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ABSTRACT 

The refining industry is facing increased volatility in the global market such as lower economic 

margins. In this situation, refinery production planning becomes a substantial tool to utilize all 

potentials to extend the economic margin to its maximum level. Classical refinery production 

planning models employ input-output relationships for different refinery units. However, these 

input-output relationships usually do not include decision making variables related to the units’ 

operation (pressure, temperature, etc.). In addition, they fail to capture the nonlinear nature of the 

refinery units and the inaccuracy caused by these models may reduce the overall profitability or 

compromise product quality. The refinery business involves tasks spanning from unloading 

crude oil at the refinery’s front end, generating utilities for refinery operations, blending different 

crudes and procuring crude blends to intermediate products, blending intermediates into final 

products and distributing refined products from refinery to distribution centers by means like 

pipelines. The traditional approach for the planning problem of these sub-systems is a sequential 

hierarchical approach. In reality, refinery processes are tightly interconnected and any attempt to 

solve this problem in a sequential push or pull manner may result in infeasible or suboptimal 

solutions. Eventually, the oil industry is subject to uncertainties such as unstable prices and 

unpredictable product demands. The existence of uncertainty in such parameters can seriously 

affect the optimization results and lead to inefficient operations. Nevertheless, there are 

challenges associated with the integrated optimization approach which arise from the difficulty 

of obtaining a solution with reasonable quality and time. The corresponding integrated model of 

the refinery operations with nonlinear unit correlations under uncertainty results in a 

computationally intensive nonconvex MINLP (Mixed Integer Nonlinear Programming) model 

due to the presence of bilinear, signomial, exponential or logarithmic terms in some of the mass 
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balance, product yield and quality constraints. A further complexity is introduced in attempting 

to obtain a globally optimal solution. The standard methods for solving this complex refinery 

wide optimization problem may fail to converge to a solution or lead to sub-optimal solutions. 

Despite these complexities, this research presents a novel optimization heuristic for the 

integrated supply chain model of a refinery network. The production planning model of the 

refinery employs two different nonlinear models for the distillation unit utilizing correlations 

based on the Geddes fractionation index (FI) and a swing-cut (SW) data-based model and 

empirical nonlinear models for the remaining refinery units. The main contribution of this 

research is the development of an aggregation /disaggregation methodology based on lumped 

variable linearization (LVL) and normalized multiparametric disaggregation (NMDT) techniques 

through a two-level optimization algorithm and obtaining ε-global optimal solutions. To model 

the uncertainties, three modeling schemes such as robust programming, fuzzy possibilistic 

programming and two-stage stochastic programming with financial risk management have been 

utilized. The results indicated the effectiveness of the nonlinear models in terms of improving the 

overall refinery profit margin over a linear input-output model. In addition, they substantiated the 

huge advantage of a nonlinear distillation model utilizing correlations based on the Geddes 

fractionation index (FI) over the swing-cut (SW) data-based model. The results on the integration 

of the refinery supply chain echelons through a deterministic refinery model reinforced that the 

integrated model when solved by the proposed heuristic can provide significantly better solutions 

than its sequential counterpart in terms of both economic and operational objectives. Eventually, 

the results of the stochastic refinery model represented significant economical and operational 

differences between the outcomes of three uncertainty quantification methodologies discussed 

earlier while highlighting an obvious advantage of the robust optimization scheme. 
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Chapter 1 

INTRODUCTION 

1.1. Inherent Nonlinearity of Refinery Processes 

Production planning is a crucial tool in today’s petroleum refining industry. It aids decision 

making and the resource allocation process to achieve business objectives through optimal 

production operations.1-3  Historically, the petroleum industry has relied on linear programming 

(LP) to address its planning and optimization needs.1,4,5  The LP approach simplifies the inherent 

nonlinearity of the refinery processes to ensure simplicity and robustness of the models at the 

expense of accurate and optimal solutions to the planning model. 1 Nevertheless, the linear 

process models are not suitable for refinery process modeling, since refinery processes involve 

both physical operations (e.g., phase separations, blending operations) and chemical operations 

(e.g., cracking reactions, hydrotreating reactions, etc.) with nonlinear nature.6 

In reality, the actual refinery process is highly nonlinear. Moreover, the stringent environmental 

regulations, product qualities, and heavier feedstocks make it necessary to develop accurate 

models for refinery production planning. 7,8  Consequently, the operating plans based on the 

linear programming technique may not be reliable and the inaccuracy caused by linear models 

and approximate algorithms may reduce the overall profitability or compromise product quality. 

6,9   

Nonlinear approaches and specialized algorithms have also been proposed for refinery planning 

problems to obtain models of the refining processes while focusing on increasing the accuracy of 

the planning models and/or the performance of the solution algorithms.4,7,9,10,11,13-22  These 
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approaches can be grouped into three main categories: rigorous models, simplified or empirical 

models, and statistical models. The selection of which model is most suitable for a certain 

application depends on such issues as the amount of information that needs to be provided by the 

model, and the difficulty of generating, implementing and validating the model among other 

things. In an optimization problem, it is crucial to use models that, in addition to accurately 

representing the processing system, can be stable and implemented in a short period of time.24 

Although more accurate results of processing units can be obtained by using rigorous models, 

their complexity and the length of the solution time prevent them from being used commonly.4,12  

The nonlinear implementation for the process units in planning models mainly rely on empirical 

relations.1,23 Empirical models use empirical correlations to establish material and energy 

balances for refinery units. Their simplicity, relatively easy application and adequate accuracy to 

reflect actual conditions of a refinery unit, make them suitable candidates for refinery wide 

production optimization. 4 

Crude distillation units (CDUs) are the entrance and first processing unit in oil refineries.25. The 

accurate representation of the CDU in a planning model is important because the CDU model 

dominates the outcome of planning model optimization.26  

Various forms of simplified CDU models have been devised over the past several decades.  

One approach to simplified CDU modeling is “delta-based” models which use incremental 

changes to produce true boiling point (TBP) curves deviations from some base case operation. 

Another approach (we shall call it “full model”) is to compute product TBP curves via a model 

which uses operating conditions, crude TBP data, and sometimes approximations of the CDU 

structure.  
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There are two types of delta-based models. One of them is to modify the back end and the front 

end of the product yield by adding or subtracting some delta differences. Since the CDU unit can 

operate under different operating modes, the deviations from the base case are not constant but 

depend on the operating mode. Product yields and the cut-points are calculated by using the 

middle point of the modified front and back ends of TBP curves of adjacent products.25   One way 

to improve this model is by setting different production modes where each production mode has 

a different set of deltas. Unfortunately, this modified model doesn’t cope well when processing 

different kinds of crude oil feed or crude cocktails as deltas also are dependent on the  properties 

of the crude oil, not only CDU operation modes.27 Figure 1.1 illustrates feed and product TBP 

curves for a typical crude distillation unit. 

 

Figure 1.1. Feed and product TBP curves for a crude distillation unit [25] 

The second type of delta-based models are swing-cut methods. A swing-cut is the volume 

fraction of crude where two adjacent petroleum fractions’ boiling range overlap. It can be split 
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disproportionally or completely shifted to either light or heavy fraction’s yield by adjusting the 

cut point temperature.  In these models the swing-cut size and TBP range are estimated for each 

product. Based on the swing-cut information and crude properties in their respective TBP range, 

product  properties are computed. The traditional swing-cut model assumes the size of the swing-

cut is fixed and that the properties of the swing part are constant across the cut which can cause 

inaccuracies in the predictions of both its quantity and quality.28,30  However in the flexible 

swing-cut method the swing-cut is calculated based on different operating modes (max naphtha, 

max diesel, or max gasoline) based on  a “weight transfer ratio” concept and the properties of 

swing-cut and fractions were determined by regression models according to the crude 

properties.29 The traditional swing-cut model can be further improved by separating the swing-

cut into two parts (light and heavy part). The properties of these two parts are calculated by 

interpolating qualities correspondent to their light and heavy swing-cut quantities.30 To account 

for the nonlinearity of the distillation process, some attempts are made based on swing-cut 

methods by fitting CDU data for a large pool of crude oils and using polynomial regression.31 

Figure 1.2 demonstrates the cut-points and swing cuts of a distillation fraction.  

 

Figure 1.2. Cut-points and swing cuts of a distillation fraction [28] 
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Another approach in empirical CDU models has been devised based on an aggregated model for 

the CDU and using a cascade column to represent the stripping and rectifying sections of this 

complex distillation column. Based on the cascade structures, the nonlinear model of distillation 

unit is represented as a sequence of flash processes using the fractionation index to determine the 

separation in each section.1,32-34 Figure 1.3 illustrates cascade representation of CDU based on 

the FI model. 

 

Figure 1.3. CDU representation for the FI model.[1]
 

The fractionation index (FI) is a quantitative criterion for sharpness of fractionation with 

complex mixtures by a fractionator.35  The index is the equivalent number of theoretical plates, 

operating at total reflux, which would affect the same component separation as the fractionator. 

In the case of crude oils, the number of components is numerous and the data have been broken 

down into short fractions which have then been treated as pseudocomponents in subsequent 

column calculations.36 The FI model is a more accurate nonlinear model for the complex crude 
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distillation unit (CDU) than the fixed yield or the swing cuts models and optimizes the crude cuts 

quantities and temperature while being independent from crude type, characteristics of the CDU, 

and readily calculated.34 

In a distillation unit, the distribution of a component i in the top and bottom product streams, 

expressed as molar fraction yi and xi, are related to the relative volatility 𝛼𝑖𝑜 of component i to 

reference component o for fractionation at total reflux operation through the following equation: 

𝑦𝑖
𝑥𝑖
= 𝛼𝑖𝑜

𝑛  
𝑦𝑜
𝑥𝑜
    (1.1) 

Geddes35  plotted the component product composition ratio versus the relative volatility on a 

logarithmic scale as seen in Figure 1.4, intersecting straight lines with two slopes, changing the 

slope at the reference component used for the relative volatility calculation. Geddes observed 

that the resulting slope reflects the fractionation power of the column. On the other hand, two 

different slopes means unequal fractionation power in the column. Geddes named the slope of 

the line the “fractionation index” (FI).  

 

 

 

 

 

Figure 1.4. Component distribution ratios for a fractionation column [19] 
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He also suggested using it in other calculation methods used at the time, including Thiele- 

Geddes: 

𝑦𝑖
𝑥𝑖
= 𝛼𝑖𝑜

𝐹𝐼  
𝑦𝑜
𝑥𝑜
    (1.2) 

Gilbert et al.36  extended the use of FI to crude distillation units (CDU). Jakob37 suggested using 

the component equilibrium constant K in the FI equation as an acceptable simpler approximation 

for the relative volatility term . 

To use the FI method, Alattas et al.1,34  model the complex CDU as a series of flash single-stage  

fractionation units, knowing the feed crude oil assay and rate, FI values, and the temperature 

ranges for the cuts. Each unit has top and bottom product streams. The top product is fed to the 

next unit, except for the last unit where it is the CDU overhead product. The bottom product of 

each unit is withdrawn as one of the CDU product streams. The temperature used for the FI 

equation at every unit is the cut point temperature of the unit product limited to a predefined 

range. This range represents the overlap or gap temperature of adjacent crude cuts.  

One of the first academic contributions to consider nonlinearity in production planning is that of 

Moro et al.13 Their model represented a processing unit employing a general nonlinear model 

with the following variables: feed flow rate, feed properties, unit operating conditions, product 

flow rates, and product properties.  Pinto and Moro 14 developed a nonlinear planning model for 

production planning which allows for the implementation of nonlinear process models and 

blending relations. Li et al.4 presented a refinery planning model utilizing simplified empirical 

nonlinear process models with considerations for crude characteristics, product yields and 

qualities. Alhajri et al. 31 developed a nonlinear model to represent the refinery processes to 
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address the refinery planning problem. The resulting model is able to predict the operating 

variables such as the Crude Distillation Unit (CDU) cut-point temperatures and the conversion of 

the Fluid Catalytic Cracking unit (FCC) and evaluate properties of the final products to meet the 

market specification as well as the required product demands. Alattas et al. 34 developed a 

fractionation index (FI) based nonlinear model for crude distillation units (CDUs).  In contrast to 

the swing cut methods, the fractionation index model incorporates thermodynamic principles 

such as relative volatility and phase equilibrium.  Alattas et al. integrated the FI-based nonlinear 

model into the linear refinery planning model, solving it with nonlinear programming (NLP) 

solvers without guaranteeing global optimality. Alattas et al.1 presented a multiperiod MINLP 

model for the refinery planning problem by modifying their previous NLP model in Alattas et 

al.19 to a mixed-integer nonlinear programming (MINLP) model to determine the sequencing, 

changeovers, and processing times of crude oils over multiple time periods.  

Menezes et al.21,30 used the improved swing cut approach to introduce a new and relatively 

simple improvement to the conventional swing-cut modeling. In their improved model, the usual 

assumption that the swing-cut properties flowing from the swing-cut to the light and heavy final-

cuts (or product-cuts) are the same, has been extended or modified to account for the fact that 

they vary according to their proportions between the light and heavy interfaces. Zhang et al. 22 

developed a multiperiod MINLP model that aims to optimize the production plan of a refinery 

site accounting for the material and energy requirements. Nonlinearities appear in the pour point 

blending equations.   

Li et al. 9 proposed a global optimization-based planning formulation with data-driven model 

development and integration of nonlinear models to predict product yields and properties in 
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refinery production units. The yield and property prediction models for the crude distillation and 

vacuum distillation units are developed using swing-cut theory based on crude assay data. 

Empirical nonlinear models are developed for other processing units, including bilinear, and 

quadratic terms. Moreover, property indices in blending units are linearly additive and calculated 

on weight or volume basis, which introduce bilinear and trilinear terms. 

Lopez et al.29 presented a new NLP optimization model for a CDU system that includes the 

energy restriction of plants and utilizes the metamodel approach to represent the non-linear 

phenomenon of distillation and attempted to obtain the optimum operational conditions for each 

atmospheric tower, calculating products yields and their properties, temperatures and duties of 

exchangers responsible for crude pre-heating.  

One of the main issues is that none of the literature mentioned thus far explicitly accounts for the 

operating variables or provides an option for the refinery planner to adjust the operating variables 

or the process severity within the refinery units to obtain desired yields and product quality. In 

addition, most of the literature mentioned does not include all major refinery units in their model 

and therefore present a partial production planning. The other main issue is that the empirical 

nonlinear models of refinery units are nonconvex; therefore, traditional convex optimization 

techniques are not suitable if the global optimum is required and most of the literature dealing 

with nonlinear models mentioned thus far, do not guarantee the global optimality. 9,11 

1.2. Integrated Decision Making in Refining Industry 

The second subject addressed in this study is the integration of activities across the refinery 

supply chain. Refining is a divergent process industry which adds value mainly by performing 

spatial  transformations on petroleum (e.g., lifting crude oil to the surface; transporting crude oil 
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from oil fields to  refineries; procuring crude blends to intermediate products, blending 

intermediates into final products, distributing refined products from refinery to distribution 

centers by means like pipelines). The primary economic objective in refining is to generate 

maximum profit and responsiveness by sustaining high production levels in order to satisfy the 

demand for products while reducing costs, inventories and environmental impact.38-40 

 However, the refining industry is under immense pressure to produce eco-friendly products and 

facing increased volatility in the global market such as crude supply and demand fluctuations, 

and lower economic margins because of stiffer competitions, stricter environmental regulations 

on harmful gas emissions and depressed market demand. 

