SURFACE-TO-SUBSURFACE STRATIGRAPHY OF
THE CANEY SHALE IN PORTIONS ON PONTOTOC,
COAL, PITTSBURG, AND HUGHES COUNTIES,
OKLAHOMA, ARKOMA BASIN

By
John Edward Gage
Bachelor of Science in Geology
Oklahoma State University
Stillwater, OK
2008

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 2015
SURFACE-TO-SUBSURFACE STRATIGRAPHY OF
THE CANEY SHALE IN PORTIONS OF PONTOTOC,
COAL, PITTSBURG, AND HUGHES COUNTIES,
OKLAHOMA, ARKOMA BASIN

Thesis Approved:

Dr. Jim Puckette
Thesis Adviser
Dr. Mary Hileman

Dr. Mohamed Abdel Salam
ACKNOWLEDGEMENTS

This research was supported by the Devon Energy Corporation. Any opinions, findings, conclusions, or recommendations expressed in this thesis are those of the author and not those of Devon Energy.

I’d like to thank Dr. Boardman for giving me the opportunity to work on this thesis and wish he were able to have seen it complete. I would also like to thank Dr. Puckette for taking over as my advisor after Dr. Boardman passed away. I would not have been able to finish without them. Thanks also go out to Dr. Hileman for all her edits, Dr. Abdel Salam for joining my committee, and also to Erik Kvale with Devon Energy for the guidance while describing core.

Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University.
Name: John Edward Gage

Date of Degree: MAY, 2015

Title of Study: SURFACE-TO-SUBSURFACE STRATIGRAPHY OF THE CANEY SHALE IN PORTIONS OF PONTOTOC, COAL, PITTSBURG, AND HUGHES COUNTIES, OKLAHOMA, ARKOMA BASIN

Major Field: Geology

Abstract: The Caney Shale is an organic-rich, dark fissile shale of late Mississippian age with localized phosphate and limestone concretions. The Caney Shale in the Arkoma basin of Oklahoma is stratigraphically equivalent to the Barnett Shale of the Fort Worth basin, Texas and partially equivalent to the Fayetteville Shale. The Caney Shale is subdivided into three members; Ahloso, Delaware Creek, and Sand Branch. The Ahloso Member is characterized by its silt content, the Delaware Creek Member is characterized by its loss of silt and addition of carbonate concretions, and the Sand Branch Member is organic-rich, phosphatic, and contains minor carbonate concretions. The three members have distinct wireline log signatures that can be correlated from outcrop into the subsurface and used to map the distributions of each member. In general, all members gradually thin to the northeast and southeast. The Ahloso Member is the thinnest, whereas the Delaware Creek Member and Sand Branch Member are relatively close in thickness. Pay, as defined by total gamma-ray, was determined for the Sand Branch Member and appears to mirror its total thickness.
TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. 1
 Review of Literature .. 2
 Geologic Setting ... 7
 Study Area ...15

II. STRATIGRAPHY ..17
 Defining Caney Shale Members ... 20
 Type Log – Double 5 Ranch #2-10 SWD ... 20
 OGS-KGS Current #1 .. 22
 Core Descriptions ... 26
 Devon Energy Corporation Double 5 Ranch #2-10 SWD core 26
 Lithology of Members from the Double 5 Ranch #2-10 SWD core 26
 Haas G Locality ... 28
 OGS-KGS Current #1 .. 30
 Regional Cross-sections ... 32
 Regional Structure Maps .. 34
 Regional Isopach Maps ... 36
 Potential Hydrocarbon Production ... 41

III. DISCUSSION AND CONCLUSIONS ... 43

REFERENCES .. 45

APPENDICES ... 52

Appendix 1 - Core description of the Devon Energy Corporation Double 5 Ranch #2-10 SWD core ... 52
Appendix 2 – Core photos of the Devon Energy Corporation Double 5 Ranch #2-10 SWD core ... 64
Appendix 3 – Regional cross-sections A-A’ to J-J’ .. 76
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1 - Wells used in study</td>
<td>86</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mississippian nomenclature from Sutherland (1988) that shows the uncertainty surrounding upper Mississippian strata (Mayes and Caney) in parts of southern Oklahoma</td>
<td>6</td>
</tr>
<tr>
<td>2. Major geologic provinces of Oklahoma</td>
<td>7</td>
</tr>
<tr>
<td>3. Global temperature and atmospheric CO2 over geologic time</td>
<td>8</td>
</tr>
<tr>
<td>4. Late Mississippian paleogeography</td>
<td>9</td>
</tr>
<tr>
<td>5. Kinderhookian geographic features</td>
<td>11</td>
</tr>
<tr>
<td>6. Osagean geographic features</td>
<td>12</td>
</tr>
<tr>
<td>7. Meramecian geographic features</td>
<td>13</td>
</tr>
<tr>
<td>8. Chesterian geographic features</td>
<td>14</td>
</tr>
<tr>
<td>9. Location of study area</td>
<td>16</td>
</tr>
<tr>
<td>10. Generalized stratigraphic nomenclature for the Mississippian strata in the study area</td>
<td>19</td>
</tr>
<tr>
<td>11. Type log: Double 5 Ranch #2-10 SWD</td>
<td>21</td>
</tr>
<tr>
<td>12. Gamma-ray and density porosity curves for the OGS-KGS Current #1 in Section 26-T3N-R6E, Pontotoc County, Oklahoma</td>
<td>23</td>
</tr>
<tr>
<td>13. Resistivity curves for Devon Energy Corporation Double 5 Ranch #2-10</td>
<td>24</td>
</tr>
<tr>
<td>14. Correlation of outcrop stratigraphy from OGS-KGS Current #1 in section 26-T3N-R6E, Pontotoc County, Oklahoma to subsurface stratigraphy in Devon Energy Corporation Double 5 Ranch #2-10 SWD, 2452FSL, 217FEL, 10-3N-10E in Coal County, Oklahoma</td>
<td>25</td>
</tr>
<tr>
<td>15. Outcrop description for Haas G section in section 33-T3N-R6E, Pontotoc County, Oklahoma</td>
<td>29</td>
</tr>
<tr>
<td>16. Core description, and wireline logs for the OGS-KGS Current #1 in section 26-T3N-R6E, Pontotoc County, Oklahoma</td>
<td>31</td>
</tr>
<tr>
<td>17. Location map of cross-sections within Pontotoc, Coal, Hughes, and Pittsburg Counties, Oklahoma</td>
<td>33</td>
</tr>
<tr>
<td>18. Structural contour map constructed on the top of the Woodford Shale</td>
<td>35</td>
</tr>
<tr>
<td>19. Structural contour map constructed on the top of the Caney Shale</td>
<td>36</td>
</tr>
<tr>
<td>20. Isopach map of the Woodford Shale in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma. Fault locations are from Harlton (1969)</td>
<td>37</td>
</tr>
<tr>
<td>21. Isopach map of the Caney Shale in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma. Fault locations are from Harlton (1969)</td>
<td>38</td>
</tr>
<tr>
<td>22. Isopach map of the Aholso Member in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma. Fault locations are from Harlton (1969)</td>
<td>39</td>
</tr>
</tbody>
</table>
23. Isopach map of the Delaware Creek Member in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma. Fault locations are from Harlton (1969)..40

24. Isopach map of the Sand Branch Member in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma ...41

25. Isopach map of the Sand Branch Member net gas-producing pay (150+ API units on the gamma-ray curve) in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma ...42
CHAPTER I

INTRODUCTION

Unconventional shale-gas plays are an increasing focus of activity in the United States. These unconventional reservoirs hold the potential to renew entire basins with the discoveries of large volumes of reserves. With discovery and development of gas reservoirs in the Woodford Shale in the western part of the Arkoma basin, Oklahoma, and the Barnett Shale in the Fort Worth basin, Texas, many companies have targeted reservoirs like these to expand and grow their assets. These shale-gas plays rapidly increased in importance as the result of several factors including price, hydraulic fracturing, and horizontal drilling technology.

First, what is shale and shale gas? Shale is a typically dark fine-grained clastic sedimentary rock composed of layers of compressed clay, silt, or mud. Shale formed as particles of sediment accumulated in relatively calm waters of shallow inland seas or deeper ocean basins. Shale gas is natural gas that is trapped within shales or other mudrocks. Since the late 1990’s, shale-gas plays such as the Barnett have intrigued the petroleum industry because of the vast amount of gas trapped within the nano to micro pores that occur in shale. With new technology such as hydraulic fracturing, exploration companies have discovered ways to increase the permeability of shale using large volumes of water and proppant.

