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Abstract 

The stable isotope values from both the orgamc (collagen, 813C, 815N) and 

inorganic (hydroxyapatite, 813C, 8180) components within fossil bison bones and teeth 

were used to determine climatic shifts in Oklahoma during the Late Pleistocene/Early 

Holocene, especially across a period known as the Younger Dryas (12,800 to 11 ,500 cal 

B.P.). Globally, the Younger Dryas is a period of cooler, drier climatic conditions. 

Fossil bison samples were collected from ten different kill sites within Oklahoma and 

Texas, ranging in age from 13,350 to 1,700 cal B.P. Modern bison samples were 

collected from a wildlife preserve in Oklahoma for comparison purposes. Because 

collagen degrades over time, collagen preservation was assessed by comparing the 

relative amino acid distributions within fossil samples to a modern collagen sample. 

The amino acid hydroxyproline is unique to collagen, so its presence in fossil collagen 

is a strong indicator of preservation. Based on the carbon isotope values, the bison diet 

consisted of primarily C3 grasses during the Younger Dryas, indicating a cooler climate 

in Oklahoma at this time. Depleted nitrogen values indicate a humid environment 

within Oklahoma during the Younger Dryas. Depleted oxygen values also confirm a 

cooler, wetter environment during this period. 
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Introduction 

Purpose 

The stable isotope composition of orgamc ( collagen) and 
. . 
morgamc 

(hydroxyapatite) constituents within bones and tooth enamel of fossil and modern 

herbivores can provide information concerning diet (e.g. , C3 vs. C4 plants) and 

environmental conditions ( e.g. , DeNiro and Epstein 1978; Sullivan and Krueger 198 l ; 

Lee-Thorp et al. 1989; Cerling et al. 1997; Jahren et al. 1998; Koch 1998; Balasse et al. 

1999; Larson et al. 2001 ; Balasse 2002; Ambrose and Krigbaum 2003 ; Hoppe et al. 

2006; Bernard et al. 2009; Britton et al. 2009; Clementz et al. 2009; Widga et al. 201 O; 

Zazzo et al. 2012). In the present study, we measured the stable isotope composition of 

protein (<5 13C, 8 15N) and carbonate within hydroxyapatite (8 13C, 8 180) from bones and 

teeth of modern and fossil bison from Oklahoma to determine the extent to which the 

isotope compositions of these components are reliable proxies for diet and/or 

environmental conditions. The fossil bison are from ancient kill sites in Oklahoma and 

Texas that include a time interval of intense cold (approximately 12,800 to 11 ,500 cal 

B.P.) known as the Younger Dryas. Fossil samples from kill sites slightly older than and 

younger than the Younger Dryas were also analyzed for comparison. It is hypothesized 

that if the fossil materials are sufficiently well-preserved (which will be determined by 

comparison to modern bison proteins), their stable isotope compositions will reflect 

changes in vegetation associated with this brief shift in climatic conditions. 

Bone and Teeth 

Bones and teeth are composed of organic and inorganic components. Bone is 

comprised of approximately 65-70% inorganic material and 24-26% organic material. 
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Tooth enamel contains more than 96% by weight inorganic material and less than 1 % 

organic material. The mineral hydroxyapatite (Ca 1o(PO4) 6(OH)2) makes up most of the 

inorganic component of bone and teeth and contains a small amount of carbonate, while 

the organic component consists primarily of collagen, a fibrous protein. Tooth enamel 

has very low porosity, while bone is very porous (Wang and Cerling 1994). 

Bone Collagen 

The organic component of bone is made up of a fibrous protein called collagen. 

Collagen accounts for 90% of organic material in bone (Hedges et al. 2005). 

Carbohydrate-derived keto-acids are used by herbivores to synthesize a significant 

portion of the amino acids that comprise their collagen (Krueger and Sullivan 1984). 

The most abundant amino acid within collagen is glycine (Hare et al. 1991) but collagen 

also contains significant amounts of alanine, praline, and hydroxyproline (Brown 1975) 

(Table 1 ). Most of the nitrogen within collagen comes from dietary protein (Hedges et 

al. 2005). Bone collagen has a slow rate of turnover, so it is thought to represent a single 

growing season signal (Jahren et al. 1998). However, the collagen within fossil samples 

of pre-Holocene age is often poorly preserved due to diagenetic factors and may not be 

reliable for isotopic reconstruction of, for example, paleodiet (Wang and Cerling 1994). 

Conversely, a cold, dry environment is ideal for collagen preservation (Topalov et al. 

2012), which could mean that the collagen within the samples from the Younger Dryas 

would be better preserved. 

2 



Table 1 
Amino acid composition of bovine collagen a 

Bovine skin 
type I 

Amino acids collagen (%) 

Alanine 10.50 
Arginine 4.80 

Aspartic Acid 4.80 

Cysteine ---
Glutamic Acid 8.01 

Glycine 33.40 

Histidine 0.46 

Hydroxyproline 9.20 

Isoleucine 1.10 

Leucine 2.50 

Lysine 2.50 

Methionine 0.66 
Pheny }alanine 1.30 

Proline 12.90 

Serine 3.80 

Threonine 1.70 

Tyrosine 0.47 

Valine 1.90 
a Modified from Jiang (2006). 

Enamel Hydroxyapatile 

The inorganic component of tooth enamel is composed of hydroxyapatite, a 

calcium phosphate mineral (Lee-Thorp et al. 1989). This component accounts for 90% 

of the inorganic material (Larson et al. 2001 ). The carbonate associated with enamel 

hydroxyapatite is one of the most useful targets for isotopic analysis because it is less 

susceptible to diagenetic alteration than bone (Balasse 2002 and references therein). 

Once formed, enamel is not replaced, so the isotopic signatures are retained throughout 

an organism ' s life (Balasse 2002). Changes in the carbon and oxygen isotope 
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compositions of an animal ' s hydroxyapatite are caused by environmental and 

behavioral processes reflected in the enamel of developing teeth (Passey and Cerling 

2002). The carbon isotopic signature within hydroxyapatite carbonate reflects the food 

consumed, whereas the oxygen isotopic signature within hydroxyapatite phosphate and 

carbonate reflects the water consumed (Balasse 2002 and references therein). 

Bone Hydroxyapatite 

Unlike enamel hydroxyapatite, the carbonate associated with bone 

hydroxyapatite is replaced throughout an animal ' s life; thus, its carbon isotopic 

signature is representative of the average carbon consumed during an animal ' s lifetime 

(Clementz et al. 2009). However, higher growth and turnover rates during the animal ' s 

early life (Hedges et al. 2007) have a heavy influence on these 8 13C values (Clementz et 

al. 2009). Carbon and oxygen within the carbonate of bone comes from dissolved 

bicarbonate in the blood, whlch is precipitated during skeletal development (Krueger 

and Sullivan 1984). Because of the small hydroxyapatite crystals and soft, porous nature 

of bones, as compared to tooth enamel, once exchange and fixation of carbonate during 

diagenesis of bone ( e.g. , recrystallization) occurs, bone hydroxyapatite becomes 

unreliable for isotopic analysis (Ambrose and Krigbaum 2003). Bone hydroxyapatite 

samples of Pleistocene or older age are often diagenetically altered (Ambrose and 

Krigbaum 2003 ). 

Diagenesis 

The use of hydroxyapatite carbonate o 13C analysis in paleodietary reconstruction 

1s now common. However, the proclivity of bone to diagenesis requires careful 

preparation of carbonate samples to ensure that isotopic signals being obtained are 
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original (Garvie-Lok et al. 2004). sing both the organic and inorganic pha e of bone 

in isotopic analysis can yield good results with appropriate precaution . In the ca of 

material over a few thousand years old, unless special condition ha e pre r ed 

collagen ( e.g., freezing), analysis of the organic phase of bone i no longer practical due 

to deterioration. However, dense bone in some anatomical sites (e.g., petrous) may 

preferentially preserve collagen for more extended periods of time (Bement et al. 

