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ABSTRACT OF THE DISSERTATION

Roles of Fluid Injection, Stress State, Geological Structure, and

Earthquake Interaction on Oklahoma Earthquakes
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Fault location and geometry are critical considerations in the evaluation

of earthquake hazards. In the first part of the dissertation, I map seismogenic

faults in Oklahoma and southern Kansas and analyze their stress state. Most

of the mapped faults have near vertical planes (planarity> 0.8 and dip> 70°),

xix



and there is a strong correlation between fault length and maximum magnitude

on each fault. The fault trends show prominent conjugate sets that strike

[55° ∼ 75°] and [105° ∼ 125°]. A comparison with mapped sedimentary faults

and basement fractures reveals common tectonic control. I then invert for

an improved stress map using high-quality focal mechanisms. The regional

stress map shows a gradual transition from oblique-normal faulting in western

Oklahoma to dominant strike-slip faulting in central and northern Oklahoma.

Stress amplitude ratio shows a strong correlation with pore pressure from

hydrogeologic models, suggesting a measurable pore pressure influence on stress

patterns. Finally, I assess fault stress state via 3D Mohr circles; a parameter

understress is used to quantify the level of fault criticality (with 0 meaning

critically stressed faults and 1 meaning faults have no resolved shear stress).

The results show that 78% of the faults are critically stressed (understress≤

0.2), while several seismogenic faults are misoriented with high understress

(>0.4). Fault geometry and local stress fields can be used to evaluate potential

seismic hazard, as the largest earthquakes tend to occur on long, critically

stressed faults.

In the next study, I focus on four earthquake sequences with different

behaviors in Oklahoma: two sequences with complex fault mesh networks and

maximum magnitude around 4 (Woodward and Guthrie); two sequences with

relatively larger faults and M≥5 earthquakes (Cushing and Fairview). For each

of the four sequences, I map the fault structures, invert focal mechanisms, and

analyze the stress state of individual events. The results show that the main

fault structures in Cushing and Fairview are near-vertical strike-slip faults,

and over 70% of the small earthquakes are optimally oriented to the regional

stress field. In contrast, Guthrie and Woodward sequences show more complex

xx



structures. In Guthrie, the main fault is vertical at shallow depth and dipping

at 70° to the northeast at deeper depth. In Woodward, the main fault is

characterized by a flower structure with decreasing dipping angles at shallower

depth. The inverted focal mechanisms show a mix of strike-slip faulting and

normal faulting in both sequences. The percentage of optimally oriented events

is 59% and 47% for Guthrie and Woodward. The results could explain the

differences in temporal seismicity evolution in the four sequences. In Cushing

and Fairview, more optimally oriented events and higher pore pressure result

in maximum magnitudes larger than 5.0. However, in Guthrie and Woodward,

fewer optimally oriented events form typical swarm-type sequences without

significant change in earthquake magnitude and seismicity rate. My results

reflect the heterogeneous fault structures and focal mechanisms in Oklahoma,

which possibly influence the seismicity evolution and earthquake hazards in

different sequences.

During the above study, the results show that some less- or non-optimally

oriented events occur following the optimally oriented events in some sequences,

suggesting the influence of processes other than injection, such as earthquake

interactions. So, I explore the role of Coulomb stress transfer in fault reac-

tivation in Woodward, Oklahoma. I address this issue by first defining fault

segments from earthquake spatiotemporal clustering, then parameterizing the

geometries of each segment by combining seismicity and focal mechanisms,

and finally calculating Coulomb stress transfer along each fault segment. The

results reveal a fault system characterized by a “flower structure” with a strike-

slip fault at deeper depth and distributed normal faults at shallower depth.

Further, Coulomb stress analysis reveals that the fault reactivation initiates

at the fault bend and sequentially migrates to northeast and southwest due
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to inter-event stress interaction. The amplitude of Coulomb stress transfer is

at least comparable to pore pressure and poroelastic stress changes estimated

from fluid injection. Overall, my observations suggest that fault structure

and Coulomb stress transfer constitute important factors in seismogenic fault

reactivation within areas of wastewater injection.

Other than earthquake interaction, pore pressure increase and poroelastic

stress change from injection, are still regarded as the driving mechanisms of

seismicity in Oklahoma. In the last study, I use machine learning methods to

forecast the seismicity rate in Oklahoma directly from injection parameters and

its associated pore pressure and poroelastic stress changes. I divide the study

area into uniform grids and search for injection wells, modeled pore pressure

and poroelastic stress points, and earthquakes in each grid. The parameters

related to injections are features used to forecast earthquake numbers in a

Random Forest model. I split the data into training (2010–2016) and test

(2017–2020) dataset. The model can forecast the rapid seismicity decrease in

recent years. The model also shows that pore pressure and poroelastic stress

are the most important features in the forecasting. The findings are consistent

with the known mechanisms of induced seismicity. My study suggests that

machine learning techniques can be applied to forecasting earthquakes and

understanding the physics behind induced seismicity.
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Chapter 1

Introduction

1.1 Overview of Oklahoma Earthquakes and

Faulting

Oklahoma has experienced drastic seismicity rate changes during the

last decade (Figure 1.1). Before 2009, the background seismicity rate was

about two M3.0 earthquakes per year (Walter, Ogwari, Thiel, Ferrer, Woelfel,

Chang, et al., 2020). The seismicity rate started to increase after 2010, reached

the peak during 2015–2016 (901 and 619 M3.0+ earthquakes in 2015 and

2016, respectively), and rapidly decreased due to the reduced wastewater

injection. As shown in Figure 1.1, from 2010 to late 2014, state wide disposal

rates increased from 39 million bbls per month to 89 million bbls per month.

In 2018, the injection rates decreased to the level of 2010. Meanwhile, the

observation network has greatly improved, including permanent broadband

stations, temporary stations, and nodal arrays from the Oklahoma Geological

Survey (OGS), the Incorporated Research Institution for Seismology (IRIS), the
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United States Geological Survey (USGS), and private research undertakings

(Walter, Ogwari, Thiel, Ferrer, Woelfel, Chang, et al., 2020). The current

network provides real-time catalog data and waveform data for various analyses

and seismic hazard evaluation.

With the increase of seismicity in Oklahoma, considerate efforts have been

devoted to mapping faults. The early mapped faults are mainly large faults

separating the geological provinces (Northcutt & Campbell, 1996). Marsh

and Holland (2016) compiled a more comprehensive fault map from previous

literature and data from the oil and gas industry. Most of the faults are

located in the sedimentary layers. Recently in seismology, researchers mapped

the reactivated faults based on the alignment of earthquake locations (e.g.,

Keranen et al., 2013; Yeck et al., 2016; Chen et al., 2017; Schoenball et al.,

2018; Qin et al., 2019). A better picture of the active fault system helps with

the understanding of potential earthquake hazard and provides information for

wastewater injection mitigation strategies.

1.2 Stress Field and Stress State

In the ambient stress field, the optimally oriented faults are more suscep-

tible to fail. Earlier studies from Holland (2013b) and Darold and Holland

(2015) identified optimally oriented faults based on probability density func-

tions of fault strikes assuming a uniform maximum horizontal compressional

stress orientation of N85°E. Alt and Zoback (2017) analyzed regional stress

fields for Texas, Oklahoma, and Kansas combining stress inversions from focal

mechanism solutions and wellbore measurements. Walsh and Zoback (2016)

simulated the conditional probability of fault slip related to injection-induced
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earthquakes by incorporating the uncertainty of the stress tensor, pore pressure,

friction coefficient, and fault orientation. In this dissertation, I invert a new

stress map using high-quality focal mechanisms from the Oklahoma Geological

Survey (OGS).

The stress state of faults is analyzed in 3D Mohr circles using focal

mechanism tomography (FMT) (Terakawa et al., 2010). The assumptions

include: (1) fault strength is controlled by the Coulomb failure criterion with

a constant friction coefficient (Byerlee, 1978); (2) seismic slip occurs in the

direction of the resolved shear traction acting on pre-existing faults (Wallace,

1951; Bott, 1959); and (3) seismic slip on optimally oriented faults relative to

the regional stress pattern occurs under hydrostatic pressure. To measure the

criticality of the faults, I use a parameter understress to quantify the difference

between the fault stress state and the fault strength (Figure S2.11). Values of

understress near 0 imply that the faults are optimally oriented, while values

near 1 imply the faults are least optimally oriented.

1.3 Triggering Mechanisms

The basic mechanism driving the seismicity in Oklahoma is pore pressure

increase due to wastewater injection. The theory is well established: increased

pore pressure in the fault zone will lead to a reduction in the effective normal

stress on the fault, thereby reducing fault strength and promoting fault slip

(e.g., King Hubbert & Rubey, 1959; Healy et al., 1968; Raleigh et al., 1976).

Based on this mechanism, various analyses have been used to study on the rela-

tionship between earthquakes and injections. For example, the earthquakes are

associated with injections based on spatiotemporal correlations (e.g., Barbour
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et al., 2017; Chen et al., 2018; Langenbruch & Zoback, 2016; Weingarten et

al., 2015). The fluid diffusion curves show that seismicity migration pattern is

controlled by the pressure front(e.g. Haffener et al., 2018; Goebel et al., 2017).

Pore pressure change from hydrogeological modeling provides a triggering

threshold for the earthquakes (Keranen et al., 2014; Goebel et al., 2017). Based

on the modeled pore pressure and poroelastic stress perturbations, the induced

seismicity rate is forecasted, and the results fit the observations (Langenbruch

et al., 2018; Zhai et al., 2019).

Growing evidences have shown that poroelastic stress can also drive some

of the induced seismicity, especially that distant from the injection source (e.g.,

Segall & Lu, 2015; Deng et al., 2016; Goebel et al., 2017). Fracturing for the

unconventional shale formation also induces small earthquakes, especially in the

SCOOP/STACK region in Oklahoma (Holland, 2013a; Skoumal et al., 2018).

The seismicity usually nucleates in tight clusters in Oklahoma, so earthquake

interactions have also been found in multiple areas (Segall & Lu, 2015; Chen

et al., 2017; Pennington & Chen, 2017; Qin et al., 2018). Other factors include

aseismic creep (Cappa et al., 2019; Eyre et al., 2019) and dynamic triggering

(Peña Castro et al., 2019) have also been found to influence the local seismicity.

The influences from multiple processes have made the analyses of seismicity in

Oklahoma more complex and interesting.

1.4 Machine Learning Applications

With the exponentially growing data volume available in seismology, the

application of machine learning techniques has gained much popularity in

recent years (e.g., Perol et al., 2018; Ross et al., 2018). The machine learning
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techniques have been applied to: earthquake detection and phase picking,

earthquake early warning and real-time processing, ground-motion prediction,

seismic tomography, and earthquake geodesy (Kong et al., 2019). Perol et al.

(2018) first applied convolutional neural network for earthquake detection and

location using a single station in Oklahoma. Recent studies (e.g., Zhang et al.,

2020) have developed the deep learning systems with multiple stations to locate

the earthquakes. Hincks et al. (2018) used an advanced Bayesian network

to evaluate the injection parameters and found that injection depth relative

to the crystalline basement most strongly correlated with seismic moment

release. The OGS developed a Python package, easyQuake, that leveraged a

machine-learning driven phase picker, coupled with an associator, to detect

and locate earthquakes (in review, Walter, Ogwari, Thiel, Ferrer, & Woelfel,

2020).

Many more studies have been carried out in other regions (Holtzman et

al., 2018; Ross et al., 2018). We can take advantage of the new techniques and

apply them to the dataset in Oklahoma. Hopefully the new techniques will

promote a better understanding of the induced earthquakes.

1.5 Structure of the Dissertation

The following four chapters are reformatted version of papers that are

published or in preparation for submission. The objectives for each chapter

are summarized as follows:

•Chapter 2 maps the currently active seismogenic faults and stress field

at the state scale. The results are published on Journal of Geophysical

Research: Solid Earth, https://doi.org/10.1029/2019JB018377.
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•Chapter 3 focuses on four individual sequences to evaluate the potential

seismic hazard based on fault structures, stress state, and pore pressure

perturbations.

•Chapter 4 focuses on the Woodward sequence and finds the driving mech-

anisms for seismicity evolution as earthquake interactions. The results are

published on Geophysical Research Letters, https://doi.org/10.1029/2018GL079713.

•Chapter 5 is the application of machine learning methods to forecasting

seismicity rate based on injection parameters.

•Chapter 6 summarizes the main findings and proposes future work.
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Figure 1.1: Monthly wastewater injection volumes into Arbuckle Group (blue
line) and monthly seismicity (M3.0+) from OGS catalog (red line) in Oklahoma.
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Figure 1.2: Definition of understress. The Mohr circles represent the stress
field, and the black lines represent the fault strength under different pore
pressures. The point (σ0, τ0) represents the stress state of a fault plane. By
definition, understress is calculated as (τp−τ0)/τp. The background color shows
the stress state of faults of various orientations. The parameter understress
reflects the criticality of the faults.
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Chapter 2

Deciphering the stress state of

seismogenic faults in Oklahoma

and southern Kansas based on

an improved stress map

2.1 Introduction

The recent increase in seismicity in Oklahoma has been associated with

wastewater injection (e.g., Ellsworth, 2013; Keranen et al., 2014; W. Yeck et

al., 2016). The basic mechanism driving this seismicity is well established:

increased pore pressure in the fault zone will lead to a reduction in the effective

normal stress on the fault, thereby reducing fault strength and promoting fault

slip (e.g., King Hubbert & Rubey, 1959; Healy et al., 1968; Raleigh et al., 1976).

Based on this mechanism, the orientation of the faults and the regional stress
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field are crucial to assess the likelihood of reactivation. Faults that are optimally

oriented with respect to the regional stress field will be readily reactivated,

while faults that are nonoptimally oriented will require a much larger pore

pressure increase to slip. Holland (2013) and Darold and Holland (2015) tried to

differentiate optimally oriented faults from nonoptimally oriented faults based

on probability density functions of fault strikes relative to a uniform maximum

horizontal compressional stress orientation of N85°E. (Alt & Zoback, 2017)

analyzed regional stress fields for Texas, Oklahoma, and Kansas combining

stress inversions from focal mechanism solutions and wellbore measurements.

Walsh and Zoback (2016) simulated the conditional probability of fault slip

related to injection-induced earthquakes by incorporating the uncertainty of

the stress tensor, pore pressure, friction coefficient, and fault orientation.

While previous studies have provided overall knowledge of the ambient

stress field in Oklahoma and southern Kansas, a high-resolution stress map

is needed to systematically assess fault criticality under the local stress field.

This is especially important with the growing evidence that poroelastic stress

(e.g., Segall & Lu, 2015; Deng et al., 2016; Barbour et al., 2017; Goebel et al.,

2017) and aseismic creep propagation (e.g., Cappa et al., 2019; Eyre et al.,

2019) could, in part, drive some of the induced seismicity. In this study, we

develop a stress map with relatively high spatial resolution using a suite of

2047 focal mechanism solutions obtained from Oklahoma and southern Kansas,

allowing for more precise quantitative analysis of the fault stress state.

For a given background stress field, a complete knowledge of the pre-

existing fault system is critical to evaluate the induced earthquake hazard

(W. Yeck et al., 2016; Levandowski, Weingarten, & Walsh III, 2018). Oklahoma
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and southern Kansas are located in the Precambrian (∼1.4 Ga) Southern

Granite-Rhyolite Province of the Mid-Continent U.S. craton (Denison et al.,

1987). This granitic basement hosts most of the current seismicity (Schoenball

& Ellsworth, 2017b; Kolawole, Johnston, et al., 2019). This basement is char-

acterized by a structural fabric with dominant discontinuity zones that trend

NW-SE, NE-SW, and a minor N-S set (Kolawole, Johnston, et al., 2019). This

structural fabric resulted from the multiphase Proterozoic contractional and

extensional deformation events that affected the central U.S., e.g., development

of Granite-Rhyolite Provinces, and the Mid-Continent Rift (Bickford et al.,

2015; Whitmeyer & Karlstrom, 2007). The fault database of Oklahoma (Marsh

& Holland, 2016) shows several fault segments and large (>50 km-long) ∼N-S-

trending faults within the north-central region. Recent 3D seismic data (Liao

et al., 2017; Chopra et al., 2018; Kolawole, Carpenter, et al., 2019) reveal that

these large N-S faults and the associated secondary splays are basement-rooted.

The Oklahoma Geological Survey (OGS) fault database (Marsh & Holland,

2016) largely contains sedimentary faults that represent (1) reactivation and

propagation of the Precambrian basement structural trends (NW, NE, and

N-S) into the sedimentary cover (Kolawole, Carpenter, et al., 2019), and (2)

additional deformation by the development of pervasive R-shears that splay

outwards from the major right-lateral N-S faults (Liao et al., 2017; Chopra et

al., 2018; Kolawole, Carpenter, et al., 2019).

The majority of earthquakes in Oklahoma do not occur on currently

mapped faults in the OGS database (e.g., Alt & Zoback, 2017; Keranen et al.,

2013; Goebel et al., 2017; W. Yeck et al., 2016). The linear trends of seismicity

(Figure 2.1) suggest that most earthquakes occur on basement faults that are

likely unmapped in the current fault database (Skoumal et al., 2019; Schoenball
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& Ellsworth, 2017a). Several studies have used the spatial distribution of

seismicity to map fault segments in Oklahoma. For example, splays of the

Wilzetta fault were mapped from 2011 Mw5.7 Prague earthquake sequence

(Keranen et al., 2013); the extension of a mapped fault segment was delineated

from the 2016 Mw5.1 Fairview earthquake sequence (W. Yeck et al., 2016); and

the Sooner Lake Fault as the conjugate fault of the mapped Labette Fault was

mapped from 2016 Mw5.8 Pawnee earthquake sequence (X. Chen et al., 2017).

