
 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

 

 

FACTORS INFLUENCING ECOLOGICAL DYNAMICS OF THE HUMAN MICROBIOME 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the  

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

By 

 

DAVID K. JACOBSON 

Norman, Oklahoma 

2020 



 

FACTORS INFLUENCING ECOLOGICAL DYNAMICS OF THE HUMAN MICROBIOME 

 

 

 

 

A DISSERTATION APPROVED FOR THE 

DEPARTMENT OF ANTHROPOLOGY  

 

 

 

 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

 

 

 

 

 

 

 

Dr. Cecil M. Lewis, Jr., Chair 

 

Dr. Jeffrey Kelly 

 

Dr. Tassie Hirschfeld 

 

Dr. Brian Kemp 

  

Dr. Krithivasan Sankaranarayanan 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by DAVID K. JACOBSON 2020 

All Rights Reserved



 iv 

Acknowledgements 
I would like to thank everyone who provided academic and personal guidance, advice, and 

support throughout my time in graduate school. This doctoral degree would not be possible 

without the valuable input and council of a wide range of people. First, I would like to thank my 

chair, Dr. Cecil Lewis, for his continuing optimism in my abilities, as well as his encouragement 

in allowing me to try out new ideas/techniques, which took my down paths I never would have 

reached on my own. I am truly grateful. I would also like to thank Dr. Krithi Sankaranarayanan 

for his tremendous insights in experimental design, microbiology, and bioinformatics, all of 

which facilitated my progress in the wet and data analysis. I greatly appreciate the diversity of 

ideas and suggestions that Dr. Tassie Hirschfeld, Dr. Brian Kemp, and Dr. Jeff Kelly provided 

whenever we met, as well as in the drafts of this dissertation. I am deeply thankful to Dr. 

Christina Warinner, Dr. Jiawu Xu, Dr. Stephanie Schnorr, Dr. Tanvi Honap, and Dr. Sharmily 

Khanam for their assistance in brainstorming different projects and their patience in training me 

on a variety of molecular biology, microbiology, and analytical protocols/approaches.  

I would like to extend a special thank you to Dr. Thérèse Kagoné and her team at Centre 

Muraz, including Issé Roumba, Bachirou Tinto, Alidou Zongo, and Dr. Amadou Dicko. Their 

patience with the language barrier and willingness to take time out of their work to assist in my 

dissertation research was incredibly generous and I cannot thank them enough. Thank you so 

much to all members of LMAMR (Justin, Rita, Nisha, Allie, Jacob, Sterling, Kristen, Sam, 

Christine, Abby, Robin, Annie, Lizi, Cara, and everyone else) who kept me sane and dealt with 

my venting during my time in LMAMR.  

I cannot say enough about the support that my fiancée Nicole gave through thick and 

thin. I really would not be here without her and Stout; their positivity was a much-needed 

balance to my pessimism. To my parents, Kirk and Cindy, thank you so much for the 

encouragement and support in undergrad and graduate school and for helping me find my path. 

Thank you to my sisters, Sarah, Emily, and Molly for keeping me grounded and being 

understanding. Thank you to all co-authors in the different manuscripts included in this 

dissertation, as well as forthcoming manuscripts related to my work at LMAMR. Your 

suggestions greatly strengthened each segment of said manuscripts. Finally, thank you to all 

individuals who donated samples that were used in my research. I cannot express my gratitude 

enough and I am forever indebted to your generosity and willingness to participate in research. 



 v 

Table of Contents 

Acknowledgements ----------------------------------------------------------------------------------------------- iv 

Table of Contents --------------------------------------------------------------------------------------------------- v 

List of Tables -------------------------------------------------------------------------------------------------------viii 

List of Figures ------------------------------------------------------------------------------------------------------- ix 

Abstract -------------------------------------------------------------------------------------------------------------- xi 

Chapter 1 – Introduction ------------------------------------------------------------------------------------------ 1 

1.1 MICROBIOME BACKGROUND ----------------------------------------------------------------------------- 1 

1.2 MICROBIOMES IN ANTHROPOLOGY--------------------------------------------------------------------- 2 

1.3 MICROBIOME ECOLOGY ----------------------------------------------------------------------------------- 4 

1.3 DISSERTATION STRUCTURE ----------------------------------------------------------------------------- 10 

Chapter 2 – Functional Diversity of Microbial Ecologies Estimated from Ancient Human 
Coprolites and Dental Calculus, ------------------------------------------------------------------------------- 12 

2.1 ABSTRACT --------------------------------------------------------------------------------------------------- 12 

2.2 INTRODUCTION -------------------------------------------------------------------------------------------- 13 

2.3 METHODS --------------------------------------------------------------------------------------------------- 18 
Archaeological Context of Novel Data ----------------------------------------------------------------- 18 
Shotgun-sequencing of ancient dental calculus samples ------------------------------------------ 20 
Data processing --------------------------------------------------------------------------------------------- 20 
Assessing preservation of ancient microbiome signatures ---------------------------------------- 21 
Authenticating ancient DNA ------------------------------------------------------------------------------ 21 
Generating taxonomic and functional profiles ------------------------------------------------------- 22 
Network Analysis ------------------------------------------------------------------------------------------- 22 
Functional Redundancy and Response Diversity Analysis ----------------------------------------- 24 
Sample size analysis ---------------------------------------------------------------------------------------- 25 
Statistical Tests ---------------------------------------------------------------------------------------------- 25 

2.4 RESULTS ----------------------------------------------------------------------------------------------------- 25 
Coprolites ----------------------------------------------------------------------------------------------------- 25 
Dental Calculus ---------------------------------------------------------------------------------------------- 30 
Comparison to Modern Microbiomes ------------------------------------------------------------------ 35 
Sample Size Simulation ------------------------------------------------------------------------------------ 37 

2.5 DISCUSSION------------------------------------------------------------------------------------------------- 38 



 vi 

Chapter 3 – Non-Industrial Gut Microbiomes Provide a More Resilient Ecology for Short-Chain 
Fatty Acid Production, ------------------------------------------------------------------------------------------- 46 

3.1 ABSTRACT --------------------------------------------------------------------------------------------------- 46 

3.2 INTRODUCTION -------------------------------------------------------------------------------------------- 47 

3.3 MATERIALS AND METHODS ----------------------------------------------------------------------------- 51 
Study Design ------------------------------------------------------------------------------------------------- 51 
Statistical Analysis ------------------------------------------------------------------------------------------ 53 

3.4 RESULTS ----------------------------------------------------------------------------------------------------- 56 

3.5 DISCUSSION------------------------------------------------------------------------------------------------- 62 

Chapter 4 – Shifts in Gut and Vaginal Microbiomes Associated with Platinum-Free Interval 
Length in Women with Ovarian Cancer,--------------------------------------------------------------------- 69 

4.1 ABSTRACT --------------------------------------------------------------------------------------------------- 69 

4.2 INTRODUCTION -------------------------------------------------------------------------------------------- 70 

4.3 MATERIALS & METHODS -------------------------------------------------------------------------------- 72 
Study Population -------------------------------------------------------------------------------------------- 72 
Sample Collection ------------------------------------------------------------------------------------------- 74 
Laboratory Methods --------------------------------------------------------------------------------------- 75 
Bioinformatic Methods ------------------------------------------------------------------------------------ 75 
Statistical Methods ----------------------------------------------------------------------------------------- 76 

4.4 RESULTS ------------------------------------------------------------------------------------------------- 77 
Vaginal microbiome ---------------------------------------------------------------------------------------- 77 
Gut microbiome --------------------------------------------------------------------------------------------- 81 

4.5 DISCUSSION------------------------------------------------------------------------------------------------- 84 

4.6 CONCLUSIONS ---------------------------------------------------------------------------------------------- 88 

Chapter 5 – Conclusions ----------------------------------------------------------------------------------------- 90 

Bibliography-------------------------------------------------------------------------------------------------------- 94 

Supplementary Material A ------------------------------------------------------------------------------------116 

Author List and Affiliations ----------------------------------------------------------------------------------117 

Authors’ Contributions ---------------------------------------------------------------------------------------117 

Microbiome Network Analysis -----------------------------------------------------------------------------117 

Supplementary Figures A: 1-9 ------------------------------------------------------------------------------122 

Supplementary Tables A: 1-8 -------------------------------------------------------------------------------130 

Supplementary Material B ------------------------------------------------------------------------------------157 



 vii 

Author List and Affiliations ----------------------------------------------------------------------------------157 

Authors’ Contributions and Acknowledgements -------------------------------------------------------158 
Author contributions --------------------------------------------------------------------------------------158 
Acknowledgements:---------------------------------------------------------------------------------------158 

Supplementary Figures B: 1-3 ------------------------------------------------------------------------------159 

Supplementary Tables B: 1-5 -------------------------------------------------------------------------------162 

Supplementary Material C ------------------------------------------------------------------------------------187 

Author List and Affiliations ----------------------------------------------------------------------------------187 

Authors’ Contributions and Acknowledgements -------------------------------------------------------187 
Contributions -----------------------------------------------------------------------------------------------187 
Acknowledgements ---------------------------------------------------------------------------------------188 

Escherichia Origin ---------------------------------------------------------------------------------------------188 

Supplementary Figures C ------------------------------------------------------------------------------------189 

Supplementary Tables C -------------------------------------------------------------------------------------193 
 

 

 

 

 

 

 

 

 

 

 
 

 

 



 viii 

List of Tables 

Chapter 1 

 

No Tables 
 

Chapter 2 

 

Table 2-1: Network Properties of ancient microbiome ecology datasets. .................................... 26 
Table 2-2: Keystone taxa identified from ancient microbiome datasets. ...................................... 27 
Table 2-3: Network properties of ancient and modern microbiome networks. ............................ 31 
 

Chapter 3 

 

No Tables 
 

Chapter 4 

 

Table 4 - 1: Demographic and clinical data for individuals in this study .................................... 73 
 

Chapter 5 

 

No Tables 

 

Supplementary Material A 

 

Supplementary Table A - 1: Archaeological and anatomical context for Nuragic and Maya 

samples ........................................................................................................................................ 130 
Supplementary Table A - 2: Metagenome samples used in this study that were downloaded from 

NCBI ........................................................................................................................................... 132 
Supplementary Table A - 3A-D: Top 50 genes in keystone taxa - Rio Zape Coprolites ............. 140 
Supplementary Table A - 4A-B: Top 50 genes in keystone taxa - Nuragic dental calculus ....... 146 
Supplementary Table A - 5A-C: Top 50 genes in keystone taxa - Maya dental calculus ........... 149 
Supplementary Table A - 6A-B: Top 50 genes in keystone taxa - Radcliffe museum dental 

calculus ....................................................................................................................................... 153 
Supplementary Table A - 7: Network properties change with sample size................................. 155 
Supplementary Table A - 8: Keystone identification falters in small sample size. ..................... 156 
 

Supplementary Material B 

 

Supplementary Table B -  1: Genera Involved in SCFA Synthesis ............................................. 162 
Supplementary Table B -  2: Samples Used in SCFA Analysis................................................... 163 
Supplementary Table B -  3: Proportional Contribution to Total SCFA Gene Abundance. ...... 185 
Supplementary Table B -  4: Median richness of selected SCFA-producing genera. ................ 186 
 



 ix 

Supplementary Material C 

 

Supplementary Table C -  1: Full lifestyle metadata for patients involved in this study ............ 193 
Supplementary Table C -  2: Raw Escherichia reads from extraction negatives and PCR blanks

..................................................................................................................................................... 194 
 

List of Figures 

Chapter 1 

 

No Figures 
 

Chapter 2 

 

Figure 2 - 1: Rio Zape coprolite network. .................................................................................... 28 
Figure 2 - 2: Functional diversity of the Rio Zape coprolite for SCFA synthesis. ....................... 29 
Figure 2 - 3: Networks for the ancient dental calculus datasets .................................................. 31 
Figure 2 - 4: Functional diversity in ancient calculus datasets. .................................................. 34 
 

Chapter 3 

 

Figure 3 -  1: Map of Human Gut Microbiome Metagenomes Analyzed ..................................... 50 
Figure 3 -  2: Relative Abundance of SCFA Genes Compared Between Lifestyle Categories ..... 57 
Figure 3 -  3A-C: Taxonomic Diversity of SCFA-encoding Taxa ................................................ 59 
Figure 3 -  4A-F: Hill Numbers for SCFA-encoding Taxa ........................................................... 60 
Figure 3 -  5A-C: Proportion of Genes Classified to a Taxon for Each SCFA ............................ 62 
 

Chapter 4  

 

Figure 4 - 1: Heatmap of the 25 most abundant genera in the vaginal microbiome ................... 79 
Figure 4 - 2A-D: Log-transformed odds ratio vaginal microbiome dominance. ......................... 79 
Figure 4 - 3: Lactobacillus iners dominates in small gross residual disease. ............................. 81 
Figure 4 - 4: Unweighted UniFrac distances (PC1 and PC2) of fecal microbiomes................... 83 
Figure 4 - 5A-B: Phylogenetic diversity in fecal microbiomes..................................................... 83 
 

Chapter 5 

 

No Figures 

 

Supplementary Material A 

 

Supplementary Figure A - 1A-D: Rio Zape coprolite DNA damage patterns for keystone taxa 122 
Supplementary Figure A - 2: SourceTracker results for novel ancient dental calculus samples123 



 x 

Supplementary Figure A - 3A-B: Nuragic dental calculus DNA damage plots for keystone taxa.

..................................................................................................................................................... 124 
Supplementary Figure A - 4A-C: Maya dental calculus DNA damage plots for keystone taxa. 125 
Supplementary Figure A - 5: Co-occurrence heatmap of oral taxa of interest .......................... 126 
Supplementary Figure A - 6A-F: Functional diversity in ancient and modern microbiome 

samples ........................................................................................................................................ 127 
Supplementary Figure A - 7A-B: Small sample size effect network properties .......................... 128 
Supplementary Figure A - 8: Small sample size hinders identification of keystone taxa ........... 129 
Supplementary Figure A - 9A-C: Visual representation of network properties ......................... 130 
 

Supplementary Material B 

 

Supplementary Figure B -  1: Gini-Simpson Index Values for Taxa Encoding SCFAs .............. 159 
Supplementary Figure B -  2: Proportion of All Genes Classified to A Taxon at Different 

Phylogenetic Levels .................................................................................................................... 160 
Supplementary Figure B -  3: Genus:Species Relative Mapping Index. ..................................... 161 
 

Supplementary Material C 

 

Supplementary Figure C -  1A-C: Weighted UniFrac beta diversity of all vaginal microbiome 

samples ........................................................................................................................................ 189 
Supplementary Figure C -  2A-B: Proportional contribution of most abundant phyla and genera 

in the vaginal microbiome in this study. ..................................................................................... 189 
Supplementary Figure C -  3: Stacked bar chart of the proportion of samples within each study 

group that were dominated by different taxa .............................................................................. 190 
Supplementary Figure C -  4: Lactobacillus abundance has a positive association with log-

transformed cell density in each sample. .................................................................................... 190 
Supplementary Figure C -  5A-B: Proportional contribution of most abundant phyla  and genera  

in the gut microbiome in this study. ............................................................................................ 191 
Supplementary Figure C -  6A-C: Weighted UniFrac beta diversity for gut microbiome samples 

in this study. ................................................................................................................................ 191 
Supplementary Figure C -  7: Genera at high abundance in fecal outlier group ...................... 192 
Supplementary Figure C -  8: Prevotella abundance in gut microbiome of ovarian cancer 

patients. ....................................................................................................................................... 192 
Supplementary Figure C -  9: Relationship between abundance of Escherichia in the vaginal and 

gut microbiomes. ......................................................................................................................... 193 
 

  

 

 

 



 xi 

Abstract 

Human microbiomes are increasingly seen as a key to understanding human biology, whether it 

be in studying health/disease or in documenting human diversity. Anthropological interest in 

human microbiomes has primarily focused on inventorying shifts microbial abundance between 

lifestyles and over time. While undoubtedly valuable information, these taxonomic inventories 

lack application of theoretical frameworks that can provide a deeper understanding of human-

microbiome interactions. In my work, I integrate microbiome data with ideas typically used in 

the study of macroecological systems. I present a background on ecological frameworks and 

their general applicability to human microbiome studies in Chapter 1. In Chapters 2-4, I present 

unique research on human microbiome ecology. Chapter 2 is a first-of-its-kind study on 

ecological dynamics in ancient human microbiomes, in which I demonstrate how network 

analysis can inform on general microbiome community structure in ancient coprolites and dental 

calculus, as well as demonstrate overlap in key ecological signatures between ancient and 

contemporary non-industrial populations. Chapter 3 is a demonstration of the value of 

interrogating potential microbiome stability and resilience in a specific niche, namely short-chain 

fatty acid (SCFA) production. Our research indicates that non-industrial gut microbiomes are 

more resilient for SCFA production and industrial SCFAs are encoded by a few, closely related 

species. These results come in the face of substantial database bias that inhibits study of non-

industrial gut microbiomes. Finally, Chapter 4 describes vaginal and gut microbiomes in women 

with Ovarian Cancer (OC). We determine that women with OC have lower than expected 

vaginal Lactobacillii dominance, which creates ecological space for an opportunistic bacteria 

such as Escherichia, to thrive in women who suffer quick recurrence of cancerous growth after 

platinum chemotherapy.  
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Chapter 1 – Introduction 

1.1 MICROBIOME BACKGROUND 

Human health and disease are largely influenced by complex interactions among underlying 

human genetic architecture, personal habits/exposures/socioeconomics, and the microbes living 

in and on the human body. The resident microbes, referred to as the human microbiome, are 

increasingly seen as integral to human biology, where their influence ranges from impacting 

efficiency of energy harvest from diet, maintenance of vitamin homeostasis, to fending off 

pathogens (1, 2). Human gut microbiomes consist of hundreds to thousands of microbial species 

from a diverse range of bacterial phyla and many studies have focused on inventorying the 

presence/abundance of bacteria in different health/disease states, as well as between lifestyles (3-

7). While various studies have identified specific microbes that are strongly influenced by 

lifestyle, such as diet, or found bacteria that are associated with disease, there is an increasing 

awareness that the metabolic capabilities of the human microbiome paint a more accurate picture 

of this ecosystem (8, 9). In other words, understanding the microbial aspect of human biology 

needs more information than just an inventory of what microbes are present, it requires 

knowledge of these microbes’ metabolic capabilities (functional analysis). 

 

Advances in next-generation DNA sequencing have facilitated great insights into the functional 

capabilities of the human microbiome via metagenomics and transcriptomics (2) by providing 

reams of data, resulting in ever-growing databases of annotations linking DNA sequences to 

proteins and metabolic processes. Yet the technological advances have not been matched by 

advances in theory. Similar to taxonomic inventories, functional inventories provide a useful 

overview of what is present in a microbiome, but it masks lower-level dynamics. There is 



 2 

extensive room to address this theoretical gap through incorporation of frameworks from 

macroecology; namely, ecosystem resilience, stability in functional potential, and identification 

of keystone taxa that perform vital roles in the microbial system.  

 

1.2 MICROBIOMES IN ANTHROPOLOGY 

Ecological microbiome analysis is assuredly making inroads in the field (10-13) but there has 

been little incorporation of ecological frameworks into anthropological microbiome research. 

Anthropology has an important seat at the table in microbiome research because it is 

anthropologists’ focus on human evolution and lifestyle diversity that have yielded a variety of 

biologically important findings. There is evidence that microbiome communities, and specific 

lineages of bacteria in particular, have co-speciated with their animal hosts (14, 15). This deep 

evolutionary relationship demonstrates the extent to which human biology and human 

microbiomes are intertwined because the depletion of bacteria that co-speciated with humans in 

evolutionary history is linked to gastrointestinal inflammation (16). Anthropology also plays a 

key role in the field by describing how lsubsistance practices have changed the human 

microbiome through the study of both archaeological specimens and contemporary non-

industrial populations (17, 18). The non-industrial populations studied in microbiome research 

are quite diverse – including South American and African Hunter-Gatherers, as well as rural 

agriculturalists and pastoralists from various parts of the world – but they share a common 

characteristic of little to no processed food consumption (17, 19-21). Consistently, gut 

microbiome samples from industrialized populations (think Europe, North America,  East Asia) 

demonstrate lower richness, than non-industrial populations and the absence, or great reduction 

in abundance, of extirpated bacteria, namely: Treponema, Catenibacterium, Prevotella, and 

Succinovibrio (17, 19-21). While the exact role of the extirpated bacteria in the gut microbiome 
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remains to be elucidated, they are hypothesized to aid digestion in fiber-rich diets (22). The loss 

in richness observed in industrial populations, which has been tied to various autoinflammatory 

and metabolic diseases (23), is commonly linked to differences in diet between industrial and 

non-industrial groups (17, 19, 20, 24); however, living environment (25, 26) and consumption of 

pharmaceutical drugs (27-30)  also contribute to differences in microbiomes between industrial 

and non-industrial populations.  

 

Anthropological human microbiome research’s focus on documenting extirpated bacteria, 

tracking community richness, and characterizing changes in taxonomic abundance between 

populations leading different lifestyles is undoubtedly important and built the foundations for 

future microbiome research. Listing the bacterial taxa and the functions that they genetically 

encode is useful because it provides a baseline to compare samples; however, there is a growing 

recognition that these descriptions do not accurately reflect how the community is behaving. 

Ultimately, the lack of studies on how ecological dynamics intrinsic to the microbiome are 

impacted by human lifestyle has led to an ignorance of how the microbial community is actually 

behaving and interacting in industrial and non-industrial populations. The absence of this more 

ecological approach is unfortunate because these data are important for understanding diversity 

in human health and biology. For example, bacteria have different growth rates, transcriptional 

activity, predator/prey interactions, and interphylum signaling that all influence how they interact 

with each other, as well as their influence on human biology (8, 31). Moreover, redundancy in 

the diversity and number of bacteria that encode the same gene may impact functional stability in 

a microbial community over time (8). Yet the scientific community does not adequately know 

how ecological dynamics within non-industrial gut microbiomes compare to those observed 
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within industrial gut microbiomes. Clearly, the next step for anthropologists interested in human 

microbiomes is incorporation macroecology frameworks to better understand the extent of 

human microbiome diversity. 

1.3 MICROBIOME ECOLOGY 

Incorporating macroecological theory into microbiome research provides the opportunity to 

advance our understanding of human microbiome variation and behavior in health and disease. 

Although microbiomes do not always function in the same manner of macroecosystems (32), 

there are sufficient similarities in community attributes that macroecological theory can, and 

should, be applied to microbiomes (33, 34). For example, researchers use the same ‘currency’ in 

their analysis: identifying and counting individuals, such as species or genes (not without 

challenges in either field of study). Similarly, as a main component of their research, ecologists 

describe how species are distributed throughout a defined area and what factors (density, 

resource, human-perturbation) influence these species-area distributions, which is fundamentally 

the same as how microbiome researchers study how microbiomes vary within and between 

populations (34).  

 

Applying ecological theory to the microbiome has only recently gained traction. While there is 

no unified or singular approach to study human microbial ecology, the complex ecological 

processes and interactions that shape community structure include concepts such as functional 

redundancy, community assembly, succession, response to disturbance, restoration, response 

diversity, keystone taxa and genes, and co-occurring networks of bacteria (11, 31, 35-39). Each 

of these concepts leads to estimating ecological variables, providing a more nuanced view of 

human microbiomes, including how they are formed, what factors drive change, and which 
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bacteria play important roles in maintaining homeostasis or stable conditions. It is important to 

reiterate that the field is currently far from a unified theory to study microbial ecology.  

 

Much ecological work on the human microbiomes has focused on resilience. As the field of 

microbiome ecology is still developing, the term resilience is used with a surprising amount of 

variation in meaning (40) but I take a broader view of resilience as the ability for a community to 

experience an outside disruption but still maintain its functional capabilities (9, 13). Ecosystem 

resilience is seen as vital for microbiome health because it provides a buffer against the regular 

insults that microbiomes face, such as the consumption of pharmaceutical drugs and exposure to 

pathogens (13, 31). In the face of a disruption, resilient communities may initially suffer a shift 

in the structure and/or function of the community but then revert back to the original state, while 

non-resilient communities undergo an ecosystem state change and the functional capabilities of 

the microbiome change. As a common example, antibiotic consumption triggers microbiome 

ecosystem state changes through the overall loss of taxonomic diversity and functional profile in 

oral and gut microbiome communities (41-43). In oral microbiomes, the loss of diversity may 

allow orange or red complex bacteria (which are bacteria associated with the progression of 

periodontitis) to thrive, while in gut microbiomes, a loss of diversity can allow for pro-

inflammatory bacteria to proliferate and negatively impact host physiology (44, 45).  

 

An extreme example of an ecosystem state change in the gut microbiome is when a non-resilient 

microbiome shifts to a Clostridium difficile dominated community after the consumption of 

antibiotics in a hospital/clinical setting, which can cause life-threatening inflammation in the 

colon (46-48). C. difficile is found in 5-15% of healthy adults (49, 50) and evidence suggests that 
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there are microbial subnetworks of commensal bacteria (Lachnospiraceae, Barnesiella, 

Akkermansia ) that influence C. difficile colonization and infection progression (47). Specific 

conditions are necessary for C. difficile to proliferate and antibiotics are strongly implicated in 

facilitating these conditions by altering the metabolic profile of the gut microbiome, resulting in 

a profile that favors germination of C. difficile spores via changes in bile acid production and 

altered competition for nutrients like sialic acid and glucose (51). A resilient microbiome may 

suffer an initial shift but then recover to prevent C. difficile expansion by maintaining 

homeostatic production of bile acids and resource competition. (52). Similarly, oral microbiome 

research on the red complex bacteria, which had been strongly associated with periodontitis, 

indicates that these bacteria are found in non-diseased individuals (53, 54) and it is only certain 

ecological conditions that these bacteria shift the oral microbiome into a diseased state. 

Importantly, resilience should not be only thought about in the context of maintaining a healthy 

state, as microbiomes may also be resilient to change when they are in a diseased state. 

Understanding the range within which a microbiome can vary while maintaining its functional 

capabilities is an important when characterizing a microbiome.  

 

One approach for assessing microbiome resilience is through functional redundancy. Functional 

redundancy derives from the fact that for any given genetic pathway encoded by one bacterium, 

there are likely numerous bacterial taxa encoding that same function (8). This concept indicates 

that a simple description of taxa abundance is too reductionist of an approach (8). Indeed, 

changes in taxonomic abundance may not have any meaningful impact on the community’s 

functional profile because the functions performed by one taxon may be performed by a suite of 

others. This produces a few dilemmas for researchers: if multiple species encode the same 
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function, and that holds true across the suite of genes encoded by the entire microbiome, does the 

taxonomic make-up of the microbiome matter at all? It is easy to envision a scenario where a 

group of bacteria are eliminated from a microbial community but the functional profile of the 

system does not change because other bacteria, that are still present in the community, are able to 

perform the same functions as the bacteria that were lost. This is of upmost interest to 

anthropologists due to the numerous bacterial taxa absent from industrialized populations 

compared to those living a more traditional lifestyle (17, 24). It has been assumed that taxonomic 

variation between industrial and non-industrial microbiomes results in highly different 

microbiome communities, yet the truth of how decreased diversity and the loss of extirpated 

observed in industrial gut microbiomes likely lies in assessing functional redundancy in 

microbiomes from diverse populations.  

 

Response diversity is another useful tool to measure resilience that can be adapted from 

macroecology (55, 56) and it is closely related to functional redundancy. In functional 

redundancy, researchers may consider only the number of bacteria that encode a function as a 

measure of resilience, whereas response diversity describes the phylogenetic diversity of taxa 

performing the same function (55, 56). Response diversity captures the idea that a metabolic 

function that is encoded by a diverse range of bacteria is more likely to be resilient than a 

function encoded only by a few, closely related bacteria. For example, antibiotics often kill off 

related groups of bacteria. In a microbiome where these bacteria are the only taxa that perform a 

certain function, then that function is eliminated from the ecosystem. However, if a diverse 

group of bacteria encode that function, the loss of one clade of bacteria does not ultimately 

change the functional capabilities of the microbial community. Therefore, high response 
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diversity provides resilience (55, 56). Additionally, this example highlights the nuance between 

functional redundancy and response diversity, as functional redundancy does not describe the 

phylogenetic and genomic diversity of bacteria encoding a function, which may ultimately be 

meaningful for the community’s resilience.  

 

A further area of interest in microbiome ecology is through community assembly and succession 

in the microbial community. Bacteria are consistently being introduced to human niches through 

a variety of sources, such as air/environment, food stuffs, or other microbiomes near-by 

(metacommunities) (57-59). Many of these bacteria are transient, and there are a variety of 

factors that drive which bacteria ultimately become permanent residents in a microbiome. Initial 

assembly of a community requires early colonizing bacteria that often have physiological or 

metabolic traits that permit colonization by other bacteria, forming a system of community 

assembly and eventually succession of bacteria in the microbiome. Microbiome assembly and 

succession partially depends on abiotic elements of the environment that promote colonization of 

specific groups of bacteria. To provide an obvious example, assembly and succession of the fecal 

and oral microbiome clearly are shaped by very different events in their respective habitats, 

which include the microclimate of the respective bioreactor (gut and oral), such as acidity, the 

available substrates for metabolism, and interaction with other human biological systems. The 

early make-up of the human GI tract microbiome is influenced by the host, like mode of birth 

and nutrients in breast-milk/infant formula, to shape the taxonomic and functional make-up of 

the infant GI tract microbiome (11, 60, 61). The initial assembly of the GI microbiome then 

influences how microbial succession occurs in early childhood (11). In dental biofilms, 

community assembly is understood through the lens of early and late colonizing bacteria (62, 



 9 

63). Early colonizers, such as some Streptococcus and Actinomyces species, have cell surface 

proteins that permit binding to the acquired enamel pellicle that forms on the tooth surface (64). 

The make-up of secondary and late colonizers to the plaque biofilms depends on binding 

compatibility between microbes, functional competition, and oxygen exposure, amongst other 

biotic and abiotic variables (62). The colonization of the ‘red’ complex bacteria, once thought to 

be associated with periodontal disease, depends on the presence of ‘orange’ complex bacteria, 

which may be thought of as bridging microbes that provide the ecological links between early 

colonizers and the more ‘pathogenic’ bacteria (37, 54, 65). Taken together, a fuller 

understanding of microbiome assembly and succession can inform about how the microbiome 

community was formed as well as identify key interactions that may drive the microbiome 

structure towards a certain community structure. 

 

A final example of where ecology can be applied to microbiomes is through the identification of 

keystone taxa. In microbiomes, keystone taxa are bacteria that play important roles in ecosystem 

function because they are at the center of microbial interactions throughout the microbiome, or at 

least within different functional groups (38). Keystone taxa may be high or low abundance, but 

their signature feature is that they are at the heart of microbial interactions, which is often related 

to their ability to perform a narrow, specific function that multiple bacteria either feed into or 

rely on. Additionally, keystone taxa need not be keystones for health. For example, 

Porphyromonas gingivalis (a red complex bacterium) has been suggested as a keystone taxon for 

periodontitis because it alters immune system defense mechanisms and thus promotes a resilient 

periodontitis-inducing biofilm (54, 66, 67). Identification of keystone bacterium can provide 
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useful insights about microbial community structure and may cause major shifts in ecosystem 

function and interactions if they were eliminated from the community.  

1.3 DISSERTATION STRUCTURE 

This dissertation encompasses three studies (chapters 2 - 4) that use varying approaches to 

broaden the scientific community’s understanding of human microbiome diversity and Chapter 5 

is a conclusion/discussion section. Chapters 2 and 3 take an ecological approach that demonstrate 

that value and benefit of adapting macroecological theories to anthropological microbiome 

research, while Chapter 4 adopts a disease-marker approach of the human microbiome but still 

retains ecological interpretations.  

 

Chapter 2 looks at metagenomic data from ancient dental calculus (Maya, 170 BCE-885 CE, 

Belize; Radcliffe Museum Dataset, 1770-1855 CE, UK; Nuragic, 1400-850 BCE, Sardinia, Italy) 

and coprolites (Rio Zape, 700 CE, Mexico). Ecological approaches have never been applied to 

ancient human microbiomes and in a first of its kind study, I applied network analysis to identify 

keystone taxa and evaluate community structure; in addition, I used functional analysis to assess 

functional redundancy and response diversity for specific genes of interest in the oral and gut 

microbiome. Chapter 2 also includes comparison of the ancient microbiome datasets to modern 

oral and gut microbiomes to provide context for our ecological analysis and draw comparisons 

between ancient and contemporary non-industrial gut microbiomes.  

 

Chapter 3 incorporates human gut microbiome data from samples collected as part of a 

partnership with Centre Muraz Research Institute in Burkina Faso, where I worked with Dr. 

Thérèse Kagoné and her team in the summer of 2017. The Burkina Faso samples were compared 
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to a global gut metagenome panel of industrial and non-industrial populations to determine 

resilience in Short-Chain Fatty Acid (SCFA) production. SCFAs are a key molecule involved in 

human-microbiome interaction and are often positively associated with health. In Chapter 3, I 

demonstrate that non-industrial gut microbiomes have high resilience, as measured through 

response diversity, for SCFA production, which is to be expected; however, there is substantial 

database bias that hinders analysis of gut microbiomes from non-industrial contexts. 