The Caney Shale is an organic-rich, dark gray to gray green fissile shale of late Mississippian age with localized phosphate and limestone concretions. The Caney Shale in the Arkoma basin of Oklahoma is the partial stratigraphic equivalent to the Barnett Shale in Texas
and the Fayetteville Shale in the Arkoma basin of Oklahoma and Arkansas. Both the Barnett and Fayetteville shales have successfully produced large volumes of natural gas, which raises the question if the Caney Shale is destined to be a producing formation as well. However, as of this writing, no one has developed a standard completion process for the Caney Shale that will produce consistent production as is found in the Barnett Shale or Fayetteville Shale (Maughan, 2006). The results and techniques tried thus far clearly indicate that what works for one shale gas system does not necessarily work in others, even if they appear to be of similar age.

In this study area, which includes the western Arkoma basin, Lawrence Uplift, and Tishomingo Uplift, the Caney Shale rests disconformably on the Welden Limestone or the Woodford Shale and is overlain by the Rhoda Creek Formation. The Caney Shale contains three members in ascending order: Ahloso, Delaware Creek, and Sand Branch. The Ahloso Member is characterized by its higher silt content, the Delaware Creek Member is characterized by its decreased silt content and the presence of carbonate concretions, whereas the Sand Branch Member is characterized by its darker color, increased organic content and abundance of phosphate and minor carbonate concretions.

The goals of this study are to clarify the terminology applied to the Caney Shale, describe core with the intent of identifying the members, and to show that it is possible to correlate these members in the subsurface. The Caney Shale has the potential to produce natural gas, but the stratigraphy must be established so that reservoir properties can be linked to facies.

REVIEW OF LITERATURE

The term “Caney” was first used by J.A. Taff in 1901 for Carboniferous aged shales found in the Coalgate quadrangle (Taff, 1901). Taff originally described the Caney Shale as being found in both the Arbuckle Mountains and Ouachita Mountains. Taff’s description, which
was very short and generalized, says, “In each locality of the Caney shale in this quadrangle about 800 feet of rock is exposed, approximately the upper half of the formation. This part of the formation is composed of blue clay shale, with thin beds of clay, ironstone, lenticular concretions, and a few blue limestone septaria. In the lower part of the formation, in the adjoining Atoka quadrangle, the blue shale grades into black, friable, bituminous shale with dark-blue limestone segregations. They Caney shale throughout is laminated, fissile, and friable, and in consequence is rarely exposed” (Taff, 1901). One year later in 1902, Taff refers to the Caney Shale as Lower Carboniferous in age. He states, “Shales of lower Carboniferous age, known as the Caney shale, succeed the Woodford chert in the northwestern part of the Atoka quadrangle and elsewhere throughout the Arbuckle Mountains region” (Taff, 1902). He then says, “The Caney shale in its lower parts consists of black, bituminous, fissile shale with spherical calcareous segregations and irregular, dense, blue limestone bodies. This bituminous shale is succeeded by clay shales which include small ironstone concretions and occasional calcareous septaria” (Taff, 1902). Nowhere in any of Taff’s publications did he describe the type section of the Caney Shale or the type locality.

Girty (1909) was the first geologist to report on the paleontology of the Caney Shale in an article titled, “The Fauna of the Caney Shale of Oklahoma,” in which the Caney was both Mississippian and Pennsylvanian based on fossils collected by both Girty and Taff. This is the only reference located that specifically references a type locality for the Caney Shale. Girty (1909) described the fossil localities as being in sections 3-4, T.1S, R.16E.

To further confuse the situation, Gould (1923) wrote, “I had gotten into my mind that they type locality of this shale had been described.” He then goes on to describe how Taff in 1901 had picked the type locality of the Caney Shale as, “the locality is the valley of the Cane Creek…” This was contradictory because Taff’s maps called this same valley the “Caney” Creek. Ulrich (1927) proposed to change the names to help clear up some of this confusion. He
proposed the name “John’s Valley shale for the Pennsylvanian age black shales exposed” in this area. This John’s Valley shale would replace the name Ouachita Caney.

The next published work describing the Caney Shale was Elias (1956). This work clarified terminology along the Arbuckle Uplift by examining upper Mississippian and lower Pennsylvanian formations. Elias (1956) states, “The Caney shale of southern Oklahoma has been differentiated into the lower or “Mississippian” Caney, and the upper or “Pennsylvanian” Caney, usually called the “Springer shale” or the “Goddard shale.” Elias noted that the Mississippian Caney lies between the Welden Limestone (below) and the Rhoda Creek sandstone (above) on the northeastern flank of the Arbuckle Mountains, and lies between the Sycamore limestone (below) and Goddard Formation (above) on the southwestern flank. Elias (1956) differentiated the Mississippian Caney Shale and subdivided it into three new members: the Ahlosa (later corrected to Ahloso), the Delaware Creek, and the Sand Branch, in ascending order.

Elias (1956) also proposed the name “Rhoda Creek Formation” to describe the dark shale sequence that is above the Sand Branch Member on the northeastern flank of the Arbuckle Mountains. This shale sequence includes part of what had originally and informally been designated as the “Pennsylvanian Caney” by previous authors.

The first attempt to clarify the type locality of the Caney Shale came in 1959. Elias and Branson (1959) published a paper that would, “designate a type section in an area of good exposures and where the unit has characteristics considered those of the Caney by geologists.” They defined a new type locality along the eastern flank of the Arbuckle Mountains and stated the term “Caney Shale” could only be used with certainty in this area. This change in type section moved the type locality to Johnson County, along Delaware Creek. The type section is now in section 14 T.2S, R.7E. Elias and Branson (1959) designated, “five measured sections in the adjacent ravines west of Viola townsit...” Their goal was to provide the most complete
measurable sections of the Caney Shale and to describe the Ahloso, Delaware Creek, and Sand Branch Members from the new type locality.

Though the term “Caney” was first established in 1901, nearly a century later, uncertainty concerning Caney stratigraphy prevailed. Figure 1 shows the stratigraphic uncertainty of the Caney Shale in the Arkoma basin. Sutherland (1988) noted that the original type locality of the Caney Shale was, “of the erratic boulders in the Johns Valley and other formations in the Ouachita facies,” and the term cannot be properly defined. Sutherland (1988) also noted that, “the Caney is subdivided into the Mississippian Caney and Pennsylvanian Caney. The Mississippian part of this interval is termed “Caney” in the frontal Ouachita Mountains in Oklahoma.” Sutherland then states, “In the central and southern part of the Arkoma basin, the typical Morrowan sequence begins with the Pennsylvanian Caney, which cannot be subdivided in most places from the underlying Mississippian Caney. Most subsurface workers therefore use the base of the overlying Cromwell sandstone as a marker for the base of the Pennsylvanian.”

Kleehammer (1991) examined Mississippian shale outcrops on the southwestern and northeastern flanks of the Arbuckle Mountains. Kleehammer argued that the lithologic subdivisions of Elias (1956) were not viable and that, “further subdivisions of the Caney into members (i.e., Ahloso, Delaware Creek, and Sand Branch) is unwarranted as this has been based largely on paleontologic criteria rather than substantive lithologic differences.” Since according to Kleehammer neither lithological nor paleontological evidence can be agreed upon, he suggests that the mappable units of the Caney Shale should not be subdivided at all.

Maughan (2006) published an article addressing the discrepancy of names. Maughan (2006) stated, “A term, Pennsylvanian Caney, was applied to a section above the Caney that would later be renamed the Goddard Shale. Another term, called the False Caney, appeared in a

A primary purpose of this thesis is to show that the members of the Caney Shale as established by Elias (1956) and Maughan (2006) can be identified and correlated over distances of tens of kilometers, using core data, outcrop samples, and well logs.