 This volatility forces refiners to make complex and agile decisions to adapt to dynamic market 

conditions. Therefore, optimization of the refinery operations is essential for the economic 

success of a refinery to maintain its competitive edge. In this situation, refinery planning and 

scheduling becomes a very important tool as it can utilize all potentials to extend the economic 

margin to its maximum level. The refinery operations comprise activities spanning across 

multiple departments and requiring tight coordination among them. 18,28,41 

 The refinery planning and scheduling problem is usually divided into three different sub-

problems. The first sub-problem is associated with unloading crude oil at the refinery’s front end 

from crude carriers or pipelines, its transport to storage and charging tanks and the charging 

schedule of crude blends into the crude distillation units (CDUs). The second sub-problem 

focuses on the procurement of crude blendstocks into intermediate products. The third sub-

problem is related to planning and scheduling of pooling problem of intermediates into final 

products, inventory management and lifting of final products by means like pipelines. In 

addition, production systems are commonly designed without considering the required utility 
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system. Only subsequently, the utility system is designed for the given production system. This 

traditional optimization method for these sub-systems is a sequential hierarchical approach and 

can be described as rather “master and slave” than entities of equal significance. 42-48 

 In reality different refinery processes are tightly interconnected and function as coherent entities 

involving several cross-functional coordination across enterprise functions. Therefore, most of 

the traditional business decision support systems have been disjoint and thus incapable of 

utilizing the convoluted intricacy among them and attempting to solve each part in a sequential 

push or pull manner may result in infeasible or suboptimal solutions.43,45,49-51 The means for 

achieving optimal solutions of the refinery problem is by horizontal and vertical integration of 

the refinery processes and following an enterprise-wide approach through coordinated 

management of operational and utility departments in the refinery enterprise.22,40,50,52 

Nevertheless, there are challenges associated with this integrated approach which arise from  the 

difficulty of modeling the entire system and obtaining a solution with reasonable quality and 

solution times which makes the large scale integrated model computationally intensive. The 

integrated model leads to a mixed-integer nonlinear programming (MINLP) problem. This 

complex problem contains multilinear terms for the material balances, blending process and gas 

emission and also highly nonlinear terms related to product yield and quality constraints. These 

nonconvex constrains result in inconsistency between solution quality and time and overshadows 

the benefits of the integrated approach.40,45,53-55 

The refining industry began using linear programming (LP) shortly after its invention and by 

early 1950s, major oil companies began using LP-based production planning and scheduling 

models. The integration across different echelons of refining enterprise has been an area of active 

interest both in academic and industrial settings ever since.56 
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One of the first contributions to consider integration in refinery supply chain is that of Charnes et 

al. 57 They conducted a study on programming interdependent activities in an integrated oil 

company notably on the blending of aviation gasolines. They employed linear programming 

techniques to model the blending operations of aviation fuels. Ten constraints with 22 variables 

were developed to represent the technological and policy restrictions which were applied to a net 

receipts functional for optimization with respect to three aviation gasolines and a premium motor 

fuel. They demonstrated that intelligent planning of production, transportation, manufacturing or 

marketing generally requires solution  of blending problems as an initial or integral part of the 

whole process, as it is in blending that the final outputs are determined. Catchpole 58 investigated 

the supply problem of an integrated oil company comprising the allocation of  crude oils to 

refineries, the calculation of refinery programs and the transportation of finished products to the 

market. His problem was not simply a linear programming problem if it was described fully to 

contain convex and concave nonlinearities, stochastic parameters, dynamic programming and 

size of the problem. To simplify and reduce the size of his model, he proposed a decomposition 

method by reducing the amount of detail in the model and by removing those parts of the 

problem where the answer seems reasonably clear. The resulting Linear Programming matrix 

contained some 260 equations and 285 variables, and the solution time averaged about 8 hours 

for a complete run. He concluded the most important feature from the mathematical viewpoint 

was the sheer size of the integrated problem and the solution of the integrated supply problem in 

detail would depend on developments in the fields of faster computers and computational 

algorithms. Jackson 59 examined two aspects in the design of integrated refineries for consistency 

with the basic design objective: reliable production consistent with low initial and operating 

costs. He presented an integral approach to optimization of energy consumption which first 
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considers integration through mechanical, utility, and heat linkages, then suggests review of the 

operating problems resulting from integration. He demonstrated the advantage of the integrated 

approach over a typical series of sequential steps and utilized the technical and operating factors 

in determining the most suitable degree of integration for widely differing refining situations. 

As an another example of successful application of mathematical programming in integrating 

activities across a refinery supply chain, Klingman et al. 61  proposed a model to address the 

short-term planning and operational issues associated with the supply, distribution, and 

marketing of refinery products. They developed an innovative optimization package named SDM 

(Supply Distribution Marketing) which integrates the company’s key economic and physical 

supply, distribution and marketing characteristics over a short term (11 week) planning horizon. 

The system is used to support top management decisions concerning refinery run levels, where to 

sell products and what prices to charge (by location and line-of-business), how much product to 

hold in inventory, how much product to ship by each mode of transportation and the critical 

timing considerations associated with all of these decisions. A network modeling framework 

adopted to develop, implement, and use the integrated model of their business decision variables. 

They implemented this system at Citgo Petroleum Corporation and reported successful results 

including a reduction in product inventories, working capital costs and an addition to bottom line 

profits. They attributed the success of their system to factors such as improved communication 

between the supply, distribution, marketing, and refining groups; elimination of unnecessary 

terminals and added insights into pricing strategies.  

Up to this point all proposed models were linear or linearized versions of the equations in its 

linear programing planning models where the model nonlinearities were relaxed. Unfortunately, 

plans from these planning LP's often had limited relevance to the blender's problems. Accurate 
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modeling of nonlinear properties such as octane and boiling points was very important. The 

approximations and averages which were satisfactory for planning purposes were not acceptable 

to the blender. This left a gap between planning and scheduling, a serious management problem. 

Moreover, neither of the previous authors had taken the importance of blending operation into 

consideration. In an attempt to account for these blend nonlinearities and integrate blending 

operation with other refining activities to achieve the highest profit, Ramsey and Truesdale 62  

introduced a new approach. They investigated the integration of the blending support system 

with the upstream functions of scheduling and planning in addition to using this system in a real-

time, in relationship with the downstream functions of control and reporting. The objective was 

to look weeks or months into the future and, based on expected unit performance, crude 

availability, and product demands, and come up with a plan for operating the refining facility. 

The net result was to place production targets in the hands of the scheduler. Their proposed tool, 

Omega system, was a gasoline blending system utilizing a nonlinear programing algorithm, an 

on-line data base, and an interactive user interface. It used a successive linear programing 

optimizer whose speed and reliability were its principal problems.The system was also enhanced 

with a menu-driven user interface, and it has been implemented on personal computers as well as 

on mainframes. They implemented their model at Texaco Refining and Marketing Inc. refineries 

and claimed the positive contribution of their system to overall profitability of the refineries. 

However, a mere comparison of earnings before and after the implementation of Omega was not 

enough to draw a conclusion because too many other factors such as market demand, profit 

margins, and even changes in refining equipment would affect refinery performance. In a 

different approach with a different objective in integration of activities, Munasinghe 60 studied 

the integration of electricity and oil subsector investment planning and  pricing within the 
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framework of an energy master plan that determines energy policy, ranging from short-run 

supply/demand management to long- run planning with contradictory goals. He analyzed 

important interactions between and activities within different energy subsectors using shadow 

prices essentially within a partial equilibrium framework technique. He proposed a two stage 

strategy to drive energy pricing structures. First, the shadow-priced margined opportunity cost 

(MOC) of a given form of energy is determined. Next, demand-side effects including distortions 

in the prices of substitute fuels, are used to derive from the MOC, the strictly efficient energy 

price level. In the second stage of the pricing procedure, the efficient price further adjusted to 

yield a realistic pricing structure that meets social subsidy considerations, the need to change 

prices gradually and simplicity of price structure for metering and billing. He demonstrated with 

rising energy costs, changes in relative fuel price and substitution possibilities, the advantages of 

an integrated energy policy have become evident.  

Beginning of the 21st century witnessed a spike in the literature in the context of integration of 

supply chain echelons. In particular, the context of integration among refinery sub-systems has 

enjoyed extensive attention from both industry and academia ever since. There was a clear need 

for modern decision support systems in an enterprise wide level where the process and business 

policy decisions could be integrated . To address these demands, Julka et al. 45 addressed a need 

for a decision support system to make decisions at the enterprise level by developing an agent 

based decision support system for refinery supply chain management where software agents 

imitate the sub-divisions of the refinery which is divided into three sub-processes of crude 

selection and purchase, crude delivery and storage, and crude refining . This agent-based supply 

chain modeling framework called PRISMS (The Petroleum Refinery Integrated Supply Chain 

Modeler and Simulator) was a modeling-simulation- scheme which provided an environment 
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where all business processes could be emulated in an integrated manner. Various supply chain 

scenarios can be configured; simulated and analyzed. PRISMS could model a refinery with 

procurement, sales, logistics, storage and operations departments. Their system could be used to 

study the effects of internal policies of a refinery by comparing different business policies under 

a variety of business scenarios in order to identify the ones suitable for actual implementation in 

the enterprise. Their enterprise-wide model demonstrated a better ability to lower inventory 

levels and enhanced the refinery's inability to handle demand fluctuation by increasing the 

storage capacity in the tank farm. With ever increasing need to include further activities within 

an integrated decision support system, scheduling of product distribution was at the spotlight. In 

this direction, Chen 63 highlighted the importance of integrating production and distribution 

operations and planning and scheduling. He reviewed the integrated models that explicitly 

involve both production and distribution decisions at the tactical and operational levels and 

classified existing explicit production-distribution (EPD) models into five categories according 

to level of decisions, structure of production-distribution integration, and problem parameters. 

He suggested the following topics deserve more research: EPD models with stochastic demand, 

EPD models at the detailed scheduling level, Value of coordination , Mechanisms for 

coordination, Fast and robust solution algorithms, a more general model to address multiple 

products competing for limited production capacity and a nonlinear transportation cost structure, 

more general problems with a dynamic demand rate and eventually to consider vehicle routing 

decisions as part of the problem. Up to this point, the optimisation based formulations for short-

term refinery scheduling in literature were few and those existing ones, did not incorporate the 

model complexity of the entire unloading, blending and distillation process. In addition, there 

was a difficulty in understanding the rationale underlying the solutions proposed by a “black 
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box” mathematical programming model, in contrast to a simulation-based decision support 

approach. To address this problem, Chryssolouris et al. 64 addressed the scheduling of a refinery 

activities in addition to the arrangement of the temperature cut-points for each distillation unit. 

They described  a simulation-based approach to the refinery operation, which is modelled based 

on the assumption that the refinery facility model, the operation constraints, quantities and crude 

oil volume fractions for each tank as well as crude oil types properties in addition to the quality 

and quantity range specifications of the end products are defined in advance. During the solution 

process, every node is simulated and for each node, the simulation mechanism takes the values 

of the decision variables of the node, utilizing a set of material balance and crude oil 

evaporation–temperature equations. Material balance is modelled by a set of differential 

equations assuming instantaneous uniform mixing in tanks and streams. The implemented 

system generates, simulates and evaluates alternative sets of actions and at the end, it proposes 

the best alternative found for the vessels unloading schedule, the crude oil transfer, blending and 

charging schedule, as well as the determination of the temperature cut points of each CDU. Their 

approach, may accelerate the scheduling process by increasing the accuracy of computations and 

allowing the investigation of what-if scenarios However, due to the entire process complexity 

and the stochastic disturbances in the production level, their model was not completely accurate 

and suggested taking advantage of mathematical programming techniques or rule based models 

to improve the performance of their approach. Grossmann 2  provided an overview of enterprise-

wide optimization (EWO) as an emerging area that involves optimizing the operations of supply, 

production and distribution of a company to reduce costs and inventories.  He noted a major 

focus in EWO is the optimal operation of production facilities, which often requires the use of 

nonlinear process models. He highlighted the integration of the information and the decision-
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making among the various functions as one of the key elements of EWO. He further emphasized 

on modern IT tools as emerging tools to develop deterministic and stochastic optimization 

models and algorithms  to explore alternatives of the supply chain to obtain optimum economic 

performance and higher levels of customer satisfaction. Previous research in the field mostly 

assumed no limitations on refinery feedstock availability and mainly modeled refinery problem 

through continuous models where binary decision variables were not included. To rectify these 

issues, Al-Qahtani and  Elkamel 52, 65 addressed the design and analysis of multisite integration 

and coordination strategies within a network of petroleum refineries and petrochemical 

complexes. Their objective was to develop a simultaneous methodology for designing a process 

integration network between petroleum refining and the petrochemical industry. The refinery and 

petrochemical systems were modeled as a mixed integer linear programming (MILP) problem 

that leads to an overall refinery and petrochemical process production levels and details blending 

levels at each refinery site. The objective function was a minimization of the annualized cost 

over a given time horizon. Expansion requirements to improve production flexibility and 

reliability in the refineries were also considered. Their study showed that the optimization of the 

downstream petrochemical industry has an impact on the multi refinery network integration and 

coordination strategies and emphasized the importance of developed methodology. However, all 

parameters were assumed to be known with certainty and did not account for the situation of 

fluctuating crude oil prices, changes in demand, and the direct effect this can have on the 

downstream petrochemical system underlines the importance of considering uncertainties. 

Therefore acknowledging the shortcomings of their deterministic models they concluded the 

importance of the consideration of uncertainties in the integration problem. Despite the 

popularity and the rationale of the integration as a concept so far, few authors had attempted to 



19 

 

quantify and compare the effectiveness of the integration over solving the problem through a 

sequential hierarchical approach. The demonstrate this effectiveness, Guyonnet et al. 51 explored 

the merits of the integration of the refinery production planning with the crude oil uploading and 

product distribution problems. They considered a marine access refinery with only one set of 

tanks that are storage and charging tanks at the same time, and the crude distillation charging 

plan. Crude oil is transported by large tankers to the refinery’s front end where crude oil is 

unloaded into crude storage tanks at a docking station. For the production planning, they 

assumed a linear fixed yield scheme for all refinery units without considering the nonlinearity of 

the processing units. For the product distribution, they neglected the product transportation from 

the refinery to distribution center which is mainly implemented through pipelines. Nevertheless, 

they modeled the product distribution from depots to the consumer markets which in turn they 

modeled through a truck transportation system without taking the potential routing problem into 

consideration. They presented a mixed integer nonlinear programming model (MINLP) where 

the mix in the storage tanks constraints the feed to the refinery. The schedule of parcel arrivals as 

well as production requirement and initial inventory level at the docking station are known a 

priori. They modeled this MINLP problem in GAMS 131 and used solver DICOPT 90 to solve it. 

They established that integrating the different divisions of the refinery supply chain achieves 

better results than solving each part in a sequential push or pull manner. Refineries develop 

purchasing plans that are based on market predictions for crude oil in order to maximize profits. 

When executing a plan, they are exposed to financial risks due to the fluctuations in crude oil 

prices during the period between purchase and payment. One way of lowering the financial risk 

related to crude oil purchases is to establish a portfolio of different types of contracts such as 

long-term, spot, and futures contracts. To account for these fluctuations through the contracts, 
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Park et al. 66  developed an integrated model based on two-stage stochastic programming for 

operational planning and financial risk management of a refinery. They selected downside risk as 

the objective function to be minimized. Subsequently, they optimized the contract sizes and the 

operational plan according to their developed model and the price scenarios. They established  

that financial risk can be substantially minimized by diversifying suppliers with spot contracts 

and cross-hedging with future contracts and concluded their model is beneficial in aiding 

refineries with decision-making on operational and financial strategies. Traditionally, the 

management of industrial units such as refining industry was carried out in sequential steps: 

scheduling of the manufacturing unit first, subsequently estimating and designing the utility 

system to accommodate for this manufacturing unit. This master-slave treatment of the 

production facilities at the expense of utility system could lead to infeasible or suboptimal 

solutions. To address this problem, Agha et al. 67  investigated the integration of production and 

utility systems in process industries. They discussed the traditional management of industrial 

units in three sequential steps: scheduling of the production unit by minimizing inventory, 

estimating the utility needs of production unit and eventually operation planning of the utility 

system. They developed a multi period mixed integer linear programming (MILP) model to 

compare traditional and integrated approaches and indicated that the integrated approach results 

in significant reduction in energy costs while minimizing the emissions of harmful gases. As 

discussed earlier, crude-oil blending is a common practice to obtain qualified mixing oils for 

refinery processing at low costs. The blending component crudes are subject to inventory 

constraints, which in turn are dynamically affected by the refinery purchase plan including the 

crude-oil types, amounts, and delivery over a planned period of time. As the crude-oil price and 

availability constantly changes in a volatile market, the crude-oil blending and purchase planning 
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should be coordinated and simultaneously optimized to maximize the potential profitability of a 

refinery plant. This becomes even more important when the uncertainty of crude-oil delivery 

time is also taken into account. In this direction, Zhang et al. 68 addressed the integration of crude 

oil blending subject to inventory constraints and purchase planning including the crude oil types, 

amounts, and delivery with delivery uncertainty consideration to account for the crude oil price 

and availability changes in a volatile market. They developed  inventory-related flexibility 

indices to characterize the ability of a refinery for handling the uncertainty of crude-oil delivery 

delays. They modeled these simultaneous refining activities through a general MINLP model. 

Their research disclosed in-depth relations between the production flexibility and the plant profit. 

They demonstrated the efficacy of the developed methodology by industrial case studies. In 

general, it is very challenging for an oil refinery to make integrated decisions encompassing 

multiple functions based on a traditional Decision Support System (DSS), given the complexity 

and interactions of various decisions. To overcome this limitation, Hu et al. 69 proposed an 

integrated Decision Support System (DSS) by combining both business and engineering systems 

with an operator–computer interface. Under their proposed DSS, the decision maker would 

decide on the values of a subset of decision variables. These values, or the first-stage decision, 

are forwarded through the dashboard to the DSS. For the given set of first-stage decision 

variables, a multi-objective robust optimization problem, based on an integrated business and 

engineering simulation model, was solved to obtain the values for a set of second-stage decision 

variables. The business model was simulated using the agent-based software NetLogo 49. The 

business model characterizes the crude oil and end-product markets by simulating oil refinery 

supply and the customer demand. In the case study, the engineering and business simulations are 

connected through an interface program used to run both simulations programmatically and 
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exchange information between Netlogo and Aspen HYSYS73. They used a small case study to 

show the decision support role of dashboard and how it can be used to coordinate across various 

departments in decision making. It was observed that a maximum simulated profit can be 

achieved in the two case study scenarios. However, as the size of the business and engineering 

models grows, the proposed optimization based framework could have some computational 

difficulties and issues. With the environmental challenges facing the global industry in particular 

refineries, new CO2 legislation forces the petroleum refining industry to review its operations 

and processes to cope with the new limitations of allowable CO2 emissions. Simultaneously, 

petroleum refineries,  face another challenge represented by clean fuel products (low sulfur 

content) regulations. In an attempt to provide operational solutions to these issues, Alhajri et al. 