In this study, we systematically map the reactivated faults (herein referred

to as seismogenic faults) and analyze the fault criticality with an improved

knowledge of the local stress field. First, we characterize the geometry of

seismogenic faults in Oklahoma and southern Kansas based on earthquake

clustering. Second, we use a high quality catalog of focal mechanism solutions

to perform a detailed stress inversion. Then we assess the stress state of

individual faults with in-situ 3D Mohr circles and evaluate the influence of

fault criticality on fault reactivation. Finally, we compare seismogenic faults

with mapped sedimentary faults from different sub-regions in Oklahoma and

fracture systems in outcrops of the seismogenic basement. Moreover, the stress

field and fault stress state are compared with pore pressure from hydrogeologic

models to further understand the influence of wastewater injection on fault

reactivation. These results help to provide a comprehensive understanding

of the roles of pre-existing faulting, fluid injection, and stress state on fault

reactivation and potential earthquake hazard.
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2.2 Data

High-precision earthquake relocations can reveal tightly clustered seismicity

patterns and help identify in-situ fault locations and orientations. In this

study, we use the relocated catalog from C. Chen (2016) for pre-2013 events

and Schoenball and Ellsworth (2017b) for later events to map seismogenic

faults. The catalog in C. Chen (2016) uses a 3D velocity model and the

double-difference method (Waldhauser, 2001) with catalog differential times to

relocate earthquakes. The catalog in Schoenball and Ellsworth (2017b) uses

a 1D velocity model and the double-difference method with differential times

derived from waveform cross-correlation to relocate earthquakes from 2013

to 2017, and has high relative location precision (50 m horizontally and 200

m vertically) with the inclusion of industry networks and higher precision of

differential times. The magnitude of completeness for catalogs from C. Chen

(2016) and Schoenball and Ellsworth (2017b) is 2.7 and 2.8, respectively. We

verify that for 13512 common earthquakes from C. Chen (2016) and Schoenball

and Ellsworth (2017b), the median location difference is 0.42km (Figure S2.1),

which mainly comes from some systematical shift of absolute locations due to

the difference in velocity model but does not affect relative locations within

clusters. We use C. Chen (2016) catalog mainly for the Prague fault with M5.7

earthquake in 2011. Other pre-2013 faults from C. Chen (2016) do not meet

the minimum number requirement of 30 and are not included.

For focal mechanism solutions in Oklahoma, we select 1823 focal mecha-

nism solutions of A and B quality in the catalog provided by OGS (Walter et

al., 2019) from January 2010 to August 2018, which are computed via HASH

(Hardebeck & Shearer, 2008) program with at least 8 routinely picked first
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motion polarities. The selected focal mechanism solutions have an average

RMS fault plane uncertainty less than 35° and a station distribution ratio

larger than 0.4. For southern Kansas, we apply the same criteria and compute

224 A and B quality focal mechanism solutions using the first motion polarities

in the HASH program. The focal mechanism solutions in southern Kansas

are consistent with Rubinstein et al. (2018). In total, we have 2047 focal

mechanism solutions for stress inversion.

2.3 Methods

2.3.1 Clustering and Fault Mapping

We use a hierarchical clustering program in MATLAB to cluster the

earthquakes based on the epicenter of the relocations. In this method, the

events are linked based on the nearest distance between each event pair, and a

distance cutoff of 0.46km is selected by trail and error to group events with

distance smaller than the cutoff into a cluster. The program identifies 84

clusters with more than 30 events (Figure 2.1). The clustering results show

similar fault trends as in Schoenball and Ellsworth (2017a) from a different

clustering method. We use a relatively longer distance cutoff in the clustering

process, and some clusters include several trends of events close to each other,

which are then separated manually to calculate the fault geometries.

For each cluster and some manually separated subclusters with 30 or more

events, we use principal component analysis (Vidale & Shearer, 2006) to fit a

fault plane. First, a 3×3 covariance matrix D from the earthquake hypocenters

is calculated, and the eigenvalues (λ1 ≥ λ2 ≥ λ3) and the corresponding
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eigenvectors U1, U2 and U3 of D define the principal axes of rotational inertia

for the points in each cluster. The first two eigenvectors U1, U2 represent the

surface of the fault plane, and U3 is normal to the fault plane. The fault strike

and dip angle are calculated from the direction of the normal vector U3. The

planarity of seismicity hypocenters is defined as 1− λ3/λ2 (Vidale & Shearer,

2006). At its extremes, a planarity of 1 indicates a perfectly planar shape and a

planarity of 0 indicates a nearly spherical cloud of seismicity (Vidale & Shearer,

2006). 69 out of 95 planarity values (73%) are larger than 0.8, suggesting most

clusters occur on well-defined fault plane. Since most of the seismogenic faults

can be fit with a fault plane, the fault length is estimated manually based on

the seismicity extension along the axis of the largest eigenvector.

2.3.2 Stress Inversion Method

To obtain a detailed in-situ stress field, we use the MSATSI software

package (Mart́ınez-Garzón et al., 2014) to invert the stress field from earthquake

focal mechanism solutions. The MSATSI software is a MATLAB wrapper of the

SATSI (Hardebeck & Michael, 2006) based on the inversion from Michael (1984).

The inversion relies on three assumptions: (1) the stress field is homogeneous

over the spatial and temporal extent of the events in each grid, (2) the focal

mechanism solutions are adequately diverse, such as the RMS angular difference

from the average mechanism in each grid of at least ∼ 40° − 45°(Hardebeck

& Hauksson, 2001) to constrain the solution, and (3) seismic slip occurs in

the direction of the resolved shear traction acting on pre-existing faults. With

2047 focal mechanism solutions for Oklahoma and southern Kansas, the study

area is first gridded with 0.4° by 0.4°, and if 100 or more events are in one
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grid, the grid is then subdivided into two or four evenly spaced subgrids in

latitude and longitude as long as there are still more than 50 events in each

subgrid. This method covers as much area as possible in the inversion and

ensures adequate variety to constrain the solution (Mart́ınez-Garzón, Ben-Zion,

et al., 2016) in each grid. As a result, the study area is separated into 24 grids,

and a damped inversion is performed on those grids. A map with the number

of focal mechanisms in each grid is shown in Figure S2.2. The inversion results

include the orientations of the three principal stress axes and a measure of

their relative amplitudes R,

R =
σ1 − σ2
σ1 − σ3

(2.1)

where σ1, σ2, σ3 are the maximum, intermediate, and minimum principal

stresses, respectively. The uncertainties of the inversion results are estimated

by 1000 bootstrap resamplings of the focal mechanism solutions associated

within each grid.

2.3.3 Focal Mechanism Tomography (FMT)

The focal mechanism tomography (FMT) technique was developed to

estimate the fluid pore pressure field from earthquake focal mechanism solutions

under a given stress field (Terakawa et al., 2010). In this study, we adopt the

assumptions in Terakawa et al. (2010) to convert the relative stress amplitude

to a 3D stress tensor and use the local stress tensor to evaluate the stress

state of individual faults. The assumptions are: (1) fault strength is controlled

by the Coulomb failure criterion with a constant friction coefficient (Byerlee,

1978), (2) seismic slip occurs in the direction of the resolved shear traction
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acting on pre-existing faults (Wallace, 1951; Bott, 1959), and (3) seismic slip

on optimally oriented faults relative to the regional stress pattern occurs under

hydrostatic pressure. Based on these assumptions, we have:

σ1(
√
µ2 + 1− µ)− σ3(

√
µ2 + 1 + µ) = 2C − 2µPw (2.2)

where σ1 and σ3 are the maximum and minimum principal stresses, C is

the cohesion of fault and assumed as zero in the following calculation, Pw is

the hydrostatic pressure at depth, and µ is the friction coefficient without

pore pressure influence, assumed to be 0.68 in the analysis. The friction

coefficient of 0.68 is based on the average value of lab results of basement

rock samples in Oklahoma by Kolawole, Johnston, et al. (2019). The choice

of friction coefficient is also consistent with the estimated value of 0.65 using

STRESSINVERSE program by Vavryčuk (2014). A sensitivity test of friction

coefficient is performed in the discussion section. The derivation of Equation

2.8 is shown in supplemental material.

We further assume that the vertical stress is the weight of overburden,

σv = ρgz (2.3)

where ρ is the rock density, ρ = 2540kg/m3 (Terakawa et al., 2010), g is

the acceleration due to gravity, and z is the depth. The stress inversion results

show both strike-slip faulting regime and oblique normal faulting regime, so

instead of assuming the vertical stress is the intermediate principal stress, it

is strictly derived from the principal stress tensor, σv = σv(σ1, σ2, σ3) using

the orientations of the principal stresses. The derivation is shown in the
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supplemental material.

The ratio of principal stresses from the stress inversion (Equation 2.1) is

also incorporated to solve for the intermediate stress amplitude (Quinones et

al., 2018). By solving equations 2.1 – 2.3, we can get the stress amplitude

for each grid. With the stress tensor known, we compute shear and normal

stress on faults, project them onto Mohr circle, and calculate the required pore

pressure for fault failure. To project all faults onto the same 3D Mohr circle,

we keep the local stress orientations of each grid and calculate a uniform stress

amplitude by averaging over all grids. We will justify the use of uniform stress

amplitude by comparing the results from uniform and nonuniform stress field

in the discussion. The stress amplitudes and fluid pore pressure calculated

from the above assumptions are proportional to the depth (Figure S2.3). As

the catalogs we use have relatively large depth uncertainty, the depth of the

mapped faults is not well resolved. We introduce a normalized parameter

understress to eliminate the depth dependence of the fault stress state following

Gischig (2015),

understress = (τp − τ0)/τp (2.4)

where τ0 is shear stress on the fault calculated from the fault geometry and

stress orientations, and τp is shear stress at which slip initiates based on the

Coulomb failure criterion under hydrostatic pore pressure. Since both τ0 and τp

increase linearly with depth, the defined parameter understress is independent

of depth. The understress can be used to quantitatively measure fault criticality

relative to local stress field. Values of understress near 0 imply that the faults

are critically stressed, while values near 1 imply negligible resolved shear stress
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applied on the fault, and the fault is least favorably oriented. We also calculate

the parameter of excess pore pressure, which is defined as the required pore

pressure increase above hydrostatic pressure for fault failure according to Mohr

circle.

2.4 Results

2.4.1 Clustering and Fault Mapping

We identify 84 clusters with 30 or more events and pick 95 fault segments

(some clusters are manually separated based on visual inspection). A subset of

69 faults with planarity larger than 0.8 are selected and used in the following

analysis (see Figure 2.1a, Figure S2.4 and S2.5 for close-up views of the

clusters). The newly mapped faults from several large earthquake sequences

are consistent with previous studies (e.g., Keranen et al., 2013; W. Yeck et

al., 2016; W. L. Yeck et al., 2017). Specifically, we find that the main fault

in Prague is a splay of the Wilzetta fault with an azimuth of 55° and a dip

angle of 86°; the Fairview fault is as an extension of a mapped fault to the

southeast; and a conjugate fault pattern is delineated in the Pawnee area. The

west-northwest and east-northeast trends of faults in southern Kansas are in

agreement with the observations in Rubinstein et al. (2018). Most of the faults

in Oklahoma are distributed in the central and northern pressurized regions

(Walsh & Zoback, 2016; Skoumal et al., 2019). The distributions of strike

and dip angles for these faults are shown in Figure 2.1c and 2.1d. The strike

angle is mainly distributed in the ranges of [55 ∼ 75°] and [105 ∼ 125°], which

form conjugate patterns relative to a maximum horizontal compression stress
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orientation of N85°E. The majority (> 80%) of seismogenic faults are steeply

dipping with a dip angle larger than 70°. Four faults show dip angle smaller

than 35°. Those faults are mapped from fewer than 45 relatively scattered

events, so the fault geometries are likely not well constrained.

2.4.2 Stress Field

Stress inversion provides a stress field with higher spatial resolution com-

pared to previous studies in Oklahoma. Figure 2.2 shows the map view of

maximum horizontal compressive stress (σHmax) orientations colored by faulting

type. Central Oklahoma is mostly in a strike-slip faulting regime (green bars),

whereas north and northwest Oklahoma show a transition from strike-slip

to oblique normal faulting regime (black bars). The dominant orientation

of σHmax is 80° ∼ 90° (Figure 2.2b). Those observations are consistent with

previous studies (e.g., Marsh & Holland, 2016; Qi, 2016; Walsh & Zoback, 2016;

Levandowski, Herrmann, et al., 2018). The stress field in southern Kansas

is characterized by strike-slip faulting with σHmax of 75 ∼ 82°, which are

consistent with Rubinstein et al. (2018).

The stress amplitude ratio R also shows spatial variations.The stress

field in northern Oklahoma and southern Kansas show smaller R values than

other areas, which might indicate the influence of pore pressure. The study

area is separated into two major pressure zones using the Nemaha fault as

a pressure boundary (Haffener et al., 2018), referred to as the eastern and

western pressure zones. We obtain the pore pressure for each grid by averaging

pressure values from Langenbruch et al. (2018) at the median occurrence time

from all earthquakes within each grid. Using pore pressure values at all grids,
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we calculate an average R value from all R values within each pressure bin of

0.04 MPa. The result is shown in Figure 2.2c. For the area west of Nemaha

Fault Zone, we obtain negative correlation between R value and pore pressure.

A similar relationship between pore pressure and R value has been observed at

Geysers geothermal field (Mart́ınez-Garzón, Vavryčuk, et al., 2016). However,

the eastern Oklahoma region does not show a clear relationship between R

value and pore pressure.

The uncertainties of the σHmax orientation and R value are estimated

from bootstrap resamplings (Figure S2.6). The highest uncertainty of σHmax

(defined as one standard deviation) is less than 2°. The uncertainty in the

R value is less than 0.05. The inversion results and their small uncertainties

suggest that the heterogeneity of the stress field is well constrained using the

high quality focal mechanism solutions.

2.4.3 Fault Stress State

Using the FMT method, we first calculate the uniform principal stress

amplitude gradients as σ1 = 30.0 MPa/km, σ2 = 24.8 MPa/km, σ3 = 15.5

MPa/km under µ = 0.68. Based on the fault orientation and regional stress field,

the shear and normal stress on seismogenic faults are calculated and plotted

on 3D Mohr circle. The understress parameter on each fault is determined by

equation 3.4. As shown in Figure 2.3, each fault is projected onto a 3D Mohr

circle as a point colored by its understress value. Most faults (78%) are close to

failure limit of the hydrostatic fault strength with understress smaller than 0.2.

Four faults with small dip angle < 35° show large understress (> 0.5). This is

possibly due to large uncertainties of the dip angle, and the indication of tensile
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failure (fluid pressure beyond σ3) is actually an artifact. Other than that, there

are still several non-optimally oriented faults being reactivated, which might

occur at step-overs or rotations at different segments of the optimally-oriented

fault and result from either high pore pressure increase or other factors, e.g.,

static stress change from earthquakes on the main fault.

The required pore pressure to induce failure on each fault is calculated

from FMT and shown in Figure 2.4. The median and mean excess pore pressure

(above hydrostatic pore pressure) is 2.7 and 6.9 MPa, respectively under an

assumption of fault depth of 5km. The uniform depth is chose because the

depth of seismogenic faults is not well constrained, and the earthquakes have an

average depth of 5km. The required pore pressure increases are consistent with

the estimated pore pressure using similar geomechanical analysis for multiple

induced clusters Texas (Quinones et al., 2018; Snee & Zoback, 2016). The

observed pore pressure range is also consistent with the findings in the Geyser

geothermal field in Mart́ınez-Garzón, Kwiatek, et al. (2016), where faults with a

broad range of orientations are activated by fluid injection, and the misoriented

faults are mostly activated during high injection rates in proximity to the

injection wells by an estimated pore pressure increase of ∼ 10MPa.

2.5 Discussion

2.5.1 Influence of Pore Pressure on Stress Field and

Stress State

In the above analysis, we only consider the pore pressure increase in fault

reactivation. The observed negative relationship between R and pore pressure
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in western pressure zone in Figure 2.2c could possibly reflect the poroelastic

effects by injection. Altmann et al. (2014) gives the analytical solutions to

poroelastic equations in 3D isotropic, homogeneous space. In strike-slip regime

along vertical direction, pore pressure increase ∆P induces effective stress

amplitude changes of −2
3
∆P , −1

3
∆P , and −2

3
∆P in σ1, σ2, σ3 orientations,

respectively. The pore pressure brings the σ1 and σ2 closer and results in

a smaller R value. Mart́ınez-Garzón et al. (2013) has observed that stress

perturbation due to fluid injection decreases over time with repeated injections.

The lack of correlation between R and pore pressure in the eastern section is

likely due to the overall higher pore pressure from the longer injection period

(e.g., Keranen et al., 2014).

To study the relationship between pore pressure and fault reactivation,

we compare our results to the modeled pore pressure from Langenbruch et

al. (2018). The modeled pore pressure map is overlain by seismogenic faults

colored by excess pore pressure computed in this study in Figure 2.4. As a

qualitative first-order observation, the faults that are misoriented and require a

relatively larger pore pressure increase are distributed close to the higher pore

pressure areas in central and northern Oklahoma. However, scatter plots of

understress/excess pore pressure and modeled pore pressure (Figure S2.7) do

not show any significant correlation. We also notice that the pore pressure from

Mohr circle analysis is much higher than the pore pressure from hydrogeologic

models.

The lack of significant correlation between calculated pore pressure from

Mohr’s circle and pore pressure from hydrogeologic models in Figure S2.7

could be due to the uncertainty of fault geometries during excess pore pressure
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calculation. To account for the uncertainties in fault strike and slip from fault

mapping, we add to each fault strike and dip a random uncertainty drawn from

a normal distribution with standard deviation of 5° and 10°, respectively. Then

the understress is calculated using the new fault strike and dip angle. The

procedure is repeated for 200 times. The required mean pore pressure with

one standard deviation is shown for each fault in Figure S2.8. The uncertainty

from the strike and dip alone can cause the required pore pressure to change 2

to 12 MPa. We should notice that the original values of required pore pressure

fall within the uncertainty test.

The lack of correlation in Figure S2.7 can also be due to heterogeneity in

subsurface hydrogeologic parameters that is not considered in the pore pressure

model in Langenbruch et al. (2018). Permeability heterogeneity has been shown

to be log-normally distributed in space and therefore certain localized regions

may have locally higher pore pressure perturbations than the larger regional

pore pressure perturbation. As an example, X. Chen et al. (2018) demonstrated

that a highly-permeable fault damage zone can significantly enhance the pore

pressure within the fault zone compared to isotropic hydrological structure.

