contact angle of 

the droplet, and 𝐰 is the spacing between the roughness elements. 

If the air-water surface tension is taken to be 𝛄 = 𝟎. 𝟎𝟕𝟐𝟖 𝐤𝐠 𝐬𝟐⁄  at 20°C, 

and the distance between the posts is taken to be 𝐰 = 𝟏 𝛍𝐦, then the pressure 

difference needed to generate a change in θ by 1 degree from the flat meniscus 

case (𝛉 = 𝟗𝟎°) would be ∆𝐩 ≈ 𝟓, 𝟎𝟖𝟐 𝐤𝐠 𝐬𝟐⁄ .   

1.4.3. Surface Applications and Fabrication  

 Future applications of SHSs will exploit the drag reducing, anti-adhesion, 

and self-cleaning characteristics of these surfaces.  For instance, these surfaces 

may be used in anti-icing coatings for powerlines; in transparent and anti-

reflective coatings, such as those used in eye glasses; in electronics and circuits 

to prevent water-corrosion; in separation processes, such as the removal of oil 

from water; and in fluidic drag reduction in both micro- and large scale systems 

(Voronov and Papavassiliou, 2008; Rothstein, 2009; Guo, Liu, and Su, 2011).   
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Numerous techniques for the fabrication of SHSs have been developed in 

recent years, such as wet chemical reaction, hydrothermal reaction, chemical 

vapor deposition, and plasma etching (Guo, Liu, and Su, 2011).  Table 1.4-1 

summarizes the most recent methods and the substrates used in the creation of 

SHSs. 
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1.5. Nomenclature 

Roman and Mixed Characters 

�⃑�  Acceleration of element 

𝐀 Surface area 

𝐂 Courant number 

𝐂𝐃 Kinetic energy model constant 

𝐂𝛆𝟏, 𝐂𝛆𝟐 
Dissipation of turbulent kinetic energy constant (Cε1 = 1.44, Cε2 =
1.92) 

𝐂𝛚𝟏, 𝐂𝛚𝟐 Specific dissipation rate constant (Cω1 = Cε1 − 1, Cω2 = Cε2 − 1) 

𝐟 Universal dimensionless function 

𝐟  Acceleration due to body forces 

𝐅  Net force acting on element 

𝐤 Turbulent kinetic energy 

𝐥 Characteristic length scale 

𝐥∗ Viscous length scale 

𝐥𝐦 Mixing length 

𝐦 Mass of element 

�⃑⃑�  Unit normal vector 

𝐍 Number of grid nodes 

𝐩 Isotropic pressure 

𝐩𝐚𝐢𝐫 Air pressure 

𝐩𝐰𝐚𝐭𝐞𝐫 Water pressure 

〈𝐩〉 Mean pressure 

𝓟 Rate of production of turbulent kinetic energy 

𝐑𝐞 Reynolds number 
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𝐑𝐞𝛕 Friction Reynolds number 

𝐭 Time 

𝐮+ Viscous velocity 

𝐮𝛕 Friction velocity 

�⃑⃑�  Fluctuating velocity vector 

〈�⃑⃑� �⃑⃑� 〉 Velocity covariance (Reynolds stresses) 

〈�⃑⃑� 𝛟〉 Scalar flux 

�⃑⃑�  Flow velocity vector 

〈�⃑⃑� 〉 Mean flow velocity vector 

𝐕 Control volume 

𝐰 Spacing between roughness elements 

𝐲 Distance from wall 

𝐲+ Viscous length 

Greek Characters 

𝛄 Air-water surface tension 

𝛄𝐋𝐒 Liquid-solid interfacial tension 

𝛄𝐋𝐕 Liquid-vapor interfacial tension 

𝛄𝐒𝐕 Solid-vapor interfacial tension 

𝚪𝐓 Turbulent diffusivity 

𝛅 Kronecker delta 

∆𝐩 Pressure difference 

𝚫𝐩𝐦𝐚𝐱 Maximum pressure difference 

𝚫𝐭 Time step 

𝚫𝐱 Grid spacing 
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𝛆 Dissipation of turbulent kinetic energy 

𝛈 Kolmogorov length  

𝛉 Contact angle 

𝛉𝐀 Advancing contact angle 

𝛉𝐂 Cassie state contact angle 

𝛉𝐓 Transition state contact angle 

𝛉𝐖 Wenzel state contact angle 

𝛋 Dilatational viscosity 

𝚲𝐜 Maximum eigenvalue of convective flux Jacobian 

𝛎 Fluid kinematic viscosity 

𝛎𝐓 Turbulent kinematic viscosity 

𝛒 Fluid density 

𝛔 Courant-Friedrichs-Lewy number 

𝛔𝛆 Dissipation of turbulent kinetic energy constant (σε = 1.3) 

𝛔𝛚 Specific dissipation rate constant (σω = 1.3) 

𝛕𝐰 Wall shear stress 

�̿� Viscous stress tensor 

〈𝛟〉 Mean conserved passive scalar field 

𝛚 Specific dissipation rate 
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Chapter 2: Superhydrophobic Micro-Roughness Models 

Contents of this chapter have been reproduced from: 

Heck, M.L. and Papavassiliou, D.V. “Effects of Hydrophobicity-Inducing 
Roughness on Micro-Flows.” Chem. Eng. Commun., 200 (2013): 919-934 
 

2.1. Introduction 

SHSs have attracted increasing attention in the past decade for their 

potential for use in microfluidic devices and micro-electromechanical systems, as 

well as in applications involving self-cleaning and anticorrosive surfaces and 

coatings (Dorrer and Rühe, 2006; Eijkel, 2007; Whitesides and Stroock, 2001; 

Yang and Fang, 2005).  A significant finding from recent studies of SHSs is that 

they can be used to passively induce hydrodynamic drag for both laminar and 

turbulent flows (Balasubramanian et al., 2004; Daniello et al., 2009; Lauga and 

Stone, 2003; Lauga et al, 2007; Muralidhar et al., 2011; Rothstein, 2010; Spencer 

et al., 2009; Tretheway and Meinhart, 2002; Voronov et al., 2007, 2008; 

Watanabe et al., 1999; Wilson, 2009), because a fluid can slip over the surface 

rather than stick to it.  The resulting drag-reducing behavior has been confirmed 

at different extents in both large-scale conduits and in microfluidic channels 

(Gogte et al., 2005; Joseph et al., 2006; Lauga and Stone, 2003; Lauga et al., 

2007; Ou et al., 2004).  This finding is quite important for microfluidics 

applications, since a major challenge inherent in the growing area of micro-flow 

devices is the increase in pressure drop with decreasing microchannel 

dimensions (Cheng et al., 2009). 
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In this study, fluid dynamics simulations are used to identify the micro-

roughness conditions, in conjunction with the wetting pattern, necessary to 

observe drag reduction, instead of drag increase, in different micro-channel 

geometries.  The models of micro-channels used herein were specifically 

designed to observe changes in the flow around the roughness elements, as well 

as the pressure drop along the length of the micro-channel.   

In order to identify conditions under which drag reduction may occur in 

micro-flows over hydrophobicity-inducing roughness elements, the results are 

obtained with a computational methodology similar to that of Hu et al. (2003) and 

are compared to results for surfaces that do not exhibit hydrophobic behavior.  

The geometry of the micro-channel, surface coverage of the micro-roughness 

elements, and wetting pattern of the fluid are then modified to reveal 

characteristic values related to the geometry that may result in drag reduction.  

Finally, a set of criteria for the prediction of the behavior of fluids in these systems 

that could be employed in the design and optimization of such surfaces is 

proposed.  

2.2. Methodology 

A periodically repeating microchannel of constant length, width, and height 

is simulated in this study (see Figure 2-1).  The pressure drop (∆𝐩 ∆𝐱⁄ ) between 

the channel inlet and outlet for fully developed flow in a microchannel can be 

described analytically according to: 

𝚫𝐩

𝚫𝐱
=

𝟏𝟐𝛍𝟐𝐑𝐞

𝛒𝐇𝟑
 (2-1) 
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where 𝛒is the fluid density, 𝛍is the fluid viscosity, 𝐇 is the channel height and 

the Reynolds number (𝐑𝐞) is defined as: 

𝐑𝐞 =
𝛒�̅�𝐇

𝛍
 (2-2) 

where �̅� is the average velocity of the fluid at the minimum cross section of the 

microchannel.   

The fluid flow is fully developed and is considered to be laminar since all 

Reynolds numbers examined are between 𝟎. 𝟎𝟎𝟏 ≤ 𝐑𝐞 ≤ 𝟏𝟎.  

Figure 2-1: Actual and simulated geometry for microchannel with 
roughness. 

(A) Three-dimensional view of the microchannel depicting the minimum 
box size in the middle and the simulated minimum computational box on 
the right side; (B) Two-dimensional view at z = 0.  The flow is periodic in 
the x-direction with periodic length of b and symmetry applied in the –
direction with length c.  Symmetry is also applied at y = ½H. 
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 The pressure drop can be non-dimensionalized using the following 

equations (Hu et al., 2003): 

𝚫𝐏 =
𝐇𝚫𝐩

𝛍𝐮𝟎
 (2-3) 

and 

𝚫𝐗 =
𝚫𝐱

𝐇
 (2-4) 

The dimensionless pressure gradient (∆𝐏 ∆𝐗⁄ ) for a smooth microchannel would 

then be: 

𝚫𝐏

𝚫𝐗
= 𝟏𝟐 (2-5) 

All meshes are initially created using GAMBIT® (version 2.3.16).  The 

roughness height (𝐡) is set to be 0, 0.1, 0.5, 1, and 2 μm.  The channel height (𝐇) 

is held constant at 5 μm.  The distances between the center points of the 

roughness elements, denoted as 𝐛 and 𝐜 in the x − and z − directions, 

respectively, also remain constant at 2 μm (see Figure 5-1).  The width of the 

roughness (𝐚) is held constant at 1 μm.  The fluid flowing through the 

microchannel was water with density 𝛒 = 𝟏𝟎𝟎𝟎 𝐤𝐠 𝐦 ∙ 𝐬⁄ and viscosity 𝛍 =

𝟎. 𝟎𝟎𝟏𝟎𝟎𝟑 𝐤𝐠 𝐦 ∙ 𝐬⁄ 

ANSYS® Fluent® (version 12.0.16), a flow modeling simulation software, 

is used to simulate the flow of water over the roughness elements of interest in 

the microchannel.  Fluent® is a finite volume-based computational fluid dynamics 

software, which allows for the discretization of the domain and the integration of 

governing equations around individual computational cells. This scheme results 

in the generation of linear algebraic equations for the unknown dependent 
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variables and ensures continuity of the velocity and pressure (Davies et al., 

2006). The justification for using Fluent® rather than another software is: 

 

(1)  The finite volume scheme is locally and globally conservative. 

(2) Fluent® is relatively easy to use and rather widely available for 

others wanting to duplicate or expand this work. 

(3)  Finite volume methods were used by Hu et al. (2003).  Thus, the 

investigation of drag reduction in rough micro-channels conducted 

in this study is done with the same numerical scheme that resulted 

in drag increase in that prior study.  

 

In an effort to efficiently model the system of interest, the microchannel is 

modeled in such a way as to take advantage of symmetry and periodicity in order 

to minimize the simulated part of the channel.  Since the geometry of the 

microchannel is symmetrical, only the bottom half of the microchannel was 

modeled in all simulations.  A periodic boundary condition is specified at both the 

mass flow inlet and outlet, which physically corresponds to fully developed flow 

in an infinitely long channel.  

A first-order upwind discretization scheme is used at the initial stage of the 

simulation before switching to a second-order scheme in the final stages of the 

simulations. The convergence criteria for the residuals of the continuity equation 

and all momentum equations were set to 1 × 10−6.  
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The size of the computational domain in all cases is 2 μm × 2.5 μm × 2 μm 

in the x −, y −, and z − directions, respectively.  Figure 2-2 is a schematic of the 

modeled geometry.  Several simulations are run in order to determine grid 

independence using hexahedral computational cells.  Grid independence is 

obtained for computational cells with edges of 0.025 μm.  Therefore, the 

procedure followed is to create the grid in Fluent, Inc.® GAMBIT™ with an interval 

size of 0.05 μm and then refine the grid in Fluent® up to a y −value equal to twice 

the roughness height for all values of x and z, generating computational cells with 

edges equal to 0.025 μm.  Refinement of the grid in regions near the roughness 

elements is acceptable because the areas of interest for this particular study are 

very close to the roughness elements in the micro-channels.  For cases with h =

0.1, 0.5, and 1 μm, the computational domain is refined in Fluent® in the regions 

Figure 2-2: Boundary conditions for no-slip/free-shear configurations in 
symmetric microchannels. 

Gray coloring indicates areas with no-slip boundary conditions; blue 
coloring indicates areas with free-shear boundary conditions.   
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of 𝟎 ≤ 𝐱 ≤ 𝟐 𝛍𝐦, 𝟎 ≤ 𝐲 ≤ 𝟐𝐡, and 𝟎 ≤ 𝐳 ≤ 𝟐 𝛍𝐦.  For the geometry with 𝐡 =

𝟐 𝛍𝐦, an interval size of 0.025 μm is used everywhere in the computational 

domain.  For all cases considered, the roughness height, width, and depth are all 

divisible by the interval size.   

The boundary conditions on the surfaces of the geometries depicted in 

Figure 2-2 are modified according to the system that is modeled in each 

simulation, (i.e., depending on whether a wetted or a non-wetted state is 

simulated).  When the fluid wets the space between the posts, the system may 

be classified as in the Wenzel state (Wenzel, 1936; Carbone and Mangialardi, 

2005).  Alternatively, when air is trapped between the posts such that the fluid 

does not fully wet the volume space between the roughness, the system may be 

classified as in the Cassie state (Cassie and Baxter, 1944).   

In this study, the meniscus that forms between the surface roughness 

elements in the Cassie state is modeled as a flat free-shear boundary.  This can 

be seen to be valid using the Young-Laplace equation (Ou and Rothstein, 2005; 

Truesdell et al., 2006; Joseph et al., 2006): 

∆𝐩 = 𝟒
𝛄

𝐰⁄ 𝐜𝐨𝐬(𝛑 − 𝛉) (2-5) 

where ∆𝐩 is the hydrostatic pressure, 𝛄 is the surface tension, 𝐰 is the distance 

between the micro-posts, and 𝛉is the contact angle.  A hydrostatic pressure of a 

column of water with height 51.8 cm (much higher than H = 5 μm) would be 

necessary for the curvature of the meniscus to change by 1°.  The flat surface 

approximation is therefore valid for air-water systems and for the size of the 
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spacing between posts considered herein, as summarized in Table 2-1 (Ou and 

Rothstein, 2005; Truesdell et al., 2006; Joseph et al., 2006).   