70 presented an integrated refinery model that simultaneously solves the refinery planning, 

hydrogen and CO2 management problems to cope with the strict environmental regulations 

facing the refining industry. Their overall model was formulated as a mixed integer nonlinear 

program (MINLP) and was evaluated through different case studies. In the CO2 management 

model, they considered three different mitigation alternatives for CO2 emission reduction: 

Load balancing or shifting by adjustment of production throughput to reduce CO2 emissions,  

Fuel switching, which reduces the CO2 emissions by switching from one type of fuel to another 

cleaner one, Capture technology, which considers installation of a capture process to reach high 

levels of CO2 reduction. They demonstrated results indicating  that the integrated model leads to 

better profit margins and that successful CO2 mitigation options to meet a given reduction target. 

Their obtained results also showed that the load shifting and fuel switching options can 

contribute up to a 23% reduction of CO2 emissions. To achieve greater than 30% reductions, the 

results required a CO2 capture technology must be employed in the petroleum refining industry. 
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They suggested that the load shifting and fuel switching options contributes mainly to this 

reduction. Beside CO2 emissions, other air emissions such as NO2, when exist in large amounts, 

could cause different types of serious diseases and illnesses. This prompted Al-Rowaili et al. 72 

to discuss simultaneous profit maximization and maintaining a desired final products quality and 

minimum NO2 emissions from the oil refinery. Their study aimed for the cost/profit analysis of 

an oil refinery with the inclusion of visbreaking unit for its high economic power and to identify 

strategies to reduce NO2 emissions from oil refineries while maintaining profit at maximum 

possible level using mathematical programming approach. They proposed three methods for NO2 

reduction : balancing, fuel switching and use of technology for NO2 reduction. Their proposed 

MINLP models were validated through a case study and represented a contribution in 

maximizing profits, maintaining good quality products and reducing NO2 emissions. As 

discussed, rising energy prices and stricter limitations on greenhouse gas emissions have also led 

to greater attention on energy savings. The configuration of process units in a total refining site 

has a great impact on both material and energy requirements. The simultaneous optimization of 

materials and energy is highly important for an enterprise. Hence, Zhang et al. 22  discussed the 

simultaneous optimization of materials and energy balance in an oil refinery and proposed 

material and energy integration for a total refining site to minimize costs. They developed an 

MINLP model comprising production planning for materials, energy requirements of process 

units based on pinch analysis, operational planning and balance for utility systems. Their 

mathematical model was an MINLP problem with the nonlinear formulations including 

exponential terms. Through an industrial example, they conducted a comparison between the 

simultaneous and sequential optimization methods for materials and energy in a total refining 

site. Their study demonstrated some major conclusions: Firstly, simultaneous optimization of 
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materials and energy can obtain higher profit than sequential optimization can. Secondly, the 

sequential optimization of materials and energy preferentially produces higher value products to 

maximize the material profit without considering the energy cost, while simultaneous 

optimization makes a careful trade-off between the material profit and energy cost in process 

units and utility systems. Finally, the quantity and level of steam produced or consumed in 

process units should be coordinated with the throughputs and product distributions of process 

units, as well as the configuration of the utility system, to achieve maximum total profit. They 

stated maximizing steam production in process units is not always effective from the view of the 

total site. When the material balances of the intermediate products between the two complex 

processes such as upstream refinery and downstream petrochemical plant are considered, the 

potential of increasing the overall margin can be explored. Zhao et al. 53  proposed an integrated 

optimization approach to couple the refinery and its down-stream ethylene plant. A mixed-

integer nonlinear programming (MINLP) model was formulated to optimize the production 

planning of the processing units in the refinery and the ethylene plant simultaneously. Due to the 

model complexity, they applied a Lagrangian algorithm to decompose the integrated 

mathematical model into an MILP problem for the refinery and a small-scale MINLP problem 

for the ethylene plant. They investigated performance of the their approach on industrial case 

studies and illustrated the economic advantage in the enterprise-wide network in terms of 

improvement in overall profit over the sequential approach.  The integration specifically 

addressed intermediate material transfer between processing units at each site. Their study drew 

two conclusions: Firstly, integrating the two networks can obtain higher profit than the original 

optimization that the two systems are modeled separately and optimized sequentially. The 

optimization of intermediate steams that correlates the upstream refinery with the down-steam 
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ethylene plant has expanded the space for profit enhancement, which is especially critical for the 

overall products production because of the increasing price of raw material. Secondly, the 

original optimization of either refinery or the ethylene plant preferentially produces higher value 

products to maximize the material profit without considering the intermediate production 

utilization in other system, while the proposed optimization model presents a balance between 

the refining products and chemical products production. In addition to some sources of 

uncertainty and volatility discussed earlier such as oil sources scarcity, and price variability, the 

oil supply chain is facing other challenges due to emerging issues such as new alternative energy 

sources with high impact on demand and production and profit margins reduction. Additionally, 

the existence of large, complex and world wide spread businesses implies a complex system to 

be managed where distribution can be seen as one of the key areas that needs to be efficiently 

and effectively managed. Different types of distribution modes characterize the oil supply chain 

where the pipeline mode is one of the most complex to operate when having multiproduct 

characteristics. Relvas et al. 71 addressed the these challenges of the planning for a petroleum 

derivatives transportation system employing a multiproduct pipeline that connects a refinery to a 

storage tank farm. They developed two alternative MILP models with the aim of fulfilling 

costumers’ demands while minimizing the medium flow rate. Their model integrates the 

inventory management in the final solution to represent the real world synergies between tank 

farm product needs and pipeline operation. The major strengths of their proposed approach are 

the possibility of obtaining medium term solutions for a complex problem faced by many 

companies in the oil sector, without conditioning the solution through decomposition approaches 

and avoiding the need to run the model several times so as to determine a number of feasible 

time intervals or number of pumping batches. However, their proposed models have to be tested 



26 

 

under other system settings, to conclude on model robustness and also more operational details 

should be included in the present formulation, such as inventory management on tanks rather 

than using aggregated capacity. In addition, the model should be improved to address planned or 

unforeseen pipeline stoppages, interfaces or electricity costs and the settling period 

representation. Usually, in a refinery both oil acquisition and product selling are predefined by 

the organization. Therefore, a minimum and a maximum market for a product, and the volume of 

oil acquired are usually predefined in order to meet the organization expectations. The refineries 

must check the feasibility of this planning, and in case of adversities (lack of supply, broken 

equipment, etc.), it must match to the new reality. The volume of each oil type acquired is the 

most important information, since it will affect the entire refining system. To take these 

parameters into consideration, Sales et al. 74 presented the integration of optimization and 

simulation of refinery units to obtain a production planning to maximize profit, account for 

external loads, product pricing, blending and achieve global optimum solution in small 

computational times. Their refinery under study contains four units: Distillation (CDU), Delayed 

Coking (DCU), Hydrotreatment (HDT), and Fluid Catalytic Cracking (FCC). The distillation 

separates crude oil into eight intermediates whose external loads were added in the system. The 

objective function maximizes the profit of the refinery subject to 35 operational and capacity 

constraints. They utilized sensitivity analysis and the determination of break-even points (BEP) 

of external loads to bolster the refinery planning and the resultant profit. Their sensitivity 

analyses showed that any variation in the produced volumes of fuel oil export grade can strongly 

influence the refinery profit, and the production of petrochemical naphtha is bad at any produced 

volume. This type of analysis demonstrated that capacity bottlenecks or undesirable products for 

any refinery and any product is enabling the planners to look for unseen potential improvements 
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and problems. Siwi et al. 75 developed a multi-objective multi-period MINLP model for optimal 

strategic planning of entire petroleum and petrochemical supply chain (PPSC) to support 

decision making for petroleum and petrochemical industries. Nonlinear behavior of the oil 

reservoir was considered for accurate prediction of crude production. The environmental impact 

based on Eco-indicator 99 was introduced as an objective function in addition to economic 

performance. They demonstrated the capability of their proposed model and solution approach 

through an industrial scale example and provided results illustrating the effect of considering 

environmental impact on the operation of PPSC. Utomo et el. 76 developed an optimization 

framework for simultaneous consideration of production and utility systems during production 

planning. Their model makes use of crude cocktail rather than a single crude in the production 

process. They demonstrated the solutions obtained by the integrated model with crude cocktail 

results in higher profit than that obtained by the single crude model and the sequential model. 

Leenders et al. 42 proposed a method for the optimal design of integrated batch production and 

utility systems , which covers decisions on the system structure, component sizing and 

scheduling of both production and utility system. Their method integrates superstructure MILP 

models of a utility and a production system. Through two case studies, they demonstrated that 

simultaneous design and scheduling of the integrated system is beneficial and shown to reduce 

cost and increase profit. In addition, their analysis indicates that their proposed method is even 

more beneficial for industry sectors with high share of energy costs. Assis et al. 77 contributed to 

the literature by developing a model for the management of crude oil supply at the operational 

level, incorporating elements of maritime inventory routing and crude oil scheduling .To tackle 

this problem, they proposed a discrete time MINLP formulation to be solved by an iterative 
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MILP-NLP decomposition, which relies on domain reduction, bivariate piecewise McCormick 

envelopes to yield the MILP relaxation, and a NLP solver to reach feasible solutions. 

They suggested their strategy might not be effective for large scale problems and suggested   

two strategies to handle large instances: First, Lagrangian decomposition to decompose the large 

scale problem to smaller sub-problems. Second, Clustering strategy which consists in organizing 

groups of platforms and storage tanks in clusters, so that crudes are transferred from platforms to 

storage tanks that belong to the same cluster. Besides reducing the number of routes for vessels, 

clustering can be done in such a way to minimize the mixing of crudes in storage tanks. Their 

strategy was able to find small gap solutions on small and medium size instances and found good 

feasible solutions for the larger instance within a reasonable CPU time. Intuitively, one of the 

main goals of any process industry, which is to generate maximum revenues at low costs by 

maintaining high production levels in order to satisfy the demand for products. Integration of 

activities serves as an exceptional tool for achieving this is by following a plant-wide approach. 

One of the activities to be integrated within the refining industry and has not been discussed to 

this end is the maintenance tasks in the overall process system. Kopanos et al. 39 presented a 

rolling horizon optimization framework for the integrated planning of utility and production 

system under uncertainty. They proposed a linear MILP model for the integrated planning 

problem which follows a rolling horizon modeling representation in order to readily deal with 

various types of uncertainty, such as fluctuations on the demand for final products, unit 

breakdowns, variations of cost terms, or data inaccuracies. In brief, in the rolling horizon 

scheme, a planning problem is solved for a certain length of time horizon (i.e., prediction 

horizon), and then the solution for a part of that time horizon (i.e., control horizon) is executed. 

After each iteration, a new planning problem is solved by moving forward the time horizon by 
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the length of the control horizon considered. The optimization goal is to minimize the total cost 

of the production and the utility system. They demonstrated through a couple of instances that 

their integrated approach can yield significantly better solutions over sequential approaches in 

terms of total costs, extra energy consumption, and cleaning and startup/shutdown operations. 

They associated the significant reduction in total costs to the enhanced energy efficiency of the 

entire system through the optimized consumption of energy . They also indicated that 

unnecessary purchases of resources can be avoided by their proposed approach. They concluded 

it is essential to consider condition-based maintenance policies for the equipment of a process 

plant to increase its overall energy efficiency, operability and stability. They claimed their 

integrated approach can result in a cleaner production which in turn could lead to more 

sustainable production practices. 

All of the surveyed literature mentioned above are outstanding contributions to the field of 

integration in refinery supply chain management and have deepened our knowledge and 

understanding of interaction and interconnection among cohesive but apparently separate 

refinery sub-systems. However, there is still a need to broaden the scope of integration and 

include more refinery supply chain echelons within the integrated model even though at the 

expense of more computational intensity. Most of the literature surveyed so far do not include all 

major refinery sub-systems within their integrated model and therefore present a partial 

integration of refining enterprise activities. The other main issue is the highly nonlinear nature of 

the refinery processing units which needs to be accounted within the integrated model while 

most of the literature mentioned thus far do not consider the inherent nonlinearity of refinery 

processes within the refinery production model. Lastly, the corresponding MINLP model for the 

integrated refinery problem is nonlinear and nonconvex due to the presence of bilinear or 
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quadratic, signomial, exponential or  logarithmic terms in the material balance, blending, product 

yield and quality constraints, and consequently the standard methods for solving this integrated 

refinery problem may fail to converge to a feasible solution or lead to sub-optimal solutions. 

Therefore, standard optimization heuristics are not suitable if the global optimum is desired and 

most of the literature dealing with integrated models mentioned so far, do not guarantee the 

global optimality.  

1.3. Uncertainty in the Oil Industry 

The next topic investigated in this research is uncertainty. Real-world system designs encounter  

different types of uncertainties which are usually beyond the direct control of the designer: 

(A) Type I variations: Changing environmental and operating conditions such as operating 

temperature, pressure, humidity, changing material properties.  

(B) Type II variations: Production tolerances and actuator imprecision. To avoid expensive 

high precision machinery, the design parameters of a product is only realized  to a certain 

degree of accuracy.78-79  

(C) Model Errors: Uncertainties in the system output due to imprecision in the evaluation of 

the system output and the system performance. This kind of uncertainty includes 

measuring errors and all kinds of approximation errors due to the use of models instead 

of the real physical objects. 

(D) Feasibility Uncertainties: Uncertainties concerning the fulfillment of constraints the 

design variables must obey.78 

There are different possibilities to quantify the uncertainties classified under (A)–(D) 

mathematically. Basically, the uncertainties can be modeled deterministically, probabilistically, 
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or possibilistically: (1) the deterministic type defines parameter domains in which the  parameter 

uncertainties can vary, (2) the probabilistic type defines probability measures describing the 

likelihood by which a certain event occurs, and (3) the possibilistic type defines fuzzy measures 

describing the possibility or membership grade by which a certain event can be plausible or 

believable.78,80 

In some disciplines, an epistemological classification perspective of uncertainties are used  

differentiating the uncertainties into objective and subjective ones. Objective uncertainties, also 

called aleatory 81 or random uncertainties, are of intrinsically irreducible stochastic nature. That 

is, these kinds of uncertainties are of physical nature, e.g.,  humidity, temperature, material 

parameters (stiffness, conductivity etc.). These uncertainties cannot be removed and due to the 

probabilistic nature, probability distributions are the adequate means for the mathematical 

description of these uncertainties.78,82 

In contrast to the objective character of aleatory uncertainties, epistemic uncertainties reflect the 

lack of knowledge a designer has about the problem of interest. This kind of uncertainty is 

regarded as subjective, because it is due to a lack of information that could, in principle, be 

reduced by increased efforts. Epistemic uncertainties include uncertainties about the model used 

to describe the reality, its boundary and operation conditions, also referred to as model form 

errors, and also the errors introduced by the numerical solution methods used (e.g., 

discretization error, approximation error, convergence problems). Such uncertainties can be 

modeled by type (1) and (3) techniques.78,83 

From a process operations point-of-view, uncertainties can be classified as external (exogenous) 

uncertainties and internal (endogenous) uncertainties. As the name suggests, external 

uncertainties are exerted by outside factors that impact the process. The decisions at each stage 
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are independent of the decisions taken in previous periods. On the other hand, internal 

uncertainties arise from deficiencies in the complete knowledge of the process. The 

decisions at each stage depend on decisions taken in previous periods.84-86 

Uncertainty in chemical processes can notably result from the following probable sources: 87,88 

(1) Model inadequacy comes from nonideal conditions of all modeling procedures, such as 

doubt in input variables and inadequate data. This type of uncertainty source exists 

because of an approximation of the reality and also referred to as structural uncertainty or 

model bias. 

(2) Observation error or experimental uncertainty is a typical uncertainty source, especially 

when a calibration problem occurs.  

(3) Parameter uncertainty exists because known parameters within the model can be 

considered as potential sources of uncertainty. For instance, material properties can be 

probable sources of parameter uncertainty in the chemical processing field.  

(4) Algorithmic uncertainty comes from numerical approximations implemented in the 

computer model (discretization such as finite difference, finite element). This is also 

known as numerical or discrete uncertainty. 