 

Chapter 4 is the result of a collaboration with Dr. Kathleen Moore and her team at the 

Stephenson Cancer Center at OU Health Sciences Center. In this study, vaginal and fecal 

samples were collected from women with ovarian cancer with differential responses to platinum-

based chemotherapies. There are extensive links between colorectal cancer and the human 

microbiome but little is known about the relationship between ovarian cancer, response to 

chemotherapy, and the microbiome. I identified significantly lower than expected dominance of 

Lactobacillus in women with ovarian cancer, compared to similarly aged healthy women. 

Additionally, women who have a quick recurrence of cancerous growth after chemotherapy were 

more likely to have a vaginal community dominated by Escherichia. These two results indicate 

that ovarian cancer may cause an ecological disruption in the vaginal microbiome that decreases 

Lactobacillus abundance and permits proliferation of Escherichia in women with quick 

recurrence of cancerous growth.  

 

Together, this dissertation shows the value of incorporating ecological theory into 

anthropologically focused human microbiome research and contributes to the growing body of 

literature about ecological dynamics of the human microbiome. 
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Chapter 2 – Functional Diversity of Microbial Ecologies Estimated from 

Ancient Human Coprolites and Dental Calculus1,2 

 

2.1 ABSTRACT  

Human microbiome studies are increasingly incorporating macroecological approaches, such as 

community assembly, network analysis, and functional redundancy to more fully characterize the 

microbiome. Such analyses have not been applied to ancient human microbiomes, preventing 

insights into human microbiome evolution. We address this issue by analyzing published ancient 

microbiome datasets: coprolites from Rio Zape (n = 7; 700 CE Mexico) and historic dental 

calculus (n = 44; 1770-1855 CE, UK), as well as two novel dental calculus datasets: Maya (n = 

7; 170 BCE-885 CE, Belize) and Nuragic Sardinians (n = 11; 1400-850 BCE, Italy). 

Periodontitis-associated bacteria (Treponema denticola, Fusobacterium nucleatum, and 

Eubacterium saphenum) were identified as keystone taxa in the dental calculus datasets. 

Coprolite keystone taxa included known short-chain fatty acid producers (Eubacterium biforme, 

Phascolarctobacterium succinatutens) and potentially disease-associated bacteria (Escherichia, 

Brachyspira). Overlap in ecological profiles between ancient and modern microbiomes was 

indicated by similarity in functional response diversity profiles between contemporary hunter-

gatherers and ancient coprolites, as well as parallels between ancient Maya, historic UK, and 

modern Spanish dental calculus; however, the ancient Nuragic dental calculus shows a distinct 

ecological structure. We detected key ecological signatures from ancient microbiome data, 

paving the way to expand understanding of human microbiome evolution. 

 
1 Adapted from Jacobson et al. in press. Functional Diversity of Microbial Ecologies Estimated from Ancient Human 
Coprolites and Dental Calculus. Philosophical Transactions of the Royal Society B. 
2 See Supplementary Material A for full list of co-authors 
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2.2 INTRODUCTION  

Host-associated microbiomes are complex ecosystems with diverse sets of interactions between 

microbes, the host, and abiotic features. Human microbiome research has primarily focused on 

documenting the genes/organisms present in a sample and differentiating microbiome 

communities using presence/absence and relative abundance data (4, 6, 7, 60, 68). Such 

contributions have undoubtedly advanced the understanding of human biology; however, a 

stronger focus on taxonomic co-occurrence, identification of taxa with disproportionate influence 

on community function, as well as overall resilience of metabolic pathways will provide a more 

nuanced view of the microbiome. An analogy can be drawn from mammalian ecology in the 

United States’ Yellowstone National Park, where a focus on the role that wolves play as a 

keystone species yields greater clarification on cross-species interactions and dependencies. 

Wolves are not an abundant species in the ecosystem, yet their predator-prey relationships have 

tremendous downstream impacts on ecosystem production and stability (69-71). A simple 

taxonomic inventory does not present the full picture of the wolves’ impact on the ecosystem, 

but an approach focused on their network of interactions demonstrates how they function as a 

keystone species that reshapes resource allocation and alters interspecies relationships 

throughout the ecosystem (69-71). In the absence of deeper modeling, wolves would remain a 

rare biome variant, without a sophisticated understanding of their role as a keystone species. 

 

Human microbiome research can clearly benefit from a similar approach but the momentum in 

applying ecological theory to the microbiome has only recently gained traction. In this vein, 

microbiome focus is slowly shifting from describing what is present in a microbiome to 

understanding the factors that drive community membership, polyspecies interactions, functional 
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variation, and ecosystem stability. While there is no unified or singular approach, ecological 

concepts such as community assembly, succession, response to disturbance, restoration, 

functional redundancy, response diversity, keystone taxa and genes, and co-occurring networks 

have made inroads in human microbiome research (8, 11, 31, 36-39, 57-59, 72). Each of these 

concepts lead to estimating ecological variables, providing a more nuanced view of human 

microbiomes, including how they are formed, what factors drive change, and which bacteria play 

important roles in maintaining homeostasis or stable conditions. It may appear that such a heavy 

focus on microbial ecology takes the focus away from human biology; however, there is growing 

support for the holobiont paradigm. Holobiontism posits that macro-organismal development, 

health, and general function relies on microorganisms, and therefore, microbes play a role in 

macro-organism ecology and evolution (73-76); in other words, human-associated microbial 

ecology and human biology are inextricably intertwined. 

 

The approaches for estimating and characterizing human microbiomes through ecological 

concepts are in an early stage of research but there have been numerous valuable insights. 

Community assembly- and succession-focused research has demonstrated that early life human 

gut microbiome composition is dynamic and strongly influenced by a variety of factors, 

including birth mode, nutrition, and exposure to antibiotics (10, 11, 60, 77), which can lead to 

downstream health effects (78). Network analysis has been used to identify potential therapeutic 

avenues for Clostridium difficile infections in the gut (47) and evaluate gut microbiome structure 

and stability (72). Taxonomic composition fluctuates over time in gut microbiomes (79, 80) but 

evidence suggests there is stability in metabolic activity (81) that may be driven by functional 

redundancy (8, 11, 77). Importantly, one should not consider resilience (and stability) as 
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resilience to remain in a healthy state; ecosystems, and thus microbiomes, can be resilient to 

change when they are in an alternative state (82-85). Similarly, keystone taxa need not be 

important for promoting a healthy state. For example, Porphyromonas gingivalis has been 

suggested as a keystone taxon for periodontitis because it alters immune system defense 

mechanisms and thus promotes a resilient periodontitis-inducing biofilm (54, 66, 67).  

 

Stronger focus on ecological functions and interactions paints a more detailed picture of the role 

that taxa and functions play in different microbiome states. A logical next step is to apply these 

approaches to archaeological and paleogenomic microbiome data. These data are in a most 

unique position to impact the ecological understanding of the human microbiome as they permit 

exploration of how human microbiomes have responded to major changes in the human 

condition, such as epidemiological transitions, colonialism, biogeographic range expansions, and 

industrialization (86-94). In fact, the popularized roles the microbiome plays in human biology 

are deeply connected to “diseases of civilization”, such as allergies, obesity, chronic 

inflammation, emerging infectious diseases, and the evolution of antibiotic resistance (3, 5, 6, 

95-97). To understand the mechanisms behind these changes, we must know exactly what has 

changed in functional redundancy, keystone taxa, resilience, and assembly of human 

microbiomes. While datasets from non-human primates and extant non-industrialized people 

provide some progress towards that goal, there is simply no line more intuitive to understanding 

ancestral microbiomes than to study ancient populations.  

 

Ecologically focused microbiome research with ancient biomaterials (primarily coprolites and 

dental calculus) will present unique challenges, such as DNA degradation, small sample size, 
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contamination, and lack of time-series data. However, coprolites (i.e. desiccated feces) and 

dental calculus (i.e. calcified dental plaque) have a long history of providing important 

information on human health and practices of the past and, in ideal conditions, preserve a record 

of the human microbiome (86, 88, 98-101). The first ancient microbiome study to apply the next-

generation DNA sequencing technology was largely centered around the premise of whether 

detailed taxonomic information from ancient human gut microbiome was retrievable, and if so, 

whether these resembled the contemporary human gut (102). From an assemblage of pre-colonial 

coprolites from Mexico (Rio Zape), they observed a similar taxonomic profile to contemporary 

gastrointestinal (GI) tract microbiomes at the phylum level, as well concordance with 

contemporary non-industrialized populations at the genus level due to presence of Treponema 

and Prevotella, both of which are nearly absent from gut microbiomes of industrialized 

populations (102). A follow-up study (89) noted that the Rio Zape assemblage may be a rare find 

because coprolites from other archaeological sites, including coprolites directly extracted from 

well-preserved mummies, had very poor gut microbiome preservation, including a taxonomic 

profile that is not expected from any mammalian gut, let alone a human gut. Additionally, the 

Rio Zape coprolites are unique because of the relatively high number (n = 8) of samples with 

human GI microbiome signatures as compared to those from other archaeological sites (103). 

 

Dental calculus has proved to be more reliable in reconstructing an accurate microbiome 

signature compared to coprolites (90, 91, 104) primarily because mineralization during life 

makes calculus a sturdy and rigid material lacking in organic nutrients (62, 63). Thus, dental 

calculus is more resistant to environmental contamination (62, 63). Often, more than 90% of the 

bacterial DNA found in dental calculus originates from known oral bacteria, whereas less than 
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half of coprolite bacterial DNA originates from known gut microbes (89, 104), and many of the 

challenges associated with studying coprolite microbiomes (including low DNA yields, soil 

contamination, and lack of a true human microbiome community) are less severe in ancient 

dental calculus. The first next-generation sequencing study of ancient dental calculus 

demonstrated that the oral microbiome could be reconstructed by amplifying the 16S rRNA gene 

from samples ranging from 5,500 BCE – 1600 CE (105); however, the use of 16S rRNA variable 

regions has been shown to be problematic for ancient microbiome datasets due to primer bias 

(106). Shotgun metagenomic approaches face fewer biases for taxonomic identification and 

additionally allow for the reconstruction of genomes and functional characterization (93). Along 

this line, metagenomics has been used to reconstruct genomes from Tannerella forsythia (93) 

and Methanobrevibacter oralis (94) as well as track diversity in functional and taxonomic 

profiles in the mammalian oral microbiome over time (91, 105, 107). 

  

Here, we present an ecologically focused analysis on previously published Rio Zape human 

coprolites (n = 8, 700 CE) (89, 103) and historical dental calculus samples from the Radcliffe 

Infirmary Burial Ground, United Kingdom (n = 44, 1770-1855 CE) (107), as well as novel 

metagenomic dental calculus data generated as part of this study (see Methods) from Maya 

individuals from Belize (n = 7, 170 BCE-885 CE) and Nuragic individuals from Sardinia, Italy 

(n = 11, 1400-850 BCE). To best adapt ecological approaches to ancient coprolites and dental 

calculus, we focused on analyzing the structure and properties of microbiome networks, 

identification of keystone taxa, and functional diversity of specific functions of interest. Each of 

these can be evaluated without time-series data. Compositionally corrected networks using 

SparCC (108) were generated following the protocol suggested by Layeghifard et al. (109) using 
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species-level bacterial taxonomic inventories from MetaPhlAn2 (110). Each network was 

generated 100 times to estimate network properties (number of clusters, modularity, transitivity, 

and articulation points). Modularity and transitivity values were categorized as very low, low, 

medium, high, and very high based on the distribution modularity and transitivity values across 

the different networks we generated. Keystone taxa were identified using three techniques 

common to network evaluation: page rank (111, 112), hubs (113, 114), and closeness centrality 

(115, 116). Functional redundancy was evaluated with gene-level inventories generated by 

HUMAnN2 (117) using the UniRef50 (118) database. Finally, we compared the results from the 

ancient datasets to modern human microbiome datasets to evaluate our ability to take a deeper 

ecological approach with the former as well as to identify possible changes in microbiome 

structure and resilience between ancient and modern microbiomes.  

2.3 METHODS 

Archaeological Context of Novel Data 

Maya samples: The ancient Maya occupied northern Central America and parts of eastern 

Mexico from around 1000 BCE up contact with the Spanish in the 1500s CE, and their 

descendants still occupy the region today. The earliest Maya lived in small, widely scattered 

farming villages during the Preclassic period (1000 BCE-250 CE), and by the Classic period 

(250-830 CE) Maya villages, towns, and cities covered the region. During the Terminal Classic 

period (830-1000 CE), heartland of the Maya area experienced a significant disruption as the 

Maya political system collapsed and populations declined precipitously (119). The seven Maya 

samples used in this study originate from burials at two sites in western Belize: Chan Chich, a 

moderately sized civic-ceremonial center, and Chan, a small farming community 50 km to the 

south. The Chan Chich samples derive from two burials (Burials CC-B12 and CC-B14) in the 
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same building, Structure D-1, one of three structures in a small special-purpose courtyard near 

the site’s main plaza. Radiocarbon dating estimates Burial CC-B12 to cal. 713-885 CE, and 

Burial CC-B14 was interred slightly earlier based on burial context (120). The Chan samples 

derive from Burials CH6 and CH19. Burial CH6 was recovered the principal building of the site 

ceremonial center (cal. 170 BCE-50 CE). The individual in Burial CH19 was interred in an L-

shaped structure in the West Plaza of the site (cal. 570-660 CE) (121-123). 

 

Nuragic Sardinia samples: The Nuragic period lasted from Middle Bronze Age to early Iron Age 

in Sardinia, Italy (~1600–800 BCE) and the Sardinian Nuragic population shows a typical early 

European farmer ancestry profile, although with a contribution from groups of the eastern 

Mediterranean and North Africa, related to the commercial trade networks existing with these 

populations (124). The Nuragic society was substantially based on agriculture (cereals, legumes, 

grapes and figs) (125) and animal husbandry (sheep, goats, cattle, pigs) (126), whereas evidence 

of aquatic foods is limited (127). Collective burials were common as demonstrated by the 

minimum number of individuals found (MNI) at each of the archaeological sites from where the 

samples analyzed in this paper originated: Lu Maccioni (MNI = 40), Capo Pecora (MNI = 20), 

and Perdalba (MNI = 30) (128). Lu Maccioni (Alghero) is a natural cave located at sea level in 

Northern Sardinia (cal. 1126-825 BCE). Capo Pecora (Arbus) is a natural cave located in 

Southern Sardinia, at 63 m above sea level (cal.1384-936 BCE), and Perdalba (Sardara) is 

located in Central Sardinia at 163 m above sea level. It is a collective burial structure of the so-

called “domus de janas” (home of the witches), prehistoric artificial hypogea characteristic to 

Sardinia, and can be ascribed archaeologically to Nuragic times. All samples analyzed in this 

paper belong to the Nuragic osteological collection housed in the Sardinian Museum of 
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Anthropology and Ethnography of the University of Cagliari (128). 

 

Shotgun-sequencing of ancient dental calculus samples 

Details of the dental calculus samples from Maya (n=7) and Nuragic individuals (n = 11) used in 

this study are provided in Supplementary Table A-1. All samples were processed at the 

Laboratories of Molecular Anthropology and Microbiome Research (LMAMR) at the University 

of Oklahoma following established protocols for ancient DNA (129). Up to 10 mg of dental 

calculus was used for DNA extraction, following an ancient DNA extraction protocol 

customized for dental calculus (130). DNA libraries were built using established protocols (130) 

with a modification: DNA extracts were partially treated with uracil DNA-glycosylase (UDG) as 

given in (131). Libraries were dual-indexed using the Kapa HiFi Uracil+ enzyme (Kapa 

Biosystems), quantified using the Fragment Analyzer (Agilent), and pooled in equimolar ratios. 

Size-selection was performed for a target range of 150-1000 bp using the PippinPrep (Sage 

Systems). Libraries were quantified using the Kapa Library Quantification kit (Kapa Biosystems) 

and sequenced on multiple runs (2 x 150 bp) of the Illumina HiSeq 3000 at the Oklahoma 

Medical Research Foundation, Oklahoma City, to an average of 16 million reads per sample 

(Supplementary Table A-1). 

 

Data processing 

Previously published shotgun-sequencing data for ancient dental calculus samples from 

individuals from the historical Radcliffe Infirmary Burial Ground collection at Oxford, UK (n = 

44) and ancient human coprolite samples from Rio Zape, Mexico (n=8) were downloaded from 

the European Nucleotide Archive (Supplementary Table A-2). Previously published modern 
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human microbiome datasets (fecal and dental calculus) were downloaded from NCBI. 

Participants with diabetes and/or inflammatory bowel disease were excluded from the MetaHIT-

China dataset (n = 38) (Supplementary Table A-2). Newly-generated as well as previously 

published data were processed using the same customized bioinformatics pipeline. Sequence 

reads were processed and merged using AdapterRemoval v2 (132), using a minimum overlap of 

10. Reads were trimmed to remove Ns and low-quality bases and reads with a Phred score less 

than 30 were discarded.  

 

Assessing preservation of ancient microbiome signatures  

Post-processed reads were mapped to the GreenGenes (133) database of bacterial and archaeal 

16S rRNA gene sequences using bowtie2 (134) with default parameters and the --no-unal option. 

Resulting SAM files were converted into BAM files, sorted, and duplicate reads were removed 

using SAMTools (135). Custom scripts were used to generate a FASTA file comprising all the 

unique reads across all samples; this FASTA file was used as input for closed-reference OTU 

picking at a 97% identity threshold, implemented in QIIMEv1.9 (136) using uclust. Taxonomic 

inventories at the genus level were generated using QIIME scripts and were used as input for 

SourceTracker2 (137) to determine the proportion of reads attributed to oral, gut, and other 

sources.  

 

Authenticating ancient DNA 

Reads from keystone taxa identified for each population were authenticated as ancient using the 

program MapDamage 2.0 (138). Analysis ready  reads for all samples in the population were 

separately mapped to the reference genomes of the keystone taxa identified for that population 
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using bwa aln (139) with the following parameters: -n 0.03, -q 37, -l 1024, as suggested for 

ancient DNA (140). Duplicate reads were removed using DeDup (141) and the resulting BAM 

files were used as input for MapDamage. When the keystone taxa was identified to the species 

level, that bacterial species was used as the reference genome for MapDamage. For the keystone 

taxa only identified to the genus level, we identified species belonging to the respective genus 

using MetaPhlAn and used this species as a reference for MapDamage: in the Rio Zape 

coprolites, we used E. coli for Escherichia and B. pilosicoli for Brachyspira. For the Nuragic 

dataset, we used O. uli for Olsenella 

 

Generating taxonomic and functional profiles 

Metagenomic taxonomic inventories were generated from the post-processed reads using default 

parameters in MetaPhlAn v2.0 (110). Downstream analyses (networks, diversity) were 

conducted with the species-level data, excluding species with a mean abundance < 0.05% in each 

dataset. Functional profiles were generated from the post-processed reads using default 

parameters in HUMAnN2 (117) and the UniRef50 database (118). The gene family output tables 

were used for downstream analysis after normalizing each sample’s gene abundance to copies 

per 1 million gene copies. These tables report abundance of each gene in every sample, as well 

as a stratified breakdown of how much each taxon contributes to the respective gene abundance. 

 

Network Analysis 

Filtered taxonomic tables for each sample in a dataset were combined into a single species-level 

taxonomic table for each dataset and were used as input for network generation in R (142). 

SparCC networks were generated for each dataset following the protocol outlined by Laygerfield 
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et al. (109) which accounts for compositionality in microbiome data by using sparse correlation 

coefficients. In brief, the input taxonomic table was used to create a sparse correlation coefficient 

matrix (using the SpiecEasi library) (143), which was in turn used as input to generate an 

undirected network implemented with the iGraph library (144). Edges connecting nodes in our 

networks represent positive Pearson correlations >0.3. Networks were generated 100 times for 

each dataset in order to provide estimates of keystone taxa, modularity, transitivity, and number 

of clusters. Keystone species scores for the different approaches (HubScore, PageRank, and 

Closeness) were generated for each taxon in the resulting network with default settings from the 

iGraph library (144). Keystone taxa with scores in the top 5 of all taxa were saved in each 

iteration of network generation, and the taxa that appeared in the top 5 in more than 80 of the 100 

networks were determined to be potential keystone taxa. Cluster membership was determined 

using a walktrap algorithm, which performs random walks between nodes (144). Modularity and 

transitivity for each network were determined with default parameters from iGraph (144) and 

range in value between 0 and 1. Categorical modularity groups were defined as: very low (< 0.1), 

low (0.1 – 0.15), medium (0.15 – 0.2), high (0.2 – 0.3) and very high (> 0.3). Categorical 

transitivity values were defined as: very low (< 0.4), low (0.4 – 0.5), medium (0.5 – 0.6), high 

(0.6 – 0.7) and very high (> 0.7). These values were determined by the distribution of modularity 

and transitivity values in each of the networks we generated and are meant to provide relative 

categories for these network attributes across the datasets we analyzed. We defined the network 

distinctness ratio as modularity divided by transitivity, as a way to measure how these variables 

change between datasets and sample size. A more in-depth discussion discussing the techniques 

and theory used in microbiome network analysis is available in Supplementary Material A – 

Microbiome Network Analysis 
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The number of clusters, modularity, and transitivity values reported in Tables 1 and 3 are mean 

averages from the 100 network iterations. The co-occurrence cluster (Supplementary Figure A - 

5) represents the number of times (out of 100 network iterations) that common oral taxon along 

the y-axis is found in the same cluster as the taxon of interest across the x-axis based on cluster 

membership determined with the walktrap algorithm. 

 

HUMAnN2 gene family tables were used to source gene abundance data from each keystone 

taxon. We calculated the average gene abundance in each sample for every UniRef50 annotation 

from each dataset in R. Within each dataset, the top 50 most abundant genes from the keystone 

taxa were used to evaluate potential functional importance of each keystone (Supplementary 

Tables A – 3-6).  

 

Functional Redundancy and Response Diversity Analysis 

Gene abundance for each gene, or gene group, of interest (acetate kinase, butyrate kinase, 

methylmalonyl-coa decarboxylase, fimbrial proteins, flagellar proteins, and adhesin proteins) 

were acquired from the HUMANn2 gene family tables for each dataset. Gene-abundance not 

attributed to any taxa (i.e. unclassified) was removed from downstream analysis because we 

were focused on the diversity of taxa encoding each gene. Gene-abundance per taxon tables were 

used to determine species richness, phylogenetic diversity, and Gini-Simpson. Species richness 

was calculated as the number of taxa encoding each gene. For phylogenetic diversity, we created 

a FASTA file comprising complete 16S rRNA gene sequences from the EzBioCloud database 

(145) for all the taxa identified in dental calculus and feces. These sequences were aligned using 
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MAFFT with default parameters (146) and FastTree2 (147) was used within QIIMEv1.9 to 

create a phylogenetic tree, which was loaded into R. The vegan (148) and picante (149) libraries 

in R were used to calculate Gini-Simpson and phylogenetic diversity, respectively. The same 

process for calculating richness, phylogenetic diversity, and Gini-Simpson was used on the 

MetaPhlAn2 filtered output table to evaluate these metrics for the full community. Plots were 

generated in R using ggplot2 (150).  

  

Sample size analysis 

5, 10, and 20 samples were randomly subsampled in R from each of the modern fecal 

microbiome datasets. The MetaPhlAn2 taxonomic tables from each subsampling were filtered to 

remove taxa with < 0.05% mean abundance. Network generation and downstream analysis were 

performed in the same way as for the full dataset. The keystone taxa, number of clusters, 

modularity, and transitivity for each small sample size dataset was compared to the full datasets 

to evaluate the effect of small sample size on network properties.  

 

Statistical Tests 

All tests for statistical significance were carried out in R. Where reported, p-values were 

determined with Kruskal-Wallis tests and false discovery rate correction (151). 

2.4 RESULTS 

Coprolites 

Network Analysis 

We find a mean of 2.09 clusters (Table 2-1) across the network for the Rio Zape coprolites 

(Figure 1). Taking a broader view of network properties, the low modularity (mean = 0.11) in the 
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Rio Zape network, indicates that the two clusters are highly interconnected. Similarly, the high 

transitivity (mean = 0.67) demonstrates that nodes are highly connected to each other outside of 

central nodes. Eubacterium biforme and Phascolarctobacterium succinatutens were identified as 

potential keystone species in each of the approaches used to discover keystones (Table 2-2). 

Reads mapping to each keystone taxon were authenticated as ancient using MapDamage 2.0 

(138, 152) (Supplementary Figure A – 1A-D). Escherichia and Brachyspira were also identified 

as keystone taxa; however, species-level resolution could not be obtained. Using MetaPhlAn2, 

we determined the presence of gut-associated members of these genera, such as E. coli and B. 

pilosicoli, respectively, in addition to other unclassified species.   

 

Population Sample Type Number of Clusters Modularity Transitivity 

Rio Zape (n = 8) Coprolites 2.09 (sd = 0.43) 0.111 (sd = 0.010) 0.667 (sd = 0.003) 

Maya (n = 7) Dental Calculus 2.64 (sd = 0.67) 0.052 (sd = 0.008) 0.822 (sd = 0.004) 

Nuragic (n = 11) Dental Calculus 2.71 (sd = 0.87) 0.102 (sd  = 0.013) 0.704 (sd = 0.003) 

Radcliffe (n = 44) Dental Calculus 14.14 (3.3) 0.063 (sd = 0.006) 0.738  (sd = 0.002) 

 

Table 2-1: Network Properties of ancient microbiome ecology datasets. 

Modularity was defined as: very low (< 0.1), low (0.1 – 0.15), medium (0.15 – 0.2), high (0.2 – 

0.3) and very high (> 0.3). Similarly, transitivity was defined as: very low (< 0.4), low (0.4 –– 

0.5), medium (0.5 – 0.6), high (0.6 – 0.7) and very high (> 0.7). All ancient datasets have low or 

very low modularity and high or very high transitivity.  

 

Population   Likely Keystone Taxa 

Rio Zape (n 
= 8) 

Page Rank 
Eubacterium 
biforme 

Phascolarctobacterium 
succinatutens 

Escherichia 
unclassified 

Brachyspira 
unclassified 

Closeness 
Centrality 

Eubacterium 
biforme 

Phascolarctobacterium 
succinatutens 

Escherichia 
unclassified 

Brachyspira 
unclassified 

HubScore 
Eubacterium 
biforme 

Phascolarctobacterium 
succinatutens 

Escherichia 
unclassified 

Brachyspira 
unclassified 

Maya (n = 7) 

Page Rank 
Fusobacterium 
nucleatum Treponema denticola     

Closeness 
Centrality 

Fusobacterium 
nucleatum Treponema denticola 

Cardiobacterium_v
alvarum   

HubScore 
Fusobacterium 
nucleatum Treponema denticola 

Cardiobacterium_v
alvarum   
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Nuragic (n = 
11) 

Page Rank 
Eubacterium 
saphenum Olsenella unclassified 

Streptococcus 
gordonii   

Closeness 
Centrality 

Eubacterium 
saphenum Olsenella unclassified     

HubScore 
Eubacterium 
saphenum Olsenella unclassified     

Radcliffe (n 
= 44) 

Page Rank 
Treponema 
socranskii       

Closeness 
Centrality 

Treponema 
socranskii Tannerella forsythia    

HubScore 
Treponema 
socranskii Tannerella forsythia Neisseria elongata   

 

Table 2-2: Keystone taxa identified from ancient microbiome datasets. 

Likely keystone taxa were identified using three approaches (Page Rank, Closeness Centrality 

and Hubscore). Each network was generated 100 times and in each iteration the five most likely 

keystones from each approach were saved. The table above represents taxa that appear in at 

least 80 of the 100 iterations. There is strong agreement for each dataset's keystones, regardless 

of approach used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

 

Figure 2 - 1: Rio Zape coprolite network. 

Rio Zape coprolite network (n = 8) generated with SparCC. Clusters are differentially 
colored, keystones are outlined in black, and edges between nodes represent Pearson 
correlations >0.3. Refer to legend for taxa corresponding to each numbered node. 
Clusters and nodes are highly interconnected, which is consistent with the low 
modularity and transitivity values observed. 
 

Keystone functions 

The functional roles of these keystones were interpreted by identifying the top 50 most abundant 

genes found in each taxon. Each keystone taxon has a high abundance of typical housekeeping 

genes, such as genes involved in synthesis of ribosomal RNA, transferases, and transcriptional 

regulators (Supplementary Table A-3). We also identified genes involved in antibiotic-resistance 

mechanisms (MATE efflux proteins in Brachyspira, E. biforme, and P. succinatutens, and 

acriflavin-resistance proteins in Brachyspira and P. succinatutens). Toxin-antitoxin proteins 

were abundant in Escherichia, and transposases were abundant in all the keystone taxa 

(Supplementary Table A-3). 

 

Functional redundancy 

We used a gene-centric approach to evaluate functional redundancy and response diversity as 

estimators of resilience in the coprolite microbiome. Short-chain fatty acids (SCFAs) such as 

acetate, butyrate, and propionate, are critical for maintaining a properly functioning human gut 

microbiome (153-155) and therefore are an intuitive starting point for investigating gene-level 

functional diversity. We focused our analysis on three SCFA synthesis genes: acetate kinase 

(acetate), butyrate kinase (butyrate), and methylmalonyl-CoA decarboxylase (propionate). We 

observe higher diversity for acetate kinase in species richness (p-value < 4 x 10-7), phylogenetic 

diversity (p-value < 2 x 10-9), and Gini-Simpson (p-value < 0.003) (Figure 2-2 A-C). These 
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results point towards high response diversity (high number of phylogenetically diverse species) 

and more evenly distributed production for the taxa encoding acetate kinase, resulting in 

functionally redundant production of acetate kinase in the Rio Zape coprolites. Butyrate kinase 

and methylmalonyl-CoA decarboxylase are similar to each other in species richness and 

phylogenetic diversity (p-value > 0.05), while Gini-Simpson is higher for taxa encoding butyrate 

kinase (p-value < 0.03). Higher Gini-Simpson index values for butyrate production, compared to 

propionate, suggests a more even distribution of taxa encoding butyrate kinase and therefore 

greater protection against shifts in taxonomic abundance that may ultimately cause a decrease in 

propionate production.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2 - 2: Functional diversity of the Rio Zape coprolite for SCFA synthesis. 

Functional diversity in the Rio Zape coprolites for short chain fatty acid synthesis. A) High 

functional redundancy (richness), B) response diversity (phylogenetic diversity), and C) evenness 

(Gini-Simpson) are observed for acetate, indicating production of acetate was more resilient 

than butyrate and propionate in the Rio Zape population. Taxa encoding butyrate are more 

evenly distributed than those encoding propionate.  
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Dental Calculus 

Shotgun metagenomic data were generated for Maya individuals (n = 7) and Nuragic individuals 

(n = 11). SourceTracker2 (137) analysis showed preservation of the oral microbiome signature in 

all samples, as evidenced by the proportion of reads attributed to taxa commonly found in 

subgingival or supragingival plaque (Supplementary Figure A - 2). 

  

Network analysis 

The two archaeological populations show similar network properties: the Maya population 

(Figure 2-3A) shows an average of 2.64 clusters, modularity of 0.052, and transitivity of 0.822. 

The Nuragic population (Figure 2-3B) shows 2.71 clusters, modularity of 0.102, and transitivity 

of 0.704 (Table 2-1). Modularity is significantly higher in the Nuragic population (p-value < 2 x 

10-16) and transitivity is higher in the Maya population (p-value < 2 x 10-16), yet overall, both 

populations show very low or low modularity and very high transitivity compared to other 

networks generated in our analysis (Table 2-3). Low modularity values are consistent with a 

network that has highly interconnected clusters; the clusters lack independence. Similarly, the 

high transitivity values reflect the diverse paths to connect the bacterial species in each network, 

providing further evidence of high interconnectivity in the network. The historical Radcliffe 

population (Figure 2-3C) has significantly more clusters (14.1) compared to the Maya (2.64) and 

Nuragic (2.71) populations (p-value < 2 x 10-16), which is likely driven by higher sample size in 

the Radcliffe dataset (see Sample Size Simulation section in Results). Despite this, the Radcliffe 

dataset is similar to the archaeological dental calculus in having very low modularity and very 

high transitivity (Table 2-1).  
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Population 
Biological 

Source Sample Type 
Number of 
Clusters Modularity Transitivity 

Rio Zape (n = 8) 

Feces 

Ancient Coprolites 
2.09 (sd = 0.43) 

0.111 (sd = 
0.010) 

0.667 (sd = 
0.003) 

Matses (n = 26) 

Modern Feces 

6.46 (sd = 1.57) 
0.178 (sd = 

0.017) 
0.465 (sd = 

0.004) 

HMP, USA (n = 
50) 

17.03 (sd = 3.23) 
0.379 (sd = 

0.021) 
0.268 (sd = 

0.009) 

Hadza (n = 25) 
7.79 (sd = 1.65) 

0.199 (sd = 
0.014) 

0.402 (sd = 
0.009) 

China (n = 38) 
9.77 (sd = 3.29) 

0.256 (sd = 
0.015) 

0.377 (sd = 
0.005) 

Maya (n = 7) 

Dental Calculus 

Ancient Dental 
Calculus 

2.64 (sd = 0.67) 
0.052 (sd = 

0.008) 
0.822 (sd = 

0.004) 

Nuragic (n = 11) 
2.71 (sd = 0.87) 

0.102 (sd  = 
0.013) 

0.704 (sd = 
0.003) 

Radcliffe (n = 44) 
14.14 (sd = 3.3) 

0.063 (sd = 
0.006) 

0.738  (sd = 
0.002) 

Spanish (n = 10) 
Modern Dental 

Calculus 
2.67 (sd = 0.84) 

0.101 (sd = 
0.008) 

0.632 (sd = 
0.002) 

 

Table 2-3: Network properties of ancient and modern microbiome networks. 