These factors likely prevent a strong correlation for individual fault parameters.

On the other hand, the stress tensor is derived from events distributed within

a larger grid (i.e., much larger than individual dimensions), and represents the

averaged effect of regional pore pressure variations, so we cannot see a stronger

correlation.
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2.5.2 Stress Tensor Heterogeneity

In the analysis above, we use a stress tensor with a spatially uniform

amplitude and the local stress orientations for each grid to calculate the

understress parameter of the nearby faults. The uniform stress amplitude is

taken as the mean value of the calculated absolute principal stress of all grids.

To examine the validity of the uniform amplitude measure, we compare the

fault stress state based on three different stress field maps: (1) a stress field with

uniform stress amplitude (the average stress amplitudes above) and uniform

stress orientations with horizontal N85°E σ1 and vertical σ2 in a strike-slip

faulting regime. (2) a stress field with a uniform stress amplitude and local

stress orientations, which is used in the analysis of this study; (3) a stress field

with local stress amplitudes and local stress orientations for each grid. Under

each scenario, we calculate the understress parameter of each fault and show

them in Figure 2.5.

The main difference between scenario (1) and (2) is the spatial variation

of principal stress orientations. Results from scenario (1) for some seismogenic

faults are consistent with previous studies: e.g., the Prague fault is optimally

oriented with understress ∼ 0.002, consistent with Marsh and Holland (2016).

However, the understress parameter shows differences with local stress orienta-

tions considered in scenario (2). Compared to scenario (2), the criticality of

the faults in scenario (1) can be either overestimated or underestimated, where

14% of the seismogenic faults have understress changes exceeding 0.1 (Figure

2.5a–b). The difference between two scenarios suggests that the heterogeneity

of stress orientations has important implications on the inferred fault stress

state.
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We further consider the variability of stress amplitude by comparing results

from scenario (3) and (2) in Figure 2.5c–d. In contrast to the large difference

between scenario (1) and (2), the difference between (3) and (2) is smaller,

with only one fault having an understress difference larger than 0.1. This result

suggests that the local principal stress orientations have a more significant

effect on fault stress state than do the stress amplitudes, and that assuming a

uniform stress amplitude does not significantly affect the results.

2.5.3 Effect of the Friction Coefficient

The fault orientation analysis in this study is based on the assumption

of constant coefficient of friction of 0.68. Using a uniform friction coefficient

for the whole study area, we attribute the fault strength heterogeneity to the

variations of fluid pore pressure acting on the fault. The assumption is in part

supported by the findings from laboratory experiments on Oklahoma basement

rock (Kolawole, Johnston, et al., 2019) and in-situ stress measurement in

deep boreholes that the heterogeneity of friction coefficients within different

rock types is substantially smaller than the fluid pore pressure heterogeneity

(Terakawa et al., 2012). Without further knowledge of the spatial heterogeneity

of the friction coefficients, we perform a sensitivity analysis where we vary

the coefficient of friction, using constant values of 0.4, 0.6, 0.8, and 1.0 to

calculate the stress tensor and understress parameter for seismogenic faults

following the same process as for µ = 0.68. The results are shown in Figure 2.6.

This experiment demonstrates that the fault understress state is moderately

sensitive to the assumed friction coefficient. If we define the optimally oriented

faults as those with understress smaller than 0.2, friction coefficients of 0.4, 0.6,
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0.8, and 1.0 will identify 72.46%, 76.81%, 75.36%, 71.01% of seismogenic faults

as optimally oriented faults, respectively, compared to 78.26% for µ = 0.68.

Under a friction coefficient of 0.68, we get the largest percentage of optimally

oriented faults. It suggests that we have chosen a value close to the true friction

coefficient in the study area. In the future studies, a better knowledge of the

spatial distribution of friction coefficient will help further characterize the fault

stress state.

2.5.4 Seimogenic Faults, Sedimentary Faults, and the

Common Tectonic Control

In this study, seismogenic faults are identified from lineaments of seismicity,

so most of the faults are located in the crystalline basement. These faults show

different orientations from mapped faults in OGS database (Marsh & Holland,

2016), which is compiled from past literature and data contributed by the oil

and gas industry. They are primarily faults in the sedimentary sequences and

are referred to as sedimentary faults. Considering that Nemaha fault acts as a

pressure boundary in hydrologic modeling, we separate north-central Oklahoma

into east and west sections and compare the fault orientations in each section

(Figure 2.7). In the west section, the seismogenic faults (Figure 2.7a) show

patterns of [55°, 75°] and [105°, 125°], and the sedimentary faults (Figure 2.7b)

show a dominant trend of [45°, 75°] and a minor trend of [0°, 10°]. For both

types of faults, the NE-trending set is more prominent than NW-trending set.

It is possibly related to an overwhelming dominance of NE-trending basement-

rooted splays (synthetic Reidels) (Liao et al., 2017; Curren & Bird, 2014)

distributed along a few large N-S trending basement faults, e.g., the Galena
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Township Fault.

In the east section, the seismogenic faults (Figure 2.7c) show excellent

correspondence with the observations of basement faults on 3D seismic data

in northeast Oklahoma (Kolawole, Johnston, et al., 2019). Both the NE and

NW trends are reactivated in the current stress field. The sedimentary faults

show dominant trends of NNE to NE, and E-W Figure 2.7d, which are possibly

associated with the large basement-rooted NNE faults. The sedimentary faults

are poorly oriented in the present-day stress field and do not have earthquakes

associated with them currently. Although the NW and NE trends are the

most reactivated trends associated with earthquakes, the E-W trend could

still pose an important seismic hazard. Localized stress perturbation of the

E-W-trending faults in the area results in their seismogenic reactivation as

observed within the Jones swarm (Holland, 2013).

In addition to the seismogenic faults and sedimentary faults in north-

central Oklahoma, we also include measurements of exposed granite fractures

from Mill Creek and Tishomingo in southern Oklahoma. The fractures are

mapped at the satellite-scale from Google Earth images with a spatial resolution

of 15m. The basement fractures (Figure 2.7e) exhibit similar conjugate patterns

as the seismogenic faults and are also consistent with the measurements of

Precambrian basement fabrics in Kolawole, Johnston, et al. (2019). Although

our comparison of the seismogenic faults with previously mapped sedimentary

faults and Precambrian basement fabric likely reveal a common tectonic control,

we observe spatial variations in the azimuth of the reactivated fault systems.

This variation of reactivated trends may be controlled by both the relative

abundance of the basement rooted fault trends (emplaced by past tectonic
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events) and the variation of the local stress field across the eastern and western

sections of the Oklahoma seismic zone, which might have been influenced by

the Nemaha uplift structure.

2.5.5 Faults with M≥ 5.0 Earthquakes

Since 2011, four large earthquakes (M≥ 5.0) have occurred in Oklahoma:

the M5.7 Prague earthquake in 2011, and the M5.1 Fairview, M5.8 Pawnee,

and M5.0 Cushing earthquakes in 2016. None of these earthquakes occurred

along previously mapped faults (e.g., X. Chen et al., 2017; W. L. Yeck et al.,

2017). The geometries of the seismogenic faults delineated from seismicity

are mostly consistent with the focal mechanism solutions of the mainshocks

(Table S1). With an in-situ stress field, we calculate the stress state of the

mainshock fault planes from focal mechanism solutions and the corresponding

seismogenic faults with the assumption of a constant friction coefficient of

µ = 0.68. As shown in Figure 2.8, the faults that hosted the M5.7 Prague,

M5.8 Pawnee, and M5.0 Cushing earthquakes have understress smaller than

0.02, suggesting the faults in Prague, Pawnee, and Cushing were critically

stressed and failed under a small perturbation of pore pressure. The seismogenic

fault in Fairview is the least optimally oriented with an understress parameter

of 0.1, and the fault plane of the mainshock has even higher understress of 0.2,

which is likely due to the shallower dipping angle of 66°. Goebel et al. (2017)

calculated poroelastic stress perturbations in the Fairview area from a group

of high-rate injection wells to the northeast. Their results suggest that the

poroelastic stress increase at the distance of the Fairview area is about 100kPa,

and the fault orientation is about 15° off the optimal orientation that would
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receive maximum Coulomb stress change. Their results are consistent with the

relatively high understress value obtained here for the Fairview fault. Figure

2.8 also shows that Fairview fault has highest relative shear stress compared

to the other three faults, indicating highest frictional strength (Yoshida et al.,

2016). The relative frictional strength variations is qualitatively consistent with

observations in Wu et al. (2018), where the Fairview fault has highest overall

stress drop compared to the other fault zones, similar to the observations for a

fluid induced earthquake swarm in Japan (Yoshida et al., 2017).

Gischig (2015) performed numerical modeling to investigate the effect

of the fault orientation on rupture propagation, and the results suggest that

optimally oriented faults tend to have uncontrolled ruptures that propagate

beyond the pressure front, while less optimally oriented faults tend to have

ruptures controlled by the extent of the pressurized zones. From this perspective,

the understress parameter can provide insight into the fault rupture process,

and hence the seismicity distribution for the M5 sequences. To the first order,

the Prague, Pawnee, and Cushing sequences, which are on optimally oriented

fault planes, are predominantly mainshock-aftershock sequences (Figure S2.9),

with large values of skewness of moment release (Zhang & Shearer, 2016),

while the Fairview sequence on the least optimally oriented fault is mainly

a swarm-type sequence with an extended foreshock sequence leading up to

the M5 earthquake resulting in the smallest skewness. Thus, our findings are

at least consistent with a hypothesis that the fault criticality influences the

temporal evolution of earthquake sequences.
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2.5.6 Earthquake Hazard Potential

The maximum magnitude of induced earthquakes during and after injec-

tion is essential in evaluating seismic hazard. Several hypotheses have been

proposed to understand the maximum magnitude as summarized in Eaton and

Igonin (2018). McGarr (2014) proposed that the maximum magnitude can

be constrained by the total injection volume and the area of the pressurized

zone, which is consistent with the modeling results in Dieterich et al. (2015).

In contrast, van der Elst et al. (2016) proposed that the maximum magnitude

is related to the magnitude-frequency-distribution of the induced earthquake

sequence and related to the b-value and the seismogenic index model proposed

by Shapiro et al. (2011). Both models are consistent with the observations.

However, it is important to recognize that the fault stress state may have

a strong influence on how a rupture grows along the fault. The possibility

that quasi-static slip along a pressurized fault grows into dynamic slip beyond

the pressurized area has been demonstrated theoretically by Garagash and

Germanovich (2012) and verified by a stochastic model in Gischig and Wiemer

(2013).

The fault length provides a direct measurement to estimate the maximum

magnitude. Both fault orientation and fault length can influence the maximum

magnitude of induced earthquakes. In Figure 2.9a, we plot the maximum

earthquake magnitude and fault understress state. For optimally oriented faults

(understress<0.2), the fault has a broader range of magnitudes observed. For

non-optimally oriented faults, there are no earthquakes larger than magnitude

4.5. Intermediate to small earthquakes (M< 4.0) occurred on both critically

stressed and noncritically stressed faults with a relatively low shear stress,
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which could be attributed to increased pore pressure. We map 54 optimally

oriented faults and 15 non-optimally oriented faults. It is still possible that

large earthquakes have the same probability to occur on non-optimally oriented

faults, and the lack of large earthquakes on non-optimally oriented faults is

due to its low abundance (Table S2).

Figure 2.9b shows that the maximum magnitude on the faults increases

with the fault length. The largest earthquakes (Prague, Pawnee, and Cushing

earthquakes) occurred on critically stressed faults and the magnitudes are

comparable to the predicted values from the empirical relationship for natural

earthquakes (Wells & Coppersmith, 1994), indicating that the largest earth-

quakes might be controlled by the local stress field. To examine the alternative

possibility that large earthquakes control apparent fault size, we plot the seis-

micity prior and after the mainshock in four M5 clusters (Figure S2.10). The

results show that the events before the mainshock already spread over the

whole length of the fault in Fairview, Pawnee and Cushing, which suggests that

the fault length is not controlled by the mainshock and its aftershocks. Similar

observations have been found by Schoenball and Ellsworth (2017a). In Prague,

it seems that the fault length is controlled by the mainshock (aftershocks).

However, due to the lack of stations at that time, it is also possible that some

events before mainshock are missing in the catalog. Based on current data, we

cannot draw an unambiguous relationship between understress and maximum

magnitude. However, the knowledge of fault stress state can help identify

high-risk faults with potential runaway ruptures and large earthquakes (Galis

et al., 2017).
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2.6 Conclusions

To better characterize the properties and stress state of fault systems

in Oklahoma and southern Kansas, we map the fault geometry using high-

precision earthquake relocations and generate a high-resolution in-situ stress

map using focal mechanism solutions. Our results suggest that:

1.Although the majority of the seismogenic faults (NE and NW trending)

are optimally oriented relative to the local stress field, some non-optimally

oriented faults are identified.

2.Comparison of the seismogenic faults with sedimentary faults and mapped

basement fractures suggests potentially similar tectonic origins for those

structures.

3.The orientations of the faults that hosted the largest earthquakes (M≥5.0)

in Oklahoma are quantitatively characterized, and the Prague, Pawnee,

and Cushing faults are found to occur on optimally oriented faults, while

the Fairview fault is not. For the three large optimally oriented faults,

the maximum earthquake magnitudes are comparable to the predictions

from the empirical scaling relation for natural earthquakes, and the three

sequences are predominately mainshock-aftershock type sequences.

Our study contributes detailed seismogenic fault analysis to the current

fault database and provides a more complete picture of the relation among

seismogenic fault properties, pore pressure, the local stress field, and rupture

process in the region of induced seismicity.
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2.7 Supplementary Materials

Introduction

The supporting information provides additional information on using the

focal mechanism tomography (FMT) technique to calculate absolute stress

magnitudes.

Text S1. Here we show the derivation of Equation 2 from the assumptions

in Focal Mechanism Tomography (FMT).

Under the four assumptions listed in the manuscript, on the Mohr circle

in Figure S2.11, the largest Mohr circle is tangent to the fault strength length

line. For the Mohr circle, the center is at (σ1+σ3
2

,0), and the radius is σ1−σ3
2

.

The fault strength line is f = µ(σ−Pw) +C. The distance from a point (x0,y0)

to a line ax+ by + c = 0 is defined as:

distance(ax+ by + c = 0, (x0, y0)) =
|ax0 + by0 + c|√

a2 + b2
(2.5)

Since the largest Mohr circle is tangent to fault strength line, the distance

from the center of the largest Mohr circle to fault strength line is equal to the

radius, that is:

|µ(σ1+σ3
2
− Pw) + C − 0|√
µ2 + 1

=
σ1 − σ3

2
(2.6)

Then we have,

µ(
σ1 + σ3

2
− Pw) + C =

σ1 − σ3
2

√
µ2 + 1 (2.7)

By arranging the above equation based on σ1 and σ3, we get,
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σ1(
√
µ2 + 1− µ)− σ3(

√
µ2 + 1 + µ) = 2C − 2µPw (2.8)
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Text S2. Here we introduce the method to calculate vertical normal

stress from the principal stress tensor following Allmendinger (2017). The

vertical direction in North-East-Down (NED) system is n = (0, 0, 1)T . The

vector in the coordinate system defined by principal stresses is

ni
′
= aijnj (2.9)

where aij is the transform matrix composed of the orientations (plunge and

trend) of principal stresses. The trends and plunges are labeled as trdσi and

plgσi, where i is the number of the principal stresses. Then:

Aij =


cos(trdσ1) cos(plgσ1) sin(trdσ1) cos(plgσ1) sin(plgσ1)

cos(trdσ2) cos(plgσ2) sin(trdσ2) cos(plgσ2) sin(plgσ2)

cos(trdσ3) cos(plgσ3) sin(trdσ3) cos(plgσ3) sin(plgσ3)

 (2.10)

The vertical stress can be calculated from the principal stress tensor

σ′ =


σ1 0 0

0 σ2 0

0 0 σ3

 and normal vector n
′
:

σv = n
′Tσ′n′ (2.11)
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a b
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Figure 2.1: Mapped faults in this study based on earthquake relocations from
C. Chen (2016) and Schoenball and Ellsworth (2017b). (a) Earthquake clusters
(colored dots) with 10 and more events. Short, black lines show the faults
with planarity larger than 0.8 mapped from 30 and more events. Yellow stars
show the location of four M≥5 earthquakes in Oklahoma. Thin, black lines
are county boundaries in Oklahoma. The long, thick black line is the Nemaha
fault from OGS fault database (Marsh & Holland, 2016). (b) The inset map
shows the location of the study area. (c) Histogram of strike of faults in (a).
(d) Histogram of dip of faults in (a).
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Figure 2.2: Stress inversion results for Oklahoma and southern Kansas. (a)
The bars show the orientation of the maximum horizontal stress (σHmax) axis.
Green: strike-slip faulting; black: oblique normal faulting. Faulting regime
is assigned according to Zoback (1992). The number in the grid shows the
corresponding R value. Gray circles are focal mechanisms used in the inversion.
Thin, gray lines are county boundaries in Oklahoma. The long, thick black
line is the Nemaha fault. (b) Rose diagram of σHmax orientation. (c) Cross
plot of R value and calculated pore pressure from Langenbruch et al. (2018).
The background shows the calculated pore pressure by November 2016 from
hydrogeologic models (Langenbruch et al., 2018).
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Figure 2.3: The stress state of 69 seismogenic faults in a 3D Mohr diagram.
The three semicircles represent the stress tensor, and the two straight lines
represent the fault strength under hydrostatic fluid pressure and lithostatic
pressure under friction coefficient of 0.68. Each circle, colored by understress
value, represents the shear and normal stress on a single fault.
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b