Figure 1 – Mississippian nomenclature from Sutherland (1988) that shows the uncertainty surrounding upper Mississippian strata (Mayes and Caney) in parts of southern Oklahoma.
GEOLOGIC SETTING

The Arkoma basin includes portions of both Arkansas and Oklahoma and includes an area of approximately 33,800 square miles. It is an arcuate foreland basin of the Ouachita fold-thrust belt containing about 5,000 feet of Middle Cambrian to Late Mississippian rocks and overlain by about 22,000 feet of Pennsylvanian rocks (Cemen, et al, 2009). On the Oklahoma side of the Arkoma basin, it is bounded to the north by the Cherokee Platform and to the south by the Ouachita Orogenic Belt (Figure 2).

Figure 2 – Major geologic provinces of Oklahoma (Northcutt and Campbell, 1995).
The Mississippian spans from approximately 359 to 318 million years ago (Maughan, 2006). During this time (Figure 3), the global carbon dioxide levels were relatively low and temperatures hovered around 20-22º Celsius (68-71.6º Fahrenheit). The climate was warm and tropical with luxuriant plant growth and coal bed formation. The explosion of flourishing plant growth during this time is the reason for the name, “Carboniferous Period.”

![Figure 3 - Global temperature and atmospheric CO2 over geologic time. Temperature after C.R. Scotese (PALEOMAP Project) http://www.scotese.com/climate.htm and CO2 after R.A. Berner, 2001 (GEOCARB III).](image)

Interpretations of regional and global paleogeography during the Mississippian are from Blakey (2004). During the Carboniferous, southern Gondwana moved over the South Pole, resulting in extensive continental glaciation (Figure 4). The advance and retreat of these glaciers produced changes in sea level which affected the sedimentation patterns on the cratons. As Gondwana continued to move northward, it was only a matter of time until it was going to collide
with Laurussia. At this time, Oklahoma is still drifting northward, closer to the equator and
taking a more low-latitude position that it previously occupied.

The southern edge of the craton bordered the Rheic Ocean (located between Gondwana
and Laurussia) and for the next 40 million years during the Mississippian, the Rheic Ocean
narrowed and the environment became restricted as the two continental plates converged (Blakey,
2004 and Craig and Connor, 1979). After a deep, anoxic water phase caused by the large land
masses that blocked open ocean circulation and led to the deposition of black shales, the Lower
Mississippian became a time of carbonate deposition (Blakey, 2004 and Craig and Connor, 1979).
Directly south of where Oklahoma is located, a volcanic arc formed at the western end of the
convergent zone (Blakey, 2004 and Craig and Connor, 1979).

Figure 4 – Late Mississippian paleogeography from Blakey (2006).
Gondwana first collided with Laurussia during the Early Carboniferous and continued colliding with it during the rest of the Carboniferous. Because Gondwana rotated clockwise relative to Laurussia, deformation of the two continents progressed in a northeast-to-southwest direction (Blakey, 2004 and Craig and Connor, 1979). In the paleoreconstruction shown in Figure 4, Oklahoma lies close to the margin of Laurussia and just to the north of a volcanic island arc. With the presence of Mississippian age volcanic tuff deposits in the Ouachita Mountains of southeastern Oklahoma, there is evidence of an island arc producing convergent plate boundary with a south-dipping subduction zone (Houseknecht, 1986). Prior to Mississippian deposition in Oklahoma, a Devonian-age erosional event sculpted the paleolandscape of ancestral Oklahoma (known by industry in Oklahoma as the post-Hunton unconformity). The late Devonian sea transgressed and the sediments were deposited that became the Woodford Shale. The Woodford Shale thickens and thins in response to underlying paleotopography and this infilling provided a low relief surface for the onset of post-Woodford Mississippian deposition.

During the 1960’s and 1970’s, the United States Geological Survey directed a widespread review of the Mississippian System with emphasis on paleotectonic investigations. The Mississippian Series in the Midcontinent was subdivided into four provincial units (from youngest to oldest): Kinderhookian, Osagean, Meramecian, and Chesterian that Craig and Connor (1979) used to show the evolution of the Mississippian depositional settings over time (Figures 5-8).
At the start of the Kinderhookian (Figure 5), the Midcontinent was a low-lying platform undergoing erosion. Throughout the Kinderhookian, the Midcontinent region was undergoing epeirogenic subsidence causing Oklahoma and Arkansas to be mostly covered by shallow seas. At the end of the Kinderhookian and beginning of the Osagean, sediments being deposited were mainly calcium carbonate with the water depth remaining relatively shallow and well oxygenated to contain marine fauna (Craig and Connor, 1979).
At the beginning of the Osagean, the Midcontinent was undergoing relatively gentle subsidence (Figure 6). During the Osagean, sediments being deposited were mainly deeper-water muds and shallow, well oxygenated, low energy carbonates (Craig and Connor, 1979). These sediments were mainly being deposited in the eastern proto-Arkoma basin. The western (Oklahoma side) proto-Arkoma basin did receive the same sediments as the Arkansas side. The Oklahoma side lacks both Osagean and Kinderhookian age section while the Arkansas side contains Osagean section (Craig and Connor, 1979).

Figure 6 - Osagean geographic features (Craig and Connor, 1979).
Meramecian (Figure 7) geographic features are quite different from the previous Kinderhookian and Osagean features. Tectonic activity was much more intense at this time. During the Meramecian, both the Ouachita trough in Arkansas and Oklahoma basin in western Oklahoma, were undergoing subsidence. The Ouachita trough began to extend westward into Oklahoma and started to connect with the Oklahoma basin. While the two troughs were subsiding, each received different sediment types. The Ouachita trough deposited detrital sediments (organic-rich muds) while carbonate sediments accumulated in the Oklahoma basin (Craig and Connor, 1979).
Chesterian geographic features (Figure 8) are similar to Meramecian geographic features except that the rate of subsidence during the Chesterian is greater. The increased rate of subsidence was mainly in the proto-Arkoma basin. The most significant tectonic event occurring during this time was the re-alignment of the proto-Arkoma basin from a west-trending feature to a southwest-trending feature (Craig and Connor, 1979). Sediments being deposited during the late Meramecian and Chesterian was mainly organic muds and carbonates.

By the end of the Mississippian, Gondwana had collided with Laurussia along the eastern seaboard of North America and the collision was slowly moving south. Sediments generated in the orogenic belt were transported to the west toward the deep, relic ocean basin.
STUDY AREA

This study includes portions of four counties: Pontotoc, Coal, Pittsburg, and Hughes (Figure 9). A total of 90 wells were used to correlate tops, make structure maps, isopach maps, and generate cross-sections. Logs were obtained from IHS, Inc., and imported into Petra® to create these maps. One well, the Current #1 in Pontotoc County, Oklahoma, has LAS files courtesy of the Oklahoma Geological Survey/Kansas Geological Survey.
Figure 9 – Location of study area (outlined in blue) and shown by inset. Stars indicate the positions of cores as well as the type locations of the members of the Caney Shale, and the important Haas G outcrop on the Lawrence Uplift.
CHAPTER II

STRATIGRAPHY

Since the Caney Shale was first described in 1901 by Taff as Carboniferous aged shales in southeastern Oklahoma, considerable field and core work has been completed by numerous geologists to improve the understanding of the Caney Shale and its associated members. This thesis is designed to test the hypothesis that the members of the Caney Shale have distinct properties that allow them to be correlated from outcrop to the subsurface. It is hoped that these correlations and the subsequent mapping will help clarify correlations of the internal stratigraphy of the Caney Shale. A stratigraphic column is shown in Figure 10.

For this study, the accepted Caney Shale stratigraphy is utilized and the three members identified using detailed core descriptions and well logs. In ascending order these are the Ahloso, Delaware Creek, and Sand Branch members (Figure 10). A detailed description of slabbed core from the Devon Energy Corporation, Double 5 Ranch #2-10 in 10-3N-10E, Coal County, Oklahoma helped identify these three zones. The Double 5 Ranch core was supplemented with the OGS-KGS Current #1 core in 26-3N-6E, Pontotoc County, Oklahoma and outcrop descriptions.

Elias (1956) differentiated the Caney Shale and established the Ahloso, Delaware Creek, and Sand Branch members. The type locality for both the Ahloso and Delaware Creek members is in the NE/4 of 14-2S-7E in Johnston County, Oklahoma (Figure 9). The Ahloso was named for
a village at the junction of Highway 99 and 3 which is about three miles to the southeast of Ada, Oklahoma. Elias (1956) described the Ahloso as being, “light gray, medium hard, more or less calcareous shale, with a very few small concretions, and generally with irregular cleavage along bedding planes.”