Basic network properties of the ancient and modern microbiome ecology datasets.  Modularity 

was defined as: very low (< 0.1), low (0.1 – 0.15), medium (0.15 – 0.2), high (0.2 – 0.3) and very 

high (> 0.3). Similarly, transitivity was defined as: very low (< 0.4), low (0.4 – 0.5), medium (0.5 

– 0.6), high (0.6 – 0.7) and very high (> 0.7). Modern gut microbiomes datasets have higher 

modularity and low transitivity than the Rio Zape coprolites. Modern dental calculus is similar 

to ancient dental calculus. 

 

Figure 2 - 3: Networks for the ancient dental calculus datasets 

Networks for the three dental calculus datasets, A) Maya, B) Nuragic, and C) Radcliffe. Clusters 

are differentially colored, keystones are outlined in black, and edges between nodes represent 

Pearson correlations >0.3. Refer to legend for taxa corresponding to each numbered node. The 

high number of clusters in the Radcliffe network is likely related to increased sample size in this 
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dataset. Highly interconnected clusters and nodes in each network is consistent with the low 

modularity and transitivity values observed. 

 

The keystone species identified in each population are known oral taxa (Table 2-2). Reads 

mapping to these taxa were authenticated as ancient for the Maya and Nuragic datasets on the 

basis of DNA damage patterns, generated using MapDamage 2.0 (Supplementary Figures A -

3,4), suggesting that the networks represent an accurate ancient oral ecology. Additionally, 

keystone species were consistent regardless of analytical approach used (Table 2-2). Taxa 

associated with periodontitis progression were identified as keystone in each of the populations: 

Treponema socranskii and T. forsythia in Radcliffe, Eubacterium saphenum and Olsenella sp. in 

Nuragic Sardinians, and Fusobacterium nucleatum and Treponema denticola in Maya. 

Cardiobacterium valvarum was also identified as a keystone in the Maya population.  

  

Co-occurring taxa 

We next evaluated the co-occurrence patterns of selected taxa of interest: early colonizing 

bacteria Streptococcus gordonii, Streptococcus sanguinis, and Actinomyces naeslundii (37, 65, 

156), as well as periodontitis-associated bacteria T. forsythia, T. denticola, and P. gingivalis (37, 

53, 157-159). These bacteria were chosen to study cluster co-occurrence because they play an 

important role in ecological interactions and functions; early colonizers are among the first 

bacteria to colonize the dental surface and periodontitis-associated bacteria can shift the 

community to a disease state. We documented how often common members of the oral 

microbiome are found in the same cluster as each taxon of interest (Supplementary Figure A - 5). 

In the Maya and Radcliffe populations, early colonizers like S. gordonii and S. sanguinis co-

occur in the same cluster as the periodontitis-associated bacteria T. forsythia and T. denticola. In 
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the Nuragic population, we observed a similar trend but S. gordonii does not co-occur with the 

other oral taxa and another early colonizer, A. naeslundii, appears to take S. gordonii’s place. A. 

naeslundii does not co-occur with the above-mentioned oral taxa in the Maya and Radcliffe 

populations. 

 

Keystone functions 

Similar to the coprolites, the most abundant genes encoded by the keystones identified in each of 

the dental calculus samples include transporters, transferases, and ribosomal proteins. Efflux-

related proteins linked to antibiotic-resistance (MATE efflux and RND efflux) were identified as 

highly abundant genes in each of the Maya and Radcliffe keystones, but in neither of the Nuragic 

keystone taxa (Supplementary Tables A - 4-6). The Nuragic keystones both encode putative 

pathogenic genes: bacteriocin in E. saphenum and virulence activator in Olsenella. F. nucleatum 

in the Maya samples was the only other keystone found to encode similar genes (hemolysin and 

ethanolamine utilization). Finally, the keystones C. valvarum (Maya), T. denticola (Maya), and 

Olsenella (Nuragic Sardinians) were found to encode toxin-antitoxin genes and other stress-

response genes in high abundance.  

 

Functional redundancy 

For gene-centric analyses, we focused on proteins involved in dental calculus formation via cell-

cell binding (adhesins, flagellar, and fimbrial proteins) (62) to give a better understanding of the 

functional redundancy of proteins involved in dental calculus formation. The Radcliffe and Maya 

populations have alpha diversity similar profiles for each binding protein and metric, while the 

Nuragic population has significantly lower richness than both Radcliffe and Maya populations 
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for each gene (p-value < 0.04; Figure 2-4A). The Nuragic population has significantly lower 

phylogenetic diversity for every gene (p-value < 0.0005) and Gini-Simpson for fimbrial and 

flagellum genes (p-value < 0.0008) compared to Radcliffe (Figure 2-4 B-C). The Maya 

population has significantly greater phylogenetic diversity for fimbrial genes (p-value < 0.003) 

and greater Gini-Simpson for adhesin and flagellum genes (p-value < 0.03) as compared to the 

Nuragic Sardinians (Figure 2-4 B-C). 

 
 
 
 

 
 

 
 

 
 
 
 

 
 

 
 
 
 

 
 

 

 

Figure 2 - 4: Functional diversity in ancient calculus datasets. 

Functional diversity in the ancient calculus datasets for genes involved in bacterial cell adhesion 

and cell-cell binding. In general, the Maya and Radcliffe datasets have greater A) functional 

redundancy, B) response diversity, and C) evenness compared to the Nuragic samples for each 

gene of interest. These oral ecosystems may have been more robust in terms of dental calculus 

deposition and growth. Significant p-values are given in reference to the Nuragic dataset. 

 

Articulation points 

Neither the coprolites nor dental calculus networks have articulation points. This is likely related 

to the low modularity in the networks: the interconnectivity of clusters within each network 

makes it likely for clusters to be connected to each other through multiple nodes.  
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Comparison to Modern Microbiomes 

 

The coprolite and dental calculus networks inform about general properties (numbers of clusters, 

connectedness, and articulation points) and identify keystone species. We compared these data to 

modern microbiome datasets to assess the viability of ancient networks. The Rio Zape coprolites 

were compared to modern fecal microbiome datasets that represent hunter gatherers (Hadza (24) 

and Matses (17)) and industrialized populations (MetaHIT-China (160) and Human Microbiome 

Project (161)). The ancient dental calculus was compared to modern Spanish dental calculus 

(107). It is important to compare ancient dental calculus to modern dental calculus and not 

modern dental plaque, as dental calculus is distinct from dental plaque in maturation stage and 

ecology (107). The small number of datasets mean that broad interpretations may be limited but 

it is a useful practice, nonetheless. The coprolite dataset showed fewer clusters (p-value < 2 x 10-

16), lower modularity (p-value < 2 x 10-16), and higher transitivity (p-value < 2 x 10-16) than 

modern fecal datasets (Table 2-3). Unlike the low modularity and high transitivity found in the 

Rio Zape coprolites, the modern fecal microbiome networks had medium to very high 

modularity and low to very low transitivity (Table 2-3). Both modern and ancient dental calculus 

datasets each have low to very low modularity and high to very high transitivity, while a high 

number of clusters is only found in the Radcliffe ancient dental calculus dataset (Table 2-3). The 

Human Microbiome Project fecal microbiome network was the only network that had 

articulation points. Keystone taxa were not shared between ancient and modern datasets, except 

for P. succinatutens serving as a keystone in the Rio Zape coprolites and modern Hadza hunter 

gatherers. 
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The Rio Zape coprolites had similar response diversity and redundancy profiles when compared 

to the modern Matses and Hadza hunter gatherers for taxa encoding SCFA synthesis genes. 

Overall, acetate kinase had the highest alpha diversity in each dataset, regardless of metric used 

(p-value < 1 x 10-6) (Supplementary Figure A - 6A-C). No significant differences were observed 

between the coprolites and Hadza (p-value > 0.05), but the Matses hunter gatherers had 

significantly greater phylogenetic diversity for propionate synthesis (p-value < 4 x10-4) and Gini-

Simpson for butyrate synthesis (p-value < 7 x 10-10) compared to the ancient coprolites. 

Industrialized populations were significantly more diverse than the ancient coprolites for all 

metrics in butyrate kinase and methmalonyl-CoA decarboxylase, as well as for species richness 

in acetate kinase (p-value < 0.03). This observation is likely related to ascertainment bias that 

hinders annotation and taxonomic identification in non-industrial gut metagenomes (162), but 

this area bears further study. 

 

Modern Spanish dental calculus had higher alpha diversity for all genes of interest in each metric 

when compared to the prehistoric Nuragic dental calculus (p-value < 0.05) (Supplementary 

Figure A - 6D-F). Likewise,  modern dental calculus had greater richness than Radcliffe and 

Maya populations (p-value < 0.012), with the exception of taxa encoding flagella in the Maya 

population. Modern dental calculus had significantly higher phylogenetic diversity than Maya 

and Radcliffe datasets for fimbrial production (p-value < 0.006) (Supplementary Figure A - 6E) 

but there were no significant differences between Radcliffe, Maya, and modern dental calculus in 

Gini-Simpson (Supplementary Figure A - 6F).  
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Sample Size Simulation 

Most archaeological sites will provide small sample sizes. In our study, to address the effect of 

sample size on uncovering ecological interactions from human microbiomes, we simulated the 

effect of small sample size using modern GI tract microbiome data (See Methods). In brief, we 

randomly subsampled five, ten, and twenty samples from each dataset, then filtered taxa and 

generated the networks in the same way as we did for the full datasets. We found that both the 

number of clusters (r2 = 0.91) and network distinctness ratio (r2 = 0.88) increase with sample size 

(Supplementary Table A - 7, Supplementary Figure A - 7A-B). A high network distinctness ratio 

means high modularity and low transitivity, and therefore increased sample size leads to more 

clusters that are highly distinct from each other. We performed the same small sample size 

simulation with the Radcliffe ancient dental calculus dataset, which was our only dental calculus 

dataset with more than 20 samples. Similar to the fecal microbiome datasets, the number of 

clusters increased with sample size (r2 = 0.94); however, there was no increase in the network 

distinctness ratio (r2 = 0.52) (Supplementary Figure A - 7A-B), indicating there are more clusters 

but those clusters are still highly interconnected. For both the fecal microbiomes and dental 

calculus, the keystones found in the full sample dataset were not found in any of the five-sample 

datasets and only rarely found in the 10-sample datasets (Supplementary Table A - 8, 

Supplementary Figure A - 8). The keystones identified in the 20-sample dataset were similar to 

the keystones found in the full datasets (Supplementary Table A - 8, Supplementary Figure A -

8). 

 

The gene-specific approaches do not appear to be hindered by small sample size. As discussed 

above, we observed similar profiles between modern fecal datasets (Hadza, n = 26 and Matses, n 
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= 25) and small coprolite datasets (Rio Zape = 8), as well as similar profiles between large 

ancient dental calculus datasets (Radcliffe, n =44) and small ancient and modern dental calculus 

datasets (Maya, n = 7 and Spain, n =10). Therefore, analysis of functional diversity in ancient 

human microbiome datasets remains robust even when few samples are recovered 

archaeologically. 

  

2.5 DISCUSSION  

Archaeologists have made use of coprolites and dental calculus to study human biology, 

nutrition, and cultural behavior (86-88, 90, 91, 104, 163). Applying ecological approaches to 

ancient human microbiomes from these materials is a clear next step to provide a deeper 

understanding of biology in the past. As research on modern human microbiome ecology is still 

in its infancy, it is expected that ancient microbiome ecology research will lag behind, but it 

should not be ignored. We have found that by focusing on ecological elements that can be 

interpreted from single time-point samples, such as ecological network properties, clusters of 

bacteria, keystone species, functional redundancy, and response diversity, we can gain a glimpse 

of ecological interactions and functional diversity in ancient human microbiomes. 

 

The four keystone taxa identified in the Rio Zape coprolites are known members of the 

contemporary human gut microbiome, which provides a validation for prehistoric keystone taxa. 

E. biforme and P. succinatutens are commensals that can produce the SCFAs butyrate (155, 164) 

and propionate (155, 165), respectively, in addition to performing other functions. The role of 

Escherichia in the gut is variable and has been identified in both disease and health-associated 

states (68, 166). Lastly, Brachyspira is primarily found in the GI-tract of pigs (167), chickens 
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(168), and humans (169) and is associated with diarrhea and other GI-tract maladies (170, 171); 

however, members of this genus can survive in soil for up to four months after fecal shedding 

(172). While our analysis of keystone taxa was unable to provide species-level resolution for 

Brachyspira, a MetaPhlAn2 analysis showed that one of the species identified in the coprolites 

was B. pilosicoli. B. pilosicoli causes intestinal spirochaetosis in humans (169) and reads 

mapping to B. pilosicoli were authenticated as ancient using MapDamage 2.0, suggesting that B. 

pilosicoli could be a keystone species in this population. The diverse roles of the coprolite 

keystone taxa suggest that they may dominate distinct niches that lead to different impacts on 

human biology.  

 

High response diversity and redundancy for acetate kinase is expected as acetate is the most 

abundant SCFA found in the human gut microbiome and is known to be encoded by diverse 

groups of bacteria (153-155, 173) . Nevertheless, it is encouraging that we observed this trend in 

coprolites as further support that we picked up a gut microbiome profile. The lower Gini-

Simpson values for methylmalonyl-coa decarboxylase indicates that a few species dominate 

production of propionate, while production of butyrate is more evenly distributed between 

taxa. From an ecological perspective, the Rio Zape ancient microbiomes were likely more prone 

to loss of propionate production than acetate and butyrate because only a few, non-

phylogenetically diverse bacteria dominated propionate production. 

 

The keystone taxa identified in the Radcliffe and Maya dental calculus datasets (T. forsythia and 

T. socranskii and in Radcliffe and T. denticola and F. nucleatum in Maya) are members of the 

red and orange complex group of bacteria associated with periodontitis. Red complex bacteria 
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are associated with driving periodontitis (159, 174), and orange complex bacteria can function as 

bridging microbes that facilitate proliferation of red complex bacteria (175). However, the simple 

presence of ‘orange’ and ‘red’ complex bacteria does not guarantee periodontitis progression, as 

the disease is complex (37, 53, 157, 159). Nevertheless, the presence of these bacteria as 

keystones, as well as other disease-associated keystone taxa in the Nuragic population (E. 

saphenum and Olsenella sp.) (157), indicates that such ancient oral microbiomes are prone to 

periodontitis. C. valvarum, found to be a keystone species in the Maya population, has been 

associated with endocarditis (176, 177) and also has been isolated from the oral cavity of patients 

with periodontitis (178). While we do not have any information on the cardiovascular health of 

the Maya individuals included in this study, the presence of C. valvarum in ancient dental 

calculus further supports the idea that the oral cavity has long hosted bacteria known to be 

involved in cardiovascular disease (93). 

 

The Nuragic dental calculus is generally similar to the other two ancient dental calculus datasets 

for network properties; yet it is distinct in functional diversity and patterns of co-occurrence, 

highlighting the benefit of using multiple approaches to study ecological variation in the 

microbiome. There is significantly lower response diversity and redundancy in the Nuragic 

population for each gene of interest. These genes are involved in bacterial cell-cell binding and 

development of biofilms, which suggests that this population had unique ecological interactions 

during dental calculus deposition and growth. Along those lines, S. gordonii does not cluster 

with other oral bacteria and is replaced with A. naeslundii in the Nuragic Sardinian dental 

calculus. In the other datasets, A. naeslundii does not cluster with the other oral bacteria, while S. 

gordonii does. These two bacteria are early colonizers of the dental surface and therefore may 
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represent alternative paths to early ecological interactions involved in ancient dental calculus 

formation. 

 

The keystone taxa found in the coprolites and dental calculus are enriched for antibiotic resistant 

genes. The presence of antibiotic-resistance proteins in coprolites and dental calculus is 

anticipated; antibiotic-resistance is a natural result of millions of years of microbial evolution. 

However, it is noteworthy that three of the four keystone taxa in the Rio Zape coprolites are 

enriched for antibiotic-resistance proteins, suggesting how this mechanism may be important in a 

gut microbiome ecology. The Nuragic dental calculus was once again distinct due to the lack of 

antibiotic resistant genes found in its keystone taxa, yet the Nuragic keystones were enriched for 

pathogenic genes. The explanation for why the Nuragic population exhibits a seemingly distinct 

oral ecological community remains elusive. Host genetics may play a role, as Nuragic Sardinians 

had very low genetic diversity (179) and host genetics does have an impact on the make-up of 

the human oral microbiome (180); however, we did not analyze human genetics in our study and 

therefore we cannot provide further resolution for this idea. The unique oral microbiome in 

Nuragic Sardinians could also result from extensive use of copper mined from the island during 

the Bronze Age (181, 182). Copper has antimicrobial properties (183) and copper oxide, which is 

a product of heating copper (184) and has been found in Sardinian Bronze Age artifacts (185), is 

antimicrobial and has been shown to inhibit oral biofilm formation (186). It is possible that 

copper affected Nuragic Sardinian oral microbiomes, such as through direct, accidental 

inhalation while working with the material or through copper leaching into water/food; however, 

we did not examine copper content of the dental calculus. These hypotheses may be of interest to 

future anthropological research. 
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The lack of articulation points in the ancient microbiome datasets means that there are no 

specific weak-link taxa that would result in a disconnected network if they were removed. Such 

flexibility in ecological structure can be beneficial but may also mean less stability in taxonomic 

and functional interactions. However, not much is understood about articulation points in 

microbiome networks, let alone ancient microbiome networks, and more work needs to be done 

to develop the theory in this area. While this may point to greater ecological stability, it is more 

likely a result of flexibility in the network structure (meaning low modularity), which is directly 

tied to sample size.  

 

Contemporary hunter gatherers shared a keystone species with the coprolites (P. succinatutens). 

Additionally, the contemporary and ancient hunter gatherer fecal microbiomes had similar 

response diversity and redundancy profiles for SCFA production. Both observations indicate a 

potential overlap in ecological community structure and function in contemporary and ancient 

hunter gatherers. The similarity in ecological profiles is exciting because it also demonstrates 

that ecological interpretation is feasible with ancient microbiome datasets. A similar conclusion 

can be drawn from comparing the modern Spanish dental calculus to the Maya and Radcliffe 

ancient dental calculus. Each of these dental calculus datasets have low modularity, high 

transitivity, and similar phylogenetic diversity and Gini-Simpson values for each gene of interest. 

There are likely different factors driving similarity in ancient and modern gut microbiomes than 

the factors driving similarity in ancient and modern dental calculus, but these observations 

present opportunities for deeper investigations into how lifestyle changes over time influence 

variation in ecological interactions and functional redundancy within microbiomes. 
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While we were able to demonstrate key ecological signatures of ancient human microbiomes, we 

remain cautious about interpretation and application of ecological approaches to studying these 

biomaterials. A primary concern is sample size. In fecal datasets with small sample sizes (n < 

10), we observed fewer clusters, lower modularity, and high transitivity. This pattern means that 

clusters will consist of many taxa and the clusters will be highly interconnected, which may 

obfuscate more nuanced ecological interactions. However, in the dental calculus dataset, we 

observed fewer clusters at small sample size, but no change in the network distinctness ratio with 

sample size, meaning increased sample size does not result in more separation between clusters 

and nodes. Nevertheless, both the fecal and dental calculus small-sample datasets report different 

keystone taxa than the respective full datasets. Given the current data available, archaeological 

studies with representative microbiome samples greater than 20 is strongly suggested for such 

analyses.  

 

Unfortunately, excavating more than 20 coprolites with sufficient microbiome data to perform 

ecological analysis from a single site is unlikely. A major challenge is the presence of soil and 

non-GI tract bacteria in coprolites. Even in the best cases, human GI tract microbiome bacteria 

make up less than 75% of microbial DNA in coprolites (89); thus, improved methods to isolate 

gut-derived molecules are required. Furthermore, among the coprolites that are consistent with 

the gut microbiome, the gut may not be solely human; for instance, dogs are coprophagic and 

suspected human coprolites may, in fact, be from dogs. Additionally, host DNA content may 

leach between coprolites, as well as other sources (187). Fortunately, recently developed 

bioinformatic approaches are improving our ability to distinguish human from non-human 
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coprolites (103, 188). Finally, coprolites are relatively delicate and often expose the sample to 

processes that alter DNA sequences and fragment nucleic acids. While microbiome data has been 

successfully recovered from coprolites in diverse sets of environments (89, 189-191), we would 

expect such success to be an exception rather than the rule. Even when a set of coprolites do 

prove to retain a GI microbiome community, small sample size may hinder ecological 

interpretation. Microbiomes from mummies initially provided an intuitive avenue to study 

ecology of ancient human gut microbiomes but was ultimately discovered to be misleading as the 

human gut, upon death, continues to be a moist, warm, enclosed bioreactor shaping the ecology 

to resemble that expected of compost (89). Because ecology focuses so closely on taxa-taxa 

abundances and taxa-gene interactions, the preservation issues of a coprolites presents a major 

challenge, but Rio Zape proved to be an exception, as our results show that we can still study 

resilience and redundancy with small samples sizes. 

 

A further challenge is authenticating that communities are in fact ancient human microbiomes. 

Importantly, previously published datasets used in this analysis validated their sequencing reads 

and we did the same for our newly generated data with SourceTracker2 (137), where the 

majority of our reads come from expected oral microbes. As expected for ancient DNA, all 

samples had reads which could not be assigned to known taxa in the database (categorized as 

'unknown' in SourceTracker2). We included these reads in our analyses, since a majority of them 

likely originate from ancient oral microbes but cannot be confidently assigned due to existing 

databases being biased towards reference strains from modern, industrialized populations. These 

‘unknown’ reads may belong to taxa performing important functions and therefore removing 

them may bias results. An additional validation for the recovery of an ancient microbiome is to 
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analyze post-mortem DNA damage patterns for reads mapping to the keystone taxa, by using 

programs such as MapDamage 2.0 (138). Damage patterns consistent with ancient DNA lend 

strong credibility that the taxa at the center of ecological interactions (i.e. the keystone taxa) are 

truly ancient, and not arising from recent contamination. Contamination from modern sources, 

either environmental or from human microbiomes during lab work, would be evident in both the 

types of microbes identified as keystone taxa, as well as a lack of the prototypical ancient DNA 

damage (192) in these keystones. Keystone taxa indicative of recent contamination would be 

bacteria found at high abundance in soil and/or human skin microbiomes. However, our results 

indicate that we are profiling an ancient microbial ecosystem because our keystone taxa are 

gut/oral microbes and have prototypical ancient DNA damage. 

 

A greater interest in the maturing of ecological theory for microbiomes is needed, but applying 

such theory effectively requires a serious investment in mitigating ascertainment biases that 

burden current reference databases. Publicly available reference databases are skewed towards 

microbiomes from modern, industrial settings, of often health-associated microbiomes, which 

bias functional annotation of ancient and non-industrial studies. This ascertainment bias explains 

why we observe high taxonomic diversity for the industrialized gut microbiome datasets and 

provide at least a partial explanation of ‘unknown’ reads in ancient dental calculus results. Our 

functional diversity approach relies on mapping to marker genes identified from reference taxa. 

Poor reference representation from non-industrialized populations will lead to bacterial genes 

and taxa being missed and categorized as ‘unknown’. Future microbiome initiatives must avoid 

exacerbating these biases, with an attention to data that informs, and contextualizes, the 

microbial ecology. 
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Chapter 3 – Non-Industrial Gut Microbiomes Provide a More Resilient 

Ecology for Short-Chain Fatty Acid Production3,4 

3.1 ABSTRACT 

High taxonomic diversity in non-industrial human gut microbiomes is often interpreted as 

beneficial; however, it is unclear if taxonomic diversity engenders ecological resilience (i.e. 

community stability, metabolic continuity). We estimate resilience through taxonomic richness, 

phylogenetic diversity, and evenness in short-chain fatty acid (SCFA) production among a global 

gut metagenome panel of 11 populations (n = 451) representing industrial and non-industrial 

lifestyles, including novel metagenomic data from Burkina Faso (n = 90). We observe 

significantly higher genus-level resilience in non-industrial populations, while SCFA production 

in industrial populations is driven by a few phylogenetically closely related species (belonging to 

Bacteroides and Clostridium), meaning industrial microbiomes have low resilience. 

Additionally, database bias obfuscates resilience estimates, as we were 2-5x more likely to 

identify SCFA-encoding species in industrial microbiomes compared to non-industrial. We 

observe high ecological diversity in non-industrial gut microbiomes, and thus high SCFA 

resilience, despite database biases that favor industrial populations, while SCFA production in 

industrial populations is driven by a few phylogenetically closely related species (belonging to 

Bacteroides and Clostridium), meaning industrial microbiomes have low resilience. 

Additionally, database bias obfuscates resilience estimates, as we were 2-5x more likely to 

identify SCFA-encoding species in industrial microbiomes compared to non-industrial. We 

 
3 Adapted from Jacobson et al. in review. Non-Industrial Gut Microbiomes Provide a More Resilient Ecology for 
Short-Chain Fatty Acid Production. Scientific Reports  
4 See Supplementary Material B for full list of authors and affiliations  
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observe high ecological diversity in non-industrial gut microbiomes, and thus high SCFA 

resilience, despite database biases that favor industrial populations  

 

3.2 INTRODUCTION 

Lifestyle alterations have repeatedly coincided with biological changes throughout the human 

past (193) and this is particularly true for how industrialization changed the relationship between 

humans and our resident microbes (23). Compared to industrial human gut microbiomes, non-

industrial gut microbiomes have higher taxonomic richness, functional enrichment of amino acid 

metabolism, greater diversity of genes involved in complex carbohydrate metabolism, and higher 

amounts of short chain fatty acids in stool (17, 194). These trends have been linked to diets rich 

in plants and fibers, infrequent consumption of highly processed foods, and low exposure to 

pharmaceutical drugs, such as antibiotics, in non-industrial populations (195).  

 

Higher diversity in the gut microbiome is typically considered healthy, all other factors being 

equal (23), which would imply that a non-industrial gut is healthier than the industrial gut, in the 

absence of pathogens and other confounding variables. Yet, commonly used diversity statistics 

oversimplify more complex microbial associations. Ecological approaches that provide context 

for microbe-microbe interactions, and present insights into how taxonomic shifts influence 

microbial and host metabolic processes, are making progress towards mitigating this issue. Taxa-

gene relationships are at the heart of deeper ecological understandings of human microbiomes 

and can be assessed through functional diversity and redundancy (35, 77). Functional diversity, 

which is similar to the macroecological concept of response diversity (56), refers to the 

abundance and phylogenetic diversity (PD) of taxa that encode specific genes. It conceptualizes 
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structure-function relationships in the microbiome by tying together taxonomic and metagenomic 

gene abundance data. Similarly, redundancy can be thought of as the total number of taxa 

encoding a function, as well as how evenly the production of any given protein is spread 

amongst taxa.  

 

Functional diversity can be multi-layered, ranging from a fine-tuned focus on individual genes to 

a broad genome-wide approach. Gene-centric approaches present the opportunity for niche-

specific interpretations, while a broader approach allows for study of how entire microbiomes 

may shift in the face of outside perturbations. No matter the depth and focus of study, high 

functional diversity is found in microbiomes where phylogenetically diverse bacteria encode the 

same functions. Under an idealized model, phylogenetically diverse taxa will have an equal 

contribution to gene production, leading to high redundancy. Functional diversity and 

redundancy are intertwined and together estimate microbiome resilience. Shifts in taxonomic 

abundance are less likely to alter the functional potential of a resilient community because any 

given function is encoded by a wide range of bacteria and production is distributed between 

these diverse taxa. Consequently, the loss of one phylogenetic branch of bacteria within the 

ecosystem will not cause a loss of function that those bacteria encode; however, communities 

with low functional diversity and redundancy may suffer ecosystem-wide functional changes 

during minor taxonomic perturbations. Accurately quantifying functional diversity is therefore a 

necessary part of ecologically-minded microbiome research because it more deeply describes 

how structure-function relationships influence resilience in a microbiome.  
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Short-chain fatty acids (SCFAs) synthesis is the most intuitive area of study for understanding 

the ecological differences between industrial and non-industrial gut microbiomes, given the 

trends attributed to high-fiber diets among non-industrial populations. SCFAs are important 

byproducts of microbial metabolism and fermentation in the human gut. The three most 

prominent SCFAs in the human gut (acetate, butyrate, and propionate) are vital for maintaining 

tight junction integrity between epithelial cells in the gastrointestinal (GI) tract, serve as an 

energy source for colonocytes, and signal immune cells, amongst a number of other functions 

(153, 196). Unsurprisingly, variation in SCFA abundance is a classic link to human health. For 

example, high butyrate levels are found to decrease diastolic blood pressure via regulating 

inflammation, and acetate abundance is tied to appetite, thus impacting metabolic regulation 

(153, 196).  

 

Studying SCFA functional diversity is particularly intriguing as it provides a line of evidence as 

to whether estimates of taxa/gene diversity and ecological resilience are concordant. Research 

suggests that non-industrial populations have high SCFA abundance, which is attributed to 

dietary composition (194, 195). It is assumed that non-industrial gut microbiomes bear an 

ecology that is resilient for SCFA production due to high overall taxonomic diversity and high 

SCFA levels in stool, but this has not been demonstrated. We address this gap by using 

metagenomic data from industrial (European/North American and Central/East Asian), pastoral, 

rural agricultural, and hunter-gatherer populations to compare functional diversity and 

redundancy of SCFA synthesis genes (Figure 3 - 1). We chose to evaluate SCFA genes that are 

involved in end-stage synthesis in different pathways for each SCFA: acetate kinase (ackA) for 

acetate (197), butyrate kinase (buk) and butyryl-CoA:acetate CoA transferase (but) for butyrate 
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(198, 199), and methylmalonyl-CoA decarboxylase (mmdA), lactoyl-CoA dehydratase (lcdA), 

and CoA-dependent propionaldehyde dehydrogenase (pduP) for propionate (165, 198). These 

genes are known to be encoded by a diverse range of bacteria (Supplementary Table B - 1), 

which permits ecological investigation into the resilience of SCFA production. Our study 

includes previously published metagenomic datasets from industrial and non-industrial 

populations, as well as novel gut microbiome metagenomic data generated from fecal samples 

collected from rural agriculturalists living in central Burkina Faso (n = 90). We functionally 

profiled these metagenomes using HUMAnN2 (200). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 -  1: Map of Human Gut Microbiome Metagenomes Analyzed 

Analyzed microbial metagenomes originated from the following populations/datasets: Industrial 

North American/European – Human Microbiome Project(201) (Missouri, Texas – USA, n = 50 ), 

Oklahoma(17) (USA, n = 21), Northern Europe(202)(n = 43) ; Industrial Central/East Asia – 

China(203) (Guandong Province, China, n = 38), Tokyo(204) (Japan, n = 32), Astana(205) 

(Kazakhstan, n = 26); Pastoral – Mongolia(206) (Khentii Province, n = 50); Rural 

Agriculturalist – Burkina Faso (n = 90), Madagascar (n = 50); Hunter Gatherer – Matses(17) 

(Peru, n = 25), Hadza(24) (Tanzania, n = 26).  

 

 

N

Industrial Europe/North America (n= 114)

Industrial Central/Eastern Asia (n=96)

Pastoralists (n=50)

Rural agriculturalists (n=140)

Hunter-Gatherer (n=51)
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Each gene we analyzed is involved in terminal or near-terminal steps of production of each 

respective SCFA (165, 197-199). For analytical purposes, taxonomic-gene abundance for but and 

buk were combined for butyrate and data for mmdA, lcdA, and pduP were aggregated for 

propionate. Response diversity was estimated through taxonomic richness and phylogenetic 

diversity, while the Gini-Simpson index and Hill Numbers were used to assess redundancy by 

documenting evenness in the community. For our purposes, the Gini-Simpson index represents 

the probability that two sequencing reads originate from different taxa, and therefore values close 

to 1 represent a community with a high diversity of taxa encoding the SCFA, while values close 

to 0 indicate that the SCFA is encoded almost entirely by one taxon. Hill numbers (207) are a 

diversity measure that allows for interpretation of effective taxonomic richness at different 

levels: at diversity order 0 the Hill number richness is equal to the total number of taxa, at 

diversity order 1 the Hill number richness is the effective number of commonly occurring taxa, 

and at diversity order 2 the Hill number richness is the effective number of dominant taxa. 

Therefore, Gini-Simpson and Hill number investigations permit analyzing how evenly SCFA 

production is distributed between taxa. 

 

3.3 MATERIALS AND METHODS 

Study Design 

Sample Size: Datasets were chosen because they represent a wide diversity of lifestyles, have a 

minimum of 20 samples per population, and were sequenced to an average read depth of 10 

million reads per sample. We used 20 samples as a threshold based on previous research 

(Jacobson et al. in review) showing that at least 20 samples per population are required for the 

types of ecological analyses pursued in this study. Similarly, 10 million reads was chosen as a 
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threshold to allow for sufficient read depth to attain coverage of as many genes as possible from 

each metagenome. The number of reads generated for the Burkina Faso samples is available in 

Supplementary Table B - 2 and the SRA accession number and number of reads analyzed for the 

comparative datasets are provided in Supplementary Table B – 2. 