 

The oil industry is subject to uncertainties such as unpredictable product demand, unstable 

market prices, fluctuations in oil supply, operational breakdowns, variations of contract and cost 

terms or model and data inaccuracies. 39,84,89   

Uncertainty becomes an even more critical factor in the decision making processes as the span of 

the planning horizon expands and if not taken into account, could lead to unfeasible or 

suboptimal designs. To account for uncertainty in strategic planning for the process and notably 
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oil industry, numerous modeling schemes have been reported in the literature. Among these 

methods, the most common approaches to deal with uncertainty have been two-stage stochastic 

programming 91, robust programming 92-94, and fuzzy possibilistic programming. 95-97  

One of the uncertain and unsolved problems in the actual oil products supply chain systems is 

how to organize efficient, reliable and cost effective transportation from the refineries to main 

consumer markets over the distance of several thousands of miles. Transportation network is 

crucial to the whole logistic process. Unreasonable design of transportation structure will not 

only greatly increase logistics fees , but also reduce the ability to adapt the possible risk and 

fluctuation of supply chain systems . Therefore, selecting transportation modes and the optimal 

construction of transportation structure are of great significance in supply chain systems 

construction . Meanwhile, depots in hub cities are faced with various problems, such as 

utilization inefficiency and weak regulating ability. The inappropriate design of depots capacity 

will dissatisfy the requirements for steady operation in the complex system, and even cause 

unexpected production shutdown. To address this type of uncertainty, Zhang et al.91 studied the 

reliable design of oil products supply chain system with hub disruption through a stochastic 

linear programming approach. To account for uncertainties, they adopted Monte Carlo sampling 

to create random instances according to probability distribution of uncertain parameters in 

transportation process of oil products, the stochastic hub disruption and the demand uncertainty. 

They proposed a multi-scenario MILP model coupled with Monte Carlo sampling for the reliable 

design of oil products supply chain system. To consider the unavoidable depot faults in practice, 

they discussed allocation level and successful service probability for non-hub city. On the basis 

of above factors, their proposed model accounted  for uncertain factors such as demand and 

depot failure probability. They adopted  the scenario based robust optimization approach to solve 
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out the most reasonable design which is applicable to each specified scenario. The objective 

function was the minimum total cost, including depreciation cost of initial investment, 

infrastructure investment  and operation cost. Infrastructure investment refers to the depreciation 

cost of hub city infrastructure, pipeline, and depots. Under the constraints of transportation 

modes, allocation level, depot construction, their model was established and solved by the 

scenario based robust optimization approach. A real case was presented to illustrate the 

application of their proposed model. The results indicated that the total cost involving 

uncertainties is relatively higher than that without any uncertainties. The refineries may also fail 

to supply oil products to downstream depots under uncertain conditions, which will affect the 

infrastructure construction plan and transportation scheme of supply chain system. Although the 

robust optimization formulation can be used to model uncertainty in a wide variety of MILP 

problems, there are some limitations of the proposed approach. For instance, some of the 

probability distribution functions are only applicable to constraints that contain a single uncertain 

parameter (i.e., uniform, binomial, Poisson). This is due to limits in probability theory and not 

the proposed formulation. Also, the robust optimization formulation cannot address dependent 

uncertain parameters which are related through general nonlinear expressions, but it is applicable 

to linearly dependent uncertain parameters. In this line, Janak et al.92 considered robust 

optimization methodology for the problem of scheduling under uncertainty where the uncertain 

problem parameters had a known probability distribution function. They used a min–max 

formulation and applied it to mixed-integer linear programming (MILP) problems to produce 

“robust counterparts” and  solutions that are immune against data uncertainty. They accounted 

for uncertainty in the coefficients of both the objective function, as well as the coefficients and 

right-hand-side parameters of the inequality constraints.  
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Verderame and  Floudas 93 investigated the operational planning of a large-scale multiproduct 

and multipurpose industrial batch plant with demand uncertainty due to the length of the time 

horizon. They also developed a robust operational planning model to address the objective of 

providing a reliable daily production profile which is immune to various forms of demand 

uncertainty. Recently, Dai et al.94 proposed a data-driven robust optimization (DDRO) scheme 

for crude oil blending under uncertainty caused by oil properties. The information about property 

uncertainty during blending process was effectively extracted and the optimization robustness 

was improved using historical data of blending effect to construct the data-driven uncertainty set. 

A data-driven robust model was built on the basis of this set to optimize crude oil blending under 

property uncertainty. The uncertainty of sulfur content during the blending process was merely 

considered to simplify the introduction. They used a  dual transformation to convert the problem 

into an LP model to solve the DDRO model. They extracted uncertainties of oil components 

from production data by recursive least squares method by utilizing the blending effect model. 

Then, they constructed the uncertainty set by combining principle component analysis and robust 

kernel density estimation according to the historical data of blending effects. Eventually, they 

developed a robust model for recipe optimization of crude oil blending by using the obtained 

uncertainty set. The demonstrated the applicability of the proposed DDRO model by a real-world 

production case study of crude oil blending system. Their results claimed that the proposed 

method increases the robustness of solutions and protects CDUs effectively by using uncertainty 

data. They concluded the  sulfur content of mixed oil in the worst condition with this method is 

still in the safe range. They balanced the  level of conservatism and robustness of the proposed 

DDRO model by robustness parameters. Robust optimization algorithms are useful when the 

probability distributions of the uncertain parameters are available. In the absence of these 



36 

 

distributions, fuzzy logic programming schemes become handy. Liu and Sahinidis 95,96 presented 

application of fuzzy programming in process planning. They considered the long-range planning 

problem for a chemical process involving a network of chemical processes that are  

interconnected by raw materials, intermediates and products that may be purchased from and/or 

sold to different markets. The main decision problem was the selection of processes from among 

competing technologies and the subsequent timing of process expansions. Also important was to 

determine the optimal production levels for the installed processes. The decision maker is to 

maximize the net present value (NPV) of the project over a long range horizon consisting of a 

finite number of time periods during which prices and demands of chemicals, and investment 

and operating costs of the processes can vary.  Using fuzzy programming techniques, the process 

planning problem with uncertain parameters and soft constraints was transformed into an MINLP 

problem by introducing a new variable indicating the degree of satisfaction of constraints and 

goals. Uncertainties in material availabilities and product demands, material costs, product 

prices, and process yields were considered. A global optimization algorithm based on the branch-

and-bound algorithm was adopted to solve this MINLP problem. For this nonconvex 

minimization problem, this algorithm was used in order to develop lower and upper bounds of 

the optimal objective function value. As the algorithm progressed , these techniques yield 

increasingly tighter lower and upper bounds of the subproblems solved in the course of the 

branch-and-bound search. Through illustrative examples they demonstrated the usefulness of 

their models. They claimed their solutions obtained from the fuzzy models were capable of 

handling a larger range of the uncertain parameters than the deterministic solution.  

Fuzzy programming by using fuzzy logic represents the truth of the uncertainty values. Although 

the choice of parameter values in fuzzy logic is often quite subjective and depends on the user’s 
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preference, it reduces the computational burden significantly and is suitable for the uncertainty 

that lacks information. For instance, when parameters such as conversion rate or capital cost for 

integration are hard to obtain due to the immaturity of the technologies such as biorefineries. As 

an example of such instances, Tong et al.97 addressed  the optimal design of an advanced 

hydrocarbon biofuel supply chain integrated with existing petroleum refineries under various 

types of uncertainties. They proposed a multiperiod mixed-integer linear programming model to 

take account of main characters of advanced hydrocarbon biofuel supply chain, such as 

integration with petroleum refineries, “drop in” fuels blending with crude derivatives, and use of 

pipelines to distribute products. They considered biomass availability, product demand, 

conversion rate and corresponding cost for insertion points in the petroleum refinery as the fuzzy 

numbers in their model. Possibility, necessity and credibility measures were introduced and 

applied in the possibilistic programming. Their computational results demonstrated that the 

model size increases slightly as there are uncertain parameters in the objective function. In their 

possibility model, the capital cost and production costs tend to be lower, which results in more 

production in the petroleum refineries. However, in the necessity model, the cost is relatively 

high and it tends to reduce production in the petroleum refineries. Their credibility model is a 

tradeoff between their possibility model and necessity model. 

 Despite the popularity of uncertainty quantification and assessment for the oil refining industry 

in the academic research, to the best of our knowledge few to none have focused on the strategic 

enterprise-wide planning of an integrated oil supply including all major refinery supply chain 

echelons. The other issue is the operating variables or the process severity within the refinery 

units and inherent nonlinearity of the refinery processing units which needs to be accounted 

within the stochastic planning model as any uncertainty for instance in demand data will affect 
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all refinery sub-subsystem processes who are interconnected and should be adjusted upon 

realization of the uncertain parameters. The other main issue is that the integrated stochastic 

refinery planning model is a nonconvex MINLP, and if the global optimum is required, most of 

the literature dealing with uncertainty in oil refining industry do not warrant the global 

optimality. 

As discussed earlier, the corresponding MINLP model for the integrated refinery problem is 

nonlinear and nonconvex due to the presence of bilinear or quadratic relationships in the material 

balance, blending and product yield correlations and highly nonlinear terms such as signomial, 

exponential or logarithmic terms in the product quality constraints. To obtain the global optimal 

solutions for the enterprise-wide refinery problem, while accounting for the highly nonlinear 

nature of the processing units and the uncertainties in the final product demand and crude oil and 

final product market prices, these nonlinearity and nonconvexity must be handled through a 

global optimization strategy. 

Most global optimization approaches for solving bilinear programs rely on the convex 

McCormick envelopes 98, which provide a relaxation of the original problem. The quality of the 

relaxation is highly dependent on the lower and upper bounds of the variables involved in the 

bilinear terms, improving as their domain is partitioned. This can be done iteratively, as in 

piecewise McCormick envelopes 99-102 or simultaneously, using spatial branch and bound 

frameworks 103-105  or univariate parameterization techniques 106,107. 

Multiparametric disaggregation technique (MDT) 108-111  and its variant normalized 

multiparametric disaggregation technique (NMDT) 112-113 is a univariate parameterization 

technique adopted in this research which handles bilinear terms by discretizing one of the 
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variables of the bilinear term to a specified accuracy level and will be discussed in detail in the 

relevant chapter. To linearize highly nonlinear terms, an aggregation scheme referred to as 

lumped variable linearization (LVL) technique 114-115 has been utilized in this study. In LVL, all 

variables within a nonlinear term in a constraint are aggregated into one lumped variable LV and 

the entire statement is linearized and is initialized by assigning initial values to every variable 

congregated within the lumped variable. This technique will also be discussed in detail in the 

relevant chapter(Specify the chapter). 

Despite all the described complexity associated with the enterprise-wide integrated refinery 

planning, this study presents a novel integrated optimization approach with a multi-period 

mixed-integer nonlinear programming (MINLP) model for the oil refinery network to handle 

inherent nonlinearity of refinery processing units, integration of operations in a broad range of 

refinery supply chain associated with crude unloading, procurement, final product pooling and 

blending, inventory management, distribution by pipeline, utility system and environmental 

impacts, accounting for the uncertainties in the final product demand and crude oil and final 

product market prices and finally obtaining global optimal solutions for the enterprise-wide 

integrated refinery problem. 

To Summarize, in this research, techno-economic studies of refinery operations have been 

presented to enhance the profit margin in the refinery supply chain system. Three problems have 

been addressed: First the nonlinear nature of refinery processing units have been accounted for 

and the results of the nonlinear refinery model are evaluated versus a linear fixed yield input-

output model of the refinery. This will assist with optimizing product yield and final property 

values to meet the market demand and specifications and extend the profit margin. For the CDU, 

a nonlinear data-based swing-cut (SW) model and another nonlinear model based on the Geddes 
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fractionation index (FI) have been adopted. The remaining refinery units are modeled by 

empirical nonlinear correlations within a refinery wide production planning problem and all are 

presented in Chapter 2.Second, this nonlinear production planning model is integrated with other 

refinery supply chain echelons such as crude unloading, product blending, utility and product 

distribution by pipeline. The integration of refinery sub-problems will aid a more coordinated  

decision making process across refinery supply chain and in turn will contribute more to optimal 

refinery operations and higher profit margins. The deterministic version of this integrated 

refinery planning problem has been investigated and compared with a sequential model of the 

refinery where the refinery sub-problem models are solved in a sequential manner. To solve the 

complex integrated refinery model which leads to a nonconvex MINLP model, an 

aggregation/disaggregation global optimization framework has been proposed. The aggregation 

scheme utilizes Lumped Variable Linearization technique (LVL) and the disaggregation scheme 

uses Normalized Multiparametric Disaggregation Technique (NMDT) to linearize highly 

nonlinear terms and bilinear terms respectively. This second problem with its proposed solution 

methodology and global optimization framework is outlined in Chapter 3. In the third problem, 

uncertainty in price and demand parameters in refining industry has been investigated. 

Accounting for uncertainty will help with more realistic understanding of the refinery operational 

outcomes in case of volatility and perturbations in demand and price parameters. This stochastic 

version of this integrated refinery planning problem where product demands and crude oil and 

product prices are subject to uncertainties, have been modeled through three uncertainty 

appraisal methods. These three methodologies include robust optimization algorithm , fuzzy 

possibilistic programming and two-stage stochastic programming with financial risk 

management and the results of the stochastic integrated refinery modeled by these three methods 



41 

 

have been investigated and presented in Chapter 4. The numerical results and discussion for all 

three problems are presented in Chapter 5. The remainder of this treatise contains conclusions, 

future work, data tables and appendices. 
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Chapter 2 

EMPIRICAL NONLINEAR MODELS OF REFINERY UNITS 

2.1. Preface  

In this chapter, a novel production planning strategy for refinery wide optimization is 

established. Two novelties are introduced: From a managerial perspective, it gives an effective 

tool to refinery planner to adjust the temperature distribution within the distillation unit and the 

process severity within the other refinery units to obtain desired cut point temperatures and 

maximum yield and desired property of final products which in turn results in a higher profit for 

a certain amount of crude feedstock. In addition, it provides a tool for a refinery planner to make 

advance decisions on the amount of the crude oil to be purchased to address a forecast demand in 

the upcoming months while meeting the demand requirements.  

Three objectives are pursued in this chapter: First, a data-based nonlinear model and another 

nonlinear model based on Geddes fractionation index (FI) for CDU and empirical nonlinear 

correlations for the remaining refinery units are applied to a refinery wide production 

optimization including the following processes: Crude Distillation Unit (CDU), Fluid Catalytic 

Cracking (FCC), Catalytic Reforming (CRU), Hydrocracking (HC), Hydrotreating (HT), 

Hydrodesulfurization (HDS), Visbreaking (VB) and Delayed Coking (DC). The improvements in 

the overall profit of the refinery via the nonlinear models have been compared with a linear 

input-output model through thirteen case studies and substantiate the outstanding advantage of 

the nonlinear model utilizing a CDU model based on fractionation index (FI) over the linear 
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input-output  model and data-based nonlinear model. Second, the global optimal solutions of the 

refinery production problem by simply using BARON as a global optimizer are obtained. Lastly, 

comprehensive yield and product quality data for all intermediate and final products are 

calculated. The rest of this chapter is organized as follows: the problem statement is outlined in 

the next section and the overall refinery material balance is presented in section 3. Subsequently, 

the nonlinear mathematical models for the refinery units including product yield and quality 

equations are described in section 4. The product quality constraints in blending units are 

delineated in section 5. Section 6 defines the total profit objective function. Section 7 describes a 

linear input-output model as a reference of comparison to demonstrate the effectiveness of the 

current nonlinear unit models. The numerical results and discussion are presented in chapter 6. 

2.2. Problem Statement 

Figure 2.1 demonstrates a  simplified representation of the refinery processes in this study. For 

simplicity, refinery gas, fuel gas and LPG are not presented in the outlet streams of the units as 

the focus of this study has only been on the four major final products. The set fpr = 

{G,JF,DF,FO} is the set of major final products where G,JF,DF and FO represent gasoline, jet 

fuel, diesel fuel and fuel oil respectively. The set U = {CDU, CRU, FCC, HC, HT,HDS,VB, DC, 

BU, ctank, ptank} is the set of refinery units where CDU, CRU, FCC, HC, HT,HDS,VB and DC 

represent crude distillation unit, catalytic reforming, fluid catalytic cracking, hydrocracking, 

hydrotreating, hydrodesulfurization, visbreaking and delayed coking units respectively and are 

the operating units of the refinery. The crude distillation unit comprises both atmospheric and 

vacuum distillation sections. From the set of operating units, there is only one unit for each 
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category except for HT and HDS: HT includes two separate hydrotreaters HT1 and HT2 for the 

straight run light naphtha and middle distillate respectively. HDS includes three separate   

 

 

 

 

 

 

 

Figure 2.1. Simplified Schematic Diagram of the Refinery in this Study  

hydrodesulfurizers HDS1, HDS2 and HDS3 for heavy cycle oil, vacuum gas oil and vacuum 

residue respectively.  

The remaining refinery unit sets BU, ctank and ptank represent blending units, crude tanks and 

final product tanks. BU in turn includes the set of product pools {GP,JFP,DFP,FOP} which in 

turn stand for Gasoline, jet fuel, diesel fuel and fuel oil pools. There is assumed to be only one 

crude storage and charging tank to CDU and the set ptank also represents {GT,JFT,DFT, FOT} 

which demonstrate gasoline, jet fuel, diesel fuel and fuel oil final product tanks. As discussed 

further in the following section, the empirical units merged with material balance equations, will 

calculate the final product yields and properties for each unit. For the operation of the entire 
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refinery under study, the deterministic product demand and unit selection for the processes  and 

operation mode has been used. With these assumption and simplifications, this refinery problem 

could be stated with the following knowns and remaining decision variables: 

Given: 

1-The horizon is only one stream day 

2-Type of the crude oil used which is Alaskan crude in this study 

3-Unit operations, their numbers and maximum capacity, and limits on their inlet and outlet 

streams 

4-Final products and their demand data 

5-Prices for the final products, Alaskan crude and intermediate products like ethanol 

6-The operational costs for the units are neglected as the main idea of the current study is a 

comparative study of  global maximum profit by the nonlinear refinery model through  

calculating yield and product quality and linear input-output model (fixed yield and property)  

To be determined: 

1-Amount of the crude to be purchased to meet the product demand 

2-Yield and properties of all intermediate and final products 
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3-The blending recipe will be obtained by meeting the final product demand and quality 

requirements in the blending units 

The major assumptions made in this problem: 

1-The uncertainty in the demand and price data for the final product or the price and availability 

for the crude or any other types of operational uncertainty is neglected for this study and all data 

are deterministic. 