2012b). Using the inorganic phase, which is more stable in fossil material. allow 

dietary analysis of bone over 10,000 years old (Sullivan and Krueger 1981 ). Up to 50 

million year old herbivore teeth have been used in analysis of tooth enamel (Ambrose 

and Krigbaum 2003 and references therein). Due to the hard, nonporous nature and 

large, dense hydroxyapatite crystals in tooth enamel. original isotopic signatures are 

more likely to be retained because of the low susceptibility to diagenetic alteration 

(Ambrose and Krigbaum 2003 and references therein). If collagen is preserved, the 

carbon isotopic signatures from both collagen and hydroxyapatite are useful because 

they reflect different dietary sources (Garvie-Lok et al. 2004). The o13C values of 

collagen represent dietary carbon from proteins, whereas hydroxyapatite o 13C values 

represent overall dietary carbon (Ambrose and Krigbaum 2003). In the present tudy, 

the preservation of collagen in fossil arnples was determined by comparing the relative 

distribution of amino acids in the modern samples to the fos ii samples. 

C, , and O 1 otopes 

Stable carbon isotope values of collagen and hydroxyapatite of bone and tooth 

enamel reflect the o13C values of the plants that herbivores , uch as bi on eat. Th 013 

values of these grazing animals reflect the distribution of 3 v . 4 gra es within an 
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area. These values can then be correlated to climat . o the 8
10 

alue from fo ii bi n 

grazers can be used a a proxy for recon tructing paleoclimate and paleo g tation 

(Hoppe et al. 2006). 

Stable nitrogen isotope values within the collagen of bones al o refl ct the 8 15N 

values of the ingested vegetation. The 8 15 alues can also be u ed to a es the relati e 

atmospheric humidity of an area (Pate and Anson 2008). Higher 8 15 al ue corre pond 

to more arid environments (Topalov et al. 2012 and references therein). This can be due 

to loss of urea, which is enriched in 14 
• or related to adaptations for drought tolerance 

(Koch 1998 and references therein). 

Stable oxygen i otope values within the carbonate in hydrox apatite of tooth 

enamel reflect the 8 180 values of the water that animals drink (Bala e 2002 and 

references therein). Assuming hydroxyapatite forms in equilibrium with the oxygen 

isotopic value of body water within animals, these 8 180 alue can be used as a proxy 

for reconstructing surface and meteoric water paleotemperatures (Koch 1 998). The 8 180 

values can also be used to reconstruct moisture variations ordt 2001). High 8 180 

values correspond to warmer, drier climatic periods. while low 8 180 values corre pond 

to cooler, wetter climatic periods (Dansgaard 1964). 

C3 and C-1 Plants 

Plants primaril y use either a C3 and/or C4 photos nthetic pathway. Tree . shrub . 

woody plants, and cool-season gras u e the C3 pathway, wherea arm- ea on 

grasses and corn use the C4 pathwa Temperature and pre ipitation are the main 

controlling factors in the di tribution of th e plant . The , plant pr fer cool, moi t 

conditions, while C4 plants prefer warm. dry condition (Hare et al. 1991: Lar on et al. 
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200 1). The average 813C value for C3 plants is -26.5 %0, ranging from -20 to -35 %0, 

whereas the average 813C for C4 plants is -12.5 %0, ranging from -9 to -16 %0 (Hare et al. 

1991 ). Due to metabolism, the 8 13C value within collagen of an animal ' s diet becomes 

enriched by 5-6 %0 relative to the vegetation consumed, whereas the 8 13C value within 

hydroxyapatite becomes enriched by 12 %0 (Larson et al. 200 1) (Figure 1 ) . 

Atmospheric CO2 
C3 photo~r;~~e/ ~ _6 S%o ~4 p~o~osynthesis 

~ -19/ · ~ 55%o 

C3 plants C4 plants 
~ -26%0 '-- ~ ~ -12%0 

~ animal metabolism & biosynthesis , 

C3 feeders: 
apatite ~ -13%a 

collagen~ -21 %c 

C4 feeders: 
apatite ~ + 1 %a 

collagen ~ -7%o 

. . ,~ ... ·: .r=·<· . , : . .. . . ·. , ·;.'.;:,-:: .... ~- ··. ': -., _.. -.. :_ ~\ i/ ~11-)L ~~'::,{'(~ -'. ~t:1❖. (:::' :- . . 

Figure 1. Fractionation of carbon through the C3 and C4 pathways. Modified from Koch 
(1998) . 

Younger Dryas 

After the All ernd warming period at the end of the last glaciation, the Younger 

Dryas, a reversal to a cooler, drier climate, occurred. This lasted from approximately 

12,800 cal B.P. unti l 11,500 cal B.P. The exact timi ng of this period, as well as the 

reasons for this abrupt climate shift, has yet to be determined. However, data from the 

Greenland Icecore Project (GRIP) and Greenland Ice Sheet Project II (GISP2) reveal a 

distinct shift in climate during the suggested time span (Alley 2000). Possible 

7 
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hypotheses for the cause of the Younger Dryas include a comet impact, solar radiation, 

and changes in ocean or atmospheric circulation (Fiedel 2011 ). The name of this 

reversal period comes from the Dryas octopetala, an arctic plant that is present in fossil 

po11en deposits from northern Europe. This cooling period is also marked by an abrupt 

extinction of large animals. However, bison, because of their large numbers, survived 

(Haynes, Jr. 2008); thus, there are bones available from this time period for this study. 
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Sample Collection 

All of the bison samples used in this study were provided by Professor Leland 

Bement of the Oklahoma Archeological Survey. Modern samples from the same bison 

specimen included a rib bone and a mandible containing three premolars and three 

molars, which were collected from the Wichita Mountains Wildlife Refuge near 

Lawton, Oklahoma. The modern set of samples was used to develop a method for 

isolating collagen for stable isotope and amino acid analysis and for isolating 

hydroxyapatite for stable isotope analysis. 

Fossil bison samples were obtained from nine kill sites in Oklahoma and one kill 

site in Texas. The locations of the kill sites are shown in Figure 2. The types of bone 

samples collected from each kill site are listed in Table 2. It should be noted that in 

cases where more than one tooth and/or bone were collected at a kill site, the specimens 

came from more than one animal. Anatomical sites for the bison bones and teeth are 

shown in Figures 3 and 4, respectively. 

9 



1 Military Trail I 5. 6 . • 1. 2. 3. -l se I ) Jake Bluff 

I 79· ~ Cooper .) 

4 Badger Hole 
5 Bull Creek e 6 RaYe11scroft 
7 Big Lake 11 . 
8 Kubik 
9 Hanel ~~ 
10 Ce11ain ~ 
11 \Vicluta Mountains 

\Vildlif e Refuge 

Figure 2. Location map of sample sites within Oklahoma and Texas. 
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Table 2 
Name, age, and type of sample collected at each site. 

# Sample 
1 tibiaa.b.c 

2 third molara.b.c 

~ second molal·b·C, 2 third molars\ 2 petrous _) 

bonesa. b.C, femura.b.c 

4 second molal·b·C, third molar\ petrous 
bonea.b,c, radiusa.b,c, 2 humerus bonesa,b.c 

5 . . a 
mc1sor 

6 third molar\ petrous bonea.b.c 

7 third molara 

8 long bonea.b,c 

9 third molar\ petrous bonea.b.C, carpala.b,c 

10 third molar\ petrous bonea.b.c 

11 3 premolars\ 3 molarsa·\ mandiblea,b,c, 
riba.b,c 

a I ~ I ~ 8 C and 8 0 analysis of hyd1 oxyapat1te carbonate. 
b 813C and 815N analysis of collagen . 
c Amino acid analys is. 
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Site 

Military Trail 

Jake Bluff 

Cooper 

Badger Hole 

Bull Creek 

Ravenscroft 

Big Lake 

Kubik 

Harrel 

Certain 

Wichita Mountains 

Age 

13,350 cal B.P. 

12,850 cal B.P. 

12,550 cal B.P. 

12,350 cal B.P. 

10,000 cal B.P. 

10,000 cal B.P. 

8,900 cal B.P. 

5,700 cal B.P. 

2,350 cal B.P. 