Solutions obtained from the simulations of this study are compared in 

Figure 2-3 with results from the prior study of Hu et al. (2003) for the same 

conditions (𝟎. 𝟎𝟎𝟏 ≤ 𝐑𝐞 ≤ 𝟏𝟎).  The results of this study are in qualitative and 

quantitative agreement with these prior results.  Differences seen in the case of 

the highest posts between our results and the values obtained by Hu et al. (2003) 

are attributed to differences in grid resolution – this study utilizes a grid that is five 

times as fine.  The pressure drop is noted to be a function of the geometry of the 

system.  Thus, as the roughness height increases, the pressure drop and flow 

velocities also increase when 𝐚, 𝐛, 𝐜, and 𝐇 are held constant.   

Figure 2-3: Dependence of pressure gradient on roughness height for flow 
through a microchannel with dimensions a = 1.0 μm, b = c = 2.0 μm, and H 
= 5.0 μm. 
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2.4. Results and Discussion 

The data seen in Figure 2-3 indicate that a function of h, H, a, and b exists 

to describe the dependence of pressure drop and velocity on the geometry of the 

system.  In order to attain this relationship for the case of surfaces that behave 

as SHSs (i.e., cases that exhibit the Cassie or Wenzel wetting state), the 

boundary conditions at the fluid-solid interface are modified from the no-slip 

boundary condition.  The wall boundary conditions were set as free of shear either 

on the walls of the cavities in the microchannel or on the floor of the microchannel.  

Three states are depicted in Figure 2-3:  

 

(1) State A represents a state of no-slip on all surfaces within the 

microchannel.   

(2) State B represents a model with free shear on the surface of the 

microchannel between the micro-posts, but not on the roughness 

elements.  

(3) State C represents a model with free shear on the sides of the 

roughness, as well as on the top of the roughness elements. 

 

State A is a model of a Wenzel state, where the fluid wets the space 

between the micro-posts, corresponding to the geometry and boundary 

conditions simulated by Hu and colleagues (2003).   

State B corresponds to cases with free shear at the floor of the channel 

due to chemistry effects or due to the presence of nanoscale roughness, as is 
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the case in the ‘‘rose-petal effect’’ (Bushan and Nosonovsky, 2010).  This case 

may then be compared to the Cassie state, in which the water does not penetrate 

the space between the roughness (i.e. 𝐡 = 𝟎), which is the state most often 

associated with superhydrophobic surfaces.  The consideration of partial 

penetration of water into the space between roughness elements is important as 

it serves to indicate the maximum depth to which the water may penetrate before 

drag reduction is no longer observed.    

State C is a modified model of a Wenzel state with posts that are 

hydrophobic due to chemistry, rather than due to the presence of trapped air.  

2.4.1. Effect on Flow 

The differences in the flow fields resulting from each different micro-

channel configuration are visualized using the flow path lines depicted in Figures 

2-4, 2-5, and 2-6 for States A, B, and C, respectively.  Locations at the middle of 

the micro-posts on the x − y plane and three different locations (at a quarter of 

micro-post height, at half the micro-post height, and at the top of the micro-posts) 

on the x − z plane are chosen to provide the characteristic features of the flow.  

The mass flow rate is equal to �̇� = 𝟏 × 𝟏𝟎−𝟖  𝐤𝐠 𝐬⁄  and the Reynolds number is 

equal to 𝐑𝐞 = 𝟏𝟎 in all three cases.  The case with a no-slip boundary condition 

applied at all fluid-solid interfaces indicates the typical profile for a lid-driven cavity 

flow in the x − y plane (Figure 2-4A).  There is a circulation pattern with a single 

focal point, and the flow paths are affected up to about one micro-post height 

above the cavity.  On the x − z plane, the fluid expands towards the open space 
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between the posts in the z − direction as it passes the posts, as seen in Figure 

2-4B through Figure 2-4D.  

For State B, where there is free shear at the bottom of the space between 

the micro-posts, there is increased circulation appearing in the x − y plane.  Since 

there is slip at the bottom wall, the fluid can have a velocity on that surface 

(Figure 2-5A).  On the x − z plane, the path lines are, by and large, similar in 

shape to those for State A (Figures 2-5B through Figure 2-5D).  It appears that 

the presence of the free shear boundary at the bottom of the microchannel does 

not change the flow at a distance larger than 𝐲 = 𝟏 𝟒⁄ 𝐡 from the bottom wall.  The 

Figure 2-4: Pathlines for the simulation of flow through a State A 
configuration with h = 0.5, a = 1.0 μm, b = c = 2.0 μm, and H = 5.0 μm. 

(A) Pathlines on the z = 0 plane, i.e. at the half-point of the posts; (B) Path-
lines at the y = 0.125 μm plane, i.e. at ¼ the height of the microposts; (C) 
Pathlines at the y = 0.25 μm plane, i.e. at ½ the height of the microposts; 
(D) Pathlines at the y = 0.5 μm plane, i.e. at the top of the microposts.  The 
flow is in the x-direction and the color code is based on x-velocity in m/s.   
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velocity in the x − direction for State B at 𝐲 = 𝟏 𝟒⁄ 𝐡 is slightly higher than that for 

State A.  

For State C, the circulation pattern depicts two focal points in the x − y 

plane, since the fluid can slip right after it flows above the micro-posts and drop 

into the cavity space, and then slip on its way towards the top of the next micro-

post, as seen in Figure 2-6A.  On the x − z plane, the path lines are dramatically 

different than in States A and B.   At 𝐲 = 𝟏 𝟒⁄ 𝐡, we can see a stagnation point at 

about half the distance between the posts (at point 𝐱 = 𝟏 𝟐⁄ 𝐛, 𝐳 = 𝟏 𝟒⁄ 𝐚, in 

Figure 2-6B).  At the top of the micro-posts, the fluid barely expands in the z − 

Figure 2-5: Pathlines for the simulation of flow through a State B 
configuration with h = 0.5, a = 1.0 μm, b = c = 2.0 μm, and H = 5.0 μm. 

(A) Pathlines on the z = 0 plane, i.e. at the half-point of the posts; (B) Path-
lines at the y = 0.125 μm plane, i.e. at ¼ the height of the microposts; (C) 
Pathlines at the y = 0.25 μm plane, i.e. at ½ the height of the microposts; 
(D) Pathlines at the y = 0.5 μm plane, i.e. at the top of the microposts.  The 
flow is in the x-direction.   
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direction (Figure 2-6D) and looks as though it moves above the micro-posts 

without being affected by their presence.  

2.4.2. Effect on Pressure Drop 

Based on Equation 2-5, 𝟏 𝟏𝟐⁄ (∆𝐏 ∆𝐗⁄ ) = 𝟏 for a micro-channel with flat 

walls.  The value of  𝟏 − 𝟏
𝟏𝟐⁄ (∆𝐏 ∆𝐗⁄ ), which is the quantity appearing as the 

ordinate on Figure 2-7, is positive when a rough microchannel exhibits drag 

reduction relative to the flat wall case, and negative when a micro-channel 

exhibits drag increase relative to the flat wall case.  The results of the simulations 

are graphically depicted in Figure 2-7. The presence of roughness, as expected, 

Figure 2-6: Pathlines for the simulation of flow through a State C 
configuration with h = 0.5, a = 1.0 μm, b = c = 2.0 μm, and H = 5.0 μm. 

(A) Pathlines on the z = 0 plane, i.e. at the half-point of the posts; (B) Path-
lines at the y = 0.125 μm plane, i.e. at ¼ the height of the microposts; (C) 
Pathlines at the y = 0.25 μm plane, i.e. at ½ the height of the microposts; 
(D) Pathlines at the y = 0.5 μm plane, i.e. at the top of the microposts.  The 
flow is in the x-direction.   
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always increases drag for the no-slip microchannel (State A).  The pressure 

drops for States B and C, however, are less than that for State A.  Furthermore, 

when the 𝐡 𝐇⁄ < 𝟎. 𝟎𝟒𝟓 for State B and 𝐡 𝐇⁄ < 𝟎. 𝟎𝟖𝟎 for State C (Figure 2-8), 

the presence of roughness with free-shear boundary conditions may even result 

in drag reduction.  

For State B, which is the case that models micro-roughness elements that 

have air trapped between them, the case of 𝐡 = 𝟎 is a pure Cassie state, where 

the fluid does not wet the space between the posts at all and air is trapped 

between the posts creating a flat area with free shear.  This would be a typical 

SHS, such as the lotus leaf.  The cases of 𝐡 𝐇⁄ > 𝟎 are models of systems in 

which the liquid partially wets the space between the posts (such as occurs in a 

transition from the Wenzel to Cassie state or vice versa; see Figure 1.4-1).  

Closer examination of this state could indicate that a critical value of the 

Figure 2-7: Variance in pressure gradient with configuration (macro-view) 
for microchannels with dimensions a = 1.0 μm, b = c = 2.0 μm, and H = 5.0 
μm. 
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geometric characteristics of the micro-surface exists such that drag reduction 

relative to the base case (defined as the case of a microchannel with flat walls 

with no-slip boundary condition – State A) can be expected.  

The geometric characteristics include the roughness to channel height 

ratio (𝐡 𝐇⁄ ), the width of the roughness (𝐚), and the roughness spacing (𝐛).   After 

investigating several dimensionless combinations of the previously mentioned 

characteristics, two possibilities were identified as having a consistent, 

quantifiable trend or converging value between the dimensionless pressure drop 

and the characteristic value.  

The first possibility is the ratio of the no-slip area to the total area over 

which the fluid flows (𝐀𝐍𝐒 𝐀𝐓⁄ ), defined as: 

Figure 2-8: Variance in pressure gradient with configuration (micro-view) 
for microchannels with dimensions a = 1.0 μm, b = c = 2.0 μm, and H = 5.0 
μm. 
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𝐀𝐍𝐒

𝐀𝐓
=

𝐚𝟐 + 𝟒𝐚𝐡

𝐛𝟐 + 𝟒𝐚𝐡
 (2-7) 

As presented in Figure 2-9, an approximately linear trend in which the 

pressure drop reduction increases with a decrease in the ratio of no-slip area to 

total area is observed.  Furthermore, the slope of the line relating the reduction 

in pressure drop to the ratio of no-slip area to total area appears to increase with 

increasing roughness height, which indicates that a small change in this ratio of 

areas could result in a more dramatic change in pressure drop for taller 

roughness elements than for shorter ones.   

The second possibility is the dimensionless hydraulic diameter (𝐃𝐡), as 

defined at the minimum cross section of the micro-channel: 

𝐃𝐡 =
𝟐

𝐇
(
𝐇𝐛 − 𝟐𝐚𝐡

𝐚 + 𝟐𝐡
) (2-9) 

Figure 2-9: Variance in pressure gradients with no-slip surface area for 
geometries with no-slip boundary conditions on the posts and free-shear 
boundary conditions in between the posts (State B). 
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In Figure 2-10 the pressure drop as a function of Dh using values of h and 

a, as described in Table 2-2 for 𝐑𝐞 = 𝟏𝟎 and mass flow rate �̇� = 𝟏 × 𝟏𝟎−𝟖  
𝐤𝐠

𝐬⁄  

is presented.  In these simulations, the space between the micro-posts is taken 

to be free of shear, while all other surfaces were taken to be no-slip.   For all 

cases in which the roughness height is greater than 0, a pressure drop reduction 

is observed for values of the dimensionless hydraulic diameter larger than 

approximately 2.50.  For cases in which there are roughness elements (𝐡 > 𝟎), 

this value of the dimensionless hydraulic diameter could prove to be a useful 

criterion for predicting the onset of drag reduction.  

2.5. Summary and Conclusions 

 In this study, simulations are used to investigate drag reduction in micro-

channels with surfaces that replicate SHSs.  Consistent with previous studies and 

Figure 2-10: Variance in pressure gradients with hydraulic diameter for 
geometries with no-slip boundary conditions on the posts and free-shear 
boundary conditions in between the posts (State B). 
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intuition, when the fluid does not slip around or over the roughness elements, 

there is an increase in the pressure drop needed for the same amount of fluid to 

go through the micro-channel compared to the case of a channel with flat 

surfaces.  When there is slip on the surface of the micro-posts or on the space 

between them, however, the pressure drop is smaller than the pressure drop for 

the case of a micro-channel with flat walls (Davies et al., 2006; Cheng et al., 2009; 

Rothstein, 2010).   

When the pressure drop is plotted versus the dimensionless hydraulic 

diameter for State B, in which the water does not penetrate (𝐡 = 𝟎) or partially 

penetrates (𝐡 > 𝟎) the space between the roughness elements of a micro-

channel with free shear surfaces between the micro-roughness, it is found that 

there may be a critical value above which drag reduction may be achieved 

for 𝐑𝐞 = 𝟏𝟎 and a mass flow rate �̇� = 𝟏 × 𝟏𝟎−𝟖  𝐤𝐠 𝐬⁄  for the dimensions listed in 

Table 2-2.  These results indicate that modifications of the surface of 

microdevices, which are enabled with advances in lithography and 

microfabrication, can lead to drag reduction for fluid flow and, in general, to ways 

of controlling fluid flow behavior.  
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2.6. Nomenclature 

Roman Characters 

𝐚 Width of the base of a square roughness element 

𝐀𝐍𝐒 No-slip area of the bottom wall of the micro-channel 

𝐀𝐓 Total surface area of the bottom wall of the micro-channel 

𝐛 
Distance between the centers of the roughness elements in the x-
direction 

𝐜 
Distance between the centers of the roughness elements in the z-
direction 

𝐃𝐡 Hydraulic diameter of the micro-channel 

𝐡 Roughness element height 

𝐇 Channel height 

�̇� Mass flow rate 

𝐑𝐞 Reynolds number 

�̅� Average velocity at the minimum cross section of the micro-channel 

Greek Characters 

𝛄 Surface tension 

𝚫𝐩 Pressure change 

𝚫𝐏 Dimensionless pressure change 

𝚫𝐱 Distance between micro-channel inlet and outlet in the x-direction 

𝚫𝐗 
Dimensionless distance between microchannel inlet and outlet in the x-
direction 

𝛍 Fluid kinematic viscosity 

𝛒 Fluid density 
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Chapter 3: Non-Newtonian Flow Models over Mixed Boundaries 

3.1. Introduction 

The wettability of surfaces is an important issue in many areas of 

engineering, including microfluidics and lubrication applications (Quéré, 2008).  

