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Abstract: While organic-rich shales have been extensively studied as petroleum source 

rocks, and more recently as unconventional petroleum reservoirs, there is still much that 

remains unknown about the complex sedimentary and diagenetic processes responsible for 

black shale formation. Using trace metal concentrations and isotopic inventories, this 

investigation explores the pathways of trace metal incorporation into organic-rich 

sediments during deposition and describes the mechanisms which may have been 

responsible for variations in trace metal contents of three North American black shales 

deposited during Late Devonian – Early Mississippian time. To interpret ancient ocean 

redox and productivity, trace metal abundances in marine sediments have been used 

extensively. However, several oceanographic and diagenetic processes, such as basin 

restriction or post-depositional oxidation, can modify the primary geochemical signal of 

the sediment, which in turn may impact paleo-redox and/or -productivity interpretations. 

Therefore, it is imperative to study the impacts of a dynamic depositional system on trace 

metal accumulations. On the Namibian Continental Margin (NCM), sediments are 

deposited in an upwelling zone where large quantities of organic carbon accumulate on the 

anoxic shelf and are transported to a secondary depocenter on the slope, beneath the oxygen 

minimum zone. This dynamic environment makes the NCM an ideal location to study an 

organic-rich depositional system.  In this study, the redepositional zone on the NCM was 

geochemically defined in NCM sediments below the oxygen minimum zone using the 

concentrations of several redox-sensitive and productivity-related trace metals. It was 

determined that the U-isotope redox proxy is a particularly useful tool to identify the 

primary depositional zone of redeposited sediments, despite post-depositional oxidization. 

The results about the effects of sediment transport and post-depositional oxidation on trace 

metal contents, the U/TOC ratio, and the U-isotopic composition of organic rich 

sedimentary deposits presented in this thesis provide new information about how 

geochemical signals are impacted by post-depositional processes. Understanding the 

impact of sediment transport and redeposition will assist with the interpretation of 

geochemical signals in organic-rich shales and may help to identify zones of lateral 

transport and redeposition related to ancient upwelling margin settings. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Organic-rich (black) shales are considered to be of economic importance as a source of 

petroleum and natural gas, and geologic importance as excellent recorders of past ocean conditions. 

Despite decades of scientific study, there is still much to discover about the black shale depositional 

system. The organic matter found in black shales is assumed to be enriched under oxygen-depleted 

waters, similar to conditions found in highly restricted basins, such as the Black Sea (e.g. Pompeckj, 

1901; Demaison and Moore, 1980; Brumsack, 2006). However, some black shales show evidence 

of bioturbation (e.g. Savrda and Bottjer, 1989), which typically indicates oxygen in the bottom 

waters (Byers, 1977; Savrda et al., 1984; Savrda and Bottjer, 1986, 1987, 1989; Bromley and 

Ekdale, 1984; Ekdale and Mason, 1988; Föllmi and Grimm, 1990; Tyson and Pearson, 1991 and 

references therein). Various processes can lead to high organic carbon preservation in sediments 

such as high particle sinking velocities, aggregational processes in the water column (e.g. Hedges 

et al., 2001), rapid burial, and/or intense productivity (e.g. Calvert and Pedersen, 1992). In all cases, 

oxygen-depleted conditions facilitate the preservation of organic matter as oxygen is exceptionally 

efficient at the remineralization of organic carbon (e.g. Canfield, 1994; Dean et al., 1994; Dean and 

Gardner, 1998; Piper and Calvert, 2009). 

Common modern depositional environments that host the conditions necessary for large 

organic carbon accumulations include enclosed basins, semi-restricted basins, and upwelling
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systems, (e.g. Brumsack, 2006; Algeo et al., 2008). Similar to organic matter, many redox-sensitive 

metals can accumulate under reducing and highly productive conditions. For example, uranium (U) 

accumulates under reducing conditions where U(VI) is reduced to U(IV). This reaction takes place 

during the microbially-aided oxidation of organic matter. Thus, organic carbon accumulations are often 

enriched in uranium and U is commonly used as a proxy for organic-richness. However, due to the 

redox-sensitivity of many metals, post-depositional alteration by bioturbation/bio-irrigation, sediment 

transport, or changes in bottom water redox conditions may change the oxidation state of metals like U 

and release them back into the water column. The result of this post-depositional oxidation may be 

sediments preserved in the geologic record that are enriched in organic carbon without enrichments of 

redox-sensitive metals. Likewise, the generation and expulsion of hydrocarbons may cause a loss of 

carbon in shales, leaving a rock enriched in trace metals, relative to TOC. 

Modern organic-rich sedimentary environments can serve as natural laboratories in which to 

observe a shale depositional system. We explore the pathways of trace metal incorporation into 

sediment during deposition and its association with organic matter, as well as examine post-depositional 

alteration processes in a modern setting. We then apply the gained knowledge from the Namibia 

Continental Margin to ancient settings by investigating trace metal concentrations and U-isotopic 

inventories of Late Devonian-aged black shales from North America, including the Woodford Shale, 

the Cleveland Shale, and the Bakken Shale. This investigation identifies several possible mechanisms 

that may be responsible for the trace metal depletions and enrichments found in some black shales. 

1.1 Black Shales  

Black shales are defined as dark-colored mudrocks containing abundant organic matter and 

silt- and clay-sized particles that accumulated together (Swanson, 1961; Tourtelet, 1979; Schmoker, 

1980; Wignall and Myers, 1988; Lüning and Kolonic, 2003; Piper and Calvert, 2009). A significant 

percentage of black shales are major source rocks for oil deposits and commonly contain economically 

viable phosphate deposits (e.g., Piper and Calvert, 2009). Beyond their economic significance, many 
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black shales represent times of intense change in the oceans, such as oceanic anoxic events (OAEs, e.g. 

Schlanger and Jenkyns, 1976; Arthur et al., 1990; Leckie et al., 2002; Erba et al., 2004; Baudin, 2005; 

Jenkyns, 2010; Badin and Riquier, 2014), which are discrete intervals of geological time during which 

expanded and intensified oxygen minimum zones were present throughout the Earth’s ocean basins. 

Black shales from around the world have been studied extensively to identify OAEs and understand the 

oceanic and climatic conditions that contributed to wide-spread global anoxia and the preservation of 

large quantities of organic matter (e.g. Farrimond et al., 1989; Lüning and Kolonic, 2003; Kolonic et 

al., 2005; Hetzel et al., 2009; Montoya-Pino et al., 2010; Jarvis et al., 2011; Lenniger et al., 2014; 

Clarkson et al., 2018). 

When large quantities of organic matter are preserved in shales, high productivity and oxygen-

depleted environmental conditions are considered to be necessary (Swanson, 1961; Tourtelet, 1979; 

Schmoker, 1980; Meyer and Nederlof, 1984; Wignall and Myers, 1988; Lüning and Kolonic, 2003; 

Piper and Calvert, 2009). Therefore, organic-rich shale deposits form in specific environments where 

conditions are favorable for the preservation of organic matter, including enclosed basins, similar to 

the modern Black Sea, in silled or semi-restricted basins, like the Cariaco Basin off the coast of 

Venezuela, and in areas with pronounced oxygen minimum zones which can be found in upwelling 

areas such as offshore Peru or the Benguela upwelling system, offshore Namibia (Figure 1.1) (e.g. 

Brumsack, 2006; Borchers et al., 2005, Inthorn et al, 2006a, 2006b, Scholz et al., 2011, Algeo and 

Rowe, 2012).  
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Figure 1.1. Different depositional settings which commonly result in large organic carbon (Corg) 

accumulations include upwelling zones (A) with unrestricted circulation that allows for the continuous 

resupply of nutrients to the surface waters and trace metals (TM) to the sediments. Partially-restricted 

silled basins (B) experience frequent deepwater renewal with a deeper pycnocline, and strongly-

restricted silled basins (C) have very limited deep-water renewal resulting in a shallow pycnocline and 

stagnant bottom waters (Algeo and Rowe, 2012).   

 

In a restricted or silled basin, abundant organic matter in the sediments and poor circulation of 

oxygenated waters into the deep basin allow for the development of stagnant, oxygen-depleted bottom 

waters (e.g. Deuser, 1971; Algeo and Rowe, 2011). Upwelling areas, on the other hand, are well-

ventilated and bottom water anoxia is a result of high productivity and organic matter degradation (e.g. 

Bailey, 1991). 

1.2 Upwelling Systems  

In upwelling areas, warm surface waters are pushed seaward by Ekman transport and are 

replaced by cold, deep water. The upwelled nutrient-rich waters can sustain large phytoplankton 

populations. The result of this high surface productivity is large deposits of organic carbon in margin 



5 
 

sediments. The decomposition of organic matter in the water column subsequently leads to the 

consumption of the available oxygen and the development of an oxygen minimum zone (e.g. Bailey, 

1991). High rates of primary productivity in surface waters and extensive oxygen minimum zones 

facilitate the accumulation and preservation of large amounts of organic carbon within the sediments 

of upwelling areas (Calvert and Pedersen, 1992). Thus, ocean upwelling zones are very important to 

the marine carbon cycle (Müller and Suess, 1979; Pedersen and Calvert, 1990; Inthorn, 2005). There 

are four major eastern boundary upwelling zones in the modern oceans: the California margin upwelling 

zone, the Canary Current upwelling zone (offshore northwest Africa), the Peru margin upwelling zone, 

and the Namibian Continental Margin (Philander and Yoon, 1982; Shannon and Nelson, 1996; Berger 

and Wefer, 2002). While upwelling areas make up only 0.3% of the global ocean, they are responsible 

for approximately 2% of global marine productivity (Carr, 2001). The Namibian Continental Margin 

(NCM) is the most productive upwelling margin in the modern ocean (Shannon and Nelson, 1996, 

Figure 1.2). 

Along the Namibian Continental Margin (NCM), southeasterly trade winds induce upwelling 

of nutrient-rich deep waters (e.g. Shannon and Nelson, 1996), which are delivered to the photic zone. 

The upwelling along the NCM induces strong primary production (Figure 1.2, Mollenhauer et al., 

2002), which is estimated at a rate of 0.37 Gt carbon per year with the average chlorophyll concentration 

in surface waters above the NCM around 2-3 mg/m3 (Carr, 2001). The productivity in the waters above 

the NCM is only a small fraction of the total global productivity which is estimated at 40 Gt C per year 

(Carr, 2001 and references therein). The highest productivity is located in waters above the shelf with 

additional high productivity in filaments of nutrient-rich water that extends seaward above the 

continental slope (Carr, 2001, Mollenhauer et al., 2002). 
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Figure 1.2. Chlorophyll-a concentration in global surface waters averaged from 1997 through 2007. 

High concentrations of chlorophyll-a are apparent in the coastal waters offshore southwestern Africa 

in the Benguela Upwelling Area (black square). Modified after Huston and Wolverton (2009). 

 

A study by Inthorn et al. (2006) used beam attenuation to monitor the movement of sediments 

throughout the NCM. The study revealed that there is extensive particle transport occurring along the 

NCM in nepheloid layers, which are discrete layers of water with enhanced particle content, relative to 

surrounding waters. Three types of nepheloid layers have been previously described and include (A) 

surface nepheloid layers (SNL), which are generally associated with the productive surface layer (e.g. 

Gardner et al., 1993; Gundersen et al., 1998; Oliveira et al., 2001), (B) intermediate nepheloid layers 

(INL), which are a result of the accumulation or transport of particles in intermediate waters in 

association with strong density gradients (e.g. Azetsu-Scott et al., 1995; Cacchione and Drake, 1986; 

McCave et al., 2001; Pak et al., 1980), and (C) bottom nepheloid layers (BNL), which are found in the 

lowermost water column and are maintained by turbulent mixing in the bottom boundary layer (e.g. 

Bacon and Rutgers van der Loeff, 1989; Graf and Rosenberg, 1997; McCave, 1996). In the NCM, 
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organic rich particles from sediment below the highly productive shelf are transported off shore in 

nepheloid layers. This lateral transport and redistribution of particles creates a secondary area of intense 

organic carbon accumulation on the upper slope depocenter (Figure 1.3). 

 

 

Figure 1.3. Conceptual model of the Namibia Continental Margin at 25.5°S with organic carbon 

enrichments in the sediments (mudbelt and depocenter) and the oxygen minimum zone (OMZ, blue) 

above the shelf, shelf break and slope. The general flow direction (encircled dots and crosses, black 

arrows), nepheloid layer distribution (green), intensity of primary production and carbon export to the 

seafloor (green arrows) and the composition of seafloor sediments. BNL: Bottom nepheloid layer, INL: 

Intermediate nepheloid layer, SNL: Surface nepheloid layer (Modified after Inthorn, 2005). 

 

1.3 Preservation of Organic Matter 

It is considered that the preservation of organic matter in the marine environment is < 0.5% 

efficient (Hedges and Keil, 1995). Although it has been suggested that productivity, sediment 

accumulation rate, bottom water redox conditions, and organic matter source are the primary variables, 

the precise mechanisms controlling the preservation of marine organic matter remain unclear (Henrichs, 
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1992, 1993; Hedges and Keil, 1995). Organic matter remineralization takes place in both oxic and 

anoxic conditions (Westrich and Berner, 1984; Cowie and Hedges, 1992; Lee, 1992; Kristensen and 

Holmer, 2001). However, marine organic matter is more easily remineralized in oxic waters and thus 

more likely preserved in sediments underlying anoxic bottom waters (Hedges et al., 1999; Aller, 1994; 

Hartnett et al., 1998). Accumulation rate is one of the environmental variables most commonly inferred 

to have an effect on organic matter preservation (e.g. Pedersen and Calvert, 1991). Rapid accumulation 

helps to protect accumulating sediments from dissolved oxidizing agents resulting in potentially less 

remineralization (Henrichs, 1992). However, increased clastic or carbonate input may dilute TOC 

content (Müller and Suess, 1979). Measured increases in TOC content of a shale may indicate periods 

of enhanced surface productivity, expansion of bottom water anoxia, and/or changes in sedimentation 

rate (Emerson, 1985; Canfield, 1989,1994; Pedersen and Calvert, 1990; Piper and Calvert, 2009). To 

distinguish between the processes responsible for elevated total organic content (TOC) in a shale, 

geochemical proxies are a commonly applied and useful tool to reconstruct past depositional conditions.  

1.4 Metals as Geochemical Proxies 

There are many major and minor elements that have been historically used as proxies for a 

multitude of environmental conditions including redox, nutrient supply, productivity, provenance, 

temperature, climate, and ocean circulation. For example, in the 1960’s oxygen isotopes were measured 

to interpret paleotemperatures (e.g. Craig, 1965). In the 1970’s the isotopic composition of sulfur in 

marine evaporites was studied as a redox proxy used to reconstruct the oxygenation of Earth’s early 

atmosphere (e.g. Holland, 1978). Later, during the 1980’s and 1990’s, a new approach to 

paleoenvironmental reconstructions included the investigation of heavy metal (e.g. Ni, Mo, V) 

compositions of marine organisms and sedimentary rocks (e.g. Brumsack, 1980; Barnes and Cochran, 

1990; Morford and Emerson; 1999). As early as 2001, the use of non-traditional stable isotopes of 

redox-sensitive metals began to be recognized as potentially important tools for paleoredox 

reconstructions (Barling et al, 2001). More recently, additional non-traditional isotope systems have 
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been studied with great potential as paleoredox indicators including U (Stirling et al., 2007), rhenium 

(Re) (Miller et al., 2015), thallium (Tl) (Owens et al., 2017b), and mercury (Hg) (Zheng et al., 2018). 

The sources of trace metals (TM), that is, metals in low abundances compared to the overall 

element composition, to sediments are categorized as having either a lithogenic, biogenic, or seawater 

source (Calvert and Pedersen, 1993; Tribovillard et al., 2006; Piper and Calvert, 2009). Weathering and 

erosion of continents delivers trace metals to oceans primarily via rivers, groundwater, and wind-blown 

sediments (e.g. Rex and Goldberg, 1958; Martin and Meybeck, 1979; Calvert and Pedersen, 1993). 

Some metals are also delivered to the oceans via submarine hydrothermal activity (Bonatti et al., 1976; 

Lyle, 1976; Dymond and Corliss, 1977; Corliss et al., 1979; Von Damm, 1990).  

Certain metals, such as Zn, Ni, Cd, and Cu, can act as nutrients and are taken up into cellular 

organisms within the water column (Bruland, 1983; Borchers et al., 2005). The cellular uptake of metals 

into planktonic organisms creates a nutrient-like profile in the water column, meaning that the photic 

zone is depleted of these metals and concentration of the metals increases with depth. The metals which 

were incorporated into the organisms are then delivered to the seafloor within the sinking biodetritus 

(Brongersma-Sanders, 1980; Böning et al., 2015). Accumulations of trace metals such as Ba, Cu, and 

Ni in sediments can identify periods of high primary productivity because these metals are generally 

associated with biocycling processes and bioproductivity (Knauer and Martin, 1973; Brongersma-

Sanders, 1980; Bruland, 1983; Collier and Edmond, 1983; Brumsack, 1986; Dean et al., 1997; 

Whitfield, 2002; Böning et al., 2004; Borchers et al., 2005; Piper and Calvert, 2009). The trace metal 

content of sediments is reliant upon several factors: the supply of trace metals to the bottom water, a 

removal mechanism to precipitate these metals into the solid phase (such as the precipitation of metal 

sulfides, changes in valence state, adsorption, and biological processes, (Krauskopf, 1956), and the rate 

of sedimentation (Manheim, 1961; Brongersma-Sanders, 1966). 

The metals which are most commonly used in redox reconstructions (i.e. Mo, V, U) are 

typically sourced to sediments by precipitation from seawater during redox reactions (Calvert and 
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Pedersen, 1993; Nameroff, 1996; Crusius et al., 1996; Morford and Emerson, 1999). Large 

accumulations of trace metals such as Fe, Mn, Mo, V, and U in sediments and sedimentary rocks can 

be diagnostic of deposition under oxic, suboxic, anoxic, or sulfidic/euxinic conditions (Figure 1.4, 

Brumsack, 1989, 2006; Algeo and Maynard, 2004; Tribovillard, 2006; Piper and Calvert, 2009). The 

redox environments are defined here and in subsequent chapters as having > 2.0, 2.0 – 0.2, and < 0.2 

ml O2 l-1 H2O for oxic, suboxic, and anoxic environments, respectively, with sulfidic/euxinic conditions 

marked by 0 ml O2 l-1 H2O and measurable quantities of free H2S (Edwards, 1985; Tyson and Pearson, 

1991). 

 

 

Figure 1.4. Solid-phase enrichments of Ni, Cu, Mo, U, and V in oxic-suboxic, anoxic, and 

euxinic/sulfidic environments (Tribovillard et al., 2006). 