Figure 2.4: (a) Seismogenic fault map colored by excess pore pressure. Yellow
stars show the location of four M≥5 earthquakes in Oklahoma. The dashed
lines are county boundaries. The long, thick black line is the Nemaha fault.
The background shows the calculated pore pressure by November, 2016 from
Langenbruch et al. (2018). (b) Histogram of excess pore pressure on each fault.
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Figure 2.5: Fault understress values from each stress field scenario. (a)
Crossplot of understress values between scenario S1 and S2. (b) Histogram of
understress difference between scenario S2 and S1. (c) Crossplot of understress
values between scenario S3 and S2. (d) Histogram of understress difference
between scenario S3 and S2.
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Figure 2.6: Dependence of the fault stress state on friction coefficients of 0.4,
0.6, 0.8, and 1.0. The plot schemes are the same as in Figure 2.3.
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Figure 2.7: Strike comparisons of different categories of faults. (a) Seismogenic
faults in the western pressurized section. (b) Mapped sedimentary faults in
the western section. (c) Seismogenic faults in the eastern pressurized section.
(d) Mapped sedimentary faults in the eastern section. (e) Mapped fractures
in Mill Creek and Tishomingo, Oklahoma. The mapped sedimentary faults
are from Marsh and Holland (2016). (f) The fault map with the same color
scheme as the rose diagrams. The western and eastern pressurized sections are
separated by the Nemaha Fault. Yellow dots denote the locations of exposed
fractures. Some long N-S trending faults from (Marsh & Holland, 2016) are
labeled, including the Nemaha Fault, Wilzetta Fault, Keokuk Fault, and the
Galena Township Fault. The figure also labels the geological province in the
south of Oklahoma (Northcutt & Campbell, 1996).
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Figure 2.8: Understress for (a) the focal mechanism solutions of M≥5.0 main-
shocks and (b) the hosting seismogenic faults as listed in Table S1. Diamonds:
focal mechanism solutions. Circles: seismogenic faults. Both symbols are
colored by understress values and scaled with the magnitude of the mainshock.
Pr: Prague; Pa: Pawnee; C: Cushing; F: Fairview.
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Figure 2.9: (a) Scatter plot of the maximum earthquake magnitude and
understress value on each fault. The dots are colored by excess pore pres-
sure. (b) Scatter plot of maximum earthquake magnitude and fault length.
The dots are colored by understress value. The black line is the empirical
relation between magnitude and rupture length from natural earthquakes:
M= 4.33 + 1.49 log(RLD) (M>4.5), RLD–subsurface rupture length (km)
(Wells & Coppersmith, 1994).
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Figure S2.1: Histogram of location difference for common events in the catalog
from C. Chen (2016) and Schoenball and Ellsworth (2017b).
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Figure S2.2: Grids and focal mechanism solutions used in stress inversion.
The number of focal mechanisms available is shown in each grid. Gray circles
are focal mechanisms used in the inversion. The bars show the orientation of
the maximum horizontal stress (σHmax) axis from inversion. Green: strike-slip
faulting; black: oblique normal faulting. Faulting regime is assigned according
to Zoback (1992). Thin, gray lines are county boundaries in Oklahoma. The
long, thick black line is the Nemaha fault.
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Figure S2.3: An example of principal stress and excess pore pressure (required
pore pressure increase for fault failure) changes with depth.
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Figure S2.4: A close-up view (west of north-central Oklahoma) of the clusters.
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Figure S2.5: A close-up view (east of north-central Oklahoma) of the clusters.
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a b

Figure S2.6: The uncertainty of (a) σHmax orientation and (b) R value
estimated from bootstrap resamplings in stress inversion. Small uncertainties
of σHmax and R value suggest that the heterogeneity of the stress field is well
constrained using the high quality focal mechanism solutions.
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Figure S2.7: (a) Cross plot of understress values and averaged pore pressure
on each fault. (b) Cross plot of excess pressure values and averaged pore
pressure on each fault. East and west sections are separated by the Nemaha
fault. We bin the pore pressure with a bin size of 0.02MPa. The open circles
in (a) show the average values of understress which fall in the pore pressure
bin of 0.02MPa. The pore pressure was calculated from hydrological model by
Langenbruch et al. (2018).
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Figure S2.8: Required pore pressure calculated by adding uncertainties to
fault strike and slip. The red points are the original pore pressure. The blue
points are the mean pore pressure by varying fault strike and dip 200 times.
The black lines show the range of one standard deviation.
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Figure S2.9: The magnitude-time plot (blue dots) and cumulative seismicity
rate (red lines) of earthquake sequences in (a) Prague, (b) Fairview, (3) Pawnee,
and (4) Cushing, Oklahoma. The raw catalog from the Oklahoma Geological
Survey is used in the plot. For Fairview and Cushing, the M5 sequences are
selected based on temporal clustering of the whole sequence.
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Figure S2.10: Seismicity distribution in the four M5 clusters. The yellow
stars are the mainshock. Events before mainshock are in red, after in gray.
The event locations are from Schoenball and Ellsworth (2017b) catalog.
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Definitions: 

tau

instability= [tau-mu(sigma-sigma1)]/[tau_c-mu(sigma_c-sigma1)]
           = [tau-mu(sigma-sigma1)]/mu(sigma1-Pw)
           = A1C1/B1C1

w

sigma1-sigma

mu(sigma1-sigma)

tau

tau_p

C C1

understress = (tau_p-tau)/tau_p = BA/BC

f=mu(sigma-Pw)+C (C=0)

Figure S2.11: Definition of understress (Gischig, 2015) and instability
(Vavryčuk, 2014). The largest Mohr circle is tangent to the fault strength
line under hydrostatic pore pressure based on the assumptions listed in the
manuscript. By definition, understress is calculated as |BA|/|BC|, and insta-
bility is calculated as |A1C1|/|B1C1|.
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Figure S2.12: Stress state of faults of various orientations represented by (a)
understress, and (b) instability. Both parameters can reflect the criticality of
the faults.
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Figure S2.13: Cross plot of understress and instability for 69 seismogenic
faults. The bifurcation at high instability values corresponds to the area
between the largest and second largest Mohr circles in Figure S2.12.
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Table S2.1: Focal Mechanisms of M ≥ 5.0 Earthquakes and Mapped Fault
Geometry.

Area Mag MS strike(°) MS dip(°) Fault strike(°) Fault dip(°)
Prague 5.7 236 85 235 86
Fairview 5.1 46 66 46 84
Pawnee 5.8 289 72 -73 89
Cushing 5.0 59 78 59 89
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Table S2.2: Statistics of large earthquakes on optimally and non-optimally
oriented faults.

Fault Groups Num PCT EQs (M ≥ 5.) EQs (M ≥ 4.5) EQs (M ≥ 4.)
Optimally Oriented 54 78% 4 5 17/54=0.31
Misoriented 15 22% 0 0 4/15=0.27
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Chapter 3

Diverse Stress State Evolution

of Induced Earthquake

Sequences in Oklahoma

Revealed through

High-resolution Focal

Mechanisms

3.1 Introduction

The seismicity rate in Oklahoma has experienced significant variations

during the last decades, which has been mostly attributed to wastewater

disposal (e.g., Ellsworth, 2013; Keranen et al., 2014; Yeck et al., 2016). With
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the improved monitoring network in Oklahoma, high-resolution seismicity

relocations have revealed previously unknown fault structures and rupture

processes. For example, Schoenball and Ellsworth (2017a) and Skoumal et al.

(2019) systematically mapped faults through relocated seismicity in Oklahoma;

at local scale, the fault structure was mapped using seismicity in Prauge

(Keranen et al., 2013), Fairview (Yeck et al., 2016), Pawnee (X. Chen et al.,

2017), Guthrie-Langston (Schoenball et al., 2018), and Woodward (Qin et al.,

2019).

Earthquake focal mechanisms also provide critical information about the

stress field, fault structure, and deformation process. Constraining the focal

mechanism of small earthquakes remains difficult because of the low signal-to-

noise ratio and a lack of azimuthal coverage in areas. New techniques have

been developed to improve focal mechanism determinations and uncertainty

characterization. Vavryčuk (2015) inverted for a composite moment tensor

using joint inversion of multiple earthquake data. Pugh et al. (2016) and

De Matteis et al. (2016) inverted moment tensor from various inputs using

Bayesian frameworks. Spatially concentrated earthquakes, such as earthquake

swarms and mainshock-aftershock sequences, often show similar mechanisms.

Shelly et al. (2016) developed a new strategy for earthquake focal mechanism

using waveform-correlation-derived relative polarities and cluster analysis. The

strategy clustered events with similar patterns of polarities and applied focal-

mechanism inversion to the grouped polarity data. Y. Chen and Huang (2019)

developed a moment-tensor joint inversion method for single-borehole geophone

array, where the events were clustered based on waveform similarities and

radiation patterns, a solution was jointly inverted for the clustered events and

then the moment tensors of individual events in each cluster were inverted
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with a limited searching range based on the joint inversion results. With the

increasing application of machine learning methods in seismology, Ross et al.

(2018) trained a convolutional neural network to pick first-motion polarities of

P waveform and demonstrated that the networks could pick polarities more

accurately than seismic analysts.

In this study, we invert the focal mechanisms and compute the stress

state of individual earthquakes in four selected sequences Cushing, Guthrie,

Woodward, and Fairview. Previous observations have shown the complexity

of the four sequences. In Cushing, where the critical oil pipeline and storage

facility are located, the M5.0 earthquake caused structural damage in the

nearby city of Cushing (McGarr & Barbour, 2017). It is of great importance to

better understand the stress state and rupture process of the M5.0 sequence. In

Guthrie, X. Chen et al. (2018) associated the seismicity to the nearest disposal

well and found the maximum seismic moment is about an order of magnitude

lower than expected from the theory McGarr and Barbour (2017). Wu et al.

(2019) found that the Mw 4.0 in Guthrie had a complex rupture process. The

findings suggest complex local fault conditions and their influence on seismicity.

In Woodward, Qin et al. (2018) mapped a complex fault system of flower

structures rather than the prevalent vertical strike-slip faults in central and

northern Oklahoma. In Fairview, a M5.1 earthquake occurred in February, 2016

and the sequence kept migrating to southwest, showing a growing length of the

main fault, which could cause continuing seismic hazard. Also in Fairview, the

sequence was possibly influenced by both pore pressure (McGarr & Barbour,

2017) and poroelastic stress change from more distant wells (Goebel et al.,

2017).
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In this paper, we use two different methods to obtain the first-motion

polarities of small earthquakes and then invert the focal mechanisms for each

individual event. Based on the relocation and focal mechanism solutions,

we interpret the fault structures and compute the fault stress state. The

spatiotemporal analysis of the earthquake relocations and fault stress state

shows the detailed fault rupture process. Combined with a modeled pore

pressure field, the results are further used to evaluate earthquake hazards.

3.2 Data

We use the earthquake catalog from the Oklahoma Geological Survey

(OGS) (Walter et al., 2020). In the four sequences in Cushing, Guthrie,

Woodward, Fairview, there are 681, 1073, 1404, and 3460 cataloged events

with magnitude range from 0.1 to 5.1 (Figure 3.1) in the selected time period

from January, 2009 to August, 2018. The catalog covers the initiation and the

following propagation of seismicity in each sequence. In this paper, we invert

for focal mechanisms of small events and perform a complete fault stress state

analysis of each sequence to better understand the seismic sequence evolution.

For the waveform data, we select stations within 150 km of the sequence

to ensure data quality in Cushing and Guthrie. For Woodward and Fairview,

the distance cutoff is increased to 250 km due to the lack of station coverage

(Figure 3.1). The phase picks are provided by OGS. For events without available

cataloged picks, we use an autopicker from Li and Peng (2016) to estimate P

and S arrival time based on a 1D velocity model (Darold et al., 2015). The

phase arrivals are refined in a pre-trained machine learning model (Ross et

al., 2018). The picking quality is measured by the signal-to-noise ratio (SNR),
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which is defined as the ratio between the peak absolute amplitude in the 0.5 s

after and before the refined arrival time. The waveforms are then detrended

and bandpassed to 1 to 20 Hz using a Butterworth filter. We use a time window

of 1.5 s (0.5 s before and 1.0 s after the arrival) and 2.5 s (1 s before and

1.5 s after the arrival) for P and S wave, respectively, to compute the cross

correlations in the following process.

3.3 Method

3.3.1 Earthquake Relocation and Fault Structure

We use hypoDD (Waldhauser, 2001) to compute double-difference earth-

quake locations using differential travel times from both phase arrivals and

cross correlation. For each earthquake, we store differential times for P and S

phases for up to the 100 closest neighboring earthquakes at a maximal distance

of 10 km. For each earthquake pair, the travel time differences at up to 100

stations are stored. We compute the P wave cross correlations on the vertical

channel and S wave cross correlation on two horizontal channels. For the S

wave, the channel with higher cross-correlation coefficient is selected to measure

the differential travel time. We require a minimum cross-correlation coefficient

of 0.7 and use the squared cross-correlation coefficient as its weight in the

relocation procedure following Schoenball and Ellsworth (2017b).

In the first set of iterations of hypoDD, we give the differential travel

times from P and S phase arrivals the highest weight to constrain the overall

geometry using all earthquakes. In later iterations, we add differential travel

times measured from cross-correlation time lags and decrease the weight of the
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catalog picks. In the last step, we use only cross-correlation measurements to

resolve the fine structures. The 1D velocity model from Darold et al. (2015) is

used in the relocation process. The results are shown in Figure 3.2.

In each sequence, we manually separate the events on the main fault and

the secondary structures based on the earthquake relocation. For each segment

structure, we use principal component analysis (Vidale & Shearer, 2006) to

fit a fault plane. In this method, the eigenvalues (λ1 ≥ λ2 ≥ λ3) and the

corresponding eigenvectors (U1, U2, U3) of the covariance matrix defined by

earthquake epicenters are used to characterize the fault plane. The first two

eigenvectors U1, U2 represent the surface of the fault plane, and U3 is normal to

the fault plane. The fault strike and dip angle are calculated from the direction

of the normal vector U3. A parameter planarity is defined as 1− λ3/λ2 (Vidale

& Shearer, 2006), where a planarity of 1 indicates a perfectly planar shape and

a planarity of 0 indicates a nearly spherical cloud of seismicity.

3.3.2 P-wave Polarity

Picking the first-motion polarities for small earthquakes is difficult due to

the low signal to noise ratio. Here, we select two methods, waveform-correlation-

derived relative polarities (hereinafter referred to as SVD method) (Shelly et al.,

2016) and a pre-trained deep learning model for polarity classification (referred

to as ML method) (Ross et al., 2018). The results from the two methods are

then compared and combined to invert focal mechanisms.
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SVD Method

We follow the method from Shelly et al. (2016) to derive P polarities

for a whole sequence based on selected templates with known polarities. We

randomly select around 100 templates in each sequence and manually pick

their polarities. In this method, the waveform cross-correlation coefficients

are calculated between the events and selected templates. For each event-

template pair, the weighted relative polarity measurement, which is defined

by the absolute difference between the peak and the secondary peak of cross

correlations multiplied by the sign of the peak correlation, is used to measure

the similarity between the event and template waveform.

The weighted relative polarity measurements between N events and M

templates form a N by M matrix, which is then reduced to a vector by

taking the left singular vector of the left unitary matrix of its Singular Value

Decomposition (SVD). This vector represents the polarity pattern of all events

on a specific station and channel. We measure a consistency factor by comparing

the SVD-derived polarities to the manually picked polarities for the selected

templates. The consistency factor wt is defined as,

wt =
∑

(wcat × Polsvd)/
∑

(|wcat × Polsvd|) (3.1)

where wcat is the manually picked polarity, and Polsvd is the SVD-derived

polarity. The SVD-derived polarities are then multiplied by the consistency

factor to get the real polarity for a particular channel.
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Machine Learning Method

In the second method, we use the pre-trained convolutional neural network

(CNN) model from Ross et al. (2018) to pick the polarities. The model was

trained by over two million analyst-picked polarities of earthquakes in California.

We apply the same preprocessing to the waveform data as in Ross et al. (2018).

The waveform is resampled to 100 Hz, detrended, and filtered between 1 and

20 Hz. Then we select a 4-s-long window centered on the P arrival time

and normalize the waveform by the peak absolute amplitude in the window.

The CNN model takes the 400-point time series as input and predicts the P

polarities (up, down, or unknown). The results are evaluated using the metric

of precision for each class of polarity (up and down). For a given class, the

precision is defined as the number of true positives divided by the total number

of records assigned to the class by the CNN model,

precisonu =
TPuu

TPuu + εdu

precisond =
TPdd

TPdd + εud

(3.2)

where u and d represents polarity up and down, TP is the number of true

positives, and ε is the number of false positives. We test on the template events

in Oklahoma, and the precision rate changes with hypocentral distance and SNR

but not significantly with magnitude, consistent with the findings in California.

And the precision rate for the manually picked templates is comparable to the

results reported in Ross et al. (2018). The successful application of the model

trained by earthquakes in California to earthquakes in Oklahoma suggests good

generalization of the model.
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3.3.3 Focal Mechanism Inversion

We combine the polarity results from different methods in the previous

section and compute the earthquake focal mechanism solutions in hybridMT

(Kwiatek et al., 2016). To ensure the quality of the inversion, we only select

events with a minimum number of polarities of eight, a maximum azimuthal

gap of 120°, and a maximum takeoff angle gap of 60°. Since we only use

polarity information and do not include the amplitude in the input datasets,

the inverted full moment tensor may not be well constrained. So we select

double couple component of the moment tensor for following analysis.

We classify the focal mechanisms by rake angle following X. Chen et al.

(2018). The faulting type (f−value) is calculated as follows,

f(λ) =


λ/90 if |λ| ≤ 90

(180− |λ|) ∗ (λ/|λ|)/90, otherwise

(3.3)

where λ is the rake angle of the nodal plane. Faulting types of -1, 0, and

1 correspond to pure normal faulting, strike-slip faulting, and reverse faulting,

respectively. The rake angle continuously changes from -180° to 180°, and

f -value can mitigate the gap between the rake angle of -180° and 180°.