Superhydrophobic surfaces (SHSs) can significantly amplify hydrodynamic slip 

in both turbulent and laminar flows (Rothstein 2009; Belyaev and Viogradova 

2010; Busse et al. 2013), enabling the motion of fluids in small, confined systems. 

SHSs may have a particularly relevant impact in micro- and nano-systems, 

which have advanced significantly in recent years due to the increasingly 

apparent advantages of miniaturization and the development of novel 

microfabrication technologies (Shirtcliffe, Toon, and Roach, 2013).  The low 

volume of fluid required for microfluidic systems has made these devices 

particularly useful for blood analysis, as well as other biological applications 

involving blood, proteins, antibodies, RNA, and DNA (Shirtcliffe and Roach, 

2013).  Systems involving non-Newtonian fluids, such as blood, polymer 

solutions, and suspensions, pose unique transport challenges that require 

efficient and effective solutions.  In the case of non-Newtonian fluids, the viscosity 

of the fluid is often dependent on shear rate.  The most common classes of non-

Newtonian fluids are shear-thinning or pseudoplastic fluids, which exhibit a 

decrease in viscosity with increased shear stress, and shear-thickening or 

dilatant fluids, which exhibit an increase in viscosity with increased shear stress.  

Figure 3-1 is an illustration of the general viscosity behavior of non-Newtonian 

and Newtonian fluids over a range of shear. It should be noted a surface that 
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repels fluids other than water is more accurately called a solvophobic surface. 

The terms solvophobic and superhydrophobic are interchangeable in this study, 

however, irrespective of the type of fluid.  

Microfluidic applications often face a problem with surface fouling, 

especially when such systems involve solutions with enzymes or proteins, as is 

often the case in medical and biological studies.  While various strategies may 

be used to reduce adsorption of unwanted species on a surface, SHSs offer a 

unique solution by both reducing surface contamination and inducing self-

cleaning properties of the surface (Shirtcliffe and Roach, 2013).  Other confined 

systems, including porous materials and lubricating films, could also benefit 

significantly from the drag reduction and anti-fouling properties associated with 

the use of SHSs (Lee, Charrault, and Neto, 2014).  

Figure 3-1: Dependence of viscosity on shear rate for Newtonian and non-
Newtonian fluids with constant densities. 
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With these quite extraordinary properties in mind, this study aims to 

provide insight into the design of SHSs for use in microfluidic systems.  The cases 

examined herein are flows over surfaces in the Cassie state, which are expected 

to behave as superhydrophobic surfaces in the sense that they would allow fluid 

to slip over them, even though the actual calculation of the contact angle of the 

fluids on these surfaces is not within the scope of this work.  A description of 

current progress concerning SHSs is also presented and new details related to 

the effects of several flow and fluid properties on the effective slip over these 

surfaces are provided. 

3.2. Background 

As the potential for use of SHSs for drag reduction becomes more evident, 

the need for a predictive method for slip becomes more pressing.  Several 

theoretical and numerical approaches have been used to describe the effective 

slip for various types of flow over SHSs (Lauga and Stone, 2003; Priezjev and 

Troian, 2006; Voronov, Papavassiliou, and Lee, 2008; Lee and Choi., 2008; 

Bazant and Vinogradova, 2009; Davis and Lauga, 2009; Feuillebois, Bazant, and 

Vinogradova, 2009; Belyaev and Vinogradova, 2010; Davis and Lauga, 2010; Ng 

and Wang, 2010; Busse et al., 2013).  Among the most commonly adapted 

models are the generic scaling laws developed by Ybert et al. (2007), in which 

the effective slip length is related to characteristics of the SHS, including 

roughness length scale, depth, and solid fraction. 

Numerous factors may influence the onset and magnitude of slip, including 

the type of fluid, the physical and chemical properties of the surface, the flow 
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regime, the geometry of the flow system, and ambient conditions, among many 

others (Sochi, 2011).   Consequently, a rigorous analytical method to predict the 

occurrence and magnitude of slip has not yet been developed (Voronov, 

Papavassiliou, and Lee, 2008). It has even been suggested, based on molecular 

dynamics simulations, that slip can occur even in cases of flow over hydrophilic 

surfaces under certain conditions (Ho et al., 2011).  

Most analytical and numerical studies exploring flow over SHSs have 

largely focused on Couette flow systems involving water.  Although several 

groups have theorized that the effective slip length should be dependent on 

pressure gradients and fluid viscosity, relatively few have attempted to explore 

the quantitative differences that arise as a result of such dependencies 

(Watanabe, Udagawa, and Udagawa, 1999; Lauga and Stone, 2003; Ou, Perot, 

and Rothstein, 2004).  An understanding of the effects of these factors on the 

effective slip over SHSs would greatly assist in the development of such surfaces 

for practical applications.  The purpose of this study is to explore the dependence 

of slip on viscosity, pressure drop, and shear and to compare the observed effects 

in the context of generic scaling laws commonly used to describe flow over these 

surfaces. 

Philip (1972) originally proposed the relationship shown below to describe 

the normalized effective slip for flow over a single ridge oriented parallel to the 

direction of flow: 

𝓵𝐬𝐥𝐢𝐩

𝐋
=

𝟏

𝛑
𝐥𝐧 {𝐬𝐞𝐜 [

𝛑

𝟐
(𝟏 − 𝛟𝐬𝐨𝐥𝐢𝐝)]} (3-1) 
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where 𝓵𝐬𝐥𝐢𝐩 is the effective slip length, 𝐋 is the distance between the center of the 

roughness elements in the span-wise direction, and 𝛟𝐬𝐨𝐥𝐢𝐝 is the solid/wetted 

fraction of the surface (i.e., the fraction  of the surface that is wetted by the fluid 

and where the no-slip boundary condition is applicable).    

Later, Ybert et al. (2007) proposed the relationship shown an empirical 

relationship for the normalized effective slip length: 

𝓵𝐬𝐥𝐢𝐩

𝐋
=

𝐀

√𝛟𝐬𝐨𝐥𝐢𝐝

− 𝐁 (3-2) 

where 𝐀 and 𝐁 are numerical constants that depend on the geometry of the 

roughness elements (Ybert et al., 2007).   

Equation 3-2 can be used to find the constants 𝐀 and 𝐁 for flow over 

ridges oriented parallel to the flow and prior publications have presented 

estimates for the constants for flow over square and over circular posts (Ybert et 

al., 2007; Davis and Lauga, 2010; Ng and Wang, 2010).   

For ridges aligned perpendicular to the direction of flow, the slip is 

described according to Equation 3-3, and would result in a smaller effective slip 

length than that for parallel ridges (Lauga and Stone, 2003; Belyaev and 

Vinogradova, 2010; Vinogradova and Belyaev, 2011; Asmolov and Vinogradova, 

2012), 

𝓵𝐬𝐥𝐢𝐩

𝐋
=

𝟏

𝟐𝛑
𝐥𝐧 {𝐬𝐞𝐜 [

𝛑

𝟐
(𝟏 − 𝛟𝐬𝐨𝐥𝐢𝐝)]} (3-3) 

The circular posts are close representations of the roughness elements of 

the lotus leaf, which has conical-shaped roughness   elements.  The ridges 

considered in this study are aligned parallel to the direction of flow.  As was 
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previously noted, the slip for ridges aligned perpendicular to the flow would 

actually result in the lowest slip length, according to Equation 3-3.  Since this is 

a well-established relationship (and results in poor drag reduction compared to 

other geometries), perpendicular ridges are not considered further in this study. 

An effective fluid slip over a SHS leads to drag reduction in the flow, which 

is often defined based on the shear stresses or friction coefficients at the walls, 

as follows: 

𝐑𝐃 = 𝟏 −
𝛕𝐰,𝐒𝐇𝐒

𝛕𝐰,𝐍𝐒
=

𝐟𝐍𝐒 − 𝐟𝐒𝐇𝐒

𝐟𝐍𝐒
 (3-4) 

where 𝛕𝐰,𝐍𝐒 is the wall shear stress for the no-slip surface, 𝛕𝐰,𝐒𝐇𝐒 is the wall shear 

stress for the SHS,  𝐟𝐍𝐒 is the friction coefficient for flow over a no-slip surface, 

and 𝐟𝐒𝐇𝐒 is the friction coefficient for flow over a superhydrophobic surface 

(Fukagata et al. 2006).  

The following equation may be used to find the average velocity (�̅�𝐍𝐒) for 

Poiseuille flow in a channel with no-slip walls:  

�̅�𝐍𝐒 = −
𝟏

𝟏𝟐𝛍
(
𝛛𝐩

𝛛𝐱
)𝐇𝟐 (3-5) 

where 𝛍 is the viscosity of the fluid, 𝛛𝐩 𝛛𝐱⁄  is the stream-wise pressure gradient, 

and 𝐇 is the channel height.   

Newton’s law of viscosity may be used to find the wall shear stress (Bird 

et al. 2005), in order to determine the terms appearing in Equation 3-4.  For a 

Couette flow in a system with no slip walls, the average velocity may be found as 

(Bird et al. 2005): 
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�̅�𝐍𝐒 =
𝟏

𝟐
𝐔𝟎 (3-6) 

where 𝐔𝟎 is the shearing wall velocity. 

Similiarly, the average velocity for a Couette-Poiseuille flow would be (Bird 

et al. 2005): 

�̅�𝐍𝐒 = −
𝟏

𝟏𝟐𝛍
(
𝛛𝐩

𝛛𝐱
)𝐇𝟐 +

𝟏

𝟐
𝐔𝟎 (3-7) 

3.3. Surface Model 

A micro-channel with dimensions of 10 μm × 190 μm × 10 μm in the x −, 

y −, and z − directions, respectively, is modeled as periodic in the span- and 

stream-wise directions.  A channel height of 190 μm is a practical choice, since 

the effects of the SHS on the velocity profile are negligible at approximately 180 

μm above the surface for the range of shear rates considered in this study.  The 

dimensions associated with a micro-channel also facilitates full resolution of the 

computational domain around the edges of the microscopic roughness elements 

and utilizes geometries/meshes that have been validated in previous 

independent studies.  

In three of the five cases explored in this study, the system of interest 

involves plane Couette flow with the top wall of the channel moving at a constant 

shearing velocity.  These systems are defined as: 

 

(1) Case A is a Newtonian fluid with a viscosity of 𝛍 = 𝟗. 𝟗𝟓 ×

𝟏𝟎−𝟒  𝐤𝐠 𝐦 ∙ 𝐬⁄  and a density of 𝛒 = 𝟏𝟎𝟎𝟎 𝐤𝐠 𝐦𝟑⁄ . 
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(2) Case B is A shear thinning (pseudo-plastic) fluid with a viscosity 

described by a Carreau generalized Newtonian viscosity model, 

described by Equation 3-8, and a density of 𝛒 = 𝟏𝟎𝟓𝟎 𝐤𝐠 𝐦𝟑⁄ .. 

(3) Case C is a shear thickening (dilatant) fluid with a power law 

generalized Newtonian viscosity model, given in Equation 3-9, and 

a density of 𝛒 = 𝟏𝟎𝟓𝟎 𝐤𝐠 𝐦𝟑⁄ .. 

 

In the remaining two cases, the systems are described as:  

 

(4) Case D is a Poiseuille-Couette flow system with a top wall moving 

at velocity (𝐔𝟎), a prescribed mass flow rate (�̇�), and a stream-wise 

pressure gradient (𝛛𝐩 𝛛𝐱⁄ ). 

(5) Case E is a Poiseuille flow system with a prescribed mass flow rate 

(�̇�) and a streamwise pressure gradient (𝛛𝐩 𝛛𝐱⁄ ). 

 

The viscosity of the fluid following the Carreau model (Case B) is 

described by: 

𝛍 − 𝛍∞

𝛍𝟎 − 𝛍∞
= [𝟏 + (𝛌�̇�)𝟐]

(𝐧−𝟏)
𝟐⁄  (3-8) 

where 𝛍 is the apparent viscosity and material constants 𝛍𝟎 = 𝟎. 𝟎𝟔𝟑𝟗 𝐤𝐠 𝐦 ∙ 𝐬⁄ , 

𝛍∞ = 𝟎. 𝟎𝟎𝟒𝟒𝟓 𝐤𝐠 𝐦 ∙ 𝐬⁄ , 𝛌 = 𝟑. 𝟑𝟏 𝐬, and 𝐧 = 𝟎. 𝟑𝟓 (Johnston et al., 2004).   

The viscosity of the shear thickening fluid (Case C) is given as: 

𝛍 = 𝐤�̇�𝐧−𝟏 (3-9) 
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with material constants 𝐤 = 𝟎. 𝟎𝟎𝟏 𝐤𝐠 ∙ 𝐬𝐧−𝟐 𝐦⁄   and 𝐧 = 𝟑. 𝟎.  Equation 3-9 has 

a corresponding minimum viscosity limit of 𝛍𝐦𝐢𝐧 = 𝟎. 𝟏 𝐤𝐠 𝐦 ∙ 𝐬⁄   and a maximum 

viscosity limit 𝛍𝐦𝐚𝐱 = 𝟏𝟎𝟎 𝐤𝐠 𝐦 ∙ 𝐬⁄ .  

While the material constants for the shear-thinning and shear-thickening 

fluids are based on experimental data for blood and printer ink, as obtained by 

Tanner (2000) and Brown and Jaeger (2009), respectively, the behavior 

associated with these constants is not intended to represent or model specific 

fluids.  Rather, the fluid properties are chosen to represent the desired fluid 

response to variations in shear rate, and are used for illustrative purposes to 

explore the effect of fluid properties on flow characteristics over mixed slip 

surfaces.  The software package used in this study (ANSYS® Fluent®) offers 

several viscosity models for shear-thinning and shear-thickening fluids. The 

choice of the Carreau and power law models to describe the viscosity of the fluids 

is primarily based on both convenience and computational efficiency.  

Figure 3-2 illustrates the qualitative velocity profiles expected for flow in 

each of these cases.  In all systems, the top wall of the channel is a regular, no-

slip boundary condition wall.    

A number of different surface topologies are considered for Cases A, B, 

and D. and more than 100 simulations are used to characterize the different 

cases described in Table 3-1.  The bottom surfaces of the channels are modeled 

as regions of no-slip boundaries in the shapes of ridges, circular posts, and 

square posts, or circles corresponding to the surfaces shown in Figure 3-2.  For  
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Cases C and E, as well as select cases of A and B, only the surface with circular 

posts is considered.   