 

There are many factors which can alter paleoenvironmental interpretations of a single proxy, 

thus it is critical to support the paleoenvironmental interpretations of a single geochemical proxy with 

other proxy elements. The comparison of a suite of geochemical proxies helps to compensate for the 

effects of diagenetic alteration and improves interpretations of paleoenvironments. For example, post-

depositional oxidation can remove some redox-sensitive metals from previously anoxic sediments; this 
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can be accomplished by a shift in bottom water redox conditions (Morford et al., 2001; Algeo and 

Maynard, 2004; Tribovillard et al., 2006) or by the introduction of oxygenated water into the sediments 

through bioirrigation (Aller, 1994; Zheng et al, 2000; Volkenborn et al., 2007). Additionally, the 

amount of redox-sensitive trace metals which can be drawn into sediments is dependent in part on the 

trace metal availability in the watermass (Algeo, 2004; Algeo and Lyons, 2006; Algeo and Tribovillard, 

2009; Algeo and Rowe, 2012; Zhu et al., 2018). The rate of deepwater renewal can limit the supply of 

TM to bottom waters such that in a restricted setting, the bottom water becomes depleted of TMs. 

However, in an open ocean setting, trace metal supply to the sediments is unrestricted. Reducing 

environments within upwelling zones with continuous deep water renewal allows for greater trace metal 

enrichments in the sediments (Figure 1.1).  

1.5 Uranium and Organic Matter 

The association of trace metals and organic carbon is well known and has been observed 

throughout the geologic record (e.g. Cochran et al., 1986; Anderson, 1987; Algeo and Maynard, 2004; 

Cumberland et al., 2016). Uranium concentration is very important to the petroleum industry because 

U is so commonly found enriched in organic-rich shales. The petroleum industry uses gamma-ray logs 

to read the radioactivity of rocks below the Earth’s surface, and usually this radioactivity comes from 

elements such as K, Th, and U which are incorporated into the rock. Gamma-ray log response in a black 

shale is usually high in rocks with a large amount of TOC because of the association of organic matter 

and uranium (e.g., Mo et al., 1973; Schmoker, 1981; Herron, 1991). As a result, gamma-ray logs have 

traditionally been employed as an indicator for interpreting TOC content when used in petroleum 

exploration (e.g., Herron, 1991; Schovsbo, 2002; Lüning and Kolonic, 2003).  

Despite assumed similar depositional environments, U as an indicator of organic-richness 

cannot always be used reliably; some black shale deposits demonstrate little to no correlation between 

TOC and uranium content (e.g., Lüning and Kolonic, 2003). Low gamma-ray response has been noted 
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in several black shale formations including the organic carbon-rich Llandeilo-Caradoc shale in the 

Welsh Basin (Lev et al., 2000), and the Posidonia Shale of southern Germany (Mann et al., 1986). 

Some alteration of the U/TOC ratio can occur during deposition. For example, the presence of 

phosphorites can increase U in sediment that is unrelated to organic matter (Veeh et. al., 1974; Burnett 

and Veeh, 1977; Starinsky et al, 1982). Burial rate can also play a role in the enrichment or depletion 

of U in sediment, as higher sedimentation rates can result in lower U contents while slower 

sedimentation rates allow for more U to be incorporated into sediment at the sediment-water interface 

(SWI, Klinkhammer and Palmer, 1991). Other factors to take into account are the amount of dissolved 

oxygen in the water column or pore water, duration of anoxia, and the position of redox boundaries, as 

U is very redox-sensitive and will quickly oxidize and be released into seawater upon the introduction 

of oxygen into the sediment (Lüning and Kolonic, 2003). Additionally, burrowing/bioturbating 

organisms can introduce oxygen into anoxic, U-rich sediments (Aller 1994; Zheng et al., 2002). This 

can release U back into the water column through the oxidation of the reduced U (Zheng et al., 2002). 

Post burial, thermal maturation and other diagenetic effects can increase the U/TOC ratio by removing 

organic carbon through hydrocarbon generation and migration and leaving uranium behind (Lüning 

and Kolonic, 2003). Uranium isotopes can track specific pathways of U incorporation into sediment 

and may help to narrow down or identify the possible processes at work (Weyer et al., 2008; Basu et 

al., 2014; Stylo et al., 2015; Lau et al., 2019). 

1.6 The Uranium Isotope Redox Proxy 

Uranium isotope fractionation varies through the processes by which uranium is incorporated 

into sediment, such as changes in speciation and redox-reactions, including microbially-aided reduction 

(Weyer et al., 2008; Basu et al., 2014; Stirling et al., 2015; Stylo et al., 2015), and these variations have 

been used in recent studies to quantify the extent of past marine anoxia (Montoya-Pino et al., 2010; 

Dahl et al., 2014, 2017; Kendall et al., 2015; Wang et al., 2016; White et al., 2018; Gothmann et al., 

2019; Tostevin et al., 2019). The ratio between the two most abundant isotopes of U, 238U and 235U, is 
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expressed as δ238U (equation 2.2). Sediments deposited under anoxic (no dissolved oxygen) and 

euxinic/sulfidic (anoxic with free hydrogen sulfide) conditions have δ238U values that are isotopically 

heavier than seawater. Conversely, sediments deposited under oxic conditions tend to have U-isotopic 

compositions close to or slightly isotopically lighter than seawater (Figure 1.5, Weyer et al., 2008; 

Tissot and Dauphas, 2015; Rolison et al., 2017). The redox conditions interpreted using U isotopes can 

be validated by the use of other redox proxy trace metals such as molybdenum (Mo) and vanadium (V). 

 

 

Figure 1.5. Early work on the U-isotope redox proxy demonstrated that anoxic/euxinic sedimentary 

rocks and sediments show higher δ238U values while more oxic sediment plots lighter. Significant 

positive isotopic fractionation occurs between seawater and organic-rich shales (Black Sea, Unit-I and 

Unit-II and Kupferschiefer), while significant negative fractionation from seawater is observed in 

ferromanganese crusts/nodules and banded iron formations (BIFs). Suboxic sediments (from the 

Peruvian continental margin) displays less positive fractionation from seawater and corals display little 

to no fractionation. Modified after Weyer et al. (2008). 

 

Having an accurate seawater U-isotopic composition is critical to the interpretation of δ238U 

values in sediments, as the fractionation of U from seawater identifies depositional redox conditions. 

The isotopic composition of seawater is recorded in carbonate rock (Weyer et al., 2008; Romaniello et 
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al., 2013; Andersen et al., 2014; Zhang et al., 2018; Gothmann et al., 2019) and the fractionation away 

from seawater is used to determine the redox conditions under which non-carbonate sediments are 

deposited. Thus, many studies have focused on the measurement of U-isotopes in modern and ancient 

carbonate rock to understand the isotopic compositions of the oceans through time. Carbonate 

associated δ238U values have been used to track past global ocean redox through known oceanic anoxic 

events (Montoya-Pino et al., 2010; Brennecka et al., 2011; Dahl et al., 2014; Lau et al., 2016), where 

anoxic water masses expanded to cover large areas of the seafloor. The large amount of isotopically 

heavy U incorporated into anoxic sediments during the anoxic events caused negative δ238U excursions 

in seawater which were recorded in carbonate rock. Dahl et al. (2017) used this same approach to 

describe an oxygenation event using positive seawater δ238U excursions recorded in carbonate rocks. 

More recently, however, Chen et al. (2018) demonstrated that there is a slight positive offset of δ238U 

values of 0.2-0.3‰ imposed on carbonate rock through early diagenesis, and this diagenetic effect 

should be considered when interpreting ancient δ238U signatures.  

1.7 Overview of the Following Chapters 

In the following chapters we have compared the geochemical signatures of several time-

equivalent black shales with varying TOC and trace metal contents to a modern analogue for a black 

shale depositional system to study the impact of sediment transport and early diagenetic alteration on 

the trace metal content, the U/TOC ratio, and the U-isotopic composition. We found that the Namibian 

Continental Margin may be a satisfactory analogue for some, but not all, black shale depositional 

systems. 

The second chapter of this thesis represents the first manuscript produced by the thesis research 

(Michelle L. Abshire, Stephen J. Romaniello, Amy M. Kuzminov, Jessica Cofrancesco, Silke 

Severmann, and Natascha Riedinger: Uranium isotopes as a proxy for primary depositional redox 

conditions in organic-rich marine systems, published in Earth and Planetary Science Letters, 2020). In 

this chapter we present the U content, TOC content, and U-isotopic composition of surface sediments 
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along an offshore transect on the Namibia Continental Margin (NCM). The study revealed that the 

primary process responsible for the decoupling of U and TOC was the reoxygenation of organic-rich 

sediments as they are transported laterally from the anoxic shelf to the oxic slope of the NCM. 

Furthermore, in the manuscript we discussed that the U-isotopic signature of the redeposited sediments 

was the same as that of the primary depositional site and was only slightly impacted by transport and 

redeposition.  

For the second manuscript (Michelle L. Abshire, Jeremy D. Owens, Jessica Cofrancesco, Maik 

Inthorn, and Natascha Riedinger: Geochemical Signatures of Redepositional Environments: The 

Namibian Continental Margin, submitted to Marine Geology), which comprises chapter III, we 

analyzed a suite of trace metals along the NCM including redox proxies Mn, Fe, Mo, and V, and 

productivity proxies Ni, Cu, and Ag. The sediments at each sampling location along the NCM offshore 

transect contained unique geochemical signatures, which allowed for the geochemical identification of 

the redepositional zone. 

Chapter IV consists of the third manuscript (Michelle Abshire, Stephen Romaniello, Clinton 

Scott, John Clymer, Silke Severmann, James Puckette, and Natascha Riedinger: Reconstructing the 

paleoceanographic and redox conditions responsible for variations in uranium content in North 

American Devonian Black Shales, in preparation for Marine and Petroleum Geology) in which we 

compare U enrichments, U/TOC ratios, and U-isotopic compositions of three age-equivalent North 

American black shales: The Woodford Shale of Oklahoma, the Cleveland Shale of Kentucky, and the 

Bakken Shale of Montana. To identify the depositional and oceanographic conditions present in each 

basin during the Late Devonian Period, each shale formation is compared to previously published TOC, 

U content, and U-isotope data from modern upwelling and restricted basin settings. 

With a presently changing climate and concerns over expanding oxygen minimum zones and 

increased ocean anoxia (Stramma et al., 2008; Falkowski et al., 2011; Schmidtko et al., 2017), it is 

critical to refine geochemical proxies in modern settings to better understand the pathways of proxy 
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metals into sediments and how geochemical signals may be altered under dynamic marine 

environmental conditions. With a more robust understanding of the geochemical response to varying 

ocean redox and productivity, we are more prepared to interpret the changes of past ocean systems, and 

thus better equipped to anticipate the impacts of future climate change on marine environments. 
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CHAPTER II 
 

 

URANIUM ISOTOPES AS A PROXY FOR PRIMARY DEPOSITIONAL REDOX 

CONDITIONS IN ORGANIC-RICH MARINE SYSTEMS 

 

2.1 Abstract 

In marine sediments, authigenic uranium (U) enrichments and U isotope compositions are 

important tools for interpreting changes in redox conditions; however, their use as paleoproxies 

requires a comprehensive understanding of the dominant processes that contribute to sediments 

becoming enriched or depleted. This study focuses on the U content and 238U/235U ratio of 

organic-rich surface sediments from the Namibian continental margin, where high productivity 

results in an expanded oxygen minimum zone (OMZ). The investigated core sample sites are 

located on the shelf, shelf break, and slope where bottom water redox conditions vary from 

anoxic to suboxic to oxic, respectively. While all cores have relatively high total organic carbon 

(TOC) contents (up to 12 wt. %), each location displays a unique U to TOC relationship. Shelf 

sediment exhibit a fair correlation between U and TOC, while the shelf break and slope sediments 

show a pronounced decoupling of U and TOC. On the Namibian Continental Margin, particle-

rich nepheloid layers transport organic-rich deposits from within the OMZ, through oxic water, to 

be redeposited on the slope. Due to the sensitivity of U to changes in redox conditions, this lateral 

movement results in the release of the reduced U phases back into the water column through 

oxidation while transporting the partially remineralized organic carbon to the slope. Oxidation of
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U during transport does not alter the average primary 238U/235U isotopic signature in redeposited 

sediment, and the combination of high TOC, low U content and high δ238U values may become a 

useful tool for the identification of the boundaries of ancient OMZs.  

2.2 Introduction 

2.2.1 Trace metals and the geologic record 

The association of trace elements, such as uranium (U), and total organic carbon (TOC) in 

organic-rich sedimentary deposits is well-known and has been observed in both the modern marine 

environment and in the geological record (Cochran et al., 1986; Anderson, 1987; Algeo and 

Maynard, 2004; Cumberland et al., 2016). While perturbations in this association have been 

reported to some extent (Cumberland et al., 2016, and references therein), many of the mechanisms 

behind the decoupling of U and TOC in continental margin settings are not well-documented. In 

this study we examine organic-rich sediments of the Namibian Continental Margin (NCM) offshore 

of Namibia, Southwest Africa, and variations in U content in three organic-rich (TOC >3 wt.%) 

sample sites. Solid phase U content, TOC content, and isotope composition of U in sediments of 

the NCM were measured and redox proxies of solid-phase U concentration and U isotope ratios 

were used to understand how well the original depositional redox conditions are recorded in the 

geologic record, even after the lateral transport and/or post-depositional oxidation of the deposits.  

2.2.2 Namibian Continental Margin 

Ocean upwelling systems, such as the Benguela upwelling system off the coast of Namibia, 

account for 9% of all marine organic carbon burial (Berner, 1982). Typically, the organic carbon 

content of sediment in upwelling zones reaches 5% or more by weight and the annual flux of carbon 

to the sea floor in Earth’s upwelling areas combined has been estimated to be about 10 million 

tons/year (Berger and Wefer, 2002). In the NCM, high surface ocean productivity and 

decomposition of organic matter in the water column, as well as the oxidation of hydrogen sulfide, 
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results in an extended oxygen minimum zone (OMZ) (e.g. Brüchert et al., 2003; Borchers et al., 

2005). The OMZ reaches the seafloor along the shelf and shelf break and extends out into the water 

column over the continental slope. Consequently, sediments on the shelf experience anoxic bottom 

water, while shelf break and slope sediments deposit under suboxic and oxic bottom water, 

respectively, with the OMZ several hundreds of meters above the slope. Anoxic, suboxic and oxic 

conditions are operationally defined here as having <0.2, 0.2–2.0, and >2.0 ml O2 L-1 H2O, 

respectively (Tyson and Pearson, 1991). Despite the varying degrees of bottom water oxygenation, 

high amounts of TOC (2.5-12 wt.%) are observed at all three sites. The sedimentation rate in the 

NCM has been estimated to be about 1 mm yr-1 (Bremner and Willis, 1993), and strong upwelling 

along this margin has been present since at least the Pliocene-Pleistocene boundary (Berger and 

Wefer, 2002). Seasonal variability in the upwelling cells responsible for the high primary 

productivity and expansion of the oxygen minimum zone is pronounced in the northern upwelling 

area (Chapman and Shannon, 1985). Within our study area, however, the OMZ remains present on 

the shelf and becomes more pronounced during the highly productive austral summer (Bruchert et 

al., 2003). The strong coastal upwelling and high primary productivity has been ongoing in this 

region since at least the early Pleistocene (Berger and Wefer, 2002). 

Organic matter accumulation and burial on the Namibian shelf and upper slope are strongly 

controlled by lateral transport within nepheloid layers, which are layers within the water column 

with enhanced particle content relative to the surrounding water (Giraudeau et al., 2000). At the 

NCM, the transport of sediment from the shelf to the slope is controlled primarily by intermediate 

nepheloid layers (INL), that is, accumulation or transport of particles in intermediate waters in 

association with strong density gradients, and bottom nepheloid layers (BNL), which are found 

closer to the sea floor and are maintained by turbulent mixing (Giraudeau et al., 2000; McPhee-

Shaw et al., 2004; Inthorn et al., 2006a,b). Previous studies have evaluated suspended particulate 

matter and particulate organic matter (Inthorn et al., 2006b) and employed radiocarbon dating of 
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seafloor sediments (Mollenhauer et al., 2007) to conclude that the lateral transport of sediment in 

nepheloid layers contributes more organic matter to the slope than the direct vertical settling of 

particles from the surface layer. 

2.2.3 Uranium geochemistry 

Uranium has two common oxidation states; soluble U(VI) and insoluble U(IV) (Langmuir, 

1978). Under reducing bottom water conditions insoluble U(IV) is incorporated into marine 

sediment along with organic matter at the sediment-water interface (e.g. Langmuir, 1978; 

Klinkhammer and Palmer, 1991; Spirakis, 1996; McManus et al., 2005, 2006; Tribovillard et al., 

2006). Under oxic bottom water conditions U is incorporated by diffusion from pore water within 

reducing sediments (Anderson, 1982). The reduction pathway into marine sediment is a significant 

sink in the global U budget (Barnes and Cochran, 1990; Klinkhammer and Palmer, 1991). Because 

of the relationship between U and organic matter, U has been considered a reliable proxy for 

organic carbon in marine settings (Anderson, 1982; Spirakis, 1996; McManus et al., 2005). 

In recent years, U isotopes have emerged as novel and complementary redox proxy for the 

reconstruction of past ocean anoxia. Uranium has three naturally-occurring isotopes, 238U and 235U, 

which are primordial with half-lives of 4.5 and 0.7 billion years, respectively (e.g. Jaffey et al., 

1971), and radiogenic 234U, which is the decay product of 238U and has a half-life of ~246 thousand 

years (e.g. Cheng et al., 2013). The 238U/235U isotope composition varies through the processes by 

which U is incorporated into sediment. Uranium isotope fractionation occurs during adsorption, 

changes in speciation, or due to changes in redox chemistry, including microbially-aided reduction 

(Weyer et al, 2008; Basu et al., 2014; Stirling et al., 2015; Stylo et al., 2015). Redox reactions result 

in reduced U(IV) becoming enriched with the heavier isotope (Montoya-Pino et al., 2010; Basu et 

al., 2014; Stirling et al., 2015; Stylo et al., 2015), due to the nuclear field shift effect (Andersen et 

al., 2017, and references therein) which affects the size and shape of the nucleus (Yang and Liu, 

2016). Sediments found in anoxic environments typically have higher 238U/235U than sediments 
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from less-reducing environments, such as suboxic and certainly oxic settings (Andersen et al., 2017, 

and references therein). Thus, the 238U/235U ratio in ancient rock has recently become an important 

tool in determining the extent of past ocean oxygenation (e.g. Brennecka et al., 2011a; Lau et al., 

2017; Zhang et al., 2018). The 234U/238U is often used as a tool in Pleistocene chronology by 

comparing known seawater 234U/238U composition with measured 234U/238U in sediments as excess 

234U decays (Henderson, 2002). Fractionation of 234U from 238U is a result of α-recoil during the 

decay of 238U.  