 

Data inclusion/exclusion criteria: For datasets with available metadata, we included only healthy 

adults (i.e. non-obese BMI, non-diabetic) in the analysis; however, children were included in the 

Matses and Hadza datasets due to limitation in sample size. 

 

Outliers: Outliers were included in all analysis 

 

Research objectives: Our research objective was to assess resilience in SCFA production across 

different lifestyles. SCFAs are a key component of human-microbiome interaction and 

taxonomic diversity is higher in non-industrial populations. Our pre-specified hypothesis was 

that resilience would be higher in non-industrial populations. After our first phase of analysis, we 

uncovered the contradictory results between genus and species level resilience and we 

hypothesized this was due to reference database bias.  

 

Research subjects: All participants from Burkina Faso were healthy volunteers. For datasets with 

available metadata, we included only healthy adults (i.e. non-obese BMI, non-diabetic) in the 

analysis; however, children were included in the Matses and Hadza datasets due to limitation in 

sample size. 

 



 53 

Experimental design: Human fecal microbiome samples were collected with informed consent 

from residents of a single village in central Burkina Faso under ethical approval granted by 

Centre MURAZ Research Institute in Burkina Faso (No. 31/2016/CE-CM). Gut metagenomic 

data were generated as given in Borry et al. (188). Sex and age was recorded for each individual 

and is reported in Supplementary Table B – 2. 

Randomization: We randomly subsampled 50 individuals, in R, from each of the Madagascar, 

Human Microbiome Project, and Mongolian datasets, due to the much higher numbers of 

individuals in these studies as compared to the remaining datasets. We did not want skew the 

different lifestyle groups with overrepresentation from a single dataset.  

 

Statistical Analysis 

Bioinformatic Processing 

Metagenomic reads for the following datasets were downloaded from either the NCBI Sequence 

Read Archive or European Nucleotide Archive: hunter-gatherers (Matses from Peru (17) and 

Hadza from Tanzania (24)), pastoralists (residents of Khentii region, Mongolia (206)), rural-

agriculturalists (Madagascar (208)), industrial European/North American populations (Human 

Microbiome Project (161), Europe (202, 203), and Oklahoma, USA (17)), and industrial 

Central/East Asian populations (Japan(204), China(203), and Kazakhstan (205)). Accession 

numbers can be found in Supplementary Table B – 2. 

 

All metagenomic data (newly generated from Burkina Faso and downloaded) was processed as 

follows: AdapterRemoval v2 (132) was used to quality filter and merge reads (quality score >30, 

maxns = 0, minlength > 50, minalignmentlength = 10). The resulting FASTQ files (forward, 
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reverse, and merged) were used as input for HUMAnN2 (200) with default parameters and using 

the UniRef50 database (118). Briefly, pangenomes are generated for each taxa identified from 

metagenomic reads using MetaPhlAn2 (110). Metagenomic reads are mapped against those 

pangenomes to identify genes; reads not mapping to any pangenome are then mapped against the 

UniRef50 database (118) to identify ‘unclassified’ genes. Reads not mapping to neither the 

pangenomes nor UniRef50 database are termed ‘UNAMAPPED’. Gene abundance is normalized 

to reads per kilobase (RPKs) to account for differences in reference database size. The gene 

family output at the species level from HUMAnN2 was used to perform downstream analysis. 

Each sample’s output was normalized to gene abundance RPKs per 1 million DNA kilobases and 

then merged into a single file with all samples. The RPK gene abundance is further stratified by 

the abundance of the gene that is mapped to a species. Phylum, Family, and Genus level tables 

were created using the humann2_infer_taxonomy script from HUMAnN2. Acetate, Butyrate, and 

Propionate gene family tables were generated by pulling out all lines that were annotated with 

the gene names listed above from the respective normalized phylum, family, genus, species 

normalized gene abundance tables.  

 

The following gene names were used to identify SCFAs: acetate kinase, butyrate kinase, butyryl-

CoA:acetate CoA transferase, methylmalonyl-CoA decarboxylase, lactoyl-CoA dehydratase, and  

CoA-dependent propionaldehyde dehydrogenase. Acetate kinase (ackA)is the primary end stage 

enzyme for acetate synthesis (197). Butyrate kinase (buk) and butyryl-CoA:acetate CoA 

transferase (but) can both catalyze butyrate production from butyryl-CoA (199). Propionate 

synthesis can follow three different biochemical pathways: succinate, acrylate, and propanediol 

depending on the initial substrate (165). Methylmalonyl-CoA decarboxylase (mmdA) is a 
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biomarker for the succinate pathway, lactoyl-CoA dehydratase (lcdA) for the acrylate, and CoA-

dependent propionaldehyde dehydrogenase (pduP) for the propanediol pathway (165). 

Taxonomic-gene abundance for but and buk were combined for butyrate and likewise data for 

mmdA, lcdA, and pduP combined for propionate to facilitate SCFA comparisons.  

 

Total gene copies per 1 million DNA fragments was calculated in R (142) using the normalized 

‘UNMAPPED’ gene abundance generated from HUMAnN2. The stratified gene family tables, 

after removal of ‘UNMAPPED’ abundance, were used for the remainder of analysis. The 

proportion of total gene abundance classified to a taxon was determined by summing the 

abundance of each gene that mapped to taxon and dividing that value by each sample’s total gene 

abundance. This was repeated at each taxonomic level. The same procedures were applied to the 

Acetate, Butyrate, and Propionate gene family tables 

 

Ecological Metrics 

Richness, phylogenetic diversity (PD), Gini-Simpson, and Hill Numbers (207) values were 

generated using the vegan package (148) in R. Richness was determined as the number of taxa 

that have a gene abundance value > 0 for each SCFA.  PD was calculated using the 16S rRNA 

gene as a proxy. The 16S rRNA gene for each taxon found across the full dataset was extracted 

from the EzTaxon (145) reference database and concatenated into a single 16S rRNA gene 

FASTA file. These sequences were aligned using mafft (146) with default parameters and a 

phylogenetic tree was built using FastTree (147) in QIIMEv1.9 (136). PD was calculated with 

resulting tree and gene family tables using vegan. Gini-Simpson and Hill Number values were 

determined using the gene family tables with vegan. P-values were determined using the 
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Kruskal-Wallis H test and the post-hoc Dunn Test. False discovery rate (FDR) was used to 

account for multiple testing. Plots were generated using ggplot2 (150).  

 

3.4 RESULTS 

Independent of lifestyle, acetate synthesis was significantly more abundant than the other two 

SCFAs (p-value < 8 x 10-84) and butyrate was more abundant than propionate (p-value < 6 x 10-8, 

Supplementary Table B - 3). The overall higher abundance of butyrate compared to propionate 

across the full dataset is driven by the non-industrial populations, as propionate and butyrate are 

at similar abundance in industrial populations (Supplementary Table B - 3). The relative 

abundance ratio of SCFA synthesis genes of acetate:butyrate:propionate (mean = 0.600 [standard 

error = 0.001] : 0.215 [SE = 0.001] : 0.184 [SE = 0.001]), supports the previous finding of a 

60:20:20 ratio of SCFA molarity in stool (153) (Supplementary Table B - 3). Comparing 

between lifestyles, acetate (FDR-adjusted p-value < 3 x 10-19, n = 451) and butyrate (FDR-

adjusted p-value < 0.002, n = 451) synthesis genes were more abundant in each of the non-

industrial populations (Figure 3 - 2). Propionate synthesis genes were similar between lifestyle 

groups, with the exception of being at significantly lower abundance in rural agriculturalists 

compared to all lifestyles (FDR-adjusted p-value < 0.006, n = 451, Figure 3 - 2). Within the 

general lifestyle categories, the rural agriculturalists had significantly lower abundance of 

butyrate and propionate compared to hunter-gatherers and pastoralists (FDR-adjusted p-value < 

0.006, n = 241) while there was no significant difference between European/North American 

industrial and Central/East Asian industrial populations for any of the SCFA gene groups (FDR-

adjusted p-value > 0.05, n = 210)  (Figure 3 – 2). 
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Figure 3 -  2: Relative Abundance of SCFA Genes Compared Between Lifestyle Categories 

Acetate (FDR-adjusted p-value < 3 x 10-19, n = 451) and butyrate (FDR-adjusted p-value < 

0.002, n = 451) are significantly higher in each of the non-industrial populations compared to 

the industrial populations. Propionate is significantly lower in the rural agriculturalists 

compared to all other lifestyles (FDR-adjusted p-value < 0.006,  n = 451) but there are no 

significant differences between the industrial and other non-industrial populations for 

propionate synthesis (p-value > 0.05, n = 311). Butyrate was significantly lower abundance in 

rural agriculturalists compared to hunter gatherers and pastoralists (FDR-adjusted p-value < 

0.006, n = 241). There were no significant differences between the European/North American 

(Europe+N.A.) and Central/East Asian industrial population, and likewise, no significant 

differences between pastoralists and hunter-gatherers for any of the SCFA genes. Statistical 

comparisons were generated using the Kruskal-Wallis H test and the post-hoc Dunn Test. False 

discovery rate (FDR) was used to account for multiple testing. 

 

The pastoralist and rural agricultural populations have significantly higher taxonomic richness at 

the genus level for acetate and butyrate synthesis compared to the industrial populations (FDR-

adjusted p-value < 0.0009, Figure 3 - 3A, n = 401); however, hunter-gathers only have 

significantly greater abundance than the Central/Eastern Asia population for taxa involved in 

acetate synthesis (FDR-adjusted p-value = 0.013, Figure 3 - 3A, n = 261 ). Hunter-gatherers have 

significantly lower genus richness for propionate synthesis compared to both the industrial and 
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non-industrial populations (FDR-adjusted p-value < 3x10-5, Figure 3 - 3A, n = 261). The high 

taxonomic diversity observed at the genus-level in the non-industrial populations for acetate and 

butyrate is not observed at the species level, as every non-industrial population has significantly 

lower species richness for each SCFA gene (FDR-adjusted p-value < 0.05, Figure 3 – 3B, n = 

451). Additionally, the rural agricultural and hunter-gatherer populations have significantly 

lower species richness than the pastoralists for acetate, butyrate, and propionate (FDR-adjusted 

p-value < 8x10-5, Figure 3 – 3B, n = 241). Similar to species richness, we observed lower species 

phylogenetic diversity (PD) in the non-industrial populations, but the effect sizes were not as 

large as in species richness (Figure 3 – 3C). The rural agriculturalists and hunter-gatherers had 

significantly lower PD for each SCFA, compared to the industrial populations (FDR-adjusted p-

value < 0.05, Figure 3 – 3C, n = 401); however, the pastoralists only had significantly lower PD 

for acetate when compared to the European/North American industrial populations (FDR-

adjusted p-value = 0.025, Figure 3 – 3C, n = 164). The small drop-off in species PD, compared 

to species richness, suggests there are a high number of closely phylogenetically related species 

in the industrial gut microbiome. We found Bacteroides and Clostridium, which are found at 

high abundance in industrial gut microbiomes, to have up to nine species encoding SCFAs, while 

known SCFA producers at high abundance in non-industrial gut microbiomes (Prevotella, 

Faecalibacterium, and Phascolarctobacterium) only had one or two species per each genus 

(Supplementary Table B - 4).  
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Figure 3 -  3A-C: Taxonomic Diversity of SCFA-encoding Taxa 

Genus richness (A), species richness (B), and species phylogenetic diversity (C) for taxa 

encoding the different SCFAs. A) Pastoralists and rural agriculturalists have higher genus 

richness for acetate and butyrate, hunter-gatherers have significantly lower genus richness for 

propionate (FDR-adjusted p-value < 0.05, n = 451). B) Species richness is significantly lower in 

non-industrial populations for each SCFA (FDR-adjusted p-value < 0.05, n = 451) and there is 

a steep drop-off  in non-industrial populations. C) PD is lower in most non-industrial 

populations but the drop-off from industrial to non-industrial is not as steep as seen in species 

richness. Statistical comparisons were generated using the Kruskal-Wallis H test and the post-

hoc Dunn Test. False discovery rate (FDR) was used to account for multiple testing. 

 

Genus evenness, as gauged through effective number of taxa at Hill numbers 1 (number of 

common genera) and 2 (number of dominant genera), tell a unique story for each SCFA. Hunter-

gatherers and rural agriculturalists have higher effective number of common and dominant 

species compared to the industrial populations for butyrate and propionate, but diversity is only 

greater in non-industrial populations at Hill number 1 for acetate (FDR-adjusted p-value < 0.02, 

Figure 3 - 4A-C, n = 451). Additionally, the pastoralists have significantly higher diversity than 

the industrial populations for butyrate (FDR-adjusted p-value < 3 x 10-10, n = 260) but lower 

diversity than the European/North American industrial population for acetate (FDR-adjusted p-

value < 0.01, n = 260). These results demonstrate the industrial populations have only a few 

common and dominant genera encoding SCFAs, indicating that they are prone to loss in SCFA 

production if those common/dominant genera are lost. At the species level, evenness is 



 60 

significantly lower for each SCFA in every non-industrial population compared to the industrial 

groups (FDR-adjusted p-value < 4 x 10-4, Figure 3 – 4D-F, n = 451). Similar to the richness and 

Hill numbers, the Gini-Simpson index is higher in non-industrial populations at the genus-level 

but lower at the species level (Supplementary Figure B - 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 -  4A-F: Hill Numbers for SCFA-encoding Taxa 

Effective number of genera (A-C) and species (D-F) for each SCFA as determined through Hill 

numbers at diversity order 0 (total number of taxa), 1 (number of common taxa), 2 (number of 

dominant taxa). Rural agriculturalists and hunter-gatherers have significantly higher number of 

common and dominant genera than industrial populations for butyrate and propionate, as well 

as for acetate at diversity order 1. This means the distribution of SCFA production in non-

industrial populations is more even. The number of effective number of species is significantly 

lower in the non-industrial populations for each SCFA (FDR-adjusted p-value < 4 x 10-4, n = 

451). Statistical comparisons were generated using the Kruskal-Wallis H test and the post-hoc 

Dunn Test. False discovery rate (FDR) was used to account for multiple testing. 

 

The discrepancy between genus and species results, particularly the drastic drop-off in diversity 

in non-industrial populations at the species level suggests a loss of information during annotation 

of non-industrial gut metagenomes. To probe this further, we assessed the proportion of total 
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DNA fragments that mapped to a gene between lifestyles, as well as the proportion of those 

gene-mapped fragments that were classified to a taxon. After normalizing gene abundance to 

genes per 1 million DNA molecules, genes are positively identified from approximately 75% of 

DNA fragments in the industrial populations, but gene identification drops to about 65% of DNA 

fragments in non-industrial populations (p-value < 5.41 x 10-15, n = 451). The stratified 

HUMAnN2 output provides abundance of genes matched to a taxon (‘classified’), as well as 

gene abundance not accounted for by any taxon (‘unclassified’). Across all genes identified in 

each metagenome, there is a significant decrease in the proportion of gene abundance that is 

classified to a taxon from industrial to non-industrial populations (FDR-adjusted p-values: 

phylum < 5.13 x 10-9, family < 6.27 x 10-9, genus < 4.24 x 10-8 , species < 8.25 x 10-8; 

Supplementary Figure B - 2, n = 451). Only 25-30% of gene abundance is classified to a species 

in hunter-gatherers and rural agriculturalists but upwards of 65% to 75% of genes are classified 

to species in industrial populations. Therefore, there are significantly fewer genes identified in 

non-industrial metagenomics and this loss of information is compounded by substantially worse 

identification of the taxa that encode those genes in non-industrial gut metagenomes.  

 

The afore-mentioned pattern is replicated for each of the SCFA synthesis gene groups, as there is 

significantly lower classification percentage at every taxonomic level in the non-industrial 

populations (FDR-adjusted p-value < 0.05, Figure 3 - 5A-C, n = 451), with the exception of the 

pastoral populations for all taxonomic levels for acetate and at the phylum level for butyrate. 

Nevertheless, there are interesting trends for each of the SCFAs. Even though acetate is the most 

abundant SCFA, the classification percentage is essentially the same for the other two SCFAs 

(Figure 3 - 5A). For butyrate, the species-level information for non-industrial populations is by 
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far the lowest of any of the SCFAs (Figure 3 - 5B). All taxonomic levels have poor classification 

in rural agriculturalists and hunter-gatherers for propionate; phylum-level classification in 

hunter-gatherers is nearly half of species-level classification in industrial populations (Figure 3 - 

5C). For every SCFA, there is a steeper drop-off from genus-level classification to species-level 

classification in the non-industrial populations compared to industrial populations (FDR-adjusted 

p-value < 0.001; Supplementary Figure B – 3, n = 451).  

 

 

 

 

 

 

 

Figure 3 -  5A-C: Proportion of Genes Classified to a Taxon for Each SCFA 

Acetate (A), butyrate (B), and propionate (C). Rural agriculturalists and hunter-gatherers have 

significantly lower proportion of genes mapping to a taxon at each taxonomic level for each 

SCFA (FDR-adjusted p-value < 0.05, n = 401). Statistical comparisons were generated using 

the Kruskal-Wallis H test and the post-hoc Dunn Test. False discovery rate (FDR) was used to 

account for multiple testing. 

 

3.5 DISCUSSION  

Our results are consistent with a non-industrial gut harboring a more resilient ecology with 

respect to SCFA production, while the industrial gut ecology would be vulnerable to disruption 

of such pathways, yet the pattern is complex and nuanced. The increased gene abundance in non-

industrial populations and overall ratio of acetate:butyrate:propionate generally agrees with 

previous studies of SCFAs (153, 195). Similarly, the higher taxonomic diversity of taxa encoding 

acetate, compared to the other SCFAs, is expected and matches studies that have documented the 



 63 

taxa that encode different SCFAs (165, 196, 198). The overall high taxonomic diversity, high 

diversity at Hill numbers 1 and 2, and high Gini-Simpson indices found in non-industrial 

populations at the genus level indicates a highly diverse and evenly distributed production of 

SCFAs. From an ecological perspective, uneven production of SCFA dominated by a few 

bacteria in industrial gut microbiomes means lower functional diversity and less redundancy, 

which ultimately leads to an expectation of decreased resilience. In other words, this study finds 

that industrial gut microbiomes are at a higher risk of reduced SCFA production because SCFA 

synthesis is dominated by only a few taxa. Given the lower resilience, factors that disrupt the gut 

ecology are expected to have a more extreme consequence to those living an industrial, relative 

to non-industrial, lifestyle.  

 

While there is an overall trend of increased genus-level functional diversity and redundancy for 

SCFA production in non-industrial populations, variation exists when examining the SCFAs and 

populations individually. At the genus-level, the pastoral and rural agricultural populations have 

increased richness of taxa encoding genes involved in acetate and butyrate synthesis, while there 

is similarity between the different lifestyles for genus richness for propionate encoding taxa. 

Although hunter-gatherers have similar, or lower, taxonomic richness as industrial populations, 

they have significantly higher diversity at Hill number orders 1 and 2 and Gini-Simpson indices 

for butyrate and propionate. Additionally, the pastoralists have a generally similar profile to the 

industrial populations for Hill number diversity. This paints a complex picture. Non-industrial 

populations have a high diversity of taxa encoding butyrate synthesis, and butyrate production is 

spread more evenly across taxa in non-industrial populations than in industrial populations. 

Hunter-gatherers and rural agriculturalists have significantly greater evenness of propionate 
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production, even though they have fewer number of total genera encoding this SCFA. Finally, 

the richness and evenness of taxa encoding acetate is similar between industrial and non-

industrial populations. Ecologically, we would expect the industrial populations to be more likely 

to suffer decreased production of butyrate and propionate when faced with a shift in taxonomic 

composition. Non-industrial populations may be only marginally more resilient for acetate 

production compared to industrial populations. The propionate and acetate results are intriguing 

because they are found at higher levels in industrial and non-industrial populations, respectively, 

highlighting the benefit of taking an ecological approach to understanding diversity of metabolic 

processes in the human microbiome.  

 

The increased species-level alpha diversity in industrial populations runs counter to the genus-

level results but genus and species level results are ultimately concordant after accounting for 

ecology and ascertainment bias. The substantially higher species richness in industrial 

populations is striking; however, differences in PD between industrial and non-industrial 

populations are not nearly as extreme. This difference means that high species richness in the 

industrial populations is driven by taxa that are closely related to each other phylogenetically. 

Indeed, we observed SCFA producing genera found at high abundance in industrial populations 

(Bacteroides and Clostridium) to have up to nine species encoding SCFAs, while highly 

abundant non-industrial genera only have one or two species. Therefore, what first appears to 

indicate high ecological resilience in SCFA production in industrial populations is actually the 

result of closely related species performing the same function. It follows that closely related 

species may be prone to the same types of ecological removal events, such as antibiotics or 

xenobiotics that target specific bacterial groups. While this result has ecological implications, it 
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is also likely the result of historical trends of microbiology research. Taxa at high abundance in 

non-industrial gut microbiomes have not been a focus of microbiological isolation and species 

identification until recently, therefore, we expect more species to be identified from non-

industrial gut microbiomes in the future. Additionally, classification of bacteria into distinct 

genera and species is undergoing a revolution in the genomic era (209) meaning that the high 

number of species classified to Bacteroides and Clostridium may ultimately be reclassified to 

different genera. Nevertheless, the fact that we observe a large jump in species richness, but only 

a minor increase in species PD, in the industrial gut microbiomes suggests that the high industrial 

species richness is driven by closely related species. 

 

Ascertainment bias extends to the databases used to identify taxa and genes: fewer genes were 

identified in non-industrial populations and a smaller proportion of these genes can be linked 

back to taxa at every taxonomic level, in non-industrial gut microbiomes. In some cases, such as 

butyrate synthesis genes, less than 10% of genes are identified to species for non-industrial 

populations, while over 50% of such identifications were possible for industrial populations. A 

decreased ability to identify the genus and species encoding SCFA synthesis genes in non-

industrial populations means that the ecological metrics underestimate the true ecological 

diversity of these genes. The statistically significant differences observed at the genus-level send 

a strong signal of the high functional diversity, and potential resilience, of SCFA synthesis genes 

in non-industrial gut microbiomes.  

 

The metagenome-wide poor performance in terms of gene identification and classifying SCFA 

genes to taxa indicates a bias in reference databases that underrepresents diversity in non-
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industrial gut microbiomes, which is unsurprising. Bias is expected because the vast majority of 

human gut microbiome studies have used samples from industrial populations. There is an 

immense challenge in including non-industrial communities in biomedical research, including 

recruiting research participants, sustaining longitudinal sampling, building culturally appropriate 

community relationships, and even securing transport of samples (162). This has resulted in 

comparatively few metagenomic studies of human gut microbiomes from non-industrial settings 

(162). Nevertheless, our data demonstrate the extent of this bias and how it can hinder more in-

depth study of human gut microbiome health. Given this sizable ascertainment bias favored 

industrial populations, the non-industrial populations are likely even more diverse, more 

resilient, than our databases can sufficiently characterize, making our genus-level results even 

stronger. Without a serious investment to include such populations, characterization of 

microbiomes will remain naive to the ecological breadth of the core, healthy, human gut. 

Imagine studying forest ecology, with only city parks at your disposal. This has been, 

overwhelmingly, the analogous practice of human microbiome research. 

 

Relative lack of microbiome studies with non-industrial populations means an 

underrepresentation of not only metagenomic data and genome annotation but also fewer 

opportunities for cultivation and validation of novel species of bacteria. This underrepresentation 

ultimately leads to an inequality in the depth to which researchers can describe microbiome 

samples from non-industrial communities, compared to industrial microbiomes, as diverse 

groups of novel taxa may be grouped into a single group of “unknown” or “unclassified” 

bacteria. Similarly, an incomplete picture of microbial functional potential means that genes may 

be misidentified or even unannotated completely. Unknown taxa and misidentified genes may be 
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playing key roles in ecological and metabolic processes but researchers are unable to confidently 

identify them, let alone make statements about their importance in a microbial ecology (162). 

Recent human gut microbiome metagenome studies from diverse populations will undoubtedly 

improve database representation but the number of studies and metagenomic samples from non-

industrial populations still pales in comparison to industrial gut microbiomes (162, 188, 208, 

210).  

 

Limitations in annotating the full extent of microbial diversity does not only affect researchers 

interested in microbiome ecology, there are real-life consequences. Microbial changes associated 

with industrialization, recently termed ‘Microbiota Insufficiency Syndrome (MIS)’ (23), have 

resulted in a mismatch between microbial communities and human biology. The decreased 

phylogenetic diversity and loss of specific taxa (e.g. Prevotellaceae, Succinivibrionaceae, and 

Spirochaetaceae) observed in industrial gut microbiomes may contribute to the increase in non-

communicable chronic diseases found at higher prevalence in industrial populations. Our 

findings of decreased resilience in industrial populations, as well as species-level diversity driven 

by a few closely related species, fits in well with MIS. However, if we are unable to fully 

characterize non-industrial gut microbiomes then we will be unable to paint a complete picture of 

MIS. Currently, we have confidence that there is a wealth of undiscovered resilience in non-

industrial gut microbiomes. Once we describe the extent of this diversity/resilience, through 

increased sampling and focus on partnerships with research institutes in industrializing countries, 

we will have a more complete picture of MIS and possibly develop therapeutic approaches to 

combat non-communicable chronic diseases related to the human gut microbiome.  
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Lack of sample diversity is not unique to human microbiome research, as human genetics 

research has been grappling with this very issue for decades. In 2009, 96% of individuals 

included in human genome-wide association studies (GWAS) claimed European ancestry, as 

compared to 78% in 2019 (211). Thus, while there have been improvements, GWAS clearly fail 

to reflect the breadth of human diversity. Incorporating diverse populations in human genome 

and microbiome research has the potential to greatly benefit the scientific community’s 

understanding of human biology and develop treatments that are based on human diversity rather 

than European-ancestry genetics and microbiomes. A key component of increasing 

representation in genetics and microbiome studies is that these studies are designed as 

partnerships with minority and/or indigenous communities in a manner that builds both trust 

between the community and researchers, as well as facilitates the ability for sample donors to 

exercise their rights on how data are treated and shared (212).  
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Chapter 4 – Shifts in Gut and Vaginal Microbiomes Associated with 

Platinum-Free Interval Length in Women with Ovarian Cancer5,6 

4.1 ABSTRACT 

Many studies investigating the human microbiome-cancer interface have focused on the gut 

microbiome and gastrointestinal cancers. Outside of human papillomavirus driving cervical 

cancer, little is known about the relationship between the vaginal microbiome and other 

gynecological cancers, such as ovarian cancer. In this retrospective study, we investigated the 

relationship between ovarian cancer, platinum-free interval (PFI) length, and vaginal and gut 

microbiomes. We observed that Lactobacillus-dominated vaginal communities were less 

common in women with ovarian cancer, as compared to existing datasets of similarly aged 

women without cancer. Primary platinum-resistance (PPR) disease is strongly associated with 

survivability under one year and we found over one-third of patients with PPR (PFI<6 months, n 

= 17) to have a vaginal microbiome dominated by Escherichia (> 20% relative abundance), 

while only one platinum super sensitive (PFI>24 months, n = 23) patient had an Escherichia-

dominated microbiome. Additionally, L. iners was associated with little, or no, gross residual 

disease, while other Lactobacillus species were dominant in women with > 1 cm gross residual 

disease. In the gut microbiome, we found patients with PPR disease to have lower phylogenetic 

diversity than platinum-sensitive patients. The trends we observe in women with ovarian cancer 

and PPR disease, such as the absence of Lactobacillus and presence of Escherichia in the vaginal 

microbiome as well as low gut microbiome phylogenetic diversity have all been linked to other 

diseases and/or pro-inflammatory states, including bacterial vaginosis and autoimmune 

 
5 Adapted from Jacobson et al. (Submitted). Shifts in Gut and Vaginal Microbiomes Associated with Platinum-Free 
Interval Length in Women with Ovarian Cancer. PeerJ. 
6 See Supplementary Material C for full list of authors and affiliations 
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disorders. Future prospective studies are necessary to explore the translational potential and 

underlying mechanisms driving these associations. 

4.2 INTRODUCTION 

Ovarian cancer is the most deadly gynecological cancer (213); it kills approximately 14,000 

women in the United States annually, accounting for 4.9% of all cancer-related deaths in females 

in the United States. In the majority of cases (> 80%), ovarian cancer is not detected until stage 

III or later, primarily due to the nonspecific nature of ovarian cancer symptoms and lack of 

informative biomarkers (214, 215). Early-stage (I or II) detection results in substantially greater 

five-year survivability compared to late-stage diagnosis (III or IV): 70% versus 36% survival 

rate, respectively (216), highlighting the importance of discovering early-disease biomarkers.  

 

The standard course of primary treatment in ovarian cancer is cytoreductive surgery (CRS) in 

combination with platinum-based chemotherapy (217), which causes cytotoxicity through 

formation of intra- and inter- strand adducts on DNA in cancer cells (218). The diameter of the 

remaining tumor after CRS, referred to as gross residual disease, is an important predictor of 

patient outcome, as individuals with no residual disease or residual disease < 1 cm have 

improved survivability compared to those with tumors > 1 cm after CRS (219). The combination 

of CRS and platinum-based chemotherapy is highly effective with approximately 80% of 

patients showing no evidence of disease at the conclusion of therapy; however, recurrences occur 

in 70-80% of advanced stage patients and 20-25% of early-stage patients (220). Primary 

platinum resistance (recurrence of cancerous growth within six months of primary treatment 

cessation) develops in about 20% of patients, and is highly problematic because it is associated 

with a survivability of under one year and fewer effective treatment options (221). Other patients 
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may remain free of cancerous growth for more than two years but the risk of recurrence and 

eventual development of treatment-resistant cancer is still unacceptably high (222-225). This 

problem merits a focus on discovering biomarkers of ovarian cancer and drivers of platinum-

resistance to facilitate early cancer detection as well as better understand variation in treatment 

outcomes.  

 

Recent evidence suggests that the human microbiome is an important factor in tumorigenesis, 

carcinogenesis, and effectiveness of chemotherapy (5, 226-228). Gut microbiome dysbiosis can 

influence colorectal carcinogenesis via production of genotoxic metabolites, such as colibactin, 

and through promotion of a pro-inflammatory state, which contributes to cancer cell 

proliferation, angiogenesis, and metastasis (5, 226, 229-231). While most studies on the 

microbiome-cancer relationship have focused on the gut microbiome, there is growing evidence 

in support of the relationship between the vaginal microbiome and gynecological cancers. For 

example, human papillomavirus (HPV) is a known causative agent of cervical cancer (232-234), 

and pelvic inflammatory disease, which is associated with shifts in vaginal microbiome 

composition (235), has been linked to ovarian cancer development (236). Yet, there are still 

many unknowns about the relationship between the vaginal microbiome and gynecological 

cancers (232-234, 237). Likewise, links between the vaginal microbiome and platinum-

sensitivity remain elusive; however, a previous study demonstrated that cancerous growths in 

mice with antibiotic-depleted gut microbiomes were less susceptible to platinum-chemotherapies 

compared to those with high gut microbiome diversity (227). The microbiome has a strong, bi-

directional relationship with the host immune system (238, 239) and immune cells in the mice 

with a depleted gut microbiome produced fewer reactive oxygen species (ROS) than control 
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mice (227). Decreased ROS production and platinum-resistance in mice with low gut 

microbiome diversity suggests a role for the microbiome in response to platinum-chemotherapy 

because ROS play a part in cell apoptosis after exposure to platinum chemotherapeutic agents 

(240).   

 

In this study, we assessed how the vaginal and gut microbiomes vary in ovarian cancer patients 

with different platinum-sensitivities, with the aim of determining whether the human microbiome 

can be used as a biomarker of platinum-sensitivity.  

 

4.3 MATERIALS & METHODS  

Study Population  

Patients who carried a diagnosis of advanced (Stage III/IV) epithelial ovarian cancer and who 

were classified as primary platinum resistant (platinum-free interval [PFI] from completion of 

primary platinum based chemotherapy < 6 months) or platinum super sensitive (PFI > 24 

months) and were being treated at the Stephenson Cancer Center at the University of Oklahoma 

Health Sciences Center were approached to participate in this study. We approached patients 

when they either developed primary platinum resistant disease or when they were identified as 

platinum super sensitive. We also included patients who had already been diagnosed with 

primary platinum resistant disease or as platinum super responders but had moved on to 

additional therapy, as well as patients on active anti-cancer therapy or in surveillance. We 

excluded patients if: 1) they were taking antibiotics at the time of sample collection or within 14 

days prior to sample collection, or 2) they had active vaginal bleeding or known entero-vaginal 

fistulae. We also collected samples from five individuals who were referred for ovarian cancer 
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treatment at the Stephenson Cancer Center but ultimately had benign tumors; these served as a 

non-chemotherapy exposed control group. A brief demographic and medical treatment history 

for participants in this study (n = 45, median age 62.2, age range 33-83) is provided in Table 4 - 

1. This study was approved by the University of Oklahoma Health Sciences Center Institutional 

Review Board (February 22nd, 2016, reference #6458).  