We also use the input data resampling technique to assess the uncertainty

of the moment tensor inversion. We assume 2% of input phases have wrongly

picked polarity and generate 100 resampled datasets by randomly flipping

the polarity of the input phase data. For each resampled input dataset, we

invert a different set of focal mechanisms. We use similar criterion as in HASH

program (Hardebeck & Shearer, 2008) to assign the quality of the inverted

focal mechanisms. The criterion include the probability that the results from
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resampled input dataset are within certain rotation angle (45°) to the preferred

solution (PROB), the RMS angular difference between the preferred solution

and those from resampled data (RMS ANG), the fraction of misfit polarities

(MFIT) of the preferred solution, and the station distribution (STDR) around

the event. A detailed quality assignment is listed in the Table S3.1.

3.3.4 Fault Stress State

After we get the focal mechanisms in each sequence, we follow the statewide

analysis in Qin et al. (2019) to calculate the fault stress state for individual

events. The events are projected onto 3D Mohr circle based on the stress map

in Qin et al. (2019), and a normalized parameter understress (Gischig, 2015)

is used to quantify the criticality of the fault plane. The understress is defined

as,

understress = (τp − τ0)/τp (3.4)

where τ0 is shear stress on the fault calculated from the fault geometry and

stress orientations, and τp is shear stress at which slip initiates based on the

Coulomb failure criterion under hydrostatic pore pressure. Since both τ0 and τp

increase linearly with depth, the defined parameter understress is independent

of depth. Values of understress near 0 imply that the faults are critically

stressed, while values near 1 imply negligible resolved shear stress applied

on the fault, and the fault is least favorably oriented. We also calculate the

parameter of excess pore pressure, which is defined as the required pore pressure

increase above hydrostatic pressure for fault failure according to Mohr-Coulomb

failure.
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3.4 Results

In this section, we show the fault structures mapped from earthquake

relocations and the focal mechanisms inverted from P first-motion polarities.

Based on the focal mechanisms and regional stress field, we compute the fault

stress state for individual events and present a spatiotemporal analysis of stress

state for each sequence.

3.4.1 Fault Initiation and Fault Structures

Figure 3.2 shows the spatiotemporal evolution of the four sequences. The

main fault in Cushing sequence is vertical and oriented in the northeast direction

(N60°E). The sequence initiates around the depth of 3.8 km and migrates both

upwards and downwards. The event gap (3.6 – 3.8 km) in the cross-section view

is possibly due to the lack of observations at the beginning of the sequence. At

the southwest end of the main fault, a short fault segment (N76°E) intersects

with the main faults. A previous study has shown that Cushing sequence is

in a strike-slip faulting regime with a maximum horizontal stress orientation

(σHmax) of 86° (Qin et al., 2019). Compared to the σHmax orientation, the main

fault is optimally oriented to the stress field, and the second fault segment is

less optimally oriented.

The Guthrie sequence is one of the earliest reactivated sequences in

Oklahoma (e.g., Benz et al., 2015; McNamara et al., 2015; Schoenball et

al., 2018). The main fault has a strike of 110° and dips to the northeast. The

dipping angle is nearly vertical at shallower depth (<6.5 km) and decreases to

around 70° at depth. X. Chen et al. (2018) interpreted the fault structure as

two subparallel faults which define an extensional jog at the changing point
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of dipping angle. The fault is reactivated around the extensional jog, and the

events migrate both upwards and downwards. The secondary fault is at the

strike of 55° and forms a conjugate pattern to the main fault relative to the

regional stress field with a σHmax orientation of 79°. The secondary fault has

ruptured most recently and is well separated from the main fault.

The Woodward sequence has been interpreted as a fault system character-

ized by a flower structure with strike-slip fault at deeper depth and distributed

normal faults at shallower depth (Qin et al., 2018). The newly ruptured segment

is at the northeast end of the main fault (N64°E), and it covers the whole depth

range of the sequence from 4 km to 7 km. The secondary structures, including

another parallel fault segment farther to the southwest and the intersections

between the two parallel fault segments, are located at shallow depth and not

well developed for the moment.

The main fault in Fairview is nearly a vertical fault with a strike of 44°.

The events are migrating from northeast to southwest, away from the high

injection zone to the northeast (Yeck et al., 2016). The fault is reactivated

around depth of 4.5 km and migrates to deeper depth (>7 km). The secondary

fault is at the strike of 97° and connected to the main fault. The fault system

is located in a strike-slip regime with a σHmax orientation of 78°. By comparing

the cross-section view for Cushing and Fairview, we find that the width of fault

zone (∼ 0.54 km) in Fairview is larger than that in Cushing (∼ 0.12 km). The

width of the fault zone is defined by the distance between the 20% and 80% of

seismicity distribution in across-strike direction.
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3.4.2 Focal Mechanism Results

We combine the polarities results from SVD method and machine learning

method. We then select events with at least eight polarity picks, a maximum

of station azimuth gap of 120°, and a maximum of incident angle gap of 60°

to invert for moment tensor. For Woodward and Fairview, due to the lack

of station coverage, the azimuth gap cutoff is set to 100°. We obtain 305,

360, 464, and 631 focal mechanisms for Cushing, Guthrie, Woodward, and

Fairview sequences, respectively. The real fault planes are differentiated from

the auxiliary fault planes based on the assumption that the real fault planes

are more optimally oriented relative to the regional stress field. The histograms

of strike and dip angle of the selected fault planes are shown in Figure 3.3.

The strike orientations of individual fault planes are largely coherent with

the inferred fault strike from seismicity. In the Cushing sequence, the dominant

strike is 225 – 240°, and 69% of the fault planes are dipping steeply with a

dipping angle larger than 70°. The main fault strike and the M5.0 mainshock

orientation are within the strike range of the individual fault planes. The

Fairview sequence has a dominant strike of 210 – 225° and a secondary strike

of 300–315°, and 80% of the fault planes have a dipping angle larger than 70°.

The strikes of the small events are slightly off the main fault strike mapped

from seismicity. The strike difference can be explained by various orientations

of small fabrics within the relatively wide fault zone. For both sequences, the

dominant vertical faults planes are compatible with the vertical structure of

the main faults. The slight change of strikes in the two sequences reflect the

heterogeneity of the focal mechanisms in different regions of Oklahoma.

In Guthrie and Woodward, the majority of the fault planes have strike
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angle in the range of [30, 60]° and [210, 240]°. Although most of the events are

dipping steeply, a small subset of the events have a dip angle between 40 and

70°. The results match with the previously mapped fault structures that the

dipping angle changes with depth in Guthrie and Woodward.

We classify the fault planes into different types by rake angle following

X. Chen et al. (2018). The spatial distribution of the focal mechanisms in each

sequence is shown in Figure 3.4. To the first order of observation, strike-slip

faulting is the dominant faulting type for all sequences. In Cushing, the events

on the main fault are mostly right-lateral strike-slip faulting. The intersection

point of the main fault and the secondary fault structure shows the occurrence

of left-lateral strike-slip faulting. In Fairview, the main fault consists of both

right-lateral and left-lateral strike-slip faulting events, and the secondary fault

structure hosts mainly the left-lateral strike-slip faulting events. At shallow

depth, a small fraction of normal events occur in both sequences.

However, Guthrie and Woodward show a variety of faulting types on the

main fault. In Guthrie, the main fault has a mixture of strike-slip and normal

slip components. The normal faulting events are mainly distributed deeper

than the extensional jog at a depth of 6.5 km. In Woodward, the strike-slip

events are at deeper depth and normal events at shallower depth, consistent

with previous results (Qin et al., 2018).

The newly ruptured segment at the depth of 6–7 km in Woodward has

a dominant reverse slip component. We manually check the polarity picks

and find no consistent error. A temporal distribution of the focal mechanisms

is shown in Figure S3.1. The strike-slip faults are still the dominant focal

mechanism type in this cluster, and the secondary type is normal faulting.
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The occurrence of strike-slip faulting coincides with that of normal faulting

events. However, most of the reverse events occur when the available monitoring

stations are few (Figure S3.1). We also show the polarity distribution for some

individual reverse faulting events in Figure S3.2. The various strike and dip

angles are mostly bounded by station distributions and are not well constrained.

For some events, the faulting type changes between reverse faulting and strike-

slip faulting based on different resampled input datasets (Figure S3.3). With

the available evidence, we argue that reverse faulting events are artifacts due

to poor station coverage rather than real fault structures. For the next step,

we plan to use clustering analysis on the reverse events to get more polarity

observations and better constrain the inverted focal mechanisms.

3.4.3 Fault Stress State Results

With the inverted focal mechanisms, we analyze the fault stress state in

a 3D Mohr circle. The regional stress field has been obtained by Qin et al.

(2019). The average principal stress amplitudes in Oklahoma are 30.0, 24.84,

15.46 MPa/km, respectively. And the σHmax orientations in Cushing, Guthrie,

Woodward, and Fairview are 86°, 79°, 85°, 78°, respectively. Following the

previous method (Qin et al., 2019), we project the individual fault planes

in each sequence onto a 3D Mohr circle. The results are shown in Figure

3.5. We apply an understress cutoff of 0.15 to identify optimally oriented

faults. For sequences with a relatively uniform strike-slip faulting mechanism

in Cushing and Fairview, the percentage of optimally oriented faults is the high

(75% and 72%). In Fairview, although the M5.1 main shock is not optimally

oriented to the local stress field (Qin et al., 2019), many smaller events are more
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critically stressed. This can be explained by the observation that small fabrics

of different orientations exist in the fault zone, and the optimally oriented

fabrics are ruptured. Guthrie has 59% optimally oriented events. Woodward

has the lowest percentage partially due to the normal and reverse faulting

events.

The spatial distribution of the fault stress state is shown in Figure 3.6.

In Cushing, most of the events on the main fault are optimally oriented. The

non-optimally oriented faults only occur on normal faulting events at shallow

depth of the main fault and the intersection between the main fault and the

secondary fault. In Fairview, the small events on the main fault are mostly

optimally oriented with the exception of some shallow events. Different from

Cushing, many events on the secondary fault structures are also optimally

oriented, which could imply potential earthquake hazard on the secondary fault

segment. In Guthrie, fewer events are critically stressed than Cushing and

Fairview due to the normal faulting events. The main fault in Woodward is

the least critically stressed of the four sequences. The strike-slip events on the

main fault are mostly optimally oriented, and the normal events at shallow

depth are less optimally oriented. The rupture of the less optimally oriented

normal events have been attributed to the earthquake interactions (Qin et al.,

2018). The newly ruptured events at depth of 6–7 km are the least optimally

oriented. The reverse events are possibly artifacts because of the lack of station

coverage (Figure S3.1 to S3.3).

Figure 3.7 show the temporal evolution of the four sequences. Cushing is

featured by two foreshock-mainshock-aftershock subsequences. The dominant

faulting type is strike-slip, and some normal events occur after the M5.0 main
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shock. Each subsequence starts with larger events that are optimally oriented

(understress<0.15). In the following stage, some less optimally oriented events

rupture, which are possibly triggered by earlier events. Guthrie is characterized

as a swarm sequence without significantly large events. The sequence also

starts with optimally oriented events, and the majority of the events have

understress values between 0 and 0.5. Few non-optimally oriented events are

triggered.

The Woodward sequence is incomplete due to the lack of observations

at the beginning of the sequence. The events with large understress at the

beginning and end of the sequence are possibly not well constrained due to

station coverage. We get the stress state for part of the sequence from mid

2016 to 2018, when temporary stations and industrial stations are available.

Similar to Guthrie, the Woodward sequence does not show large variations in

stress state and event magnitude.

The Fairview sequence initiated later than Woodward, and the focal mecha-

nism solutions cover the majority of the sequence except for the beginning. The

M5.1 mainshock is less optimally oriented, followed by both optimally oriented

events and non-optimally oriented events. The occurrence of non-optimally

oriented events possibly suggests the existence of earthquake interactions.

3.5 Discussion

In this section, first we include more details about the applications of the

two different polarity-picking methods. We discuss the validity and applicability

of each method by comparison. Then we examine the uncertainties of the

inverted focal mechanisms and their influence on fault classification and stress
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state calculation. Finally, we combine all the findings, including fault structure,

stress state, and pore pressure to evaluate the potential earthquake hazards.

3.5.1 Validity of the Polarity-picking Methods

In the SVD polarity method, the relative polarities are obtained by com-

paring all events to the selected templates using cross correlation. To control

the quality of the results, we apply a cross-correlation coefficient cutoff of 0.8,

and search for a cutoff value for SVD results by requiring the derived polarities

for templates are over 98% consistent to the manually picked polarities. The

results are shown in Table S3.3.

For ML polarity methods, we iteratively search for a hypocentral distance

cutoff and a SNR cutoff to ensure that the precision of templates predictions is

over 98%. The results are also shown in Table S3.3. Without any adjustment

of the machine learning model, the prediction accuracy can reach comparable

level to the test results in the paper (Ross et al., 2018). The results suggest that

the model has good generality to be applied to a different region. Considering

we are only testing on a small dataset with relatively high SNR, we might

need to retrain the model with a large dataset of Oklahoma earthquakes in the

future for general purpose.

By comparison, over 96% of the polarities for common events from SVD

and ML methods are consistent, which validates the applications of the two

polarity-picking methods. For the SVD method, we find that the polarities

of some large events (M> 4) are not well resolved, because the correlation

coefficients between relatively large events and small events are low. So the

SVD method is most applicable to similar event clusters. On the contrary, the
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ML model can be applied to events with more complex sources. Both methods

are affected by low SNR. For SVD methods, only events with similar waveform

to the templates can be resolved, and the noisy waveform will decrease the

cross-correlation coefficients. For ML methods, the model can classify the noisy

waveform as polarity unknown if SNR is low.

3.5.2 Focal Mechanism Uncertainties

During the focal mechanism inversion, we resampled the input data 100

times and inverted for the focal mechanisms for each resampling. The results

are used to examine the uncertainties of the focal mechanisms. For each

event, we compute the rotation angles between the FM from the complete input

dataset and the FMS from the resamplings. A distribution of the mean rotation

angle is shown in Figure S3.4. The mean rotation angles for Cushing, Guthrie,

Woodward, and Fairview are 18°, 22°, 26°, and 22°, respectively. The rotation

angle for Cushing sequence is the smallest, suggesting the focal mechanisms

are best constrained. The opposite is true for Woodward sequence. As shown

in Table S3.2, most of the focal mechanisms are of A quality, and fewer than

one third of the focal mechanisms in Woodward are of A quality.

The fault rake angle determines the faulting type, and the f -value, as

a function of rake angle, is used to represent the faulting type. For each

event, we extract all rake angles from the resampling results and calculate the

standard deviations of their f -values. Figure S3.5 shows the distribution of

standard deviations of f -value for each sequence. The four sequences have

similar deviation value around 0.27. Based on the definition in Equation 3.3,

the f -value of 0.27 is equivalent to a rake angle change of 24°.
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The fault strike and dip angles combined control the stress state. To qualify

the influence of the uncertainties, we check the standard deviation values of

understress value of the inversion results from resamplings. The results are

shown in Figure S3.6. The mean standard deviation of understress value is

0.12, 0.14, 0.16, and 0.15 for Cushing, Guthrie, Woodward, and Fairview,

respectively. Even though the FMS are not very well constrained in Woodward

compared to the other three sequences, it does not severely influence the stress

state.

3.5.3 Potential Earthquake Hazard

The fault orientations in pressurized regions influence the rupture prop-

agation behaviors of the faults. The rupture behavior then influences the

possible maximum magnitude of earthquakes, which is essential to evaluate

the potential earthquake hazards. Gischig (2015) studied the fault rupture

behaviors using rupture simulations and found that different orientation of

the pressurized faults might results in uncontrolled rupture-front propagation

beyond the pressure or rupture-front propagation arresting at the pressure

front. Thus, the largest possible magnitude was determined either by fault

properties or injection volumes. Figure 3.8 shows the cross plot of understress

and modeled pore pressure for the four sequences. The understress values

represent the criticality of the fault in the regional stress field. Instead of the

injection pressure used in (Gischig, 2015), for y-axis we use the calculated pore

pressure from hydrogeologic modeling (Zhai et al., 2019).

In Figure 3.8, Cushing and Fairview have more optimally oriented faults,

as shown in Figure 3.5. Cushing sequence is in the highest pore pressure region
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with a mean value of 0.89 MPa. Combined with the previous observation that

the main fault in Cushing is a relatively simple vertical planar fault, it is possible

that uncontrolled rupture occurs and results in a maximum magnitude of 5.0,

which is comparable to the magnitude size determined by fault size (Qin et al.,

2019). Besides the largest magnitude, more moderate earthquakes (5 >M≥ 3)

occur on optimally oriented faults in the Cushing sequence. In Fairview, the

pore pressure is around 0.15–0.3 MPa. The abundance of optimally oriented

faults and relatively high pore pressure put the sequence at high risk. Compared

to the empirical relationship between fault length and magnitude for natural

earthquakes (Wells & Coppersmith, 1994), the maximum magnitude M5.1 is

slightly lower than the prediction (Qin et al., 2019). This observation suggests

that the rupture of the mainshock in Fairview probably is still controlled by

pressure-front due to its non-optimal orientation.