2.3 Methods 

Sediment cores were retrieved using a multicorer device as part of the May 2015 Regional 

Graduate Network in Oceanography (RGNO) program in Namibia. Sediment cores offshore of 

Namibia were collected at locations on the shelf (25020), shelf break (GC 4) and slope (GC 5). 

Sampling sites were specifically chosen for their relation to the OMZ and, therefore, geochemical 

potential (Table 2.1). Depth measurements of ocean water temperature, salinity, and bottom water 

oxygen levels were also collected onboard the ship. Cores were immediately sliced onboard the 

ship in 1-2 cm intervals for the length of the entire core (24-28 cm). The sediments were then 

transferred into 50 mL centrifuge tubes and the head space was purged with nitrogen gas before 

sealing in order to prevent oxygen exposure. The sediment samples were stored frozen at -20°C in 

order to impede microbial activity. Total organic carbon (TOC) content of the sediments was 

measured after addition of dilute HCl to remove any carbonate material, using an Elemental 

Analyzer (EA, Costech) at Oklahoma State University (OSU) (For further details of sample 

preparation and TOC analysis, see Cofrancesco, 2016). 
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Table 2.1. Position, water depth, bottom water oxygen concentration, and depositional 

environment for sites 25020 (shelf), GC 4 (shelf break) and GC 5 (slope). Samples were collected 

in May, 2015 (modified after Cofrancesco, 2016).  

Core 

Name 

Latitude Longitude Water 

depth (m) 

Bottom 

water oxygen 

(mL/L)* 

Depositional 

Environment 

25020 25°00.000’S 14°28.200’E 116 <0.05# Anoxic shelf 

GC 4 25°20.660’S 13°46.480’E 302 1.11 Suboxic shelf break 

GC 5 25°30.000’S 13°27.000’E 795 3.36 Oxic slope 

* Oxygen data from Cofrancesco (2016). # CTD detection limit is 0.05 mL/L. 

 

2.3.1 Sample digestion, spiking, and U isotope analysis 

Approximately 100 mg of powdered sample were digested using trace-metal grade nitric 

(3 ml), hydrofluoric (200 µl) and perchloric (3 ml) acids in PFTE vials, and heated at 170°C until 

fully dissolved. Samples were then evaporated until dry and residue was dissolved in 5% HNO3. 

Elemental concentrations were analyzed using inductively coupled plasma-mass spectrometry 

(ICP-MS, iCapQc, ThermoScientific) at OSU. Standard reference material NIST 2702 was digested 

and analyzed alongside Namibian sediment samples to monitor reproducibility. Average values of 

replicate digestions were well within recommended ranges with relative standard deviation for U 

being <2%. The authigenic fraction of U is estimated using the calculation: 

Uauth = Usample - [U/Aldetrital *Alsample], (equation 2.1) 

assuming a detrital U:Al ratio of 15×10-6 (McManus et al., 2005). The authigenic fraction is 

reported as a percentage of the total U content in each sample. 

All digested samples to be analyzed for U isotope composition were double spiked with 

IRMM 3636a 236U/233U mixed isotopic double spike (e.g. Stirling et al., 2007) of known isotopic 

composition. The target 236U:235U spiking ratio in the sample:spike mixture was 3:2. The spiking 

ratio utilized for these samples is lower than that observed in other labs.   
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After spiking, U was separated from matrix with column chromatography using Uteva ion 

exchange resin (Potter et al., 2005). Aliquots of the purified U samples were analyzed on the iCap 

ICP-MS to quantify U concentration of the sample and estimate the U recovery prior to 238U/235U 

ratios being analyzed on the Neptune MC-ICP-MS using CRM112a as the bracketing standard. By 

using less spike and running at lower concentration of U, it introduces a greater range of error for 

the samples. However, one benefit of running the samples at a lower concentration and with less 

spike is that it reduces the chances of carryover between samples and also reduces the chances of 

creating an instrument memory of these isotope ratios. These measurements were conducted at the 

Department of Marine and Coastal Sciences at Rutgers University in New Brunswick, New Jersey. 

Uranium isotope composition is expressed in terms of δ238U in per mil (‰) deviation from a 

universal reference material CRM-112a and the internal analytical error is reported as ± 2SD. The 

equations used to calculate δ238U and δ234U are as follows: 

δ238U = [(238U/235U)sample / (238U/235U)CRM112a - 1] × 1000 (equation 2.2), 

 δ234U = [(234U/238U)sample / (234U/238U)equilibrium - 1] × 1000 (equation 2.3), 

where 234U/238Uequilibrium = 5.472 × 10-5 (e.g. McCulloch and East, 2000). Measured isotope 

composition values had average 2SD errors of 0.13‰ for δ238U measurements and 19.66‰ for 

δ234U measurements while analysis of standards yielded an internal precision of 0.20‰ (δ238U) 

and 5.21‰ (δ234U).  

2.4 Results 

2.4.1 U and TOC content 

In the NCM sediments, solid-phase U is predominantly authigenic with Uauth exceeding 

95% of U present in all samples (Table A1). Total U contents decrease systematically from highest 

concentrations on the shelf in the core of the OMZ, to intermediate on the suboxic shelf break and 

lowest on the deepest, oxic slope site (Figure 2.1). Similar to U, TOC contents are highest on the 
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shelf; however, TOC contents are higher on the upper slope compared to the shelf break, despite 

the upper slope having higher oxygen concentration. The U content in the shelf break samples 

ranges from 38.5-50.2 ppm. On the upper slope (Site GC 5), high TOC content was measured 

ranging from 5.8-7.7 wt.%; however, in contrast to the shelf and shelf break sites, these samples 

have relatively low U of 5.7-12.2 ppm. The TOC content of the shelf sediments ranges from 7-12 

wt.% and U content increases with depth from 5.1 to 95.4 ppm (Figure 2.1). The TOC content at 

the shelf break (Site GC 4) is lower than in the shelf sediments with values ranging from 2.5-3.4 

wt.%.  

2.4.2 U isotope composition 

The δ238U in the shelf deposits (Site 25020) underlying anoxic bottom water is in the range 

of -0.24 to 0.12‰ (average δ238U value near -0.03 ± 0.15‰) for sediments below 2 cm depth 

(Figure 2.1). These isotope compositions are significantly higher than δ238U of seawater 

(δ238Useawater = -0.41 ± 0.03; Weyer et al., 2008). Only sediments in the surface 2 cm have isotope 

compositions that are within error or slightly lower than seawater δ238U (-0.55‰ ± 0.13‰ to -

0.64‰ ±0.07‰). Shelf sediments display a general trend down core from lighter to heavier δ238U 

values, which are associated with higher U content with depth. Shelf break deposits (Site GC 4) 

under suboxic bottom water show δ238U compositions that are only slightly higher than δ238Useawater, 

despite consistent U enrichment, with measured δ238U values ranging from -0.42 to -0.12‰ 

(average δ238U of -0.18 ± 0.13‰). The U isotopic composition of upper slope sediments underlying 

oxic bottom waters (Site GC 5) is consistently higher than δ238Useawater ranging from -0.22 to 0.18‰ 

(average δ238U of -0.09 ± 0.10‰). In contrast to the anoxic site, the highest δ238U values at the oxic 

site occur near the surface at around 5 cm depth, approaching seawater values at depth. Uranium 

concentrations at the oxic site are relatively low (<5 ppm) with only minimal authigenic 

enrichment. The δ234U of the shelf sediment are very near δ234Useawater (δ234Useawater = 145‰; 

Henderson, 2002) with little variation. Slope sediments have δ234U values that are consistently at, 
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or just below, seawater values. Shelf break sediments, however, have δ234U values that are 

substantially and consistently below δ234Useawater ranging between 8‰ and 19‰. A table with all 

data used in this study is available in the appendix (Table A1).   

 

 

Figure 2.1. Total organic carbon (TOC), solid phase uranium (U), U/TOC ratio, and U isotopes 

(δ238U, δ234U) on the shelf (Site 25020), shelf break (Site GC 4), and upper slope (Site GC 5). All 

three cores have high TOC, a wide range of U contents, and U/TOC ratios that appear strongly 

controlled by U content. Namibian sediments are dominated by higher δ238U, relative to δ238Useawater 

of -0.41 ± 0.03‰ (Weyer et al., 2008). The δ234U values on the shelf and slope are relatively similar. 
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Shelf break sediment, however, show significant fractionation away from seawater (δ234Useawater = 

145‰; Henderson, 2002). Error bars = 2SD. Seawater isotopic composition is shown as a blue bar. 

Lithological interpretation by Cofrancesco (2016). 

 

2.5 Discussion 

The sediments at the slope site (GC5) show nearly uniform U content throughout the length 

of the core (Figure 2.1), suggesting that U is undergoing only modest early diagenetic enrichment 

in the upper 25 cm of sediment at this oxic site. The different types of sedimentary U content 

profiles can be explained by sediment redeposition. Previous studies have shown that on the 

Namibian Continental Margin vertical settling of fresh organic matter from productivity in the 

overlying water column is only a minor contributor of organic carbon to these slope sediments with 

the majority of organic material being delivered via nepheloid layers from the shelf (McPhee-Shaw 

et al., 2004; Inthorn et al., 2006b). The result of this transport is a decoupling of U and TOC and a 

unique U/TOC ratio at the slope site (Figure 2.2A).  

 

 

Figure 2.2. There are three distinctive zones that emerge when U content (A) and δ238U (B) are 

plotted against TOC. The δ238U value of -0.20‰, shown here as a grey line, delineates the 

approximate boundary between suboxic and anoxic deposition (Andersen et al., 2017). Blue bar 

shows seawater δ238U average value -0.41‰ ± 0.03‰ (Weyer et al., 2008). The two circled shelf 

sediment samples with lower δ238U values are likely indicative of fresh organic matter (OM). 
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Similar to the U/TOC contents, each sample location can be operationally grouped 

according to the δ238U/TOC ratio (Figure 2.2B), with the exception of two samples with fresh 

organic matter from the uppermost sediments on the shelf (refer to text in Figure 2.2B). The 

uppermost samples at the shelf site show unusually negative δ238U values between -0.5 and -0.7‰. 

These values could be explained by absorption of U to Mn-oxides, which is accompanied by a -

0.2‰ fractionation (Brennecka et al. 2011b). Another, more likely explanation for the extremely 

negative δ238U values may be the absorption of 238U-depleted U to fresh organic matter. Holmden 

et al. (2015) observed low δ238U values between -0.5 and -1.24‰ in plankton tow and sediment 

trap samples in the highly productive Saanich Inlet, although the isotope fractionation mechanism 

in the plankton tow is not yet known. The δ238U values reported by Holmden et al. (2015) are 

consistent with the deposition of fresh, labile organic matter found on the anoxic shelf.   

Below 2 cm depth, the shelf sediments show an enriched 238U isotope composition (δ238U 

> -0.20‰) similar to those reported for other anoxic environments (Andersen et al., 2017 and 

references therein). Similarly, slope deposits are also enriched in the heavier isotope relative to 

seawater, despite oxic bottom water. This supports the notion that the sediments were originally 

deposited under anoxic conditions before being redeposited downslope. During transport and 

redeposition, organic carbon-laden particles are exposed to oxygenated water, causing solid-phase 

U to be oxidized from insoluble U(IV) to soluble U(VI) and released back into seawater (Figure 

2.3). Despite oxidation, the remaining U in the sediment is isotopically heavier than seawater. 

Preservation of the original isotope composition during water column transport agrees with 

laboratory experiments conducted by Wang et al. (2015) which demonstrated little to no U isotope 

fractionation when solid phase U(IV) is oxidized to U(VI) under neutral pH conditions.  
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Figure 2.3. Conceptual model of sediment transport and U response in the NCM. The degradation 

of large amounts of organic matter (OM) in the productive surface ocean (light green bar) results 

in an expanded oxygen minimum zone (OMZ). In the NCM, organic-rich deposits are transported 

from the shelf via the intermediate nepheloid layer (INL) and bottom nepheloid layer (BNL). OM 

contributions to the sea floor come from sinking, fresh material as well as resuspended organic 

matter. Sample locations on the shelf (Site 25020), shelf break (Site GC 4) and slope (Site GC 5) 

are marked with red stars (modified after Inthorn, 2005). 

 

The range of δ238U values in sediment at the shelf break (-0.12‰ to -0.42‰) is similar to 

values previously reported from Peru margin suboxic sediment (-0.16‰ to -0.41‰; Weyer et al., 

2008) and represents deposition under suboxic conditions. At the shelf break site (GC4), where 

little to no material from the shelf is redeposited and erosion outpaces sedimentation (Mollenhauer 

et al., 2007), any U present is likely preserved due to the suboxic bottom water conditions. The 

δ234U values measured at this site are approaching secular equilibrium, suggesting that shelf break 

sediment is far older than shelf and slope sediment. Exposure of older material on the shelf break 

is consistent with a highly erosive regime on the shelf break. Erosive patterns were reported by 

Mollenhauer et al. (2007) who observed erosive surfaces in parasound sediment echosounder 

profiles. Thus, the age and long term exposure of the shelf break sediment is likely the primary 

reason for the loss of TOC and for the decoupling of U and TOC at this site.  

At the Namibian Continental Margin, the δ238U is recorded in the organic-rich shelf 

sediments during early diagenesis. These deposits are then transported via nepheloid layers (Inthorn 
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et al., 2006a,b; Mollenhauer et al., 2007), beyond the shelf break, and redeposited on the slope 

under oxic bottom water. Although some part of the organic matter in the slope sediments results 

from overlying productive waters, the majority of organic material on the slope is delivered from 

the shelf via nepheloid layers (McPhee-Shaw et al., 2004; Inthorn et al., 2006b). While most U is 

lost due to oxidation during and after transport, the primary depositional δ238U signature is 

preserved (Figure 2.3). Thus, this study shows that the δ238U of organic-rich sediment can be a 

useful proxy for determining the primary depositional redox environment prior to transport, 

oxidation, and redeposition. Additionally, the δ238U redox proxy may be used to determine primary 

depositional conditions when post-depositional bottom conditions change, and oxygen is 

introduced to the sediment by, for example, bioturbation. Therefore, we expect that the U isotope 

proxy will track primary depositional conditions when post-depositional redox conditions change.  

One important observation that was made during the course of this study is the apparent 

Rayleigh distillation-style fractionation of U during transport and oxidation, and this should be 

addressed. The U in shelf sediment follows the expected trend for microbially-mediated U 

reduction (e.g. Sterling et al., 2015) in that the reductive incorporation of U into sediment results 

in isotopically heavier U. 

The same enrichment in 238U also appears to be occurring as U is oxidized and removed, 

following a Rayleigh distillation model, suggesting that lighter U(IV) is preferentially removed 

from sediment during transport (Figure 2.4). This is something of a conundrum as U in oxic settings 

is typically isotopically similar to, or lighter than, seawater (e.g. Weyer et al., 2008). The 

combination of high TOC, low U content, and heavier isotopic composition may be used to 

specifically detect the lower boundaries of an OMZ where downslope transport has occurred. 
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Figure 2.4. Inverse concentration plot showing the increasing δ238U values with both reduction and 

oxidation in anoxic shelf sediments (green circles) and oxic slope sediments (red stars). Linear 

relationships between 1/U and δ238U indicate mixing or fractionation. The green line follows the 

predicted trend for U(VI) reduction. The red line shows the unexpected fractionation of U isotopes 

during transport and redeposition, resulting in isotopically light U being preferentially removed 

from sediment. 

 

2.6 Conclusions 

The content of U in marine sediment has long been used as a proxy for organic-richness of 

sedimentary rock, however, there are many cases in which perturbations in the U/TOC ratio has 

been observed (e.g. Wignall and Myers, 1988; Lüning and Kolonic, 2003). Our shelf break data 

show that lower TOC does not necessarily equate to lower enrichments of U. Likewise, high TOC 

can be found without enrichments of U, as seen in NCM slope sediment where U has been 

disproportionally lost during particle transport in nepheloid layers. The δ238U composition of U in 

marine sediments is a complementary tool for the reconstruction of the depositional conditions of 

ancient shales where there may be some conflict as to whether or not oxygenated bottom water was 

present at the time of sediment deposition. This could be the case when biological evidence, such 

as fossils or bioturbation, typical for oxic bottom water, is in conflict with high organic carbon 
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content that indicate anoxic conditions, as observed in the organic-rich Jurassic Kimmeridge Clay 

(Wignall and Myers, 1988). However, because oxidation is congruent, and isotope fractionation 

occurs during incongruent reduction, several reduction and oxidation steps may still change δ238U, 

for example, in sediments which have undergone transport and redeposition. The ability to identify 

primary depositional redox conditions of ancient rocks, and those zones in which post-depositional 

oxidation have occurred, can give better certainty to paleoenvironmental reconstructions and may 

allow for a better understanding of ancient ocean conditions.  
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CHAPTER III 
 

 

GEOCHEMICAL SIGNATURES OF REDEPOSITIONAL ENVIRONMENTS: THE 

NAMIBIAN CONTINENTAL MARGIN 

 

3.1 Abstract 

Trace metal abundances in marine sediments have been used extensively to interpret 

periods of ancient ocean redox conditions and elevated primary productivity. However, sediment 

reworking that results in post-depositional oxidation can modify the primary geochemical signal of 

the sediment, which in turn may impact paleo-redox and/or -productivity interpretations. In the case 

of sediments on the Namibian Continental Margin (NCM), lateral transport and redeposition 

contribute to the accumulation of organic matter on the margin slope. To better constrain the 

geochemical effects of lateral transport on the NCM, we examined the trace metal signature 

(including solid-phase Fe, Mo, V, Ni, Cu and Ag, and pore water Fe, Mo, and V) in sediment 

surface cores (~25 cm) along a transect from shelf to slope through the primary and secondary 

depositional zones of the margin. Despite varying bottom water redox conditions ranging from 

anoxic (upper shelf), to suboxic (shelf break), to oxic (upper slope), each site has elevated organic 

carbon contents (1.1-11.6 wt.%), due to high surface water primary productivity and lateral 

transport of organic material from the shelf to the upper slope. Productivity proxies Ni, Cu, and Ag 

parallel the organic carbon accumulations largely irrespective of the local redox conditions. In 

contrast, the contents of V, Mo, and Fe respond to the local bottom water redox conditions at each
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site, being enriched under strongly reducing conditions and less-enriched under more oxic bottom 

waters despite the large organic carbon accumulations at all three investigated sites. Thus, the 

degree of trace metal enrichment and total organic carbon content at each site on the NCM can not 

only be used to reconstruct primary depositional bottom water redox conditions, but also to identify 

zones of sediment redeposition. Using multiple sample sites along an offshore transect allows for 

the identification of intense lateral transport and redeposition of organic-rich sediments that is 

taking place along the margin. The relative concentrations of both redox-sensitive and productivity-

related trace metals suggest that the decoupling of trace metals and organic carbon enrichments 

occasionally observed in the geological record could be explained by the process of lateral transport 

and redeposition.  