One approach to the design of superhydrophobic surfaces is to use 

dimensions commonly found in nature, such as those of the lotus leaf.  The 

diameter or width of the roughness on the lotus leaf may be seen to be on the 

order of 10 µm, with a similar magnitude of spacing between neighboring 

roughness elements (Voronov, Papavassiliou, and Lee, 2008).  In keeping with 

these dimensions, the fractions of the area that are occupied by the roughness 

elements (i.e., the fractions where no-slip boundary conditions apply) considered 

in this study are 16%, 25%, and 50% of the total SHS area. 

Figure 3-2: No-slip/free-shear surface model configurations. 

Gray coloring indicates areas with no-slip boundary conditions; blue 
coloring indicates areas with free-shear boundary conditions.   
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3.4. Methodology 

All meshes are created using the ANSYS® ICEM CFD™ (version 14.0) 

meshing software.  The grid is generated using three-dimensional blocking with 

node spacings no greater than 0.125 μm in the x − and z − directions.  The error 

in velocity solutions obtained using this spacing, which results in meshes with 

approximately 350,000 nodes, is less than 4% when compared with those 

obtained using a mesh of nearly 500,000 nodes. 

ANSYS® Fluent® (version 14.0), a flow modeling simulation software, is 

used to simulate the flow of the fluid over the roughness elements of interest in 

the microchannel.  Fluent® is a finite volume-based computational fluid dynamics 

software, which allows for the discretization of the domain and the integration of 

governing equations around individual computational cells. This scheme results 

in the generation of linear algebraic equations for the unknown dependent 

variables and ensures continuity of the velocity and pressure (Davies et al. 2006).  

A second order-upwind discretization scheme is used.  Residuals for the 

continuity and momentum equations are required to be reduced by at least three 

orders of magnitude, while the value for the velocity magnitude on the wall 

modeled with the free shear boundary condition is monitored for convergence of 

within 1%.  In general, convergence criteria of 1x10-7 for the continuity and 

momentum residuals are determined to be sufficient to reach a converged value 

for the slip velocity.  
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3.5. Results and Discussion 

The maximum difference between numerical results and analytical 

predictions is within 4%.  Thus, the simulation methodology outlined in this study 

may be assumed to be valid and the results obtained should be accurate, 

especially close to the walls, where the differences between theoretical and 

computational results is a fraction of 1%. 

Figure 3-3 illustrates the relationship between the normalized effective slip 

length (𝓵𝐬𝐥𝐢𝐩 𝐋⁄ ) and the normalized slip velocity (𝐔𝐬𝐥𝐢𝐩 𝐔𝟎⁄ ) for Newtonian and 

non-Newtonian flow over no-slip boundaries in the shapes of ridges, circular 

posts, and square posts at various shear rates.  The data is observed to follow a 

line, the slope of which may be determined according to: 

𝓵𝐬𝐥𝐢𝐩

𝐋
=

𝐇

𝐋
(

𝐔𝐬𝐥𝐢𝐩

𝐔𝟎 − 𝐔𝐬𝐥𝐢𝐩
) (3-10) 

Figure 3-3: Relationship between slip length and slip velocity for Newtonian 

flow over surfaces with 0.16% ≤ φsolid ≤ 50%. 
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where 𝐔𝐬𝐥𝐢𝐩 is the slip velocity. 

Thus, when the ratio of the slip velocity to the shearing velocity is much 

smaller than one, as in this study, the slope of the line observed in Figure 3-4 is 

approximately equal to the channel height divided by the distance between the 

centers of the roughness elements.  This relationship is useful for validation of 

the numerical results obtained for Couette flow and can also have a predictive 

value for design purposes, when either the slip velocity or the slip length can be 

estimated.  

3.5.1. Effect of Roughness Shape 

Prior researchers have used both analytical methods and numerical 

regression to obtain estimates for the coefficients 𝐀 and 𝐁 appearing in Equation 

3-2 for several types of surface geometries (Ybert et al., 2007; Davis and Lauga, 

2010; Ng and Wang, 2010).  Table 3-2 summarizes the results obtained from 

simulations for Case A and compares the values with those found by other 

groups for similar (though not necessarily identical) conditions.  As is illustrated 

in Figure 3-4, the values for 𝐀 and found in this study are within approximately 

10% of published values.   

Figure 3-5 compares the dependence of the slip length on the solid 

fractions for Case A with a shearing wall velocity equal to 𝐮𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄  with 

similar geometry-based models proposed by other groups. As the area of free 

shear is increased, however, the normalized effective slip length appears to 

become more sensitive to the geometry of the roughness on the surface, resulting 

in as much as a 13% difference.  
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Figure 3-5: Effect of roughness surface coverage on slip length for 
Newtonian, shear-thinning, and shear-thickening fluids with constant 

densities in laminar flow (𝐔𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄ ). 

Figure 3-4: Comparison of slips lengths obtained using numerical 
procedures and previously proposed models or Newtonian fluid= with 

constant densities in laminar flow (𝐔𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄ ). 
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Figure 3-6 illustrates the relationship between slip velocity and surface 

solid fraction for Case A with a shearing wall velocity equal to 𝐔𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄ .  

Figure 3-7 illustrates the relationship between drag reduction and surface solid 

fraction for Case A with a shearing wall velocity equal to 𝐔𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄ .  The 

ridge-shaped roughness results in a reduction of drag that is 16% higher than 

that achieved with circular posts and almost 20% higher than that for square 

posts.  

3.5.2. Effect of Viscosity 

As is summarized in Table 3-3 and shown graphically in Figure 3-7, the 

viscosity of the fluid has a pronounced effect on slip length, as well as the scaling 

law constants 𝐀 and 𝐁 used In Equation 3-2.  Both the shear-thinning and shear-

Figure 3-6: Effect of roughness surface coverage on slip velocity for 
Newtonian, shear-thinning, and shear-thickening fluids with constant 

densities in laminar flow (𝐔𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄ ). 
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thickening fluids exhibit an increasing effective slip length with decreasing solid 

fraction, although the slip lengths for the shear-thinning and Newtonian fluids are 

significantly higher than those for the shear-thickening fluid.  In fact, the highest 

effective slip length for the shear-thickening fluid modeled in this study is between 

60%-70% lower than the highest effective slip lengths obtained for the Newtonian 

and shear-thinning fluids.  

Viscosity also appears to result in substantial differences in the predicted 

slip velocity for the various surface topologies considered for Cases A, B, and C 

(Figure 3-8).  The maximum drag reduction (Figure 3-9) achieved is 

approximately 3.3% and is observed for the flow of the shear-thinning fluid over 

the circular posts that cover 16% of the bottom surface area.  This value is almost 

60% higher than the drag reduction in the flow of a Newtonian fluid an d more 

Figure 3-7: Effect of roughness surface coverage on drag reduction for 
Newtonian, shear-thinning, and shear-thickening fluids with constant 

densities in laminar flow (𝐔𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄ ). 
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than 100% higher than that achieved in the flow of a shear-thickening fluid of the 

same surface.   

3.5.3. Effect of Shear Rate 

The effective slip length for Couette flow of a Newtonian fluid should be 

independent of the shear rate at the low velocities used here (Martini et al., 2008).  

Numerical predictions show a negligible (< 𝟐%) decrease in the effective slip 

length for this type of flow.  

Based on the definition of the slip length for Couette flow, the slip length 

would also be proportional to the ratio of the change in shear rate and slip 

velocity: 

𝓵𝐬𝐥𝐢𝐩
𝐡𝐢

𝓵𝐬𝐥𝐢𝐩
𝐥𝐨

~
�̇�𝐥𝐨𝐮𝐬𝐥𝐢𝐩

𝐡𝐢

�̇�𝐡𝐢𝐮𝐬𝐥𝐢𝐩
𝐥𝐨

 (3-11) 

If a fairly intuitive assumption is made that states a change in shear rate 

would result in a proportional change in slip velocity, then a 10-fold increase in 

shear rate would be reasonably assumed to result in a 10-fold increase in the slip 

velocity, and the slip length would remain unchanged.  

Figure 3-10 plots of the influence of shear rate on the effective slip length 

for the Newtonian and non-Newtonian fluids (Cases A, B, and C).  Because the 

fluid examined in Case B exhibits shear-thinning behavior, the difference 

observed between Cases A and B should become less noticeable with 

increasing shear.  At low shear rates, there is an approximate 12% difference in 

the predicted effective slip length for water and the shear-thinning fluid, while at 

higher shear rates, the difference decreases to less than 2%.   
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Figure 3-8: Effect of viscosity on slip length for Newtonian, shear-thinning, 
and shear-thickening fluids with constant densities in flow over circular no-

slip boundaries (𝛟𝐬𝐨𝐥𝐢𝐝 = 𝟏𝟔%).  

Figure 3-9: Effect of viscosity of slip velocity for Newtonian, shear-thinning, 
and shear-thickening fluids with constant densities in flow over circular no-

slip boundaries (𝛟𝐬𝐨𝐥𝐢𝐝 = 𝟏𝟔%). 
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The shear-thickening fluid exhibits dramatically different behavior than the 

Newtonian and shear-thinning fluids with increasing shear rate.  As may be seen 

in Figure 3-11, the slip velocity actually increases with increasing shear rate for 

the shear-thickening fluid at low to moderate shear rates.   

The drag reduction achieved for Cases A, B, and C as a function of shear 

rate is displayed in Figure 3-12.  At low to moderate shear, the drag reduction 

for the Newtonian (Case A) and shear-thinning fluids (Case B) decreases with 

increasing shear rate, while the drag reduction for the shear-thickening fluid 

(Case C) increases with increasing shear rate (Figure 3-13).  

3.6. Summary 

At high no-slip coverage (𝛟𝐬𝐨𝐥𝐢𝐝 ≥ 𝟓𝟎%), the effect of the shape of the 

roughness elements appears to be negligible.  This behavior may be due to the 

Figure 3-10: Effect of viscosity drag reduction for Newtonian, shear-
thinning, and shear-thickening fluids with constant densities in flow over 

circular no-slip boundaries (𝛟𝐬𝐨𝐥𝐢𝐝 = 𝟏𝟔%). 
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fact that a 50% solid coverage is the point at which the effects of the no-slip and 

the free-shear portions of the surface are effectively balanced and, thus, the 

effective slip length should be relatively independent of the surface roughness 

geometry.  While not considered in this study, the effect of the free shear area for 

solid coverage much greater than 50% may be dwarfed by the effect of the no-

slip area until the effective slip length would be equal to 0 when 𝛟𝐬𝐨𝐥𝐢𝐝
−𝟏 𝟐⁄

= 𝟏. 𝟎.   

The viscosity of the fluid flowing over the modeled SHS appears to have a 

significant effect on the effective slip length, slip velocity, and drag reduction.  The 

effective slip lengths, velocities, and drag reduction for the non-Newtonian fluids 

appear to follow a qualitative trend similar to that of the viscosity.  This behavior 

is consistent with the behavior of the models describing the dependence of the 

non-Newtonian viscosities on shear rate (see Figure 3-1).  A 45% difference in 

Figure 3-11: Effect of shear on slip length for Newtonian, shear-thinning, 
and shear-thickening fluids with constant densities in flow over circular no-

slip boundaries (𝛟𝐬𝐨𝐥𝐢𝐝 = 𝟏𝟔%). 
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the predicted values of slip lengths for Newtonian and shear-thinning fluids and 

an 80% difference in the predicted values of slip lengths for Newtonian and shear-

thickening fluids, is observed at the lowest shear rate considered (10 s−1).  This 

difference is found to decrease with increasing shear.  At 20,000 s−1, the 

differences in the predicted slip lengths between the fluids are less than 4%.  

Thus, the difference in the obtainable slip for flow involving both Newtonian and 

non-Newtonian fluids at large shear rates is likely negligible.  The effect of non-

Newtonian rheological behavior, however, can be appreciable at low shear rates 

and may result in significantly different effective slip lengths, slip velocities, and 

maximum drag reduction.   

As is expected (and validated by numerical predictions), the slip length 

should be independent of shear rate for laminar Couette flow of a Newtonian fluid.  

The shear-thinning and shear-thickening fluids considered in this study do show 

dependence, however, of the effective slip length on the shear rate at low to 

moderate shear (less than 500 s-1).  

The use of SHSs with non-Newtonian fluids has not previously been 

studied extensively.  This study explores, in depth, achievable slip and drag 

reduction in SH systems in laminar, non-Newtonian (as well as Newtonian) flow. 

The findings of this study may be relevant in the development of biomedical and 

microfluidic devices and could result in improved models for the prediction of drag 

reduction in flow over these surfaces. 
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Figure 3-12: Effect of shear on slip velocity for Newtonian, shear-thinning, 
and shear-thickening fluids with constant densities in flow over circular no-

slip boundaries (𝛟𝐬𝐨𝐥𝐢𝐝 = 𝟏𝟔%). 

Figure 3-13: Effect of shear on drag reduction for Newtonian, shear-
thinning, and shear-thickening fluids with constant densities in flow over 

circular no-slip boundaries (𝛟𝐬𝐨𝐥𝐢𝐝 = 𝟏𝟔%). 
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3.8. Nomenclature 

Roman Characters 

𝐀,𝐁 Ybert et al. (2007) scaling law constants 

𝐇 Chanel height 

𝐟𝐍𝐒 No-slip friction coefficient 

𝐟𝐒𝐇𝐒 Free-shear friction coefficient 

𝐤, 𝐧 Material constant (𝐤 = 𝟎. 𝟎𝟎𝟏 𝐤𝐠 ∙ 𝐬𝐧−𝟐 𝐦⁄ ,𝐧 = 𝟑. 𝟎) 

𝓵𝐬𝐥𝐢𝐩 Effective slip length 

𝐋 Distance between centers of roughness elements 

�̇� Mass flow rate 

𝐑𝐃 Drag reduction 

�̅�𝐍𝐒 Average velocity in a no-slip channel 

𝐔𝟎 Shearing wall velocity 

𝐔𝐬𝐥𝐢𝐩 Slip velocity 

Greek Characters 

𝛛𝐩 𝛛𝐱⁄  Stream-wise pressure gradient 

�̇� Shear rate 

𝛌 Carreau model constant (𝛌 = 𝟑. 𝟑𝟏 𝐬) 

𝛍 Fluid viscosity 

𝛍𝟎 Carreau model lower viscosity limit 

𝛍∞ Carreau model upper viscosity limit 

𝛍𝐦𝐚𝐱 Power law model maximum viscosity 
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𝛍𝐦𝐢𝐧 Power law model minimum viscosity 

𝛒 Fluid density 

𝛕𝐰,𝐍𝐒 No-slip wall shear stress 

𝛕𝐰,𝐒𝐇𝐒 Free-shear wall shear stress 

𝛟𝐬𝐨𝐥𝐢𝐝 Solid (wetted) fraction 
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Chapter 4: A Priori Models for Effective Slip 

4.1. Introduction 

Slip at fluid-fluid and fluid-solid interfaces is a subject of interest for many 

engineering applications, ranging from porous materials to biomedical devices to 

separation processes.  As introduced in Chapter 1.4 and discussed in Chapters 

2 and 3, superhydrophobic surfaces (SHSs) are among the many systems in 

which slip at a fluid-fluid interface may be observed.   