 

Table 4 - 1: Demographic and clinical data for individuals in this study 

 

All patients were treated initially with platinum and taxane chemotherapy for a planned six to 

eight cycles. These regimens included paclitaxel and carboplatin given every 21 days, paclitaxel 

ID Age (years) Ethnicity PFI (Months)Cancer Stage Histology Cytoreductive Surgery Residual Disease Months Last Platinum Cycle Neuropathy

ocm002 54.9 White >24 III Serous iterative CRS (iCRS) No Gross Residual (NGR) 29 none

ocm003 69.5 Native American <6 III Serous primary CRS (pCRS) >1cm 25 none

ocm004 52.9 White >24 III Serous primary CRS (pCRS) >1cm 65 none

ocm005 68.9 White >24 III Serous iterative CRS (iCRS) <1cm 82 none

ocm007 68.5 Native American >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 53 >grade2

ocm009 52.8 White >24 III Serous primary CRS (pCRS) <1cm 98 none

ocm012 59.1 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 124 none

ocm014 52.8 White Benign N/A N/A iterative CRS (iCRS) >1cm N/A N/A

ocm021 64.8 White <6 III Serous iterative CRS (iCRS) No Gross Residual (NGR) 7 UNK

ocm022 77.7 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 106 none

ocm024 76.5 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 40 none

ocm026 45.5 White <6 III Serous iterative CRS (iCRS) No Gross Residual (NGR) 10 UNK

ocm027 59.2 White <6 III Serous iterative CRS (iCRS) <1cm 7 UNK

ocm028 71.9 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 45 none

ocm029 68.3 White <6 III Serous iterative CRS (iCRS) <1cm 4 UNK

ocm031 47.2 White <6 III Serous iterative CRS (iCRS) <1cm 7 none

ocm032 56.9 White <6 IV Serous iterative CRS (iCRS) >1cm 6 >grade2

ocm033 73.66 African American >24 IV Serous primary CRS (pCRS) No Gross Residual (NGR) 68 >grade2

ocm034 77.9 White >24 IV Serous primary CRS (pCRS) No Gross Residual (NGR) 61 >grade2

ocm036 51 White >24 IV Serous primary CRS (pCRS) No Gross Residual (NGR) 39 >grade2

ocm043 70.2 White >24 IV Serous iterative CRS (iCRS) >1cm 67 none

ocm044 58.2 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 18 >grade2

ocm045 67.9 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 42 none

ocm046 64.4 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 54 none

ocm047 70.2 White >24 III Serous primary CRS (pCRS) <1cm 87 none

ocm049 47.5 White >24 IV Serous iterative CRS (iCRS) No Gross Residual (NGR) 8 >grade2

ocm051 45.5 White >24 IV Serous primary CRS (pCRS) No Gross Residual (NGR) 45 none

ocm057 74.9 White <6 III Serous primary CRS (pCRS) No Gross Residual (NGR) 18 UNK

ocm058 79 Native American Benign N/A N/A N/A >1cm N/A N/A

ocm060 60.9 White >24 III Serous primary CRS (pCRS) >1cm 150 none

ocm061 64.6 White <6 III Serous iterative CRS (iCRS) >1cm 9 none

ocm063 58.6 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) N/A UNK

ocm070 65.4 White <6 III Serous primary CRS (pCRS) No Gross Residual (NGR) 38 UNK

ocm071 57.8 White Benign N/A N/A N/A >1cm N/A N/A

ocm075 62.5 White <6 IV Serous No Surgery >1cm 6 UNK

ocm084 33.7 Native American Benign N/A N/A N/A >1cm N/A N/A

ocm088 53.6 African American <6 IV Serous iterative CRS (iCRS) >1cm 1 none

ocm089 82.7 White <6 III Serous iterative CRS (iCRS) <1cm 6 none

ocm091 38.5 White <6 III Serous iterative CRS (iCRS) No Gross Residual (NGR) 35 UNK

ocm093 59.7 White >24 III Serous primary CRS (pCRS) No Gross Residual (NGR) 72 >grade2

ocm094 73.6 White <6 III Serous iterative CRS (iCRS) >1cm 3 UNK

ocm096 63.6 White >24 III Serous primary CRS (pCRS) <1cm 41 >grade2

ocm098 75.1 White <6 IV Serous iterative CRS (iCRS) <1cm 15 >grade2

ocm099 61.9 White Benign N/A N/A N/A >1cm N/A N/A

ocm106 58 White <6 IV Serous iterative CRS (iCRS) <1cm 3 UNK
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given weekly with every 21st day carboplatin, or intraperitoneal administration of either cisplatin 

or carboplatin with intravenous and intraperitoneal paclitaxel. In patients with platinum resistant 

disease, standard of care options after recurrence included pegylated liposomal doxorubicin 

(PLD), weekly paclitaxel, gemcitabine, topotecan or bevacizumab given as monotherapy or with 

chemotherapy. Patients were also screened for eligibility for clinical trials. Patients with a PFI > 

24 months had not recurred at the time of study participation and were followed every 6 months 

with surveillance of Ca-125 values and exams. For those who had recurred beyond 24 months, 

treatment options included several platinum-based doublets including carboplatin and PLD given 

every 28 days, carboplatin and paclitaxel given every 21 days or carboplatin and gemcitabine 

given on a day one and day eight or day one and day fifteen schedule. Each patient completed a 

minimum of six cycles of treatment and could undergo more cycles as long as the patient was 

responding and tolerating therapy. 

 

Sample Collection 

Samples were collected during standard of care exams in the gynecologic oncology clinic at the 

Stephenson Cancer Center in Oklahoma City, OK. Catch-All Sample Collection Swabs 

(Epicentre) were used to collect vaginal and fecal samples. Vaginal swabs were collected from 

three sites per individual: vaginal introitus (VIT), mid-vagina (MDV), and posterior fornix 

(VPF), and then placed into a dry sample collection tube. Fecal samples were collected via a 

rectal digital exam, after which any stool collected was placed on a Catch-All swab and placed in 

a dry collection tube. Two swabs were collected from each site (bilaterally from the vaginal sites 

and sequentially for the rectal samples). Each participant completed a quality of life survey 
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regarding their medical treatment history, antibiotic use within the past year, vitamin 

consumption, socioeconomic status, and other lifestyle metadata (Supplementary Table C - 1).  

 

Laboratory Methods 

DNA was extracted from the left-side vaginal swab and first fecal swab from each patient, using 

the MoBio PowerSoil DNA Isolation Kit (now Qiagen DNeasy PowerSoil Kit), following 

manufacturer’s protocols with the addition of a ten-minute incubation at 65C prior to the initial 

bead-beating step, as recommended in the Manual of Protocols for the Human Microbiome 

Project (241). A quantitative PCR (qPCR), using the SYBR Green PCR Master Mix (Applied 

Biosystems) and primers targeting the V4 region of the bacterial 16S rRNA gene (242), was 

conducted; dilutions of Escherichia coli DNA corresponding to known 16S rRNA gene copy 

numbers were used as quantification standards for the DNA extracts. DNA extracts were 

amplified in triplicate, using Phusion High-Fidelity DNA polymerase (ThermoFisher Scientific) 

and Illumina-compatible primers 515F and 806R (V4 region of the16S rRNA gene) with error-

correcting Golay barcodes incorporated into the 806R reverse primer (242). PCR products were 

pooled in equimolar concentrations, purified with the MinElute PCR purification kit (Qiagen), 

quantified using KAPA Biosystems Illumina library quantification kit, and sequenced across 

multiple runs of an Illumina MiSeq (500 cycles paired-end sequencing, v2 reagent kit). 

 

Bioinformatic Methods 

AdapterRemoval (v2) (132) was used to filter out reads with uncalled bases, reads with Phred 

quality threshold < 30, and reads less than 150 bp in length. Quality filtered paired-end reads 

were merged using AdapterRemoval (v2) (132) and then demultiplexed with QIIME (v1.9), 
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followed by removal of chimeric sequences and low-abundance (<5 total sequences) reads (136). 

The remaining sequences were used for de novo Operational Taxonomic Unit (OTU) clustering 

with USEARCH (v10) at 97% sequence similarity (243). Taxonomy was assigned to each OTU 

representative using the EzBioCloud 16S rRNA gene database (145). The resulting OTU table 

was rarefied to 9000 reads and downstream analysis was performed in QIIME (v1.9) (136). The 

post-rarefaction sample breakdown was: PFI>24 (n = 23), PFI<6 (n = 17), and benign (n = 5). 

 

Statistical Methods 

Phylogenetic diversity and weighted/unweighted UniFrac (244) metrics were generated in 

QIIME (v1.9) with FastTree2 (147). Tests for significance between study groups for alpha and 

beta diversity were performed using Kruskal-Wallis and PERMANOVA tests, respectively, in R 

(142). Vaginal samples were classified into clusters by the dominant bacterial taxon found in 

each sample, as determined by Ward hierarchical clustering (245), and visualized as a heatmap 

via the gplots package in R (246). If there were no dominant bacteria, the sample was classified 

as diverse. Median-unbiased estimated odds ratios were calculated to determine whether study 

groups had significantly different odds of dominant bacteria; reported odds ratios and 95% 

confidence intervals were log-transformed. Kruskal-Wallis tests with a Benjamini and Hochberg 

false-discovery rate adjustment were used to evaluate differential abundance of individual taxa 

between study groups. Odds ratios were calculated using epitools (247) in R. Plots were 

generated using the ggplot2 (150) and ColorBrewer (248) packages in R. 
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4.4 RESULTS 

Vaginal microbiome 

Samples from different vaginal sites (VIT, MDV, VIT) that originated from the same individual 

showed similar taxonomic beta-diversity profiles (Supplementary Figure C - 1A-C). Due to this 

similarity, we grouped sequencing reads from each individual’s three vaginal samples into a 

single representative vaginal microbiome sample per individual for downstream analysis, unless 

otherwise noted. Firmicutes was the most dominant phylum in the vaginal microbiome and it 

was found at over 50% relative abundance in 40% of individuals (Supplementary Figure C - 2A), 

while Proteobacteria, Bacteroidetes, and Actinobacteria were the next most abundant phyla and 

found at >50% relative abundance in the vaginal microbiome of 13.3%, 13.3% and 6.7% of 

individuals, respectively. At the genus level, Lactobacillus, Prevotella, Escherichia, 

Gardnerella, and Streptococcus were the most dominant bacteria and accounted for 57.2% of all 

reads (Supplementary Figure C - 2B).  

 

Vaginal microbiome communities were clustered into five community-dominance groups using 

Ward hierarchical clustering: Lactobacillus cluster, Escherichia cluster, Gardnerella cluster, 

Prevotella cluster, and a high diversity cluster (Figure 4 - 1). Dominance groups were evenly 

distributed between patients with PFI < 6 months, PFI > 24 months, and benign, with the 

exception of higher than expected dominance of Escherichia in patients with PFI < 6 months: 

five of the six Escherichia-dominated vaginal communities identified with hierarchical clustering 

belonged to patients with PFI < 6 months (Supplementary Figure C - 3). Vaginal microbiomes 

dominated by Escherichia had higher odds of occurring in PFI < 6 months compared to PFI > 24 
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months (log odds ratio [OR] = 2.812, 95% CI 1.027 – 15.059, p-value = 0.043, Figure 4 - 2A). 

Additionally, one of the patients with PFI < 6 months and one of the patients with benign 

pathology identified with a ‘diverse’ vaginal microbiome had Escherichia at greater than 20% 

relative abundance, while no other patients with PFI > 24 months had Escherichia relative 

abundance above 5% (Figure 4 - 1). In total, 35.3% of the patients with PFI < 6 months had 

Escherichia at greater than 20% relative abundance in the vaginal microbiome, compared to 

4.34% of PFI > 24 months and only one of five benign individuals. Apart from platinum 

resistance, Escherichia showed no association with any of the other health or lifestyle factors 

(Figure 4 - 2A). Although Escherichia is common lab-grown bacterium and found in feces, our 

analysis demonstrates Escherichia abundance in the vaginal samples is biological and not a 

technical artifact (Supplementary Material C).  
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Figure 4 - 1: Heatmap of the 25 most abundant genera in the vaginal microbiome 

Each column represents a single individual’s vaginal microbiome, color coded by study group. 

Samples were clustered together based on similarity of vaginal microbiome using Ward 

hierarchical clustering. 11 microbiomes were Lactobacillus-dominated, six Escherichia-

dominated, three Gardnerella-dominated, nine Prevotella, and 16 highly diverse.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - 2A-D: Log-transformed odds ratio vaginal microbiome dominance. 

A) Escherichia had significantly higher odds of occurring in PFI < 6 months individuals (p-

value = 0.043). B) Antibiotics within one month was negatively associated with Lactobacillus-

dominance, but not significantly (p-value > 0.05). There were no differences between 

medical/health/lifestyle variables in Prevotella (C) and highly diverse (D) vaginal microbiomes. 

Gardnerella-dominated communities were not included in this analysis due to small sample size 

(n = 3). 

 

Approximately 24% (11 of 45) of patients in this study had Lactobacillus-dominated 

communities, which is significantly lower as compared to studies of similarly aged women 

without ovarian cancer (p-value = 0. 037) (249, 250). Other studies have found Lactobacillus to 

be less abundant in Black and Hispanic women (251) and our study consisted of 39 women who 
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self-reported ethnicity as white, two self-reported as Black, and four self-reported as Native 

American (Table 4 - 1). Each of the Black and Native American women had a non-Lactobacillus 

dominated vaginal microbiome (Supplementary Table C - 1) but ethnicity was not a statistically 

significant determinant of Lactobacillus-dominance (log OR = -1.63, 95% CI -4.62 – 1.30, p-

value = 0.27).  High microbial cell density, as gauged through qPCR with a standard curve 

generated from controls with known cell density, was positively correlated with vaginal 

Lactobacillus-dominance, although somewhat weakly (R2 = 0.242, Supplementary Figure C - 4).  

Consumption of antibiotics within the past month was associated with a lack of Lactobacillus-

dominance (Figure 4 - 2B); however, this relationship was not significant (p-value = 0.0515) and 

there were no other significant associations between Lactobacillus-dominance and any health or 

lifestyle factors, including PFI (Figure 4 - 2B). Only 20% (1 of 5) of patients with benign 

pathology had a Lactobacillus-dominated microbiome but small sample size prohibits statistical 

inference.  

 

Previous studies have indicated that different Lactobacillus species in the vaginal microbiome 

may have different roles and differential influence on host biology (252-254). In our study, we 

identified L. iners, L. brevis, L. mucosae, L. reuteri, L. zeae, and L. delbrueckii in the vaginal 

microbiome; however, over 99% of the Lactobacillus reads in our study were either unclassified 

at the species level or mapped to L. iners. In individuals with high Lactobacillus abundance (n = 

11), we found L. iners at significantly higher abundance in patients with either no gross residual 

disease or residual disease < 1cm (n = 7), compared to patients with residual disease > 1cm (n = 

4, p-value = 0.0359, Figure 4 - 3).  
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Figure 4 - 3: Lactobacillus iners dominates in small gross residual disease. 

In individuals with Lactobacillus dominated vaginal microbiomes, L. iners was at significantly 

higher relative abundance (p-value = 0.0359) in patients with no gross residual disease or 

residual disease under 1 cm.  

 

Prevotella was less common in those with residual disease > 1cm and those with a history of 

hormonal disease (Figure 4 – 2C), while a highly diverse vaginal microbiota was more common 

in women over 60 years old and in patients with a history of hormonal disorders, such as thyroid 

disease (Figure 4 – 2D); however, none of these associations were statistically significant (p-

value > 0.05). 

 

Gut microbiome 

The gut microbiome was colonized by typical members of the gut microbiome at the phylum 

(Bacteroidetes, Firmicutes, Proteobacteria) and genus (Bacteroides, Akkermansiac, 

Faecalibacterium, Ruminococcus, and Prevotella) levels (Supplementary Figure C - 5A-B). The 
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PFI > 24 months and PFI < 6 months groups were not significantly different with respect to fecal 

unweighted and weighted UniFrac beta diversity distances as tested through PERMANOVA 

(Figure 4 - 4, Supplementary Figure C - 6A-C); however, similar to the vaginal microbiome 

samples, there was a small subset of individuals (n = 9) with a unique microbiome signature. 

Patients with PFI < 6 months individuals had higher odds (log OR = 1.85, 95% CI 0.85 4.497, p-

value = 0.12) of being in this unique/outlier fecal microbiome group. These fecal outliers have 

significantly lower phylogenetic diversity compared to the other fecal samples (p-value = 0.001, 

Figure 4 - 5A) and have increased abundance of genera belonging to the order Clostridiales 

(Lachnospira, unidentified Ruminococceae genus, and Subdoligranulum) (Supplementary Figure 

C - 7).  Of the six platinum-resistant patients in this outlier subset, two also had Escherichia-

dominated vaginal communities. Eight of the nine patients in this subgroup reported consuming 

antibiotics within the past 6 months but this was not significantly different compared to the other 

individuals in this study (p-value = 0.49).  
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Figure 4 - 4: Unweighted UniFrac distances (PC1 and PC2) of fecal microbiomes. 

Each shape represents a single sample and shapes clustering together have similar gut 

microbiome taxonomic composition. There was no significant difference in overall microbiome 

community structure between sample groups (PERMANOVA p-value > 0.05); however, there are 

nine samples (6 PFI < 6 months, 3 PFI > 24 months) that form an outlier group along PC1 

(Figures A,B).  These individuals are labelled.  

 

 

Figure 4 - 5A-B: Phylogenetic diversity in fecal microbiomes. 

 A) Samples that formed the outlier group in Figure 4A-B had lower phylogenetic diversity 

compared to the remainder of  gut microbiome samples. B) Patients with PFI < 6 months had 

lower phylogenetic diversity than benign and platinum-sensitive patients. 

 

Overall, patients with platinum-resistant disease had lower phylogenetic diversity compared to 

patients with platinum-sensitive disease but the difference was not significant (Figure 4 - 5B, p-

value = 0.18). Regardless of PFI, patients with ovarian cancer had significantly higher relative 

abundance of Prevotella in the gut microbiome compared to benign individuals (p-value = 0.028, 

Supplementary Figure C - 8). Outside of the above-mentioned associations, there were no other 

significant associations between the gut microbiome and platinum sensitivity or other 

health/lifestyle variables.  
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4.5 DISCUSSION  

One major findings of this study is the inverse relationship between a Lactobacillus-dominant 

vaginal microbiome and ovarian cancer. In our study, fewer women than expected (24.4%) have 

Lactobacillus-dominated vaginal communities compared to similarly aged, healthy women 

(47.2%) from other studies (p-value = 0.037) (249, 250). Lactobacillus dominance is not found 

in any of the Black (n = 2) nor Native American (n = 4) women in our study but only 11 of the 

39 white women have Lactobacillus-dominated vaginal microbiomes; therefore, ethnicity was 

not a driving factor in Lactobacillus abundance in this study (p-value = 0.27). These results 

suggest the possibility that the low abundance of Lactobacillus may be indicative of a broad 

relationship between ovarian cancer and the vaginal microbiome. This finding corroborates a 

previous study that also observed a reduced frequency of the Lactobacillus-dominated vaginal 

microbiome in women with ovarian cancer, particularly in women under 50 (250). A partial 

explanation may be that Lactobacillus-dominance, while typically viewed as a healthy state in 

the female genital tract, is a non-resilient ecology prone to disruption by variable factors, 

including changes in glycogen availability (255, 256), antibiotic exposure (257), and shifts in 

hormone abundance induced during stress responses (258). While we observed no statistical 

relationships between Lactobacillus dominance and platinum-sensitivity or other 

lifestyle/medical variables, there was a nearly significant decrease in Lactobacillus-dominance 

associated with taking antibiotics within the past month, as well as a positive association 

between Lactobacillus-dominance and microbial cell density. 

 

Lactobacillus maintains a low pH in the vaginal environment by producing lactic acid as a 

byproduct of glycogen metabolism and this low pH inhibits growth of pro-inflammatory bacteria 
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(232, 233, 259). Vaginal Lactobacillus may protect from gynecological cancers by inhibiting 

pro-inflammatory bacteria, such as those implicated in pelvic inflammatory disease, and by 

reducing inflammatory cytokines IL-1 and IL-6 (260). The low Lactobacillus levels we 

observed may be related to glycogen availability - all women, except one, in this study were 

postmenopausal, and vaginally produced glycogen is known to decrease after menopause; 

likewise chemotherapy can inhibit ovarian estrogen production and result in lower glycogen 

levels (249, 259, 261, 262). More importantly, many women in this study have had at least one 

ovary surgically removed during initial cancer treatment. Ovarian removal leads decreased 

estrogen production and thus a likely decrease in vaginal glycogen levels; however, more 

research is needed to fully explain the ovarian-estrogen-glycogen dynamic (255). Glycogen 

abundance may also help explain the relationship between vaginal microbiome cell density and 

Lactobacillus, as widely-available glycogen may encourage a densely-colonized Lactobacillus 

vaginal community due to high nutrient availability (262). However, we did not document 

glycogen levels in our study. The retrospective nature of our study means that we were unable to 

assess Lactobacillus levels in women with ovarian cancer before they progressed to stage III/IV, 

or prior to chemotherapy. Therefore, we could not investigate anti-gynecological cancer 

properties of vaginal Lactobacillus; nevertheless, by comparing patients in this study to similarly 

aged women without ovarian cancer, we present further evidence that low Lactobacillus levels 

are more common in women with ovarian cancer.  

 

The presence, and size, of residual disease is strongly correlated with decreased survivability in 

ovarian cancer (219) and therefore our finding that L. inters was at significantly higher 

abundance in patients with either no gross residual disease or residual disease < 1cm after 
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treatment may point to L. iners as a potential path toward a biomarker. L. iners is a common 

vaginal bacterium (251, 263, 264) but its role in health and disease is sometimes contradictory 

(232); L. iners has been found at high relative abundance in low-grade squamous intraepithelial 

lesions in the cervix but at low abundance in high-grade squamous intraepithelial lesions (237). 

Yet, another study found L. iners at high abundance in women with normal cytology when 

compared to women with squamous intraepithelial lesions (265). Other studies have found L. 

iners to be positively associated with cervical cancer (266, 267) but L. iners is also linked to 

clearance of HPV (268), which is a causative agent of cervical cancer. Further research is 

necessary to better understand the role of L. iners in gynecological cancers in general, and in the 

potential inhibition of gross residual disease in ovarian cancer.  

 

Lactobacillus is known to inhibit colonization and growth of Escherichia in the vaginal 

microbiome (269, 270). The low abundance of Lactobacillus found in our study may present 

ample opportunity for typically low abundance vaginal bacteria, such as Escherichia, to thrive 

and proliferate in the absence of competition. Overgrowth of Escherichia only occurred in 17.8% 

of patients in our study, yet 75% of those patients were in the PFI < 6 months group. To put it 

another way, 35.3% of patients with PFI < 6 months had Escherichia at greater than 20% relative 

abundance, compared to 4.34% of PFI > 24 months and only 1 of 5 benign cases. The 

explanation for why Escherichia was significantly more common in patients with platinum-

resistant tumors is unclear, and because this study was retrospective, we were unable to track 

Escherichia abundance before we knew each patient’s platinum-sensitivity. One possible 

pathway is via interactions between the microbiome, immune system, and how platinum-based 

chemotherapies induce cancer cell death. Platinum chemotherapies partially rely on ROS 
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produced by host myeloid cells (227). Microbes strongly influence immune system function, and 

hence, alteration in ROS production may be more common in Escherichia-dominant vaginal 

microbiomes, which may render platinum-based chemotherapies less effective, leading to 

platinum-resistance. Vaginal Escherichia may also cause an increased inflammatory response, 

such as during pelvic inflammatory disease (271), and promote cancerous growth, resulting in a 

shortened PFI. The effect of Escherichia on platinum-sensitivity warrants further investigation. 

 

We also observed differences in the gut microbiome of women with platinum-resistant tumors, 

compared to benign and platinum-sensitive. Similar to the prevalence of Escherichia-dominant 

vaginal microbiomes, 35.3% of patients with PFI < 6 months were fecal beta-diversity outliers 

compared to the remainder of the fecal samples, while only 13.0% of PFI > 24 and none of the 

benign cases fell into this cluster. Genera belonging to the Clostridiales order (Subdoligranulum 

and Lachnospira) were at higher abundance in this group of outlier samples. Subdoligranulum, 

has been found at high abundance in the stool of individuals with gastrointestinal neoplasms 

(272) and has a positive association with blood-based markers of inflammation (273). 

Lachnospira has been found to be positively correlated with a plant-based diet (274) and at high 

abundance in healthy controls in a study investigating chronic kidney disease (275); yet 

Lachnospira is also found at high abundance in women with metabolic disorder and obesity 

(274). Additionally, we note lower phylogenetic diversity in the gut microbiome of platinum-

resistant tumors compared to both platinum-sensitive and benign tumors. Chemotherapy is a 

well-documented driver of decreased gut microbiome alpha diversity (276-278); however, we 

did not observe a shift in alpha diversity with time since last cycle of chemotherapy. High gut 

microbiome alpha diversity is typically associated with improved human health (7, 279), 
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although recent studies have started to question this paradigm (280). Nevertheless, the unique gut 

microbiome beta diversity profile in a subset of PFI < 6 months, and the decreased alpha 

diversity in the full PFI < 6 months population indicates that there may be long term relationship 

between platinum-resistance and the gut microbiome.  

 

Prevotella is enriched in both the platinum-resistant and platinum-sensitive study groups, 

compared to the benign group. Prevotella is typically only found at high abundance in the gut 

microbiomes of non-industrial, traditional populations (281) and it is associated with 

consumption of a plant-rich diet (281). Yet, some strains of Prevotella are found in the gut 

microbiomes of industrial populations and are linked to pro-inflammatory states in the gut 

microbiome (282, 283). Similar to decreased Lactobacillus in the vaginal microbiome of patients 

with ovarian cancer, the relatively high abundance of Prevotella in the gut microbiome of 

women with ovarian cancer indicates a notable shift in microbial composition. Studies with 

larger control groups are necessary to address this relationship.  

 

4.6 CONCLUSIONS  

Our results demonstrate an association between the vaginal and gut microbiomes and platinum-

sensitivity in women with ovarian cancer. Escherichia-dominant vaginal communities are 

significantly more likely to be present in patients with platinum-resistant tumors but the 

explanatory mechanism for this relationship is currently unclear. Lab and/or collection 

contamination does not appear to play a role in vaginal Escherichia abundance, which indicates 

that finding Escherichia at high relative abundance in patients with PFI < 6 months is a 

biological trend. 
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We also observed shared vaginal and gut microbiome profiles in women with ovarian cancer, 

with decreased dominance of Lactobacillus and increased relative abundance of Prevotella, 

respectively, regardless of platinum-sensitivity. These results suggest shifts in microbiome 

composition that are related to the ovarian cancer disease state, which may possibly be related to 

chemotherapy, but the retrospective nature of our study does not allow us to distinguish the exact 

mechanism of action. 

 

Our results call for deeper investigation into the relationship between the vaginal and gut 

microbiomes and ovarian cancer. A future avenue for research is a prospective, longitudinal 

study that tracks how the vaginal and gut microbiomes change throughout the course of ovarian 

cancer therapy, with an aim to disentangle how Escherichia-abundance impacts response to 

chemotherapy. Similarly, a study tracking Lactobacillus abundance in an aged-matched, 

lifestyle-matched cohort of women with and without ovarian cancer may provide insights into 

how microbial risk factors impact occurrence and outcomes of ovarian cancer. This work must 

also investigate why high L. iners abundance is found nearly exclusively in cases with < 1 cm or 

no gross residual disease, while other Lactobacillus species are found with > 1 cm residual 

disease. Finally, ovarian cancer microbiome research also presents an opportunity for microbial 

metagenomics and metabolomics to provide a fuller picture of the vaginal and gut microbiome 

ecosystems in health and disease. 
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Chapter 5 – Conclusions 

The research presented in this dissertation is connected by a common theme of applying 

ecological perspectives to current impactful topics in microbiome research: diversity, function, 

and health association. Microbiomes are diverse ecosystems with dynamic interactions between 

bacteria and the three studies presented in this dissertation highlight how ecological study of 

human microbiomes provides a deeper understanding of microbiomes and human biology. 

Importantly, this dissertation indicates that numerous types of human microbiome samples, 

whether they be ancient (Chapter 2), modern metagenomes (Chapter 3), or amplicon (Chapter 4), 

can be used for ecological analysis and present unique and novel insights into human biological 

variation.   

 

In Chapter 2 “Functional Diversity of Microbial Ecologies Estimated from Ancient Human 

Coprolites and Dental Calculus”, both dental calculus and coprolites were analyzed using 

network analysis and functional redundancy approaches. These techniques revealed similarites 

between ancient and modern dental calculus with respect to network properties and the types of 

keystone taxa identified. The Nuragic Sardinian ancient dental calculus was unique from the 

other dental calculus, which may be due to certain lifestyle variables, like exposure to copper. 

Furthermore, Chapter 2 demonstrated shared functional redundancy profiles and keystone taxa 

between ancient coprolites and modern hunter-gatherers. Taken together, Chapter 2 shows that 

ancient microbiome samples can be used for ecological analysis and these novel approaches 

yield valuable insights into microbiome change over time.    
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Chapter 3 – “Non-Industrial Gut Microbiomes Provide a More Resilient Ecology for Short-Chain 

Fatty Acid Production” compares newly generated fecal microbiome metagenome data from 

Burkina Faso to a panel of industrial and non-industrial gut micorbiomes in an attempt to outline 

how lifestyle influences resilience in short-chain fatty acid production. Short-chain fatty acids 

(SCFAs) are a key component of human-microbiome interactions in the GI tract and higher 

levels of SCFAs have been linked to improved health. In Chapter 3, the taxa encoding SCFAs 

were found to be more diverse and evenly distributed in non-industrial populations at the genus 

level; however, there is a steep drop-off in diversity at the species level in non-industrial 

populations. The relative inabilty to attribute SCFA synthesis genes to species in non-industrial 

populations (and to a lesser degree at the genus level as well) is due to a lack of microbiome 

metagenome datasets from non-industrial datasets in existing databases, which can be directly 

linked to non-industrial populations typically being a low research priority in the genomics 

research community. While Chapter 3 shows strong SCFA resilience in non-industrial 

populations, there is still a long way to go before we can have confidence that we are capturing 

the full range of human microbiome diversity.  

 

In Chapter 4, “Shifts in Gut and Vaginal Microbiomes Associated with Platinum-Free Interval 

Length in Women with Ovarian Cance”, Lactobacillus dominated vaginal communities is 

observed to be less common in women with ovarian cancer compared to similarly aged healthy 

women. A missing keystone species, like Lactobacillus, allows for opportunistic bacteria to 

flourish in the community and  Escherichia was found to be more likely to dominate vaginal 

microbiomes of women with a Platinum-Free Interval (PFI) length of less than 6 months, 

compared to women with a PFI > 24 months in Chapter 4. A short PFI length often leads to 
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death more quickly than a long PFI length and hence finding ecological biomarkers of PFI length 

has importance in survivability. Vaginal Escherichia is often associated with infections and 

inflammation and while we could not pin-down the exact cause for the higher chance of 

Escherichia in PFI<6 months indviduals the absence of Escherichia from PFI>24 months 

individuals indicates some relationship between PFI length and vaginal microbiome community 

make-up.  

 

This dissertation covers three distinct approaches/techniques to provide a better understanding of 

ecological interactions in the human microbiome. A clear future direction is in ecological 

analysis of ancient human microbiomes, which had never been done before our analysis in 

Chapter 2. Ancient DNA presents many challenges to researchers, but this should not prohibit 

theoretical advancements in the field. Ecological analysis of coprolites will be much more 

difficult due to the genuine lack of samples found at a single site and difficulty in recovering 

high quality DNA. Dental calculus, on the other hand, presents ample opportunity for ecological 

analysis because it can typically be linked back to an individual, is found in many individuals in 

museums/archaeological sites, and it yields high quality and high biomass DNA.  

 

Studying resilience in contemporary non-industrial gut microbiomes is valuable because it 

allows for a more complete picture of human gut microbiome diversity. An obvious next step to 

ecological analysis of human gut metagenomes is to study resilience in antibiotic resistant genes 

in diverse populations. Populations with little or no antibiotic exposure have already been found 

to harbor antibiotic resistance, which should not be a surprise because antibiotic resistance is a 

natural phenomenon. However, it is vital to track ecological diversity in antibiotic resistance in 

non-industrial contexts to identify bacteria at high risk for developing multidrug resistance. 
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Finally, clinical studies can use ecological approaches, particularly in longitudinal studies, to 

evaluate how the microbiome responds in different contexts and identify potential keystone taxa 

that mark recovery and/or disease progression. Microbiomes are increasingly seen as important 

players in pharmaceutical efficacy and ecological analysis of microbiome shifts in a clinical 

setting has the potential to drastically improve health outcomes. Understanding the full picture of 

the human microbiome necessitates an ecological approach and this dissertation demonstrates the 

valuable insights gained from applying different ecological techniques to a wide variety of 

sample types.   
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Microbiome Network Analysis 

Co-occurring bacteria, keystone taxa, and community structure can be represented as an 

ecological network. Network analysis takes advantage of elements of graph theory to uncover 

relationships between members of complex communities, whether it be infrastructure networks, 

social networks, or biological ecosystems (39, 284). Generating microbiome networks requires 

special attention due to the nature of sequencing data. Microbiome data are compositional due to 
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an arbitrary maximum number of sequencing reads that can be generated on a NGS sequencing 

instrument (285) and this compositionality can lead to spurious relationships if it is not taken into 

account (285, 286). Various methods have been developed to address compositionality in 

microbiome networks (108, 143, 287, 288) but in general, they use log-ratio transformations 

prior to downstream analysis (108, 143, 285, 286, 288). In microbiome network analysis, each 

bacterial taxon forms an individual circular node and straight-line edges connect nodes, which 

represents correlations between two taxa and various cutoffs can be used to depict strength of 

correlations. In Supplementary Figure A - 9A, we present an example of a network with edges 

representing positive correlations >0.3. A node’s degree is the number of edges connected to that 

node and clusters are groups of nodes that share a high number of connections within the cluster 

and fewer connections outside the cluster. Identifying nodes, edges, and clusters are key tenets 

of network analysis (39, 109, 289, 290). Network theory has applications in many fields of study, 

and is a broad and growing field, so here we focus on only a few important aspects that are easily 

translated to the characterization of a microbial ecology.  