3.2 Introduction 

Trace metals have been well-established as redox and/or productivity proxies in sediments 

and sedimentary rock (Calvert and Pedersen, 1993; Morford and Emerson, 1999; Lipinski et al., 

2003; Algeo and Maynard, 2004; Cruse and Lyons, 2004; Borchers et al., 2005; Brumsack, 2006; 

Piper and Calvert, 2009; Algeo and Rowe, 2012; Owens et al., 2016, 2017). This is due to the 

processes responsible for the incorporation of trace metals into sediments and, ultimately, the 

sedimentary record. Trace metals have three major pathways into the sediment: 1) the precipitation 

of seawater sourced metals related to redox conditions (Calvert and Pedersen, 1993; Nameroff, 

1996; Crusius et al., 1996; Morford and Emerson, 1999), 2) biologically sourced metals delivered 

to sediment within organic matter (Algeo and Maynard, 2004; Brumsack, 2006; Piper and Calvert, 

2009; Böning et al., 2015), and 3) delivery of metals contained within detrital materials from 

continental weathering (Emerson and Huested, 1991; Borchers et al., 2005; Tribovillard et al., 

2006; Scott et al., 2017). The variations in organic carbon content and trace metal abundances in 

the sedimentary record reflect water column productivity and/or the redox state of the benthic water 

conditions during deposition (Böning et al., 2004, 2005; Borchers et al., 2005; Algeo and Lyons, 
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2006; Tribovillard et al., 2006; Böning et al., 2015; Little et al., 2015). Thus, trace metal 

accumulations have been considered relatively reliable proxies that are useful in determining 

depositional redox and surface water productivity conditions using the enrichments of these 

elements beyond detrital background concentrations. Geochemical proxies, however, have some 

environmental limits on accumulation and may be subject to post-depositional and early/late 

diagenetic alteration. For example, trace metal supply can affect the geochemical signal which can 

be due to basin restriction (Algeo, 2004; Algeo and Lyons, 2006, Formolo et al., 2014; Zhu et al., 

2018) or drawdown due to global redox conditions (Reinhard et al., 2013; Gill et al., 2011; Owens 

et al., 2016; Sahoo et al., 2016). Likewise, bioturbation (Aller, 1994; Zheng et al, 2000; Volkenborn 

et al., 2007) and sediment resuspension (Aller et al., 1986; Kowalski et al. 2013; Abshire et al., 

2020), which is presently occurring along the Namibian Continental Margin (NCM), can introduce 

oxygen into previously anoxic sediments, thus releasing some redox-sensitive metals.  

3.2.1 Redox-Sensitive Metals 

Redox-sensitive trace metals, such as molybdenum (Mo), iron (Fe), and vanadium (V), are 

often enriched in organic-rich sediment (e.g., Goldschmidt, 1954, Brumsack, 2006 and references 

therein) and are used in determining modern and ancient depositional redox conditions (e.g. 

Emerson and Huested, 1991; Calvert and Pedersen, 1993; Algeo and Maynard, 2004; Cruse and 

Lyons, 2004; Brumsack, 2006; Tribovillard et al., 2006; Piper and Calvert, 2009; Lyons et al., 

2009; Algeo and Rowe, 2012; Owens et al., 2016, 2017). The relative abundance of specific trace 

metals can assist in differentiating between redox conditions on a local and/or global scale (e.g., 

Algeo and Maynard, 2004; Tribovillard et al., 2004, 2005; Lyons et al., 2009; Sahoo et al., 2016; 

Owens et al., 2016). The use of Mo as a redox proxy is based on its distinctive geochemical 

behavior in both oxic and sulfidic environments (Emerson and Huested, 1991; Algeo and Lyons, 

2006). In average shale, approximating typical weathered upper continental crust, Mo is found in 

very low concentrations (1-1.5 ppm, Wedepohl, 1991, Table A2). Conversely, Mo is the most 
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abundant transition metal in oxic seawater (Collier, 1985) and Mo speciation is dominated by the 

Mo(VI) species in the form of molybdate. Removal of Mo from oxic seawater occurs via adsorption 

to Fe- and Mn- (oxyhydr)oxides (Shaw et al., 1990). The adsorbed particles sink to the seafloor 

and, under reducing conditions, Fe- and Mn-(oxyhydr)oxide minerals are reduced with dissolved 

Mo increasing in the surrounding solution (Shaw et al., 1990, Crusius et al., 1996; Morford and 

Emerson, 1999). There is a geochemical switch to convert Mo from molybdate (Mo(VI)-O) to 

particle-reactive thiomolybdate (Mo(IV)-S), which requires the presence of an increased amount 

of dissolved sulfide. This is the geochemical condition that must occur for enrichments of Mo to 

be recorded into the sediment as Mo(IV) (Helz et al., 1996; Erickson and Helz, 2000; Zheng et al., 

2000; Helz et al., 2011; Poulson-Brucker et al., 2009). Consequently, the extent of Mo 

accumulation in sediment has been used in many studies to identify local euxinic environments 

(Helz et al., 1996; Nameroff et al., 2002; Lipinski et al., 2003; Cruse and Lyons, 2004; Borchers et 

al., 2005; Algeo and Lyons, 2006; Scott and Lyons, 2012).  

Vanadium is found enriched in the sediments of both suboxic and anoxic environments 

(Shaw et al, 1990; Emerson and Huested, 1991). In oxygenated seawater, V exists as V(V), in the 

form of the vanadate oxyanion and can easily adsorb onto Fe- and Mn-(oxyhydr)oxides (Calvert 

and Piper, 1984; Wehrli and Stumm, 1989; Emerson and Huested, 1991). Under mildly reducing 

conditions, V(V) is reduced to V(IV) and forms vanadyl ions, hydroxyl species, and insoluble 

hydroxides (Van der Sloot et al., 1985). In the presence of free HS- under strongly reducing 

conditions, V(IV) is further reduced to V(III) and precipitated in the solid oxide or hydroxide phase 

(Breit and Wanty, 1991; Emerson and Huested, 1991; Wanty and Goldhaber, 1992). Because of 

the two-step reduction process necessary for V fixation in the sediment, V concentrations, when 

combined with Mo concentrations, are used to identify anoxic and euxinic environments at local 

and global scales (Algeo and Maynard, 2004; Owens et al., 2016). 
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In oxic seawater, Fe and Mn precipitate as Fe and Mn oxyhydroxides, thus Fe and Mn are 

found in concentrations below 1 nM in oxic seawater (Bruland and Lohan 2006, and references 

therein). Reactive Fe may be mobilized from suboxic sediments, transported, and sequestered 

during Fe sulfide precipitation in a euxinic water column as pyrite. Based on this process, transport 

of reactive Fe from the shelf downslope has been observed in the Black Sea (Severmann et al., 

2008) and the Peruvian OMZ (Scholz, 2018). Due to the behavior of Fe under various redox 

conditions, the presence of dissolved iron in pore waters, solid-phase total iron content, and the 

Fe/Al ratio, which records active Fe enrichment (Werne et al., 2002; Lyons et al., 2003; Raiswell 

et al., 2018), are commonly used as redox indicators in marine environments (Raiswell and Berner, 

1985; Lyons et al., 2003; Cruse and Lyons, 2004; Lyons and Severmann, 2006; Raiswell et al., 

2018). Sediments with Fe/Al ratios above 0.66 are considered to be enriched (Raiswell et al., 2018), 

reflecting deposition in a sulfidic environment, such as the Black Sea (Lyons and Severmann, 

2006). 

3.2.2 Productivity Related Trace Metals 

Productivity-related trace metals accumulate in sediments deposited under upwelling 

waters due to a high flux of organic matter with enhanced organic carbon preservation at depth 

(e.g. Böning et al., 2004). Metals such as nickel (Ni), copper (Cu), and silver (Ag) are generally 

associated with biocycling processes and bioproductivity (Bruland, 1983; Borchers et al., 2005) 

and are primarily delivered to marine sediments directly within, or adsorbed to, sinking biodetritus 

(Brongersma-Sanders, 1980; Böning et al., 2015).  

Under oxic conditions, Ni is primarily preserved as soluble Ni-carbonate (NiCO3) or 

adsorbed to humic and fulvic acids, however, Ni may also be present as soluble Ni2+ cations or 

NiCl+ ions (Calvert and Pedersen, 1993; Whitfield, 2002; Algeo and Maynard, 2004). Copper is 

typically present in oxic settings as organometallic ligands and, to a lesser degree, as soluble CuCl+ 

ions (Calvert and Pedersen, 1993; Whitfield, 2002; Algeo and Maynard, 2004). The productivity-
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related trace metals incorporated into sediments of upwelling margin settings, such as the Chilean 

and Peruvian margins, are primarily preconcentrated in biodetritus and delivered to the sediments 

by settling through an oxygen minimum zone (OMZ, Böning et al., 2004, 2005). As organic matter 

degrades, incorporated metals may be released into pore waters (Moore et al., 1988). Under sulfidic 

conditions, pore water metals may be incorporated into sediment as insoluble sulfides (Moore et 

al., 1988; Huerta-Diaz and Morse, 1990, 1992; Morse and Luther, 1999), and remain in the 

sediment. 

While present understanding of the marine geochemical cycling of Ag is relatively limited, 

when compared to some other trace metals, recent studies have demonstrated that elevated Ag 

content in sediment may be a reliable indicator of ocean surface productivity (Crusius and 

Thomson, 2003; Friedl and Pedersen, 1998, 2001; Hendy and Pedersen, 2005; McKay and 

Pedersen, 2008; Wagner et al., 2013). Similar to Ni and Cu, Ag is taken up in the bodies of micro-

organisms in surface waters (Fisher and Wente, 1993) and delivered to the seafloor along with the 

sinking biodetritus (Friedl and Pedersen, 1998; Böning et al., 2004). Large solid-phase 

accumulations of Ag (>> average shale values of 0.07 ppm, Table A2) may be due to an 

accumulation of Ag in the bottom waters via the degradation of settling biodetritus (Böning et al., 

2005; Kay and Pedersen, 2008; Morford et al., 2008). In highly-reducing conditions, Ag can form 

Ag2S, which is an extremely insoluble sulfide (Dyrssen and Kremling, 1990; Friedl and Pedersen, 

2001) and is found enriched in sulfidic sediment through this reduction pathway.  

To determine the effects of redeposition on trace metal signals, we present with this study 

the solid phase and pore water geochemistry of redox- and productivity-related trace metals in 

sediments on the NCM. A combined approach of bottom-water oxygenation measurements, redox-

sensitive and productivity-related trace metal analysis, and total organic carbon content 

measurements can provide useful insights to aid in paleoenvironmental reconstructions of organic-
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rich depositional systems to better constrain ancient environments that may have experienced 

sediment redeposition. 

3.3 Study Area 

The perennial upwelling that occurs in the NCM supports some of the highest rates of 

primary productivity in the present-day oceanic system (Chapman and Shannon, 1985; 

Summerhayes et al., 1995; Brüchert et al., 2000; Berger and Wefer, 2002; Mollenhauer, 2002) 

which creates extreme water column oxygen depletion and periodic sulfidic bottom water due to 

the degradation of sinking biodetritus (Carr, 2002; Borchers et al., 2005). The resulting oxygen 

minimum zone (OMZ) stretches from the shelf, across the upper continental margin and beyond 

the shelf break (Chapman and Shannon, 1985). Within the OMZ, oxygen-deficient conditions 

augment the preservation of large quantities of organic carbon in the sediment (van der Weijden et 

al., 1999). Seasonal variability in the upwelling cells responsible for the high primary productivity 

and the consequential expansion of the OMZ is pronounced in the northern parts of the upwelling 

area (Chapman and Shannon, 1985; Mollenhauer et al., 2002). Our study area, which is 

significantly south of the Intertropical Convergence Zone, is only slightly affected by seasonal 

variability in upwelling strength (Shannon, 1985) and the OMZ remains present throughout the 

year, becoming more pronounced during the summer months (Brüchert et al., 2003). The strong 

coastal upwelling and high primary productivity have been occurring in this region since at least 

the early Pleistocene (Berger and Wefer, 2002). 

The phytoplankton populations that thrive in the coastal waters above the Namibian shelf 

are dominated by diatoms, dinoflagellates, and radiolarians (Summerhayes, 1995) resulting in shelf 

sediments consisting primarily of organic carbon-rich diatomaceous ooze (Bremner, 1983; 

Summerhayes, 1995; Mollenhauer, 2002). Waters above the shelf break and upper slope contain 

an abundance of coccolithophores and foraminifera (Giraudeau et al., 1993) delivering a small, but 

not negligible, amount of organic material to the sediments below (McPhee-Shaw et al., 2004; 
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Inthorn et al., 2006b). The upper slope depocenter (Figure 3.1) is primarily supplied with organic 

carbon from the shelf, which is delivered via lateral (offshore) sediment transport in nepheloid 

layers resulting in the formation of a secondary organic carbon depocenter (Inthorn et al., 2006a,b; 

Mollenhauer, 2007). The lateral transport and redeposition of sediments on the NCM make this an 

ideal area to investigate the impact of dynamic depositional conditions in organic-rich sediments 

on the trace metal inventory. 

 

 

Figure 3.1: Map of the study area showing the areas of intense organic carbon preservation 

(warmer colors) in the sediments (modified after Mollenhauer et al., 2002). Sample sites 25020 

(outer shelf), GC 4 (shelf break), and GC 5 (upper slope) are labeled as white circles. 
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3.4 Methods 

3.4.1 Sampling 

Sediment cores were collected for geochemical analyses from the NCM offshore 

southwestern Africa (Figure 3.1) onboard the research vessel RV MIRABILIS as part of the May 

2015 Regional Graduate Network in Oceanography (RGNO) program. Coring sites 25020, GC 4 

and GC5 are located on the outer shelf, shelf break, and upper slope, respectively. Surface sediment 

cores were retrieved using a multi-core (MUC) device from the three sample sites (Table 2.1) and 

were immediately sliced onboard the ship into 1-2 cm intervals, transferred into centrifuge tubes, 

and the headspace was purged with nitrogen gas. Bottom water was immediately extracted from 

the top of the core using a syringe and pore waters were extracted from each tube containing 

sediments via Rhizons (Seeberg-Elverfeld et al., 2005). All extracted water samples were acidified 

with trace metal grade (TMG) nitric acid and were stored at 4°C. 

3.4.2 Aqueous Phase Analysis 

Measurements of ocean water temperature, salinity, and bottom water oxygen levels were 

obtained from the research vessel using a Conductivity Temperature Depth (CTD) device with an 

oxygen sensor that had a detection limit of 0.05 mL O2 L-1 H2O.  

Bottom and pore water samples were analyzed for trace metal concentrations using an 

inductively-coupled plasma-mass spectrometer (ICP-MS, ThermoFisher Scientific, iCAP Qc) at 

Oklahoma State University. Sample aliquots were diluted 25-fold with 2% supra-pure nitric acid 

prior analysis. A standard reference material NIST 1643f was analyzed with each set of samples 

for quality control. The standard deviation for all elements was better than 5%.  

3.4.3 Solid Phase Analysis 
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Total organic carbon (TOC) content of the NCM sediment was measured using an 

Elemental Analyzer (EA, Costech) at Oklahoma State University (OSU) and were previously 

reported in Abshire et al. (2020).  

Samples for analyses of Al, Mn, Fe, V, Mo, Ni and Cu from all cores were completely 

digested using a CEM Mars 6 microwave with 5 ml of ~9 M trace metal grade (TMG) nitric acid 

to remove organic matter followed by TMG hydrochloric, nitric, and hydrofluoric acids. Sample 

preparation and analyses on a Thermo Element II ICP-MS were carried out in the Geochemistry 

group at the National High Magnetic Field Laboratory at Florida State University. A set of standard 

reference materials (NIST 2702, SDO1, and SCO1) were digested and analyzed with each set of 

samples and, in all cases, reported elements were within the published analytical error.  

Samples analyzed for Ag content from all cores were digested using TMG nitric, 

hydrofluoric, and perchloric acids and heated to 170°C until fully dissolved. Samples were then 

evaporated until dry and residue was dissolved in 5% TMG nitric acid. The Ag content was 

measured on a ThermoScientific iCAP Qc ICP-MS at Oklahoma State University. Standard 

reference material NIST SRM 2702 was digested and analyzed alongside samples with less than 

3% error. 

Since aluminum can be used as an indicator of the aluminosilicate fraction of a sedimentary 

deposit, indicating the extent of input from continental weathering (e.g., Brumsack, 1989; Calvert 

and Pedersen, 1993; Morford and Emerson, 1999; Piper and Perkins, 2004), Trace metal/Aluminum 

(TM/Al) ratios will be reported alongside trace metal data. Additionally, enrichment factors (EF) 

for each solid phase element were calculated based on the average enrichment at each site, relative 

to average shale composition (e.g. Borchers et al., 2005; Brumsack, 2006; Bennett and Canfield, 

2020). The calculation for EFs is as follows: 

EFX= (X/Al)sample /(X/Al)shale, (equation 3.1). 
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The enrichment factor is relative to average shale as defined by Turekian and Wedepohl (1961) and 

average shale concentrations for studied elements are given in Table A2. All generated data are 

summarized in Table A3 (pore water), Table A4 (TOC and CaCO3) Table A5 (solid phase trace 

metals), and Table A6 (calculated enrichment factors). Pore water Ni and Cu were below detection 

limits (0.08 ppb and 0.22 ppb, respectively) in all samples.  