In Guthrie, the sequence hosts a smaller percentage of optimally oriented

events compared to Cushing. The modeled pore pressure (mean pore pressure

0.26 MPa) is much lower than Cushing. Considering the relatively complex

fault structures, the fault is most probably controlled by the pressurized front

from injection and does not host a significantly large earthquake. In Woodward,

due to the smallest percentage of optimally oriented events and the lowest pore

pressure increase (mean value of 0.12 MPa), the event magnitude is relatively

small compared to other sequences. The above observations show that various

factors, including fault structures, fault orientations, and injections, influence

the fault rupture and seismic hazard evaluation. Overall, the potential seismic

hazard is higher for Cushing and Fairview sequences.
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3.6 Conclusions

We map the fault structures, invert focal mechanisms, and compute the

individual fault stress states for four selected clusters in Oklahoma. The main

faults in Cushing and Fairview are vertical planar faults. The dominant focal

mechanism type is strike-slip faulting and over 70% of the individual events

are optimally oriented. On the other hand, Guthrie and Woodward show more

complex fault structures with a mixture of strike-slip and normal faulting

components. In the regional stress field, Guthrie and Woodward have a lower

percentage of optimally-oriented faults, 59% and 47%, respectively. As a result,

Cushing and Fairview are more susceptible to uncontrolled rupture process and

have a higher potential seismic hazard level. Guthrie and Woodward have lower

seismic hazard level, and the largest earthquake magnitude is smaller than

4.5. Our results show heterogeneous fault structures and focal mechanisms in

induced sequences. Multiple factors, including the fault structures, fault stress

state, and injection histories, influence the rupture process and seismic hazard

evaluation.
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Figure 3.1: Stations (gray triangles) and earthquakes (colored circles in four
sequences, 2009–2018) used in this study. The inset figure shows the location
of the study region.
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Figure 3.2: Earthquake relocations for four sequences. The top panels show
the map view, and the bottom panels show the cross-section view (along AA′).
The events are colored by event origin times. Star: M≥5 event; circles: M≥4
events. The inset diagrams on the map view show the interpretation of the
fault structure. The diagrams are not to scale.
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Figure 3.3: Histogram of strike and dip angles of focal mechanisms for the
four sequences. The red lines show the orientation of the main faults interpreted
from seismicity. For Cushing and Fairview, the magenta lines show the strike
of M≥5 earthquakes.
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Figure 3.4: Focal mechanism solutions for four sequences. The top panels
show the cross-section view along main fault strike, and the bottom panels
show the cross-section view (along AA′). The events are colored by fault classes.
S: strike-slip, N: normal, R: reverse. Star: M≥5 event; circles: M≥4.
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Figure S3.1: The temporal distribution of focal mechanisms and the number
of available stations for Woodward sequence.The reverse events mainly occur
at the beginning and end of the sequence.
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Figure S3.2: Focal mechanism solutions with observed polarities for some
selected reverse events in Woodward sequence.
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Figure S3.3: The faulting type inverted from resampled input dataset for the
reverse events in Woodward.
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Figure S3.4: Distribution of the mean rotation angle between the FMS from
complete input dataset and those from 100 resamplings.
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Figure S3.5: Distribution of the standard deviations of f-value calculated
using FMS inverted from 100 resamplings.

118



Figure S3.6: Distribution of the standard deviations of understress value
calculated using FMS inverted from 100 resamplings.
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Table S3.1: Quality characterization of inverted focal mechanisms.

PROB RMS ANG MFIT STDR Quality
≥ 0.8 ≤ 25 ≤ 0.15 ≥ 0.5 A
≥ 0.6 ≤ 35 ≤ 0.2 ≥ 0.4 B
≥ 0.5 ≤ 45 ≤ 0.3 ≥ 0.3 C
< 0.5 > 45 > 0.3 < 0.3 D
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Table S3.2: Quality characterization results of inverted focal mechanisms.

Sequence A B C D Total
Cushing 228 47 15 15 305
Guthrie 289 62 4 5 360

Woodward 149 249 46 19 463
Fairview 352 156 80 33 631
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Table S3.3: Polarity result comparison from SVD and ML methods.

Sequence Temp SVD Pols ML Pols Consist Inconsist Consist rate
Cushing 2807 9031 12212 7025 178 97.53%
Guthrie 2466 9954 14008 8336 168 98.02%

Woodward 4024 8638 13682 4959 67 98.67%
Fairview 4915 12301 26065 9864 321 96.85%
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Chapter 4

Coulomb Stress Transfer

Influences Fault Reactivation in

Areas of Wastewater Injection

Plain Language Summary

The earthquakes in wastewater injection areas have been mainly linked

to fluid injection, which increases the pore pressure or poroelastic stress and

promotes fault failure. Only limited studies have explored another possible

driving mechanism – stress interactions between the earthquakes during the fault

reactivation in those areas. In this study, we focus on an isolated earthquake

cluster in the northwest Oklahoma, a wastewater injection area and study how

the earthquake interactions influence the step-by-step reactivation of the fault

system. The calculated stress interactions of small earthquakes on the fault

planes are larger than the pore pressure change and at least comparable to the
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poroelastic stress change from fluid injection. Our results suggest that the fluid

injection is not the only driving mechanism of seismicity in wastewater injection

areas, and earthquake interactions should also be considered for mitigating

induced seismicity.

4.1 Introduction

Much of the seismicity in Oklahoma is highly clustered in space, which

can be used to map faults in the subsurface and study triggering mechanisms

of earthquake sequences (e.g., X. Chen et al., 2017; Keranen et al., 2013;

Schoenball & Ellsworth, 2017a; Yeck et al., 2017). In northwestern Oklahoma,

a cluster, isolated from the main seismicity area, initiated near the city of

Woodward in 2014 (hereinafter referred to as “Woodward cluster”). Stress

inversion results show that the Woodward area is located within a transtensional

stress field, rather than the dominant strike-slip faulting regime of central

Oklahoma (Qin, 2017). Most of the earthquakes in the cluster are in the

crystalline basement with depth deeper than 4km. The temporal evolution of

the cluster resembles a typical swarm-type sequence without any events larger

than magnitude 4.0. Relocated catalogs from Schoenball and Ellsworth (2017b)

and C. Chen (2016) include the initiation portion of the cluster and provide

sufficient data (Figure 4.1a-f) to map fault structures and the reactivation

process.

In the brittle crust, strike-slip systems tend to develop complex arrays

of structures with minor faults striking obliquely to the overall trend (e.g.,

Le Guerroué & Cobbold, 2006). In cross-section view, the fault tends to be steep

at depth and splays upward, forming characteristic flower structures (Sylvester,
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1988). Those structures can be readily identified in two-dimensional (2D) or

three-dimensional (3D) seismic profiles (e.g., Harding, 1985). The structures

have been observed in seismic reflection profiles in Oklahoma (e.g., Figure S4.1).

Due to the unavailability of seismic reflection data in the Woodward area, we

rely on accurately relocated earthquakes to map fault structures (Figure 4.1).

To identify the mechanism of the fault reactivation process, we focus on the

spatiotemporal distribution of events in the sequence. A purely fluid induced

earthquake sequence can be simulated by the Poisson process, where successively

occurring events are not causally related to each other (Langenbruch et al.,

2011). The nearest neighbor approach has been used to differentiate induced

and natural seismicity at the Coso Geothermal Field (Schoenball et al., 2015)

and other regions (Zaliapin & Ben-Zion, 2015). We use this approach to

study the characteristics of earthquakes and the resulting implications for the

mechanism of fault reactivation.

In Oklahoma, wastewater disposal has been the main driving mechanism

for recent seismicity since 2009 (e.g., Ellsworth, 2013; Keranen et al., 2013;

McGarr, 2014). Concerning the triggering mechanisms, pore fluid pressure

change is more prominent at small distances, whereas at large distances,

poroelastic stress changes may surpass the pore pressure change (e.g., Goebel

et al., 2017; Segall & Lu, 2015). Goebel et al. (2017) calculated the pore

pressure change and poroelastic stress change in Woodward area including

both the nearby well and wells in the high-rate injection zone ∼ 40km to the

east of the cluster. The median pore pressure and poroelastic pressure changes

are 0.03MPa and 0.12MPa, respectively. We compare the Coulomb stress from

earthquake interactions to fluid-related pressure changes to better understand
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the driving forces of fault reactivation.

4.2 Data

4.2.1 Earthquake Relocations

To study fault structures, we use the relocated catalog from Schoenball and

Ellsworth (2017b). They used waveform data from a combination of public and

industry-operated seismic networks and applied the double-difference relative

location method (“hypoDD”) (Waldhauser & Ellsworth, 2000) with differential

times measured from waveform cross correlation. The catalog includes 418

events from August 2014 to November 2016 in Woodward with magnitude

from 1.5 to 3.8. The relative location precision is on the order of 10m in the

horizontal direction and about 50m in the vertical direction with a magnitude of

completeness of 2.5. Figure 4.1a and 4.1b show the relocations of the Woodward

cluster in map view and cross-section view.

Since the relocated catalog from Schoenball and Ellsworth (2017b) is based

on waveform cross correlation and the station distribution was sparse in that

area before 2015, some events could not be relocated by hypoDD. To analyze

the fault reactivation process with spatiotemporal distribution of earthquakes,

we need a more complete catalog. We refer to the catalog by C. Chen (2016),

which was obtained using the double difference method and a 3D velocity model

derived from Oklahoma earthquakes based on differential times from phase picks

in the Oklahoma Geological Survey (OGS) catalog. The location uncertainty is

∼ 40m horizontally and ∼ 100m vertically. The relocation results are slightly

dispersed in comparison to Schoenball and Ellsworth (2017b). However, the
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catalog includes 763 events from August 2014 to October 2016 with magnitude

from 1.1 to 3.8 and a magnitude of completeness of 2.5. The number of the

relocated events is comparable to that in the raw catalog from OGS. This

catalog is used in the analysis of the fault reactivation process (Figure 4.2 and

Figure 4.3).

4.2.2 Focal Mechanism Solutions

For focal mechanism solutions in Woodward, we use a subset of 102 events

in the focal mechanism solution catalog from the Oklahoma Geological Survey

(OGS) from December 2014 to November 2016. The date range covers similar

period as the relocated catalogs from Schoenball and Ellsworth (2017b) and

C. Chen (2016). The focal mechanism solution catalog was obtained based

on first motion polarities using either FPFIT (Reasenberg & Oppenheimer,

1985) or HASH (Hardebeck et al., 2005) programs, which are built-in functions

from the SEISAN package (Windows, 2009) used for routine processing. We

observe a mix of strike-slip faulting and normal faulting in the cluster (Figure

4.1c and Figure S4.2). The focal mechanism distribution in AA′ cross-section

view (Figure 4.1d) shows that at deeper depth (> 7.7km), the faulting type is

dominated by strike-slip faults; while above 7.7km, the faulting type transitions

to oblique faulting with mixed normal and strike-slip components. Combining

the information from Figure 4.1b and 4.1d, we find that the structures at

depth are characterized by a strike-slip fault, and the structures above are

characterized by oblique normal faults.
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4.3 Fault Interpretation

Using the seismicity distribution in Figure 4.1, we map the fault system

of the Woodward cluster. In the map view (Figure 4.1e), we separate the

seismicity into three groups with different distribution trends. Then, for each

group, the fault strike is calculated from the seismicity distribution using

principal component analysis (Vidale & Shearer, 2006) and the fault dip is the

average value of the dip angles of the focal mechanism solutions in that group.

We note that the dip angle has strong influence on the resulting Coulomb stress

amplitude, which will be further discussed. Table 4.1a lists the fault geometries

and locations. The depth ranges of the three faults are obtained from the 15th

and 85th percentile of the depth distribution from all the earthquakes within

each fault. R1 is the main strike-slip fault, and R2 is the bend featuring oblique

normal slip components at relatively shallow depth. The bend R2 connects R1

and another possible strike-slip fault segment R3, and is not well mapped due

to inadequate seismicity in that area. The three fault segments R1, R2, and

R3 are later used as receiver faults in Coulomb stress transfer calculation. We

show that during the reactivation, R1 is mainly characterized by right lateral

strike-slip faults and forms an extensional bend at its western end, which is

consistent with the observed oblique normal slip.

We also map the strike-slip fault system from seismicity in cross-section

view (Figure 4.1f). At depth (> 7.7km), a strike-slip fault is mapped as the

main structure, while at shallower depth, multiple splays from the main strike-

slip fault form a flower structure. Slip within the flower structure comprises of

a mix of strike-slip and normal slip components. Similar flower structures in

Oklahoma have been observed in seismic reflection profiles, for example, Figure
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S4.1 shows a flower structure mapped on a fault in Osage County (northeast

Oklahoma). However, detailed seismic reflection profile is not available in the

study area.

4.4 Fault Reactivation Process

To study the fault reactivation process, we examine the temporal dis-

tribution of earthquakes in the Woodward cluster. As shown in Figure 4.2,

several spikes appear in the daily seismicity rate curve (blue line), and steps

in the cumulative moment curve (red line). Each spike or step results from

an increase in the number of events. We separate the sequence into 6 stages

based on temporal clustering of the events with a threshold of 1.5 of the daily

seismicity rate based on magnitude completeness of 2.5 using the C. Chen

(2016) catalog. If several peaks in the seismicity rate curve are close in time and

the corresponding events are also close in space, those peaks are then manually

grouped into one stage. As shown in Figure 4.3, the earthquakes during each

stage (red dots) are highly clustered in space and represent a newly reactivated

fault segment. The seismicity starts at a shallower depth (stage 1) and then

migrates to the northeast to a deeper depth (stage 2). From stage 3 to stage

6, we observe a bilateral migration pattern of the earthquakes. One direction

is to the northeast at a relatively deep depth (∼ 7.5km), which is still on the

main fault segment R1; the other direction is to the southwest at a shallower

depth (∼ 6km), which corresponds to fault segments R2 and R3.

During each stage, the earthquakes are closely clustered in both space and

time, so we speculate that earthquake interaction has a significant influence

on the evolution of the cluster. This mechanism has been considered for
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induced seismicity (e.g., Brown & Ge, 2018; X. Chen et al., 2017; Schoenball

& Ellsworth, 2017a; Sumy et al., 2014). To test this hypothesis, we calculate

the Coulomb stress change (Lin & Stein, 2004; Toda et al., 2005) from the

earthquakes in each stage on the three receiver fault segments (R1, R2, and

R3) using the Coulomb3.3 program (Toda et al., 2011) with friction coefficient

of 0.68. The value is chosen as an average of experimental data on several rock

types sampled from OK basement, at experimental depth conditions of 6km.

The data is consistent with hydrothermal granite friction from Blanpied et al.

(1991) and (Kolawole et al., 2018). We parameterize each stage as a source

fault as follows: we calculate a cumulative magnitude from the cumulative

moment of the highly clustered events in each stage and take the magnitude-

weighted average location of the events as the location of the source fault.

The geometries (strike, dip, and rake) of each source fault are the average of

the dominant focal mechanism solutions in the subcluster. The information

used to calculate the source faults is listed in Table S1. The source fault

geometries are listed in Table 4.1b. The source faults represent active patches

of the existing fault system (R1-R3), and the parameters in Table 4.1b are

the input to calculate fault width, length, and slip using empirical relations

in Coulomb3.3 program (Toda et al., 2011). Stage 1 is at relatively shallow

depth and featured by normal slip component, and stage 2 is characterized by

a right lateral strike-slip fault. From stage 3 to stage 6, the bilateral migration

is characterized by different faulting types in northeast (NE) direction and

southwest (SW) direction. We use two source faults to represent the bilateral

migration in each stage from 3 to 6. The NE migration section is along the

main strike-slip fault. The SW migration is mainly characterized by normal

faulting on the fault bend R2. Some events to the further SW direction show
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a strike-slip faulting (stage 4-SW), which might represent the rupture on R3.

The fault segments in stage 3-SW and 5-NE are not mapped because no focal

mechanism solutions are available. The source faults are then used to compute

the Coulomb stress transfer on the receiver faults R1-R3. The results are shown

in Figure 4.4.

By overlaying the earthquake locations from next stage to Coulomb stress

transfer map (Figure 4.4), we find that the rupture front follows the pattern of

positive Coulomb stress transfer. The cluster is initiated during stage 1 within

the shallow bend of the fault comprising of dominant normal slip components.

This slip generates positive Coulomb stress on the main fault (R1) to the

northeast, where the next rupture front in stage 2 occurs. Then the events in

stage 2 generate positive Coulomb stress on both fault bend (R2) and on the

main fault further to the northeast (R1), which matches the bilateral seismicity

migration in the following stages. The northeast migration is characterized by

strike-slip faulting, which implies the extension of the main strike-slip fault.

The southwest migration is at shallower depth and mainly reactivates the

normal faulting structures of R2. The Coulomb stress transfer from individual

stages 1,2, and 3 is as high as 0.15MPa and those stages dominate the rupture

pattern of the fault system. A complete focal mechanism catalog (15% of

events have available focal mechanisms) is not yet available for this study, so

we cannot calculate Coulomb stress transfer on each earthquake. Instead, we

count the percentage of earthquakes from next stage that fall within the areas

of positive Coulomb transfer by interpolating the gridded stress map (listed in

Table 4.1c). The source events in stage 1 and 2 are more dispersed possibly

due to fewer stations at the beginning of the cluster. To test the influence of

source fault location, we randomly pick two other locations in the earthquake
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clouds, and the locations show a significant influence on the results (Figure

S4.3). The choice of magnitude-weighted average location for source faults in

our analysis is more reasonable, considering that larger events may have higher

location accuracy and tend to generate larger Coulomb stress changes. The

variations of friction coefficient are tested with values of 0.2, 0.4, 0.6, 0.8 and

1.0 in Figure S4.4. Different friction coefficients do not significantly influence

the results. The median value difference between µ = 1.0 and µ = 0.2 is less

than 0.002MPa for all stages.

4.5 Discussion: Why is the Earthquake Inter-

action Important?

4.5.1 Characteristics in Seismicity Distribution vs the

Poisson Process

In the viewpoint of stress interactions, the interevent time distribution of

induced seismicity is different from those driven by static or dynamic stress

changes, e.g., aftershock sequence. If one cluster is induced by fluid injection

with no stress interaction among earthquakes, even with an elevated rate,

those events are independent from each other. The cluster then still can be

characterized by a Poisson process. The parameter coefficient of variation

cv(τ) = στ/τ with the standard deviation σ and the mean τ can be used to

check if one point-process is a Poisson process. The coefficient of variation of 1

is for Poisson process and the values higher than 1 are for temporally clustered

occurrence times (Kagan & Jackson, 1991). For the Woodward cluster, the
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cv is 2.4, that is, the cluster is not a Poisson process and instead some stress

interactions between individual events are expected, which is consistent with

Schoenball and Ellsworth (2017a).