The Delaware Creek Member was named for outcrops along Delaware Creek, which flows eastward in the Bromide and Wapanucka area in Johnston, Oklahoma. Elias (1956) described the Delaware Creek as being, “gray, softer, and only slightly calcareous to non-calcareous shale, and commonly bears very large up to 12-foot diameter calcareous concretions, most of which are distinctly septaria in structure.”

The type locality for the Sand Branch Member is the NW/4 of 8-2N-7E, in Pontotoc County, Oklahoma (Figure 9). This member was named after Sand Branch, which is an eastern tributary of Clear Boggy Creek whose confluence is located approximately one mile to the northwest of the village of Frisco. Elias (1956) described the Sand Branch Member as follows, “The Sand Branch generally carries more or less the same kind of concretions (as the Delaware Creek), but its shale is dark gray to black, and much impregnated with pyrite, the oxidation of which at or near the surface, results in ‘rotten’ (shattered or broken) appearance of the shale.”
Figure 10 – Generalized stratigraphic nomenclature for the Mississippian strata in the study area (Oklahoma Geological Survey, 2007).
Defining Caney Shale Members

Type Log - Double 5 Ranch #2-10 SWD

The Caney Shale and its members were correlated using wireline log signatures on openhole logs. This correlation was based on outcrop stratigraphy captured in the wireline log suite for the OGS/KGS Current #1 in section 26-T3N-R6E, Pontotoc County, Oklahoma. The most useful logs for correlation were the induction, gamma-ray, density porosity, and neutron porosity logs. Figure 11 shows the boundaries of the members of the Caney Shale in the Double 5 Ranch #2-10 SWD well, located 2452FSL, 217FEL, in section 10-T3N-R10E, Coal County, Oklahoma. These same boundaries were identified in the OGS-KGS Current #1 (Figure 12). The Current #1 well was cored from the Rhoda Creek Formation to the Hunton Group (Figure 12). The Double 5 Ranch #2-10 SWD was cored from the Rhoda Creek Formation to the Viola Limestone.

To facilitate wireline log correlation, the regional markers with consistent log signatures were identified. In ascending order these were the Viola Group, Sylvan Shale, Hunton Group, Woodford Shale, and Caney Shale. Once the regional markers were correlated, a set of useful correlations within the Caney Shale were established and applied to well logs throughout the study area.

The Woodford Shale is consistently radiogenic shale that is easily correlated using the gamma-ray curve. The Ahloso Member of the Caney Shale rests disconformably on the Welden Limestone or the Woodford Shale and was by far the most difficult to correlate. On the type log, the top of the Ahloso Member was picked at the first major radiogenic shale marker that appears on the gamma-ray curve above the underlying Woodford Shale. However, relying on the gamma-ray curve only is not recommended when correlating this one using wireline logs. Resistivity curves are equally important when trying to correlate the Ahloso Member in the Arkoma basin.
Figure 11 – Type log: Double 5 Ranch #2-10 SWD, 2452FSL, 217FEL, 10-3N-10E in Coal County, Oklahoma. A portion of the “type” wireline log showing gamma-ray, density porosity, and neutron porosity curves covering the Viola to Pennsylvanian section in the Devon Energy Double 5 Ranch #2-10 SWD in 10-3N-10E, Coal County, Oklahoma. Interpreted boundaries of the members of the Caney Shale as well as the Woodford Shale, Hunton Group, Sylvan Shale, and Viola Group were correlated.
because it typically exhibits a lower resistivity that the overlying Delaware Creek Member (Figure 13).

The Delaware Creek Member consists of an easily correlatable group of carbonaceous/radiogenic shales that mark the base of the Sand Branch Member and separate it from the Delaware Creek Member. The Sand Branch Member is the most radiogenic member of the Caney Shale (Kamann, 2006) and this more radioactive gamma-ray signature can be correlated throughout the study area. A corresponding increase in resistivity of an average of 500 ohm-m marks the contact between the Delaware Creek Member and the overlying Sand Branch Member.

The top of the Caney Shale coincides with a decrease in radioactivity and increase in resistivity associated with the Rhoda Creek.

OGS-KGS Current #1

The OGS-KGS Current #1 in section 26-T3N-R6E, Pontotoc County, Oklahoma was logged by the Kansas Geological Survey. Figure 12 shows gamma-ray and density porosity signatures for the Caney Shale and a few feet of the Hunton Group and the contacts between the three members of the Caney Shale. Figure 14 shows correlation of outcrop stratigraphy as shown by the Current #1 to subsurface stratigraphy of the Double 5 Ranch #2-10 SWD.
Figure 12 – Gamma-ray and density porosity curves for the OGS-KGS Current #1 in section 26-T3N-R6E, Pontotoc County, Oklahoma.
Figure 13 – Resistivity curves for Devon Energy Corporation Double 5 Ranch #2-10 SWD, 2452FSL, 217FEL, 10-3N-10E in Coal County, Oklahoma.
Figure 14 – Correlation of outcrop stratigraphy from OGS-KGS Current #1 in section 26-T3N-R6E, Pontotoc County, Oklahoma to subsurface stratigraphy in Devon Energy Corporation Double 5 Ranch #2-10 SWD, 2452FSL, 217FEL, 10-3N-10E in Coal County, Oklahoma.
Core Descriptions

Devon Energy Corporation Double 5 Ranch #2-10 SWD core

The Caney Shale in the Devon Energy Corporation Double 5 Ranch #2-10 SWD well is a laminated, organic-rich black shale with occasional diamicite beds (beds containing sedimentary rock fragments) and intervals containing carbonate concretions or bullion. The shale is fossiliferous and contains conodonts, gastropods and brachiopods. It also frequently contains *Phycosiphon*, which is a horizontally oriented burrow that can have U-shaped loops that are interpreted as feeding burrows of a small worm-like animal. It also possibly contains *Helminthopsis*, which is a worm-like animal that can create both horizontal and vertical burrows. Phosphate and silica nodules also occur in the Sand Branch Member of the Caney Shale. The detailed core description is in Appendix 1 (images A1.1 – A1.12).

Lithology of Members from the Double 5 Ranch #2-10 SWD core

Each member of the Caney Shale has distinct lithologic characteristics. Distinguishing the Woodford Shale or Welden Limestone from the overlying Ahloso Member of the Caney Shale is not difficult as the Woodford Shale is a highly contorted and brecciated, dark gray to black and bluish black carbonaceous shale (A2.1), and the Welden Limestone is a light tan to brown limestone. In contrast, the Ahloso Member is silt-rich mudstone/siltstone.

The Ahloso Member contains glauconitic sandstone that disconformably overlies the Woodford Shale in much of the study area. The Ahloso Member is characterized by its silt content (A2.1). It is a gray to dark gray to bluish black, more or less calcareous muddy siltstone containing a few limestone beds. The Ahloso Member also contains sedimentary rock fragments as well as dark gray to black interbedded shale/mudstone and arenaceous siltstone (A2.1). Conodonts occur in the glauconitic sandstone in the lower most section just above the contact with the Woodford Shale (A2.1). The interval immediately above the Woodford Shale contact is
heavily bioturbated by *Phycosiphon* trace fossils (A2.1). Some intervals contain brachiopods and bivalves as well as gastropod fragments. Near the top of the Ahloso Member are alternating dark and light gray, massive, calcareous muddy siltstones that are heavily bioturbated by *Phycosiphon* trace fossils (A2.2).

The contact between the top of the Ahloso Member and the overlying Delaware Creek Member is transitional, rather than sharp. The Delaware Creek Member is characterized by its loss of silt and addition of carbonate concretions (A2.3). It is a gray to dark gray, non-calcareous to slightly calcareous silty mudstone that contains both limestone concretions and diamictite beds (A2.4-5). The upper part of the Delaware Creek Member contains intervals that are weathered and have high clay content. Trace fossils occur within the Delaware Creek Member and gastropods, cephalopod, brachiopods, and bivalve fragments were also identified (A2.6).