3.5 Results and Discussion 

3.5.1 Shelf Site 25020 

Shelf sediments are finely laminated below the highly productive surface water and anoxic 

bottom water (O2 below detection limit; Abshire et al., 2020) on the shelf of the NCM (Site 25020) 

(Figure 3.2A). Terrestrial input to the study area is low (Shannon and Nelson, 1996; Borchers et 

al., 2005) and measured Al contents of the shelf sediments are below 2.3 wt.%. (as low as 0.7 

wt.%), thus trace metal enrichments are interpreted as having negligible detrital components. The 

low pore water iron (FePW) concentration at the sediment-water interface (SWI) and slight 

(~0.09µM) increase in bottom water Fe is explained by the upward diffusion of reduced Fe 

(Canfield, 1989a; Severmann et al., 2010; Scholz et al., 2011). Pore water iron remains low to a 

depth of 3 cm (Figure 3.3A) where there is an apparent release of iron from the solid phase as a 

result of the reductive dissolution of Fe (oxyhydr)oxide minerals (e.g., Froelich et al., 1979; 

Canfield, 1989a).  
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Figure 3.2. Core descriptions, total organic carbon (TOC), and redox-sensitive trace metal content 

of sediment from the A. anoxic shelf (site 25020), B. suboxic shelf break (site GC 4), and C. oxic 

upper slope (site GC 5). Trace metal/Aluminum (TM/Al) ratios are plotted alongside trace metal 

concentrations to normalize TM values against any lithogenic variation (e.g. Calvert and Pedersen, 

1993). Trace metal measurements are represented by solid circles; TM/Al ratios are plotted as open 

circles with lines. Sedimentary core descriptions and TOC data are from Cofrancesco (2016) and 

Abshire et al. (2020). 
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The observed decrease in FePW, along with the increase in solid-phase Mo, V, and Fe 

suggests the presence of dissolved sulfide (Berner, 1970; Raiswell and Canfield, 2012) and the 

likely subsequent formation of iron sulfide minerals (e.g., pyrite) below 3 cm depth. While there 

are no sulfide data available for this study, the sediments had a strong sulfide odor (see also 

Cofrancesco, 2016). Furthermore, the sulfide concentration below 3 cm sediment depth must be 

greater than the threshold required for the geochemical switch which allows Mo to be scavenged 

from the pore water (Figure 3.3A) as thiomolybdate (Helz et al., 1996; Erickson and Helz, 2000; 

Zheng et al., 2000; Poulson-Brucker et al., 2009; Helz et al., 2011) and, consequently, to 

accumulate in the solid-phase (Figure 3.2A, Table A5). Manganese content remains low throughout 

the depth of the outer shelf core (38-159 ppm, average 77.4 ppm), as well as in the cores on the 

shelf break and upper slope (Table A5), when compared to Chilean (Böning et al., 2005) and 

Peruvian upwelling margin sediments (Brumsack, 2006).  
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Figure 3.3 Pore water concentration of iron (Fe), molybdenum (Mo) and vanadium (V) from 

sediment cores collected from the A. anoxic shelf (site 25020), B. suboxic shelf break (site GC 4), 

and C. oxic upper slope (site GC 5). Pore water Ni and Cu were measured and were below detection 

limit in all sampled pore waters. 

 

High productivity in surface waters above the shelf (Mollenhauer et al., 2002) is mirrored 

in the elevated concentration of organic carbon at this site (up to 11.6 wt.%). The Ni, Cu, and Ag 

content all increase with depth indicating potentially higher periods of productivity in the past 

(Figure 3.4A), similar to findings from similar water depths along the NCM by Borchers et al. 

(2005). However, Al content also increases with depth in the shelf sediments which suggests that, 

in addition to higher productivity, that there may have been more detrital input in the past. Previous 

studies have suggested, in modern shelf sediments, the dominant source for trace metal 

accumulation is biogenic (Ni, Cu, and Ag) or related to seawater input (U and Mo) (Borchers et al., 
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2005). Since productivity-related metals are incorporated into organic matter in the water column 

(Brongersma-Sanders, 1980; Böning et al., 2015), and the redox-sensitive metals are enriched in 

the sediment, geochemical signals of the offshore Namibia shelf suggest a strong correlation 

between the preservation of the organic material and the reducing conditions during deposition 

(Borchers et al., 2005).  

 

 

Figure 3.4. Productivity-related solid phase trace metal results from A) anoxic shelf (site 25020), 

B) suboxic shelf break (GC 4) and C) oxic upper slope (GC 5). Metal concentrations are plotted 

with a solid black circle and TM/Al ratios are plotted as open circles with lines.  
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3.5.2 Shelf Break Site GC 4 

On the shelf break (site GC 4) suboxic bottom water (Table 2.1), high surface water 

productivity (Mollenhauer et al., 2002), and net erosion due to bottom currents (Mollenhauer et al., 

2007) create a dynamic and unusual depositional environment. Erosion is the dominant control on 

organic matter deposition and outpaces accumulation at the shelf break site, resulting in the 

exposure of relatively old organic carbon at the sediment surface (Mollenhauer et al., 2007, Abshire 

et al., 2020). The moderate CaCO3 content in the shelf break sediments is attributed to the observed 

shell fragments present in the core (Figure 3.2B). Pore waters contain a variable amount of iron 

that fluctuates significantly with depth (Figure 3.3B), indicating possible disturbances by 

burrowing organisms that were observed at the shelf break site (Figure 3.2B). The benthic 

organisms are likely introducing slightly oxygenated bottom water (1.11mL O2 L-1, Abshire et al., 

2020) into the sediments through bio-irrigation (Aller, 1994; Kristensen, 2000), thus oxidizing the 

sediments and releasing Fe, V, and Mo into the pore water (Aller, 1994; Canfield, 1994). 

Productivity proxy contents of Ni, Cu and Ag, as well as TOC contents (average 3 wt.%) 

are all comparatively lower in the shelf break sediments, versus the shelf site, and concentrations 

of these metals remain consistent throughout the sediment column (Figure 3.4B). The reduced 

productivity-related metal content may be related to the known significant erosion, but may also 

indicate a smaller contribution of fresh organic matter from surface productivity in this location. 

The redox-sensitive trace metal data are consistent with a previous study that reported high U/TOC 

ratios in the shelf break sediment (Abshire et al., 2020). Abshire et al. (2020) showed a range of 

uranium isotope (234U/238U) values in NCM shelf break sediment that approached secular 

equilibrium, implying that the shelf break sediment is significantly older than sediment from the 

outer shelf and upper slope of the NCM – a result of the erosional regime that dominates the shelf 

break (Mollenhauer et al., 2007) and the subsequent exposure of recalcitrant organic material to 

suboxic conditions. The apparent disconnect between TOC and redox-sensitive trace metals 
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observed in NCM shelf break sediments has also been observed in the geologic record (e.g., Lüning 

and Kolonic, 2003; Scott et al., 2017). The erosional exposure of recalcitrant organic matter may 

provide an alternative explanation to late diagenetic or catagenetic carbon loss in shales with 

pronounced TM enrichments relative to TOC.  

3.5.3 Upper Slope Site GC 5 

In sediments at site GC 5 on the upper slope, the absence of laminations and the direct 

measurements of dissolved oxygen in the bottom water (Table 2.1) place the depositional 

conditions under a fully oxic regime. The upper slope sediments show relatively high CaCO3 

content, which is attributed to the shell fragments within the sediments below 6 cm depth (Figure 

3.2C). Low Mo, V, and Fe content (Figure 3.2C) and enrichment factors (Table A6) reflect 

deposition under oxic conditions. Interestingly, TOC contents are high (5.8-7.7 wt.%), considering 

organic carbon is assumed to not usually be well-preserved under oxic conditions (Demaison and 

Moore, 1980; Tyson, 1987; Canfield, 1989b; Piper and Calvert, 2009). Reducing conditions below 

the SWI are indicated by a moderate increase in FePW (up to 16 µM) at 5-7 cm core depth, likely 

due to the alteration of iron oxides, after which FePW decreases sharply (Figure 3.3C). The observed 

decrease in FePW may be related to the presence of dissolved sulfides at depth. However, although 

pore water sulfide concentrations were not measured, H2S likely did not exceed concentrations of 

11 µM to activate the geochemical switch for Mo precipitation (Helz et al., 1996; Erickson and 

Helz, 2000; Poulson-Brucker et al., 2009) as Mo enrichments are very minor (Figure 3.2C). The 

solid phase Mo content in the upper slope sediments is low, while dissolved Mo accumulates in the 

pore water with MoPW reaching concentrations up to nearly 3000 nM (Figure 3.3C). The pore water 

Mo profile indicates upward diffusion of Mo with a source in the deeper sediments. Such a deep 

Mo source could suggest higher Mo accumulation during interglacial cycles.  

Elevated quantities of productivity proxy elements Ni, Cu, and Ag at the upper slope site 

(Figure 3.4C) suggest that the high TOC content of the upper slope sediments (up to 7.7 wt.%) is 



49 
 

related to high productivity in the water column. However, with oxic conditions at the SWI and in 

the water column for several hundred meters below the OMZ, it is unlikely that productivity alone 

is responsible for such observed enrichments. The increased concentrations of productivity-related 

metals in the sediments at the upper slope site do not positively correlate with enrichments of redox-

sensitive trace metals as seen on the shelf. Lateral transport of organic-rich sediment from the 

anoxic shelf on the NCM (Inthorn et al., 2006a,b; Mollenhauer, 2007) might be responsible for 

enrichments of Ni, Cu, and Ag (average EFs = 5, 7, and 62, respectively, Table A6). In contrast to 

the shelf and shelf break sites in this study, Cu does not behave similarly to Ni at the upper slope 

site. Instead, Cu and also Ag show larger enrichments than Ni, relative to the shelf site, suggesting 

that some Ni may be lost more easily during the partial remineralization of the organic matter during 

vertical transport through a long oxic water column below the OMZ. Alternatively, Cu and Ag 

might be more efficiently scavenged from the water column by particulate organics and/or Fe-Mn 

(oxyhydr)oxides during transport. The Ag content of the NCM upper slope sediment is 

exceptionally high, with Ag reaching up to 0.97 ppm (Figure 3.4C) when compared to the average 

shale Ag content of ~0.07 ppm (Turekian and Wedepohl, 1961, Wedepohl, 1971, Table A2). Our 

data suggest that observations of NCM sediments are similar to those from the Northwestern United 

States Continental Margin (Morford et al., 2008), Peruvian Margin (Böning et al., 2004), Central 

Chilean Margin, and Western Canadian Margin (McKay and Pedersen, 2008) where Ag is 

scavenged by sinking particles, especially within OMZs, resulting in a greater flux of solid-phase 

Ag to the sediment under a deeper water column (Böning et al., 2004; Morford et al., 2008; McKay 

and Pedersen, 2008). Furthermore, it has been shown that in East Atlantic Ocean waters dissolved 

Ag correlates with silica (Flegal et al., 1995) and increases with water depth (Martin et al., 1983). 

These observations are similar to barium (Ba) as a productivity indicator, where Ba is scavenged 

within the water column requiring certain water column depths to appropriately represent organic 

carbon accumulation in the sediments (e.g. Dymond et al., 1992; Von Breymann et al., 1992; 

Klump et al., 2000; Nameroff et al., 2002; McKay and Pedersen; 2008; Horner et al., 2015). Due 
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to the nutrient-type distribution of Ba and Ag in the water column (Bruland and Lohan, 2006 and 

references therein), concentrations are greater in deeper waters. Thus, the amount of silver 

scavenged by sinking particulate organic matter is related to the availability of Ag with increasing 

water depth as well as particle travel time through the water column. 

3.5.4 Effects of Redeposition on Geochemical Signals  

Offshore sediment transport along the NCM results in the release of some redox-sensitive 

trace metals as sediments are settling through an oxic water column and is reflected in the preserved 

geochemical properties of the redepositional zone (Figure 3.5). Upon redeposition on the upper 

slope, the partially-remineralized organic matter remains, retaining the productivity-related trace 

metals (Ni, Cu, and Ag) despite oxic conditions. Redox-sensitive elements Mo and V are highly 

influenced by water column conditions and thus deviations in their abundance occur through 

redeposition. The enrichments of Ni, Cu, and Ag in the upper slope sediment suggest a resistance 

of these metals to oxidation during transport and the addition of a smaller amount of fresh organic 

matter from the productive water column above the upper slope. All of the geochemical and 

sedimentological signals observed in the NCM upper slope sediments – bioturbation, high organic 

carbon contents, enrichments in productivity proxy metals, and depletion in the redox-sensitive 

metals (when compared to the average shale, Turekian and Wedepohl, 1961) – characterize the 

sediments of the redepositional site. Such a distinct geochemical signature, when found in ancient 

rock, could be used to identify a paleo-redepositional setting from beneath an upwelling OMZ 

especially when considering the global location of the setting (i.e. eastern margins of the ocean 

basin). 
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Figure 3.5. Conceptual model showing the direction of sediment transport in intermediate (yellow 

arrows) and bottom (black arrows) nepheloid layers, settling of suspended and fresh organic matter 

(green arrows), the position of the OMZ, and the enrichment factors (EF) of solid-phase elements 

Mo, V, Fe, Ni, Cu, and Ag at each sample site (red stars, modified after Inthorn, 2005). 

 

3.6 Summary and Conclusions 

Lateral transport of organic-rich sediments resulted in highly varied geochemical signals 

along the NCM. Through these observations we can define the geochemical and sedimentary 

properties of a redepositional zone, which will be significant for paleoceanographic studies. The 

redepositional area at the upper slope on the NCM is characterized by bioturbated, organic-rich (>5 

wt.%) sediments with relatively low Mo contents compared to the shelf and shelf break, no 

significant enrichments of Fe and V, substantial enrichments of Ni, Cu, and especially high Ag 

content (Figure 3.5).  

Silver is a promising paleoproductivity proxy, although it is coupled to the water column 

depth. Similar to Ba, Ag is best applied to sediments deposited at great water depths. Moreover, 

Ag scavenging seems to be dependent on the amount of Ag available in the water column (e.g., 
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Flegal et al, 1995), which may vary with different ocean settings (and thus likely with overall water 

column mixing). Unlike barium, which is subject to remobilization from marine sediments during 

diagenesis (e.g., McManus et al., 1994; Torres et al., 1996; Riedinger et al., 2006), the consistent 

Ag concentration throughout the NCM sediment columns suggests that Ag may be more resistant 

to diagenetic alteration. We therefore postulate that Ag can provide, in addition to paleoproductivity 

reconstruction, information about water depth and water mixing properties, when applied in 

combination with other paleo proxies.        

While not all ocean upwelling systems undergo intense lateral redeposition processes to 

the extent of the modern NCM, a more complete understanding of the sedimentary controls on 

geochemical signals in organic carbon-rich deposits from modern sediments will help to better 

constrain the depositional environments of ancient organic-rich deposits. Our data suggest that the 

distinct multi-proxy geochemical signatures observed in the NCM system could be a tool for 

identifying redepositional environments recorded in ancient rocks. This observation could 

potentially help constrain some of the difficulties interpreting organic-rich shales that display 

evidence of benthic life, such as the Jurassic Kimmeridge Clay (e.g. Wignall and Myers, 1988) and 

the Jurassic Posidonia Shale (e.g. Röhl et al., 2001) and may have various redox conditions 

throughout the basin both spatially and through time. Due to the expansion of OMZs in the past 

several decades, and predictions of continued ocean deoxygenation (Stramma et al., 2008, 

Schmidtko et al., 2017), understanding how proxy metals are incorporated into sediment under a 

variety of depositional conditions is critical to the interpretation of past OAEs and predictions of 

future changes to ocean oxygenation. 

3.7 Acknowledgements 

This manuscript is based upon work supported by the National Science Foundation (NSF) 

Graduate Research Fellowship Program under Grant No. 1746055. Any opinions, findings, and 

conclusions or recommendations expressed in this manuscript are those of the authors and do not 



53 
 

necessarily reflect the views of the National Science Foundation. Grants to JDO (NSF OCE and 

NASA Exobiology) helped to fund the FSU and National High Magnetic Field Laboratory (DMR-

1157490) analysis. The authors thank the Regional Graduate Network in Oceanography program, 

the Research Discovery Camp, and the crew of the Research Vessel Mirabilis. We gratefully 

acknowledge T. Wu for help and assistance in the lab, C. Scott, J. Donoghue, J. Puckette, and G. 

Cook for helpful conversation and insight, and Christian März and two anonymous reviewers for 

their constructive comments on a previous draft, which greatly improved the manuscript.  



54 
 

CHAPTER IV 
 

 

RECONSTRUCTING THE PALEOCEANOGRAPHIC AND REDOX CONDITIONS 

RESPONSIBLE FOR VARIATIONS IN URANIUM CONTENT IN NORTH AMERICAN 

DEVONIAN BLACK SHALES 

 

4.1 Abstract 

While organic-rich shales have become increasingly important in recent years as 

unconventional petroleum reservoirs, the complex sedimentary and early-diagenetic processes 

responsible for highly variable geochemical signals in shales are still not fully understood. Trace 

metals, which are commonly used as redox or productivity proxies, are found enriched to differing 

degrees in many black shales. For instance, one commonly applied proxy for redox and organic-

richness is uranium (U). Typically, in shales, uranium contents display a linear relationship to total 

organic carbon (TOC). This relationship is related to the processes and mechanisms responsible for 

the incorporation of U into the sediment during the deposition and remineralization of organic 

matter. Although mostly linear, the U to organic carbon relation can vary in some instances. For 

example, some shales display uncharacteristically low U content despite having high TOC content. 

This low U/TOC ratio can occur in a shale if sediments were exposed to oxygen post-deposition. 

Other shales have large enrichments of U relative to TOC, which may be a result of catagenesis 

and organic carbon loss through hydrocarbon generation and migration.  

Here we examine the U to TOC ratios and U-isotope composition of three Late Devonian- 
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Early Mississippian shales, the Woodford Shale, the Cleveland Shale, and the Bakken Shale with 

two study sites in Oklahoma, one site in Eastern Kentucky, and one site in Montana, respectively. 

The U/TOC ratios of each shale are unique from one another exhibiting formation average 

ratios that range from 3 in the Cleveland Shale to 9 in the Woodford Shale, while the U-isotope 

data indicate that all three formations were deposited under anoxic conditions. The observed 

variations in U to TOC ratios and U-isotopic compositions help to define subtle changes in 

oceanographic conditions during deposition. These three shales, when compared to modern anoxic 

basins and upwelling areas, have distinct geochemical compositions which indicates that, while 

lithologically similar, each study site represents a distinctly different depositional environment. The 

comparison of geochemical signals preserved in ancient shales to those signals observed in modern 

marine depositional systems allows for an enhanced understanding of the U and TOC relationship, 

and ultimately of the complex and dynamic shale depositional system.  

4.2 Introduction 

4.2.1 Black shales, trace metals, and organic matter preservation 

Black shales form in specific depositional environments such as enclosed basins, similar 

to the modern Black Sea (e.g. Brumsack, 2006), within oxygen minimum zones (OMZs), similar 

to the OMZ located along the modern Namibian Continental Margin (e.g. Borchers et al., 2005), 

or are deposited during oceanic anoxic events (OAEs; e.g. Jenkyns, 2010). In all cases where large 

quantities of marine organic matter are preserved in sediments, high productivity and an oxygen-

depleted environment are commonly assumed to be necessary (Swanson, 1961; Tourtelet, 1979; 

Schmoker, 1980; Meyer and Nederlof, 1984; Wignall and Myers, 1988; Lüning and Kolonic, 2003; 

Piper and Calvert, 2009).  