Remarkable effort has been made to include the effects of surface 

topology, as well as various flow and physical properties, in models describing 

fluid slip.  In most studies, the air-water interface is assumed to be flat and the 

Cassie state of the SHS is modeled as a smooth surface with alternating free-

shear and no-slip boundary conditions representing gas/liquid regions and 

solid/liquid regions, respectively (Lauga and Stone, 2003; Ybert et al., 2007; 

Feuillebois, Bazant, and Vinogradova, 2009; Belyaev and Vinogradova, 2010.   

Nonetheless, the mathematical description of flow over these surfaces is still 

incomplete and, as a consequence, optimization of these surfaces would benefit 

significantly from the development of a more robust model. 

4.2. Background 

4.2.1. Slip and Drag Reduction 

According to Navier’s slip model, the slip length may be defined as (Lee, 

Choi, and Kim, 2008; Voronov, Papavassiliou, and Lee, 2008; Rothstein, 2009): 

𝓵𝐬𝐥𝐢𝐩 =
𝐔𝐬𝐥𝐢𝐩

�̇�
 (4-1) 
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where 𝓵𝐬𝐥𝐢𝐩 is the slip length, 𝐔𝐬𝐥𝐢𝐩 is the slip velocity at the wall, and �̇� ≡ [�⃑⃑�  �⃑⃑� ]
𝐲𝐱

 

is the velocity gradient normal to the wall.  

While the slip length may be sufficient to classify many types of systems 

involving mixed slip boundaries, the slip velocity is arguably a more practical 

choice as a variable to characterize such systems since it incorporates two units, 

and is thus sufficient for measuring kinematic phenomena (Barenblatt, 2003).  

This observation, when combined with the fact that the shape of the velocity 

distribution should be independent of time, implies that the velocity has a 

similarity solution (Batchelor, 2000).  Furthermore, for systems involving laminar 

plane-Couette flow (shown in Figure 4-1), the drag reduction (𝐑𝐃) scales with the 

ratio of the slip velocity and the shearing wall velocity (𝐔𝟎):  

𝐑𝐃 ∝
𝐔𝐬𝐥𝐢𝐩

𝐔𝟎
 (4-2) 

Figure 4-1: Schematic of no-slip and slip at solid-liquid interface. 
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Thus, the slip velocity more completely characterizes systems involving 

mixed slip boundaries for drag reduction purposes and is applicable to a wider 

range of flows than the slip length.  

4.2.2. Similarity Solutions 

 Dimensional analysis and similitude are important concepts in many areas 

of science and engineering, including turbulent flow analysis, thermodynamics, 

heat and mass transfer, mechanics, and biology, among many others (Barenblatt, 

1996; Sonin 2001; Barenblatt, 2003).  This approach to problem solving is based 

on the generalized homogeneity of the physical laws governing most systems 

and takes advantage of similarity in the spatial distribution of characteristics of 

motion (Barenblatt and Zel'dovich, 1972). A well-known procedure based on this 

approach is the Buckingham method, which uses the Buckingham pi theorem to 

generate dimensionless groups of variables by defining important scales between 

key dimensions of systems (Welty et al., 2008).  As a result, the governing 

differential equations for the system are transformed from partial to ordinary and 

the total number of unknown variables in the equations is reduced (Barenblatt, 

1996; Batchelor, 2000).   

Analogous to dimensional analysis, similarity solutions are used to scale 

velocities within a system by non-dimensionalizing the coordinates of the system 

rather than parameters, as in dimensional analysis (White, 2006).  In fluid 

mechanics, similarity solutions are used in a number of contexts, such as to 

describe flow near a stagnation point, flow near a solid surface, and flow in 

turbulent jets (Bird, Stewart, and Lightfoot, 2002; White, 2006; Welty et al., 2008).  
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The concept of similitude has been explored by numerous investigators using 

both mathematical and physical arguments (Sedov, 1993; Sachdev, 2000; White, 

2006; Welty et al., 2008).  Similarity solutions can be used to describe the 

physical behavior of a system under specific conditions, as well as to describe 

intermediate asymptotic behavior for a wider range of problems, although such 

solutions are universally limited to certain geometries and boundary conditions 

(Sachdev, 2000; White, 2006).   

According to the Π-theorem, a dimensional function of 𝐧 = 𝐤 + 𝐦 

dimensional governing parameters can be expressed as a dimensionless 

function of 𝐦 parameters.   By defining important scales between key dimensions 

of systems, the governing differential equations are transformed from partial to 

ordinary and the total number of unknown variables in the equations is reduced 

(Barenblatt, 1996; Batchelor, 2000).  Self-similarity is also useful when 

developing approximations for solutions to more complicated problems and can 

offer insight into the characteristic properties of many types of systems.   

4.3. Methodology and Validation 

The Cassie state of the SHS is modeled as a smooth surface with 

alternating free-shear and no-slip boundary conditions representing gas/liquid 

regions and solid/liquid regions, respectively. 

Several boundary shapes are considered in this study: rectangles, circles, 

and squares, as illustrated in Figure 4-2.  The systems, shown in Figure 4-2 for 

the rectangular no-slip/free-shear boundaries, consist of two infinite parallel 
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plates separated at a distance (𝐇).  The top wall is moved in the positive 

x −direction at a constant shearing velocity.   

The simplest case considered is for the system with rectangular shaped 

boundaries.  The bottom wall is stationary, with periodically repeating rectangular 

no-slip boundaries of length (𝐋𝐱) and width (𝐰).  Between these no-slip 

boundaries are free-shear boundaries of length(𝐋𝐱) and width(𝐋𝐳 − 𝐰).  A similar 

set-up is used with the circular and square boundaries, with periodically repeating 

square and circular no-slip boundaries of dimensions, (𝟐𝐛) and (𝐃), respectively. 

A microchannel with dimensions of 10 μm × 190 μm × 10μm in the 

x −, y −, and z − directions, respectively, is modelled as periodic in the span- and 

stream-wise directions.   All meshes are created using the ANSYS® ICEM CFD™ 

(version 14.0) meshing software.  The grid is generated using three-dimensional 

blocking with node spacing no greater than 0.125 μm in the x − and z − 

directions.  The error in velocity solutions obtained using this spacing, which 

Figure 4-2: Free-shear and no-slip boundary shapes and dimensions. 

Gray coloring indicates areas with no-slip boundary conditions; blue 
coloring indicates areas with free-shear boundary conditions.   
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consists of approximately 350,000 nodes, is less than 4% when compared with 

those obtained using a mesh of nearly 500,000 nodes.  ANSYS® FLUENT® 

(version 14.0) is used to simulate the flow of the fluid over the roughness 

elements of interest in the microchannel.  

A second order-upwind discretization scheme is used.  Residuals for the 

continuity and momentum equations are required to be reduced by at least four 

orders of magnitude, while the value for the velocity magnitude on the wall 

modeled with the free shear boundary condition is monitored for convergence, 

which is determined to be reached when the slip velocity changes by less than 

0.5% over 100 iterations.  In general, convergence criteria of 1x10-8 for the 

Figure 4-3: Modeled channel geometry, boundary conditions, and 
dimensions. 

Gray coloring indicates areas with no-slip boundary conditions; blue 
coloring indicates areas with free-shear boundary conditions.   



104 

continuity and momentum residuals are determined to be sufficient to reach a 

converged value for the velocity gradients.  

4.4. Development of Equations for Velocity 

 The development of the model for the equivalent slip velocity requires an 

equation to describe the velocity as a function of z  (span-wise direction) on a 

plane tangent to the wall with the mixed no-slip/free shear boundary conditions. 

4.4.1. Flow over Rectangular Mixed Slip Boundaries 

For span- and stream-wise periodic laminar flow along rectangular no-

slip/free shear-boundaries, it is assumed that there is no y −  or z − velocity. In 

this case, the Navier-Stokes equations (Equation 1.2-8) reduce to: 

�⃑⃑� 𝟐�⃑⃑� = 𝟎 (4-6) 

The boundary conditions for this system would be: 

�̿� → 𝟎 as 𝒛 (𝐋𝐳 − 𝐰)⁄ → 𝟎 (4-7) 

�⃑⃑� = 𝟎 at 𝒛 (𝐋𝐳 − 𝐰)⁄ = ±
𝟏

𝟐
 (4-8) 

�⃑⃑� → 𝐔𝐦 as 𝒛 (𝐋𝐳 − 𝐰)⁄ → 𝟎 (4-9) 

�⃑⃑� → 𝐔𝟎 as 𝐲/𝐇 → 𝟏 (4-10) 

where �̿� is the shear stress and 𝐔𝐦 is the centerline (i.e. maximum) velocity. 

The final form of the instantaneous velocity equation for flow along 

rectangular no-slip/free-shear boundaries would then be: 

�⃑⃑� 

𝐔𝐦
= 𝟏 − 𝟒(

𝐳

𝐋𝐳 − 𝐰
)
𝟐

 (4-11) 

Next, the average velocity (�̅�𝐱𝐳) along the xz-plane must be estimated 

according to: 
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�̅�𝐱𝐳 =
∬ �⃑⃑� 𝐝𝐱𝐝𝐳

∬ �⃑⃑� 𝐱𝐝𝐳
 (4-12) 

Integrating for 𝐱𝟎 𝐋𝐱⁄ = 𝟎, 𝐱𝐟 𝐋𝐱⁄ = 𝟏, 𝐳𝟎 (𝐋𝐳 − 𝐰)⁄ = −
𝟏

𝟐
, 𝐳𝐟 (𝐋𝐳 − 𝐰)⁄ =

𝟏

𝟐
 yields: 

�̅�𝐱𝐳

𝐔𝐦
=

𝟐

𝟑
(
𝐋𝐳 − 𝐰

𝐋𝐳
) (4-12) 

4.4.2. Flow over Circular and Square Mixed Slip Boundaries 

The most straightforward approach to approximating an for the velocity 

profile along no slip circular and square shaped boundary conditions is to find the 

components of the velocity vector using the stream function (𝛙), shown in 

Equation 4-13, for Falkner-Skan wedge flow (White, 2006):  

𝛙 = 𝐂𝒓𝟐 𝐬𝐢𝐧 𝟐𝛉 (4-13) 

where 𝐂 is a constant. 

Since  𝐔𝐫 = [�⃑⃑� 𝛙]
𝛉
 and 𝐔𝛉 = −[�⃑⃑� 𝛙]

𝐫
 

�̅�𝐫𝛉

𝐔𝐦
=

𝟖

𝟑𝐋𝟑
(𝐫𝐟

𝟑 − 𝐫𝟎
𝟑)(𝛉𝐟 − 𝛉𝟎) (4-14) 

where 𝐫𝟎 𝐋𝐳⁄ = 𝐑 𝐋𝐳⁄ , 𝐫𝐟 𝐋𝐳⁄ = 𝟏 𝟐⁄ , 𝛉𝟎 = 𝟎, 𝛉𝐟 = 𝛑 𝟐⁄ .   

While solutions for complex potential flow around multiple cylinders do 

exist, further consideration of the streamline plot for flow around a cylinder 

suggests that the velocity profile for a periodically repeating no-slip boundary 

condition can be estimated by limiting the boundaries of integration to 𝐑 𝐋𝐳⁄ ≤

𝐫 𝐋𝐳⁄ ≤ 𝟏 𝟐⁄  and 𝟎 ≤ 𝛉 ≤ 𝛑 𝟐⁄ , which corresponds to the area enclosed by the 

dotted lines in Figure 4-4.    

The average velocity for a surface with square posts would be identical to 

Equation 4-14 with the following bounds: 𝐫𝟎 𝐋𝐳⁄ = 𝐛 𝐋𝐳⁄ , 𝐫𝐟 𝐋𝐳⁄ = 𝟏 𝟐⁄ , 𝛉𝟎 =
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𝟎, 𝛉𝐟 = 𝛑 𝟐⁄ .  To avoid lengthy equations and simplify calculations, the 

components of velocity for flow over posts are evaluated over 𝟎 ≤ 𝛉 ≤
𝛑

𝟐
 and 𝟎 ≤

𝐫 𝐋𝐳⁄ ≤ 𝟏 𝟐⁄  rather than over 𝟎 ≤ 𝛉 ≤ 𝛑 𝟒⁄  and 𝟎 ≤ 𝐫 𝐋𝐳⁄ ≤ 𝟏 𝟐⁄ 𝐭𝐚𝐧𝛉 and 𝛑 𝟒⁄ <

𝛉 ≤  𝛑 𝟐⁄  and 𝟏 𝟐⁄ 𝐭𝐚𝐧𝛉 ≤ 𝐫 𝐋𝐳⁄ ≤ 𝟏 𝟐⁄ .  

4.4. Results and Discussion 

4.4.2. Solutions of Similarity 

For the system shown in Figure 4-3, suppose the following relationship 

can be defined for the velocity along any 𝐲−, 𝐳 − plane by: 

�̃�(𝐲, 𝛏) ≡
�⃑⃑� 

𝐔𝐦
 (4-15) 

where 𝛏 ≡ 𝐳 𝛅(𝐲)⁄  and 𝛅(𝐲) is a characteristic length scale.  The variable �̃�(𝐲, 𝛏) 

would then be a function of 𝐲 and the scaled variable 𝛏 and will be referred to as 

the equivalent slip velocity. 

Figure 4-4: Streamlines for flow over a circular no-slip boundary.  The 
area enclosed by the dashed curves corresponds to the area over which 

the velocities are integrated. 
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If the equivalent slip velocity can be defined such that it is independent of 

𝐲 then �⃑⃑�  at may be classified as self-similar and can be described in terms of 

functions of 𝐔𝐦 and �̃�(𝐲, 𝛏) (Pope 2000).   