1,700 cal B.P. 

modern 
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Figure 3. Bison skeleton (Todd 2001) . 
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Figure 4. Bison mandible (Todd 2001). 
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Modern Site 

All of the modern bison bone and teeth samples are from the Wichita Mountains 

Wildlife Refuge. located in Comanche County, OK, near Lawton. 

Fossil Kill Sites 

The ages of the fossil sites were given in radiocarbon years before present ( 14C 

yr B.P.), but were converted to calibrated years before present (cal B.P .) using the 

Calib6 l l program. 

Certain is located in northeastern Beckham County, OK, just a few kilometers 

northwest of Elk City between the North Fork of the Red River and Sandstone Creek. 

The site is part of the Rolling Redbed Plains, which is divided by gullies and canyons 

that have been eroded to expose the kill site. The geology includes Permian sandstone 

and shale bedrock (Bement and Buehler 2000 and references therein). 

Han-el is located west of the Gypsum Hills at the eastern edge of the High Plains 

and north of the north bank of the Canadian River in Ellis County, OK. Geology of the 

area includes Permian bedrock belonging to the Cloud Chief and Quartermaster 

formations, which is superpositioned by late Pleistocene and Holocene wind-blown 

sands, and overlain by Tertiary sands, silts, and clays from the Ogallala formation 

(Carlson et al. 2013 and references therein). 

Kubik is located in north central Oklahoma in Kay County, along the west side 

of Little Beaver Creek (Marjorie Duncan, OU, 2014, unpublished manuscript). 

Big Lake, the largest saline lake on the western Edwards Plateau of Texas, is 

located in Reagan County within the Eldorado Divide (Turpin et al. 1997 and references 

therein). 
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Ra en croft is located in western Beaver County, OK. along the left flank of a 

Bull Creek tributary (Bement et al 2012a). Bull Creek is located 0.5 mil es away from 

the Ravenscroft site along the boundary of the High Plain and Plai n Border. Bull 

Creek is a tributary of the Beaver River that overlies Permian rocks. including Dog 

Creek Shale. Whitehorse Group, Cloud Chief Formation, and Quartermaster Formation. 

Rocks in these formations consist of shale and sandstone along with traces of gypsum 

(Bement et al. 2007 and references therein). 

The Badger Hole, Cooper, Jake Bluff, and Military Trail kill sites are all located 

111 Harper County, OK along the Beaver River. These sites are arroyo traps that cut 

through sandstone bedrock and contain bison remains. Cooper is located 700 meters 

east of Badger Hole; Jake Bluff is located 300 meters east of Badger Hole and 400 

meters west of Cooper; and Military Trail is approximately one mile from Jake Bluff 

(Bement et al. 2012b) (Figure 5). 

Figure 5. Locations of three kill sites along Beaver River in the Oklahoma Panhandle 

(Bement et al. 2012b ). 
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Experimental Methods 
Sample Preparation 

Small pieces of the densest parts of bone from the modern and fossi I am pies 

were sliced off using a diamond saw. Enam el from modern and fo sil teeth samples wa 

removed and separated from dentine using a dental drill. The samples were cleaned in 

distilled water in an ultrasonic bath and then dried before crushing or powdering with a 

mortar and pestle. 

Collagen Isolation 

Crushed samples were prepared for collagen iso lation us111g a modifi ed 

procedure based on the method of DeNiro and Epstein (1978) . Approximately 0.5- 3.0 g 

of each sample (Table 1) were treated separately in uncovered l 00 mL beakers with 50 

mL of 1 M HCl for 20 minutes and then filtered through Whatman glass fiber filters. 

The filters were placed on aluminum foil and covered with foil to dry overnight. 

The dried bone samples were scraped from the filters and placed in separate 250 

mL glass beakers. A slightly acidic solution consisting of one drop of 6 M HCl in 50 

mL of distilled H20 was added to each beaker. Each solution was heated (80°C) and 

continuously stirred with a magnetic stir bar for l 0 hours. ext. the solutions were 

cooled to room temperature and allowed to sit overnight. 

Each solution, containing one of the bone samples, was filtered through a 

Whatman glass fiber filter and rinsed three times with approximately 50 mL of di stilled 

H20. The filtrate was concentrated on a rotary evaporator down to approximately 2 mL 

and then transferred to a 4 mL vial and evaporated under 2 over a heating block. The 

15 



resulting products, i.e. , collagen, were later analyzed for their respective amino acid 

distributions and stable isotope compositions using the procedures described below. 

Amino Acid Analysis 

Because fossil bone is relatively porous, the potential for collagen to be 

degraded and/or leached from bone subsequent to burial is a concern (Collins and Riley 

2000 and references therein). The C:N values for collagen isolated from fossil bones 

and/or teeth are often used as an indicator for preservation ( e.g. , Ambrose 1990). 

However, it is important to keep in mind that C:N values are of total organic extracts, 

which may contain materials other than collagen. Another test for the extent to which 

collagen has been preserved in fossil bone is to compare its amino acid distribution and 

stereochemistry to that of modem bovine collagen. Amino acid analysis is the most 

precise way to determine the possible presence of fossil collagen in that there are 

several ammo acids, in particular hydroxyproline, that are specific to collagen and 

rarely occur 111 any other types of protein. The following methods were used to 

determine the amino acid distribution and stereochemistry of collagen isolated from 

modern and fossil bison bone and teeth samples in this study. 

Hydrolysis 

Approximately 2.5-45 .0 mg of each collagen sample was placed in a 25 

mL Pyrex tube. Exactly 2 mL of 6 N HCl was added to each tube, sealed under a 

stream ofN2 with a Teflon lined cap, and then heated for 24 hours at 100°C. The 

hydrolyzates were allowed to cool to room temperature, then transferred to 4 mL 

vials, and evaporated to dryness under N2. 

16 



Amino Acid Derivatization 

Because amino acids are not volatile, analysis of their distribution and 

stereochemistry by combined gas chromatography/mass spectrometry (GC/MS) 

requires that the compounds be derivatized to trifluoroacetyl isopropyl esters. 

Esterification 

Approximately 0.3 mL of isopropanol that was acidified to 3 N 

by the addition of a stoichiometric amount of acetyl chloride was added 

to each vial and then sealed under N2 with a Teflon cap. The vials were 

placed in a heating block at l l 0°C for one hour. Next, the samples were 

allowed to cool to room temperature and then were evaporated to 

dryness under N2 . A summary of the esterification step is shown below 

(Figure 6). 

H 0 
I II 

+ H/1-C-C -OH 
I 
R 

Amino Acid 

Acylation 

+ 

lsopropanol Amino Acid 
lsopropyl Ester 

Figure 6. Amino acid esterification (Silfer 1991 ). 

+ 

Approximately 0.5 mL of methylene chloride and 0.2 mL of 

trifluoroacetic anhydride was added to each vial and then sealed with a 

Teflon cap. The vials were placed in a heating block at 1 l 0°C for 10 

minutes. The samples were allowed to cool to room temperature and then 
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were evaporated under N2. A summary of the acylation step is shown 

below (Figure 7). 

Amino Acid 
lsopropyl Ester 

Trifluoroacetlc 

Anhydride 

N-TFA Amino Acid 

lsopropyl Ester 

Figure 7. Amino acid acylation (Silfer 1991). 

GCIMS Analysis 

Once derivatization was completed, the ammo acids were analyzed using a 

Hewlett Packard GC/MSD equipped with a 50 m x 0.25 mm (i.d.) fused silica capillary 

column coated with an optically active stationary phase (Chirasil-Val). Approximately 1 

mL of dichloromethane was added to each sample and approximately 0.5 µL was 

injected into the GC/MS to determine amino acid distributions and stereochemistry. 

Bone and Tooth Enamel Hydroxyapatite Isolation 

Samples were cleaned with a dental drill to remove excess dirt. Approximately 5 

mg of each powdered sample was prepared for isolation of hydroxyapatite according to 

a modified version of the method described by Koch et al. (1997). Each bone and tooth 

sample from both modern and fossil bison was placed in separate glass vials to which a 

few mL of 2.5% NaOCl were added. The vials were sealed with Teflon-lined caps and 

allowed to sit overnight at room temperature. This procedure removes any organic 

matter, such as collagen, that is present in the bone that might interfere with the stable 

carbon isotope analysis of the hydroxyapatite carbonate. To test the effectiveness and 

the necessity of using this procedure, a duplicate set of bone samples that were not 
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treated with NaOCl were analyzed directly for the stable carbon isotope composition of 

their hydroxyapatite carbonate fractions. 