Certain trace metal to total organic carbon (TOC) ratios are commonly used to determine 

the level of basin restriction in marine systems (Algeo and Rowe, 2012). For example, Algeo and 
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Lyons (2006) proposed a method for estimating the degree of basin restriction by observing that 

the amount of Mo drawn into sediments in anoxic environments depends on (A) the amount of 

available Mo in the water, and (B) the amount of sedimentary organic matter. The results of the 

Algeo and Lyons (2006) study showed that the ratio of Mo to TOC in the sediment reflected the 

availability of the metal in the watermass. When bottom waters are well connected to open ocean 

water, the Mo/TOC ratios were high. In the case of silled or restricted basins, the Mo/TOC ratios 

were lower, due to the drawdown of molybdenum into euxinic sediments (Algeo and Lyons, 2006). 

Inferences have also been made about the extent of bottom water euxinia due to basin restriction 

by evaluating U/Mo ratios (Algeo and Tribovillard, 2009, Zhu et al., 2018), suggesting that Mo is 

drawn into sulfidic sediments at higher concentrations than U. However, euxinic bottom water does 

not necessarily indicate basin restriction. For example, the modern Namibian Shelf experiences 

intermittent euxinic bottom waters while being entirely unrestricted (Copenhagen, 1953; Chapman 

and Shannon, 1985; Emeis et al., 2004; Brüchert et al., 2003). In either case, U behaves similarly 

to Mo in that it accumulates in sulfidic sediments. However, U also accumulates in anoxic 

sediments where free sulfides are not present (Zheng et al., 2002a,b; McManus et al., 2005). 

Therefore, low U content in organic-rich sediments may be a good indicator for extended periods 

of basin restriction, regardless of the presence of sulfides, as the U content in sediments is limited 

by the availability of U in the watermass.  

The uranium content of sediment can be used, in concert with other redox-sensitive trace 

elements, to distinguish between oxic and anoxic bottom water conditions in modern and paleo-

marine depositional systems (e.g. Barnes and Cochran, 1990; Klinkhammer and Palmer, 1991; 

Calvert and Pedersen, 1993; Chaillou et al., 2002; Algeo and Maynard, 2004; Cruse and Lyons, 

2004; Algeo and Rowe, 2012). In an oxic marine environment, U(VI) is soluble and forms stable 

carbonate complexes (Langmuir, 1978). In a reducing environment, U(VI) is reduced to insoluble 

U(IV), which is incorporated into marine sediment along with organic matter at the sediment-water 
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interface (Langmuir, 1978; Klinkhammer and Palmer, 1991; Spirakis, 1996; Lüning and Kolonic, 

2003; McManus et al., 2005, 2006; Tribovillard et al., 2006; Algeo and Tribovillard, 2009), during 

the reduction of uranium by remineralization of organic matter. Uranium reduction takes place in 

the absence of oxygen, is intensified in the presence of sulfides (Klinkhammer and Palmer, 1991; 

Lovely et al., 1991; Lovley, 1993; Spirakis, 1996; Algeo and Maynard, 2004) and is enhanced by 

metal-reducing microbes (Stirling et al., 2015; Stylo et al., 2015).  

The ratio of 238U and 235U in marine sediments and sedimentary rocks has recently emerged 

as a complementary redox proxy for the reconstruction of past ocean anoxia. Uranium isotope 

fractionation occurs during adsorption, changes in speciation, or due to changes in redox chemistry, 

which includes microbially-aided U reduction (Weyer et al, 2008; Basu et al., 2014; Stirling et al., 

2015; Stylo et al., 2015), and the U-isotope composition of sediments will vary through these 

processes. Redox reactions result in reduced U(IV) becoming enriched with the heavier isotope 

(Montoya-Pino et al., 2010; Basu et al., 2014; Stirling et al., 2015; Stylo et al., 2015), due to the 

nuclear field shift effect (Andersen et al., 2017, and references therein). Sediments deposited in 

anoxic environments have been typically observed to contain higher 238U/235U than sediments from 

less-reducing or oxidizing environments (Weyer et al., 2008; Montoya-Pino 2010; Brennecka et 

al., 2011a; Basu et al., 2014; Stirling et al., 2015; Stylo et al., 2015; Lau et al., 2017; Zhang et al., 

2018), with the exception of upper slope sediments from the Namibian Continental Margin, which 

are enriched in the heavier isotope under oxic conditions due to sediment transport and redeposition 

(Abshire et al., 2020). Furthermore, the U-isotope system may be used to differentiate between 

depositional environments (restricted euxinic basin vs. continental shelf) by determining the degree 

of fractionation from seawater (Anderson et al., 2014, 2017).  

In restricted basins, such as the Black Sea, uranium isotopic compositions in the water 

column and bottom waters are isotopically lighter than average seawater (Anderson et al., 2014; 

Noordmann et al., 2015). The result of extended periods of basin restriction and long deep water 
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residence time results in a sedimentary isotopic composition that is lighter than sediments deposited 

under similar redox conditions where waters are better circulated, thus reflecting the overall 

depletion of the heavier isotope from the watermass (Anderson et al., 2014, 2017). When examining 

the isotopic composition of an organic-rich rock and attempting to resolve depositional redox 

conditions from U-isotopic signals, it is important to consider the impacts of basin restriction and 

redox on proxy signals, as they may be altered by basin restriction and the eventual drawdown of 

the heavier isotope into persistently anoxic sediments. 

In this study we examine the uranium content, total organic carbon (TOC) content, and U-

isotopic composition of three late Devonian shales deposited in three different depositional settings: 

The Woodford Shale of Oklahoma, the Cleveland Member of the Ohio Shale of eastern Kentucky, 

and the Upper and Lower Bakken Shales of eastern Montana.  

4.3 Study Areas 

4.3.1 The Woodford Shale of Oklahoma  

The Woodford Formation is a black, organic-rich shale of Late Devonian age consisting of 

varying proportions of terrigenous, pelagic, and authigenic constituents (Comer, 2008). The 

Woodford Shale is easily recognized in subsurface logs due to its high radioactivity and persistent 

hydrocarbon shows, and is a source-rock for much of the oil produced in Oklahoma (e.g. Cardott 

and Lambert, 1985). Because of the economic potential of the Woodford as a petroleum source 

rock, the depositional environment responsible for the widespread formation of Woodford Shale 

has been heavily studied. However, there is still some disagreement in literature as to the 

oceanographic conditions necessary for the accumulation of the organic carbon found within the 

shale, as well as to describe some sedimentological features and lithologies found throughout the 

formation. A study by Heckel (1977) cites the presence of large phosphate nodules and laminations 

found throughout the Woodford Shale as evidence for strong upwelling conditions in a margin 
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setting. Algeo and Tribovillard (2009) agree with an upwelling depositional environment for 

Oklahoma Woodford Shale and suggested, based on molybdenum/uranium covariations, that the 

Late Devonian seaways of Oklahoma were open to the ocean, which allowed for the free exchange 

of nutrients and trace metals. In contrast to the findings of previous studies, Turner and Slatt (2016) 

concluded that the lower Mo/TOC ratios of a lower section of Woodford Shale indicated a period 

of basin restriction, followed by upwelling, as indicated by higher Mo/TOC ratios and phosphate 

nodules only present in the uppermost section.  

4.3.2 Cleveland Member of the Ohio Shale of Eastern Kentucky 

The Cleveland Shale Member of the Ohio Shale Group is a Late Devonian aged organic-

rich shale in the Appalachian Basin (Ettensohn, 1987; Pashin and Ettensohn, 1995). The shale 

contains minor carbonate concretions and pyrite (Robl et al., 1983). Throughout the Devonian 

Period the Appalachian Basin was connected to the Michigan and Illinois Basins as well as the 

ancient Rheic Ocean by marginal sills (Algeo et al., 2008; Algeo and Rowe, 2012). Redox 

conditions in the Appalachian Basin during the time of deposition of the Cleveland Shale member 

may have been affected by changes in circulation patterns due to sea-level fluctuations, which 

would have caused a shallowing of sills restricting the flow of seawater into the basin (Pashin and 

Ettonsohn, 1995; Algeo et al., 2007; Algeo and Rowe, 2012). Such a sill shallowing could have 

resulted in the slowing of the rate of the deep-water renewal of trace metals (Algeo and Rowe, 

2012), resulting in the lower Mo/TOC ratios measured within the Cleveland Member (Algeo et al., 

2007; Algeo and Rowe, 2012).  

4.3.3 Bakken Shale of Eastern Montana 

The Late Devonian-Early Mississippian Bakken Formation is present in the subsurface of 

the Williston Basin spanning from Northeastern Montana, North Dakota, Southwestern Manitoba 

and Southern Saskatchewan (Smith and Bustin, 1996; Angulo and Buatois, 2009). The formation 
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consists of three members: the upper black shale member, a middle member containing sandstone, 

siltstone, and dolomite, and a lower black shale member that is lithologically similar to the upper 

member (Meissner, 1984, Webster, 1984; Egenhoff et al., 2011; Egenhoff and Fishman, 2013, 

Borcovsky et al., 2017). The upper and lower shale members are the primary source rocks for 

Bakken reservoirs as well as some overlying and underlying units (Gerhard et al., 1990; Chen et 

al., 2009; Egenhoff and Fishman, 2013) and are the intervals of interest for this study. During the 

time of Bakken deposition, the Williston Basin was located in the tropics along the western margin 

of what would become North America (e.g., Gerhard et al., 1990; Nordeng, 2009). Rising sea levels 

inundated the basin and likely created stratified water conditions allowing for anoxic bottom water 

and the accumulation of large amounts of organic carbon (Smith and Bustin, 1996; Nordeng, 2009), 

although the depth of the water column and extent of stratification is still debated (Smith and 

Bustin, 1996). Changes in the extent of stratification throughout the basin may have important 

impacts on the geochemical signals and the amount of organic carbon preserved in the shale. It was 

proposed that some of the deeper facies contained in the southern Williston basin show evidence 

of restriction relative to those in the north where the waters were better connected to the open ocean 

via the Elk Point Trough (Algeo and Tribovillard, 2009).  

4.4 Methods 

4.4.1 Sample collection 

In order to compare three relatively age-equivalent shale formations, four Late Devonian-

Mississippian aged cores were examined from the three study locations. To examine the Woodford 

Shale, samples from two cores were selected, the George Core and the Poe Core. The George core 

containing Woodford Shale was collected from Noble County, Oklahoma on the Cherokee 

Platform, and the Woodford Poe core was collected from Hughes County, Oklahoma in the Arkoma 

Basin (Figure 4.1). Samples were taken from each core in approximate 5-foot intervals with 

variabilities in sampling resolution due to core availability and areas of interest. A rock saw was 
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used to cut a cube or wedge from the center of the slab being cautious not to include any outer 

edges to avoid contamination by drilling fluids. Deionized water was used to lubricate the saw. 

Woodford cores were chosen based on availability and location and are housed in the Oklahoma 

State University Core Laboratory in Stillwater, Oklahoma.  

 

Figure 4.1. Maps of the four core locations (represented by red stars): Two Woodford Shale cores 

from Oklahoma, one Cleveland Shale core from Kentucky, and one Bakken Shale core from 

Montana. A) Map of the United States (Modified from USGS, National Map) and B) 

Paleogeographic map of North America during the Late Devonian Period (Modified after Blakey, 

2016).  

Bakken 

Cleveland 

Woodford 
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To study the Cleveland Shale, Core K-56676 was sampled. The core was collected in 

Letcher County, Kentucky (Figure 4.1) by EQT Production Company and is currently housed in 

the Kentucky Geological Survey Core Repository in Lexington, Kentucky. The core represents 115 

feet of Cleveland Shale and was sampled every ~5 feet, depending on core availability. 

Bakken Shale samples were collected from USGS core code E701, the Blue Sky well, for 

a previous study and U and TOC values reported here were previously included in the 

supplementary material of Scott et al. (2017). Splits of the samples used in the previous study were 

provided by the United States Geological Survey (USGS) for isotopic analysis. 

4.4.2 Sample Analyses 

All Woodford and Cleveland core samples were crushed into fine powder using a ball mill 

with a tungsten carbide canister and balls. Total carbon (TC) and total inorganic carbon (TIC) were 

measured using an Eltra 2000 Carbon Sulfur Determinator at Oklahoma State University (OSU). 

The measured TIC was subtracted from the TC with the difference being total organic carbon (TOC, 

wt. %). 

Elemental concentrations of Woodford and Cleveland Shale samples were analyzed using 

inductively coupled plasma-mass spectrometry (ICP-MS, iCapQc, ThermoScientific) at OSU. Due 

to the anticipated high volume of organics in shale samples, approximately 100 mg of each 

powdered sample was combusted at 900°C in a furnace for 12 h to remove the organic content. 

Ashed samples were digested under temperature and pressure (PicoTrace Digestion system) using 

trace-metal grade nitric (3 ml), hydrofluoric (2 ml) and hydrochloric (3 ml) acids. Samples were 

heated at 180°C until fully dissolved and evaporated. Samples were reconstituted in 5% trace metal 

grade nitric acid. Standard reference material (USGS SDO-1) was digested and analyzed alongside 
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Woodford and Cleveland shale samples to monitor reproducibility. Average values of replicate 

digestions were well within recommended ranges with the error for U <5%.  

All Bakken shale samples used in this study were prepared and measured for trace metal 

content and TOC by the United States Geological Survey and methods and results are reported in 

Scott et al. (2017). A powder split of samples from core E701 were provided by the USGS and 

were digested alongside Woodford and Cleveland samples for the purpose of U-isotope analysis. 

The authigenic fraction of U (Uauth) in all shale samples is estimated using the calculation: 

Uauth = Usample - [U/Aldetrital *Alsample], (equation 4.1) 

assuming a detrital U:Al ratio of 15×10-6 (McManus et al., 2005). The authigenic fraction is 

reported in the results table (Table A7). However, because Uauth is calculated using Al to determine 

dilution by detrital components, and both U and TOC are subject to dilution by the same detrital 

components, Uauth will not be used when comparing U to TOC because the Al-normalization may 

introduce variance in trace element-TOC relationships (Algeo and Lyons, 2006).  

4.4.3 Uranium Isotope Analysis 

All digested shale samples to be analyzed for U isotope composition were treated with an 

ultra-pure double-spike IRMM3636 (e.g. Stirling et al., 2007) with a concentration of 10.7 ppb 233U 

and 10.7 ppb 236U. In Woodford Shale samples, the target 236U:235U spiking ratio in the sample:spike 

mixture was 3:2. The spiking ratio utilized for these samples is lower than that observed in other 

labs. This practice was intended to prevent carryover between samples and reduce the chance of 

creating an instrument memory of the isotope ratios. The U was then separated from the matrix 

with column chromatography using Uteva ion exchange resin (Potter et al., 2005). Aliquots of the 

purified U samples were then analyzed on an iCap ICP-MS to quantify U concentration of the 

sample and estimate the U recovery prior to 238U/235U ratios being analyzed on the Neptune multi-
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collector (MC) ICP-MS. These measurements on Woodford Shale samples were conducted at the 

Department of Marine and Coastal Sciences at Rutgers University in New Brunswick, New Jersey.  

For Cleveland and Bakken shales, digested samples for uranium isotope analysis were 

treated with IRMM3636 to a spike to sample ratio of .4 ml to 250ng of U. Samples were dried 

down to equilibrate the spike and taken up in 3M nitric acid. The samples were then pre-

concentrated via element-specific column chemistry, then treated with concentrated HNO3 and 

30% H2O2 to remove any organics that may have been added from the resin. Samples were once 

again dried down. Due to problems with residual Na and sometimes Fe contamination, a clean-up 

step using a PrepFAST-MC was used. Samples were then dissolved in 6M HNO3 and Na and Fe 

were eluted. Sample U was eluted, collected, and measured using a Neptune MC-ICP-MS at 

Arizona State University.  

The U-isotopic composition is reported as δ238U in standard per mil (‰) notation. The 

δ238U value is calculated against standard reference material CRM112 using the formula: 

δ238U = [(238U/235U)sample / (238U/235U)CRM112 - 1] × 1000, (equation 4.2) 

All data are provided in Table A7. Trace metal measurements discussed here were all within less 

than 5% error for U. Error in isotopic measurements are given as 2 standard deviations (2SD). 

4.4.4 Late–Devonian Seawater Average δ238U Calculation 

To determine the degree of U-isotope fractionation from seawater, the late Devonian 

seawater composition was calculated. Since carbonates are considered to hold a record of the U-

isotopic composition of seawater, carbonate U-isotopic values in Late Devonian carbonates 

reported in White et al. (2018) are used to give an approximation of Late Devonian seawater 

composition for comparison purposes. It was recently observed in recent Bahamian carbonates that 

diagenesis imparts a positive isotopic fractionation in carbonate rock of, on average, 0.27‰ (Chen 
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et al., 2018). This correction is applied to δ238U values reported in White et al. (2018), which were 

then averaged to give an approximation of Late Devonian seawater composition. 

 

4.5 Results 

4.5.1 Woodford Shale 

In the George and Poe cores, U content ranges from ~8ppm to ~50ppm with TOC content 

between 0.4 and 12 wt.% (Figure 4.2, Table A7). The George core has U/TOC ratios ranging from 

2.7 to 5.9 and δ238U values between -0.46 (+/- 0.23‰; 2SD) to +0.3 (+/- 0.10‰; 2SD, Figure 4.2A). 

Poe has highly variable U/TOC ratios ranging from 0 to 45 with the largest U/TOC ratios in the 

shallowest section. Poe δ238U values from -0.21‰ (± 0.13‰; 2SD) to 0.38 (± 0.13‰; 2SD, Figure 

4.2B).  

 

 

Figure 4.2. Authigenic uranium (Uauth), U/TOC ratio, and δ238U values (Error bars = 2SD) in the 

Woodford Shale cores (A) George and (B) Poe. Dashed grey line on isotope plot represents the 
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mean δ238U of Late Devonian seawater calculated from reported carbonate values in White et al. 

(2018).  

 

 

4.5.2 Cleveland Shale  

Within core K-566765, the Cleveland Shale U content ranges from 1.3 ppm to 22.9 ppm 

with TOC content between 0.5 and 8 wt.%. Within the examined core, U/TOC ratios range from 1 

to 7 with an average of 3 and δ238U values are between -0.22‰ (± 0.16‰; 2SD) and 0.21‰ (± 

0.13‰; 2SD, Figure 4.3, Table A7).  

 

Figure 4.3. Uauth, U/TOC ratio, and δ238U (Error bars = 2SD) with depth in the Cleveland Shale 

core K-566765. Blue bar on isotope plot indicates calculated mean δ238U of Late Devonian seawater 

from reported values in White et al. (2018). 

 

4.5.3 Bakken Shale 
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Trace metal and TOC contents of the Bakken Shale samples used in this study were 

previously reported in the supplementary material of Scott et al. (2017). The U/TOC ratios in the 

Bakken Shale core E701 range from 2 to 7 (average 3) in the Upper Bakken Shale, which has a 

range of δ238U values between +0.12‰ (± 0.04‰, 2SD) to +0.27‰ (± 0.09‰, 2SD). The U/TOC 

ratios in the Lower Bakken Shale range from 2 to 13 (average 6) with δ238U values in between 

+0.07‰ (± 0.19‰, 2SD) and +0.36‰ (± 0.05‰, 2SD; Figure 4.4, Table A7). 