The Sand Branch Member is the most organic-rich member and is characterized by an abundance of phosphate and minor carbonate concretions (A2.7). The top of the Sand Branch Member (top of the Caney Shale) is at 6,354’ (A2.8). The Sand Branch Member is dark gray to black, pyritic, finely laminated carbonaceous shale that contains carbonate concretions and diamictite beds similar to these in the Delaware Creek Member (A2.9). The carbonate concretions are commonly septarian and similar to those in the Delaware Creek Member. Phosphate and silica nodules occur in this section as well as recrystallized ammonoids and nautiloids (A2.10). Diamictite beds exhibiting fining-upward textures (A2.11) are interbedded with laminated sandy beds that transition into mudstone that is slightly calcareous and contain small numbers of shell fragments (A2.11). Conodonts, bivalves, brachiopods, and *Phycosiphon* trace fossils occur in the Sand Branch Member.

The top of the Caney Shale is superceded by the Rhoda Creek Formation. The Rhoda Creek Formation is distinguished by its decreased gamma-ray signature that is in sharp contrast to
the more radiogenic shale and higher gamma-ray values of the Caney Shale. The cored section of the Rhoda Creek Formation is mostly dark gray to black fissile shale that contains siderite nodules.

Haas G Locality

The Haas G outcrop is located along the bank of the South Fork of Jackfork Creek in section 33-T3N-R6E, Pontotoc County, Oklahoma (longitude -96.6460100, latitude 34.6799050). This locality is on the Lawrence Uplift and contains the upper portion of the Woodford Shale, Pre-Welden Shale, Welden Limestone, and basal Caney Shale (Ahloso Member). Figure 15 is the stratigraphic column made from this locality.

The upper part of the Woodford Shale is a finely laminated black clay shale with thin phosphate laminae. The Pre-Welden Shale that overlies the Woodford Shale is a greenish gray to bluish green clay shale that is glauconitic. A sharp contact separates the Welden Limestone from the Pre-Welden Shale. The Welden Limestone is a wackestone to grainstone, and calcareous silty shale. The basal Caney Shale (Ahloso Member) is dark yellowish orange to dark yellowish brown, less oxidized blocky mudstone overlain by a more oxidized clayey shale. A prominent glauconite-rich interval is overlain by tan shale and zone with abundant inarticulate brachiopods, *Lingula* and *Orbiculoides*. The inarticulate brachiopod bed is succeeded by argillaceous limestone that contains abundant thin shelled articulate brachiopods of the genera *Leiorhynchus* (Godwin, 2015, personal communication). A grayish orange, slightly calcareous, shaly siltstone overlies the dark colored brachiopod-rich limestone.
<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caney Shale</td>
<td>Grayish orange, shaly siltstone that is slightly calcareous.</td>
</tr>
<tr>
<td>Ahloslo Member</td>
<td>Dark argilaceous limestone.</td>
</tr>
<tr>
<td>(~10-11 ft. thick)</td>
<td>Greenish gray, shaly limestone with abundant brachiopods.</td>
</tr>
<tr>
<td>(Incomplete)</td>
<td>Dark yellowish brown to brown shale with inarticulate brachiopods.</td>
</tr>
<tr>
<td></td>
<td>Tan shale</td>
</tr>
<tr>
<td></td>
<td>Greenish gray glauconite zone.</td>
</tr>
<tr>
<td></td>
<td>More oxidized light yellowish orange to a dusty yellowish brown to grayish</td>
</tr>
<tr>
<td></td>
<td>black clayey shale.</td>
</tr>
<tr>
<td></td>
<td>Dark yellowish orange to a dark yellowish brown, less oxidized, blocky</td>
</tr>
<tr>
<td></td>
<td>mudstone.</td>
</tr>
<tr>
<td>Welden Limestone</td>
<td>Limestone, Packestone, Grainstone, dark gray to gray that contains some</td>
</tr>
<tr>
<td>(~5 ft. thick)</td>
<td>glauconite.</td>
</tr>
<tr>
<td></td>
<td>Thinly laminated, calcareous silty shale.</td>
</tr>
<tr>
<td></td>
<td>Limestone, Wackestone that is massive bedded with some glauconite present.</td>
</tr>
<tr>
<td>Pre-Welden Shale</td>
<td>Greenish gray to bluish green clay shale with some phosphate nodules and</td>
</tr>
<tr>
<td>(~8-10 in. thick)</td>
<td>glauconitic.</td>
</tr>
<tr>
<td>Woodford Shale</td>
<td>Black clay shale that is finely laminated, silicified and deformed.</td>
</tr>
<tr>
<td>(~7 ft. thick)</td>
<td>(Incomplete)</td>
</tr>
<tr>
<td></td>
<td>Black clay shale that is finely laminated with some thin phosphate laminae.</td>
</tr>
</tbody>
</table>

Figure 15 – Outcrop description for Haas G section in section 33-T3N, R6E, Pontotoc County, Oklahoma.
The OGS-KGS Current #1 core in section 26-T3N-R6E, Pontotoc County contains 230 feet of Woodford Shale, 20 feet of Welden Limestone and Pre-Welden Shale, and 290 feet of Caney Shale (Figure 16). The core was described by Boardman and Watney (2006) and summarized as follows.

The Woodford Shale is a light gray to black clay shale containing silt, phosphate laminae, phosphate nodules, lenticular bedded phosphate, burrows, and inarticulate brachiopods (Boardman and Watney, 2006). The Pre-Welden Shale is a greenish gray to grayish yellow green containing large lenticular phosphate, phosphate nodules, and possibly dolomitic (Boardman and Watney, 2006). The Welden Limestone is a fossiliferous, slightly glauconitic wackestone (Boardman and Watney, 2006). The basal Caney Shale (Ahloso Member) is a light bluish gray to dark gray shale with intervals of calcareous light brown to pale yellowish brown shale with glauconite-rich intervals containing articulate brachiopods, laminar phosphate, ammonoids and brachiopods (Boardman and Watney, 2006). The middle Caney Shale (Delaware Creek Member) is a medium dark gray to dark gray shale containing faint phosphate laminae, ammonoids, and intervals of carbonate mudstone with bivalves and bullion. The top of the Caney Shale (Sand Branch Member) is a medium dark gray to dark gray crumbly shale with phosphate laminae, phosphate nodules, bivalves, ammonoids, and bactritoid cephalopods (Boardman and Watney, 2006).

In this core the Caney Shale is a laminated, organic-rich shale with intervals containing phosphate laminae and bullion. The shale is fossiliferous and contains burrows, bivalves, cephalopods and ammonoids.
Figure 16 – Core description (rock textures, stratigraphic units, lithology, and colors), and wireline logs (resistivity, neutron-density porosity, spectral gamma-ray, and gamma-ray) from Watney et al (2013), OGS-KGS Current #1 in section 26-T3N-R6E, Pontotoc County, Oklahoma.
Once the outcrop to subsurface correlations were established, regional correlations were made through Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma (Appendix 3 – Cross-sections A-A’ to J-J’ - Figures A3.1-A3.10). To help with correlations, the newest logs were used that penetrated the top of the Caney Shale. A subset of 90 wireline logs from wells that penetrated the Caney Shale were used to construct cross-sections. Wireline logs without distinct markers above the Caney Shale were correlated using the Woodford Shale as datum as it is easily recognized on logs because of its high gamma-ray readings. Figure 17 shows the locations of the cross-sections within the study area.
The members of the Caney Shale generally maintain their gamma-ray and resistivity log signatures throughout the study area. All members gradually thin to the northeast and southeast. The Ahloso Member is the thinnest, whereas the Delaware Creek Member and Sand Branch Member are thicker.
In section 13-T2N-R8E, Coal County, Oklahoma, one well has all section below the top twenty five (25) feet of the Delaware Creek Member faulted out and as a result the Delaware Creek Member is juxtaposed on limestone of the Hunton Group. This fault is likely to be Pennsylvanian due to the fact that the entire Sand Branch Member section still exists in this well (A3.4 – D-D’). The faults interpreted were taken from a paper by Harlton (1969) were hand drawn into Petra® and intersect wells with missing section.

Regional Structure Maps

Structure maps were constructed for the top of the Woodford Shale and top of the Caney Shale. The Woodford Shale structure map is shown in Figure 18. The Woodford Shale dips approximately 250 feet per mile to the southeast and ranges in depths from several hundred feet above sea level in Pontotoc County, Oklahoma to over 13,000 feet below sea level in Pittsburg County, Oklahoma.
Figure 18 – Structural contour map constructed on the top of the Woodford Shale as identified on gamma-ray and resistivity wireline logs. Contour interval is 250 feet. Faults shown are from Harlton (1969).