2-The mixing in all blending units is perfect and shrinkage and volume change does not occur for 

the purpose of this study. 

3- As the study has been conducted for a short horizon of one stream day, the effect of the 

inventories have not been taken into account for the purpose of this study. 

The objective function is the overall profit of the refinery which will be calculated by simply 

subtracting the crude oil and purchased intermediate product costs from the revenue made by the 

final product sales. In the following sections, the overall material balance and the nonlinear unit 

models are discussed. 

2.3.Overall Refinery Material Balance 

2.3.1. Material Balance for Operating Units 

All refinery operational units have at least 5 equations for their material balance constraints. 

Equation 2.1 constrains the inlet flow rate to each unit. Equations 2.2 and 2.3 calculate the outlet 

flowrate of each product from the unit using the volumetric or weight yield value obtained from 
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the nonlinear unit models. Equation 2.4 enforces  conservation of mass under an assumption of 

no shrinkage and volume change and constant density in all processes. Equation 2.5 enforces the 

maximum inlet capacity for each unit and uses the refinery throughput, that is, the CDU inlet 

flow rate as the upper bound for the feedstock flowrate of each unit. Equation 2.6 sets 

𝐴𝑚(𝑢, 𝑐, 𝑢
′) the amount of product  𝑐 flowing from unit 𝑢 to unit 𝑢′ and is equal to the outlet 

flowrate of the product 𝑐 from unit 𝑢 for all refinery products excluding AGO from CDU, VGO 

from HDS2 and VR from HDS3 where the product outlet stream is split into more than one 

downstream units. 𝑝𝑎𝑡ℎ𝑢(𝑢, 𝑐, 𝑢′) is a set that verifies the product 𝑐 is on that flow path from 

unit 𝑢 to unit 𝑢′. For CDU rather than having (4) constraint as the upper bound, the sum of all 

final product demands are used as the lower bound as shown in equation 2.7.  

𝐹𝑖𝑛(𝑓, 𝑢) =  ∑∑𝐴𝑚(𝑢
′, 𝑐, 𝑢)  ∀ 𝑢′  ∈ 𝑈 , 𝑐 ∈  𝐶       (2.1) 

𝑐𝑢′

 

 𝐹𝑜𝑢𝑡(𝑢, 𝑐) = 0.01 ×  𝑌(𝑐, 𝑢)   ×  𝐹𝑖𝑛(𝑓, 𝑢)   ∀ 𝑢 ∈ 𝑈 , 𝑐 ∈ 𝐶    (2.2)   

𝐹𝑜𝑢𝑡(𝑢, 𝑐) =
[0.01 × 𝑌𝑤(𝑐, 𝑢)   ×  𝐹𝑖𝑛(𝑓, 𝑢) × 𝑆𝐺(𝑓, 𝑢)]

𝑆𝐺(𝑐, 𝑢)
          ∀ 𝑢 ∈ 𝑈 , 𝑐 ∈ 𝐶     (2.3) 

𝐹𝑖𝑛(𝑓, 𝑢) =  ∑ 𝐹𝑜𝑢𝑡(𝑢, 𝑐)  ∀ 𝑢 ∈ 𝑈 , 𝑐 ∈  𝑢𝑝𝑟              (2.4)𝑐   

𝐹𝑖𝑛(𝑓, 𝑢) ≤  𝐹𝑖𝑛(𝑓, 𝐶𝐷𝑈) ∀ 𝑢 ∈ 𝑈     (2.5)  

𝐴𝑚(𝑢, 𝑐, 𝑢
′) =  𝐹𝑜𝑢𝑡(𝑢, 𝑐)     ∀ 𝑢, ∈ 𝑈 , (𝑐, 𝑢

′) ∈  𝑝𝑎𝑡ℎ𝑢       (2.6)  

𝐹𝑖𝑛(𝑓, 𝐶𝐷𝑈) ≥  ∑ 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑓𝑝𝑟)     (2.7) 𝑓𝑝𝑟    

2.3.2. Material Balance for Blending Units   
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For product pools four sets of previous equations for the operating units will apply as well, that 

is, equations (2.1,3-5). Nevertheless the product pools will require two extra constraints as 

follow: equation 2.8 enforces  𝐷𝑒𝑚𝑎𝑛𝑑 (𝑓𝑝𝑟), the demand of final product  𝑓𝑝𝑟 as the lower 

bound for  𝐴𝑚(𝐵𝑈, 𝑓𝑝𝑟, 𝑝𝑡𝑎𝑛𝑘) which is the amount of final product  𝑓𝑝𝑟 flowing from 

blending unit 𝐵𝑈 to final product tank 𝑝𝑡𝑎𝑛𝑘. Equation 2.9 enforces  𝐶𝑎𝑝𝑥 (𝑝𝑡𝑎𝑛𝑘), the 

maximum capacity of the final product tank 𝑝𝑡𝑎𝑛𝑘 as the upper bound for  𝐴𝑚(𝐵𝑈, 𝑓𝑝𝑟, 𝑝𝑡𝑎𝑛𝑘) 

the amount of final product  𝑓𝑝𝑟 flowing from blending unit 𝐵𝑈 to final product tank 𝑝𝑡𝑎𝑛𝑘: 

𝐴𝑚(𝐵𝑈, 𝑓𝑝𝑟, 𝑝𝑡𝑎𝑛𝑘) ≥  𝐷𝑒𝑚𝑎𝑛𝑑 (𝑓𝑝𝑟)      (2.8)   

𝐴𝑚(𝐵𝑈, 𝑓𝑝𝑟, 𝑝𝑡𝑎𝑛𝑘) ≤  𝐶𝑎𝑝𝑥 (𝑝𝑡𝑎𝑛𝑘)          (2.9)   

2.4.Mathematical Model 

HPI petroleum refining process correlations116 present empirical correlations for predicting 

product yields and properties for the following processes: Fluid Catalytic Cracking (FCC), 

Catalytic Reforming (CRU), Hydrocracking (HC), Hydrotreating (HT), Hydrodesulfurization 

(HDS), Visbreaking (VB) and Delayed Coking (DC). The objective of these correlations is 

simply for techno-economic studies  to estimate yields and properties for petroleum refining 

process units. 

While the operating conditions have not been accounted explicitly in the derivation of most of 

these correlations, Nevertheless, the user specifies the severity level or degree of conversion and 

the yields represent mid-life or average run conditions. Thus, the process conditions vary from 

case to case over a narrow range defined by the operating severity, and the effect of operating 
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conditions required for a specific performance can be accounted for implicitly via the 

adjustments for feedstock quality. 116 

2.4.1.Fluid Catalytic Cracking (FCC) Model 

The FCC process can be characterized by the feed properties as input variables as follows:  

Conversion Level, C (LV.PCT.) , Feed Specific Gravity, SGf  (60F/60F), Feed API Gravity, 

APIf, Feed Volumetric Average Boiling Point, VABPf  (F), Feed Aniline Point, APf  (F),                              

Feed Sulfur Content, Sf  (WT.PCT.) and  Feed Watson Characterization Factor, Kf .    

The operating variables in the FCC unit are: Reactor and regenerator pressure, Reactor 

temperature, Weight hourly space velocity, WHSV (h-1), Catalyst Activity and Catalyst-to-oil 

ratio. The product streams from the FCC unit are defined by the set fccpr = {C3/400, 

GASO,LCO,HCO,COK}.Total mathematical model for the FCC unit comprises 45 correlations 

which for brevity just some of them are outlined as follows. 116 

Equation 2.10 defines feed quality parameter. Equations (2.11-14) determine yield (LV PCT.), 

API gravity, research octane number (clear?)  and Reid vapor pressure (psia) for the FCC 

gasoline. 

               𝐹𝑄𝑃 = 75.0 − 0.065 (𝑉𝐴𝐵𝑃𝑓) − 0.9 ( 𝑆𝑓) + 0.6 (𝐴𝑃𝑓) − 0.26 (𝐴𝑃𝑓/𝑆𝐺𝑓)    (2.10) 

𝐺𝐴𝑆𝑂𝑉 = [𝐺𝐴𝑆𝑂 𝐶3𝑃𝑅𝑂𝐷⁄ ][𝐶3 400 𝑌𝐼𝐸𝐿𝐷 ]⁄           (2.11) 

𝐴𝑃𝐼𝐺 = 66.84 − [15.5 (𝐶 100)⁄ + 8.33 (𝐶 100⁄ )2 − 31.2(𝐹𝑄𝑃 100⁄ ) + 35.6 (𝐹𝑄𝑃 100⁄ )2] (2.12)             

𝑅𝑂𝑁𝐶𝐿 = 0.00139(𝐶)(𝐹𝑄𝑃) − 0.0384(𝐶) − 0.187(𝐹𝑄𝑃) + 101.3     (2.13)     

𝑅𝑉𝑃 = −23.8 + 2.5 (𝐾𝑓) + 0.3 (𝑆𝑓)     (2.14)  
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Figure 2.2. Schematic Diagram of the Mathematical Model in FCC 

2.4.2.Catalytic Reforming (CRU) Model 

The process correlation for catalytic reforming estimates the product yields and reformate 

properties for reforming full-boiling range naphthas. The yields represent catalytic reformers 

employing platinum-rhenium catalyst. Average reactor pressure, a key design parameter, may 

vary from 100 to 500 psig and here a typical operating pressure of 200 psig and a weight-hourly 

space velocity of 2.0 is considered. The correlation provides adjustments for operating pressure. 

The two most important governing factors for the yield are: (1) the feedstock quality represented 

by the N2A content: Naphthene content plus 2 times the aromatic content of feedstock and (2) 

the operating severity as measured by the clear research octane number of the C5
+ reformate. 116 

The product streams from the CRU unit are defined by the set crupr = { FG, LPG,REF}.Total 

mathematical model for the CRU unit comprises 19 correlations, some of which  are presented 
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here Are the others in the appendix?. Equations (2.15-17) compute pressure corrected yield (vol. 

pct.), motor octane number (clear) and  Reid vapor pressure (psia) of  𝐶5+ Reformate. 

REFORMATE = (REFBASE) + (2.0 − 0.01 (P))[EXP(1.4245 − 13.225(N2A) + 12.0 (N2A)(RON))]

(2.15)
 

𝑀𝑂𝑁𝐶𝐿 = 11.38 + 77.42 (𝑅𝑂𝑁)   (2.16) 

𝑅𝑉𝑃 =       [3.044112 − 0.013476 (𝑁2𝐴) + 2.452896 (𝑁2𝐴)(𝑁2𝐴)

         −4.798783 (𝑅𝑂𝑁) − 2.607458 (𝑁2𝐴)(𝑅𝑂𝑁)

                          +2.782781 (𝑅𝑂𝑁)(𝑅𝑂𝑁)]/[1.0 + 1.275414 (𝑁2𝐴)

        + 0.567611  (𝑁2𝐴)(𝑁2𝐴) − 2.209418 (𝑅𝑂𝑁)

                              −1.779277 (𝑅𝑂𝑁)(𝑁2𝐴) + 1.374308 (𝑅𝑂𝑁)(𝑅𝑂𝑁)]    (2.17)    

 

 

 

 

 

 

 

 

Figure 2.3. Schematic Diagram of the Mathematical Model in CRU 

2.4.3.Hydrocracking (HC) Model 

The product distribution in gas oil hydrocracking is a function of operating severity and 

feedstock quality. The HPI gas oil hydrocracking correlation uses the light gasoline (C5/180 F) 
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yield as a measure of the conversion achieved during hydrocracking. The other product yields 

are correlated with the light gasoline yield. There are correlations for 3 modes of operations: 

maximum gasoline production, maximum jet fuel /kerosene production or maximum diesel fuel 

production, which for the purpose of this study the correlations for the maximum jet fuel 

/kerosene production have been used. 116 

The product streams from the HC unit are defined by the set hcpr = {RG , NAP, G, MD}.Total 

mathematical model for the HC unit for all operational modes comprises a total of 107 

correlations for product yields, Naphtha yield and property in each operation mode, property 

correlations for Gasoline, Kerosene/Jet Fuel and Diesel products within those operation modes. 

Some of the major correlations from maximum Kerosene/Jet Fuel production are presented here. 

Equation 2.18 provides yield (WT. PCT.) for light gasoline. Equations 2.19-21 compute yield 

(WT. PCT.), Smoke Point (mm) and Luminometer Number of kerosene. Research octane 

number (clear) and motor octane number (clear) of naphtha are determined by  Equations 2.22-

23. 

𝐿𝐺 = (𝐻𝐶/100.0)[0.15 (𝐴𝑃𝐼𝑓) + 2.4 (𝐾𝑓) − 17.29]     (2.18) 

𝐾𝐸𝑅𝑂 = 𝐻𝐶 − 𝑅𝐺 − 𝐶4 𝐿𝑃𝐺 − 𝐿𝐺 − 𝐻𝑁       (2.19) 

𝑆𝑃𝐾 = 17.8 (𝐾𝐾) − 185.0      (2.20) 

𝐿𝑁𝐾 = −12.03 + 3.009 (𝑆𝑃𝐾) − 0.0104 (𝑆𝑃𝐾)
2    (2.21)      

𝑅𝑂𝑁𝐶𝐿 = −19.3 (𝐾𝑓) + 288.3        (2.22) 

𝑀𝑂𝑁𝐶𝐿 = 0.91 (𝑅𝑂𝑁𝐶𝐿) + 5.4     (2.23) 
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Figure 2.4. Schematic Diagram of the Mathematical Model in HC 

2.4.4. Hydrotreating (HT) Model 

The refining industry hydrotreats a wide range of petroleum stocks for different purposes. 

Naphtha hydrotreating aims at  removing sulfur, nitrogen, oxygen and metals that would 

otherwise poison the valuable catalysts used in downstream catalytic reforming processes. For 

straight-run naphthas, hydrotreatment does not significantly change the quality of the naphtha 

other than removing the sulfur, nitrogen and trace metal contaminants. However, unsaturated 

stocks like naphthas coming from visbreaker or coker units do undergo considerable changes due 

to the saturation of olefinic molecules. For middle distillates like light cycle oil from catalytic 

cracking, hydrotreating is performed  to enhance their quality by removing sulfur and trace 

contaminants, carbon residue and olefin content. It improves their cetane index and burning 

characteristics, color and storage stability and resistance to sludging. The operating variables of 
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the catalytic hydrotreating process include pressure, temperature, catalyst loading, hydrocarbon 

feed rate and hydrogen concentration. The effect of operating conditions required for different 

feedstocks are accounted for implicitly via the adjustments for feedstock quality.116 

The correlations presented here are to estimate the product yields and properties in commercial 

hydrotreating operations. Total mathematical model for the naphtha and middle distillate HT unit 

includes a total of 37 correlations which some of the correlations are presented here. Equations 

2.24-28 compute aromatic saturation factor (ASF), paraffins content (LV. PCT.), naphthenes 

content (LV. PCT.), aromatics Content (LV. PCT.) and research octane number (clear ) of 

hydrotreater naphtha. Whereas Equations 2.29-31 calculate yield (WT. PCT.), cetane index and  

pour point (F) for middle distillate in hydrotreater.  

𝐴𝑆𝐹 = 0.011 + 76.0 (𝑁𝑓)
2  + 0.039 (𝑆𝑓)    (2.24) 

𝑃𝑛 = 𝑃𝑓 + 0.85 (𝑂𝑓) + 0.10 (𝐴𝑆𝐹)(𝐴𝑓)     (2.25)  

𝐶𝑃𝑛 = 𝐶𝑃𝑓 + 0.15 (𝑂𝑓) + 0.90 (𝐴𝑆𝐹)(𝐴𝑓)    (2.26)  

𝐴𝑛 = 𝐴𝑓 − (𝐴𝑆𝐹)(𝐴𝑓)     (2.27) 

𝑅𝑂𝑁𝑛 =  𝑅𝑂𝑁𝑓 − 0.33 (𝑂𝑓) + 1.5 − 0.31 (𝐴𝑆𝐹)(𝐴𝑓)     (2.28)  

𝑀𝐷 = 100.0 + 𝐻 − 𝐻2𝑆 − 𝑁𝐻3 − 𝑅𝐺 − 𝐻𝑁     (2.29) 

𝐶𝐼 = −420.34 + 0.016 (𝐴𝑃𝐼)2 + 0.192 (𝐴𝑃𝐼)(𝐿𝑜𝑔10 𝑉𝐴𝐵𝑃)

+65.01 (𝐿𝑜𝑔10 𝑉𝐴𝐵𝑃)
2 − 0.0001809 (𝑉𝐴𝐵𝑃)2      (2.30)

 

𝑃𝑃𝑑 = 𝑃𝑃𝑓 + [40.0 (𝐵𝑓)/(𝑃𝑃𝑓 + 100.0)] −   [10.0 (11.9 − 𝐾𝑓)(𝐹𝐶𝐶)]   (2.31) 
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Figure 2.5. Schematic Diagram of the Mathematical Model in HT 

2.4.5. Hydrodesulfurization (HDS) Model 

One of the most frequently encountered reactions in hydrogen treating  is desulfurization. 