Using this knowledge, a relationship between the equivalent slip velocity 

and the average velocity given in Equation 4-12 would be described by: 

�̅�

𝐔𝟎
=

𝟏

�̃�
(

�̅�

𝐔𝐦
) (4-16) 

Observing that the equivalent slip velocity for laminar, Couette flow of a 

Newtonian fluid would be a function of the geometry of the system alone, an 

equation for this variable should be a function of the system’s characteristic 

length scales.  For the system with rectangular free-shear/no-slip boundaries 

shown in Figure 4-3, the key variables would be the span-wise length of the no-

slip boundary (𝐋𝐳), the span-wise length of the free-shear boundary (𝐋𝐳 − 𝐰), and 

the distance between the top and bottom plates (𝐇).    

Thus, a suitable form for the equivalent slip velocity for flow over 

rectangular free-shear/no-slip boundaries (�̃�𝐑) could be: 

�̃�𝐑 =
𝟐

𝟑
(
𝐋𝐳 − 𝐰

𝐋𝐳
) [

𝟏

𝟒
(

𝐋𝐳

𝐋𝐳 − 𝐰
+

𝟏

𝟐
(
𝐰

𝐋𝐳
))] [𝟏 + 𝟑 (

𝐇

𝐋𝐳 − 𝐰
)] (4-17) 

 Using similar logic, the equivalent slip velocities for flow over circular and 

square shaped boundaries may be defined as functions of the equivalent slip 

velocity for the rectangular boundaries.  Then the equivalent slip velocity for flow 

over circular posts (�̃�𝐂) may be defined as: 

�̃�𝐂 = (
𝛑𝐑

𝐋𝐳
) �̃�𝐑 (4-18) 
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 Similarly, the equivalent slip velocity for flow over square posts (�̃�𝐒) may 

be described by: 

�̃�𝐒 = (
𝟒𝐛

𝐋𝐳
) �̃�𝐑 (4-19) 

 The equivalent slip velocity for a non-Newtonian fluid (�̃�𝐍𝐍) as may be 

related to that for a Newtonian fluid (�̃�𝐍) for flow over all of the boundary shapes 

considered in this study.  By simply relating the viscosity of the non-Newtonian 

(𝛍𝐍𝐍) fluid to that of the Newtonian fluid (𝛍𝐍) according to: 

�̃�𝐍𝐍 = (
𝛍𝐍𝐍

𝛍𝐍
) �̃�𝐍 

 
(4-20) 

7.4.3. Model Validation 

The effective slip lengths predicted using the proposed slip velocity model 

for rectangular no-slip/free-shear boundary conditions differ from those predicted 

by Philip’s model in Equation 3-1 by an average of less than 8%.  This difference 

can be accounted for by recognizing that Philip’s model was developed to 

describe flow over a single rectangular no-slip boundary, while the mod els 

presented in this study describe stream- and span-wise periodic flow.  

Slip velocities for flow over rectangular no-slip boundaries, as predicted by 

the models presented in Equations 4-17 and 4-20, differ from numerical 

predictions by an average of 3.5% for both Newtonian (Figure 4-5) and non-

Newtonian fluids (Figure 4-6 and Figure 4-7).   

The models presented in this chapter assume the velocity profile on the 

free shear boundary of the SHS has a maximum (i.e. [�⃑⃑�  �⃑⃑� ]
𝐳𝐱

= 𝟎) at the location 

located halfway between each roughness element.  As shown in Figure 7-8 for 
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16% solid fraction, the centerline velocity is observed to remain a maximum for 

all surface coverages up to 50% no slip surface area.  Numerical estimates for 

the velocity profile along a surface with circular and square no-slip boundaries 

also confirm this assumption.  

The velocity gradient with respect to z-position is assumed to be 

symmetrical about each no-slip region.  Figure 4-9 is an illustration of the 

contours of velocity for flow on surfaces with 16% no slip surface area.  The 

contour plots confirm the symmetry of velocity around the no-slip boundary.  

4.5. Summary and Conclusions 

The possibility of using superhydrophobic surfaces to reduce drag in both 

laminar and turbulent flows has captured the interest of fluid flow researchers in 

Figure 4-5: Comparison of numerical and model results for the dependence 
of slip velocity on no-slip surface coverage for Newtonian fluid in laminar 

flow (𝐔𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄ ). 
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recent years.  Although many investigators have proposed models for predicitng 

the slip length (𝓵𝐬𝐥𝐢𝐩), drag reduction over a surface with mixed no-slip/free-shear 

boundary conditions is directly proportional to the ratio of the slip velocity (𝐔𝐬𝐥𝐢𝐩) 

to the shearing wall velocity (𝐔𝟎).  Thus, a priori prediction of the slip velocity 

would greatly facilitate the development of superhydrophobic surfaces for drag 

reduction applications.  While many researchers have proposed models to 

describe the slip length for a SH system, the slip velocity is shown to more 

completely characterize flow over mixed slip boundaries for drag reduction 

purposes.  

The slip velocity at the mixed-slip wall can be related to the shearing wall 

velocity by defining an equivalent slip velocity (�̃�) for the system.  Using self-

similarity theory, the equivalent slip velocity can then be expressed as a function 

Figure 4-6: Comparison of numerical and model results for the dependence 
of slip velocity on no-slip surface coverage for shear-thickening fluid in 

laminar flow (𝐔𝟎 = 𝟎. 𝟎𝟏𝟗 𝐦 𝐬⁄ ). 
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of the geometry of the system and can predict the slip velocity for flow over a 

surface consisting of periodically repeating no-slip/free-shear boundaries in the 

shape of rectangles for a solid fraction of 𝟏𝟔% ≤ 𝛟𝐬𝐨𝐥𝐢𝐝 ≤ 𝟓𝟎%.  Furthermore, the 

equivalent slip velocity for flow over rectangular boundaries can be related to the 

equivalent slip velocity for flow over surfaces with square and circular no-slip 

boundaries using characteristic length ratios. The self-similarity approach can 

also be used to describe non-Newtonian flow using viscosity ratios.   

Previously proposed models are either entirely empirical and lacked 

obvious physical signifance or are dependent on a relatively ambiguous solid 

fraction.  On the other hand, with the models and methods outlined in this study, 

the slip velocity and drag reduction can be estimated a priori using characteristic 

length and viscous scales related to the system.  These estimates can then be 

used for a variety of purposes, such as to aid experimental design, to provide 

initialization and/or boundary conditions for numerical studies, and to optimize 

surface topologies.   
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Figure 4-7: Contours of velocity along mixed-slip surface. 



113 

4.6. Nomenclature 

Roman Characters 

𝐛 Square post half-width 

𝐃 Circular post diameter 

𝐇 Distance separating top and bottom walls 

𝓵𝐬𝐥𝐢𝐩 Slip length 

𝐋𝐱, 𝐋𝐳 
Stream- and span-wise distance between center of roughness 
elements 

𝐋𝐳 − 𝐰 Free-shear ridge width 

𝐩 Pressure 

𝐑 Circular post radius 

𝐑𝐃 Drag reduction  

𝐔𝟎 Shearing wall velocity 

𝐔𝐦 Maximum (centerline) velocity along x − 𝑧 plane 

𝐔𝐬𝐥𝐢𝐩 Slip velocity 

𝐔𝐱, 𝐔𝐲, 𝐔𝐳 x −, y −, z − velocity (respectively) 

�̃� Equivalent slip length 

�̅�𝐱𝐳 Average velocity along an x − z plane 

𝐰 No-slip ridge width 

Greek Characters 

�̇� Shear rate 

𝛅 Characteristic length scale 

𝛍 Fluid viscosity 

𝛏 Similarity scaling variable 
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𝛒 Fluid density 

𝛟𝐬𝐨𝐥𝐢𝐝 Solid (wetted) fraction of surface 
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Chapter 5: Flow and Damage Models in a Centrifugal Pump 

5.1. Introduction 

Between 4.7 and 5.8 million Americans are affected by heart failure and 

an estimated 660,000 new cases are diagnosed every year for people over the 

age of 45 (Thunberg et al., 2010; Fraser et al., 2011; Carpenter et al., 2013).  

With only 3,000 suitable organ donors available worldwide each year and 

limitations associated with medications, many of those diagnosed with HF are 

forced to face an alarming reality:  one in five people with HF die within 1 year, 

less than 60% survive beyond five years, and almost 15% die while waiting for a 

donor organ (Fraser et al., 2011; Hess et al., 2013).  With an increasing 

prevalence of HF worldwide, the need for short- and long-term circulatory support 

is becoming more pressing.  One such solution may be found in the ventricular 

assist device, which may be used as a bridge to recovery, as a bridge to 

transplantation, or as a permanent destination therapy (Behbahani et al., 2009; 

Wilson et al., 2009). 

In an effort to facilitate and standardize the use of computational fluid 

dynamics for the design and optimization of blood-contacting devices, the United 

States Food and Drug Administration (FDA) launched a Critical Path Initiative 

(CPI) project to study two standard flow models for medical devices using CFD.  

The first study was initiated in 2008 to evaluate CFD as a biomedical research 

tool using a simple nozzle model.  The second study is currently ongoing and is 

intended to assess numerical predictions and limitations in characterizing flow 

and predicting blood damage in a centrifugal blood pump (US Food and Drug 
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Administration; Stewart et al., 2012; Malinauska, Saha, and Sheldon, 2015).  To 

validate the numerical results, the FDA will provide hemolysis measurements 

using porcine blood at an operating temperature of 25oC in the experimental 

setup shown in Figure 5-1. 

The design of blood pumps, which provide life-saving circulatory support 

in patients with heart failure, requires remarkable precision and attention to detail 

in order to replicate the functionality of the native heart without complications.  In 

addition to being reliable and affordable, these devices must also be able to 

deliver adequate hydraulic performance and provide sufficient pumping support 

without causing significant damage to the blood (Behbahani et al., 2009; Fraser 

et al., 2011).  CFD is a powerful tool for evaluating and optimizing these life-

saving devices since the results of these simulations can significantly reduce the 

cost associated with laboratory testing and the development of device prototypes 

and can facilitate safe, effective, and rapid development of medical devices for 

the increasing number of patients with cardiovascular disease (Fraser et al., 

2011). 

In the present work, we present results of simulations of the flow field 

through the pump at different flow conditions and pump rotation rates. Emphasis 

is placed on testing different rheological models for blood, and on determining 

the effects that the application of these models has on the prediction of shear 

stresses and pressure drop through the pump. Hemolysis estimates are also 

presented by utilizing a power law model in both the Eulerian and the Lagrangian 
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framework. Comparisons between predictions when using a laminar versus a 

turbulence flow model are also made.   

5.2. Considerations for Modeling Flow in Blood Pumps 

Accurate prediction of blood flow through blood pumps and medical 

devices using computational fluid dynamics requires familiarity with the governing 

physics of each system and can greatly depend on the models chosen to describe 

the rheology and properties of the fluid.  The accuracy of blood damage index 

estimates is also highly dependent on the models used to characterize trauma to 

blood components from flow.  In many cases, however, the process of modelling 

complicated systems can be streamlined by identifying the physical phenomena 

most likely to significantly impact the system, specifying appropriate models to 

describe the dynamics of these phenomena, and neglecting or simplifying less 

influential factors.  As a consequence, identifying the key physics necessary to 

adequately characterize these systems is one of the most important and 

laborious steps involved in the process of evaluating and developing medical 

devices using computational fluid dynamics. 

5.2.1. Rheological Behavior of Blood 

Blood is shear-thinning and thixotropic, with an apparent viscosity that can 

increase by more than an order of magnitude at low shear rates (US Food and 

Drug Administration; Taskin et al., 2010; Malinauska, Saha, and Sheldon, 2015). 

Despite these non-Newtonian characteristics, the use of a Newtonian model is 

reasonable in many cases, since the viscosity of human blood is effectively 
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shear-independent at shear rates above 100 s-1 (Fournier, 2007; Behbahani et 

al., 2009; Taskin et al. 2010; Fraser et al., 2011). 

The viscosity of blood also depends on hematocrit (Coglianese et al., 

2012).  Although heart failure is prevalent in individuals with abnormally high 

hematocrit (>49% in men, >45% in women), the disease can also affect those 

with low and normal hematocrit levels (45%-48% in men, 41%-44% in women) 

(7).  Hematocrit is of particular interest since anemia was recently reported to be 

a factor in early prediction of the need for a ventricular assist device (VAD) in 

patients with advanced heart failure (Fujino et al., 2014).   

In the present work, we examine the importance of including the non-

Newtonian behavior of blood when modeling flow through the blood pump.  Three 

rheological cases are considered:  

 

(1)  A Newtonian viscosity model with 𝛍 = 𝟎. 𝟎𝟎𝟑𝟓 𝐏𝐚 ∙  𝐬  

(2)  A non-Newtonian viscosity model described by the Carreau 

equation (Equation 5-1). 

(3)  A non-Newtonian viscosity model described by a Casson 

constitutive equation (Equation 5-2). 

 

In all cases the blood density is assumed to be constant with 𝛒 =

𝟏𝟎𝟑𝟓 𝐤𝐠 𝐦𝟑⁄ .  Laminar flow simulations are carried out with all three rheological 

equations, while the Newtonian and Casson viscosity models are also used in 

turbulent flow simulations. 



121 

 

Figure 5-1: Schematic diagram of the experimental setup for the FDA’s 
blood damage experiments. 
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The Carreau equation describes the shear thinning character of blood as 

a function of shear rate (�̇�) using a power law relationship with upper (𝛍𝐨) and 

lower (𝛍∞) limits of viscosity, and it has the following form: 

𝛍 − 𝛍∞

𝛍𝟎 − 𝛍∞
= [𝟏 + (𝛌�̇�)𝟐]

(𝐧−𝟏)
𝟐⁄  (5-1) 

where 𝛍 is the apparent viscosity and the material constants are 𝛍𝟎 = 𝟓𝟕 𝐦𝐏𝐚 ∙

𝐬, 𝛍∞ = 𝟑. 𝟓 𝐦𝐏𝐚 ∙ 𝐬, 𝛌 = 𝟑. 𝟑𝟏𝟑 𝐬, and 𝐧 = 𝟎. 𝟑𝟓𝟔𝟖 (Jiang, 2014).   The Carreau 

model for viscosity is a convenient choice for modeling the rheological behavior 

of blood since it is included in many commercial computational fluid dynamics 

codes.   