Stable Isotope Analysis 

The stable carbon and nitrogen isotope compositions of collagen samples were 

determined using the following method and are repo1ied in standard delta notation using 

the following equation: 

bsample = (Rsample / R standard - 1) 1 000 

where R is the ratio of the heavy isotope to the light isotope of 

the element ( e.g., R = 13C/ 12C for carbon). 

For organic carbon isotope analysis, approximately 200-300 µg of collagen was 

analyzed using a Costech (Valencia, CA) 4010 Elemental Analyzer (EA) that is 

equipped with a furnace reactor column packed with the reagents chromium oxide 

(Costech 011001) and silvered cobalt oxide (Costech 011007) in accordance with the 

Costech 4010 manual at a furnace temperature of 1000 ° C. The reduction column is 

packed with copper reduced wire (Costech 011013) at a temperature of 650°C. The GC 

column is at a temperature of 55°C. In cases where stable carbon and stable nitrogen 

isotope compositions were simultaneously determined for a sample, the same method 

was employed with one modification, i.e. , the magnet of the mass spectrometer was 

jump calibrated from N2 to CO2 to allow for duel measurement of carbon and nitrogen 

isotopes within the same run. 

The samples were weighed on a micro-balance and wrapped in tin capsules 

(Costech 041074) and then placed in sequence in a Costech zero blank autosampler 

which is mounted on the elemental analyzer. The samples were purged with high purity 

19 



helium (99.9999%) to remove air and then analyzed by flash combustion. The resulting 

sample peak is carried by a helium stream at a flow rate of 100 mL/min to a Thermo 

Conflo III interface with dilution which is connected to the ion source of a Thermo 

Delta V Plus isotope ratio mass spectrometer. The 8 I 3C values are reported relative to 

the VPDB standard, while the 815N values are reported relative to N2 in air. 

The stable carbon and oxygen isotope composition of the hydroxyapatite 

carbonates were determined using the following method: 

Approximately 200-300 µg of carbonate was loaded into 12 mL borosilicate 

vials (Labco 938 W) which were sealed with butyl rubber septa caps. The vials were 

then placed in a temperature-controlled sample tray heated at 50°C and flushed with 

ultra high purity He (99.999%) using a Thermo Gas Bench II equipped with a Combi 

PAL autosampler flushing needle for 360 seconds to remove air. Next, 0.4 mL of 100% 

phosphoric acid was manually injected into the vials with a syringe and the reaction was 

allowed to proceed for at least 1 .5 hours. The vials were then sampled with the PAL 

measurement needle and the headspace CO2 was analyzed for 8 I 3C and 8180 using a 

Thermo Delta V Plus isotope ratio mass spectrometer. 

The carbon and oxygen isotopic compositions are reported 111 standard 8-

notation: 

◊ sampl e = (Rsample / R standard - 1) 1000 %0 

where R is I 3C / I2C for carbon and 180 / 160 for oxygen. 

The average 8 value of 10 sample pulses is expressed relative to VPDB on a 

scale such that 813C and 8180 ofNBS-19 is+ 1.95 %0 and -2.20 %0, respectively. 
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In cases when comparing previous studies to the present study in the discussion 

to follow, oxygen values that were reported in VSMOW were converted to VPDB using 

the equation below: 

VPDB = (VSMOW - 30.86) / 1 .03086 
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Results 

The stable isotopic measurements of collagen (8 13C and 815 
) and 

hydroxyapatite (8 13C and 8180) from the bones and teeth of modern and fossil bison 

from each site are summarized in Tables 3 to 12. Graphical representations of these 

results can be seen in Figures 8 to 13 . Chromatograms from the GC/MS analyses of the 

amino acid distribution of the collagen samples are shown in Figures 14 to 29. 
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Table 3 
Isotopic values of collagen and hydroxyapatite for the modern bison bones and teeth. 

Sample 

P2 

P2 (dup) 

P3 

P3 (dup) 

P4 

P4 (dup) 

Ml 

M l (dup) 

M2 

= M2 (dup) 
;.. M2a 
Q) 

M2 (dup)3 
"'O 
0 M3 

~ 
M3 (dup) 

M3a 

M3 (dup)3 

Ma ndible 

Mandible (dup) 

Mandible a 

Mandible (dup)3 

Rib 

Rib (dup) 
Riba 

Rib (dup)3 

a Re-runs of same sample material. 
b Not treated with 2.5% NaOCI. 

Collagen H ydroxya pat ite 

813c %0 815N %0 
813c %0 813c %0 8180 %0 

(VPDBl (VPDB) (VPDB, 

25°C) 

-7.04 -6. 14 -8. 16 

-7.12 

-7.37 -7.42 -2.3 8 

-7.40 

-7.53 -7.24 -3.10 

-7.5 1 

-8.29 -7.55 -6.2 1 

-8.20 

-18.58 -5. 10 -4.84 -3.42 

-1 8.63 -5. 17 

-18.75 4.87 

-1 9. 10 4.93 

-7.10 -6.90 -4. 11 

-7. 12 

-7.41 -2.85 

-7.30 -3.40 

- 17.3 8 -6.69 -5 .73 -7.36 

-17.59 -6.67 

- 17.99 3.37 

-1 8.08 3.49 

-17.27 -7. 17 -6. 16 -6 .68 

- 17.53 -7.20 

- 17.39 4.14 

-17.30 4.37 
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Table 4 
Isotopic values of collagen and hydroxyapatite fo r samples from the Ce11ain s ite. 

Collagen H ydroA')'a pa tite 

Sample 813c %0 815N %0 
813c %0 8180 % 0 

(VPDB) (V PDB, 

25°C) 

~ Certa in M3 0.24 -6. 37 
CQ 

Certain M3 (dup) - 0.29 -6.36 
~ 
i:.i 

0 Certa in Petrous -10.02 6.08 -2.53 -4.01 
0 
r---
~ ...... Certain P etrous ( dup) -10.38 5.99 -2.52 -4.81 

Table 5 
Isotopic values of collagen and hydroxyapatite for samples from the Harrel site. 

Collagen H ydroxya pa tite 

Sample 813c %0 815N %0 
813c % 0 8180 %0 

(VPDB) (VPDB, 

25°C) 

Harrel M3 -0.56 -6.07 
~ Harrel M3 (dup) -0.61 -6.47 
~ - Harrel Petrous -10.26 5.59 -2.38 -5 .01 
~ 
i:.i 

Harrel Petrous (dup) 0 -10.53 5.61 -2.36 -4.70 
1£) 

~ Harrel Carpa l -17. 10 3. 16 -2.40 -6.79 
N 

Harrel Carpal (dup) -2.43 -6.86 

Table 6 
Isotopic values of collagen and hydroxyapatite for the bone sample from the Kubik site . 

Collagen Hydroxyapatite 

Sample 813c %0 815N %0 
8 13c %0 8180 %0 

(V PDB) (YPDB, 

25°C) 

~ 
Kubik Long Bone CQ -1 2.24 6.69 -2.26 -5. 19 -~ 

i:.i 

0 
0 

Kubik Long Bone (dup) -12.27 6.57 -2.43 -7.88 r---~ 
1£) 
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Table 7 
Isotopic values of hydroxyapatite for the tooth sample from the Big Lake site. 

Hydroxyapatite 

Sample 813c %0 8180 %0 

(VPDB) (VPDB, 

25°C) 

~ 
Big Lake M3 ~ -0.35 -1.48 -~ 

e.J 

C 
C 

Big Lake M3 (dup) -0.40 -1.47 O';, 
00 

Table 8 
Isotopic values of collagen and hydroxyapatite for samples from the Ravenscroft site. 