Although sulfur removal is usually the main objective, catalytic hydrodesulfurization is also used 

to eliminate nitrogen, oxygen and other contaminants. In commercial practice, refineries usually 

operate their hydrodesulfurization units to treat stocks like heavy cycle oil from cat cracker, 

vacuum gas oil and vacuum residue from vacuum distillation units. Heavy cycle oil and vacuum 

gas oil are hydrodesulfurized for two reasons: (1) to produce low-sulfur blendstocks for fuels and 

(2) to improve the cracking characteristics of catalytic cracking feedstocks. This process removes 

sulfur, nitrogen, metal contaminants, carbon residue constituents and saturates and polyaromatics 

from the feedstocks and thereby resulting in improved conversion and gasoline yields. Residue 

hydrodesulfurization is increasingly important as pollution regulations regarding sulfur 
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emissions have become more strict. In addition to producing low sulfur fuel oils, residue HDS 

units  have also been used to produce low sulfur feedstock for delayed coking process.116 

Table 1 shows the operating severity in terms of degree of desulfurization for the refining 

process in this study. The correlations presented here are to estimate the product yields and  

Table 2.1. Operating Severity for Refinery Processes [116] 

Chargestock Approximate TBP 

Boiling Range, C (F) 

Severity 

Naphtha C5/190 (C5/375) 1 ppm sulfur in product 

Middle Distillate 190/343 (375/650) 95% desulfurization 

Heavy Gas Oil 343/566 (650/1050) 90% desulfurization 

Atmospheric Residue 343+(650+) 85% desulfurization 

Vacuum Residue 566+(1050+) 80% desulfurization 

 

properties in commercial hydrodesulfurization operations. Total mathematical model for heavy 

cycle oil, vacuum gas oil and vacuum residue  HDS units includes a total of 55 correlations 

which some of the correlations are presented here. Equation 2.32 calculates viscosity-gravity 

constant for the feed. Equations 2.33-36 determine viscosity-gravity constant, viscosity at 210 F  

(SSU), yield (WT. PCT.) and pour point (F) for heavy gas oil (HGO). Equations 2.37-41 

compute yield (WT. PCT.), sulfur content (WT. PCT.), viscosity-gravity constant, viscosity at 

210 F (SSU) and metals content (PPM WT.)  in Residual Fuel Oil. 

𝑉𝐺𝐶𝑓 =
𝑆𝐺𝑓 − (0.1244) 𝐿𝑜𝑔10(𝑆𝑈𝑆210𝑓 − 31.0)

0.9255 − (0.0979) 𝐿𝑜𝑔10(𝑆𝑈𝑆210𝑓 − 31.0)
− 0.0839   (2.32) 

𝑉𝐺𝐶ℎ𝑔𝑜 = 𝑉𝐺𝐶𝑓 − 0.89 (𝑆𝐺𝑓 − 𝑆𝐺ℎ𝑔𝑜)    (2.33)  
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 𝐿𝑜𝑔10(𝑆𝑈𝑆210ℎ𝑔𝑜 − 31.0) =
(0.9255) 𝑉𝐺𝐶ℎ𝑔𝑜 − 𝑆𝐺ℎ𝑔𝑜 + 0.0776

(0.0979) 𝑉𝐺𝐶ℎ𝑔𝑜 − 0.1162
     (2.34) 

𝐻𝐺𝑂 = 100.0 + 𝐻 − 𝐻2𝑆 − 𝑁𝐻3 − 𝐻𝑁 −𝑀𝐷   (2.35) 

𝑃𝑃ℎ𝑔𝑜 = 𝑃𝑃𝑓 −  [9.0 (11.9 − 𝐾𝑓)(𝐹𝐶𝐶)]    (2.36) 

𝐹𝑂 = 100.0 + 𝐻 − 𝐻2𝑆 − 𝑁𝐻3 − 𝑅𝐺 − 𝐻𝑁 −𝑀𝐷    (2.37) 

𝑆𝑟 = [(20.0) 𝑆𝑓 − (𝑆𝑛)(𝐻𝑁) − (𝑆𝑑)(𝑀𝐷)]/𝐹𝑂    (2.38)        

𝑉𝐺𝐶𝑟 = 𝑉𝐺𝐶𝑓 + 0.56 (𝑆𝐺𝑟 − 𝑆𝐺𝑓)       (2.39) 

 𝐿𝑜𝑔10(𝑆𝑈𝑆210𝑟 − 31.0) =
0.9255 (𝑉𝐺𝐶𝑟) − 𝑆𝐺𝑟 + 0.0776

(0.0979) 𝑉𝐺𝐶𝑟 − 0.1162
      (2.40) 

𝑀𝑟 = 16.0(𝑀𝑓/𝐹𝑂)   (2.41)  

 

 

 

 

 

 

 

Figure 2.6. Schematic Diagram of the Mathematical Model in HDS 

2.4.6.Visbreaking (VB) Model 
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Visbreaking is a special application of the thermal cracking process used to convert heavy, high 

viscosity petroleum stocks into lower viscosity stocks suitable for use as heavy fuel oil. The 

primary purpose for visbreaking residual stocks is to reduce their viscosity and pour point. The 

visbreaking correlations are used to predict yields and product properties from visbreaking oil 

stocks at the maximum severity. The yield from these correlations are consistent with fuel 

products which will not undergo phase separation and severe viscosity increase during storage 

and will not lead to large scale deposits and coking in the furnace tubes. The yield equations use 

the normal pentane insoluble (NC5) content of the visbreaker chargestock as the correlation 

parameter. The sediment content of the chargestock appears to affect the thermal stability of the 

visbroken fuel. Two sets of correlation equations presented: one for low sediment contents (0.02 

pct. and lower) and one for high sediments contents (greater than 0.02 pct.).116 

The product streams from the VB unit are defined by the set vbpr = {FG, LPG, NAP, LGO, 

HGO,R}. Total mathematical model for visbreaking unit includes a total of 20 correlations. Some 

of the correlations are outlined here. All equations are based on a sediment less than or equal to 

0.02 (wt %). Equation 2.42 computes  yield (LV %) for Visbreaker naphtha (C5/400 F). 

Equations 2.43-47 determine yield ( LV Pct.), specific gravity, pour point (F), viscosity 

blending number and viscosity at 210 F (CS) for the Visbreaker vacuum residue (900 F +)   

𝑉𝑁 = 12.29 − 0.071(𝑁𝐶5𝑓)   (2.42)  

𝑉𝑇𝐵 = 59.64 − 0.183 (𝑁𝐶5𝑓)    (2.43) 

𝑆𝐺𝑣𝑡𝑏 = 𝑆𝐺𝑓 (
𝑉𝑇𝐵 𝑊𝑒𝑖𝑔ℎ𝑡 𝑌𝑖𝑒𝑙𝑑

𝑉𝑇𝐵 𝑉𝑜𝑙𝑢𝑚𝑒 𝑌𝑖𝑒𝑙𝑑
)      (2.44) 

𝑃𝑃𝑣𝑡𝑏 =  𝑃𝑃𝑓 + 10.0     (2.45) 

𝑉𝐵𝑁𝑣𝑡𝑏 = [(𝑉𝐹𝑂)(𝑉𝐵𝑁𝑣𝑓𝑜) − (0.0366)(𝐿𝐺𝑂) − 0.2104 (𝐻𝐺𝑂)]/𝑉𝑇𝐵     (2.46) 
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ln(𝐶𝑆210𝑣𝑡𝑏) = (6.9078 𝑉𝐵𝑁𝑣𝑡𝑏)/(1.0 − 𝑉𝐵𝑁𝑣𝑡𝑏)    (2.47) 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Schematic Diagram of the Mathematical Model in VB 

2.4.7.Delayed Coking (DC) Model 

Delayed coking was introduced as a refining process in the early 1930’s. In early refineries 

severe thermal cracking of residual stocks resulted in unwanted coke deposits in the heaters. 

Gradually refiners learned to design the heaters so that the residual feedstock could be heated 

above the coking temperature without significant coke formation in the heaters. The Delayed 

Coking Correlations uses the Conradson carbon residue (CCR) of the feedstock as the correlating 

parameter for estimating yields for conventional delayed coking operations.116  

The product streams from the DC unit are defined by the set dcpr = { RG, LPG, NAP, LGO, 

HGO,COKE}. Total mathematical model for delayed coking  unit includes a total of 15 

correlations which some of the correlations are presented here. Equation 2.48 determines yield 
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(wt. pct.) for the Coker naphtha (C5/400F). Equations 2.49-51 calculate yield (wt. pct.),sulfur 

and nitrogen content for the coke product. 

𝑁𝐴𝑃 = 11.38 + 0.335 (𝐶𝐶𝑅𝑓)    (2.48) 

𝐶𝑂𝐾𝐸 = 1.6 (𝐶𝐶𝑅𝑓)     (2.49) 

 
𝑆𝑐𝑜𝑘𝑒 = [100.0 (𝑆𝑓) − 23.52 (𝑆𝑓) − 0.14 (𝑆𝑓)(𝑁𝐴𝑃) −  0.45 (𝑆𝑓)(𝐿𝐺𝑂) −  0.82 (𝑆𝑓)(𝐻𝐺𝑂)]/𝐶𝑂𝐾𝐸

 
          (2.50)                  

 

 𝑁𝑐𝑜𝑘𝑒 = [100.0 (𝑁𝑓) − 0.01 (𝑁𝑓)(𝑁𝐴𝑃)  − 0.24 (𝑁𝑓)(𝐿𝐺𝑂)  − 0.63 (𝑁𝑓)(𝐻𝐺𝑂)]/𝐶𝑂𝐾𝐸
 

    (2.51) 
 

 

Figure 2.8. Schematic Diagram of the Mathematical Model in DC 
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2.4.8. Crude Distillation Unit (CDU) Model 

2.4.8. 1. Swing-cut Data-Based Model  

The data based CDU model is adopted from Alhajri et al.31 . The key attribute for characterizing 

the hydrocarbons composing crude oil in this study is  the True Boiling Point (TBP) curve. Table 

2 shows the cuts produced in the CDU for the TBP data for typical crude oil fractions.  

Table 2.2.Boiling Range Data for Typical Crude Oil Fractions [31] 

Fraction TBP-Boiling Range (°F) 

SRLN 90-220 

SRHN 180-380 

Kerosene 330-520 

Diesel 420-630 

VGO 610-1050 

Residue 950+ 

The mathematical model for the CDU is expressed by the operating variable of the CDU unit 

which is the cut-point temperature for fraction (s), x = TECDU. Also, the products stream for the 

CDU unit are fractions s (s ∈ SCDU = LPG, SRLN, SRHN, Kero, Diesel, VGO, and Rsd). The 

CDU model is described as follows: 

Equation 2.52 represents the cuts as a polynomial function in TECDU,s, which is equivalent to the 

End-Point Temperatures (EP). The upper and a lower bounds for the TECDU,s of all fractions s 

from the CDU is referred to as the swing cut. The coefficients of the polynomial of the CDU 

equation are listed in Table 3. The residual cut volume percent is expressed by equation 2.53. 

Since the last cut is the residue of the crude, it is assumed that the accumulative vaporized 

percent will be 100%. Each product volumetric flow rate is calculated by subtracting its 

accumulated volume percent vaporized from the previous cut volume and multiply the result 
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with crude feed to the CDU as described by equation 2.54. Key properties of the CDU products 

e.g. API gravity, Sulfur and nitrogen percent are expressed by equation 2.56 as polynomial 

functions in each product mid-volume percent vaporized. The mid-volume for a product is 

determined by equation 2.55 and calculated by averaging the accumulative current cut volume 

percent with the previous cut volume percent vaporized. 

𝐶𝑢𝑡𝑆 =∑𝑎𝑘

4

𝑘=0

(𝑇𝐸𝐶𝐷𝑈,𝑠)
𝑘
    ∀ 𝑠 ∈  𝑆𝐶𝐷𝑈 − {𝑅𝑠𝑑}      (2.52) 

𝐶𝑢𝑡𝑠=𝑅𝑠𝑑 = 100   (2.53)    

𝑉𝐶𝐷𝑈,𝑆 =   𝐹𝐶𝐷𝑈  × (
𝐶𝑢𝑡𝑠 − 𝐶𝑢𝑡𝑠−1

100
) ∀ 𝑠   𝑆𝐶𝐷𝑈     (2.54) 

𝑀𝑖𝑑𝑉𝐶𝐷𝑈,𝑆 = (
𝐶𝑢𝑡𝑠 + 𝐶𝑢𝑡𝑠−1

2
) ∀ 𝑠   𝑆𝐶𝐷𝑈     (2.55) 

𝑃𝑉𝐶𝐷𝑈,𝑆,𝑃 =∑𝑎𝑘

4

𝑘=0

(𝑀𝑖𝑑𝑉𝑠)
𝑘    ∀ 𝑠 ∈  𝑆𝐶𝐷𝑈 , 𝑝 ∈  𝑃𝑠        (2.56)   

 

Table 2.3. CDU model equations coefficients [31] 

Parameter 

ak 

Cut% (Vol.) 

Equation (52) 

API 

Equation (56) 

SUL% 

Equation (56) 

N% 

Equation (56) 

a0 4.040637061       81.84796736 0.050579083 –0.000882902 

a1 –0.047271899     –3.778147973 –0.02036269 0.000304355 

a2 0.000324992       0.113288448 0.001849373 –2.2968E–05 

a3 –2.84324E–07     –0.0015436414 –3.25656E–05 4.58852E–07 

a4 8.15312E–11     7.19024E–06 2.0301E–07 6.76957E–09 
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2.4.8.2. Geddes Fractionation Index (FI) Based Model  

The fractionation index (FI) is a quantitative criterion for sharpness of fractionation with 

complex mixtures by a fractionator. 35  The index is the equivalent number of theoretical plates, 

operating at total reflux, which would affect the same component separation as the fractionator. 

The FI model is a more accurate nonlinear model for the complex crude distillation unit (CDU) 

than the fixed yield or the swing cuts models and optimizes the crude cuts quantities and 

temperature while being independent from crude type, characteristics of the CDU, and readily 

calculated.19  

The nonlinear FI model for the CDU in this work has been adopted from Alattas et al.1. It starts 

with a mass balance around each unit j and component i. Every unit yields the top product 

𝑃𝐷𝑗,𝑖 feeding the next unit and the bottom product 𝑃𝐵𝑗,𝑖 which is the product crude cut. There is 

also a summation equation for each type of stream over its set of constituent components i’s  as 

shown by equation 2.57. Equation 2.58 implies that the top product of each unit j is also the feed 

to next downstream unit j+1. A summation equation over all components i for each unit is also 

used in the FI model as demonstrated by equations 2.59, 2.60 and 2.61. The component 

distribution at each unit j is based on the light key LKj and heavy key HKj components for each 

unit based on the initial and end boiling points relative to each cut. The components lighter than 

the light key are only obtained in the top product stream, while the ones heavier than the heavy 

key are only obtained in the bottom product stream as shown in equations 2.62 and 2.63.  

The splits of the distributed components are calculated using the FI parameters. For each unit, 

there are two FI values, one for the rectifying section and another for the stripping section. The 

rectifying FI (FIr) is used if the temperature is greater than the component boiling temperature; 

otherwise, the stripping FI (FIs) is used. Equations 64 and 65 represent this fact and the FI 
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choice. Yi,j is a binary  variable which is equal to one if the component is in the stripping section 

and zero otherwise, γi,j is a placeholder for the FI value, Tb,i is the component boiling point, and 

Tj is the cut point temperature. Notice that at 𝑌𝑖,𝑗 = 0 (false) that 𝛾𝑖,𝑗 = 𝐹𝐼𝑟𝑗 and 𝑇𝑏,𝑖 ≤ 𝑇𝑗 while 

at 𝑌𝑖,𝑗 = 1  (true) that 𝛾𝑖,𝑗 = 𝐹𝐼𝑠𝑗 and 𝑇𝑏,𝑖 ≥ 𝑇𝑗. The exact representation of this disjunction is 

considered with linear mixed-integer constraints using convex hull as in equation 2.64 and big M 

formulation as in equations 2.65 and 2.66 .Since the components are listed in the order of 

increasing boiling point, equation 2.67  is also  included. The reference components have the 

composition ratio of 1 and a boiling point equal to the cut point temperature of the fractionation 

unit or crude cut, Tj. This reduces the FI equation  to equation 2.68. This equation is combined 

with the component mass balances (equations 2.57-63) to yield the equation for the component 

flow rate in the bottom product stream as represented by equation 2.69 noting the relationship 

between the relative volatility with the equilibrium constant, Kj,i, of the subject component 

(equation 2.70) . The equilibrium constant is calculated by equation 2.71. The vapor pressure can 

be calculated by Antoine equation for the major cuts and by an equation of state proposed by 

Twu et al.117 for the pseudocomponents as represented in equations 2.72 and 2.73.  