The Casson equation, shown below, is often used to describe the shear 

stress-shear rate relationship for blood: 

Figure 5-2: Illustration of the FDA’s simplified centrifugal blood pump  

model. 
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√𝛕 = √𝛕𝐲 + √𝛍�̇� (5-2) 

Where 𝛕 is the shear stress and 𝛕𝐲 is the yield stress and 𝛍 is constant 

(Coglianese et al., 2012; Apostolidis and Beris, 2014).  Apostolidis and Beris 

(2014) recently proposed a model to describe the dependence of the viscosity on 

hematocrit (𝐇𝐜𝐭) and temperature, according to the following equation:  

𝛍 = 𝐧𝐩(𝟏 + 𝟐. 𝟎𝟕𝟎𝟑 × 𝐇𝐜𝐭 + 𝟑. 𝟕𝟐𝟐𝟐 × 𝐇𝐜𝐭𝟐) × 𝐞𝐱𝐩 [−𝟕. 𝟎𝟐𝟕𝟔 (𝟏 −
𝐓𝐨

𝐓
)] (5-3) 

where 𝐧𝐩 = 𝟏. 𝟔𝟕 × 𝟏𝟎−𝟓 𝐏𝐚 ∙ 𝐬 is the plasma viscosity, 𝐓𝟎 = 𝟐𝟗𝟔. 𝟏𝟔 𝑲 is the 

reference temperature, and 𝐓 is the absolute temperature of the blood in degrees 

Kelvin.   

To represent the distribution of hematocrit levels in patients with heart 

failure, three hematocrit levels are considered in this study: 25%, 36%, and 55%. 

The particular value of 36% corresponds to specifications for the FDA 

experiments. All runs presented are conducted at the reference temperature of 

23°C, with the exception of Case L1, which is also modeled at 37°C to describe 

flow conditions for an intracorporeal device more accurately. 

5.2.2. Flow Regime 

Because blood pumps and VADs operate in the transitional to low 

Reynolds number turbulence range, flow may be modeled as either laminar or 

turbulent.  Use of a model for turbulence is not always justifiable in these devices, 

since equations that model turbulence are in general valid for fully developed and 

stationary turbulent flow; consequently, many researchers have opted to use 

laminar models and have obtained solutions that are able to predict pressure 

rises within blood pumps with reasonable accuracy.  While the use of a turbulence 
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model may be associated with relatively large computational requirements, the 

use of one may be necessary to fully describe certain effects observed in VADs 

(Taskin et al., 2010; Zhang et al., 2013).  Since few studies have explored the 

differences in flow field predictions between laminar and turbulent flow through 

these devices, the importance of capturing the physics of turbulence for the 

calculation of pressure drop is unclear.  However, hemolysis is known to be 

affected by turbulence, as found experimentally either because of local pressure 

fluctuations that affect the cells, or because of eddies that dissipate turbulent 

kinetic energy and cause cell trauma (Kameneva et al., 2004; Ozturk, O’Rear, 

and Papavassiliou, 2015). 

In this study, the flow of blood through the pump shown in Figure 5-2 is 

modeled either as laminar or as turbulent.  For cases in which the flow is treated 

as turbulent, the Shear-Stress Transport k-ω (SST k-ω) model is used.  By 

blending two of the most popular and robust turbulence models (the standard k-

epsilon and the standard k-omega), the SST k-ω model is less sensitive to free-

stream turbulence properties and large, adverse pressure gradients than 

traditional models and results in more accurate flow field predictions in low-

Reynolds number turbulence (Menter, 1994; Fluent Inc.®, 2001).  This model has 

previously been used with some success to predict turbulent flow in a variety of 

complex systems, including in an axial blood flow pump with turbulence near the 

impeller tip, as examined by Su et al. (2011). 
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5.2.3. Formulations for Hemolysis Estimates 

Blood damage in pumps and VADs is primarily caused by the leaking of 

hemoglobin from red blood cells but can also be caused by rupture when the cells 

are exposed to shear rates greater than 42,000 s-1 (Behbahani et al., 2009).  

Hemolysis is often quantified using a damage index such as the model proposed 

by Blackshear et al. (1965) and developed by Giersiepen et al. (1990): 

𝐃 =
∆𝐇𝐛

𝐇𝐛
= 𝐂𝐭𝛂𝛕𝛃 (5-4) 

where ∆𝐇𝐛 𝐇𝐛⁄  is the ratio of plasma-free hemoglobin to the total hemoglobin in 

the fluid, 𝛕 is the shear stress to which a red blood cell is exposed for a certain 

time (𝐭) and 𝐂, 𝛂 and 𝛃 are constants typically determined from Couette laminar 

flow experiments.  Based on the simulation results of Taskin et al. (2012), the 

constants used in Equation 5-4 are chosen to be: 𝐂 = 𝟏. 𝟖𝟎𝟎 × 𝟏𝟎−𝟔, 𝛂 =

𝟎. 𝟕𝟔𝟓𝟎, 𝛃 = 𝟏. 𝟗𝟗𝟏𝟎.  While these constants were developed under laminar flow 

conditions, they are valid for shear stresses up to 700 Pa and exposure times 

less than 0.700 sec, which far exceed the ranges considered in this study (Taskin, 

2012).  This damage model is used to calculate the damage index by either a 

Eulerian or a Lagrangian formulation under both laminar and turbulent flow 

conditions. 

The data obtained using the second stage CPI system in Figure 5-1 will 

come from experiments with porcine blood.  It should be noted that the species 

of the blood source can result in considerable differences in the constants used 

in hemolysis estimates.  However, Ding et al. (2015) explored the variance in 

shear-induced hemolysis estimates between blood donor species and found that 
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the constants obtained for porcine blood did not differ significantly from those for 

human blood. 

In this study, estimates for hemolysis are calculated using two 

approaches.  In the Eulerian approach, the damage index is obtained by 

integration of fluid stresses over the volume of the entire computational domain 

(𝐕) according to (Garon and Farinas, 2004; Taskin et al., 2012): 

𝐃 = (
𝟏

𝐐
∫𝛔𝐝𝐕)

𝛂

 (5-5) 

where 𝐐 is the volumetric flow rate and 𝛔 is the rate of hemolysis production per 

unit time, defined as (Garon and Farinas, 2004): 

𝛔 = 𝐂
𝟏

𝛂⁄ 𝛕
𝛃

𝛂⁄  (5-6) 

where 𝛕 is the viscous stress. 

In the Lagrangian approach, a discretized damage index is integrated over 

particle pathlines through the unit and then averaged using data collected for fluid 

particles introduced simultaneously into the flow.  For a constant time step (∆𝐭) 

the linearized damage index is calculated as (Fraser et al., 2011): 

𝐃𝐧+𝟏 = 𝐃𝐧 + (𝟏 − 𝐃𝐧)𝐂𝛕𝐧+𝟏
𝛃

∆𝐭𝐧+𝟏
𝛂  (5-7) 

where 𝐃𝐧 is the damage index at time step 𝐧,  𝐃𝐧+𝟏 is the damage index at time 

step 𝐧 + 𝟏, and all other variables are as defined previously (Fraser et al., 2011). 

5.3. Methodology 

The geometry for the simplified centrifugal blood pump model shown in 

Figure 5-2 was created using computer-aided design as part of the FDA’s CPI 

CFD and Blood Damage project (US Food and Drug Administration).  The 
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experimental setup of the pump (Figure 5-1) indicates that the fluid exits the 

device in the direction opposite the gravitational force.  Gravity is included in the 

numerical calculations to account for these effects.  Experimentally, flow through 

the pump may transition between laminar and turbulent and is time-dependent 

due to the movement of the rotor.  Flow regime transitions are not captured in 

this study, but the flow is modeled as unsteady for both laminar and turbulent flow 

conditions.  

The flow domain is meshed in ANSYS® ICEM CFD™ (version 14.0) using 

the robust Octree method and is optimized based on the orthogonal quality of the 

mesh.  An entrance region is included in the system model to ensure the velocity 

profile at the flow probe does not exhibit entry effects.  The resulting grid consists 

of approximately 2 million cells and 700,000 nodes.  Solutions are obtained using 

ANSYS® Fluent® (version 14.0) with second order upwind spatial discretization 

and first order temporal discretization.   

A sliding mesh approach is used with 200 time steps per rotation and a 

time step size on the order of 0.1 msec.  A maximum of 30 iterations per time step 

is allowed for the solution to reach the minimum convergence criteria of 10−4 for 

all residuals.   

Flow field solutions are allowed to develop for at least 1000 msec (i.e., 50 

complete rotations) before data sampling and particle injection are initiated.  For 

the Lagrangian damage estimates, particles are tracked through the flow domain 

using the Discrete Phase Model available in ANSYS® Fluent®.  The use of this 
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model accounts for the presence of a discrete second phase in the transport 

equations (Fluent Inc.®, 2001).   

528 massless particles, which do not interact with other particles of the 

continuous phase, are released simultaneously from the particle injection 

surface, as indicated in Figure 5-3.  Once injected, each particle is considered 

“active” as long as the particle is located within the shaded region of Figure 5-3.  

Any particle outside the specified region is considered “escaped” from the system 

and is excluded from further damage analysis.  Data collection is complete once 

all particles have exited the shaded region.  In the cases with a turbulent flow 

model, the dispersion of particles due to turbulence is predicted using a 

stochastic tracking model.   By including instantaneous velocity fluctuations in the 

Figure 5-3: Region of interest for Lagrangian damage index estimates. 

The gray shading indicates the region in which injected particles are 
considered “active” and data are collected.  The arrows indicate the 
direction of the flow. 
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particle trajectory predictions, this model effectively accounts for the effects of 

turbulence on particle dispersion (Fluent Inc.®, 2001).  

The FDA has declared intent to release detailed laboratory measurements 

that can be used to validate the findings of this study.  Experimental velocity 

profiles, obtained using particle image velocimetry at the location labeled “flow 

probe” in Figure 5-1, are currently available for numerical solution validation.  It 

should be noted, however, that the pump geometry, gap widths, and operating 

conditions are similar to the CentriMag centrifugal pump, which has been studied 

in depth by Taskin et al. (2010) and Fraser et al. (2011).   

In Figure 5-4, we compare the mean experimental velocity profiles with 

the corresponding numerical predictions for velocity obtained using turbulent flow 

Figure 5-4: Validation of numerical velocity profile predictions in the FDA 
blood pump model. 

Experimental results are mean velocity measurements obtained using PIV. 

Numerical results are obtained using the SST k-ω model for turbulence. 
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and Newtonian rheological models.  On average, numerical velocity estimates 

differ from mean experimental values by approximately 10%-15%.  Experimental 

results are for porcine blood at 25°C, 36% hematocrit, and 11.5 g/dL total 

hemoglobin concentration (US Food and Drug Administration).  

Data are sampled every 5 time steps, approximately equal to 0.5 msec.  

The time- and spatially-averaged pressures at the pump inlet and outlet, along 

with the average and maximum wall shear stresses over the housing rim and 

outlet fillet of the pump (Figure 5-5) and the volume- averaged instantaneous 

shear stress in the fluid in the rotor region are collected for each data sampling. 

5.4. Results and Discussion 

Table 5-1 is a summary of the conditions considered in this study, which 

include three flow rates, two rotational speeds, and two turbulence intensities.  

Cases L1.1 through L1.6 and L2 are modelled as both laminar and turbulent.  

For Cases L1.1 through L1.6, the rheological behavior of the fluid is modelled 

using the Carreau and Casson models for viscosity, as well as a Newtonian 

model. For all other cases, the flow is modeled as turbulent and Newtonian.   

Figure 5-5: Locations for surface-averaged wall shear stress estimates. 
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Results from all cases are averaged over one complete rotation (i.e., the last 200 

time steps) of the pump.   

5.4.1. Effect of Hematocrit 

Laminar flow 

At an operating temperature of 23°C, the volume-averaged viscosity of the 

fluid with 25% hematocrit is calculated to be 16% lower than the viscosity of the 

fluid with 36% hematocrit (Cases L1.1 and L1.4).  The laminar pressure head 

prediction (Figure 5-6) for the lower viscosity fluid is less than 1% higher than 

that for the fluid with a higher viscosity and, thus, should be considered negligible.  

On the other hand, changes in wall shear stresses are found to be more 

appreciable, with the lower viscosity fluid resulting in approximately 12% lower 

estimates for wall shear stresses along both the housing rim and outlet fillet 

Figure 5-6: Variance in pressure head predictions with viscosity for non-
Newtonian rheological models in laminar and turbulent flow (Cases L1 and 
T1). 
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(Figure 5-7 and 5-8).  The predicted 18% decrease in the instantaneous shear 

stress estimate for the lower viscosity fluid is also in agreement with empirical 

results.  

The viscosity of the 55% hematocrit fluid at an operating temperature of 

23°C is almost 56% higher than the 36% hematocrit fluid at the same temperature 

(Cases. L1.4 and L1.5).  For laminar flow, this substantial increase in viscosity 

results in less than a 3% decrease in the pressure head estimate.  Predictions 

for the wall shear stresses along the housing rim and outlet fillet (Figure 5-8) are 

approximately 28% and 30% larger for the higher viscosity fluid, while the 

instantaneous shear stress for the same fluid is almost 45% larger than that 

predicted for the fluid with 36% hematocrit.  

 

Figure 5-7: Variance in wall shear stress estimates with viscosity for non-
Newtonian rheological models in laminar and turbulent flow (Cases L1 and 
T1). 
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Turbulent Flow 

As with the laminar flow predictions, the numerical estimate for pressure 

head for the 25% hematocrit fluid in turbulent flow at an operating temperature of 

23°C is found to increase by a negligible 1% from that for 36% hematocrit in the 

same conditions (Cases T.1-1 and T.1-2).  Shear stresses on the housing rim 

and outlet fillet (Figure 5-7 and 5-8) are observed to be 6% and 10% lower in the 

low viscosity fluid under these same conditions, with the instantaneous shear 

stress in the same fluid less than 3% smaller than that predicted for the 36% 

hematocrit fluid.  

Comparison of the 55% hematocrit fluid with the fluid with 36% hematocrit 

(Cases T.1-1 and T.1-3) yields an estimated 3% smaller pressure head (Figure 

5-6) for the fluid with the larger hematocrit level.  The wall shear stress along the 

housing rim in the larger viscosity fluid is predicted to be almost 23% larger than 

that for the fluid with 36% hematocrit, while the stress on the outlet fillet is 

estimated to be 31% larger (Figure 5-7).  An estimated 5% increase in predictions 

for the instantaneous shear stress is also observed when the hematocrit content 

of the fluid is increased from 36% to 55%. 

In general, accounting for hematocrit appears to reduce differences in 

stress predictions and pressure drops between the laminar and turbulent flow 

models, at high hematocrit.  Thus, modeling the effects of both hematocrit and 

turbulence could result in predictions with minimal differences.  One possible  

explanation for this observation is that turbulence may have a more dominating 

effect in fluids with low hematocrit (i.e., less viscous fluids) and less of an effect 
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in more viscous flow.  This conclusion is fairly intuitive since turbulence would be 

dampened in the presence of a higher viscosity fluid. The Reynolds number for 

that flow would also be lower.  