The structure map constructed for the top of the Caney Shale is shown in Figure 19. The structural attitude of the Caney Shale is very similar to that of the Woodford Shale as the Caney Shale dips approximately 250 feet per mile to the southeast. However, faults that are recognized by offset of the top of the Caney Shale are not mappable in the sparsely populated wireline log set. Similar to the Woodford Shale, the Caney Shale is above sea level in Pontotoc County, Oklahoma and 13,000 feet below sea level in Pittsburg County, Oklahoma. It is important to note that these are regional structure maps based on sparse well control. As a result, additional faults could be present that are not reflected on the contour maps.
Figure 19 – Structural contour map constructed on the top of the Caney Shale as identified on gamma-ray and resistivity wireline logs. Contour interval is 250 feet. Faults shown are from Harlton (1969).

Regional Isopach Maps

Isopach maps were constructed to illustrate changes in depositional patterns during the Late Devonian to Mississippian. Drilled and logged thicknesses are expressed to be true vertical thicknesses as deviated and horizontal wells were not included in the data set. The Woodford Shale map (Figure 20) shows that the thickest section of the Woodford Shale occurs in northeastern Coal County, Oklahoma (~170-200’), southern Hughes County, Oklahoma (~160-
200’), and central Pontotoc County, Oklahoma (250’+). The trends of the thick Woodford Shale are NW-SE and similar to trends mapped by Blackford (2007) in portions of the study area.

Figure 20 – Isopach map of the Woodford Shale in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma. Fault locations are from Harlton (1969).

The thickness of the total Caney Shale is shown in Figure 21. The trends in Caney Shale thickness are NW-SE and similar to those for the Woodford Shale.
Figure 21– Isopach map of the Caney Shale in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma. Fault locations are from Harlton (1969).

The isopach map of the Ahloso Member is shown in Figure 22. Due to difficulties with correlations, this map may be the most prone to error. However, it appears that the Ahloso Member is relatively the same thickness through the mapped study area. The thickness of the Ahloso Member may have been influenced by topography below the pre Caney-post Welden unconformity. Pennsylvanian tectonism also impacted the thickness of the Ahloso Member as the entire section is faulted out in a well in section 13-T2N-R8E, Coal County, Oklahoma (A3.4 – D-D’).
Figure 22 – Isopach map of the Ahloso Member in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma. Fault locations are from Harlton (1969).

The Delaware Creek Member isopach map (Figure 23) is similar to the isopach map of the total Caney Shale. The depocenter for the depositional basin (Oklahoma Basin) during Delaware Creek time appears to be in the center of the study area and trending NW-SE. From the depositional axis, the Delaware Creek Member thins to the northeast and southwest. Most of the Delaware Creek Member is faulted out in the previously mentioned well in section 13-T2N-R8E, Coal County, Oklahoma.
The isopach map for the Sand Branch Member is different than previous maps in that mappable faults are not known (Figure 24). The regional isopach map shows that the basin depocenter shifted more to the northeast part of the study area during Sand Branch time and that this localized depocenter trends NW-SE. It is important to note that due to a lack of well control, the isopach of the Sand Branch Member is subject to error outside the study area in Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma.
Potential Hydrocarbon Production

Gas production from the Caney Shale in the Arkoma basin is minimal. With this in mind, the potential for gas production from the Caney Shale was explored by companies because of its characteristics that are similar to those of other shale plays, in particular, the Barnett Shale. The Sand Branch Member is equivalent to parts of the Fayetteville Shale, another important gas-producing shale in the southern United States. Potential natural gas pay in the Sand Branch Member was defined as more radioactive shales that exceed 150 API units on the gamma-ray
curve. Figure 25 shows the calculated net gas-producing pay within the Sand Branch Member based on a gamma-ray signature that is greater than 150 API units.

Figure 25 – Isopach map of the Sand Branch Member net gas-producing pay (150+ API units on the gamma-ray curve) in portions of Pontotoc, Coal, Pittsburg, and Hughes Counties, Oklahoma.
CHAPTER III

DISCUSSION AND CONCLUSIONS

Unconventional reservoirs such as the Caney Shale are the most important sources of domestic natural gas in the United States. Like most natural gas plays in the United States, the oil and gas industry identified these natural gas reservoirs years ago, but lacked the science and technology to effectively exploit them. The Caney Shale is the stratigraphic equivalent to the Barnett Shale and stands poised to become a rich and much needed gas resource. Thousands of wells have been drilled through the Caney Shale in Oklahoma. If the Caney Shale is similar to the Barnett Shale, or Fayetteville Shale, the Arkoma Basin provides thick sections available for testing completion techniques.

Shale-gas plays such as the Fayetteville, Barnett, and Woodford Shale are successful because of carbonate and silica cements that generate brittle rock. The Woodford Shale is more silica-rich, whereas the Caney Shale is more clay-rich. As a result, the silica-rich Woodford is brittle and generates fractures in addition to containing natural fractures. Since the Caney Shale is predominantly a clay-rich lithology, it absorbs fracture energy and permeability is not significantly increased by hydraulic stimulation.

The Caney Shale of the Arkoma Basin in Oklahoma is an organic-rich, gas-bearing, dark fissile shale of late Mississippian age. In this study, the Caney Shale was evaluated in both surface outcrops and in the subsurface using core and wireline logs. The Caney Shale is
subdivided into three members; in ascending order, the Ahloso, Delaware Creek, and Sand Branch, that can be correlated from outcrop into the subsurface.

These members have distinct wireline log signature and lithologic characteristics that allow them to be correlated across the Lawrence Uplift and into the Arkoma Basin.

The goals of this study were to clarify the terminology applied to the Caney Shale, describe core with the intent of identifying the members, and to show that it is possible to correlate these members in the subsurface. The Caney Shale has the potential to produce natural gas, but establishing the stratigraphy was critical so that reservoir properties can be linked to facies. Future studies should build on this work and expand the Caney Shale study with additional surface and subsurface data. Now that a correlation of the Ahloso, Delaware Creek, and Sand Branch members has been established, future studies can focus on a more petrophysical and geomechanical evaluation to help unlock the future potential of the Caney Shale.
REFERENCES

Cemen, Ibrahim, Sahai, Surinder, Boardman, Darwin, and Puckette, James, 2009, “Pennsylvanian Structural Evolution of the Arkoma Foreland Basin, Southern Oklahoma”: Geological Society of America, South-Central Section, March 16-17, Dallas, Texas.

Scotese, Christopher, and Berner, R.A., 1994, Source for data used for figure 3 which appears on “Plant fossils of West Virginia” website:

APPENDICES

APPENDIX 1

Core description of the Devon Energy Corporations Double 5 Ranch #2-10 SWD

Figure A1.1 - Legend for core descriptions
Figure A1.2 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Woodford Shale depth 6790 to 6765 feet.

3. 6765' to 6783' – Similar to 6785' to 6790'. Very dark gray to black and bluish black. Interbedded laminated mudstone and siltstone.

2. 6784' to 6785' – Mudstone, light gray. Heavily bioturbated. Separated from unit below by a small debris flow deposit at its base.

1. 6785' to 6790' – Interbedded laminated mudstone and siltstone.

7. 6748’ – Dark gray arenaceous siltstone, massive to weakly bedded. Phosphate nodule. Distinct basal contact. Possible *Helminthopsis*.

6. 6748’ to 6753’ – Dark gray to black and bluish black. Interbedded shale/mudstone and arenaceous siltstone. Distorted basal contact. 6748’ to 6751’ – Dark gray. Glauconite interval with conodonts.

5. 6753’ to 6762’ – Dark gray to black and bluish black. Highly contorted and brecciated. Bottom to top – increased deformation. Unit is very siliceous and non-calcareous.

4. 6762’ to 6783’ – Massive mudstone, gray to dark gray with interlayered siltstone.

Figure A1.3 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Woodford Shale depth 6765 to 6753 feet. Caney Shale (Ahloso Member) 6753 to 6720 feet.
Figure A1.4 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Ahloso Member 6720 to 6709 feet. Delaware Creek Member, 6709 to 6675 feet.
Figure A1.5 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6675 to 6630 feet.
Figure A1.6 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6630 to 6585 feet.
Figure A1.7 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6585 to 6540 feet.
Figure A1.8 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6540 to 6495 feet.
Figure A1.9 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6495 to 6473 feet. Sand Branch Member, 6473 to 6540 feet.