Collagen H ydroxya pa tite 

Sample 013c %0 o15N %0 
013c %0 0180 %0 

(VPDB) (V PDB, 

25°C) 

Ravenscroft M3 0.91 -3.10 

~ Ravenscroft M3 (dup) 1.01 -3. 14 
~ Ravenscroft Petrous -13.67 -i:,: 
u Ravenscroft Petrous ( dup) -10.48 

0 
0 Ravenscroft Petrousa -10.95 10.67 
0~ 
0 Ravenscroft Petrous 3 -11. 76 10.10 -2.29 -6.89 - Ravenscroft Petrous (dup)8 -10.99 10.11 -2.26 -5.81 

a Re-runs of same sample material. 

Table 9 
Isotopic values of hydroxyapatite for the tooth sample from the Bull Creek site. 

Hydroxyapatite 

Sample 
813c %0 8180 %0 

(VPDB) (VPDB, 

25°C) 

~ 
~ Bull Creek Incisor -0.63 -3.00 -~ 
e.J 

C 
C 
c~ Bull Creek Incisor (dup) -0.63 -3.14 
C 
'""' 
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Table 10 
Isotopic values of coll agen and hydroxyapatite for samples within the Younger Dryas. 

Collagen Hydroxya patite 

Sample 813c %0 815N %0 
813c %0 8180 %0 

(VPDB) (VPDB, 

25°C) 

Badger Hole M2 -20.4i -2.86 -7.03 

Badger Hole M2 (dup) -l 9.02b 

Badger Hole M23 -19.45b 1.6b -2. 16 -5.97 

Badger Hole M2 (dup)3 -J 8.84b 2.09b -2.25 -6.25 

Badger Hole M3 -2.36 -5.34 

~ 
Badger Hole M3 (dup) -2.36 -5.32 

~ Badger Hole Petrous -23.41 b -3.93 -8.33 - Badger Hole Petrous (dup) -2 J.45b ~ -3.87 -9.02 
(.-

0 Badger Hole Petrous3 -21.3] b 4 -,b 
If) 

- . .) 

~ Badger Hole Petrous (dup)3 -21. 74b -4. 14b 
N - Badger Left Radius -10.91 9.70 -3.62 -6.93 

Badger Left Radius ( dup) -3.64 -6.49 

Badger Left Humerus -12.52 9.25 -3.80 -6.32 

Badger Left Humerus ( dup) -1 2.60 9. 14 -3.76 -6.95 

Badger Right Humerus -14.36 4.38 -3.51 -7.46 

Badger Right Humerus (dup) -1 4.10 4.61 -3.4 1 -5.55 

Cooper M2 -22.18c -2.85 -7.09 

Cooper M2 ( dup) -20.8] C 

Cooper M23 -19.92c 1.42c -3.02 -6.65 

Cooper M2 ( dup )3 - I 8.48c 1.8c -3.07 -6.65 

Cooper M3 -3.35 -4.73 

Cooper M3 (dup) -3.35 -4.77 

~ Cooper M3 2 -0. 13 -2.21 
~ 

Cooper M3 2 ( dup) -0. 10 -2.14 -~ 
-19.1] b (.- Cooper Petrous -2.66 -6.95 

0 
If) Cooper Petrous (dup) -2.71 -5.28 
":-
N Cooper Petrous3 -] 8.63b 3.95b - Cooper Petrous (dup)3 -1 9.3b 3.88b 

Cooper Petrous 2 -22.77 -3.61 -6.17 

Cooper Petrous 2 ( dup) -1 9.00 -3.76 -10.01 

Cooper Petrous 23 -18.94 3.24 

Cooper Femur -13.94b 8.05b -1.96 -6.82 

Coooer Femur (dup) -J3.85b 8. 11 b -1 .97 -7.27 

a Re-runs of same sample material. 
b Unreliable values as determined by amino acid anal ysis. 

c Values not used in calculated averages that are plotted in following graphs. 
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Table 11 
Isotopic values of collagen and hydroxyapatite for the tooth from the Jake Bluff ite. 

Collagen Hydroxya patite 

Sample 813c %0 815N %0 
813c %0 8180 %0 

(VPDB) (VPDB, 

25°C) 
-,:,:: 
CJ 

0 ~ Jake Bluff M3 a a - 1.31 -3.39 lfl . --- ---
~ CQ 
N -

a Values could not be determined due to poor collagen preservation a determined by 

amino acid analysis. 

Table 12 
Isotopic values of collagen and hydroxyapatite for the bone from the Military Trail site. 

Collagen H ydroxya pa tite 

Sample 813c %0 815N %0 
813c %0 8180 %0 

(VPDB) (VPDB, 

25°C) 

~ 
CQ Military Tra il Tibia -9.36a 7.23 -4.30 -0.90 -~ 
~ 

0 
V') 

~ Military Trail Tibia (dup) -9.423 7.033 -3.90 0.02 
rt') -

a Unreliable values as detem1ined by amino acid analysis . 

Stable Isotope Analysis of Bone Collagen 

1~ 
The average of the 8 -'C values from the well-preserved bone collagen samples 

from the Cooper site (12 ,550 cal B.P.) is -20.24 ± 2.19 . The 8 13C values become 

enriched in 13C until 10,000 cal B.P., then gradually become depleted in 13C until 2,350 

cal B.P. (Figure 8). The values increase to a maximum average of -10.20 ± 0.25 at 1,700 

cal B.P. and then become depleted in 13C at the present. The average values of just the 

petrous bone samples follow a similar pattern (Figure 8). 
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Figure 8. Average 813C values per site of collagen from all bone samples (blue squares) 
and just petrous samples (red circles), excluding values detennined unreliable by amino 

acid analysis . 

The 815N value for the well-preserved bone collagen sample from the Cooper 

site is 3.24. The average 815N values follow the same pattern of enrichment and 

depletion as the 813C values, but have a maximum average of 10.29 ± 0.33 at 10,000 cal 

B.P. The average values of just the petrous bone samples also show the same pattern 

(Figure 9). 
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Figure 9. Average o 15N values per site of collagen from all bone samples (blue squares) 
and just petrous samples (red circles), excluding values determined unreliable by amino 

acid anal ysis. 

Stable isotope Analysis of Enamel and Bone Hydroxyapatite 

Theo 13C value from the enamel hydroxyapatite from the Jake Bluff si te (12,850 

cal B.P.) is -1.31. The average 813C values become depleted until 12,350 cal B.P. , then 

become enriched in 13C to a maximum average of 0.96 ± 0.07 at the Ravenscroft site 

(10,000 cal B.P.). The same-age site, Bull Creek (10,000 cal B.P.), is slightly more 

depleted, with an average o13C value of -0.63 ± 0.00. The o13C values remain until 

2,350 cal B.P. , then become enriched in 13C at 1,700 cal B.P. , then depleted in 13C at the 

present (Figure 10). 

The average of the o13C values from the bone hydroxyapatite stay slightly more 

depleted until the present, where they are slightly more enriched than the enamel 

hydrox yapatite 813C values. There is an add itional o13C value for the Military Trail ite 

(13,350 cal B.P.) which averages -4.10 ± 0.28, lighter than the Jake Bluff average. 
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Overal l, the 5 13 value of the bone hydroxyapatite fo ll ow a imilar pattern t the 

ename l hydrox yapatite (Figure 10). 

2 

0 

-+- Enam el 

- Bon e 
') -.) 

-4 

-5 
14000 12000 1 0000 8000 6000 4000 2000 0 

Age (cal B.P.) 

Figure 10. Average 5 13C values per site of hydroxyapatite from tooth enamel (green 

diamonds) and bone samples (purple squares). 

The 5 180 value of the enamel hydroxyapatite from the Jake Bluff site is -3 .39. 

The average 5 180 values become lighter until 12,3 50 cal B .P. then gradually become 

heavier to a maximum average of -1.48 ± 0.0 I at 8,900 cal B .P. The values become 

depleted in 180 until 1,700 cal B.P. and then become enriched in 180 at the present 

(Figure 1 1 ). 

The average 5 180 values of the bone hydroxyapatite are slightly more depleted 

than the enamel hydroxyapatite except at 2,350 cal B.P. and 1,700 cal B.P. An 

additional 5
18

0 value for the Military Trail site ( 13 ,350 cal B.P.) of -0.44 ± 0.65 i the 

heaviest average value (F igure 11 ). 
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Figure 11. Average 8 180 values per site ofhydroxyapatite from tooth enamel (green 
diamonds) and bone samples (purple squares). 