 

Figure 4.4. Uauth, U/TOC ratio, and δ238U (Error bars = 2SD) with depth in the Upper and Lower 

Bakken Shale in core E701. The U and TOC data are previously reported by Scott et al. (2017). 

Blue bar on isotope plot indicates calculated mean δ238U of Late Devonian seawater from reported 

values in White et al. (2018). 

 

4.6 Discussion 

The oceanographic conditions of the Late Devonian basins of North America can be 

differentiated by the distinct relationship between U and TOC found in the black shales contained 

within. The Woodford Shale contains a relatively linear relationship between U and TOC (Figure 
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4.5) with a general increase in U enrichment with increasing TOC content. Scatter in these data 

may reflect post-depositional changes and/or catagenesis as this rock is considered mature 

throughout the areas where cores for this study were obtained (Cardott, 2012).  

 

Figure 4.5. The association between U and TOC in Woodford, Cleveland and Bakken shales. 

Bakken shale data are from Scott et al. (2017). Cleveland and Woodford shale data are from this 

study. 

 

The large enrichment of U in the sediments and general positive correlation between U and TOC 

is in agreement with previous interpretations of deposition in an anoxic benthic environment (e.g. 

Heckel, 1977; Algeo and Tribovillard, 2009; Comer, 2008; Turner and Slatt, 2016).  

Since the TOC contents of both Woodford Shale cores are similar, the difference in U 

content could be due to a higher accumulation rate on the present-day Cherokee Platform (George 

core), which may be a consequence of the shallower and more proximal setting (Puckette et al., 

2016). The higher U content in the Woodford Shale from the Arkoma Basin (Poe core) may be due 
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to the proximity of the sample location to past upwelling (Lowe, 1975; Heckel and Witzke, 1979; 

Ettensohn and Barron, 1981; Parrish, 1982; Comer, 1991, 2008), which may have provided more 

nutrients to surface waters, driving primary productivity and highly reducing bottom water 

conditions (Comer, 1991), although this is not evidenced by an increase in TOC content. However, 

the Woodford Shale from the Arkoma Basin (Poe core) does contain elevated nickel (Ni) and 

copper (Cu) contents (Table A8), relative to the Woodford Shale from the Cherokee Platform 

(George core), which is possible evidence of enhanced productivity is similar to what is observed 

in modern sediments from upwelling areas (e.g. Borchers et al., 2005).  

The geochemical signals in the Woodford Shale are comparable to those observed in 

modern shelf sediments of the upwelling Namibia Continental Margin where there is good 

correlation between U and TOC and U/TOC ratios are high. Additionally, the average δ238U values 

from the Woodford Shale and Namibia shelf sediments show similar fractionation from seawater 

(Δ238U) approaching +0.6‰, which is indicative of U-reduction taking place in an anoxic, open 

setting (Anderson et al., 2014). It is also possible that the lower U content and higher TOC content 

on the Cherokee Platform indicates some basin restriction within a sub-basin, as proposed by 

Turner and Slatt (2016). However, there are not enough data from this study to draw any further 

conclusions about sub-basins on the present-day Cherokee Platform.  

Similar to the Woodford Shale, the Cleveland Shale exhibits a positive covariation between 

U and TOC (Figure 4.5). The ratios of U to TOC in the Cleveland Shale are, however, slightly 

lower with an average ratio of ~3, when compared to the Woodford Shale (Table 4.1). These lower 

ratios are controlled primarily by lower U content and not TOC. A decrease in the rate of U 

incorporation into sediments may be a symptom of basin restriction if the watermass was depleted 

of metals due to persistent bottom water anoxia with little deepwater renewal (Algeo and Rowe, 

2012). In previous work it was suggested that the mechanism for lower trace metal content in the 

Cleveland Shale is strong restriction of the Appalachian Basin and the extensive global trace metal 
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drawdown during the Late Devonian (e.g. Algeo et al., 2007; Algeo and Rowe, 2012). However, 

the δ238U values of the Cleveland Shale are very similar to the δ238U values of Woodford Shale 

(Table 4.1, A7) with an approximate Δ238U of +0.6‰. This degree of fractionation would imply 

that the Appalachian Basin, while possibly partially restricted, was not restricted enough, or over a 

long enough time interval, to alter the isotopic composition of the reduced U. For example, in the 

highly-restricted Black Sea, the bottom water δ238U is lower than that of average seawater due to 

the extensive drawdown of the heavier isotope into anoxic sediments (Rolison et al., 2017) resulting 

in Black Sea sediments with lower δ238U values than expected for highly reducing environments 

(Andersen et al., 2014). Samples in the previous Appalachian Basin studies were collected from 

the deeper basin. Thus, due to the location of our Cleveland Shale sample site, and because a 

definitive U-isotopic signature of basin restriction is not apparent in the sediments, we propose that 

the cause for the lower U content of the Cleveland Shale in the studied core may be post-

depositional oxidation due to a change in the level of the pycnocline, as proposed by Ettonsohn et 

al. (1988). A similar geochemical signal has been observed in some Antrim Basin shales and was 

attributed to the effects of a fluctuating pycnocline on sediments deposited in a shallow basin-rim 

setting (Formolo et al., 2014).  

The Lower and Upper Bakken shales, while lithologically similar to each other (Meissner, 

1984, Webster, 1984; Egenhoff and Fishman, 2013, Borcovsky et al., 2017), have very different 

relationships between U and TOC (Figure 4.5). Interestingly, the difference in U/TOC ratios 

(Lower Bakken average U/TOC = 6; Upper Bakken average U/TOC = 3, Table 4.1) is not reflected 

in the isotopic composition. It should be noted, however, that the Upper Bakken contains Lower 

Mississippian-aged sediments for which no seawater compositional data are presently available. In 

the Lower Bakken Shale, there is significant fractionation from interpreted seawater values on the 

order of ≥ 0.7‰. These findings are consistent with reduction and U-isotope fractionation occurring 

above the sediment-water interface and subsequent accumulation in the sediments (Andersen et al., 
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2017), coupled with back-diffusion of isotopically light U into the water column. This is similar to 

the isotopic fractionation observed in the highly-restricted Black Sea water column and sediments 

(Montoya-Pino, 2010; Rolison et al., 2017; Anderson et al, 2017) where U-isotopic fractionation 

from seawater increases to +0.42‰ in Unit I and +0.62‰ in Unit II (Weyer et al., 2008; Montoya-

Pino et al., 2010). In this case, the combination of high U/TOC ratios, coupled with the large U-

isotopic fractionation from Devonian seawater indicates highly sulfidic redox conditions in the 

stratified bottom waters with enough surface water connection to the open ocean to replenish the 

supply of nutrients and trace metals into the basin. This is in good agreement with conclusions 

made by Scott et al. (2017) which surmised that the ancient Williston Basin contained persistent 

sulfidic bottom waters, which resulted in the large enrichments of trace metals and organic carbon 

within the Bakken Shale. Carbon loss, either during early diagenesis or catagenesis, may also 

contribute to a decoupling of U and TOC (e.g. Lüning and Kolonic, 2003), however, in the case of 

the Bakken Shale in core E701, the shale is thermally immature (Ro = 0.7-0.8, USGS), thus 

significant catagenetic carbon loss is unlikely. 

While there is some difficulty in describing the geochemical conditions of an entire basin 

based on limited sample locations, the findings of this study are typically in agreement with past 

studies of the investigated shales: High TOC and U contents, moderate to high m values (Table 

4.1), and Δ238U values of up to +0.6‰ suggest that the Woodford Shale was deposited in a 

predominantly open ocean setting. However, the lower U/TOC ratios in sediments from the George 

core suggest that these sediments may have been deposited in a semi-restricted sub-basin, as 

proposed by Turner and Slatt (2016).  
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Table 4.1. Comparison of the average Uauth, TOC, U/TOC, Slope, and δ238U for Woodford, 

Cleveland, and Bakken shales. Italicized values are calculated using data from Scott et al. (2017). 

Unit Uauth Avg. 

(ppm) 

TOC Avg. 

(wt. %) 

U/TOC 

Avg.  

Slope 

(m) 

δ238U (‰) 

Woodford (Poe) 34.4 4.4 9.1 5 0.06 

Woodford (George) 26.5 6.9 4.0 2 0.02 

Cleveland 9.1 3.4 3.0 2 0.03 

Upper Bakken 48.4 14.9 3.4 0 0.21 

Lower Bakken 71.9 12.3 6.0 3 0.28 

 

 

The Cleveland Shale was deposited along the margin of the semi-restricted Appalachian 

Basin, which may have been strongly affected by sea-level fluctuations (e.g. Pashin and Ettonsohn, 

1995, Algeo et al., 2007, Algeo and Rowe, 2012) and a fluctuation pycnocline. Because the 

reoxidation of U after deposition does not significantly alter the U-isotopic composition of 

sediments (Abshire et al., 2020), the heavier isotopic composition of the Cleveland Shale in core 

K-566765, coupled with the low U/TOC ratios (Table 4.1) support a fluctuating pycnocline and a 

change in redox conditions along the basin margin, rather than basin restriction, as the primary 

cause for the observed low U content. Like the Woodford and Cleveland shales, the geochemistry 

of the Upper and Lower Bakken Shales both indicate a reducing environment; the high U and TOC 

content, lower average U/TOC ratio, isotopically-heavy U-isotopic composition, and m value of 0 

in the Upper Bakken Shale (Table 4.1) indicates a very strongly reducing water column with 

sulfidic conditions above the sediment-water interface, comparable to the highly-restricted Black 

Sea (Murray et al., 1989). Thus, it is likely that the conditions responsible for the decoupling of U 

and TOC in the Upper Bakken may be related to intense metal drawdown with limited bottom water 

renewal under persistent euxinic conditions. 

4.7 Conclusion 
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The combination of the U/TOC ratio and the U-isotopic compositions reported in this study 

provides further refinement to past paleoenvironmental interpretations of the degree of basin 

restriction and redox conditions within the Late Devonian epicontinental seas of North America. 

In the case of the examined shales in the study, while lithologically similar, there were stark 

contrasts in U content and U/TOC ratios in each shale indicating that each studied basin had unique 

oceanographic conditions ranging from an open continental margin setting to a stratified euxinic 

basin. The degree of U-isotope fractionation recorded in each shale assisted in identifying the 

differences between each of the depositional environments. The result of this study is a more refined 

understanding of the various environments of black shale deposition and new geochemical proxy 

tools which can be used to influence depositional models and improve the ability to predict the 

spatial distribution of organic-rich shales in the subsurface.  
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CHAPTER V 
 

 

CONCLUSIONS 

 

This thesis represents a geochemical study of a modern, organic-rich dynamic depositional 

system, which examines the pathways of trace metals into organic-rich sediment and evaluates the 

effects of lateral transport and post-depositional oxidation on trace metal contents. The results of 

the modern study are compared to ancient black shales. Historically, many have looked to the Black 

Sea and other enclosed anoxic basins as the closest analogues for the depositional environment of 

an organic-rich shale (e.g. Pompeckj, 1901; Brumsack, 2006, and references therein). The 

assumption is that the restriction of the Black Sea caused stagnation and anoxic bottom waters, 

facilitating the preservation of organic matter (e.g. Demaison and Moore, 1980). The sediments 

and organic matter then accumulated in the basin, eventually becoming deeply buried and forming 

black shale. However, there are parts of the modern ocean floor that contain large amounts of buried 

organic carbon, such as secondary depositional centers, which can form along passive margin shelfs 

in upwelling areas (e.g. Mollenhauer et al., 2002). The high primary productivity and oxygen 

depleted waters within oxygen minimum zones is ideal for the accumulation and preservation of 

organic matter. However, large quantities of organic matter can also accumulate and be preserved 

under an oxic water column, away from the area of highest surface productivity (e.g. Mollenhauer 

et al., 2002, 2007; Inthorn et al., 2006a,b). The transport and redeposition of organic matter leaves 

behind a unique geochemical signature that, when preserved over time, can fingerprint areas where
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redeposition has taken place beneath an oxygen minimum zone.  

In this study, we (1) determined that the cause of the decoupling of U and TOC in sediment 

of the NCM is the disproportionate loss of U during transport and subsequent oxidation; (2) 

revealed that, despite a loss of U in redeposited sediments, the remaining U remains strongly 

enriched in the heavier U-isotope, maintaining the isotopic signature of the sediments’ primary 

deposition under anoxic conditions; (3) defined a geochemical signature of a redepositional zone 

using redox-sensitive metals Fe, Mn, Mo, V, and U and productivity-related metals Ni, Cu, and 

Ag; and (4) determined the depositional and oceanographic conditions of three Late Devonian 

shales based on U content, U/TOC ratios, and U-isotopic composition compared to modern organic-

rich systems.  

Due to a changing climate and a current loss of oxygen from the oceans (Benson and 

Krause, 1980; Matear and Hirst, 2003; Keeling et al., 2011), there are growing concerns about the 

threat of ocean deoxygenation to marine ecosystems (Diaz, 2001; Diaz and Rosenberg, 2008).  

Furthermore, major global anoxia has been considered one of the primary causes for past mass-

extinction events (Meyer and Kump, 2008). Therefore, it is critical to understand how the oceans 

have responded to extreme changes in the past. Due to the sensitivity of some inorganic 

geochemical proxies to changes in productivity and redox conditions, these proxies are invaluable 

tools for reconstructing past ocean conditions. Our interpretation of the geochemical composition 

of the dynamic Namibian Continental Margin has provided a window into the depositional 

conditions which may have been present in the ancient oceans. While this work focused heavily on 

sediments from the Namibian Continental Margin, literature suggests that the results are highly 

applicable to other highly productive continental margin settings (e.g. Jahnke et al., 1990; Arthur 

et al., 1998, Scholz et al., 2011). This thesis presents new insight into the incorporation and 

accumulation of metals in sediments under dynamic depositional conditions and provides tools 

which may be used to influence depositional models, potentially allowing for the discovery of large 
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areas of organic carbon preserved in ancient redepositional zones. Furthermore, the results of this 

thesis will help to refine paleo-environmental interpretations and develop new depositional models. 

Considering the impact of sediment transport and post-depositional oxidation on organic matter 

distribution and geochemical signals allows for well-informed interpretations of 

paleoenvironments and improves predictions of the impacts of future climate changes on marine 

environments. 
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APPENDICES 
 

 

 

Table A1. Uranium, TOC, and isotope composition data from sites 25020 (shelf), GC 4 (shelf 

break), and GC 5 (slope). 

Sample Depth  

cm 

U  

ppm 

TOC* 

wt.% 

Al* 

ppm 

Uauth 

% 

U/TOC δ238U 

‰ 

2SD δ234U 

‰ 

2SD 

25020-11 0.5 5.18 7.78 8667.4 97.49 0.66 -0.56 0.15 126.96 25.43 
25020-12 1.5 10.75 8.68 12413.1 98.27 1.24 -0.62 0.04 138.24 8.16 

25020-13 3 12.83 7.22 12854.3 98.50 1.78 -0.28 0.09 139.40 12.23 

25020-14 5 10.51 8.82 13633.0 98.05 1.19 -0.14 0.15 129.17 25.43 

25020-15 7 11.50 8.82 12801.6 98.33 1.30 -0.16 0.19 140.02 3.81 
25020-16 9 26.92 8.51 36328.1 97.98 3.16 -0.12 0.13 143.62 10.57 

25020-17 13 32.94 10.44 18642.9 99.15 3.15 0.20 0.15 137.83 25.43 

25020-18 17 58.35 10.44 - - 5.59 0.11 0.09 145.63 20.43 

25020-19 21 77.69 10.34 21148.9 99.59 7.51 -0.10 0.21 150.60 18.17 
25020-20 25 95.85 11.59 31830.3 99.50 8.27 0.09 0.15 145.04 25.43 

           

GC4-21 0.5 39.12 3.27 13788.9 99.47 11.95 -0.36 0.14 15.70 12.35 

GC4-22 1.5 38.69 3.38 10381.8 99.60 11.46 -0.18 0.02 17.57 9.15 
GC4-23 3 40.12 3.23 12518.0 99.53 12.42 -0.26 0.15 8.90 25.43 

GC4-24 5 49.13 3.82 12885.8 99.61 12.86 -0.18 0.15 8.04 25.43 

GC4-25 7 46.25 3.13 9979.5 99.68 14.79 -0.23 0.02 14.61 6.33 

GC4-26 9 45.68 3.33 12290.5 99.60 13.72 -0.16 0.15 19.23 25.43 
GC4-27 13 48.66 3.14 10467.9 99.68 15.52 0.05 0.04 10.95 0.81 

GC4-28 19 48.35 3.14 12350.4 99.62 15.39 -0.31 0.14 9.00 27.51 

GC4-29 23 50.36 2.51 12520.4 99.63 20.03 -0.21 0.17 14.87 19.00 

           
GC5-30 0.5 6.88 5.79 16763.9 96.34 1.19 0.00 0.01 112.21 21.25 

GC5-31 1.5 7.32 6.37 16578.0 96.61 1.15 -0.09 0.15 110.21 25.43 

GC5-32 3 7.52 6.04 16049.6 96.80 1.25 -0.11 0.15 109.88 25.43 

GC5-33 5 5.99 6.99 16697.7 95.82 0.86 0.17 0.14 108.79 19.30 
GC5-34 7 6.78 6.92 14294.6 96.84 0.98 0.08 0.15 115.59 25.43 

GC5-35 9 7.48 6.84 16157.7 96.76 1.09 -0.23 0.15 115.87 25.43 

GC5-36 13 8.13 7.69 17000.0 96.87 1.06 -0.20 0.13 122.98 26.25 

GC5-37 19 10.60 7.44 14000.0 98.02 1.42 -0.26 0.15 110.94 25.43 
GC5-38 23 12.47 7.14 16009.0 98.07 1.75 -0.38 0.05 126.57 29.91 

           
NIST2702  7.68 - 79158.1 - - - - - - 

SDO-1  45.86 - 61957.6 - - 0.00 0.40 0.27 7.38 

BATS SW  - - - - - -0.38 0.15 148.35 25.43 

*After Cofrancesco, 2016 - indicates value not reported 
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Table A2. The average shale content of selected elements from Turekian and Wedepohl (1961). 

Element Avg. Shale Content (ppm) 

Aluminum (Al) 80,000 

Manganese (Mn) 850 

Vanadium (V) 130 

Iron (Fe) 47,200 

Nickel (Ni) 68 

Copper (Cu) 45 

Molybdenum (Mo) 2.6 

Silver (Ag) 0.07 
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Table A3. Pore water concentrations of Fe, Mo and V from the shelf (25020), shelf break (GC 4), and upper 

slope (GC 5). 