5.4.2. Effect of Shear-Thinning Blood Rheology 

The Carreau model for the shear-thinning behavior of the fluid predicts an 

average viscosity that is slightly more than 10% larger than that for the Newtonian 

fluid in laminar flow at an operating temperature of 23°C (Cases L1.3 and L1.4).  

The resulting pressure head prediction (Figure 5-6) associated with the shear-

thinning fluid is less than 2% higher than that for the Newtonian fluid.  Differences 

in estimates for the wall shear stresses along the housing rim and outlet fillet 

(Figures 5-7 and 5-8) are also small, with a predicted increase of approximately 

2% and 1%, respectively.  Differences in the instantaneous shear stress between 

the two fluids are even more insignificant, as the stress in the non-Newtonian fluid 

is estimated to be less than 0.1% larger than that in the Newtonian fluid.  

The small variance in pressure head predictions with large changes in 

viscosity, coupled with the larger variances in wall shear stress estimates, can be 

explained by examining the governing equations of fluid flow.   Pressures in the 

flow domain are described by the Poisson equation, which does not have a direct 

dependence on viscosity.  On the other hand, shear stress, as described by 

Newton’s law, scales with viscosity.  Thus, pressure head predictions would not 

be expected to change dramatically, while shear stress estimates would be 

relatively sensitive to viscosity changes. 
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5.4.3. Effect of Temperature 

When the operating temperature of the device is increased from 23°C to 

37°C, the viscosity of the fluid with 25% hematocrit (Cases L1.1 and L1.2) 

decreases by approximately 27%.  The pressure head prediction (Figure 5-6) 

associated with the lower viscosity fluid is observed to increase by less than 5%.  

Although this result may not agree with practical observations, since pressure at 

a pump outlet would decrease with blood viscosity due to vascular resistance, 

the observed increase is within the estimated error range of the numerical 

calculations and cannot be concluded to be significant (Ahn et al., 2011).  The 

higher operating temperature does, however, result in more appreciable changes 

in the housing rim and outlet fillet wall shear stress predictions (Figure 5-8), which 

are estimated to decrease by approximately 16% and 20%, respectively.  

Similarly, the instantaneous shear stress in the lower viscosity fluid is almost 26% 

lower than that in the higher viscosity fluid.  

The fluid with 55% hematocrit (Cases L1.5 and L1.6) also has a 27% 

decrease in viscosity when the operating temperature is increased from 23°C to 

37°C.  The corresponding estimate for pressure head (Figure 5-6) in the lower 

viscosity fluid is approximately 7% lower than that for the higher viscosity fluid.  

Housing rim and outlet fillet wall shear stresses (Figure 5-8) are estimated to be 

15% and 17% lower at the higher operating temperature, while the instantaneous 

shear stress in the lower viscosity fluid is predicted to be almost 25% lower. 
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These findings suggest observations for blood damage from the device itself ex 

vivo will be greater than when implanted.  

As with shear-thinning behavior, temperature is observed to have a more 

substantial effect on wall shear stresses and instantaneous fluid stresses than on 

pressure head predictions.  A similar argument regarding Newton’s law of 

viscosity also provides a useful explanation for these observations. 

5.4.4. Effect of Turbulence 

 Modeling the Newtonian fluid with 36% hematocrit as turbulent at a 

flowrate of 2.5 lpm, with a rotor speed of 2500 rpm and an operating temperature 

of 23°C, results in approximately 3% increase in pressure head (Figure 5-9) 

when compared to that obtained for laminar flow in the same conditions (Cases 

L1.4 and T1.2).  Wall shear stress estimates for the housing rim also increase by 

slightly more than 6%, although outlet fillet shear stress predictions decrease by 

Figure 5-9: Variance in pressure head predictions with flow rate for laminar 

and SST k-ω models (Cases L1, L2, T1, T2, T3, and T4). 
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almost 10% (Figure 5-7 and 5-10).  Furthermore, the instantaneous shear stress 

of the fluid is estimated to be 40% lower in turbulent flow than in laminar, when 

the flow rate is the same.  

The same comparison between laminar and turbulence models for the 

36% hematocrit Newtonian fluid at a flow rate of 2.5 lpm, a rotor speed of 2500 

rpm, and an operating temperature of 23°C yields similar results.  The pressure 

head prediction (Figure 5-9) for the turbulent flow is approximately 2% higher for 

the fluid in turbulent flow, but housing rim and outlet shear stress estimates 

(Figure 5-7 and 5-10) show a larger range of variance, with almost 18% and less 

than 1% increase, respectively, associated with the use of a model for turbulence.  

Instantaneous shear stress predictions, however, are observed to be more than 

40% larger for the laminar model.  

Figure 5-10: Variance in wall shear stress estimates with flow rate for 

laminar and SST k-ω models (Cases L1, L2, T1, T2, T3, and T4). 
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The presence of turbulence results in relatively little variance in pressure 

head predictions between the laminar and turbulent flow models.  Because the 

use of models for turbulence is associated with increased computational cost, 

this observation would seemingly indicate that the flow could be modeled as 

laminar.  Pressure solutions obtained using the laminar model, however, are 

often numerically unstable and take more iterations to converge than those 

predicted using the SST k-ω model.  

5.4.5. Damage Index Estimates 

A remarkable amount of effort has been placed on the development of 

hemolysis models (Taskin et al., 2010; Arora, Behr, and Pasquali, 2006; Garon 

and Farinas, 2004).  Several stress- and strain-based models for hemolysis have 

been proposed as an alternative to the Giersiepen power law in Equation 5-4, 

Figure 5-11: Variance in Eulerian damage with Reynolds number for non-
Newtonian rheological models in laminar and turbulent flow (Cases L1 and 

T1). 
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which has largely been shown to overestimate true hemolysis levels (Fraser et 

al., 2011).  Nonetheless, the power law model remains one of the more popular 

approaches for damage estimates.  

Blood damage indices differ by as much as 200% between the Eulerian 

(Figure 5-11) and Lagrangian (Figure 5-12) formulations.  However, it is seen 

that the damage index decreases with increasing temperature while it increases 

with the hematocrit. This observation can be interpreted when one considers the 

fluid viscosity changes with hematocrit and temperature. In general, when the 

viscosity is higher, the stresses are higher, and the power law model predicts 

higher damage index in both the Lagrangian and the Eulerian frameworks. In 

addition, the Newtonian model for blood results in lower hemolysis estimates than 

Figure 5-12: Variance in Lagrangian damage with Reynolds number for non-
Newtonian rheological models in laminar and turbulent flow (Cases L1 and 

T1). 
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the Carreau rheological model. The distributions of the cell residence times in the 

pump (Figure 5-13) for laminar flow models indicate that laminar models result 

in residence times that are short. Turbulence models predict residence times that 

are about half the time predicted with laminar models under the same conditions.  

The variance and lack of precision in damage predictions observed in this study 

has also been reported by Taskin et al. (2012) for a similar blood pump model 

and is generally attributed to error related to the power-law model in Equation 5-

4.  The observed imprecision associated with hemolysis estimates indicates a 

serious need for development and improvement of damage index estimation 

approaches and may in itself suggest the need to consider the effects of 

turbulence. In general, turbulent flow is thought to result in greater damage to 

cells.  However, the Eulerian power law index for laminar flow simulations was 

Figure 5-13: Residence times for laminar and turbulent flow models for 

laminar and SST k-ω models (Cases L1, L2, T1, T2, T3, and T4). 
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greater than that for turbulent flow simulations (see Figure 5-11; L1.1 compared 

to T1.1 and L.2 compared to T.2).  

5.5. Summary and Conclusions 

The shear-thinning behavior of blood is shown to have a minor effect on 

key comparison metrics when compared to the effects of hematocrit.  Changes 

in viscosity due to hematocrit levels result in negligible changes in pressure head 

predictions, although more appreciable differences are observed in wall shear 

stress estimates.  The amplified effect of viscosity due to changes in hematocrit 

is consistent with the governing equations for the system considered.  These 

observations seemingly indicate that hematocrit content may be an important 

property of blood that should be included in numerical models.  Shear-thinning 

properties, however, may be neglected without significant loss in accuracy.  

The effect of temperature on numerical estimates for various hematocrit 

contents does not appear to be  significant on predicted pressure heads, despite 

the large associated changes in viscosity.  On the other hand, changes in 

temperature do appear to have an appreciable effect on estimated wall stresses, 

most notably those for the instantaneous shear stress in the fluid.  While 

temperature may have some impact on numerical predictions, hematocrit is 

observed to result in even more substantial differences in estimates.  

Nonetheless, the use of a modified-Casson model, such as that proposed by 

Apostolidis and Beris (2014) and used in this study, since it can capture the 

effects of both hematocrit and temperature is highly recommended.  
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Numerical estimates for pressure head are observed to have negligible 

variance between laminar and turbulent flow models.  While an increased 

computational cost is associated with the use of a turbulence model, the use of a 

laminar model is noted to result in numerical instabilities.  As a consequence, the 

use of a turbulence model to represent flow within the blood pump is 

recommended, even in low and transitional Reynolds-number flow regimes.   

Predictions for pressure drop and shear stress at the wall obtained when 

accounting for hematocrit and the presence of turbulence are generally lower 

than those obtained for either when modeled separately.  This result may be 

explained by a shift in the dominating physical phenomena associated with the 

low and high viscosity fluids.  For low hematocrit levels, turbulence may have a 

more pronounced effect on the flow field than is observed for fluids with high 

hematocrit content.  The effects of turbulence, however, would then be expected 

to be dampened in a higher viscosity fluid, which is observed in numerical 

predictions for the key comparison metrics considered.  Thus, by including both 

hematocrit and turbulence in CFD simulations, the overall error in comparison 

metric estimates could be reduced.  

As is reported by Taskin et al. (2012), and confirmed in this study, 

hemolysis estimates using the power-law model and Eulerian and Lagrangian 

formulations do not yield the same predictions for hemolysis, so one would need 

to take experimental measurements to determine which approach is more 

accurate.  The lack of precision associated with the CFD blood damage index 

predictions can be attributed to the use of the power-law model, which was 
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developed for a Couette flow system under constant shear stress and is, thus, 

arguably unsuitable for systems such as that considered in this study.  

Furthermore, due to the lack of consistency and reliability associated with these 

methods of hemolysis estimation, CFD would benefit greatly from improved 

damage index formulations and approaches. 
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5.6. Nomenclature 

Roman Characters 

𝐂 Damage index constant (𝐂 = 𝟏. 𝟖𝟎𝟎 × 𝟏𝟎−𝟔) 

𝐃 Damage index 

𝐃𝐧,, 𝐃𝐧+𝟏 Damage index at time step 𝐧, 𝐧 + 𝟏 

∆𝐇𝐛

𝐇𝐛
 

Ratio of plasma-free hemoglobin to total hemoglobin 

𝐧 Carreau model constant (𝐧 = 𝟎. 𝟑𝟓𝟔𝟖) 

𝐧𝐩 Plasma viscosity 

𝐭 Time 

𝐓 Temperature 

𝐓𝐨 Reference temperature 

𝐐 Volumetric flow rate 

𝐕 Computational volume 

Greek Characters 

𝛂, 𝛃 Damage index constants (𝛂 = 𝟎. 𝟕𝟔𝟓𝟎, 𝛃 = 𝟏. 𝟗𝟗𝟏𝟎.) 

�̇� Shear rate 

𝛌 Carreau model constant (𝛌 = 𝟑. 𝟑𝟏𝟑 𝐬,) 

𝛍 Fluid viscosity 

𝛍𝟎 Carreau model lower viscosity limit 

𝛍∞ Carreau model upper viscosity limt 

𝛒 Fluid density 

𝛔 Rate of hemolysis production per unit time 
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𝛕 Shear stress 

𝛕𝐲 Yield stress 
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Chapter 6: Summary and Recommendations 

 Computational fluid dynamics is used to model micro-channels with rough, 

3-dimensional, superhydrophobic walls using free-shear and no-slip boundary 

conditions (Chapter 2) and resulted in the conclusions: 

 

 The results of which show the hydraulic diameter is a useful indicator 

of achievable drag reduction over hydrophobicity-inducing roughness.   

 Further investigation into the significance of the dimensionless 

hydraulic diameter on drag reduction for all Reynolds numbers in the 

laminar flow regime.  Such a study could result in a definitive critical 

value above which drag reduction may be achieved, and could lead to 

a set of criteria for determining the behavior of fluid flow over SHSs.   

 

An investigation into the effects of roughness of varying shape on drag 

reduction for flow over these surfaces (Chapter 3) indicated that: 

 

 Ridges and circular posts result in the great drag reduction in laminar 

flow. 

 The consideration of roughness elements in shapes other than ridges, 

circular posts, and square posts could offer insight into the mechanism 

of drag reduction over superhydrophobic surfaces.   

 The validity of modeling the meniscus formed at the air-water interface 

as flat, though widely utilized, should also be challenged by utilizing 
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multi-phase models in which the behavior of the air between the micro-

roughness elements is also simulated. 

 

Drag reduction is also shown to be achievable in non-Newtonian flow over 

these surfaces (Chapter 3): 

 

 The shear-thinning fluid model achieve the largest drag reduction 

compared to the Newtonian and shear-thickening fluids. 

 A study exploring a wide range of viscosities and viscosity models 

would allow these surfaces to be developed for use in a wider range of 

applications and would be beneficial in the development of an optimal 

superhydrophobic surface. 

 

The results discussed in Chapters 2 and 3 were used to develop a model 

to predict slip velocity for flow over these surfaces (Chapter 4): 

 

 This model was expanded to predict the slip velocity in non-Newtonian 

fluids using only a ratio of viscosities.   

 The proposed model indicates that an analytical solution for the slip 

velocity may exist.   

 A more rigorous mathematical analysis using similarity theory could 

lead to the development of an equation to predict drag reduction in a 

wider range of flow than was considered in this study. 
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Flow through a centrifugal blood pump was modeled and the effects of 

hematocrit, non-Newtonian rheological behavior, temperature, and turbulence 

were quantified and presented (Chapter 5) with the following conclusions.: 

 

 The use of computational fluid dynamics would benefit significantly 

from the development of a more reliable blood damage model.   

 A study exploring a wide range of viscosities and viscosity models 

would allow these surfaces to be developed for use in a wider range of 

applications and would be beneficial 

 The results of this study should be validated with experimental data 

and used to formulate a new approach to estimating hemolysis in 

blood-contacting devices. 

 