The combined 813C average values of both the enamel and bone hydroxyapatite 

are shown in Figure 12. The average 813C values of just petrous hydroxyapatite are also 

plotted. These values follow a similar pattern but are slightly more depleted than the 

total averages and averages of the third molars. The third molar average 8 13C values 

also show a similar pattern but are more enriched than both the total and petrous 

averages, with the exception of the present, where the average third molar value is 

slightly more depleted in 180 than the average of the total hydroxyapatite. The use of 

the third molar is due to the availability of this particular tooth at most sites and because 

its isotopic values are representative of the animal ' s post-weaning diet (Larson et al. 

2001 and references therein). 
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Figure 12. Average 813C values per site ofhydroxyapatite from all bone and tooth 
samples (aqua triangles), just petrous samples (red circles), and third molars (green 

diamonds). 

Figure 13 shows the average 813C values of the hydroxyapatite and collagen 

from every well-preserved bone and tooth sample. Shifts between the hydroxyapatite 

and collagen values can be seen. The hydroxyapatite values are approximately 8 to 18 

per mil more enriched in 13C than the collagen values. As will be discussed below, this 

variability may reflect differences in the respective carbon sources and/or rates of 

metabolic turnover for carbon associated with hydroxyapatite vs. collagen in the 

organism, e.g. , Jahren et al. (1998). 
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Figure 13. Average 813C values per site of all bone and tooth samples, excluding 
unreliable values, separated into hydroxyapatite (aqua triangles) and collagen ( orange 

crosses). 

GCIMS of Amino Acids 

The relative amino acid abundances from the chromatograms of both modern 

and fossil bison samples were compared to the chromatogram of the control sample 

(bovine achilles tendon collagen, BA TC) in order to determine collagen preservation 

and whether isotopic values from the collagen could be reliable. Figure 14 shows the 

presence of 11 protein amino acids characteristic of BATC. They are: alanine (Ala), 

aspartic acid (Asp), glutamic acid (Glu), glycine (Gly), hydroxyproline (Hyp), 

isoleucine (Ile), leucine (Leu), phenylalanine (Phe), praline (Pro), threonine (Thr), and 

valine (Val) . The four most abundant amino acids are Ala, Gly, Hyp, and Pro. 
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Amino Acid Distribution of BATC (Bovine Achilles Tendon Collagen) 
Abundance 
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Figure 14. Chromatogram of amino acid abundances in modern bovine achilles tendon 
collagen (Alfa Aesar, Ward Hill, MA). 
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Figure 15 shows the ammo acid di stribution for the co llagen of the modern 

bison mandible. Although abundances vary, the same 11 amino acids as in the contro l 

sample can be seen. Gly, Hyp, and Pro are the three most abundant amino acids; Ala is 

not one of the most abundant. D-Asp is also present. 
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Figure 15. Chromatogram of amino acid abundances in the collagen isolated from the 
modem bison mandible. 
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Figure 16 shows the amino acid distribution for the collagen of the petrous bone 

from the Certain site. Once again, the same 11 amino acids are present with the most 

abundant being Ala, Gly, Hyp, and Pro. 
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Figure 16. Chromatogram of amino acid abundances in the collagen isolated from the 
petrous bone from the Certain site. 
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Figure 17 shows the amino acid distribution for the collagen of the petrous bone 

from the Harrel site. The same 11 amino acids are again present with the most abundant 

being Ala, Gly, Hyp, and Pro. 
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Figure 17. Chromatogram of amino acid abundances in the collagen isolated from the 
petrous bone from the Harrel site. 
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Figure 18 shows the amino aci.d distribution for the collagen of the long bone 

from the Kubik site. There are 12 amino acids, the addition being Ser. The same four 

are most abundant: Ala, Gly. Hyp, and Pro. 
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Figure 18. Chromatogram of amino acid abundances in the collagen isolated from the 
long bone from the Kubik site. 
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Figure 19 shows the amino acid di stribution within the collagen of the petrous 

bone from the Ravenscroft site. The same 11 amino acids are present, but Glu is also 

among the most abundant. D-Asp is also present. 
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Figure 19. Chromatogram of amino acid abundances in the collagen iso lated from the 

petrous bone from the Ravenscroft site. 
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Figure 20 shows the amino acid distribution for the collagen of the second molar 

from the Badger Hole site. Only two amino acids are present: Ala and Gly. 
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Figure 20. Chromatogram of amino acid abundances in the collagen isolated from the 
second molar from the Badger Hole site. 
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Figure 21 shows the amino acid di stribution for the collagen of the petrous bone 

from the Badger Hole site. No amino acids are present. 
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Figure 21. Chromatogram of amino acid abundances in the collagen isolated from the 
petrous bone from the Badger Hole site. 
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Figure 22 shows the amino acid distribution for the collagen of the left radius 

from the Badger Hole site. There are 12 amino acids present and the most abundant are 

Ala, Gly, Hyp, and Pro. 
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Figure 22. Chromatogram of amino acid abundances in the collagen isolated from the 
left radius from the Badger Hole site. 
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Figure 23 shows the amino acid di stribution for the coll agen of the left humerus 

from the Badger Hole site. There are 10 amino acids present; Thr is absent. The most 

abundant amino acids are Ala, Gly, Hyp, and Pro. 
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Figure 23. Chromatogram of amino acid abundances in the collagen isolated from the 
left humerus from the Badger Hole site. 
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Figure 24 shows the ammo acid di stribution fo r the co ll agen of the ri ght 

humerus from the Badger Hole site. There are 12 amino acids present. Ala, Gly, Hyp, 

and Pro are the most abundant. 
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Figure 24. Chromatogram of amino acid abundances in the collagen isolated from the 
right humerus from the Badger Hole si te. 
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Figure 25 shows the ammo acid distribution for the collagen of one of the 

petrous bones from the Cooper site. There are on ly two amino acids present: Ala and 

Gly. 
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Figure 25. Chromatogram of amino acid abundances in the collagen iso lated from the 

petrous bone from the Cooper site. 
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Figure 26 shows the amino acid distribution for the collagen of a second petrous 

bone from the Cooper site. There are seven amino acids present. Ala, Gly, Hyp, and Pro 

are the most abundant. 
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Figure 26. Chromatogram of amino acid abundances in the collagen isolated from the 
second petrous bone from the Cooper site. 
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Figure 27 shows the amino acid distribution for the collagen of the femur from 

the Cooper site. There are only four amino acids present: Ala, Gly. Leu. and Pro; Hyp is 

absent. 
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Figure 27. Chromatogram of amino acid abundances in the collagen isolated from the 
femur from the Cooper site. 
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Figure 28 shows the amino acid distribution for the collagen of the third molar 

from the Jake Bluff site. No amino acids are present. 
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Figure 28. Chromatogram of amino acid abundances in the collagen isolated from the 
third molar from the Jake Bluff site. 
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Figure 29 shows the amino ac id di stribu tion fo r the co ll agen of the tibia fro m the 

Military Trail site. Only three amino acids are present; Hyp is absent. 
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Figure 29. Chromatogram of amino acid abundances in the collagen isol ated from the 
tibia from the Military Trail site. 
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Discussion 

Modern Samples 

The modern bison samples were used in thi s study to develop methods for the 

isolation and purification of collagen and carbonate associated with enamel and bone 

hydroxyapatite for stable isotope analysis. The samples also permitted the direct 

assessment of the extent of 8 13C fractionation between the bone collagen and 

hydroxyapatite carbonate. With respect to the preparation of carbonate associated 

hydroxyapatite, some bone and tooth samples were treated with 2.5% NaOCl to remove 

any organic matter ( e.g. , collagen) present. Portions of bone and tooth samples were left 

untreated . This was done to detem1ine whether the presence of any organic matter had 

an effect on the hydroxyapatite 8 13C values. The treatment did make a slight difference 

in the isotopic values (Table 3). Consequently, all fossil materials were treated with 