  

Co-occurring clusters of bacteria not only inform about which bacteria are co-dependent and 

interact with each other, but also inform about the structure of the microbial community. 

Knowing the structure of the microbiome is important ecologically because communities are 

made up of more than just singular interactions - there are niches and subgroups within larger 

communities. The taxonomic and functional nature of clusters can highlight how taxa are 

partitioned within the microbiome and potentially suggest spatial or niche segregation. Various 

methods have been created to detect clusters within a network but in general they work by 

simulating network clusters and choosing a network topology that optimizes modularity (strength 
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of division into clusters) and transitivity (a measure of connectivity) of the network. Clusters are 

typically connected to other clusters in the network but can be isolated from the rest of the 

network. Isolated clusters may indicate a highly specialized set of taxa or functions. 

  

Modularity (291, 292) is an important feature in uncovering microbiome structure as high 

modularity indicates there are many interactions within any given cluster, but few interactions 

between clusters, while low modularity indicates that there are many connections between 

clusters (Supplementary Figure A - 9B). In microbiomes with highly segregated functional 

groups and niches, we would expect high modularity as taxa within any given niche have few 

interactions with bacteria outside the niche. Similarly, we can interpret structure from the 

number and size of clusters within a microbiome. If there are few clusters with many bacteria, 

the community may have less specialized structuring and thus more fluidity in ecological 

function. Transitivity provides an indication of whether nodes already connected through a 

central node are likely to be connected to each other independent of that central node (39, 109). 

High transitivity means many connections between bacteria and many routes to connect bacteria, 

suggesting a microbiome community with many different layers of interactions (Supplementary 

Figure A - 9C). Modularity and transitivity typically have an inverse relationship to each other, 

as networks with low modularity and high transitivity both signal high numbers connections 

between nodes.  

  

Modularity, transitivity, and co-occurring clusters present a holistic view of the network 

structure; in other words, they are focused on emergent network properties. There is additional 

benefit to focusing on individual nodes in the network. A primary interest for microbiome 
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ecology research is how individual taxa are connected to the rest of the network: are they at the 

center of the whole network, do they connect different clusters together, or are they isolated from 

taxa across the entire network? There are a multitude of approaches for identifying taxa central 

to the network and the most straightforward mechanism is by looking at its degree. Degree is 

simply a measure of how many connections a given node (bacterial taxon) maintains and it 

provides a quick way to identify highly and sparsely connected bacteria in the network. In our 

analysis, Hub Score can be thought of as an analogue to degree (39). A slightly more nuanced 

approach is to use the PageRank algorithm, in which each node is given a weight depending on 

the quantity and quality of connections for each node but ultimately provides a similar 

interpretation as using degrees (39, 111, 112). Centrality is a further method for determining 

how an individual node interacts with the remainder of the network (115). Closeness Centrality 

depends on the use of paths, which trace the number of edges needed to connect any two nodes. 

High closeness nodes are those nodes that have the shortest average path length between itself 

and all other nodes in the network, meaning that it is central to the full network.  

  

The connectivity of individual nodes in the network uncovers keystone taxa and taxa important 

for ecological stability. Keystone taxa have large influences on the microbiome community, 

independent of their relative abundance (38). These bacteria may produce specific nutrients that 

are metabolized by other microbes or provide protection against environmental stressors. 

Keystone taxa are at the center of a network because they are not just important for one group of 

bacteria, but rather are important for the entire community to function. In microbiome networks, 

keystone taxa should be thought about as hubs for the network and thus are central to the full 

network. Therefore, we can determine keystone taxa using Hub Score, PageRank, and Closeness 
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Centrality. There is a possibility that keystone identified by Hub Score and PageRank will differ 

than those identified through Closeness Centrality because the former two methods rely on 

number and quality of connections to each node, while the latter relies on tracing paths 

throughout the network. However, in most cases the keystone taxa identified by HubScore and 

PageRank are the same as those identified by using Closeness Centrality. 

 

Outside of keystone taxa, other taxa can also have a large impact on the network by serving as 

articulation points (284). Articulation points are nodes that connect two different clusters 

together and they are the only node that connect those two clusters. Articulation points are 

important for maintaining integrity in the network. Such taxa are often different from keystone 

species because often articulation points will have a small degree and be found more towards the 

periphery of the network; however, it is possible for an articulation point to have high centrality 

and serve as a keystone. Peripheral articulation points can be just as important as keystone taxa 

because removal of an articulation point can lead to disconnected clusters in the network (284). 

Disconnected clusters may lead to instability and potentially a loss of resilience in the 

community. 
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Supplementary Figures A: 1-9 

 
 

Supplementary Figure A - 1A-D: Rio Zape coprolite DNA damage patterns for keystone taxa 
 

Damage plots generated using MapDamage for the keystones identified in the Rio Zape 

coprolites. Red indicates C to T transitions and blue indicates G to A transitions. The Y axis 

shows the proportion of sites containing the nucleotide change and the X axis shows the position 

along the DNA fragment. Escherichia and Brachyspira keystones were not identified at the 

species level; however, E. coli and B. pilosicoli were both identified in the coprolite samples and 

were thus used as references in MapDamage. Damage patterns are consistent with ancient DNA 

for the Rio Zape coprolite keystones. 
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Supplementary Figure A - 2: SourceTracker results for novel ancient dental calculus samples 

Stacked bar plots of Bayesian SourceTracker results for the dental calculus samples from the 

Nuragic and Maya individuals. The Y axis shows estimated proportions of source contribution at 

the genus level, using modern subgingival and supragingival plaque, urban and rural gut, skin, 

and soil datasets as model sources.  
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Supplementary Figure A - 3A-B: Nuragic dental calculus DNA damage plots for keystone taxa. 

Damage plots generated using MapDamage for the keystones identified in Nuragic dental 

calculus. Olsenella was not identified at the species level as a keystone; however, O. uli was 

identified in the Nuragic samples and was thus used as the reference for MapDamage. A) E. 

saphenum and B) O. uli show damage patterns that are consistent with ancient DNA. 
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Supplementary Figure A - 4A-C: Maya dental calculus DNA damage plots for keystone taxa. 

Damage plots generated using MapDamage for the keystones identified in Maya dental calculus. 

Damage patterns are consistent with ancient DNA for the Maya dental calculus keystones 
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Supplementary Figure A - 5: Co-occurrence heatmap of oral taxa of interest 

Heatmap demonstrating co-occurrence of early colonizing oral taxa and selected periodontitis-

associated bacteria (across top of table) with common oral taxa. Networks were generated 100 

times and the shade of red represents the number of network iterations that the selected bacteria 

localize in same cluster as taxa along the y-axis. Cells in gray represent taxa that were not found 

in each respective dataset. In the Maya and Radcliffe datasets, A. naeslundii has a distinct 

clustering pattern compared to other early colonizing/red complex bacteria, while in the Nuragic 

population, S. gordonii shows a unique clustering pattern.  
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Supplementary Figure A - 6A-F: Functional diversity in ancient and modern microbiome 

samples 

Significant p-values are given in reference to the Rio Zape coprolites in A-C, while significant p-

values are given in reference to the Nuragic dataset in D-F. A-C) Modern non-industrial gut 

microbiomes are similar to the Rio Zape coprolites, while the modern industrial datasets are 

more diverse than the coprolites. Increased functional diversity in modern industrial gut 

microbiomes may be driven by database bias. D) The Nuragic dataset is an outlier for functional 

diversity compared to the modern and other ancient dental calculus datasets. 
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Supplementary Figure A - 7A-B: Small sample size effect network properties 

Effect of small sample size on network properties for both gut microbiomes and dental calculus. 

A) The number of clusters increases directly with sample size in both sample types. B)The  

network distinctness ratio is modularity divided by transitivity and this ratio helps operationalize 

the interconnectivity of the network. Higher network distinctness is found in networks with 

clusters and nodes that are distinct from each other. Network distinctness increases with sample 

size for gut microbiomes but not for ancient dental calculus. 
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Supplementary Figure A - 8: Small sample size hinders identification of keystone taxa 

Small sample size results in poor recovery of keystones from full dataset. The y-axis represents 

the percent of keystones from the full dataset that were found in each of the small sample size 

datasets. Five and Ten sample networks have few keystones matching the keystones from the full 

dataset. 
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Supplementary Figure A - 9A-C: Visual representation of network properties 

 

Supplementary Figure 9: A) Visual representation of network properties. Each number 

represents an individual taxon as a node, each color represents a cluster, each line represents 

connected nodes, and nodes with thick borders are keystone taxa. B) Network with low 

modularity (i.e. clusters are highly connected to each other). C) Network with high transitivity 

(i.e. nodes are connected to other nodes without needing to be connected through a central or 

keystone taxa). High transitivity and low modularity are often found in the same network. 

 

Supplementary Tables A: 1-8 

 

Supplementary Table A - 1: Archaeological and anatomical context for Nuragic and Maya 

samples 

LMAMR 
Sample ID Population Archaeological ID Individual ID 

Archaeologi
cal Site 

SA-001 Nuragic (Sardinia) LMC1: MSAE 6506 6506 Lu Maccioni 

SA-002 Nuragic (Sardinia) LMC2: MSAE 6525 6525 Lu Maccioni 

SA-003 Nuragic (Sardinia) LMC3: MSAE 6515 6515 Lu Maccioni 

SA-004 Nuragic (Sardinia) LMC4: MSAE 6507 6507 Lu Maccioni 

SA-005 Nuragic (Sardinia) CPP1: MSAE 6151 6151 Capo Pecora 

SA-006 Nuragic (Sardinia) CPP2: MSAE 6153 6153 Capo Pecora 

SA-007 Nuragic (Sardinia) CPP3: MSAE 6176 6176 Capo Pecora 

SA-008 Nuragic (Sardinia) CPP4: MSAE 6120 6120 Capo Pecora 

SA-009 Nuragic (Sardinia) SRD1: MSAE 6626 6626 Perdalba 

SA-010 Nuragic (Sardinia) SRD2: MSAE 6623 6623 Perdalba 
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SA-011 Nuragic (Sardinia) SRD3: MSAE 6612 6612 Perdalba 

MAWB-3 Maya (Belize) BRV-CH19 CH19 Chan 

MAWB-5 Maya (Belize) BRV-CH6 CH6 Chan 

MAWB-6 Maya (Belize) CC-B12 1 Chan Chich 

MAWB-10 Maya (Belize) CC-B14 1 Chan Chich 

MAWB-11 Maya (Belize) CC-B14 1 Chan Chich 

MAWB-12 Maya (Belize) CC-B14 1 Chan Chich 

MAWB-15 Maya (Belize) CC-B14 1 Chan Chich 
 
LMAMR 
Sample ID Date 

Radiocarbon or 
Archaeological Tooth sampled 

Total Raw 
Reads 

SA-001 1126-825  calBCE 
Radiocarbon (from the 
same layer) 

Mandibular second 
left molar 16,317,989 

SA-002 1126-825  calBCE 
Radiocarbon  (from 
the same layer) 

Mandibular second 
right molar 12,375,354 

SA-003 1126-825  calBCE 
Radiocarbon  (from 
the same layer) 

Mandibular third 
right molar 11,376,242 

SA-004 1126-825  calBCE 
Radiocarbon  (from 
the same layer) 

Mandibular third 
left molar 13,545,219 

SA-005 1384-936 calBCE 
Radiocarbon  (from 
the same layer) 

Maxillary left 
incisor 15,259,048 

SA-006 1384-936 calBCE 
Radiocarbon  (from 
the same layer) 

Maxillary third 
second molar 11,169,001 

SA-007 1384-936 calBCE 
Radiocarbon  (from 
the same layer) 

Mandibular left first 
incisor 12,895,505 

SA-008 1384-936 calBCE 
Radiocarbon  (from 
the same layer) 

Mandibular third 
right molar 15,430,462 

SA-009 
1900-1300 BCE (Middle 
Bronze Age) Archaeological 

Mandibular second 
left molar 14,265,263 

SA-010 
1900-1300 BCE (Middle 
Bronze Age) Archaeological 

Mandibular first 
right molar 10,724,679 

SA-011 
1900-1300 BCE (Middle 
Bronze Age) Archaeological 

Maxillary first left 
premolar 14,632,189 

MAWB-3 
2-sigma cal.BCE 170-CE 
50* Radiocarbon 

Maxillary right 
lateral incisor 2,730,685 

MAWB-5 
2-sigma cal. 570-660 
CE* Radiocarbon 

Mandibular right 
lateral incisor 9,631,144 

MAWB-6 
2-sigma cal. 713–885 
CE** Radiocarbon 

Maxillary right 
central incisor 32,402,210 

MAWB-10 
830-1000 CE (Late-to-
Terminal Classic) Archaeological Maxillary canine 51,541,754 

MAWB-11 
830-1000 CE (Late-to-
Terminal Classic) Archaeological Maxillary canine 11,999,444 

MAWB-12 
830-1000 CE (Late-to-
Terminal Classic) Archaeological Mandibular incisor 8,652,497 

MAWB-15 
830-1000 CE (Late-to-
Terminal Classic) Archaeological Mandibular incisor 35,754,125 
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Supplementary Table A - 2: Metagenome samples used in this study that were downloaded from 

NCBI 

Sample 
Name Dataset 

Sample 
Type 

Modern or 
Ancient Article 

Analysis Ready 
Reads 

Zape23 RioZape Coprolites Ancient 
Hagan et al. 

2020 9047526 

Zape25 RioZape Coprolites Ancient 
Hagan et al. 

2020 21126417 

Zape28 RioZape Coprolites Ancient 
Hagan et al. 

2020 6942671 

Zape29 RioZape Coprolites Ancient 
Hagan et al. 

2020 21134414 

Zape31 RioZape Coprolites Ancient 
Hagan et al. 

2020 24219550 

Zape31 RioZape Coprolites Ancient 
Hagan et al. 

2020 15571845 

Zape9 RioZape Coprolites Ancient 
Hagan et al. 

2020 9473478 
ERR300361

3 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 7432088 
ERR300361

4 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 9224977 
ERR300361

5 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 11888299 
ERR300361

6 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 11147785 
ERR300361

7 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 11375775 
ERR300361

8 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 8856397 
ERR300361

9 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 8443593 
ERR300362

0 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 13444340 
ERR300362

1 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 15568455 
ERR300362

2 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 18881786 
ERR300362

3 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 6976790 
ERR300362

4 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 14396865 
ERR300362

5 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 1636949 
ERR300362

6 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 12959172 
ERR300362

7 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 10735389 
ERR300362

8 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 13671623 
ERR300362

9 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 5619963 
ERR300363

0 Radcliffe 
DentalCal

culus Ancient 
Velsko et al. 

2019 6892173 
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ERR300363
1 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 18613560 

ERR300363
2 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 16636369 

ERR300363
3 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 16505193 

ERR300363
4 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 25529619 

ERR300363
5 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 7250609 

ERR300363
6 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 5037146 

ERR300363
7 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 544226 

ERR300363
8 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 13049172 

ERR300363
9 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 20570653 

ERR300364
0 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 5655198 

ERR300364
1 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 21869403 

ERR300364
2 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 29512892 

ERR300364
3 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 11130624 

ERR300364
4 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 8832898 

ERR300364
5 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 27353094 

ERR300364
6 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 7181939 

ERR300364
7 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 22769227 

ERR300364
8 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 14199232 

ERR300364
9 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 9306260 

ERR300365
0 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 4837871 

ERR300365
1 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 5594629 

ERR300365
2 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 8611932 

ERR300365
3 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 10701129 

ERR300365
4 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 4350720 

ERR300365
5 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 9494263 

ERR300365
6 Radcliffe 

DentalCal
culus Ancient 

Velsko et al. 
2019 29865341 

ERR330704
5 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 532661 

ERR330704
6 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 66116509 
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ERR330704
7 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 50448700 

ERR330704
8 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 47951659 

ERR330704
9 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 49725788 

ERR330705
0 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 46646925 

ERR330705
1 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 44934750 

ERR330705
2 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 29167396 

ERR330705
3 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 49779231 

ERR330705
4 Spanish 

DentalCal
culus Modern 

Velsko et al. 
2019 42609453 

HMP_7000
13715 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 69559884 

HMP_7000
14562 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 60328206 

HMP_7000
14724 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 65768913 

HMP_7000
14837 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 124239150 

HMP_7000
15113 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 62790792 

HMP_7000
15181 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 55171741 

HMP_7000
15250 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 67801058 

HMP_7000
15415 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 68904447 

HMP_7000
15857 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 68373859 

HMP_7000
15922 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 63686163 

HMP_7000
15981 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 61297782 

HMP_7000
16142 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 67429644 

HMP_7000
16456 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 92884679 
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HMP_7000
16542 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 60661296 

HMP_7000
16610 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 56801679 

HMP_7000
16765 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 68981342 

HMP_7000
16960 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 61064234 

HMP_7000
21306 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 60102109 

HMP_7000
21824 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 49572783 

HMP_7000
21876 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 53859064 

HMP_7000
21902 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 46993323 

HMP_7000
23113 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 55727490 

HMP_7000
23267 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 45389755 

HMP_7000
23337 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 56015647 

HMP_7000
23578 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 46214451 

HMP_7000
23634 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 59541250 

HMP_7000
23720 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 55382577 

HMP_7000
23845 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 49526090 

HMP_7000
23872 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 70233273 

HMP_7000
23919 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 55612409 

HMP_7000
24024 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 35149975 
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HMP_7000
24233 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 89685829 

HMP_7000
24318 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 61627637 

HMP_7000
24437 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 57012863 

HMP_7000
24449 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 55469673 

HMP_7000
24509 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 63665931 

HMP_7000
24615 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 55080220 

HMP_7000
24673 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 49800536 

HMP_7000
24711 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 80926958 

HMP_7000
24752 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 46935506 

HMP_7000
24866 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 58765847 

HMP_7000
24930 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 83543419 

HMP_7000
24998 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 55518468 

HMP_7000
32222 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 65325909 

HMP_7000
32244 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 57218206 

HMP_7000
32338 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 63596310 

HMP_7000
32944 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 57182192 

HMP_7000
33153 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 55130349 

HMP_7000
33435 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 68709617 
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HMP_7000
33502 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 64224547 

HMP_7000
33665 

Human 
Microbiome 

Project Feces Modern 
Methe et al. 

2012 67213936 
Had192940

8 Hadza Feces Modern 
Rampelli et al. 

2015 31667557 
Had192948

4 Hadza Feces Modern 
Rampelli et al. 

2015 8023250 
Had192948

5 Hadza Feces Modern 
Rampelli et al. 

2015 4582373 
Had192956

3 Hadza Feces Modern 
Rampelli et al. 

2015 13965176 
Had192957

4 Hadza Feces Modern 
Rampelli et al. 

2015 10368513 
Had193012

1 Hadza Feces Modern 
Rampelli et al. 

2015 34860393 
Had193012

2 Hadza Feces Modern 
Rampelli et al. 

2015 15283833 
Had193012

3 Hadza Feces Modern 
Rampelli et al. 

2015 36600411 
Had193012

8 Hadza Feces Modern 
Rampelli et al. 

2015 14926939 
Had193013

2 Hadza Feces Modern 
Rampelli et al. 

2015 4278117 
Had193013

3 Hadza Feces Modern 
Rampelli et al. 

2015 4896636 
Had193013

4 Hadza Feces Modern 
Rampelli et al. 

2015 10999317 
Had193013

6 Hadza Feces Modern 
Rampelli et al. 

2015 13262019 
Had193013

8 Hadza Feces Modern 
Rampelli et al. 

2015 4698201 
Had193014

0 Hadza Feces Modern 
Rampelli et al. 

2015 7972145 
Had193014

1 Hadza Feces Modern 
Rampelli et al. 

2015 32205660 
Had193014

2 Hadza Feces Modern 
Rampelli et al. 

2015 5258350 
Had193014

3 Hadza Feces Modern 
Rampelli et al. 

2015 6562608 
Had193014

4 Hadza Feces Modern 
Rampelli et al. 

2015 4848670 
Had193014

5 Hadza Feces Modern 
Rampelli et al. 

2015 16560525 
Had193014

9 Hadza Feces Modern 
Rampelli et al. 

2015 4073672 
Had193017

6 Hadza Feces Modern 
Rampelli et al. 

2015 5041521 
Had193017

7 Hadza Feces Modern 
Rampelli et al. 

2015 5364707 
Had193017

9 Hadza Feces Modern 
Rampelli et al. 

2015 4013392 
Had193018

7 Hadza Feces Modern 
Rampelli et al. 

2015 3114848 
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Had193024
4 Hadza Feces Modern 

Rampelli et al. 
2015 7743506 

bgi-N075A China Feces Modern Qin et al. 2012 36105871 

bgi-NLF002 China Feces Modern Qin et al. 2012 16058868 

bgi-NLF005 China Feces Modern Qin et al. 2012 19796667 

bgi-NLF006 China Feces Modern Qin et al. 2012 13659087 

bgi-NLF007 China Feces Modern Qin et al. 2012 22421737 

bgi-NLF009 China Feces Modern Qin et al. 2012 17280426 

bgi-NLF010 China Feces Modern Qin et al. 2012 16371986 

bgi-NLF011 China Feces Modern Qin et al. 2012 16745859 

bgi-NLF014 China Feces Modern Qin et al. 2012 17711182 

bgi-NLF015 China Feces Modern Qin et al. 2012 21249687 

bgi-NLM006 China Feces Modern Qin et al. 2012 25751198 

bgi-NLM010 China Feces Modern Qin et al. 2012 24699774 

bgi-NLM015 China Feces Modern Qin et al. 2012 14397119 

bgi-NLM016 China Feces Modern Qin et al. 2012 13553365 

bgi-NLM022 China Feces Modern Qin et al. 2012 21914212 

bgi-NLM023 China Feces Modern Qin et al. 2012 27269972 

bgi-NLM027 China Feces Modern Qin et al. 2012 23760705 

bgi-NLM028 China Feces Modern Qin et al. 2012 23235883 

bgi-NLM029 China Feces Modern Qin et al. 2012 23089593 

bgi-NLM031 China Feces Modern Qin et al. 2012 23091231 

bgi-NOF002 China Feces Modern Qin et al. 2012 20696915 

bgi-NOF005 China Feces Modern Qin et al. 2012 22765953 

bgi-NOF008 China Feces Modern Qin et al. 2012 24152020 

bgi-NOF009 China Feces Modern Qin et al. 2012 21438264 

bgi-NOF012 China Feces Modern Qin et al. 2012 19714306 

bgi-NOF013 China Feces Modern Qin et al. 2012 21137523 

bgi-NOF014 China Feces Modern Qin et al. 2012 17546823 
bgi-

NOM001 China Feces Modern Qin et al. 2012 14058605 
bgi-

NOM004 China Feces Modern Qin et al. 2012 20126357 
bgi-

NOM007 China Feces Modern Qin et al. 2012 14905722 
bgi-

NOM009 China Feces Modern Qin et al. 2012 22994893 
bgi-

NOM017 China Feces Modern Qin et al. 2012 17256657 
bgi-

NOM018 China Feces Modern Qin et al. 2012 21390737 
bgi-

NOM019 China Feces Modern Qin et al. 2012 15779040 
bgi-

NOM020 China Feces Modern Qin et al. 2012 20163678 
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bgi-
NOM023 China Feces Modern Qin et al. 2012 17845086 

bgi-
NOM027 China Feces Modern Qin et al. 2012 17335223 

bgi-
NOM028 China Feces Modern Qin et al. 2012 19197467 

SM01 Matses Feces Modern 
Obregon-Tito et 

al. 2015 36243326 

SM02 Matses Feces Modern 
Obregon-Tito et 

al. 2015 46085816 

SM03 Matses Feces Modern 
Obregon-Tito et 

al. 2015 22843103 

SM05 Matses Feces Modern 
Obregon-Tito et 

al. 2015 23906323 

SM10 Matses Feces Modern 
Obregon-Tito et 

al. 2015 27723664 

SM11 Matses Feces Modern 
Obregon-Tito et 

al. 2015 33348829 

SM18 Matses Feces Modern 
Obregon-Tito et 

al. 2015 32026148 

SM20 Matses Feces Modern 
Obregon-Tito et 

al. 2015 30099313 

SM23 Matses Feces Modern 
Obregon-Tito et 

al. 2015 30146410 

SM24 Matses Feces Modern 
Obregon-Tito et 

al. 2015 32991287 

SM25 Matses Feces Modern 
Obregon-Tito et 

al. 2015 31026199 

SM28 Matses Feces Modern 
Obregon-Tito et 

al. 2015 27389507 

SM29 Matses Feces Modern 
Obregon-Tito et 

al. 2015 30151973 

SM30 Matses Feces Modern 
Obregon-Tito et 

al. 2015 27805060 

SM31 Matses Feces Modern 
Obregon-Tito et 

al. 2015 30133715 

SM32 Matses Feces Modern 
Obregon-Tito et 

al. 2015 35061331 

SM33 Matses Feces Modern 
Obregon-Tito et 

al. 2015 28563888 

SM34 Matses Feces Modern 
Obregon-Tito et 

al. 2015 26961514 

SM37 Matses Feces Modern 
Obregon-Tito et 

al. 2015 27433220 

SM39 Matses Feces Modern 
Obregon-Tito et 

al. 2015 33510372 

SM40 Matses Feces Modern 
Obregon-Tito et 

al. 2015 33098422 

SM41 Matses Feces Modern 
Obregon-Tito et 

al. 2015 30877682 

SM42 Matses Feces Modern 
Obregon-Tito et 

al. 2015 28698309 

SM43 Matses Feces Modern 
Obregon-Tito et 

al. 2015 31343591 

SM44 Matses Feces Modern 
Obregon-Tito et 

al. 2015 31275968 
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Supplementary Table A - 3A-D: Top 50 genes in keystone taxa - Rio Zape Coprolites 

Top 50 genes by gene abundance from HUMAnN2 for each keystone taxa found in the Rio Zape 

coprolites. Abundance is gene copies per 1 million gene copies, with the mean value across the 

dataset reported for each gene. Antibiotic resistance genes are in bold. 
 

a) Escherichia 

Gene Name meanAbund 

Escherichia coli IMT2125 genomic chromosome, IMT2125 157.21948 

hypothetical protein 147.55349 

Escherichia coli IMT2125 genomic chromosome, IMT2125|unclassified 104.17424 

hypothetical protein, partial 68.28250 

Putative membrane protein 37.22662 

Membrane protein 32.14988 

Predicted protein 28.65321 

Escherichia coli 1540 plasmid pIP1206 complete genome 23.98338 

Putative membrane protein (Fragment) 23.44465 

Escherichia coli 1540 plasmid pIP1206 complete genome|unclassified 19.47129 

Mannitol-1-phosphate 5-dehydrogenase 18.06854 

Conserved domain protein 14.58802 

TTG start codon 13.55998 

Transposase 10.47736 

Transposase family protein 9.33703 

Protein SrnB 8.47705 

Ornithine carbamoyltransferase 1 7.97669 

RepA3 7.73112 

Multiple stress resistance protein BhsA domain protein 7.55945 

Thioredoxin reductase 7.21115 

Transposase, IS605 family 7.18980 

PyrBI operon leader peptide 7.08167 

Putative asparagine synthetase B 6.95930 

Acetyltransferase 6.77352 

Enterobactin synthase 6.35817 

Ribonucleoside-diphosphate reductase 1, beta subunit, B2 6.34910 

MalG gene 3-flanking DNA 6.09923 

Transport of hexuronates 5.96863 

Transcriptional regulator 5.90242 

Hemolysin E, chromosomal domain protein 5.84491 

Cellulose synthase catalytic subunit [UDP-forming] 5.79237 

Glutamyl-tRNA synthetase domain protein 5.74202 

Phage recombination protein Bet (Fragment) 5.71533 

RpmH ribosomal protein L34 5.61438 
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Tryptophan permease 5.53631 

cell division protein FtsL 5.44006 

Phosphatidylserine decarboxylase 5.41644 

Single-stranded DNA-binding protein 5.38347 

Toxin SymE, type I toxin-antitoxin system family protein 5.30155 

Abc transport membrane permease 5.24969 

Putative transposase 5.21585 

Aldo/keto reductase 5.16524 

Protein rof 5.08851 

Putative IS1 encoded protein 5.05463 

Transcription elongation factor 4.96258 

Putative HTH-type transcriptional regulator YneL 4.96033 

Ybl54 4.75796 

N-acetyl-gamma-glutamyl-phosphate reductase 4.67759 

Sulfate transport system permease protein CysT 4.64893 

Thiamine import ATP-binding protein ThiQ 4.50032 

b) Brachyspira 

Gene Name meanAbund 

hypothetical protein 6.42956 

TPR domain-containing protein 6.07162 

Lipoprotein 3.65874 

TPR repeat-containing protein 3.44506 

Glycosyl transferase family 2 3.23542 

Ankyrin repeat-containing protein 3.08389 

Extracellular solute-binding protein, family 5 2.91664 

Acriflavin resistance protein 2.73465 

Pseudouridine synthase 2.71509 

Pyruvate phosphate dikinase 2.68776 

Serpulina hyodysenteriae variable surface protein 2.48640 

Ankyrin 2.25450 

3-deoxy-7-phosphoheptulonate synthase 2.18766 

Methyltransferase 2.17242 

ABC transporter related protein 2.13497 

Outer membrane protein 2.01585 

Galactose-1-phosphate uridylyltransferase 2.00448 

Appr-1-p processing domain protein 1.99894 

Transporter 1.75380 

Cytidylate kinase 1.67780 

SAM-dependent methyltransferase 1.67613 

hypothetical protein, partial 1.63529 

Radical SAM domain protein 1.61393 
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Inner-membrane translocator 1.55803 

Flavodoxin 1.51300 

Extracellular solute-binding protein family 1 1.48899 

Glycosyltransferase 1.43515 

Peptidase M23 1.39032 

Tetratricopeptide TPR_2 repeat protein 1.37358 

50S ribosomal protein L3 (Fragment) 1.34407 

RNA polymerase sigma factor 1.32794 

Phosphopentomutase 1.30253 

Adenine specific DNA methyltransferase 1.28853 

D-3-phosphoglycerate dehydrogenase 1.28524 

Thioredoxin reductase 1.25088 

Putative reductase BN758_00609 1.24574 

Unclassified 1.23447 

5-methylcytosine restriction system component-like protein 1.19024 

MATE efflux family protein 1.15107 

Uridine phosphorylase 1.14636 

50S ribosomal protein L1 1.14591 

50S ribosomal protein L11 1.09380 

CheW protein 1.09207 

N-acetylmuramoyl-L-alanine amidase 1.08677 

N-acylglucosamine 2-epimerase 1.07755 

Chemotaxis protein methyltransferase CheR 1.06766 

TatD protein 1.06152 

Carbohydrate kinase, PfkB family 1.04430 

Putative K(+)-stimulated pyrophosphate-energized sodium pump 1.03691 

Methyltransferase type 11 1.02666 

c) Eubacterium biforme 

Gene Name meanAbund 

Transposase 24.28352 

Putative transposase DNA-binding domain protein (Fragment) 20.74955 

Transposase-like protein 13.41998 

ABC transporter, ATP-binding protein 12.67177 

MATE efflux family protein 12.28083 

50S ribosomal protein L36 10.65286 

50S ribosomal protein L34 10.16945 

Transposase, IS116/IS110/IS902 family 8.23550 

ATP synthase subunit c 8.19592 

ABC transporter, substrate-binding protein, family 5 8.06157 

HAD hydrolase, family IA, variant 3 7.81502 

30S ribosomal protein S13 7.02504 
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ABC transporter permease protein 6.96366 