The nearest-neighbor approach provides a metric of distance by unifying

the time, location, and magnitude distance between any two events (Zaliapin

et al., 2008). The 2D plot of rescaled time and space distance in this approach

was used to differentiate induced and natural seismicity in the Coso Geothermal

Field (Schoenball et al., 2015) – induced seismicity features a large population of

Poissonian background seismicity with relatively large rescaled time and space

distance compared to cluster mode for natural earthquakes. We follow this

approach to calculate the magnitude-scaled time and space distance between

events and plot them in 2D histogram (Figure S4.5a). Most of the events are

in the cluster mode below the diagonal logRT = 2.5 with small scaled time

and space distance. This cluster mode is well separated from the background

mode by replacing the event times with random times from a Poisson process

(Figure S4.5b). We use the same parameters as in Schoenball and Ellsworth

(2017a) to make a direct comparison to the distribution of all seismicity in

Oklahoma. Similar to their results, a large fraction of events is distributed in

the cluster mode rather than the background mode, which suggests that the

seismicity in Oklahoma is a complex process and driven by multiple factors

besides pore pressure changes.
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4.5.2 Pore Pressure, Poroelastic Stress, and Coulomb

Stress Transfer

Most injection wells in this region are distributed over 40km to the east of

the cluster, with one exception ∼ 10km to the south. Without other major

tectonic activities known in that cluster, our preferred explanation is that

the cluster is initiated by fluid injection, though this determination is not the

purpose of this paper. The detailed pore pressure change and poroelastic stress

change from fluid injection for the Woodward cluster were studied by Goebel

et al. (2017). Their results showed that the pore pressure changes decreased

rapidly with distance and the poroelastic stress changes became dominant at

distance larger than 20km. For the Woodward cluster, the median pore pressure

is 0.03MPa, and the median poroelastic stress change is about 0.12MPa. The

Coulomb stress change from earthquakes for the first three individual stages can

readily reach 0.15MPa. The median values for all grids on the faults are around

0.02MPa with the dip angle used in this analysis (Figure S4.4). However, we

find that the dip angle has a strong influence on the stress amplitude. If we

instead use steep dip angle (i.e., near vertical) calculated from seismicity cloud,

the median values easily reach 0.05 to 0.06MPa during later stages (Figure

S4.6). The results from the steeper dip angle are more comparable to the 2D

faults assumed in Goebel et al. (2017). The comparison suggests that Coulomb

stress changes from earthquakes are at least comparable to pore pressure and

poroelastic stress changes in the Woodward cluster from wastewater disposal.

Therefore, while fluid injection may have caused the initial rupture at the fault

bend, the internal Coulomb stress interaction among different fault patches

at least assists the occurrence of the subsequent earthquake sequence. We
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should mention that the pore pressure change from earthquakes is considered

in Coulomb stress calculation via Skempton’s coefficient and the trace element

of the stress tensor (e.g., Sumy et al., 2014).

Previous studies also examined cumulative Coulomb stress changes from

earthquakes and suggested that the Coulomb stress transfer can have strong

impact on the subsequent earthquake locations (e.g., Brown & Ge, 2018; Catalli

et al., 2013; Pennington & Chen, 2017). The cumulative Coulomb stress transfer

in our study reaches 0.3MPa. This level of stress change is significant enough

to influence the evolution of the earthquake sequence (e.g., Catalli et al., 2013;

King et al., 1994; Pennington & Chen, 2017; Rydelek & Sacks, 1999). The

earthquake interaction can be an important triggering mechanism and should

be considered for comprehensive hazard assessment for induced seismicity.

4.5.3 Role of Fault Zone Structure in Fault Activation

Process

The Woodward cluster reveals a complex flower structure with a mixture

of normal and strike-slip faulting. The seismicity during stage 1 initiated at

shallow depth with dominant normal slip, which caused a positive Coulomb

stress transfer in the area that ruptured during stage 2. Extensional “jogs” or

releasing “bends” can be relatively weak and typically experience “loading-

weakening” during the inter-seismic period (Sibson, 1993). Relatively lower

strength is more likely to be triggered by external stress perturbations. Previous

studies have observed dynamic triggering in volcanic or geothermal fields where

higher fluid content has been perceived (e.g., Aiken & Peng, 2014; Hill, 2006;

Hough & Kanamori, 2002). Foreshocks leading to large earthquakes also tend
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to occur within extensional jogs (X. Chen & Shearer, 2013). Detailed analysis

of an earthquake sequence in central Oklahoma suggested the sequence may

have initiated within an extensional jog at shallower depth (X. Chen et al.,

2018). The foreshocks of M5.8 Pawnee earthquake occurred along a conjugate

fault system and resulted in a combined increase in stress of up to 0.7MPa at

the mainshock hypocenter (X. Chen et al., 2017; Pennington & Chen, 2017).

These studies, along with the observations in this study suggest that fault zone

structure has a strong influence on the initiation and evolution of earthquake

sequences, whether induced or natural.

4.6 Conclusions

We mapped fault structures in Woodward using accurately relocated

seismicity. The reactivated fault is a strike-slip fault system, with the main

strike-slip fault at depth and a flower structure with oblique and normal slip

components above. The observed structures are consistent with the transten-

sional stress field in northwest Oklahoma and fault geometries imaged in 3D

seismic data in northeast Oklahoma. The seismicity distribution shows that

the mapped faults are reactivated step by step, and the rupture pattern can

be explained at least in part by Coulomb stress interaction from earthquakes.

Also, the cluster characteristics show evidences of earthquake interactions.

By comparing the calculated Coulomb stress transfer to pore pressure and

poroelastic stress changes, we conclude that the cluster might be initiated by

fluid injection, but the stress interaction is an important factor in the ongoing

reactivation of fault segments.
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Figure 4.1: Seismicity, focal mechanisms and fault interpretation in the
Woodward cluster. (a) Seismicity distribution in map view. (b) Seismicity
distribution in AA′ cross-section view. (c) Focal mechanism distribution in
map view using lower hemisphere projection. (d) Focal mechanism distribution
in AA′ cross-section view. Red: normal faulting; green: strike-slip faulting;
blue: reverse faulting in (c) and (d). (e) Interpreted fault segments (black lines)
in map view. (f) Interpreted fault segments (black lines) in AA′ cross-section
view. Dashed black lines represent segments where fault geometry is uncertain
in (e) and (f). Relocations are from Schoenball and Ellsworth (2017b).
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Figure 4.2: Time distribution of seismicity in the Woodward cluster. Top:
daily seismicity rate (black) and cumulative moment (red) curves. The dashed
line denotes the daily seismicity rate of 1.5. Six stages are highlighted based on
the date ranges with daily seismicity rate larger than 1.5. Bottom: magnitude
distribution along time. The dashed line denotes the magnitude of 3.0. Note
that the maximum magnitude in this cluster is smaller than 4.0. Relocations
are from C. Chen (2016).
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Figure 4.3: Spatial distribution of seismicity in the Woodward cluster. For
each stage, the top panel shows the map distribution and the bottom panel
shows the depth distribution. Red: events in current stage. Gray: events
in previous stages. Black: events between last stage and current stage. The
receiver faults mapped in Figure 1 are shown under the seismicity. The
seismicity migration is denoted by black arrows. Note the bilateral migration
of seismicity to the northeast (deeper) and southwest (shallower) in the cluster.
Relocations are from C. Chen (2016).
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Figure 4.4: Coulomb stress transfer calculated from the source faults (Table
4.1b) on the receiver faults (Table 4.1a), µ=0.68. Each panel shows the
cumulative Coulomb stress transfer from stage 1 to current stage. The open
circles are earthquake locations from next stage. The gray squares represent
the source fault patches in each stage.
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Table 4.1: Fault Parameters Mapped from Seismicity and Focal Mechanism
Solutions.

(a) Receiver Fault Parameters

Fault Start point End point Top (km) Bottom (km) Strike (°) Dip (°)
R1 (-99.05, 36.49) (-98.96, 36.53) 6.93 9.01 65.6 65
R2 (-99.07, 36.51) (-99.05, 36.50) 6.09 7.34 96.7 46
R3 (-99.10, 36.49) (-99.08, 36.50) 6.36 7.32 56.9 80

(b) Source Fault Parameters

Stage Mag Lon Lat Depth (km) Strike (°) Dip (°) Rake (°) Type Fault Segment
1 4.1 -99.05 36.50 7.2 58 50 -120 NF R2
2 4.3 -99.01 36.51 7.4 63 68 -157 SS R1

3-NE 3.9 -98.97 36.52 7.0 60 66 -155 SS R1
4-NE 3.3 -98.97 36.52 6.8 55 64 -157 SS R1
4-SW 2.8 -99.09 36.50 6.6 77 75 -153 SS R3
5-SW 3.7 -99.06 36.51 6.9 168 25 -107 NF R2
6-NE 3.0 -98.97 36.53 8.0 56 74 158 SS R1
6-SW 3.6 -99.06 36.50 6.2 107 47 -92 NF R2
SS: strike-slip fault; NF: normal fault.

(c) Earthquake Triggering Statistics

Stage Total number of EQs from next stage EQs in ∆CFS>0 EQs in ∆CFS>0.01MPa
1 89 81 19
2 42 39 2
3 47 19 19
4 39 25 25
5 43 23 23
6 - - -
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a. b.

Figure S4.1: Example of a flower structure mapped from a seismic reflection
profile. (a) Seismic amplitude cross-section from a 3D seismic reflection data
in Osage county, Oklahoma. (b) Interpreted flower structure (red dotted line)
from seismic reflection data profile in Figure S4.1a. The seismic data is a
post-stack time-migrated 3D volume provided by SpyGlass Energy.
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Figure S4.2: Focal mechanisms classification diagrams for (a) FMS shallower
than 7.7km and (b) FMS deeper than 7.7km. The classification diagram is
based on SMT axes plunges by Kagan (2005). SS: strike-slip faulting, R: reverse
faulting, and N: normal faulting. The depth of 7.7km separates the deeper
strike-slip faults from shallower normal faults.
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Figure S4.3: Coulomb stress transfer calculated from the source faults 1 and
2 with different locations. The first row shows the magnitude-weighted average
locations used in this paper. The second and third row show two randomly
selected locations in the corresponding earthquake cloud.
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Figure S4.4: Histogram of Coulomb stress transfer of all grids on receiver
faults (Table 1a) under different friction coefficients. The vertical, solid lines
denote the Coulomb stress transfer of 0, 0.01MPa and 0.1MPa. The vertical,
dashed lines denote the median value of ∆CFS of all grids on receiver faults.
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(b)(a)

Figure S4.5: 2D density plot of nearest distance T and R for (a) events in
the Woodward cluster and (b) events in the cluster with event times replaced
by random times from a Poisson process.
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Figure S4.6: Histogram of Coulomb stress transfer of all grids on receiver
faults (Table 1a with strikes of 88°, 80°, and 87° from earthquake cloud) under
different friction coefficients. The vertical, solid lines denote the Coulomb
stress transfer of 0, 0.01MPa and 0.1MPa. The vertical, dashed lines denote
the median value of ∆CFS of all grids on receiver faults.
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Table S4.1: Information Used in the Calculation of Source Fault.

Stage # events Max Mag Min Mag Max dist(km) # FMs
1 29 2.5 3.7 1.6 2
2 92 2.5 3.9 3.4 6
3-ENE 17 2.5 3.6 1.0 5
4-ENE 6 2.5 3.1 1.4 5
4-WSW 1 2.8 2.8 0 2
5-WSW 2 2.5 3.5 1.9 2
6-ENE 4 2.5 2.7 0.6 6
6-WSW 10 2.5 3.3 0.7 12
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Chapter 5

Forecasting Induced Seismicity

in Oklahoma using Machine

Learning Methods

Plain Language Summary

The increase of earthquakes in Oklahoma in the last decade has been

associated with wastewater disposal. Researchers have forecast the induced

seismicity rate change using statistics- or physics-based models. In this study,

we choose a machine learning method, Random Forest (RF), to directly relate

injection parameters to seismicity rate change. The injection parameters, in-

cluding injection rate, injection volume, injection depth, modeled pore pressure,

and poroelastic stress, are used as input in the RF model to forecast the seis-

micity rate. The model can forecast the rapid decrease in seismicity in recent

years. The model also identifies pore pressure as the most important feature
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in the forecasting. The findings are consistent with the known mechanisms of

induced seismicity in Oklahoma.

5.1 Introduction

The sharp seismicity increase in the last decade has been associated with

wastewater disposal in Oklahoma (e.g. Ellsworth, 2013; Keranen et al., 2014;

Yeck et al., 2016). The mechanisms of the induced earthquakes include pore

pressure diffusion (e.g., Keranen et al., 2014; Haffener et al., 2018; Langenbruch

et al., 2018; Zhai et al., 2019), poroelastic stress disturbance at a larger distance

(e.g., Segall & Lu, 2015; Goebel et al., 2017), and earthquake nucleation in

event clusters (e.g. Segall & Lu, 2015; Chen et al., 2017; Pennington & Chen,

2017; Qin et al., 2018). Many studies have made seismicity rate forecasts

based on known mechanisms. For example, Langenbruch et al. (2018) used

a hybrid physical-statistical model combining hydrogeologic modeling and

modified Gutenberg-Richter relation to forecast seismic hazard in space and

time. The study found that earthquake probabilities in Oklahoma and Kansas

were increasing with the square of the pressure rate. Zhai et al. (2019) used

a poroelastic modeling and rate-and-state earthquake nucleation model to

forecast the timing and magnitude of induced seismicity. They found that

pore-pressure diffusion controlled the induced earthquakes in Oklahoma and

its impact was enhanced by poroelastic effects. Norbeck and Rubinstein (2018)

developed a numerical model that integrated fluid pressurization from injection

with a rate-and-state friction description of the earthquake nucleation process

to forecast rates of induced seismicity. The paper found that the models that

were informed with injection data outperform a standard statistical model
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that used prior earthquake observations to forecast future induced earthquake

activity.

Apart from the modeled pore pressure and poroelastic stress, some in-

jection parameters have been directly associated with the induced seismicity.

Injection rate is found to be one of the most important parameters based on

various methods, including earthquake association with injections and phys-

ical modeling from injections (e.g., Barbour et al., 2017; Chen et al., 2018;

Langenbruch & Zoback, 2016; Weingarten et al., 2015). Hincks et al. (2018)

reported that injection depth relative to the crystalline basement most strongly

correlated with seismic moment release and the joint effects of depth and

volume were critical from an advanced Bayesian network. Rock properties

and regional geological structures also influence the occurrence of the induced

seismicity. For example, Shah and Keller (2017) showed that most earthquakes

in Oklahoma were located where the crystalline basement was likely composed

of fractured intrusive or metamorphic rock. Pei et al. (2018) conducted 2-D

Pg wave tomography and found that most moderate-size (M>4) earthquakes

occurred either close to the boundaries between high- and low-seismic velocity

zones or within the high-velocity zones, suggesting the influence of geologic

structures on earthquake spatial locations. The most correlated parameters

with earthquakes could change with different scales of studies and different

methods (e.g., Weingarten et al., 2015).

In this paper, we compile all the available physical and operational param-

eters from wastewater injection and input them in a Random Forest regression

model to forecast the seismicity rate. Without any prior knowledge of the

weight of the input features, the model can identify the most important features
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and improve the understanding of the mechanisms of induced seismicity.

5.2 Data

5.2.1 Earthquakes

We use the earthquake catalog from January 2010 to February 2020 from

the Oklahoma Geological Survey (OGS) (Walter et al., 2020) (Figure 5.1).

Studies have shown the influence of earthquake interactions in clusters in

Oklahoma (e.g., Segall & Lu, 2015; Chen et al., 2017; Pennington & Chen,

2017; Qin et al., 2018). Since the earthquake nucleation is not accounted for in

this study, we decluster the catalog by removing the aftershocks following the

spatial and temporal windows proposed for Oklahoma earthquakes in Rosson

et al. (2019). The catalog has a completeness of magnitude (Mc) of 2.2. In

this study, we focus on events with a magnitude larger than 2.7 due to the Mc

change over time.

5.2.2 Wastewater Injection

We download the monthly injection data from 2010 to 2018 from the

Oklahoma Corporation Commission (OCC). We select wells with total injection

depth larger than 1000 ft and the cumulative injection volume since 2010 larger

than 1000 bbl (Figure 5.1). We also interpolate the basement measurements in

Campbell (2003) at each injection well location to calculate the distance between

the injection well and the basement. The final operational parameters include

monthly injection rate, yearly and cumulative injection volume, injection depth,

basement depth, and distance from the well bottom to the basement. Since
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the injection data are currently not available for the year 2019 and 2020 on

OCC website, we assume the injection parameters stay constant that is equal

to the average of the last three reported months of injection data in 2018.

5.2.3 Pore Pressure and Poroelastic Stress Data

To include physics-based features from injections, we add pore pressure

data (Figure 5.1) and poroelastic stress data from hydrogeologic modeling.

The pore pressure data are from Langenbruch et al. (2018). The data were

calculated for each month at 25000 randomly selected points in Oklahoma

and have been used in a statistical model to successfully forecast statewide

seismic hazard in Oklahoma. The poroelastic data are from Zhai et al. (2019),

which were calculated at gridded points in central and western Oklahoma by

assuming an optimal NW and NE fault orientation. The data have been used

in seismicity forecast in a pore pressure based rate-and-state model. The pore

pressure data (Langenbruch et al., 2018) and poroelastic stress data (Zhai et

al., 2019) are derived from two hydrogeologic models with different parameters.

The pore pressure data cover the whole study area and have better spatial

and temporal resolution. There is likely inconsistency of assumed modeling

parameters between the two studies.

5.3 Methods

We select the study area from -99.5° to -96° in longitude and from 35°

to 37° in latitude (inset figure in Figure 5.1), which covers the majority of

the seismicity in Oklahoma. The study area is divided into uniform grid cells,
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and in each cell, we search for earthquakes, injection wells, and modeled pore

pressure and poroelastic stress data points (Figure 5.1) for each month. The

statistics, including sum, mean, maximum, minimum, different percentiles,

variance, skewness, and kurtosis, of the injection parameters, pore pressures,

and poroelastic stress data in that grid in the current month are used as input

features. The number of earthquakes in the next time window is the target to

predict. We should mention that we extend the grid cell (referred to as grid

plus) to search for wells, pore pressure, and poroelastic points because some

earthquakes at the grid borders might be associated with the injection wells

outside the grid cell. We choose different grid sizes from 0.4° to 1.0° with an

increment of 0.1° and prediction windows of 30, 60, 90, and 180 days to build

the input features and the target. We also apply a moving window of one-third

of the grid size to get more data points. The range of grid sizes and window

sizes allows us to test the spatial and temporal resolution of the forecasting

model.