30. 6445' to 6455' – Dark gray to black mudstone. Upper parts of section contains diamicrites with grains up to very coarse grained. Majority of section is non-calcareous. Small vertical fractures filled with calcite. Shear fracture near base of unit.

29. 6456' to 6465' – Laminated/plane bedded, dark gray to black mudstone. Small scale event beds (mm to cm scale) of diamicrites composed of shell fragments and medium-to-fine-grained clasts of dark sedimentary rock fragments that are overlain by a more massive mudstone consisting of small amounts of shell fragments. Lower part of section contains more CaCO₃. 6463' – Siderite. Small shell fragments to about 6472'.

28. 6466' to 6505' – Very dark bluish gray, calcareous silty mudstone. Laminae are undefined. Higher clay content than the underlying section because section is very weathered.

6480' – Small shell fragments.

6482' to 6505' – Very weathered/crumble and high clay content.
Figure A1.10 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Sand Branch Member, 6540 to 6405 feet.

6403’ – Possible siderite.
6405’ to 6425’ – Some beds contain pyrite cement.
6408’ to 6412’ – Large amount of phosphate. 6408’ has highly pyritized shell fragments.
6411’ – Conodonts along bedding plane.
6411’ to 12’ – Flow deposits; event beds.
6415’ to 6425’ – Fossil fragments in this area.
6417’ – Recrystallized ammonoid and nautiloid.
6428’ – Shell fragments less abundant.
6432’ to 6448’ – Scarce amounts of pyrite and small amounts of calcite.

32, 6436’ to 6442’ – Dark gray to lack mudstone. Distorted bedding around small non-calcareous nodule in lower part of section. Small amounts of shell fragments.
31, 6442’ to 6444’ – Thin calcareous diamictite. Dark gray to black. Coarse grains and very calcareous. Clasts contain shell fragments and sedimentary rock fragments.
Figure A1.11 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Sand Branch Member, 6405 to 6360 feet.

36. 6357’ to 6366’ – Mudstone, dark gray to black. Contains a few PO₄ nodules and calcareous siltstone streaks. 6361’ – PO₄ nodules.

35. 6367’ to 6379’ – Dark gray to black mudstone. Fining upward sequence – Diamictite beds interbedded with laminated sandy beds into mudstone that is slightly calcareous and contain small amounts of shell fragments. Some silica nodules present. Erosive basal contact. Event beds. 6374.11’ – Diamictite bed.

34. 6380’ to bottom of 6402’ – Dark gray to black mudstone, very weathered/crumbly in some areas. Weathered areas could mark contacts of small fining upward sequences which mark minor (mm to cm scale) even beds. Very little CaCO₃ at top. 6381’ – Silica nodule.

6387’ – Thin laminae of calcite.

6396’ – First Brachiopod seen. Clay rich interval.

33. 6402’ to 6436’ – Dark gray to black mudstone topped off by a small calcareous diamicite bed. Upward increases of CaCO₃. More shell fragments and bioturbation in lower parts. Some beds are very cemented with pyrite. 6403’ – Possible siderite.
Figure A1.12 – Core descriptions of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Sand Branch Member, 6360 to 6353 feet. Rhoda Creek, 6353 to 6315 feet.

38. Top of Core to 6355’ – Black to dark gray shale. Contains non-calcareous nodules with the nodules at the top having calcite filled fractures.

Very brittle from top of core to about 6325’.

Most CaCO₃ is not as pervasive in the lower areas. 6325’ – Very weathered/crumbly, lower part has bivalve fragments.

6330’ to 32’ and 6334’ to 36’ – Kick in Th.

37. 6356’ – Diamictite bed. Dark gray to black.
Core photos of the Devon Energy Corporations Double 5 Ranch #2-10 SWD

Core photo A2.1 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Woodford Shale, 6752 to 6753 feet. Caney Shale (Ahloso Member), 6744 to 6752 feet.
Core photo A2.2 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Ahloso Member, 6708 to 6713 feet. Delaware Creek Member, 6704 to 6708 feet.
Core photo A2.3 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6743 to 6744 feet. Sand Branch Member, 6464 to 6473 feet.
Core photo A2.4 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6514 to 6524 feet.
Core photo A2.5 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6574 to 6584 feet.
Core photo A2.6 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Delaware Creek Member, 6554 to 6564 feet.
Core photo A2.7 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Sand Branch Member, 6364 to 6374 feet.
Core photo A2.8 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Top of Caney Shale (Sand Branch Member), 6354 to 6364 feet.
Core photo A2.9 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Sand Branch Member, 6404 to 6414 feet.
Core photo A2.10 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Sand Branch Member, 6414 to 6424 feet.
Core photo A2.11 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Sand Branch Member, 6374 to 6384 feet.
Core photo A2.11 – Core photo of the Devon Energy Corporations Double 5 Ranch #2-10 SWD. Sand Branch Member, 6404 to 6414 feet.
Figure A3.1 - Regional cross-section A-A’. Location is shown in Figure 17.
Figure A3.2 - Regional cross-section B-B’. Location is shown in Figure 17.
Figure A3.3 - Regional cross-section C-C’. Location is shown in Figure 17.
Figure A3.4 - Regional cross-section D-D’. Location is shown in Figure 17.
Figure A3.5 - Regional cross-section E-E’. Location is shown in Figure 17.
Figure A3.6 - Regional cross-section F-F’. Location is shown in Figure 17.
Figure A3.7 - Regional cross-section G-G'. Location is shown in Figure 17.
Figure A3.8 - Regional cross-section H-H'. Location is shown in Figure 17.
Figure A3.9 - Regional cross-section I-I’. Location is shown in Figure 17.
Figure A3.10 - Regional cross-section J-J’. Location is shown in Figure 17.
Table 1