30S ribosomal protein S11 6.76403 

Transcriptional regulator, TetR family 6.07580 

ATP synthase subunit b 5.89358 

30S ribosomal protein S14 type Z 5.89029 

Cof-like hydrolase 5.84100 

ATPase/histidine kinase/DNA gyrase B/HSP90 domain protein 5.83098 

Pseudouridine synthase 5.66666 

Single-stranded DNA-binding protein 5.65279 

Amidohydrolase 5.44604 

ATP synthase gamma chain 5.44145 

Addiction module toxin, RelE/StbE family 5.37597 

ATP synthase epsilon chain 5.36676 

50S ribosomal protein L32 5.34519 

ATP-dependent zinc metalloprotease FtsH 5.01661 

Diguanylate cyclase (GGDEF) domain protein 4.97768 

DNA-directed RNA polymerase subunit alpha 4.97711 

Amidophosphoribosyltransferase 4.97575 

Transcriptional regulator 4.92216 

50S ribosomal protein L29 4.77886 

Elongation factor P 4.72858 

PTS family mannose porter, IIC component 4.66532 

SIS domain protein 4.66105 

30S ribosomal protein S18 4.61437 

Transporter 4.60889 

UDP-glucose 4-epimerase 4.60178 

50S ribosomal protein L33 1 4.60120 

IS66 family element, transposase 4.59927 

50S ribosomal protein L31 4.52545 

30S ribosomal protein S10 4.46549 

ATP synthase subunit beta 4.44541 

Peptide deformylase 4.43869 

Putative transposase 4.36506 

PTS system mannose/fructose/sorbose family IIB component 4.34517 

Transcriptional regulator, XRE family 4.34135 

Thioredoxin 4.32730 

Transcriptional regulator, MarR family 4.32331 

Serine carboxypeptidase 4.31232 

d) Phascolarctobacterium succinatutens 

Gene Name meanAbund 

50S ribosomal protein L33 1 7.80331 
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DNA-binding helix-turn-helix protein 6.50082 

ATPase/histidine kinase/DNA gyrase B/HSP90 domain protein 6.17674 

Transporter, DASS family 5.64666 

50S ribosomal protein L30 5.55721 

Periplasmic binding protein 4.91736 

ABC transporter ATP-binding protein 4.70193 

4Fe-4S binding domain protein 4.66279 

MATE efflux family protein 4.64157 

Elongation factor Tu, apicoplast 4.59695 

Pyridine nucleotide-disulfide oxidoreductase 3.82089 

Nucleoside diphosphate kinase 3.78357 

FAD linked oxidase domain protein 3.47685 

Peptidyl-prolyl cis-trans isomerase 3.41422 

F420-non-reducing hydrogenase iron-sulfur subunit D 3.36498 

30S ribosomal protein S18 3.30487 

Oxidoreductase, nitrogenase component 1 3.09705 

ABC polar amino acid transporter 3.01383 

Outer membrane protein 2.97801 

Transposase 2.96064 

Cobalt transporter 2.89418 

Lipoprotein 2.89072 

50S ribosomal protein L21 2.84896 

Cysteine--tRNA ligase 2.84868 

ATPase 2.81229 

TonB-dependent receptor 2.69838 

Monovalent cation/H+ antiporter subunit B domain protein 2.69413 

30S ribosomal protein S21 2.68228 

30S ribosomal protein S13 2.67281 

DNA-directed RNA polymerase subunit beta 2.67030 

FAD dependent oxidoreductase 2.65715 

Radical SAM domain protein 2.65164 

2-nitropropane dioxygenase NPD 2.64955 

50S ribosomal protein L16, chloroplastic 2.64650 

50S ribosomal protein L35 2.61008 

Transporter 2.60551 

50S ribosomal protein L20 2.59246 

Transposase (Fragment) 2.58272 

50S ribosomal protein L29 2.56885 

RNA binding S1 domain protein 2.51467 

30S ribosomal protein S9 2.48475 

Extracellular ligand-binding receptor 2.47446 
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50S ribosomal protein L27 2.47359 

30S ribosomal protein S15 2.44770 

Glutamate--tRNA ligase 2.43361 

Acriflavin resistance protein 2.43237 

Response regulator receiver domain protein 2.40683 

Rubrerythrin (RR) 2.40118 

Amidohydrolase 2.36100 

ATP synthase subunit b 2.35636 
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Supplementary Table A - 4A-B: Top 50 genes in keystone taxa - Nuragic dental calculus 

Top 50 genes by gene abundance from HUMAnN2 for each keystone taxa found in the Nuragic 

dental calculus samples. Abundance is gene copies per 1 million gene copies, with the mean 

value across the dataset reported for each gene. Antibiotic resistance genes are in bold. 
 

a) Eubacterium saphenum 

Gene Name meanAbund 

Bacterial surface protein 26-residue PARCEL repeat (3 repeats) 14.95073 

50S ribosomal protein L31 12.79862 

YibE/F-like protein 12.63424 

Efflux ABC transporter, permease protein 11.61885 

Flavodoxin 10.75676 

50S ribosomal protein L34 8.60214 

TIGR02185 family protein 8.56613 

DNA-damage-inducible protein D family protein 8.36224 

NA+/H+ antiporter NHAC 8.27645 

Elongation factor Tu, apicoplast 7.88859 

Repeat protein 7.62742 

30S ribosomal protein S21 7.57228 

Fic family protein 6.80146 

Phenazine biosynthesis protein, PhzF family 6.67937 

CoA-binding domain protein 6.61519 

AMP-binding enzyme 6.53746 

Translation initiation factor IF-1 6.49625 

Hypothetical bacterial integral membrane protein (Trep_Strep) 6.44447 

30S ribosomal protein S17 6.14516 

LPXTG-motif cell wall anchor domain protein 6.11107 

Polysaccharide deacetylase 6.01976 

Bacterial group 2 Ig-like protein 6.01798 

Biotin synthase 5.97151 

30S ribosomal protein S13 5.87702 

50S ribosomal protein L18 5.79206 

Papain family cysteine protease 5.78749 

50S ribosomal protein L30 5.72232 

50S ribosomal protein L29 5.57128 

Bacteriocin-associated integral membrane protein 5.43963 

Putative septation protein SpoVG 5.39673 

DNA-binding protein HU 5.39548 

RIP metalloprotease RseP 5.31936 

50S ribosomal protein L35 5.31727 

30S ribosomal protein S7 5.26371 
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50S ribosomal protein L5 5.19890 

30S ribosomal protein S14 type Z 5.17576 

30S ribosomal protein S8 5.16821 

Serine-type D-Ala-D-Ala carboxypeptidase 5.15686 

50S ribosomal protein L14 5.06668 

Phage major tail protein, phi13 family 4.75000 

Bacteriocin, lactococcin 972 family 4.70212 

Amino acid permease-associated region 4.63399 

FMN-binding domain protein 4.60785 

DNA repair protein RecO 4.56762 

30S ribosomal protein S18 4.52065 

50S ribosomal protein L16 4.46216 

Tryptophanase 4.44278 

30S ribosomal protein S15 4.38201 

30S ribosomal protein S6 4.30991 

V-type sodium ATPase K subunit 4.25547 

b) Olsenella 

Gene Name meanAbund 

DNA-binding helix-turn-helix protein 26.92384 

ABC1 family protein 14.98862 

ABC transporter, ATP-binding protein 11.84994 

ABC-2 family transporter protein 10.22147 

MacB-like periplasmic core domain protein 10.01913 

Transcriptional regulator, DeoR family 9.55413 

Acetolactate synthase, small subunit 8.56009 

Glycoside hydrolase, family 25 8.43790 

PF14335 domain protein 8.24566 

Transcriptional regulator, ArsR family 8.03606 

Transcriptional regulator, AbrB family 7.30884 

PF13635 domain protein 7.30504 

ATP-dependent DNA helicase RecG C-terminal domain protein 7.14551 

Haloacid dehalogenase-like hydrolase 6.91339 

Ketopantoate reductase ApbA/PanE domain protein 6.72580 

Nucleotidyl transferase, PF08843 domain protein 6.65711 

Haloacid dehalogenase-like hydrolase domain protein 6.63774 

Site-specific recombinase, phage integrase domain protein 6.41275 

Toxin-antitoxin system, toxin component, Fic domain protein 6.29031 

Site-specific recombinase, phage integrase family 6.28408 

GHKL domain protein 6.26230 

HAD-superfamily hydrolase, subfamily IIB 6.10579 

Alpha/beta hydrolase fold-3 domain protein 5.97270 
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DNA methylase family protein 5.73054 

Cinnamoyl ester hydrolase 5.65442 

HAD hydrolase, family IA, variant 3 5.42257 

Putative major cell-binding factor 5.02274 

Histidinol phosphate phosphatase HisJ family 4.97715 

Cell division protein FtsZ 4.96390 

Zinc-finger of transposase IS204/IS1001/IS1096/IS1165 (Fragment) 4.89528 

Integral membrane sensor signal transduction histidine kinase 4.80561 

3-isopropylmalate dehydrogenase 4.66355 

SCP-2 sterol transfer family protein 4.55784 

Short-chain dehydrogenase/reductase SDR 4.53504 

Acetylornithine aminotransferase 4.38097 

Virulence activator alpha C-terminal family protein 4.35334 

Acetylglutamate kinase 4.32056 

Calcineurin-like phosphoesterase family protein 4.26203 

Transposase domain protein (Fragment) 4.17989 

Fic/DOC family protein 4.07258 

TatD-related deoxyribonuclease 4.06937 

Galactokinase galactose-binding signature 3.99070 

Peptidase, S9A/B/C family, catalytic domain protein 3.88265 

Basic membrane domain protein 3.87643 

PF06115 domain protein 3.86580 

Small molecule-binding regulator domain protein 3.85141 

PF14014 family protein 3.80053 

Sortase, SrtB family 3.73665 

ATPase 3.73579 

N-acetylmuramoyl-L-alanine amidase domain protein 3.70939 
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Supplementary Table A - 5A-C: Top 50 genes in keystone taxa - Maya dental calculus 

Top 50 genes by gene abundance from HUMAnN2 for each keystone taxa found in the Mayan 

dental calculus samples. Abundance is gene copies per 1 million gene copies, with the mean 

value across the dataset reported for each gene. Antibiotic resistance genes are in bold 
 

Fusobacterium nucleatum 

Gene Name meanAbund 

Cell wall-associated hydrolase 79.57285 

Transposase 20.11884153 

Hypothetical cytosolic protein 9.835568 

Flavodoxin 5.583699738 

Transporter 5.241214675 

Transposase, IS605 OrfB family 5.16738375 

Integral membrane protein 4.89230775 

Transposase, IS605 OrfB family, central region 4.47566375 

Possible transcriptional regulator 3.867855963 

Hypothetical Cytosolic Protein 3.838350738 

MATE efflux family protein 3.603400888 

ISChy9, transposase OrfB 3.3649925 

Transcriptional regulator 3.321478463 

Peptidyl-prolyl cis-trans isomerase 3.317424 

Methyltransferase 3.10504935 

Ethanolamine utilization protein 2.8974015 

Transposase-like protein B 2.85549875 

MORN repeat protein 2.7722654 

Cysteine synthase 2.760272625 

Tetratricopeptide repeat family protein 2.759906438 

Lipoprotein 2.634973 

Predicted protein 2.536824525 

Transcriptional regulator, TetR family 2.480689325 

Acetyltransferase 2.47860535 

Radical SAM domain protein 2.45034175 

Outer membrane protein 2.432701088 

Possible transposase 2.364140413 

Pseudouridine synthase 2.265692875 

Hemolysin 2.24385648 

Transposase IS116/IS110/IS902 family protein 2.22705 

Thioredoxin reductase 2.127039413 

IS1296 transposase protein B 2.076046 

Conserved protein 2.015840725 

50S ribosomal protein L34 1.992396 
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VWA containing CoxE family protein 1.98906125 

DNA-directed RNA polymerase subunit beta 1.96381375 

NA+/H+ antiporter NHAC 1.935227938 

Zinc finger SWIM domain protein 1.8977675 

ATPase 1.85072545 

Thymidylate synthase 1.84568525 

Amidohydrolase 1.83815185 

Transcriptional regulator, DeoR family 1.820777925 

Possible tyrosine transporter P-protein 1.76818 

Anthranilate synthase component II 1.7671905 

GCN5-related N-acetyltransferase 1.761517788 

RfaE bifunctional protein 1.731037375 

Cobalt-precorrin-4 C(11)-methyltransferase 1.72463875 

Guanine-hypoxanthine permease 1.711039625 

Manganese-binding protein 1.694659 

Cobyric acid synthase 1.676362788 

Treponema denticola 

Gene Name meanAbund 

Transcriptional regulator, TetR family 6.25098 

ABC transporter, ATP-binding protein 5.42128 

Ankyrin repeat protein 3.06271 

Site-specific recombinases, DNA invertase Pin homologs 3.01433 

Lipoprotein 2.40664 

Thioredoxin 2.28700 

Methyl-accepting chemotaxis protein 2.18394 

ABC transporter ATP-binding protein 1.74008 

MATE efflux family protein 1.42679 

Glutathione peroxidase 1.38907 

Membrane protein, putative 1.35796 

ABC transporter ATP-binding protein/permease 1.29008 

DNA mismatch endonuclease Vsr 1.05253 

Xenobiotic-transporting ATPase 0.99221 

Ribonuclease VapC 0.95592 

TPR protein 0.94999 

Oligopeptide/dipeptide ABC transporter, ATP-binding protein 0.91104 

ABC-type multidrug transport system, ATPase and permease component 0.88981 

Diguanylate cyclase (GGDEF) domain-containing protein 0.84254 

Pseudouridine synthase 0.84222 

YcfA family protein 0.81817 

50S ribosomal protein L32 0.76883 

ABC transporter related protein 0.76582 
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ABC transporter 0.74570 

RluA family pseudouridine synthase 0.73355 

Heavy metal translocating P-type ATPase 0.73148 

Metallo-beta-lactamase family protein 0.72542 

Histidine kinase 0.71756 

Conserved domain protein 0.71313 

Addiction module antitoxin, RelB/DinJ family 0.67645 

RNA polymerase sigma factor 0.63557 

L-lactate dehydrogenase 0.62536 

RelB/DinJ family addiction module antitoxin 0.59393 

Integrase catalytic region 0.58639 

Chorismate mutase 0.58630 

Oligopeptide transport ATP-binding protein AppD 0.58623 

RpiB/LacA/LacB family sugar-phosphate isomerase 0.58315 

Possible dnaK suppressor 0.57961 

Cobalt transport protein 0.57135 

LysM/M23/M37 peptidase 0.54945 

ATPase AAA 0.54873 

Prevent-host-death family protein 0.54788 

Flagellar hook-basal body complex protein FliE 0.54580 

MATE family transporter 0.53897 

Signal peptidase I 0.53443 

Peptidase M42 family protein 0.53376 

RNA methyltransferase 0.53039 

Peptidyl-prolyl cis-trans isomerase 0.52088 

RHS repeat-associated core domain-containing protein 0.51748 

DNA polymerase III 0.50657 

Cardiobacterium valvarum 

Gene Name meanAbund 

Transposase 53.58075 

Sel1 repeat protein 30.17798 

Helix-turn-helix domain of resolvase (Fragment) 21.38863 

IS1480b transposase 15.72224 

Tetratricopeptide repeat protein 13.64956 

Acetyltransferase, GNAT family 13.18181 

IS5 family transposase,Transposase DDE domain 12.22235 

Tat pathway signal sequence domain protein 12.04198 

Peptidyl-prolyl cis-trans isomerase 11.38757 

Ser/Thr phosphatase family protein 10.17345 

ATPase/histidine kinase/DNA gyrase B/HSP90 domain protein 7.98308 

Membrane protein 7.92403 
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ABC transporter, ATP-binding protein 7.59536 

Acyl carrier protein 7.50314 

Addiction module antitoxin, RelB/DinJ family 7.48685 

SMI1 / KNR4 family protein 7.48015 

Pseudouridine synthase 6.95228 

DNA-binding helix-turn-helix protein 6.69018 

Transglycosylase SLT domain protein 6.68673 

OmpA family protein 6.57143 

Efflux transporter, RND family, MFP subunit 6.56882 

NlpC/P60 family protein 6.33083 

Glyoxalase/bleomycin resistance protein/dioxygenase 6.22122 

Transcriptional regulator, AraC family 6.22077 

Peptidase, M48 family 6.19822 

Acyltransferase 6.14974 

HAD hydrolase, family IA, variant 3 5.91526 

S4 domain protein 5.88368 

Phosphoglycerate mutase 5.85409 

CRISPR-associated endoribonuclease Cas2 5.84203 

Transcriptional regulator, DeoR family 5.80208 

Spermidine N(1)-acetyltransferase 5.77363 

NAD dependent epimerase/dehydratase family protein 5.65739 

Hydrolase, TatD family 5.64212 

DnaJ domain protein 5.63168 

Cof-like hydrolase 5.48318 

Response regulator receiver domain protein 5.42215 

LysR substrate binding domain protein 5.37501 

ABC transporter ATP-binding protein 5.16074 

Endonuclease III 5.10799 

Band 7 protein 5.08845 

Two component transcriptional regulator, winged helix family 5.02484 

Exodeoxyribonuclease III 4.92089 

ADP-ribose pyrophosphatase 4.91616 

Peptidase propeptide and YPEB domain protein 4.86149 

Carbamate kinase 4.83808 

Peptidase, S54 family 4.73912 

3-oxoacyl-[acyl-carrier-protein] reductase FabG 4.65901 

ABC-2 type transporter 4.63549 

Bacterioferritin 4.62869 
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Supplementary Table A - 6A-B: Top 50 genes in keystone taxa - Radcliffe museum dental 

calculus 

Top 50 genes by gene abundance from HUMAnN2 for each keystone taxa found in the Radcliffe 

dental calculus samples. Abundance is gene copies per 1 million gene copies, with the mean 

value across the dataset reported for each gene. Antibiotic resistance genes are in bold 
 

Treponema socranskii 

Gene Name meanAbund 

ABC-type transporter, integral membrane subunit. 18.17577 

Binding-protein-dependent transport systems inner membrane component. 16.40026 

ABC transporter, permease protein. 15.47453 

DNA-binding helix-turn-helix protein. 15.08302 

ABC transporter, solute-binding protein. 14.59235 

Flavocytochrome c. 12.64163 

Transcriptional regulator, TetR family. 11.83416 

Tetratricopeptide repeat protein. 11.82341 

MATE efflux family protein. 11.47407 

Extracellular solute-binding protein family 1. 10.95863 

Pseudouridine synthase. 10.13271 

ABC transporter, ATP-binding protein. 8.95850 

ABC transporter related protein. 8.76818 

Methyltransferase domain protein. 8.17172 

Methyl-accepting chemotaxis protein. 7.97500 

Ferredoxin. 7.59735 

Putative lipoprotein. 7.34340 

Tripartite tricarboxylate transporter TctB family protein. 7.15727 

Transcriptional regulator, DeoR family. 7.02176 

Inner-membrane translocator. 6.78443 

Glycosyl transferase group 1. 6.75112 

Transcriptional regulator, LacI family. 6.60438 

Transcriptional regulator. 6.33526 

TRAP transporter, DctQ-like membrane protein. 6.03125 

Response regulator receiver domain protein. 5.98242 

Tripartite tricarboxylate transporter family receptor. 5.89056 

Ribose import ATP-binding protein RbsA. 5.54881 

FMN-binding domain protein. 5.25295 

RNA polymerase sigma factor. 5.05100 

ABC transporter ATP-binding protein. 4.98376 

Tetratricopeptide TPR_2 repeat-containing protein. 4.96469 

Beta-lactamase domain protein. 4.94554 

Phosphonate-transporting ATPase. 4.78914 
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DEAD/DEAH box helicase domain protein. 4.78738 

Elongation factor G. 4.68901 

Ketose-bisphosphate aldolase. 4.67159 

Amidohydrolase family protein. 4.60343 

AAA domain protein. 4.60341 

Na+/H+ antiporter family protein. 4.58608 

PF03382 family protein. 4.53589 

ABC transporter permease protein. 4.47630 

OmpA family protein. 4.46184 

HRDC domain protein. 4.45457 

tRNA/rRNA methyltransferase (SpoU). 4.44506 

Seryl-tRNA synthetase. 4.43007 

ABC-3 protein. 4.30286 

Transposase IS4 family protein. 4.29741 

Acyl carrier protein. 4.19149 

Peptidase, M23 family. 4.18883 

PF04365 family protein. 4.16101 

Tannerella forsythia 

Gene Name meanAbund 

Putative lipoprotein 180.16561 

TonB-linked outer membrane protein, SusC/RagA family 90.41168 

SusD family protein 75.76149 

TonB-dependent receptor 73.71884 

Tetratricopeptide repeat protein 68.89489 

Sigma factor regulatory protein, FecR/PupR family 63.44114 

Transposase, IS116/IS110/IS902 family 62.89150 

Bacterial group 2 Ig-like protein 53.26293 

RNA polymerase sigma-70 factor 52.97999 

Radical SAM domain protein 49.85693 

Glycosyltransferase, group 1 family protein 49.10539 

Putative membrane protein 43.28465 

ABC transporter ATP-binding protein 35.57676 

Peptidyl-prolyl cis-trans isomerase 32.97369 

Efflux ABC transporter, permease protein 32.82248 

Peptidase, S41 family 30.92127 

Transposase, IS4 family 30.56842 

ATPase/histidine kinase/DNA gyrase B/HSP90 domain protein 30.47830 

Methyltransferase domain protein 29.27074 

Transposase 27.68744 

Outer membrane efflux protein 25.75341 

Response regulator receiver domain protein 24.45379 
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Transcriptional regulator, LuxR family 23.92552 

Sigma-70 region 2 23.36289 

Tat pathway signal sequence domain protein 21.25475 

Efflux transporter, RND family, MFP subunit 21.22168 

Transcriptional regulator, TetR family 20.84302 

Outer membrane protein 20.78598 

MATE efflux family protein 20.08566 

Acyl carrier protein 19.64659 

Signal peptidase I 19.55459 

Arylsulfatase 18.74932 

Peptidase, S9A/B/C family, catalytic domain protein 18.31288 

Endonuclease/exonuclease/phosphatase family protein 17.78770 

Acyltransferase 17.70165 

Polysaccharide biosynthesis protein 17.67078 

Antioxidant, AhpC/TSA family 17.18099 

PAP2 family protein 16.63161 

RHS repeat-associated core domain protein 16.38480 

Polysaccharide deacetylase 15.64873 

TonB-dependent receptor plug domain protein 15.60416 

Repeat protein 15.01718 

RNA polymerase sigma factor, sigma-70 family 14.87160 

ATPase 14.72085 

TIGR01200 family protein 14.42236 

Pseudouridine synthase 14.01312 

Glycosyltransferase, group 2 family protein 13.85109 

PepSY domain protein 13.59936 

Ser/Thr phosphatase family protein 13.44160 

Sporulation and cell division repeat protein 13.28620 
 

Supplementary Table A - 7: Network properties change with sample size 

Mean total clusters increase with sample size, regardless of sample type. 
 

Sample 
Type Population 

Mean # of 
Clusters: 5 
Samples 

Mean # of 
Clusters: 10 

Samples 

Mean # of 
Clusters: 20 

Samples 

Mean # of 
Clusters: All 

Samples 

Feces 

Matses (n = 25) 
2.19 (sd = 

0.51) 
2.31 (sd = 

0.73) 
4.37 (sd = 

1.35) 
6.46 (sd = 

1.50) 

Hadza ( n= 26) 
3.01 (sd = 

1.03) 
2.92 (sd = 

0.51) 6.3 (sd = 1.69) 
7.79 (sd = 

1.65) 

China (n = 38) 
2.36 (sd = 

1.06) 
2.76 (sd = 

1.18) 
4.44 (sd = 

0.90) 
9.77 (sd = 

3.29) 

Hmp (n = 50) 
3.13 (sd = 

0.66) 
3.42 (sd = 

0.95) 
4.68 (sd = 

1.38) 
17.03 (sd = 

3.23) 
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Dental 
Calculus Radcliffe (n = 44) 

2.11 (sd = 
0.33) 

2.47 (sd = 
0.80) 

3.81 (sd = 
0.62) 

14.14 (sd = 
3.30) 

 
 

Supplementary Table A - 8: Keystone identification falters in small sample size. 

Keystone found in small sample size simulations do not match the keystones identified at the full 

sample size. Values in each table represent the number of keystones found in the small sample 

size datasets that were also found in the full dataset for each method of identifying keystone taxa. 

Page Rank 

  Population n = 5 n = 10  n = 20 Full Dataset 

Feces 

Matses (n = 25) 0 2 2 4 

Hadza ( n= 26) 0 1 3 3 

China (n = 38) 0 1 2 3 

Hmp (n = 50) 0 0 1 2 

Dental Calculus Radcliffe (n = 44) 0 0 0 1 

Hub Score 

  Population n = 5 n = 10  n = 20 Full Dataset 

Feces 

Matses (n = 25) 0 3 3 5 

Hadza ( n= 26) 0 1 3 4 

China (n = 38) 0 1 2 3 

Hmp (n = 50) 0 0 1 2 

Dental Calculus Radcliffe (n = 44) 0 0 1 3 

Closeness Centrality 

  Population n = 5 n = 10  n = 20 Full Dataset 

Feces 

Matses (n = 25) 0 2 2 4 

Hadza ( n= 26) 0 1 3 3 

China (n = 38) 0 0 1 2 

Hmp (n = 50) 0 0 1 2 

Dental Calculus Radcliffe (n = 44) 0 0 1 2 
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Supplementary Figures B: 1-3 

 

 

 

 

 

 

Supplementary Figure B -  1: Gini-Simpson Index Values for Taxa Encoding SCFAs 

 

Genus (A) and species (B) level for each SCFA of interest. A) The GS index for butyrate and 

propionate are higher in the rural agriculturalists and hunter-gatherers compared to the 

industrial populations at the genus level (FDR-adjusted p-value < 0.003, n = 451). B) Each 

SCFA has significantly lower GS values at the species level in non-industrial populations (FDR-

adjusted p-value < 0.05, n = 451). Statistical comparisons were generated using the Kruskal-

Wallis H test and the post-hoc Dunn Test. False discovery rate (FDR) was used to account for 

multiple testing. 
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Supplementary Figure B -  2: Proportion of All Genes Classified to A Taxon at Different 

Phylogenetic Levels 

Classification is significantly worse in the non-industrial populations compared to the industrial 

populations (FDR-adjusted p-value < 5 x 10-5, n = 451). Statistical comparisons were generated 

using the Kruskal-Wallis H test and the post-hoc Dunn Test. False discovery rate (FDR) was 

used to account for multiple testing. 
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Supplementary Figure B -  3: Genus:Species Relative Mapping Index. 

 

Relative index of genes mapped to a taxon at the species level (each box) normalized to genes 

mapped to a taxon at the genus level (1.0). In the non-industrial populations, there is a 

significant drop-off in the genes mapped to a taxon at the species level for each gene (FDR-

adjusted p-value < 0.001, n = 451), while in industrial populations the rate of mapping is similar 

at the genus and species level (FDR-adjusted p-value > 0.05, n = 210). Values above 1.0 are due 

to genes that map to taxa at the species level but not the genus level. This is the result of a few 

species that are annotated at the species level but have a missing annotation at the genus level, 

such as candidate species that do not have a complete phylogeny. In our dataset, this was 

primarily species belonging to the Lachnospiraceae family that do not have a finalized/approved 
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genus. This is more common in the industrial populations in our dataset, once again likely due to 

bias that favors for industrial datasets. Statistical comparisons were generated using the 

Kruskal-Wallis H test and the post-hoc Dunn Test. False discovery rate (FDR) was used to 

account for multiple testing. 

 

Supplementary Tables B: 1-5 

Supplementary Table B -  1: Genera Involved in SCFA Synthesis 

Genera and pathways previously identified in SCFA production. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCFA Genus Pathway (gene) Study

Bacteroides ackA Rios-Coivan et al. 2016

Bifidobacterium ackA Fukuda et al. 2012

Diverse Sets of Baceria ackA Rios-Coivan et al. 2016, Venegas et al. 2019

Alistipes not specified Vital et al. 2014

Anaerostipes but Louis and Flint 2009, 2017

Bacteroides buk Louis and Flint 2009, 2017

Clostridium but, buk Louis and Flint 2009, Vital et al. 2014

Coprococcus but, buk Louis and Flint 2009, 2017

Eubacterium but Louis and Flint 2009, 2017

Faecalibacterium but Louis and Flint 2009, 2017

Megasphaera but Louis and Flint 2009

Odoribacter not specified Vital et al. 2014

Roseburia but Louis and Flint 2009, 2017

Subdoligranulum buk Louis and Flint 2009, 2017

Akkermansia mmdA Reichardt et al. 2014, Louis and Flint 2017

Alistipes mmdA Louis and Flint 2017

Bacteroides mmdA Reichardt et al. 2014, Louis and Flint 2017

Blautia pduP Louis and Flint 2017

Clostridium mmdA, lcdA, pduP Reichardt et al. 2014

Coprococcus lcdA Reichardt et al. 2014, Louis and Flint 2017

Dialister mmdA Reichardt et al. 2014, Louis and Flint 2017

Eubacterium pduP Reichardt et al. 2014, Louis and Flint 2017

Megasphaera mmdA, lcdA Reichardt et al. 2014

Phascolarctobacterium mmdA Reichardt et al. 2014, Louis and Flint 2017

Prevotella mmdA Louis and Flint 2017

Roseburia pduP Reichardt et al. 2014

Ruminococcus pduP Reichardt et al. 2014

Selenomonas mmdA Reichardt et al. 2014

Veillonella mmdA Reichardt et al. 2014

Acetate

Butyrate

Propionate

Pathway Name Abbreviated Name

acetate kinase ackA

butyryl-CoA:acetate CoA transferase but

butyrate kinase buk

succinate mmdA

acrylate lcdA

propanediol pduP
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Supplementary Table B -  2: Samples Used in SCFA Analysis 

SampleNa
me 

RunAcces
sion 

Population LifestyleG
eneral 

LifestyleSpecific Age Sex 

bftm0101 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 55 male 

bftm0102 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 39 femal
e 

bftm0103 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 18 male 

bftm0201 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 52 male 

bftm0202 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 46 femal
e 

bftm0203 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 21 male 

bftm0301 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 61 male 

bftm0302 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 20 femal
e 

bftm0303 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 19 male 

bftm0401 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 69 male 

bftm0402 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 52 femal
e 

bftm0403 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 18 male 

bftm0501 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 41 male 

bftm0502 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 19 male 

bftm0504 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 11 femal
e 

bftm0601 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 66 male 

bftm0602 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 21 male 

bftm0604 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 49 femal
e 

bftm0701 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 70 male 
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bftm0703 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 20 male 

bftm0704 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 41 femal
e 

bftm0801 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 79 male 

bftm0802 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 31 femal
e 

bftm0803 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 39 male 

bftm0902 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 32 femal
e 

bftm0903 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 18 male 

bftm1001 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 55 male 

bftm1002 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 20 femal
e 

bftm1003 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 5 male 

bftm1004 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 23 male 

bftm1101 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 81 male 

bftm1102 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 18 male 

bftm1104 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 40 femal
e 

bftm1201 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 87 male 

bftm1202 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 27 femal
e 

bftm1204 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 20 male 

bftm1301 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 53 male 

bftm1303 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 39 femal
e 

bftm1401 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 77 male 

bftm1402 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 7 femal
e 
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bftm1403 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 40 femal
e 

bftm1404 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 28 male 

bftm1501 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 74 male 

bftm1502 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 33 male 

bftm1503 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 40 femal
e 

bftm1601 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 75 male 

bftm1602 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 26 femal
e 

bftm1603 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 22 male 

bftm1701 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 71 male 

bftm1702 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 35 femal
e 

bftm1802 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 25 femal
e 

bftm1803 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 18 male 

bftm1901 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 67 male 

bftm1902 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 25 femal
e 

bftm1903 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 22 male 

bftm2001 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 59 male 

bftm2002 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 23 male 

bftm2003 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 37 femal
e 

bftm2101 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 67 male 

bftm2102 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 34 femal
e 

bftm2103 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 9 femal
e 
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bftm2104 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 20 male 

bftm2201 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 71 male 

bftm2202 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 28 femal
e 

bftm2203 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 29 male 

bftm2204 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 10 male 

bftm2301 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 44 male 

bftm2302 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 51 femal
e 

bftm2303 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 36 male 

bftm2304 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 10 male 

bftm2401 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 49 male 

bftm2501 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 75 male 

bftm2503 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 38 femal
e 

bftm2504 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 39 male 

bftm2601 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 48 male 

bftm2602 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 26 femal
e 

bftm2604 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 17 male 

bftm2701 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 71 male 

bftm2702 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 27 femal
e 

bftm2704 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 18 male 

bftm2801 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 69 male 

bftm2803 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 18 male 
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bftm2804 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 21 femal
e 

bftm2901 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 73 male 

bftm2902 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 20 male 

bftm2904 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 27 femal
e 

bftm3001 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 65 male 

bftm3002 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 18 male 

bftm3003 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 35 femal
e 

bftm3004 N/A BurkinaFaso nonIndust
rial 

ruralAgriculture 7 male 

bgi.N075A SRR4136
15 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF00
2 

SRR3416
17 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF00
5 

SRR3416
18 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF00
6 

SRR3416
19 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF00
7 

SRR3416
20 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF00
9 

SRR3416
21 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF01
0 

SRR3416
22 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF01
1 

SRR3416
23 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF01
4 

SRR3416
24 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLF01
5 

SRR3416
93 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
06 

SRR3416
96 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
10 

SRR3416
98 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
15 

SRR3416
30 

China Industrial Central/East 
Asian Industrial 

N/A N/A 
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bgi.NLM0
16 

SRR3416
31 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
22 

SRR3417
00 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
23 

SRR3416
33 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
27 

SRR3417
03 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
28 

SRR3417
04 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
29 

SRR3417
05 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NLM0
31 

SRR3417
06 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOF00
2 

SRR3416
36 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOF00
5 

SRR3417
08 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOF00
8 

SRR3417
09 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOF00
9 

SRR3416
40 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOF01
2 

SRR3417
11 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOF01
3 

SRR3416
42 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOF01
4 

SRR3416
43 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
01 

SRR3417
12 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
04 

SRR3416
44 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
07 

SRR3416
45 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
09 

SRR3417
15 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
17 

SRR3417
20 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
18 

SRR3416
49 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
19 

SRR3417
21 

China Industrial Central/East 
Asian Industrial 

N/A N/A 
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bgi.NOM0
20 

SRR3417
22 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
23 

SRR3416
51 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
27 

SRR3417
24 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

bgi.NOM0
28 

SRR3417
25 

China Industrial Central/East 
Asian Industrial 

N/A N/A 

CNA.NO1 SRR1761
676 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO10 SRR1761
684 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO11 SRR1761
685 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO12 SRR1761
686 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO13 SRR1761
687 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO14 SRR1761
688 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO15 SRR1761
689 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO16 SRR1761
690 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO17 SRR1761
691 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO18 SRR1761
692 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO19 SRR1761
693 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO2 SRR1761
677 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO20 SRR1761
694 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO21 SRR1761
695 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO22 SRR1761
696 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO23 SRR1761
697 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO3 SRR1761
678 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 
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CNA.NO4 SRR1761
679 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO5 SRR1761
680 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO6 SRR1761
681 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