We use a machine learning technique Random Forest (RF) to forecast

the monthly seismicity rate from the input features. RF model constructs

a multitude of decision trees based on the features in training datasets and

outputs the mean prediction of the individual trees for the regression problem

(Ho, 1995, 1998). In a decision tree, the model selects one feature to best split

the data into two groups, and in each group, the model repeats the process

to build different levels of the tree. The details of the model structure are

described in Rouet-Leduc et al. (2017). We use the python package Scikit-learn

(Pedregosa et al., 2011) to implement the RF model.

We split the data into training (2010–2016) and test (2017–2020) dataset.
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The trained model should be able to learn the complete relationships between

seismicity rate and the features since the training data include the onset,

increase, peak, and part of the decrease of the seismicity rate. Evidence has

shown that the seismicity rate changes over time (e.g., Llenos & Michael,

2013; Montoya-Noguera & Wang, 2017), so the earthquake forecasting is a

time-dependent series. To account for the temporal changes in the model, we

add the difference by comparing features in current month to the previous

month as new features. We also have features from previous month, the average

of previous 2–5 months, and the average of previous 6–10 months as short-,

medium-, and long-term history data, respectively.

The input data are then normalized based on the training data set, and the

highly correlated features are removed. We select 50 most important features

and perform a grid search of the hyperparameters. The best-fit model is used to

make predictions for the test data. A metric of r2 score is selected to measure

how well the regression predictions approximate the real data points. The r2

score is defined as,

r2 =

∑
i(fi − ȳ)2∑
i(yi − ȳ)2

(5.1)

where ȳ is the mean of observed data yi, fi is the corresponding prediction

of yi. An r2 of 1 indicates that the regression predictions perfectly fit the data.

A constant model that always predicts the expected value of y, disregarding

the input features, would result in an r2 score of 0.0.

The model also outputs the relative importance of the feature to the

predictability of the target variable. This predictive power of the feature is

estimated by the fraction of samples a feature contributes to combined with
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the decrease in impurity from splitting them (Pedregosa et al., 2011). The

rank values are between 0 and 1, with values close to 1 meaning the highest

importance. The rank of the features helps understand the physics behind

the induced seismicity. We have different statistics in different windows as

features. To make direct comparison, we sum the feature importance of all

related statistics in different time windows together for each category of feature.

5.4 Results

For input from each combination of grid sizes and prediction time windows,

we search for the best-fit RF model using training data and get the predictions

for the test data from the best-fit model. The results are discussed in the

next section. Here, we show the results from the grid size of 0.9° and the

prediction window of 30 days, which have a relatively high r2 score of 0.48

for the test dataset. The number of training and test data points is 4752 and

2508, respectively. The best-fit model has the hyperparameters as follows, tree

number of 10, maximum depth of 5, the minimum number of samples to split

of 4, the minimum number of samples for a leaf node of 16, and the maximum

number of features to split of 10. The parameters are relatively small compared

to other studies (e.g., Rouet-Leduc et al., 2017), to prevent overfitting on a

small dataset.

The map view of forecasting results is shown in Figure 5.2. The model

predicts the number of earthquakes in the time window of 30 days, and the

annual seismicity prediction is the sum of the earthquake number in each month

of a year. Consistent with the observations, the seismicity is mainly distributed

in central and western Oklahoma, and the seismicity rate remains elevated
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until 2020 especially for western Oklahoma. The drastic color change between

2017 and 2018 suggests that the model captures the rapid decrease of seismicity

in those two years. Since we apply a moving window to the grid input, the

predictions are smoothed out, and no abrupt local changes are predicted by

the model.

We plot the temporal seismicity curve for different regions in Figure 5.3 by

summing the predictions in individual grids. The model predicts the decreasing

trend of seismicity after 2016 well compared to the true observations. The

seismicity level in 2020 remains high as that in 2013. In subregions of central

and western Oklahoma, the predicted curve and the observations fit well. For

local clusters, e.g., the three local M≥5 sequences in Pawnee, Prague, and

Fairview, the forecasting results are consistent with the true observations. The

results suggest that our model can forecast the seismicity rate with a spatial

resolution of 0.9 °. We also notice that the forecast in 2019 and 2020 shows

slight over-prediction, which could result from the assumption of constant

injection rate after 2018.

For comparison, we use a linear regression method to forecast seismicity

based on the same set of features, and the results are shown in Figure S5.1 and

S5.2. The linear model predicts the decreasing trend of seismicity, but for some

regions, it results in large discrepancy between the observed and predicted data.

However, the linear model show similar relative importance of the features as

the RF model.

Figure 5.4 shows the rank of feature importance from the model. The

most important features are pore pressure, poroelastic stress, injection rate,

injection volume, and injection depth. For each feature category, all the related
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feature importance is summed together. The pore pressure and poroelastic

stress correspond to the two main mechanisms of induced seismicity. Since the

modeling of pore pressure and poroelastic stress incorporates the injection rate,

injection depth, and other hydrogeologic parameters, the modeled physics-based

features show higher importance than the individual operational parameters.

Besides the physics-based features, the injection rate and injection depth also

show high importance, consistent with the previous studies (e.g., Langenbruch

& Zoback, 2016; Hincks et al., 2018).

The physics-based parameters or the operational parameters alone can also

make reasonable forecasting of the seismicity (Figure S5.3, S5.4 and Figure S5.5,

S5.6). The data from the physics-based model show slightly better and more

smooth results than those from model based only on operational parameters,

probably because the effect of abrupt changes in injection rate has been diluted

by the diffusion process. By checking all the individual features in each category,

the most important pore pressure feature is the most recent mean pore pressure

rate, and the most important poroelastic stress feature is the 20th percentile of

the squared poroelastic stress. For injection volume, the most recent features

show larger importance than medium- and long-term history data. Other than

that, no unambiguous conclusion could be drawn about the relative importance

of recent history and long-term history for other features.
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5.5 Discussion

5.5.1 Parameters to Build Input: Grid Size, Prediction

Window, Grid Plus

Different scales of spatial-temporal relations between fluid injection and

earthquakes have been found in Oklahoma, from local clusters (e.g., Walsh

& Zoback, 2015; Chen et al., 2017) to regional scales (e.g., Yeck et al., 2016;

Pollyea et al., 2018). Haffener et al. (2018) found robust spatial correlations

between injection and seismicity at a range of different grid sizes and various

time delays with different grid sizes. We test on a range of grid sizes (0.4°

to 1.0° with an increment of 0.1°) and prediction time windows (30, 60, 90,

and 180 days). For each combination of spatial and temporal windows, we

search for the best-fit RF model. The results are shown in Figure S5.7 and

S5.8. The goodness of the fit (r2 score) is relatively high for the grid size of 0.7

to 0.9°. The grid input for smaller grid size probably overlooks some regional

correlations between earthquakes and injections (e.g., Yeck et al., 2016). As

for the prediction windows, the model makes better predictions for short-term

windows. The model tends to overpredict the seismicity rate for longer windows,

which is probably due to the rapid decrease of input features in test data.

To account for the correlations between earthquakes and injection close to

borders, we extend the grid to search for responsible wells for the earthquakes

in the grid. Figure S5.9 shows the r2 score variations for different grid plus

sizes. Grid plus of 0.1° and 0.2° generates better results than a grid plus size of

0 by including the injection wells associated with the earthquakes at the grid

borders. The r2 score starts to decrease if the grid plus is too large (e.g., 0.3°),
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which suggests that at a larger distance (around 30km), the wells should not

be associated with the earthquakes within the grid. The results are consistent

with the spatial range of pore pressure diffusion influence from previous studies

(e.g., Keranen et al., 2014; Yeck et al., 2016).

5.5.2 Local Stress State and Spatial Heterogeneity

Besides the selected features in this study, the local geological features and

stress state also influence the relationship between injection and earthquakes.

Shah and Keller (2017) found that most earthquakes were located likely in frac-

tured intrusive or metamorphic crystalline basement and Pei et al. (2018) found

that most moderate-size earthquakes occurred either close to the boundaries

between high- and low-seismic velocity zones or within the high-velocity zones,

suggesting that they were associated with geological boundaries of different

basement rock properties or with strong material properties in the upper crust.

Hincks et al. (2018) found that a geospatial correction parameter was highly

correlated with the annual seismic release.

In our model, to characterize the spatial heterogeneity, we also add columns

to represent different regions. We assign each grid a specific region number and

encode the K categorical region numbers to K region columns with zeros and

ones. For each entry in the input, only the column related to its region number

is set to one, and all other region columns are set to zero. The prediction

results by adding the features do not show significant improvement, and the

feature importance of region columns is low (<0.001). One explanation is that

we select a relatively large grid size of 0.9°, which generates the best fitting

compared to other grid sizes, and the local heterogeneity is averaged out. A
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smaller grid size results in a larger importance for region parameter (Figure

S5.10), but it is still negligible compared to other features. Also, we apply an

overlapping window to build the input, which results in larger data points but

could possibly smooth out the spatial heterogeneity effect.

5.5.3 Potential Magnitude Forecast

The maximum magnitude of induced earthquakes from injections is essen-

tial to evaluate seismic hazard. In previous studies on earthquake forecasting,

the forecast seismicity rate is transferred to the probability of medium to

large earthquake causing damage by the Gutenberg-Richter (GR) frequency-

magnitude relationship. For example, Zhai et al. (2019) forecast the seismicity

rate using a rate-and-state model and estimated the occurrence probability

of M5 earthquakes. In this study, we only forecast the time and location

of earthquakes using temporal and spatial prediction windows. The model

obtains similar results to those from traditional, statistics- or physics-based

methods. Next, we could also assume a GR frequency-magnitude relationship

and calculate the probability of moderate to large earthquakes. In the machine

learning model, we could also add a target variable of the maximum magnitude

to estimate the seismic hazards. The maximum magnitude from injection has

been related to the total injection volume (McGarr, 2014) or seismogenic index

(Van der Elst et al., 2016), which is selected features or could be added to

the feature list in this study. So it is highly possible to get the maximum

magnitude estimation and a complete earthquake forecast from our machine

learning model.
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5.6 Conclusions

In this paper, we compile the injection-related parameters and directly

relate the parameters to the seismicity rate in a Random Forest regression model.

The model can predict the induced seismicity rate as precisely as traditional

methods. The seismicity is mainly distributed in central and western Oklahoma,

and the seismicity rate will remain elevated in 2020. The model also ranks the

features by their importance, which implies the mechanisms behind induced

seismicity. Pore pressure, poroelastic stress, injection rate, and injection depth

are the most important features. The model demonstrates its potential in

earthquake forecasting and understanding the physics behind the induced

seismicity without making many assumptions.
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Figure 5.1: Map view of the seismicity and well injections. Triangles: injection
wells scaled by the cumulative injection volume from 2010 to 2018. Circles:
M>=2.7 earthquakes from 2010 to February 2020, colored by their origin
times. The background shows the modeled pore pressure in June, 2015 from
Langenbruch et al. (2018). The inset figure shows the location of our study
area.
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Figure 5.2: The forecast earthquake number from the model. The annual
forecast is the sum of the monthly prediction in each year. The first panel
shows the location of subregions used in next figure.
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Figure 5.3: Seismicity rate forecast in (a) the whole study area, (b) central
Oklahoma, (c) western Oklahoma, (d) Pawnee sequence, (e) Prague sequence,
and (f) Fairview sequence. The gray lines are observations, and the blue and
red lines are forecasting results from training and test dataset, respectively.
The red dashed line shows forecast for year 2019 and 2020, where the injection
data are not available yet. The location of the subregions is shown in Figure
5.2.
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Figure 5.4: Histogram of feature importance from the model. The most
important features are pore pressure, poroelastic stress, injection rate, injec-
tion volume, and injection depth. For each category of feature, the feature
importance of all related features is summed together.
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Figure S5.1: Seismicity rate forecast using linear regression in (a) the whole
study area, (b) central Oklahoma, (c) western Oklahoma, (d) Pawnee sequence,
(e) Prague sequence, and (f) Fairview sequence. The gray lines are observations,
and the blue and red lines are forecasting results from training and test dataset,
respectively. The red dashed line shows forecast for year 2019 and 2020, where
the injection data are not available yet.
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Figure S5.2: Histogram of feature importance for linear model. The feature
importance are the sum of the absolute value of the coefficients of the linear
model.
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Figure S5.3: Seismicity rate forecast using only pore pressure and poroelastic
stress related features in random forest in (a) the whole study area, (b) central
Oklahoma, (c) western Oklahoma, (d) Pawnee sequence, (e) Prague sequence,
and (f) Fairview sequence. The gray lines are observations, and the blue and
red lines are forecasting results from training and test dataset, respectively.
The red dashed line shows forecast for year 2019 and 2020, where the injection
data are not available yet. The R2 score is 0.38.
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Figure S5.4: Histogram of feature importance for random forest model using
only pore pressure and poroelastic stress related features. For each type of
feature, the feature importance of all related features is summed together.
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Figure S5.5: Seismicity rate forecast using only operational parameters
in random forest in (a) the whole study area, (b) central Oklahoma, (c)
western Oklahoma, (d) Pawnee sequence, (e) Prague sequence, and (f) Fairview
sequence. The gray lines are observations, and the blue and red lines are
forecasting results from training and test dataset, respectively. The red dashed
line shows forecast for year 2019 and 2020, where the injection data are not
available yet. The R2 score is 0.35.
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Figure S5.6: Histogram of feature importance for random forest model using
only operational parameters. For each type of feature, the feature importance
of all related features is summed together.
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Figure S5.7: R2 score and MSE (mean squared error) variations with grid
size.
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Figure S5.8: R2 score and MSE variations with prediction window size.
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Figure S5.9: R2 score and MSE variations with grid plus parameter. The
grid plus parameter is an enlarged area around each grid to search for wells,
pore pressure, and poroelastic stress points.
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Figure S5.10: The importance of region parameter for different grid sizes.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Conclusions

In this dissertation, I have mapped the geometry of seismogenic faults and

found that sedimentary faults and basement faults are under common tectonic

control. I have carried out detailed seismogenic fault stress state analysis

at both the state scale and local cluster scale. Evidences show that fault

structure and fault stress state influence the rupture behaviors. I have explored

the possible triggering mechanisms of earthquakes in Oklahoma, including

pore pressure, poroelastic stress, and earthquake interactions. Although pore

pressure and poroelastic stress are still the main triggering mechanisms of

the induced earthquakes in Oklahoma, earthquake interactions are substantial

within in clusters and can drive propagation of the sequences. Each of the

factors not only has influence on the potential seismic hazard but also interact

with each other, forming a more complex problem. For example, pore pressure

increase from injection can affect the fault strength and cause changes in stress

field through poroelastic effects.
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Besides the four aspects (fault structure, fault stress state, earthquake

interactions, injections) examined above, many other factors could also influence

the rupture process and potential earthquake hazards. Rupture history could

affect the seismic hazard assessment. Wu et al. (2018) found large spatial

variability of stress drop in Oklahoma and did not support the idea of using low

stress drops in ground-motion prediction models in central and eastern United

States. Geological structures and rock properties such as permeability were

found to affect the spatial location of the earthquakes (e.g. Shah & Keller, 2017;

Pei et al., 2018). The studies (e.g., Kibikas et al., 2020; Kolawole et al., 2020)

on physical properties of the basement rocks could help better understand and

characterize the fault reactivation. Lab experiments also found aseismic slip

through the coupling between fault slip and fluid flow (e.g., Cappa et al., 2019;

Eyre et al., 2019). The detailed discussion of the above factors is beyond the

research scope of this dissertation.

I have applied machine learning techniques to polarity picking and seis-

micity rate forecasting. The results have comparable precision as traditional

methods, which demonstrates the potential of machine learning techniques

in solving traditional problems in geophysics. More importantly, as shown in

the last chapter, I started the seismicity forecasting as a statistical problem

without any physical assumptions. As a result, the model could rank the

input factors, and the ranking is consistent with our previous knowledge of

the mechanisms behind the induced earthquakes. The results imply that the

machine learning techniques could possibly find more hidden patterns in the

data and the interpretations of the newly found patterns will promote our

understanding of the physics for induced earthquakes.
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6.2 Future Directions

Different methods have been used to assess the earthquake hazard in

Oklahoma. The U.S. Geological Survey updated the earthquake hazard forecast

in 2018 to account for the rapid changes in earthquake activity in the central

and eastern U.S. (Petersen et al., 2018). The forecast worked well when

compared to the observations (Brooks et al., 2018). The method to make the

probabilistic forecast is mainly based on previous seismicity. With the known

fault structures and fault stress state, more physical parameters can be used

to assess potential earthquake hazard. Walsh III and Zoback (2016) utilized

quantitative risk assessment (QRA) to calculate the conditional probability

of slip on mapped faults in response to injection-related increases in pore

pressure in northcentral Oklahoma by incorporating the uncertainty in each

Mohr-Coulomb parameter (stress tensor, pore pressure, coefficient of friction,

and fault orientation). Here in the first two chapters of this dissertation, I only

qualitatively assessed the potential earthquake hazards based on the mapped

fault geometries and stress state. In the following work, I will incorporate

seismicity, fault geometry, stress state, and focal mechanisms in a machine

learning model to make predictions of the maximum magnitude, earthquake

number, and ground motions. The results will be compared to true observations

to evaluate the model performance.

In the last chapter, the machine learning model generated decent forecast of

the seismicity rate. The physics-based parameters had higher importance than

the operational parameters. I also tried to incorporate a regional parameter in

the input dataset, but without much success. To refine the model, I will further

add some parameters to represent the spatial heterogeneity of seismicity. The
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possible candidates include fault stress state, seismogenic index (Langenbruch et

al., 2018), and a categorical parameter differentiating low- and high- velocities

as in Pei et al. (2018). Hopefully the spatial parameter will better describe the

various relationships between seismicity and injection in different areas, and

the results will provide a better image of high-risk regions, which can serve as

a reference to regulate future injection activities.
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