2.5% NaOCl prior to carbonate isotope analysis of the hydroxyapatite . The three 

modem bison samples analyzed for both collagen and hydroxyapatite 8 13C (M2, 

mandible, and rib) show a shift of approximately 11 to 14 per mil between the organic 

and inorganic components. This is greater than the average shift shown for herbivores in 

Figure 1. Herbi vores have an average enrichment in 8 13C values of 7 to 9 per mil for 

hydroxyapatite relative to collagen (Koch et al. 1997 and references therein). The 

results observed in the present study for bison could be indicative of the difference in 

metabolic turnover rates between collagen and hydroxyapatite. Collagen values are 

representative of a single growth season signal, whereas hydroxyapatite values are 

representative of a long-term growth signal (Jahren et al. 1998). The absolute 8 13C 

values for collagen and hydroxyapatite of C3 vs. C4 feeders shown in Figure 1 are based 
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on the pre-industrial 8 13
C value of atmospheric CO2 (-6.5 %a) and thu cannot be 

directly applied to the 813C values of the modern samples in thi s study. which reflect the 

8 13
C value of present-day atmospheric CO2 (~-8 .5 %a). However, the depl eted modern 

8 13
C values show a mostly C 3 diet with a C 4 influence, indicating a mixed diet. The 

modern 8 13C values for each bone and tooth sample are very similar due to the fact they 

are from the same organism. The second molar sample (M2) has slightl y more enriched 

collagen 8 13C values than the mandible and rib. This is possibly due to the fact that the 

second molar forms during weaning (Larson et al. 2001 ). 

51 



0 
0 
C: I "SI" 

0 
0 
0 
00 

-c:;; 
'..) 

52 

r.t) 

V 
bl) 
ro 

'"O 
C 
ro 
r.t) 

V ...., 
. i.n 

' i.,i 
r.t) 

<-8 
...c: ...., 
-~ 
V 
C 



Fossil Samples 

Although fossil samples are limited, especiaJly those from sites o lder than the 

Younger Dryas period, and preservation of samples varies, a di stinct shift in isotop ic 

values across the timeline studied (Figure 30) can be seen (Figures 8 to ] 3). The 513C 

values indicate shifts in the bison' s diet, which may ultimatel y indicate a shift in 

environmental conditions of the area. 

When the b 13C values become more enriched, this may indicate a shift to a more 

C4-based diet, which is representative of a change to a wam1er, drier climate. When 

b 13C values become more depleted, this may indicate a shift to a more C3-based diet, 

which is representative of a change to a cooler, wetter climate (Hare et al. 1991 ; Larson 

et al. 2001 ). 

According to the b 13C data from the petrous collagen, 250 years after the start of 

the Younger Dryas (12 ,550 cal B.P.), values were depleted , indicating primarily C3 

vegetation and a cool, wet environment. Approximately 1,500 years after the end of the 

Younger Dryas (10,000 cal B.P.), values became enriched by more than 8 per mil and 

remained enriched until 1,700 cal B.P. , indicating a shift to a more C4-based diet and a 

warmer, drier environment. The 513C data from the bone collagen show an enrichment 

in values 450 years after the start of the Younger Dryas ( 12,350 cal B.P.). However, this 

average value does not include a petrous sample, which was determined to give the 

most accurate isotopic values due to best collagen preservation (Figure 8) . 

When the 515N values of collagen become more enriched, thi s may indicate a 

shift to a more arid environment, whereas a depletion in the 515N values may indicate a 

shift to a more humid environment (Topalov et al. 2012 and references therein). The 
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0 15 values from the bone collagen (including petrous ample ) (Figure 9) follow the 

I .., 
same enrichment and depletion pattern as the o C value from the bone collagen 

(Figure 8), i.e. , at times when the o13C va lues showed greater C3 or C-1 vegeta tion 

abundances, the climate was wetter or drier, respectivel y (Figure 9). 

According to the o 13C data from the combined enamel and bone hydroxyapatite. 

550 years before the start of the Younger Dryas (I 3.350 cal B.P. ), va lues were depl eted 

indicating a cool , wet climate dominated by C3 vegetation. Approximately 50 years 

I " before the start of the Younger Dryas (12,850 cal B.P.), o -' C values became more 

enriched, indicating a shift to warmer, drier conditions and an increase in C-1 vegetation. 

Tlu·oughout the Younger Dryas, o 13C values become more depleted indicating a gradual 

shift to more C3 vegetation and cooler, wetter environmental conditions (Figure 12). 

From 12,350 cal B.P. until present, the combined enamel and bone hydroxyapatite o13C 

values match the same shifts in climate and vegetation as the collagen o 13C values 

(Figure 8). The greater 8 to 18 per mil shift between the collagen and hydroxyapatite 

o13C values in this study may indicate the difference in turnover rates for carbon in 

these two materials and/or the seasonality of the collagen values vs. the long-term 

hydroxyapatite values ( e.g., Jahren et al. 1998). 

When o 180 values of meteoric water become more enriched, this is indicative of 

an increase in temperature, whereas a depletion in o 180 values indicates a decrease in 

temperature. This is because precipitation generally becomes more depleted in 8180 

with increasing latitude and decreasing temperature. Carbonates precipitating in 

eq uilibrium with water will reflect this trend (Wright and Schwarcz 1998; Sharp 2007 

and references therein). The 0 180 values from the combined enamel and bone carbonate 
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a soc iated with the h drox apatite do not fo ll ow a imilar pattern of enri chm nt and 

depleti on as the 8 1°C va lues fo r the combin d enamel and bone hydroxyapa tite. The 

8 180 value of hydroxyapatite are not as re li abl e a 8 1 C va lue . espec iall y nam I 

hydroxyapatite, in recording original isotopic signatures because 8 1 0 value are more 

susceptible to diagenesis (Wang and Cerling 1994) . Also, they may likely refl ect the 

isotopic variability associated with local water sources (Kohn and McKay 20 12) . The 

sli ght shifts in the 8
13

C and 8 180 values between the enamel and bone hydroxyapatit 

could be due to the fact that all of the fossil samples are from di fferent animals. 

Collagen Preserva/ ion 

The collagen samples that had the more abundant protein amino acids. relati ve 

to the control sample (BATC) (Figure 14). especially Hyp, were considered more well­

preserved (Figures 15 to 19, 22 to 24, and 26) and were used in the calculations for the 

averages plotted in the graphs (Figures 8 to 13). The well-preserved samples all 

contained the same 11 amino acids as BA TC with either the addition of Ser (F igures 18, 

22, and 24) or the absence of Thr (Figure 23). Threonine and Ser are relati vely unstable 

amino acids. Their concentrations w ill vary as a functi on of the type of local 

preservation conditions (e.g., Macko et al. 1999). A lso, the protein amino acids 

racerni ze at varying rates (Griffin et a l. 2010 and references therein). Aspartic ac id 

racemizes the fastest; thus, even in modern bone and teeth and/or relati ve ly yo un g fo ii 

bone and teeth it is not uncommon to see a small amount of D-A p pre ent in the 

chromatograms (e.g., Figures 15 and 19). The abundance of the amino acids vari ed . but 

Ala. Gly, Hyp, and Pro were always the most abundant, just as expected according to 
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Table I and BAT . The amino acid 1-:1 pis primarily found in collagen and i u eful for 

determining the pre ervation of collagen (Ambros and Krigbaum 2003 . 

The second molar from the Badger Hole site. the petrou bone and femur fr m 

the Cooper ite. and the tibia from the Military Trail site all contained a fi w amino 

acids, but Hyp was absent (Figures 20. 25, 27, and 29); thus, the collagen in the e 

samples was considered not well-preserved. The petrous bone from the Badger Hole 

site and the third molar from Jake Bluff showed no presence of any amino acid and 

were also considered to have poor collagen preservation (Figures 21 and 28). The 

isotopic values obtained from the collagen of these samples were not used in calculating 

the averages plotted in the graphs (Figures 8, 9, and 13). 