Sample Depth V Fe Ni Cu  Mo Mn 

Name cm nM µM nM nM nM µM 

25020-BW-51 0 19.84 0.15 * * 114.03 0.00 

25020-BW-52 0 16.18 0.25 * * 107.69 0.00 

25020-1-53 0.5 117.30 0.16 * * 119.52 0.01 

25020-3-54 1.5 39.11 3.40 * * 39.56 0.06 

25020-5-55 3 38.29 10.48 * * 22.29 0.13 

25020-7-56 5 50.97 2.53 * * 25.19 0.15 

25020-9-57 7 24.99 0.23 * * 20.74 0.01 

25020-11-58 9 16.55 0.23 * * 13.25 0.04 

25020-13-59 13 35.34 1.44 * * 0.91 0.10 

25020-15-60 17 25.25 0.63 * * 5.04 0.05 

25020-19-61 21 64.59 0.38 * * 150.59 0.05 

25020-21-62 25 664.25 0.20 * * 106.43 0.02     
  

 
 

GeoChe4-BW-63 0 39.93 0.22 * * 106.32 0.00 

GeoChe4-BW-64 0 38.25 0.15 * * 111.52 0.00 

GeoChe4-1-65 0.5 49.78 4.24 * * 157.49 0.01 

GeoChe4-3-66 1.5 53.73 8.49 * * 189.91 0.01 

GeoChe4-5-67 3 22.05 6.12 * * 194.51 0.03 

GeoChe4-7-68 5 57.77 2.31 * * 291.68 0.03 

GeoChe4-9-69 7 53.99 4.64 * * 246.35 0.02 

GeoChe4-11-70 9 44.31 8.83 * * 144.83 0.14 

GeoChe4-15-71 13 72.37 5.85 * * 408.90 0.09 

GeoChe4-19-72 19 127.21 15.87 * * 1883.61 0.58 

GeoChe4-21-73 21 102.85 0.17 * * 2208.17 0.01     
  

 
 

GeoChe5-BW-74 0 47.43 0.00 * * 123.45 0.00 

GeoChe5-BW-75 0 44.31 0.00 * * 103.80 0.00 

GeoChe5-1-76 0.5 44.74 4.51 * * 345.18 0.05 

GeoChe5-3-77 1.5 76.85 3.96 * * 692.99 0.02 

GeoChe5-5-78 3 64.90 5.65 * * 441.91 0.06 

GeoChe5-7-79 5 37.94 15.28 * * 384.78 0.11 

GeoChe5-9-80 7 47.43 16.13 * * 562.34 0.21 

GeoChe5-11-81 9 25.41 6.20 * * 800.55 0.15 

GeoChe5-15-82 13 72.06 0.04 * * 1560.65 0.06 

GeoChe5-19-83 19 83.18 0.00 * * 2236.06 0.05 

GeoChe5-21-84 21 77.94 0.00 * * 3033.26 0.03 

*indicates element was below detection limits 
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Table A4. Measured TOC and CaCO3 content of sediments from the shelf (25020), shelf break (GC 4), 

and upper slope (GC 5). TOC data from sites 25020, GC 4 and GC 5 taken from Cofrancesco (2016). 

Sample 

Name 

Depth 

cm 

TOC 

wt% 

CaCO3 

wt% 

25020-11 0.5 7.8 17.1 

25020-12 1.5 8.7 13.2 

25020-13 3 7.2 17.4 

25020-14 5 8.8 10.8 

25020-15 7 8.8 7.2 

25020-16 9 8.5 9.2 

25020-17 13 10.4 11.0 

25020-18 - - - 

25020-19 21 10.3 10.5 

25020-20 25 11.6 11.1 

    

GC 4-21 0.5 3.3 26.4 

GC 4-22 1.5 3.4 35.2 

GC 4-23 3 3.2 36.1 

GC 4-24 5 3.8 28.1 

GC 4-25 7 3.1 33.1 

GC 4-26 9 3.3 35.2 

GC 4-27 13 3.1 22.8 

GC 4-28 19 3.1 28.6 

GC 4-29 23 2.5 30.0 

    

GC 5-30 0.5 5.8 50.5 

GC 5-31 1.5 6.4 49.5 

GC 5-32 3 6.0 40.8 

GC 5-33 5 7.0 54.2 

GC 5-34 7 6.9 50.6 

GC 5-35 9 6.8 - 

GC 5-36 13 7.7 34.8 

GC 5-37 19 7.4 63.0 

GC 5-38 23 7.1 43.1 
- Indicates no measurement collected  
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Table A5. Solid phase major and trace element content of sediments from the shelf (25020), shelf break 

(GC 4), and upper slope (GC 5). 

Sample  

Name 

Depth  

cm 

Al 

Wt % 

V 

ppm 

Mn 

ppm 

Fe 

Wt % 

Ni 

ppm 

Cu 

ppm 

Mo 

ppm 

Ag 

ppm 

25020-11 0.5 0.72 38.55 38.03 0.53 27.17 18.03 14.85 0.24 

25020-12 1.5 1.22 35.00 56.46 0.83 42.93 27.76 17.29 0.38 

25020-13 3 0.96 28.93 61.41 0.70 36.84 23.32 11.94 0.35 

25020-14 5 1.09 34.22 62.59 0.86 45.21 27.08 17.58 0.38 

25020-15 7 - - 60.84 - - - - 0.25 

25020-16 9 1.32 55.12 - 1.02 49.57 30.47 22.46 0.44 

25020-17 13 1.76 48.11 86.52 1.30 65.36 40.40 22.01 0.66 

25020-18 17 1.97 50.02 - 1.56 78.56 47.08 28.69 0.72 

25020-19 21 2.20 59.50 93.40 1.74 93.63 55.54 32.70 0.81 

25020-20 25 2.29 124.34 159.74 1.82 99.49 57.41 38.24 0.89 
          

GC4-21 0.5 1.38 30.78 82.47 1.44 53.03 27.54 3.43 0.17 

GC4-22 1.5 1.04 25.63 65.10 1.22 44.40 22.29 2.96 0.19 

GC4-23 3 1.25 32.58 88.07 1.50 54.45 27.33 3.84 0.17 

GC4-24 5 1.29 33.58 92.49 1.66 52.87 24.52 5.00 0.18 

GC4-25 7 1.00 29.88 72.63 1.44 51.94 24.02 5.22 0.18 

GC4-26 9 1.23 31.65 82.75 1.53 53.02 25.26 4.97 0.17 

GC4-27 13 1.05 31.26 76.78 1.37 59.03 28.38 6.45 0.17 

GC4-28 19 1.24 32.95 80.33 1.57 53.51 25.18 6.92 0.17 

GC4-29 23 1.25 32.10 81.81 1.46 56.43 27.95 8.14 0.17 
          

GC5-30 0.5 1.68 26.61 66.13 1.06 79.23 54.47 1.28 0.83 

GC5-31 1.5 1.66 26.16 65.82 1.04 77.97 54.35 1.48 0.83 

GC5-32 3 1.60 27.58 67.41 1.07 79.03 54.98 2.11 0.81 

GC5-33 5 1.67 27.04 68.70 1.10 79.92 63.79 1.16 0.79 

GC5-34 7 1.43 28.55 72.78 1.20 85.40 58.21 2.72 0.86 

GC5-35 9 1.62 26.70 67.95 1.11 81.80 54.78 4.74 0.86 

GC5-36 13 1.70 33.70 78.50 1.40 47.00 74.30 6.20 0.90 

GC5-37 19 1.40 31.60 66.80 1.20 35.20 64.30 7.50 0.95 

GC5-38 23 1.60 26.75 61.52 1.01 74.44 51.41 7.33 0.97 
- Indicates no measurement collected 
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Table A6. Calculated enrichment factors for all sample locations. 

Sample 

Name 

Mo 

EF 

V 

EF 

Fe 

EF 

Ni 

EF 

Cu 

EF 

Ag 

EF 

25020-11 64 3 1 4 4 38 

25020-12 44 2 1 4 4 35 

25020-13 38 2 1 4 4 41 

25020-14 50 2 1 5 4 40 

25020-15 - - - - - - 

25020-16 52 3 1 4 4 38 

25020-17 39 2 1 4 4 43 

25020-18 45 2 1 5 4 42 

25020-19 46 2 1 5 4 42 

25020-20 51 3 1 5 4 44 

       

GC 4-21 8 1 2 5 4 14 

GC 4-22 9 2 2 5 4 20 

GC 4-23 9 2 2 5 4 16 

GC 4-24 12 2 2 5 3 16 

GC 4-25 16 2 2 6 4 20 

GC 4-26 12 2 2 5 4 16 

GC 4-27 19 2 2 7 5 18 

GC 4-28 17 2 2 5 4 16 

GC 4-29 20 2 2 5 4 16 

       

GC 5-30 2 1 1 6 6 57 

GC 5-31 3 1 1 6 6 57 

GC 5-32 4 1 1 6 6 57 

GC 5-33 2 1 1 6 7 54 

GC 5-34 6 1 1 7 7 69 

GC 5-35 9 1 1 6 6 61 

GC 5-36 11 1 1 3 8 61 

GC 5-37 16 1 1 3 8 77 

GC 5-38 14 1 1 5 6 69 

- Indicates EF not calculated 
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Table A7. Total organic content (TOC), U, Al, U/TOC and δ238U data from Woodford, Cleveland, and 

Bakken shales. 

Core Location Formation Depth TOC U Al Uauth U/TOC δ238U 2SD 

ID Lat. Long. Name m Wt % ppm ppm ppm 
 

‰ 
 

George 36.2761 -97.0665 Woodford 1380.6 5.48 16.0 60566 15.1 2.9 -0.46 0.23 
   

 1381.2 6.55 36.0 55445 35.1 5.5 0.06 0.13 
   

 1382.3 8.90 28.1 55199 27.2 3.2 0.15 0.13 
   

 1383.8 9.30 37.4 55774 36.5 4.0 0.17 0.13 
   

 1385.3 7.24 42.5 56633 41.6 5.9 0.16 0.08 
   

 1386.5 6.09 19.1 43911 18.4 3.1 0.22 0.06 
   

 1387.4 4.88 16.8 53377 16.0 3.4 0.05 0.36 
   

 1389.0 5.48 27.0 64059 26.1 4.9 -0.15 0.27 
   

 1389.9 4.38 18.8 63347 17.9 4.3 -0.03 0.13 
   

 1391.5 5.74 23.4 55548 22.6 4.1 -0.18 0.13 
   

 1392.9 7.48 30.6 73827 29.4 4.1 -0.01 0.20 
   

 1395.1 11.87 32.5 58152 31.6 2.7 0.30 0.10 
 

     Average   6.95 27.3 57986 26.5 4.0 0.02 0.16 
      

  
 

  
   

Poe  35.0193 -96.2976 Woodford 2357.6 0.37 8.1 39514 7.5 21.8 -0.11 0.13 
   

 2359.2 0.53 9.8 7048 9.7 18.6 0.11 0.13 
   

 2360.7 2.93 14.2 8095 14.1 4.8 -0.08 0.13 
   

 2362.4 4.80 37.3 63538 36.3 7.8 -0.05 0.13 
   

 2363.7 4.12 32.2 43599 31.5 7.8 0.15 0.13 
   

 2364.3 1.08 48.8 34098 48.3 45.4 0.15 0.13 
   

 2365.2 7.10 44.8 54206 43.9 6.3 0.12 0.13 
   

 2366.8 3.78 18.2 -  - 4.8 - - 
   

 2368.3 6.58 39.6 65882 38.6 6.0 0.34 0.11 
   

 2369.8 6.33 51.7 53538 50.9 8.2 0.04 0.05 
   

 2371.3 - 40.0 29242 39.6 - 0.12 0.13 
   

 2372.9 4.97  - -  - - - - 
   

 2374.4 7.26 43.8 48106 43.1 6.0 0.04 0.13 
   

 2375.9 6.13 30.8 18077 30.5 5.0 0.38 0.13 
   

 2377.4 2.07 13.4 -  - 6.5 - - 
   

 2379.2 1.84 10.8 -  - 5.9 - - 
   

 2380.6 2.21 10.6 -  - 4.8 - - 
   

 2382.0 4.45 23.8 18485 23.5 5.3 -0.10 0.06 
   

 2383.5 2.60 12.8 -  - 4.9 - - 
   

 2385.1 4.04 33.8 26168 33.4 8.4 0.37 0.01 
   

 2386.6 5.80 - - - - - - 
   

 2388.1 3.69 23.7 14751 23.5 6.4 0.06 0.13 
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Table A7. (continued) 

Core Location Formation Depth TOC U Al Uauth U/TOC δ238U 2SD 

ID Lat. Long. Name m Wt % ppm ppm ppm 
 

‰ 
 

Poe 35.0193 -96.2976 Woodford 2389.8 7.15 61.8 24101 61.4 8.6 0.01 0.13 
   

 2391.2 9.19 46.5 18540 46.3 5.1 -0.12 0.13 
   

 2392.7 5.07 24.1 51780 23.4 4.8 -0.21 0.13 
   

 2394.2 6.87 48.3 42018 47.7 7.0 -0.05 0.13 
 

     Average   4.44 30.4 34778 34.4 9.1 0.06 0.11 
      

  
 

  
   

K-

566765 

37.2303 82.7043 Cleveland 1133.9 7.93 7.0 26262 6.6 0.9 -0.03 0.09 

   
 1135.4 3.23 3.8 24133 3.5 1.2 - - 

   
 1136.9 2.38 4.6 26947 4.1 1.9 - - 

   
 1138.4 5.96 22.3 29922 21.8 3.7 0.21 0.13 

   
 1140.0 4.62 11.0 28654 10.6 2.4 - - 

   
 1141.5 4.86 11.3 27163 10.9 2.3 -0.02 0.02 

   
 1143.0 3.73 7.7 32482 7.2 2.1 - - 

   
 1144.5 4.78 9.0 32088 8.5 1.9 0.06 0.09 

   
 1146.0 3.61 11.3 38126 10.7 3.1 - - 

   
 1147.6 2.73 4.8 28448 4.4 1.8 - - 

   
 1149.1 2.73 10.4 35287 9.8 3.8 0.21 0.04 

   
 1150.6 3.69 7.7 25378 7.3 2.1 - - 

   
 1152.1 2.27 4.9 37485 4.4 2.2 - - 

   
 1153.1 2.58 4.6 20999 4.3 1.8 - - 

   
 1154.3 1.54 11.0 40518 10.4 7.1 0.04 0.03 

   
 1155.2 4.19 22.9 20652 22.6 5.5 - - 

   
 1156.7 3.65 20.5 24149 20.2 5.6 - - 

   
 1158.2 5.41 17.1 30538 16.7 3.2 - - 

   
 1159.8 4.72 20.4 33939 19.9 4.3 - - 

   
 1161.6 3.82 12.4 49926 11.7 3.3 - - 

   
 1162.8 4.84 7.5 23959 7.1 1.5 -0.22 0.16 

   
 1164.3 0.49 1.3 18464 1.0 2.7 - - 

   
 1165.6 0.56 1.8 23151 1.5 3.3 - - 

   
 1166.5 0.48 1.8 21049 1.5 3.7 - - 

   
 1167.4 0.62 1.7 18361 1.4 2.7 - - 

   
 1168.9 2.15 8.7 21807 8.3 4.0 -0.03 0.08 

 
     Average   3.37 9.5 28457 9.1 3.0 0.03 0.08 

      
  

 
  

   

E701 48.3794 -104.135 U. Bakken 3010.0 15.24 41.3 36300 40.8 2.7 0.12 0.04 
   

 3010.6 14.37 39.3 35100 38.8 2.7 - - 
   

 3010.9 16.47 41.3 41200 40.7 2.5 0.17 0.09 



 
 

109 
 

Table A7. (continued) 

Core Location Formation Depth TOC U Al Uauth U/TOC δ238U 2SD 

ID Lat. Long. Name m Wt % ppm ppm ppm 
 

‰ 
 

E701 48.3794 -104.135 U. Bakken 3011.0 15.66 35.1 41500 34.5 2.2 0.27 0.09 
   

 3011.6 16.48 66.9 39700 66.3 4.1 0.27 0.09 
   

 3011.9 12.13 34.7 27600 34.3 2.9 - - 
   

 3012.1 18.92 62.1 38800 61.5 3.3 - - 
   

 3012.3 10.38 71.2 38600 70.6 6.9 - - 
 

     Average   14.96 49.0 37350 48.4 3.4 0.21 0.07 
      

  
 

  
   

   
L. Bakken 3023.3 16.94 55.5 56000 54.7 3.3 - - 

   
 3023.4 15.96 70.0 44200 69.3 4.4 - - 

   
 3023.7 10.68 36.2 44600 35.5 3.4 0.36 0.05 

   
 3024.0 4.95 22.4 14100 22.2 4.5 - - 

   
 3024.3 13.56 62.5 48900 61.8 4.6 0.36 0.03 

   
 3024.5 14.90 93.0 46700 92.3 6.2 - - 

   
 3024.8 18.48 177.0 45500 176.3 9.6 0.33 0.04 

   
 3025.0 8.75 69.2 62000 68.3 7.9 0.07 0.19 

   
 3025.3 6.90 67.3 48900 66.6 9.8 - - 

 
     Average   12.35 72.6 45655 71.9 6.0 0.28 0.08 

- Indicates no measurement collected
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Table A8. Nickel (Ni) and Copper (Cu) data collected from Woodford Shale cores George and 

Poe 

Core Depth Depth Ni Cu 

Name feet meters ppm ppm 

George 4529.5 1380.6 133.0 64.0  
4531.6 1381.2 146.4 111.3  
4535 1382.3 157.2 94.8  
4540 1383.8 169.4 102.2  
4545 1385.3 127.3 78.9  
4549 1386.5 102.8 66.2  
4552 1387.4 93.3 47.7  
4557 1389.0 80.8 44.4  
4560 1389.9 70.7 39.1  
4565.25 1391.5 90.7 53.7  
4570 1392.9 120.3 76.5  
4577 1395.1 257.8 131.4      

Poe 7735 2357.6 74.9 44.4  
7740 2359.2 26.3 26.8  
7745 2360.7 83.3 27.6  
7750.5 2362.4 210.6 137.0  
7755 2363.7 149.5 84.4  
7757 2364.3 284.3 90.7  
7760 2365.2 242.9 122.0  
7770 2368.3 331.5 89.2  
7775 2369.8 204.4 103.7  
7780 2371.3 149.3 67.3  
7790 2374.4 156.6 99.3  
7795 2375.9 66.2 34.9  
7815 2382.0 57.6 39.0  
7825 2385.1 131.4 80.6  
7835 2388.1 48.4 34.7  
7840.5 2389.8 182.1 78.4  
7845.25 2391.2 240.3 112.0  
7850 2392.7 192.4 158.3  
7855 2394.2 247.8 187.5 
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