The separation temperature is the arithmetic average of the initial and end boiling points relevant 

to each cut as shown in equation 2.74. Moreover, the temperature decreases along the CDU 

column from bottom to top, which is expressed in equation 2.75. 

𝐹𝑗,𝑖 = 𝑃𝐷𝑗,𝑖 + 𝑃𝐵𝑗,𝑖 = 𝑃𝐷𝑗,𝑡𝑜𝑡𝑎𝑙𝑥𝑃𝐷,𝑗,𝑖 + 𝑃𝐵𝑗,𝑡𝑜𝑡𝑎𝑙𝑥𝑃𝐵,𝑗,𝑖   (2.57) 

𝐹𝑗+1,𝑖 = 𝑃𝐷𝑗,𝑖 = 𝑃𝐷𝑗,𝑡𝑜𝑡𝑎𝑙𝑥𝑃𝐷,𝑗,𝑖 (2.58) 

𝐹𝑗,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝑗,𝑖 
𝑖

    (2.59) 
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𝑃𝐷𝑗,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝐷𝑗,𝑖

𝑖
  (2.60) 

      𝑃𝐵𝑗,𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝐵𝑗,𝑖
𝑖

  (2.61) 

𝑃𝐷𝑗,𝑖 = 𝐹𝑗,𝑖  ,   𝑃𝐵𝑗,𝑖 = 0    𝑖 < 𝐿𝐾𝑗  (2.62) 

𝑃𝐵𝑗,𝑖 = 𝐹𝑗,𝑖  ,   𝑃𝐷𝑗,𝑖 = 0    𝑖 > 𝐻𝐾𝑗  (2.63) 

𝛾𝑖,𝑗 = 𝐹𝐼𝑟𝑗 ∗ (1 − 𝑌𝑖,𝑗) + 𝐹𝐼𝑠𝑗 ∗ 𝑌𝑖,𝑗     ∀𝑗,   𝐿𝐾𝑗  ≤  𝑖 ≤ 𝐻𝐾𝑗         (2.64) 

 𝑇𝑏,𝑖 + 𝑀𝐿 ∗ 𝑌𝑖,𝑗 ≤ 𝑇𝑗     ∀𝑗,   𝐿𝐾𝑗  ≤  𝑖 ≤ 𝐻𝐾𝑗      (2.65) 

𝑇𝑗 ≤ 𝑇𝑏,𝑖 + 𝑀𝑈 ∗ (1 − 𝑌𝑖,𝑗)     ∀𝑗,   𝐿𝐾𝑗  ≤  𝑖 ≤ 𝐻𝐾𝑗      (2.66) 

𝑌𝑖,𝑗 ≤ 𝑌𝑖+1,𝑗     ∀𝑗,   𝐿𝐾𝑗  ≤  𝑖 ≤ 𝐻𝐾𝑗      (2.67) 

𝑦𝑗,𝑖

𝑥𝑗,𝑖
= 𝛼𝑗,𝑖𝑜

𝐹𝐼  (𝑇𝑗)    (2.68) 

𝑃𝐵𝑗,𝑖 =
𝐹𝑗,𝑖    

𝑃𝐷𝑗,𝑡𝑜𝑡𝑎𝑙
    𝑃𝐵𝑗,𝑡𝑜𝑡𝑎𝑙

𝐾
𝑗,𝑖

𝛾𝑖,𝑗
+ 1

      ∀𝑗,   𝐿𝐾𝑗  ≤  𝑖 ≤ 𝐻𝐾𝑗  (2.69) 

𝛼𝑗,𝑖𝑜
𝐾𝑗,𝑖

𝐾𝑗,𝑜
=
𝑃𝑣𝑖(𝑇𝑗)

𝑃𝑣𝑜(𝑇𝑗)
     (2.70) 

𝐾𝑗,𝑖 =
𝑃𝑣𝑗,𝑖(𝑇𝑗)

𝑃
        ∀𝑗, 𝑖       (2.71) 

𝑃𝑣𝑗,𝑖 = exp ((𝑃𝑉𝐴𝑖 −
𝑃𝑉𝐵𝑖

𝑇𝑗 + 𝑃𝑉𝐶𝑖 − 273.15
) ∗ 2.303)    ∀𝑗, 𝑖 ∈ 𝐻𝐶    (2.72) 
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𝑃𝑣𝑗,𝑖 = 𝑃𝑐𝑖 ∗ exp ([− 5.96346 ∗ (1 − 𝑇𝑟𝑗,𝑖) + 1.17639 ∗ (1 − 𝑇𝑟𝑗,𝑖)
1.5
− 0.559607 ∗

             (1 − 𝑇𝑟𝑗,𝑖)
3
− 1.319 ∗ (1 − 𝑇𝑟𝑗,𝑖)

6
]/𝑇𝑟𝑗,𝑖 +𝜔𝑖*  ([− 4.78522 ∗ (1 − 𝑇𝑟𝑗,𝑖) +

             0.413999 ∗ (1 − 𝑇𝑟𝑗,𝑖)
1.5
− 8.91239 ∗ (1 − 𝑇𝑟𝑗,𝑖)

3
− 4.98662 ∗ (1 − 𝑇𝑟𝑗,𝑖)

6
]/𝑇𝑟𝑗,𝑖   

∀𝑗, 𝑖 ∈ 𝑃𝑠𝐶    (2.73) 

𝑇𝑗 =
𝑇𝐸𝑗 + 𝑇𝐼𝑗

2
        ∀𝑗, 𝑖       (2.74) 

𝑇𝑗 ≥ 𝑇𝑗+1    ∀𝑗      (2.75) 

 

 

 

 

 

 

 

Figure 2.9. Schematic Diagram of the Mathematical Model in CDU 

2.5.Product Quality Constraints in Blending Units 

The final Product quality from the blending units must meet the requirements enforced by the 

customers and environmental regulations. In this section the constraints to meet the product 

quality are discussed. 

2.5.1. Gasoline Pool (GP)  

 

 

CDU

Operating 
Variables:

TECDU

Am(ctank,O,CDU) Fin(f , CDU) cdupr = {SRLN, SRHN, K, AGO, VGO, VR}

Output Variables:

Product Yields
Y(cdupr , CDU)

Product Quality
API,SG,S

Input Variables:

Hydrocarbon Cuts
FI
Pvj

Pseudocomponents
Pc

Tc

Pvi

Kj,i

  ,  
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The blending in the gasoline pool is assumed based on the octane blending method. For 

simplicity, there are only two sets of requirements for the final gasoline product: (1)The volume 

fraction of oxygenate ethanol in the final gasoline product should not exceed 0.097 as defined by 

equation76, (2) Posted Octane Number required for the final Gasoline Product should be a 

minimum of 87 as defined by equation 2.77. The posted octane number can be calculated by 

equation 2.78. 

𝑣𝑜𝑙_𝑓𝑟𝑎𝑐(𝐸𝑡𝑂𝐻, 𝐺𝑃) ≤  0.097     (2.76)  

𝑃𝑂𝑁(𝐺, 𝐺𝑃) ≤  87        (2.77) 

𝑃𝑂𝑁(𝐺, 𝐺𝑃) =   [∑𝑅𝑂𝑁(𝑐, 𝐺𝑃)  × 𝑣𝑜𝑙_𝑓𝑟𝑎𝑐(𝑐, 𝐺𝑃) +∑𝑀𝑂𝑁(𝑐, 𝐺𝑃) ×  𝑣𝑜𝑙_𝑓𝑟𝑎𝑐(𝑐, 𝐺𝑃)

𝑐

]/2        

𝑐

 

∀ 𝑐 ∈ 𝑓𝑔𝑝                   (2.78) 

2.5.2. Jet Fuel Pool (JFP)  

The blending in the jet fuel pool is based on meeting three product quality requirements as 

follows: (1) the smoke point of the final jet fuel product should be a minimum of  19 mm and is 

calculated based on linear blending rule as defined by equation 79, (2) the maximum sulfur 

content for the final jet fuel Product should not exceed 0.3 (wt%) as defined by equation 80, (3) 

the freezing point of final jet fuel product in Fahrenheit is calculated based on  nonlinear 

correlations adopted  from Chevron and Albahri et al.118  and linear blending indices rules as 

defined by equations  2.81-83, and (4) the maximum freezing point temperature of the final jet 

fuel Product should not exceed -40  (°F)  as defined by equation 2.84. 

𝑆𝑃(𝐽𝐹, 𝐽𝐹𝑃) ≥  19    (2.79)    

𝑆(𝐽𝐹, 𝐽𝐹𝑃) ≤  0.3    (2.80) 
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𝐹𝑃𝐵𝐼(𝑐, 𝑢) = 55.16793 × (1.0368976)𝐹𝑃(𝑐,𝑢)   (2.81) 

 

2.5.3. Diesel Fuel Pool (DFP)  

The blending in the diesel fuel pool is based on meeting four product quality requirements as 

follow: (1) The viscosity at 122 (°F) in centistokes (cSt) for the final diesel fuel product is 

calculated by Refutas method adopted from Maples119 and Chevron and Albahri et al.118 and 

linear blending indices rules as expressed by equations 2.85-87, (2) The lower and upper bound 

for the viscosity of final diesel fuel product in centistokes (cSt) at 122 (°F) are expressed by 

equations 2.88-89, (3) the cetane index of the final diesel fuel product should be a minimum of  

40 and is calculated based on linear blending indices as expressed by equation 2.90, and (4) The 

maximum sulfur content for the final diesel fuel Product should not exceed 0.35 (wt%) as 

expressed by equation 2.91. 

𝑉𝐵𝐼122(𝑐, 𝑢) = 10.975 + 14.535 × ln [ln{(𝑉𝑖𝑠122(𝑐, 𝑢) + 0.8}]    (2.85)      

𝑉𝐵𝐼122(𝐷𝐹, 𝐷𝐹𝑃) =∑[ 𝑣𝑜𝑙_𝑓𝑟𝑎𝑐(𝑐, 𝐷𝐹𝑃) ×   𝑉𝐵𝐼122(𝑐, 𝑢) ]   ∀𝑐 ∈ 𝑝𝑎𝑡ℎ𝑢(𝑢, 𝑐, 𝐷𝐹𝑃)   (2.86)

𝑐

 

log[𝑉𝑖𝑠122(𝐷𝐹, 𝐷𝐹𝑃)] =
[−0.315 + 1.796 × 𝑉𝐵𝐼122(𝐷𝐹, 𝐷𝐹𝑃)]

[1 − 1.264 × 𝑉𝐵𝐼122(𝐷𝐹, 𝐷𝐹𝑃) + 0.45 × (𝑉𝐵𝐼122(𝐷𝐹,𝐷𝐹𝑃))2]
  (2.87)  

 

𝑉𝑖𝑠122(𝐷𝐹, 𝐷𝐹𝑃) ≥  1.9                (2.88)  

𝑉𝑖𝑠122(𝐷𝐹, 𝐷𝐹𝑃) ≤  4.1              (2.89) 

𝐶𝐼(𝐷𝐹,𝐷𝐹𝑃) ≥  40                       (2.90) 

𝐹𝐵𝑃𝐼(𝐽𝐹, 𝐽𝐹𝑃) =∑[ 𝑣𝑜𝑙_𝑓𝑟𝑎𝑐(𝑐, 𝐽𝐹𝑃) ×   𝐹𝑃𝐵𝐼(𝑐, 𝑢) ]   ∀𝑐 ∈ 𝑝𝑎𝑡ℎ𝑢(𝑢, 𝑐, 𝐽𝐹𝑃)      (2.82) 

𝑐

 

𝐹𝑃(𝐽𝐹, 𝐽𝐹𝑃) = −111.1628 + 27.68212 × ln(𝐹𝑃𝐵𝐼(𝐽𝐹, 𝐽𝐹𝑃)) (2.83)   

 

 

 

 

 

𝐹𝑃(𝐽𝐹, 𝐽𝐹𝑃)  ≤ −40   (2.84) 
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𝑆(𝐷𝐹, 𝐷𝐹𝑃) ≤  0.35                     (2.91) 

 

 2.5.4.Fuel Oil Pool (FOP)  

The blending in the diesel fuel pool is also based on meeting four product quality criteria as 

follow: (1)The viscosity at 210 (°F) in centistokes (cSt) for the final fuel oil product is calculated 

by the methods adopted from Chevron and Albahri et al. 118  and linear blending indices rules as 

described by equations 2.92-94, (2) the lower and upper bound for the viscosity of final fuel oil 

product at 210 (°F) in centistokes (cSt) are described by equations 2.95-96, (3) the maximum 

sulfur content for the final fuel oil Product should not exceed 0.5 (wt%) as described by equation 

2.97, (4) the pour point of the final fuel oil product should not exceed 65°F as described by 

equation 2.98, (5) pour point in Fahrenheit (°F) for the final fuel oil product is calculated by the 

methods adopted from Hu and Burns 42 and linear blending indices rules are described by 

equations 99-101. 

𝑉𝐵𝐼210(𝑐, 𝑢) =
[0.183 + 0.458 × log(𝑉𝑖𝑠210(𝑐, 𝑢))]

[1.105 + 0.305 × log(𝑉𝑖𝑠210(𝑐, 𝑢))]
  (2.92)      

𝑉𝐵𝐼210(𝐹𝑂, 𝐹𝑂𝑃) =∑[ 𝑣𝑜𝑙_𝑓𝑟𝑎𝑐(𝑐, 𝐹𝑂𝑃) ×   𝑉𝐵𝐼210(𝑐, 𝑢) ]   ∀𝑐 ∈ 𝑝𝑎𝑡ℎ𝑢(𝑢, 𝑐, 𝐹𝑂𝑃) 

𝑐

  (2.93) 

log[𝑉𝑖𝑠210(𝐹𝑂, 𝐹𝑂𝑃)] =
[−0.315 + 1.796 × 𝑉𝐵𝐼210(𝐹𝑂, 𝐹𝑂𝑃)]

[1 − 1.264 × 𝑉𝐵𝐼210(𝐹𝑂, 𝐹𝑂𝑃) + 0.45 × (𝑉𝐵𝐼210(𝐹𝑂, 𝐹𝑂𝑃))2]
    (2.94) 

𝑉𝑖𝑠210(𝐹𝑂, 𝐹𝑂𝑃) ≥  5.0           (2.95) 

𝑉𝑖𝑠210(𝐹𝑂, 𝐹𝑂𝑃) ≤  8.9         (2.96) 

𝑆(𝐹𝑂, 𝐹𝑂𝑃) ≤  0.50     (2.97) 
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2.6.Objective Function   

For simplicity, the refinery operating costs have been assumed based on the total refinery 

throughputs and as all models have the same throughput as their inputs and the focus of this 

research is  a comparative study between nonlinear and input-output planning models and later 

on two nonlinear models with different CDU models, the operating costs have been neglected 

and the simple profit function is calculated merely by subtracting the purchase costs of crude oil 

and intermediate products like ethanol from the revenue from sales of all final products: 

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ 𝐴𝑚(𝑢, 𝑐, 𝑢′)
𝑢,𝑐,𝑢′

∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝑐) − 𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈) ∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝑜)               (2.102)

− 𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃) ∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝐸𝑡𝑂𝐻)    ∀ 𝑢 ∈ 𝑏𝑢, 𝑐 ∈ 𝑓𝑝𝑟, 𝑢′ ∈ 𝑠𝑡𝑎𝑛𝑘  

2.7.Linear Input-Output Model   

To compare and quantify the effectiveness of the nonlinear refinery model, a linear fixed yield 

and product quality model or input-output model scheme has been adopted from Guyonnet et 

al.51 as a reference. For yield equations, the conversion of mass in unit u is represented using 

percent yields that do not depend on the feed properties and the amount of products is equal to 

the total inlet flow multiplied by a constant, the percent yield of that unit for the specific crude 

𝑃𝑃𝐵𝐼(𝑐, 𝑢) = 3262000 × (
𝑃𝑃(𝑐, 𝑢) + 460]

1000
)

12.5

   (2.99)    

𝑃𝑃𝐵𝐼(𝐹𝑂, 𝐹𝑂𝑃) =∑[ 𝑣𝑜𝑙_𝑓𝑟𝑎𝑐(𝑐, 𝐹𝑂𝑃) ×   𝑃𝑃𝐵𝐼(𝑐, 𝑢) ]   ∀𝑐 ∈ 𝑝𝑎𝑡ℎ𝑢(𝑢, 𝑐, 𝐹𝑂𝑃)    (2.100)

𝑐

 

𝑃𝑃(𝐹𝑂, 𝐹𝑂𝑃) = 1000 × (
𝑃𝑃𝐵𝐼(𝐹𝑂, 𝐹𝑂𝑃)]

3262000
)

0.08

− 460     (2.101) 

 

 

𝑃𝑃(𝐹𝑂, 𝐹𝑂𝑃) ≤  65.0   (2.98) 
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(yieldu,c).Equation 2.103 demonstrates this definition. The linear product properties can be 

accomplished in following way: Product 𝑐 with properties q leaving unit u (POucq) is calculated 

as the sum of the flow fraction times the properties of each flow in the same way as linear 

blending equations as described by equation 2.104. This equation is nonlinear but is linearized by 

using the bounds on this property as product quality is within certain specifications. Equation 

2.105 describes these bounds. Substitution of 𝑃𝑂𝑢,𝑐,𝑞 as defined in 2.104 and multiplication by 

the denominator of 2.104 will linearize the expression.51 

  

 

 

 

 

2.8. Refinery Case Studies 

A total of 13 different refinery case studies have been created: The first 3 case studies with 

various product demands and throughputs are used to verify the effectiveness of the nonlinear 

refinery model utilizing the data-based CDU model (DBNLM) over the linear input-output 

model (IOM) with fixed yield and property for the products and the impact of introducing 

process nonlinearity on the total profit improvement. The numerical results and discussion are 

presented in chapter 5.  