Poor preservation of the collagen from these samples could be due to several 

factors. Collagen loss is due to time, temperature. and biological factors. The older a 

bone is, the more degraded it is, and these samples are pre-Holocene in age. Porosity 

plays a role - bones are more porous than teeth and are more susceptible to diagenetic 

alteration. Hotter climates increase collagen loss. Microbial attack also increases 

collagen loss. Hydrology affects microbial attack. Variations in moisture may increa e 

microbial attack and ultimately increase collagen loss ( e.g. , Hedges 2002). Because 

these samples were found in arroyos, it can be assumed that moi ture variation was a 

factor contributing to the likelihood of diagenesi s. 

Comparison to Previous Bison Studies 

umerous investigators have attempted to reconstruct paleodiet and 

paleoclimate conditions based on the stable isotope compositions of organic and 

inorganic con tituents of bison bone and teeth ( e.g., Hare et al. 1991 ; Tieszen 1994: 
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C nntn t al. 1998 : Koch 1998; Koch et al. 1998; Jahr n et al. 199 : adbu r ct al. 

2000; Lar on et al. 200 I ; Passey and Ced ing 2002 ; Koch et al. _004; I loppe et al. 2006: 

Bernard et al. 2009; Clementz et al. 2009; Widga et al. 20 I 0: Kohn and Mc Ka 20 12). 

However. these studies did not examine bison samples from Oklahoma during the 

Younger Dryas, a period of abrupt climate cooling that occurred approx imately 12.800 

cal B.P. and lasted 1.300 ± 70 years, or across the timeline of the pre ent stud . 

Of the prior studies, Jahren et al. (1998) is the onl y study to examine the 

isotopes in both the organic and inorganic components of bison bones and teeth near th 

timeline of thi s present study. Eleven bison rib bones were collected from the Hud on­

Meng Bonebed, which is located in Sioux County in northwestern Nebraska. The ite is 

dated to be early Holocene, approximately 9.500 ,-1C yr B.P. or 10. 700 cal B.P. The 

813C values of the bone collagen from these samples ranged from -15.58 to -2 1.88 %0. 

with a mean of -18.02 %0. Three samples did not contain suffici ent collagen for isotopic 

measurements. Preservat ion of sampl es was determined using microscopy. The 815 

va lue of the bone collagen were not measured. The 813C values of the bone carbonate 

within the hydroxyapatite ranged from -9.24 to -6 .63 %0, with a mean of -7.5 %0. The 

8180 values (in YSMOW) ranged from 2 1.70 to 24 .00 %0 (-8.89 to -6 .65 %0 YPDB). 

with a mean of 22.9 %0 (-7.72 %0 VPDB). Twenty-eight bi on teeth (including I· 1. 2
nd

• 

and yct molars) were also collected and yielded 813C and 8180 (in YSMOW) mean 

alue of -5.96 %0 and 21. 93 %0 (-8.66 VPDB), respecti vely. from the enamel carbonate 

within the hydrox yapatite. The author stated that these va lue indicated an abundance of 

C-1 egetation , suggesting a warmer, dri er environment at thi time period compared to 

th present (Jahren et al. 1998). 
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In the pr sen t tud , sample of comparable age t th c r .l ahrcn et a l. ( 1998) 

are from th Bull reek and Ravenscroft ites, both with an age f I 0.000 al B.P. Th 

mean 813C alue of the bone coJl agen from the Raven croA. ite i - 11 .57 %0. v:hich i 

more enri ched than the Jahren et al. ( 1998) value . The mean 813 alue of the bon 

and enamel hydroxyapatite from the BuJI Creek and Ravenscroft ites are -2.28 %0 and 

0. 17 %0, respectively, which are also more enriched than the .lahren et al. ( 1998) alues 

(Figure 31 ). The mean 8180 values of the bone and enamel hydroxyapatite fro m the 

present study are -6.35 %0 and -3. 10 %0, respecti vely, which are again more enriched 

than the values from Jal1J·en et al. (1998) (Figure 32). The enricl1J11ent of the 81 C and 

8180 values in the present study as compared to the Jahren et al. ( 1998) study could be 

due to a di ffe rence in the ages of the samples, as well as the diffe rences in location. 

Samples from the present study that are older than 10,700 cal B.P. have less enriched 

813C and 8180 values, meaning as climate conditions warmed after the Yo unger Dryas. 

813C and 8180 values became more enriched toward 10,000 cal B.P. The Bull Creek and 

Ravenscroft sites are located at lower latitudes than the Hudson-Meng Bonebed ite and 

precipitation at lower lati tudes is more enriched in 8180 . 

Connin et al. (1997) looked at bison teeth fro m the southwestern ni ted tate 

across a large timeline. Isotopic measurements that can be appli ed to thi s present study 

can be di vided into fo ur di ffe rent groups based on ite locati on. Fos ii ites include: 

Murray Springs and aco in southern Ari zona, Dry Cave in outhern ew Mexico, and 

Blackwater Draw in eastern ew Mex ico. The mean 813C and 8180 (in V MOW) 

alues from Murray Springs (10,850 14C yr B.P. or 12,700 cal B.P.) are 1.20 %0 and 

_7.30 %o (-3.45 %0, VPDB). respecti vely. These sample fa ll within the Younger Drya. 
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1 lo\,·eve r. the \'alue ar li ghtl y more enr iched mpared t the pr nt ·tudy. po ibl 

beca u e Murray prings is located at a IO\\-e r la ti tucle. thu a hi gher temp rature and an 

abundance of C4 plants. The mean 8 13C and 8 180 (in V OW) \'alu from ac 

(I 1.000 1-tC yr B.P . or 12.850 cal B .P .) are 0.60 %0 and 30. 70 %0 (-0. 16 %0. I DB). 

respectivel y. These values are slightl y more enrich ed than the pre ent tud y. mo t likely 

for the same reason as the Murray Springs samples . The mean 8 13 and 8 18 (in 

VSMOW) value from Dry Cave (10,700 1-tc yr B.P. or I 2.600 cal B.P. ) are -2 .80 %0 

and 24.10 %0 (-6.56 %0. VPDB), respecti ve ly. These sample are al o w ithin th 

Younger Dryas and are consistent with the va lues of the present study. Bl ackwater 

Draw has samples with ages ranging from 800 to 12 ,250 14C yr B.P. (700 to 14.100 cal 

B.P.) and mean values of 8 13C and 8 180 (in VSMOW) ranging from -1.30 %0 to 1.10 %0 

and 24.60 %0 to 28.9 %0 (-6.07 %0 to -1.90 %0), respecti ve ly. The 8 13C alues are also 

fairly consistent and follow the same pattern as the va lues from the present study 

(Figure 31). However, the 8 180 values vary slightly compared to the present study most 

likel y due to the differences in latitudes for the locations of the sites and/or variability in 

the stable oxygen isotope composition of local water sources (Figure 32) . 
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Conclu ion 

hift Ill climat ic and en ironmenta l condition can clear! b een Ill the 

otopic al ue from both the organ ic and inorganic component f the bi on b ne and 

teeth. e pecially across the Young r Drya . The depl ted 13 valu within the 

Younger Dryas bison bone and teeth ample are repre ntati e of a C -rich diet. The 

depleted 8
15 

value from the bone collagen are repre en tati e of a more humid 

. Th is environment. e depleted 8 0 from the enamel and bon h droxyapatite are 

representati e of cooler temperatures during thi s period. The i otop ic va lue from the 

samples within the Younger Drya indicate a hift to a cooler. \ etter climate in 

Oklahoma. Although the Younger Dryas was overall a period of cooler. dr ier climatic 

conditions. some areas show wetter conditions (Fiedel 20 11 and references th rein). a 

seen in this study. This is likely due to the shift in air circulation pattern (F iede l 20 11 ). 

Enriched isotopic values after the end of the Younger Dryas indicate a hi ft to a 

warmer. drier environment as interpreted from the C-t-rich bi son diet. Succes ful 

interpretations of climatic change based on fossil remains are highl y dependent on the 

recovery and analysis of well-pre erved materi al . The amino acid distribution fo r 

many of the samples in the present tud y indicate good to excellent pre er ati on of bone 

collagen. and thus vegetation and paleocl imate interpr tation based on its isotopic 

composition is likely to be reliable. Future studies of the Younger Dryas in Oklahoma 

will greatl y benefit from additional fossil bi son material s as they become a ail ab le. 
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