Wells used in study

<table>
<thead>
<tr>
<th>WELL NAME</th>
<th>WELL NO.</th>
<th>OPERATOR</th>
<th>LEASE</th>
<th>FIELD</th>
<th>COUNTY</th>
<th>STATE</th>
<th>SECTION</th>
<th>TOWNSHIP</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULLINS</td>
<td>01-2494</td>
<td>CARTER GRAGG OIL CO</td>
<td>MULLINS</td>
<td>BREWER SOUTH</td>
<td>PITTSG</td>
<td>PN</td>
<td>29</td>
<td>4E</td>
<td></td>
</tr>
<tr>
<td>FRED MANGROVE</td>
<td>01-2370</td>
<td>MAGNOLIA OIL CO</td>
<td>FRED MANGROVE</td>
<td>UNNAMED</td>
<td>PITTSG</td>
<td>PN</td>
<td>28</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>BROWN</td>
<td>01-2273</td>
<td>DAVIS OPERATING CO</td>
<td>BROWN</td>
<td>UNNAMED</td>
<td>PITTSG</td>
<td>PN</td>
<td>38</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>LIDA TATE</td>
<td>01-2204</td>
<td>MOBIL OIL CORP</td>
<td>LIDA TATE</td>
<td>WILDCAT</td>
<td>PITTSG</td>
<td>PN</td>
<td>15</td>
<td>15E</td>
<td></td>
</tr>
<tr>
<td>WALL</td>
<td>01-2202</td>
<td>DUPEX OPERATING CO</td>
<td>WALL</td>
<td>MERRILL</td>
<td>PITTSG</td>
<td>PN</td>
<td>17</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>QUAD</td>
<td>01-2167</td>
<td>CLARK FORRESTER ASSN</td>
<td>QUAD</td>
<td>ASPHALD SOUTH</td>
<td>PITTSG</td>
<td>PN</td>
<td>30</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>JEFFREY-CRISMAN</td>
<td>01-2154</td>
<td>SINCLAIR</td>
<td>JEFFREY-CRISMAN</td>
<td>SNEVER SOUTH</td>
<td>PITTSG</td>
<td>PN</td>
<td>33</td>
<td>4E</td>
<td></td>
</tr>
<tr>
<td>BROOKLYN</td>
<td>01-2123</td>
<td>OCEAN RESOURCES CO</td>
<td>BROOKLYN</td>
<td>BROOKLYN</td>
<td>PITTSG</td>
<td>PN</td>
<td>36</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>WHITE</td>
<td>01-2121</td>
<td>TID PROD CORP</td>
<td>WHITE</td>
<td>KINOA</td>
<td>PITTSG</td>
<td>PN</td>
<td>24</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>WILSON</td>
<td>01-2120</td>
<td>DEVON LOUISIANA CORP</td>
<td>WILSON</td>
<td>MERRILL</td>
<td>PITTSG</td>
<td>PN</td>
<td>4</td>
<td>17E</td>
<td></td>
</tr>
<tr>
<td>WATKINS</td>
<td>01-2119</td>
<td>NEWFIELD EX MID-CON</td>
<td>WATKINS</td>
<td>MCALESTER</td>
<td>PITTSG</td>
<td>PN</td>
<td>6</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>JESSICA</td>
<td>01-2118</td>
<td>NEWFIELD EX MID-CON</td>
<td>JESSICA</td>
<td>PINE HOLLOW SOUTH</td>
<td>PITTSG</td>
<td>PN</td>
<td>13</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>WATKINS</td>
<td>01-2117</td>
<td>NEWFIELD EX MID-CON</td>
<td>WATKINS</td>
<td>MCALESTER</td>
<td>PITTSG</td>
<td>PN</td>
<td>6</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>BUSBY</td>
<td>01-2116</td>
<td>ANTERO RES CORP</td>
<td>BUSBY</td>
<td>MENG</td>
<td>PITTSG</td>
<td>PN</td>
<td>17</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>BALLARD</td>
<td>01-2115</td>
<td>JTO ENERGY INC</td>
<td>BALLARD</td>
<td>ASPHALD</td>
<td>PITTSG</td>
<td>PN</td>
<td>12</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>LUIS</td>
<td>01-2114</td>
<td>SEOLA ENERGY INC</td>
<td>LUIS</td>
<td>BREWER SOUTH</td>
<td>PITTSG</td>
<td>PN</td>
<td>2</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>BLUE CREEK</td>
<td>01-2113</td>
<td>SAMSON RESOURCES CO</td>
<td>BLUE CREEK</td>
<td>PITTSBURG</td>
<td>PN</td>
<td>7</td>
<td>1E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAND NATIONALS</td>
<td>01-2112</td>
<td>SAMSON RESOURCES CO</td>
<td>GRAND NATIONALS</td>
<td>GRAND NATIONALS</td>
<td>PITTSBURG</td>
<td>PN</td>
<td>30</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>MARY</td>
<td>01-2111</td>
<td>CONTINENTAL RES INC</td>
<td>MARY</td>
<td>MCALESTER EAST</td>
<td>PITTSG</td>
<td>PN</td>
<td>6</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>ROWEN</td>
<td>01-2110</td>
<td>ANTERO RES CORP</td>
<td>ROWEN</td>
<td>ASPHALD SOUTH</td>
<td>PITTSG</td>
<td>PN</td>
<td>18</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>BLACK</td>
<td>01-2109</td>
<td>JTO ENERGY INC</td>
<td>BLACK</td>
<td>PINE HOLLOW SOUTH</td>
<td>PITTSG</td>
<td>PN</td>
<td>17</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>EVELYN</td>
<td>01-2108</td>
<td>JTO ENERGY INC</td>
<td>EVELYN</td>
<td>MOUSER</td>
<td>PITTSG</td>
<td>PN</td>
<td>15</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>ROSA</td>
<td>01-2107</td>
<td>NEWFIELD EX MID-CON</td>
<td>ROSA</td>
<td>PINE HOLLOW SOUTH</td>
<td>PITTSG</td>
<td>PN</td>
<td>9</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>CLEOKER</td>
<td>01-2106</td>
<td>ANTERO RES CORP</td>
<td>CLEOKER</td>
<td>GEAMS SOUTHEAST</td>
<td>PITTSG</td>
<td>PN</td>
<td>1</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>NELSON</td>
<td>01-2105</td>
<td>KAISER-FRANCIS OIL</td>
<td>NELSON</td>
<td>ASPHALD</td>
<td>PITTSG</td>
<td>PN</td>
<td>7</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>BUTYANA</td>
<td>01-2104</td>
<td>PETROQUEST ENERGY LLC</td>
<td>BUTYANA</td>
<td>CHEWBURG DISTRICT</td>
<td>PITTSG</td>
<td>PN</td>
<td>11</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>NTHST</td>
<td>01-2103</td>
<td>PETROQUEST ENERGY LLC</td>
<td>NTHST</td>
<td>QUINN</td>
<td>PITTSG</td>
<td>PN</td>
<td>12</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>MURDRAUGH</td>
<td>01-2102</td>
<td>SKEEL OIL COMPANY</td>
<td>MURDRAUGH</td>
<td>QUINN</td>
<td>PITTSG</td>
<td>PN</td>
<td>27</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>KEIB-MOOSE UNIT</td>
<td>01-2101</td>
<td>NEWFIELD EX MID-CON</td>
<td>KEIB-MOOSE UNIT</td>
<td>PITTS</td>
<td>PITTSG</td>
<td>PN</td>
<td>29</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>THOMAS</td>
<td>01-2100</td>
<td>LANDERS & THOMAS</td>
<td>THOMAS</td>
<td>STONEWALL NE</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>1</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>ROLL</td>
<td>01-2100</td>
<td>ACMEY ROLL</td>
<td>ROLL</td>
<td>WILDCAT</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>30</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>MACK-BROOKS</td>
<td>01-2099</td>
<td>MACK-BROOKS OPERATING</td>
<td>MACK-BROOKS</td>
<td>WILDCAT</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>27</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>PITTS UNIT TR 9</td>
<td>01-2098</td>
<td>SUN OIL COMPANY</td>
<td>PITTS UNIT TR 9</td>
<td>PITTS</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>29</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>SICILIA</td>
<td>01-2097</td>
<td>OCEAN RESOURCES CO</td>
<td>SICILIA</td>
<td>THORN</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>7</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>SWIFT</td>
<td>01-2096</td>
<td>OCEAN RESOURCES CO</td>
<td>SWIFT</td>
<td>WILDCAT</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>2</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>MARGOLO OIL CO</td>
<td>01-2095</td>
<td>SWIFT</td>
<td>MARGOLO OIL CO</td>
<td>WILDCAT</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>3</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>CHICKEN CO</td>
<td>01-2094</td>
<td>OCEAN RESOURCES CO</td>
<td>CHICKEN CO</td>
<td>WILDCAT</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>10</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>SANT</td>
<td>01-2093</td>
<td>OCEAN RESOURCES CO</td>
<td>SANT</td>
<td>WILDCAT</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>12</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>OKLAHOMA GEO SURVY</td>
<td>01-2092</td>
<td>CURTAIN</td>
<td>OKLAHOMA GEO SURVY</td>
<td>UNNAMED</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>26</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>BRYCE</td>
<td>01-2091</td>
<td>BTYL PHILLIP INC</td>
<td>BRYCE</td>
<td>PITTS</td>
<td>POOTOTCO</td>
<td>PN</td>
<td>8</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>REYNOLDS</td>
<td>01-2090</td>
<td>HUBER & DAVIS</td>
<td>REYNOLDS</td>
<td>UNNAMED</td>
<td>COAL</td>
<td>PN</td>
<td>15</td>
<td>1E</td>
<td></td>
</tr>
<tr>
<td>LINKS JR</td>
<td>01-2089</td>
<td>BARKEN ENERGY CORP</td>
<td>LINKS JR</td>
<td>WHISPER</td>
<td>COAL</td>
<td>PN</td>
<td>12</td>
<td>1E</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – Wells used in study.
Table 1 continued – Wells used in study.
VITA

John Edward Gage

Candidate for the Degree of

Master of Science

Thesis: SURFACE-TO-SUBSURFACE STRATIGRAPHY OF THE CANEY SHALE IN PORTIONS OF PONTOTOC, COAL, PITTSBURG, AND HUGHES COUNTIES, OKLAHOMA, ARKOMA BASIN

Major Field: Petroleum Geology

Biographical:

Education:

Completed the requirements for the Master of Science in Petroleum Geology at Oklahoma State University, Stillwater, Oklahoma in May, 2015.

Completed the requirements for the Bachelor of Science in Geology at Oklahoma State University, Stillwater, Oklahoma in May, 2008.

Professional Memberships: AAPG, WTGS, OCGS, DGS, YPE