CNA.NO8 SRR1761
682 

Norman, 
Oklahoma, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

Had19294
08 

SRR1929
408 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19294
84 

SRR1929
484 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19294
85 

SRR1929
485 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19295
63 

SRR1929
563 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19295
74 

SRR1929
574 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
21 

SRR1930
121 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
22 

SRR1930
122 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
23 

SRR1930
123 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
28 

SRR1930
128 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
32 

SRR1930
132 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
33 

SRR1930
133 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
34 

SRR1930
134 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
36 

SRR1930
136 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
38 

SRR1930
138 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
40 

SRR1930
140 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
41 

SRR1930
141 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
42 

SRR1930
142 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 
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Had19301
43 

SRR1930
143 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
44 

SRR1930
144 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
45 

SRR1930
145 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
49 

SRR1930
149 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
76 

SRR1930
176 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
77 

SRR1930
177 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
79 

SRR1930
179 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19301
87 

SRR1930
187 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

Had19302
44 

SRR1930
244 

Hadza, Tanzania nonIndust
rial 

hunterGather N/A N/A 

HMP_700
013715 

SRR0594
12 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
014562 

SRR0603
71  

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
014724 

SRR0621
03 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
014837 

SRR0604
43 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
015113 

SRR0594
21 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
015181 

SRR0598
55 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
015250 

SRR0611
70 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
015415 

SRR0604
11 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 
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HMP_700
015857 

SRR0598
97 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
015922 

SRR0593
67 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
015981 

SRR0611
64 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
016142 

SRR0624
26 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
016456 

SRR0624
28 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
016542 

SRR0598
13 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
016610 

SRR0611
53 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
016765 

SRR0603
75 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
016960 

SRR0593
39 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
021306 

SRR0623
23 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
021824 

SRR0615
58 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
021876 

SRR0623
88 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
021902 

SRR0634
69 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
023113 

SRR0611
38 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 
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HMP_700
023267 

SRR0623
60 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
023337 

SRR0611
35 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
023578 

SRR0613
68 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
023634 

SRR0611
56 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
023720 

SRR0611
38 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
023845 

SRR0611
47 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
023872 

SRR0613
34 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
023919 

SRR0634
81 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024024 

SRR0635
89 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024233 

SRR0612
31 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024318 

SRR0612
09 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024437 

SRR0612
08 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024449 

SRR0635
55 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024509 

SRR0614
97 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 
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HMP_700
024615 

SRR0625
24 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024673 

SRR0611
97 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024711 

SRR0612
00 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024752 

SRR0611
72 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024866 

SRR0625
39 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024930 

SRR0614
95 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
024998 

SRR0611
61 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
032222 

SRR0600
26 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
032244 

SRR0600
25 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
032338 

SRR0621
00 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
032944 

SRR0598
31 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
033153 

SRR0611
45 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
033435 

SRR0619
19  

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 

HMP_700
033502 

SRR0593
73 

Human 
Microbiome 
Project, USA 

Industrial Europe/N.A. 
Industrial 

N/A N/A 



 175 

Ind118 ERR2602
50 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind121 ERR2602
51 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind126 ERR2602
52 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind127 ERR2602
53 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind137 ERR2602
68 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind141 ERR2602
55 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind143 ERR2602
56 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind146 ERR2602
58 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind153 ERR2602
59 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind155 ERR2602
60 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind187 ERR2602
63 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind193 ERR2602
64 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind194 ERR2602
65 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind195 ERR2602
66 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind198 ERR2602
67 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind224 ERR2602
30 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind225 ERR2602
31 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind231 ERR2602
34 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind264 ERR2602
42 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind268 ERR2602
43 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind269 ERR2602
44 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 
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Ind288 ERR2602
46 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind365 ERR2601
47 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind381 ERR2601
53 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind424 ERR2601
63 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind451 ERR2601
70 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind456 ERR2601
71 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind463 ERR2601
75 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind479 ERR2601
80 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind53 ERR2601
93 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind58 ERR2602
04 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind584 ERR2602
05 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind59 ERR2602
09 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind614 ERR2602
15 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind617 ERR2602
16 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind618 ERR2602
17 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind628 ERR2602
18 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind643 ERR2602
21 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind655 ERR2602
23 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind77 ERR2602
24 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind80 ERR2602
25 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

Ind88 ERR2602
26 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 
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Ind92 ERR2602
27 

Northern European Industrial Europe/N.A. 
Industrial 

N/A N/A 

japan_apr
01S00 

DRR0422
64 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
02S00 

DRR0422
72 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
03S00 

DRR0422
80 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
05S00 

DRR0422
88 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
09S00 

DRR0423
04 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
10S00 

DRR0423
12 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
11S00 

DRR0423
16 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
12S00 

DRR0423
20 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
15S00 

DRR0423
28 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
16S00 

DRR0423
32 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
17S00 

DRR0423
40 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
18S00 

DRR0423
48 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
19S00 

DRR0423
52 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
21S00 

DRR0423
56 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
22S00 

DRR0423
60 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
23S00 

DRR0423
64 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
36S00 

DRR0423
90 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
37S00 

DRR0423
94 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
38S00 

DRR0423
98 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_apr
39S00 

DRR0424
02 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 
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japan_apr
40S00 

DRR0424
10 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O02 

DRR0424
20 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O03 

DRR0424
24 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O05 

DRR0424
28 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O08 

DRR0424
36 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O15 

DRR0424
52 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O19 

DRR0424
62 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O22 

DRR0424
68 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O23 

DRR0424
72 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O27 

DRR0424
82 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FAK
O29 

DRR0424
88 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

japan_FTA
G01 

DRR0425
91 

Japan Industrial Central/East 
Asian Industrial 

N/A N/A 

madSRS36
38571 

SRR7658
688 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38572 

SRR7658
687 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38573 

SRR7658
690 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38574 

SRR7658
689 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38575 

SRR7658
685 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38576 

SRR7658
684 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38577 

SRR7658
682 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38578 

SRR7658
683 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38579 

SRR7658
686 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 
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madSRS36
38580 

SRR7658
681 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38581 

SRR7658
679 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38582 

SRR7658
678 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38583 

SRR7658
676 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38584 

SRR7658
677 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38585 

SRR7658
675 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38586 

SRR7658
673 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38587 

SRR7658
672 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38589 

SRR7658
669 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38591 

SRR7658
666 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38592 

SRR7658
664 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38593 

SRR7658
665 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38632 

SRR7658
680 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38638 

SRR7658
674 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38642 

SRR7658
671 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38652 

SRR7658
606 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38653 

SRR7658
668 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38654 

SRR7658
605 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38655 

SRR7658
604 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38656 

SRR7658
603 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38657 

SRR7658
601 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 
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madSRS36
38658 

SRR7658
600 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38659 

SRR7658
602 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38660 

SRR7658
598 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38661 

SRR7658
599 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38662 

SRR7658
597 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38663 

SRR7658
596 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38665 

SRR7658
595 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38666 

SRR7658
593 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38667 

SRR7658
594 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38668 

SRR7658
590 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38669 

SRR7658
592 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38670 

SRR7658
591 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38671 

SRR7658
588 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38672 

SRR7658
587 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38673 

SRR7658
586 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38674 

SRR7658
589 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38675 

SRR7658
585 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38676 

SRR7658
583 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38677 

SRR7658
584 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

madSRS36
38678 

SRR7658
582 

Madagascar nonIndust
rial 

ruralAgriculture N/A N/A 

SAMEA45
45280 

SAMEA45
45280 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 
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SAMEA45
45282 

SAMEA45
45282 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45284 

SAMEA45
45284 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45288 

SAMEA45
45288 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45296 

SAMEA45
45296 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45308 

SAMEA45
45308 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45326 

SAMEA45
45326 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45332 

SAMEA45
45332 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45340 

SAMEA45
45340 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45360 

SAMEA45
45360 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45362 

SAMEA45
45362 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45364 

SAMEA45
45364 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45372 

SAMEA45
45372 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45380 

SAMEA45
45380 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45388 

SAMEA45
45388 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45394 

SAMEA45
45394 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45396 

SAMEA45
45396 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45400 

SAMEA45
45400 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45406 

SAMEA45
45406 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45412 

SAMEA45
45412 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45420 

SAMEA45
45420 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45422 

SAMEA45
45422 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 
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SAMEA45
45430 

SAMEA45
45430 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45434 

SAMEA45
45434 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45446 

SAMEA45
45446 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SAMEA45
45450 

SAMEA45
45450 

Kazakhstan Industrial Central/East 
Asian Industrial 

N/A N/A 

SM01 SRR1761
698 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM02 SRR1761
699 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM03 SRR1761
700 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM05 SRR1761
701 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM10 N/A Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM11 SRR1761
702 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM18 SRR1761
703 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM20 SRR1761
704 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM23 SRR1761
705 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM24 SRR1761
706 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM25 SRR1761
707 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM28 SRR1761
708 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM29 SRR1761
709 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM30 SRR1761
710 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM31 SRR1761
711 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM32 SRR1761
712 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM33 SRR1761
713 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 
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SM34 SRR1761
714 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM37 SRR1761
715 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM39 SRR1761
716 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM40 SRR1761
717 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM41 SRR1761
718 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM42 SRR1761
719 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM43 SRR1761
720 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SM44 SRR1761
721 

Matses, Peru nonIndust
rial 

hunterGather N/A N/A 

SRR39929
55 

SRR3992
955 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
56 

SRR3992
956 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
57 

SRR3992
957 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
58 

SRR3992
958 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
59 

SRR3992
959 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
60 

SRR3992
960 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
61 

SRR3992
961 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
62 

SRR3992
962 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
63 

SRR3992
963 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
64 

SRR3992
964 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
65 

SRR3992
965 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
66 

SRR3992
966 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
67 

SRR3992
967 

Mongolia nonIndust
rial 

pastoral N/A N/A 
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SRR39929
68 

SRR3992
968 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
69 

SRR3992
969 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
70 

SRR3992
970 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
71 

SRR3992
971 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
72 

SRR3992
972 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
73 

SRR3992
973 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
74 

SRR3992
974 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
75 

SRR3992
975 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
76 

SRR3992
976 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
77 

SRR3992
977 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
78 

SRR3992
978 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
79 

SRR3992
979 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
80 

SRR3992
980 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
81 

SRR3992
981 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
82 

SRR3992
982 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
83 

SRR3992
983 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
84 

SRR3992
984 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
85 

SRR3992
985 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
86 

SRR3992
986 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
87 

SRR3992
987 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
88 

SRR3992
988 

Mongolia nonIndust
rial 

pastoral N/A N/A 
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SRR39929
89 

SRR3992
989 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
90 

SRR3992
990 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
91 

SRR3992
991 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
92 

SRR3992
992 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
93 

SRR3992
993 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
94 

SRR3992
994 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
95 

SRR3992
995 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
96 

SRR3992
996 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
97 

SRR3992
997 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
98 

SRR3992
998 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39929
99 

SRR3992
999 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39930
00 

SRR3993
000 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39930
01 

SRR3993
001 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39930
02 

SRR3993
002 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39930
03 

SRR3993
003 

Mongolia nonIndust
rial 

pastoral N/A N/A 

SRR39930
04 

SRR3993
004 

Mongolia nonIndust
rial 

pastoral N/A N/A 

 

 

 

Supplementary Table B -  3: Proportional Contribution to Total SCFA Gene Abundance. 
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The total SCFA abundance is contributed in the following ratio 0.600:0.215:0.184 for 

Acetate:Butyrate:Propionate. This follows an expected ratio of 0.6:0.2:0.2 reported in previous 

studies.  

 

 

 

 

 

Supplementary Table B -  4: Median richness of selected SCFA-producing genera. 

 

Number of species found to encode each respective SCFA within different genera of interest. 

Bacteroides and Clostridium are at high abundance in industrial gut microbiomes and have 

many species within each genus, which drives of species richness in industrial populations.  

 

 

 

 

 

 

 

 

 

Acetate (proportion of SCFA) Butyrate (proportion of SCFA) Propionate (proportion of SCFA)

Europe/N.A Industrial 0.580 (0.001) 0.244 (0.000) 0.176 (0.001)

Central/East Asia Industrial 0.615 (0.003) 0.191 (0.003) 0.195 (0.003)

Pastoral 0.593 (0.001) 0.235 (0.001) 0.172 (0.000)

Rural Agriculture 0.615 (0.002) 0.191 (0.002) 0.195 (0.002)

Hunter Gatherer 0.588 (0.000) 0.244 (0.000) 0.168 (0.000)

Total 0.600 (0.001) 0.215 (0.001) 0.184 (0.001)

Population Bacteroides Clostridium Coprococcus Prevotella Faecalibacterium Phascolarctobacterium

Europe/N.A Industrial 9 (sd = 2.99) 3 (2.55) 2 (0.83) 0 (0.57) 2 (0.09) 0 (0.26)

Central/East Asia Industrial 8.5 (3.83) 4 (2.79) 1 (0.88) 0 (0.79) 1 (0.14) 0 (0.39)

Pastoral 5.5(3.43) 0 (1.49) 2 (0.75) 2 (0.27) 2 (0.00) 1 (0.46)

Rural Agriculture 1 (2.98) 1 (1.00) 2 (0.81) 2 (0.32) 2 (0.00) 1 (0.45)

Hunter Gatherer 1 (2.66) 0 (0.61) 2 (0.83) 2 (0.34) 2 (0.00) 1 (0.24)

Europe/N.A Industrial 9 (3.00) 1 (1.31) 1 (0.71) 0 (0.28) 0 (0.00) 0 (0.00)

Central/East Asia Industrial 8 (3.73) 2 (1.49) 1 (0.82) 0 (0.44) 0 (0.00) 0 (0.00)

Pastoral 6 (3.37) 0 (0.81) 1 (0.58) 1 (0.30) 0 (0.00) 0 (0.00)

Rural Agriculture 1 (2.89) 1 (0.87) 1 (0.78) 1 (0.35) 0 (0.00) 0 (0.00)

Hunter Gatherer 0 (2.17) 0 (0.46) 1 (0.83) 1 (0.28) 0 (0.00) 0 (0.00)

Europe/N.A Industrial 9 (2.99) 0 (0.00) 1 (0.47) 0 (0.36) 0 (0.00) 0 (0.00)

Central/East Asia Industrial 9 (3.96) 0 (0.00) 1 (0.49) 0 (0.49) 0 (0.00) 0 (0.00)

Pastoral 6 (3.40) 0 (0.00) 1 (0.48) 1 (0.14) 0 (0.00) 0 (0.00)

Rural Agriculture 1 (3.08) 0 (0.00) 1 (0.32) 1 (0.12) 0 (0.00) 0 (0.00)

Hunter Gatherer 0 (2.33) 0 (0.00) 1 (0.27) 1 (0.00) 0 (0.00) 0 (0.00)

Acetate Species 

Richness

Butyrate Species 

Richness

Propionate Species 

Richness
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Escherichia Origin 

Although Escherichia is commonly found in the vaginal microbiome, it has not been reported at 

such high levels (>50% relative abundance) before. Because Escherichia is a common lab-grown 

bacterium and is often found in the gut microbiome (293-295) we further investigated whether 

the Escherichia abundance in our samples was due to sample contamination. We did not find 

evidence to support Escherichia contamination as the source of Escherichia observed in this 

study. First, our extraction and PCR blanks sequenced in this study report a low number of total 

reads and the percent of extraction/PCR blank sequencing reads mapping to Escherichia 

compared to the average read depth in this study is minimal (median = 0.0052%, range 0 – 3%, 

Supplementary Table C - 2). The very low number of Escherichia reads in our negatives and 

blanks indicates any contribution of lab/environmental Escherichia to the high relative 

abundance in our vaginal samples is miniscule. Second, we observe a weak relationship between 

abundance of Escherichia  in the gut and vaginal microbiomes (R2 = 0.0927, Supplementary 

Figure C - 9). If fecal contamination of vaginal swabs was an issue, we would expect high fecal 

Escherichia abundance to co-occur with high vaginal Escherichia abundance, but this is not the 

case. 
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Supplementary Figures C 

Supplementary Figure C -  1A-C: Weighted UniFrac beta diversity of all vaginal microbiome 

samples 

Samples originating from the same individual had similar taxonomic composition. This informed 

our decision to combine data from the three vaginal samples per individual into a single sample 

per individual. Numbers within boxes represent sample ID. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure C -  2A-B: Proportional contribution of most abundant phyla and genera 

in the vaginal microbiome in this study. 

Contributions from low abundance phyla (A) and genera (B) were combined into ‘Other’. 

Overall, the vaginal microbiome is dominated by the common vaginal bacteria: Firmicutes, 

Proteobacteria, and Bacteroidetes at the phylum level, and Lactobacillus, Prevotella, 

Escherichia, Gardnerella, and Streptococcus at the genus level. 
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Supplementary Figure C -  3: Stacked bar chart of the proportion of samples within each study 

group that were dominated by different taxa 

Escherichia-dominated communities are overrepresented in patients with PFI < 6 months. 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure C -  4: Lactobacillus abundance has a positive association with log-

transformed cell density in each sample. 
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This means Lactobacillus dominant communities have more bacterial cells in the vaginal 

ecosystem, compared to microbiomes with less Lactobacillus. Standard error is outlined in grey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure C -  5A-B: Proportional contribution of most abundant phyla  and genera  

in the gut microbiome in this study. 

Contributions from low abundance phyla (A) and genera (B) were combined into ‘Other’. 

Overall, the gut microbiome is dominated by the expected bacteria: Bacteroidetes, Firmicutes, 

and Proteobacteria, at the phylum level, and Bacteroides, Prevotella, and Akkermansia at the 

genus level. 

 

 
 

Supplementary Figure C -  6A-C: Weighted UniFrac beta diversity for gut microbiome samples 

in this study. 
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Supplementary Figure C -  7: Genera at high abundance in fecal outlier group 

Genera belonging to the Clostridiales order (Lachnospira, Ruminococacceae, Subdoligranulum) 

are at higher abundance in the gut beta diversity outlier group. 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure C -  8: Prevotella abundance in gut microbiome of ovarian cancer 

patients. 

Patients with ovarian cancer (both platinum-sensitive and platinum-resistant) have higher levels 

of Prevotella in the gut microbiome compared to controls.  
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Supplementary Figure C -  9: Relationship between abundance of Escherichia in the vaginal and 

gut microbiomes. 

These is a very weak relationship to abundance of Escherichia in the gut microbiome. Standard 

error is outlined in grey. 

 

Supplementary Tables C 

Supplementary Table C -  1: Full lifestyle metadata for patients involved in this study 

For individuals where medical history or lifestyle metadata was unavailable, UNK was given. 

N/A is for samples where the metadata category is irrelevant  
SampleID DominantBacteriaNeuropathy StudyGroup age_years months_last_cycleChemotherapyMultiVitaminProbiotic VitaminB_FolateVitaminD Other_Dietary_SupplementsWater_sourcePet Education Income TimeOutdoorsAlchohol Floss_teeth BowelMovement_FreqPerDayBowelMovement_QualityMostRecentAntibioticsWeightChange6MonthsTonsilsRemovedAppendixRemovedHormonal_DiseaseAcid_Reflux Surgery Menopause Ethnicity HormoneReplacementTherapyHistology Residual Disease

ocm002 prevotella none PFI>24 54.9 29 no never daily daily yes bottled dog some_college <19,999 <1hr rarely rarely two normal 6 months increaseTenPoundsno yes yes yes iCRS post_menopausalWhite no serous NGR

ocm003 escherichia none PFI<6 69.5 25 no never never never no well cats_dogs highSchool_GED<19,999 <1hr never regularly one normal 6 months stable no yes no yes pCRS post_menopausalNativeAmericanno serous >1cm

ocm004 lactobacillus none PFI>24 52.9 65 no never never never no bottled dog highSchool_GED<19,999 1_3hr never regularly one diarrhea >1year stable no no no no pCRS pre_menopausalWhite no serous >1cm

ocm005 lactobacillus none PFI>24 68.9 82 no never never daily no city+bottled dog <highSchool <19,999 <1hr rarely daily four diarrhea 6 months stable no not sure yes no iCRS post_menopausalWhite yes serous <1cm

ocm007 diverse >grade2 PFI>24 68.5 53 no never never never no city+filtered dog graduate_degree>100,000 1_3hr never daily one normal 6 months stable no yes no no pCRS post_menopausalNativeAmericanno serous NGR

ocm009 diverse none PFI>24 52.8 98 yes never never daily no city cats_dogs bachelors >100,000 <1hr rarely daily <1 normal >1year stable no no no no pCRS pre_menopausalWhite yes serous <1cm

ocm012 prevotella none PFI>24 59.1 124 yes never never daily yes city+filtered dog some_college >50000 <1hr never daily one normal 1 year stable no yes no yes pCRS post_menopausalWhite no serous NGR

ocm014 diverse N/A benign 52.8 N/A no daily never never yes city no graduate_degree>100,000 <1hr never rarely one normal month stable no no no yes N/A post_menopausalWhite no N/A >1cm

ocm021 escherichia UNK PFI<6 64.8 7 UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK iCRS post_menopausalWhite no serous NGR

ocm022 escherichia none PFI>24 77.7 106 no never never daily yes city+filtered no associates NA <1hr never daily one constipated 1 year decreaseTenPoundsyes no no yes pCRS post_menopausalWhite no serous NGR

ocm024 prevotella none PFI>24 76.5 40 yes never never never no cit+bottled+filteredno highSchool_GED>100,000 1_3hr never rarely one constipated >1year decreaseTenPoundsyes no no yes pCRS post_menopausalWhite no serous NGR

ocm026 lactobacillus UNK PFI<6 45.5 10 no never never never no city dog bachelors >50000 1_3hr never rarely <1 normal 1 year increaseTenPoundsyes yes yes yes iCRS pre_menopausalWhite no serous NGR

ocm027 diverse UNK PFI<6 59.2 7 no daily never never yes bottled cats_dogs associates <19,999 >3hr never rarely two normal 6 months decreaseTenPoundsno no no no iCRS post_menopausalWhite no serous <1cm

ocm028 diverse none PFI>24 71.9 45 yes daily never daily yes city+filtered cat highSchool_GED>20,000 <1hr never daily >5 diarrhea 6 months decreaseTenPoundsyes yes yes yes pCRS post_menopausalWhite no serous NGR

ocm029 prevotella UNK PFI<6 68.3 4 no never never never no well dog highSchool_GED>50000 1_3hr never rarely three diarrhea month stable no no no no iCRS post_menopausalWhite no serous <1cm

ocm031 lactobacillus none PFI<6 47.2 7 no never never never yes bottled dog some_college >20,000 <1hr rarely daily <1 normal 6 months stable yes yes no yes iCRS pre_menopausalWhite no serous <1cm

ocm032 lactobacillus >grade2 PFI<6 56.9 6 no daily daily daily yes bottled cats_dogs_othergraduate_degree>50000 1_3hr regularly daily one normal >1year increaseTenPoundsyes no yes yes iCRS post_menopausalWhite no serous >1cm

ocm033 diverse >grade2 PFI>24 73.66 68 no never never never no bottled cats_dogs bachelors <19,999 <1hr never daily four normal >1year stable no yes yes no pCRS post_menopausalBlack no serous NGR

ocm034 prevotella >grade2 PFI>24 77.9 61 no daily never daily yes cit+bottled+filtereddog some_college >20,000 1_3hr rarely never one normal month increaseTenPoundsno no no yes pCRS post_menopausalWhite no serous NGR

ocm036 gardnerella >grade2 PFI>24 51 39 no never never never no filtered cats_dogs highSchool_GED>20,000 <1hr never regularly >5 normal 6 months decreaseTenPoundsyes yes no no pCRS pre_menopausalWhite no serous NGR

ocm043 diverse none PFI>24 70.2 67 yes never daily daily yes city+bottled no bachelors >50000 <1hr never never one diarrhea week UNK UNK UNK UNK UNK iCRS post_menopausalWhite yes serous >1cm

ocm044 lactobacillus >grade2 PFI>24 58.2 18 no never never never no bottled dog highSchool_GED>20,000 <1hr never never three diarrhea 1 year increaseTenPoundsno yes no no pCRS post_menopausalWhite no serous NGR

ocm045 lactobacillus none PFI>24 67.9 42 yes never daily daily NA bottle+filteredcat highSchool_GED>20,000 1_3hr never daily three normal 6 months increaseTenPoundsyes yes yes no pCRS post_menopausalWhite no serous NGR

ocm046 diverse none PFI>24 64.4 54 no daily daily rarely yes well dog graduate_degree>100,000 1_3hr regularly daily one normal 6 months increaseTenPoundsyes yes yes no pCRS post_menopausalWhite no serous NGR

ocm047 lactobacillus none PFI>24 70.2 87 NA never never daily yes well cats_dogs_othersome_college >20,000 <1hr never never two normal 6 months stable no no yes yes pCRS post_menopausalWhite no serous <1cm

ocm049 lactobacillus >grade2 PFI>24 47.5 8 no never never never no well cats_dogs_othersome_college <19,999 >3hr rarely regularly one normal 6 months decreaseTenPoundsyes yes no yes iCRS pre_menopausalWhite no serous NGR

ocm051 diverse none PFI>24 45.5 45 no never never never no well+bottled dog bachelors >100,000 <1hr regularly regularly >5 diarrhea week stable no yes no yes pCRS pre_menopausalWhite no serous NGR

ocm057 prevotella UNK PFI<6 74.9 18 no never never never yes filtered no some_college >50000 <1hr rarely rarely two normal 6 months stable no yes no yes pCRS post_menopausalWhite no UNK NGR

ocm058 diverse N/A benign 79 N/A yes never never never yes well+bottled dog graduate_degreeNA <1hr rarely rarely three diarrhea 1 year decreaseTenPoundsno yes no no N/A post_menopausalNativeAmericanno N/A >1cm

ocm060 lactobacillus none PFI>24 60.9 150 yes daily daily daily yes filtered no bachelors NA <1hr never regularly two dont Know 1 year stable no no no yes pCRS pre_menopausalWhite no serous >1cm

ocm061 escherichia none PFI<6 64.6 9 no never never never no well dog some_college >100,000 NA never rarely one constipated month stable no no no yes iCRS post_menopausalWhite no serous >1cm

ocm063 gardnerella UNK PFI>24 58.6 UNK yes never rarely daily yes bottle+filtereddog some_college NA <1hr never daily one normal 6 months increaseTenPoundsyes no no no pCRS pre_menopausalWhite yes serous NGR

ocm070 diverse UNK PFI<6 65.4 38 no daily daily never yes city cats_dogs graduate_degree>100,000 >3hr regularly daily two normal 6 months increaseTenPoundsnot sure yes yes no pCRS post_menopausalWhite no serous NGR

ocm071 lactobacillus N/A benign 57.8 N/A yes never never never no city cats_dogs_otherbachelors >50000 1_3hr rarely daily one normal month decreaseTenPoundsno yes no no N/A post_menopausalWhite no N/A >1cm

ocm075 diverse UNK PFI<6 62.5 6 yes UNK never never no bottled NA some_college >50000 <1hr never rarely four normal month stable no no yes yes no surg post_menopausalWhite no serous >1cm

ocm084 prevotella N/A benign 33.7 N/A UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK N/A pre_menopausalNativeAmericanno N/A >1cm

ocm088 escherichia none PFI<6 53.6 1 no never never never no bottled no graduate_degree>100,000 1_3hr never never two normal 6 months increaseTenPoundsno no no no iCRS pre_menopausalBlack no serous >1cm

ocm089 prevotella none PFI<6 82.7 6 no never daily never no bottled no some_college >20,000 <1hr rarely never <1 constipated month stable yes yes no yes iCRS post_menopausalWhite no serous <1cm

ocm091 gardnerella UNK PFI<6 38.5 35 yes never daily never yes well cats_dogs associates >50000 1_3hr rarely daily <1 normal 6 months stable no no yes no iCRS pre_menopausalWhite no serous NGR

ocm093 prevotella >grade2 PFI>24 59.7 72 yes never never never no filtered cat highSchool_GEDNA <1hr rarely never four diarrhea week stable no yes no no pCRS post_menopausalWhite no serous NGR

ocm094 diverse UNK PFI<6 73.6 3 yes never daily daily yes filtered no some_graduate_school>50000 <1hr never regularly one dont Know 6 months decreaseTenPoundsyes no yes yes iCRS post_menopausalWhite no serous >1cm

ocm096 diverse >grade2 PFI>24 63.6 41 no never never never yes city+filtered dog bachelors >20,000 <1hr never daily three normal month stable no yes yes yes pCRS post_menopausalWhite no serous <1cm

ocm098 diverse >grade2 PFI<6 75.1 15 yes daily never daily yes bottled other_pet associates <19,999 <1hr never never two normal week stable yes yes yes yes iCRS post_menopausalWhite no serous <1cm

ocm099 diverse N/A benign 61.9 N/A no never never regularly no city+bottled dog highSchool_GED>100,000 <1hr regularly regularly one normal month decreaseTenPoundsyes yes no no N/A post_menopausalWhite no N/A >1cm

ocm106 escherichia UNK PFI<6 58 3 no never never rarely no filtered cat bachelors >100,000 <1hr never regularly two diarrhea 6 months decreaseTenPoundsno yes no yes iCRS post_menopausalWhite no serous <1cm
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Supplementary Table C -  2: Raw Escherichia reads from extraction negatives and PCR blanks 

Number of raw reads mapping to Escherichia from all extraction negatives (EXN) and pcr 

blanks (pcrBlanks) that were sequenced across the entirity of this analysis. The average 

unrarefied read depth across all samples in our dataset is 38,818. The percent reads mapping to 

Escherichia compared to the average total read depth is also provided. The number of reads 

mapping to Escherichia in our extraction negatives and pcr blanks is very low and indicates lab 

contamination does not explain Escherichia abundance in our dataset. 

 
originalName newName EscherichiaReads PercentOfAverageUnrarefiedReadDepth

OCM.EXN.EXN.V4R.001 EXN01 70 0.1803

OCM.EXN.EXN.V4R.002 EXN02 634 1.6333

OCM.EXN.EXN.V4R.003 EXN03 55 0.1417

OCM.EXN.EXN.V4R.004 EXN04 24 0.0618

OCM.EXN.EXN.V4R.005 EXN05 12 0.0309

EXN06 EXN06 4 0.0103

EXN07 EXN07 25 0.0644

EXN08 EXN08 0 0.0000

EXN09 EXN09 2 0.0052

EXN10 EXN10 0 0.0000

EXN11 EXN11 4 0.0103

EXN12 EXN12 0 0.0000

EXN13 EXN13 0 0.0000

EXN14 EXN14 333 0.8578

EXN15 EXN15 0 0.0000

EXN16 EXN16 629 1.6204

EXN18 EXN17 0 0.0000

EXN19 EXN18 2 0.0052

EXN20 EXN19 1 0.0026

EXN26 EXN20 22 0.0567

EXN27 EXN21 0 0.0000

EXN28 EXN22 0 0.0000

EXN31 EXN23 1175 3.0269

OCM.EXN.EXN.V4R.EXN EXN24 0 0.0000

OCM.BLK.XXX.V4R.001 pcrBlank01 18 0.0464

OCM.BLK.XXX.V4R.002 pcrBlank02 10 0.0258

pcr.bl.1 pcrBlank03 3 0.0077

PCR.BL.2 pcrBlank04 0 0.0000

PCR.BL.3 pcrBlank05 0 0.0000

PCR.BL.4 pcrBlank06 1 0.0026

PCR.BL1 pcrBlank07 1 0.0026

PCR.BLK pcrBlank08 0 0.0000

PCRBL1 pcrBlank09 4 0.0103

PCRBL2 pcrBlank10 2 0.0052
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