 

𝐹𝑜𝑢𝑡(𝑢, 𝑐) =  𝐹𝑖𝑛(𝑓, 𝑢)  ×  𝑌𝑖𝑒𝑙𝑑𝑢,𝑐      ∀ 𝑢 ∈ 𝑈 , 𝑐 ∈  𝑢𝑝𝑟  (2.103) 

 

𝑃𝑂𝑢,𝑐,𝑞 =
∑ ∑ 𝐴𝑚(𝑢

′, 𝑐′, 𝑢) × 𝑝𝑟𝑜(𝑢′, 𝑐′, 𝑞)𝑐′∈𝐶𝑢′∈𝑈

∑ ∑ 𝐴𝑚(𝑢′, 𝑐′, 𝑢)𝑐′∈𝐶𝑢′∈𝑈
         (2.104) 

∀ 𝑢 ∈ 𝑈 , ∀𝑐 ∈  𝑢𝑝𝑟, , ∀𝑞 ∈  𝑄𝑂𝑢,𝑐   

 

 

𝑝𝑛𝑐,𝑞 ≤ 𝑃𝑂𝑢,𝑐,𝑞 ≤ 𝑝𝑥𝑐,𝑞   (2.105) 

∀ 𝑢 ∈ 𝑈 , ∀𝑐 ∈  𝑢𝑝𝑟, , ∀𝑞 ∈  𝑄𝑂𝑢,𝑐  
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Chapter 3 

DETERMINISTIC INTEGRATED REFINERY MODEL  

3.1. Preface  

This chapter presents a novel integrated optimization approach with a multi-period mixed-integer 

nonlinear programming (MINLP) model for the oil refinery network. The proposed model 

considers operations in a broad range of refinery supply chain integrating decisions associated to 

crude unloading, procurement while accounting for the highly nonlinear nature of the processing 

units, final product pooling and blending, inventory management, distribution by pipeline, utility 

system and environmental impacts. The main feature of this chapter is the development of a 

aggregation/disaggregation scheme based on lumped variable linearization (LVL) and 

normalized multiparametric disaggregation technique (NMDT) 106-113  through a two-level 

optimization algorithm and obtaining ε-global optimal solutions for the integrated refinery 

problem. The proposed model can be used as a deterministic decision-support tool for enterprise 

wide integrated production planning of an oil refinery. Further, in this study, broad comparisons 

are drawn between the solutions of the proposed integrated approach and the sequential approach 

in terms of the economic and operational objectives to illustrate the potential and trade-offs 

involved in the integrated model. A motivating example has demonstrated the advantages of the 

proposed approach over its sequential counterpart and showed that the proposed integrated 

approach gains improvement in overall profit margin and can provide significantly better 

solutions in terms of optimal utility units operation, energy consumption, startup/shutdown 
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operations, pipeline utilization, batch contamination, delayed or lost consumer demand and so 

on. 

3.2.Problem Statement 

Figure 3.1 illustrates a simplified representation of the refinery supply chain in this study.  

The focus of this study is a coastal refinery system consisting of crude carrier vessels , docking 

stations to unload crude at the refinery’s front end, storage tanks for storing crude oil before 

transferring to charging tanks where blending operation is carried out for subsequent transfer to 

crude distillation units (CDU).  

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Simplified Representation of the Refinery Supply Chain in this Study. 

For the crude unloading sub-system, all the transport operations are achieved in interconnected 

departments by means of a pipe network. The design objective for the unloading sub-system is to 

minimize the overall cost of operation by minimizing demurrage or sea waiting time for each 

vessel prior to the unloading process, duration of unloading for vessels, inventory levels for 
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vessels, storage and charging tanks at each time interval, CDU charging rates to minimize 

harmful flow fluctuations to CDUs or shutdown, time and sequence of charging of crude blends 

into each CDU to minimize changeover cost (CC) and time and sequence of crude transfer from 

storage to charging tanks to minimize tank switchover costs (CS). 120 

Following the transfer of crude blendstocks to CDUs the fractionation is carried out to produce 

intermediate products which subsequently are transformed through further processing in the 

other operating units. The refinery production system in this study consists of a set of refinery 

units such as crude distillation unit (CDU), catalytic reforming (CRU), fluid catalytic cracking 

(FCC), hydrocracking (HC), hydrotreating (HT), hydrodesulfurization (HDS), Visbreaking (VB) 

and delayed coking (DC) units. The refinery produces a set of  three major final products where 

gasoline (G) and diesel fuel (DF) fulfill the customers’ demands and fuel gas (FG) is utilized 

internally to operate the utility system. The design objective for the production sub-system is to 

maximize the overall profit which is calculated by subtracting the operating costs plus crude oil 

and purchased intermediate product costs from the revenue made by the final products sales. 55 

For the final product blending and pooling problem, a pq-formulation has been formulated where 

different streams of the intermediate products from the processing units are mixed together to 

produce final products gasoline and diesel fuel which must satisfy certain 

requirements on the qualities of attributes. For the pooling problem two gasoline and diesel fuel 

pools and five product quality requirements are considered: The gasoline product must meet a 

certain research octane number (RON) and motor octane number (MON) and the diesel fuel 

product should satisfy a certain cetane index (CI), sulfur content and viscosity at 122 F. 

For the distribution of the final products from the refinery end to the distribution center (DC) 
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a unidirectional multiproduct pipeline system is considered. Different batches of final products 

that is, gasoline and diesel fuel are pumped into the pipeline and discharged successively at DC. 

The most important decision for the pipeline distribution system is to determine the batch 

sequencing and scheduling of injection and discharging of different product batches. Each 

product is stored in its own dedicated product storage tank at the refinery end and the DC who 

must meet the daily demands of customers. The design objective for the pipeline distribution is 

both operationally and  economically oriented. The objective function comprises minimizing the 

difference between the total discharged volume and the total demands of customers, maximizing 

the minimum inventory among all of the products that is, the inventory level of the product with 

the lowest final inventory level on the last day of the time horizon, minimizing the underutilized 

pipeline capacity during the entire time horizon, minimizing the total violated peak electricity 

hours, minimizing the volume of contaminated interfaces between two subsequent injected 

batches and finally minimizing the loss or delays in supplying the customer demand by the due 

dates. 121 

On the account of the utility demands estimation, the criterion in the design for the utility system 

is to satisfy specific power and different grades of steam (LP,MP,HP) demands for the refinery 

processing units while minimizing the operational costs comprising of fuel cost, extra electricity 

purchase cost and penalty cost incurred by the emission of harmful gases such as greenhouse gas 

(GHG) and sulfur oxides (SOx). The utility system in this study encompasses fuel gas repository, 

boilers to produce HP steam (high pressure), steam turbines for electricity generation, let-down 

valves for reducing pressure and mixing equipment for mixing steams of same grade. 67 

The major assumptions made in this problem: 
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(1)The uncertainty in the demand and price data for all commodities or any operational 

uncertainty is neglected and the entire model is deterministic. 

(2)The mixing in all blending units is perfect and shrinkage and volume change does not occur in 

the tanks.  

(3) The pipeline is full at the beginning of the scheduling horizon and the batch sizes for 

injection and discharging are identical.  

(4) There is a  mandatory settling period an newly discharged batch from pipeline that enters the 

product storage tank at the DC.  

(5) During the peak electricity hours the cost of electricity energy is higher than the regular hours 

(6) Steam temperatures and pressures are constant at the inlet and exit of the boilers resulting the 

enthalpy difference to be a parameter.  

With the aforementioned definitions and assumptions , the integrated refinery problem could be 

outlined with the following knowns and decision variables to be determined: 

Given: 

(1) The time horizon is 90 streams day (2) The number of crude carrier vessels, their crude 

type and content (3)  Crude vessels arrival and departure day  (4) initial inventory levels 

(5) inventory costs for storage and charging tanks, changeover, switchover and shutdown 

costs for CDUs (6) Operation mode, units, their numbers and maximum capacity, and 

limits on their inlet and outlet streams.(7) Demand data for the final products (8) Prices 

for the final products, crudes and intermediates (8) the contaminated volume of interface 

between two consecutive batch of different products  
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To be determined: 

(1) Type and amount of crudes to purchase to meet the final product demands (2) The target 

blending recipe will be resulted from the final product demand and property requirements in the 

pooling problem (3) Yield and quality for all intermediate and final products.(4) Batch 

sequencing for pipeline operations (5) amount of fuel gas to operate utility system (6) amount of 

electricity and steam grades to produce to meet the demand of refinery processing units. The 

framework based on the objectives and constrains mentioned above is the underlying foundation 

for modeling the integrated refinery problem and overall objective function in this study. The 

following section will briefly describe the mathematical models for each refinery sub-systems.  

3.3.Mathematical Model 

3.3.1.Crude Unloading, Blending and Inventory Management Model 

Crude oil unloading and processing is a well explored problem for which a numerous models 

have been proposed. In this study, a crude oil unloading and processing model has been adopted 

from Hamisu et al.120 Figure 3.2 represents a typical configuration of crude oil unloading 

process. 
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Figure 3.2. Typical Configuration of Crude Oil Unloading Process 

A  coastal refinery is considered with one docking station where the crude vessels unload their 

content; segregated storage tanks for storing crude oil before transfer to charging tanks; charging 

tanks where blending operation is carried out for subsequent transfer to CDUs according to the 

CDUs crude blend quality demands. These transfer operations are achieved in different 

units/facilities interconnected by means of a pipe network. The unloading model is characterized 

by 50 correlations representing operating rules, hydraulic capacities and property specification 

for the key component notably sulfur in this case which for brevity just the objective function 

and the variables involved in the integration constraints are outlined in this chapter. A brief 

representation of the unloading mathematical model is represented in Appendix A and for a 

detailed account the reader is referred to Hamisu et al.120 

The objective function for crude unloading, blending and inventory management is the operating 

cost function to be minimized, which includes unloading and sea waiting costs for the crude 

vessels, the storage and charging tanks inventory costs, changeover cost and the penalties for 

shutdown and tank-tank switch over:  
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𝐶𝑂𝑃𝑅𝑈𝑁𝐿 = 𝐶𝑈𝑁𝐿𝑣∑(𝑇𝐿𝑣

𝑁𝑉

𝑣=1

− 𝑇𝐹𝑣) + 𝐶𝑆𝐸𝐴𝑣∑(𝑇𝐹𝑣

𝑁𝑉

𝑣=1

− 𝑇𝐴𝑅𝑅𝑣)

+ 𝐶𝐼𝑁𝑆𝑇𝑖∑ ∑ (
𝑉𝑆𝑖,𝑡 − 𝑉𝑆𝑖,𝑡−1

2

𝑁𝑆𝐶𝐻

𝑡=1

) + 𝐶𝐼𝑁𝐵𝑇𝑗∑ ∑ (
𝑉𝐵𝑗,𝑡 − 𝑉𝐵𝑗,𝑡−1

2

𝑁𝑆𝐶𝐻

𝑡=1

)

𝑁𝐵𝑇

𝑗=1

𝑁𝑆𝑇

𝑖=1

+ ∑ ∑ ∑ (𝐶𝐶 × 𝑍𝑗,𝑙,𝑡

𝑁𝐶𝐷𝑈

𝑙=1

𝑁𝐵𝑇

𝑗=1

𝑁𝑆𝐶𝐻

𝑡=1

) + ∑ ∑ (𝐶𝑆 × 𝑋𝐷𝑙,𝑡

𝑁𝐶𝐷𝑈

𝑙=1

𝑁𝑆𝐶𝐻

𝑡=1

)

+ ∑ ∑∑(𝐶𝑆𝑆𝑈 × 𝛼𝑖,𝑡

𝑁𝐵𝑇

𝑗=1

𝑁𝑆𝑇

𝑖=1

𝑁𝑆𝐶𝐻

𝑡=1

) 

 (3.1) 

3.3.2.Crude Procuring and Production Planning Model  

The refinery production model for the purpose of this study is a modified version of the 

production planning model adopted from Siamizade.55 Figure 3.3 demonstrates a schematic 

representation of the refinery processing units in this study. The refinery under study comprises a 

crude distillation unit (CDU) for crude fractionation and the following units for further 

processing of the intermediate streams: Fluid Catalytic Cracking (FCC), Catalytic Reforming 

(CRU), Hydrocracking (HC), Hydrotreating (HT), Hydrodesulfurization (HDS), Visbreaking 

(VB) and Delayed Coking (DC). Crude distillation unit comprises both atmospheric and vacuum 

distillation sections. From set of the operating units, there are only one unit for each category 

except for HT: HT includes two separate hydrotreaters HT1 for straight run light naphtha and 

HT2 for coker naphtha and middle distillate respectively. HDS includes only a unit for residue 

hydrodesulfurization. For crude distillation unit (CDU) a nonlinear model based on Geddes 

fractionation index (FI)1,35  and for the remaining of the refinery processes, HPI petroleum 
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refining process correlations116 are utilized. These empirical correlations  predict product yields 

and properties for the processing units for techno-economic studies. Refinery processing units in 

this study are represented by a total of 317 correlations. The correlations for the objective 

function, research octane number (RON) and motor octane number (MON) for the gasoline 

product and cetane index (CI), sulfur content and viscosity at 122 F for the diesel fuel product 

are represented here. A detail account of remaining nonlinear correlations of refinery processing 

units may be found in Siamizade55 and Baird116 . Equation 3.2 defines the research octane 

number (RON) for the final gasoline product according to linear blending index rule:  

𝑅𝑂𝑁(𝐺, 𝐺𝑃) =   ∑[𝑅𝑂𝑁(𝑐, 𝐺𝑃)  × 𝑣𝑜𝑙_𝑓𝑟𝑎𝑐(𝑐, 𝐺𝑃)]        

𝑐

∀ 𝑐 ∈ 𝑓𝑔𝑝                   (3.2) 

Equation3 presents required motor octane number (MON) (Baird54) : 

𝑀𝑂𝑁(𝐺, 𝐺𝑃) =   0.778 × 𝑅𝑂𝑁(𝐺, 𝐺𝑃) + 9.5                 (3.3) 

 

 

Figure 3.3. Schematic Representation of the Refinery Processing Units in this Study 
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Where 𝑐 is the set of all commodities flowing to the gasoline pool 𝐺𝑃 as the components of the 

final gasoline product. 

The viscosity at 122 F for the diesel fuel product expressed by equation 3.4 and calculated by a 

method presented by Chevron and Albahri et al. 118 

log[𝑉𝑖𝑠122(𝐷𝐹, 𝐷𝐹𝑃)] =
[−0.315 + 1.796 × 𝑉𝐵𝐼122(𝐷𝐹, 𝐷𝐹𝑃)]

[1 − 1.264 × 𝑉𝐵𝐼122(𝐷𝐹, 𝐷𝐹𝑃) + 0.45 × (𝑉𝐵𝐼122(𝐷𝐹,𝐷𝐹𝑃))2]
    (3.4)    

Equation 3.5 is an approximate correlation for the cetane index (CI) of  diesel fuel product (Baird 

116 ): 

𝐶𝐼(𝐷𝐹, 𝐷𝐹𝑃) = −420.34 + 0.016 (𝐴𝑃𝐼)2 + 0.192 (𝐴𝑃𝐼)(𝐿𝑜𝑔10 𝑉𝐴𝐵𝑃)

+65.01 (𝐿𝑜𝑔10 𝑉𝐴𝐵𝑃)
2 − 0.0001809 (𝑉𝐴𝐵𝑃)2      (3.5)

 

Where 𝐴𝑃𝐼  is the API gravity (60 °F) and  𝑉𝐴𝐵𝑃 is the volumetric average boiling point (°F) of 

the diesel fuel product. The sulfur content (S) for the diesel fuel product could be approximated  

by equation 3.6  presented by Riazi et al.122 

𝑆(𝐷𝐹,𝐷𝐹𝑃) =   177.4482 − 170.9463 (𝑛 − 𝑑 2⁄ ) + 0.2258 𝑀(𝑛 − 1.475) + 4.054 𝑆𝐺                   (3.6) 

Where 𝑛  is the refractive index at 20 °C , d is the density at 20 °C and 1 atm, 𝑀 is the molecular 

weight and 𝑆𝐺 is the specific gravity at 15.5 °C of the diesel fuel product. Lastly, the objective 

function for the refinery production is the overall profit to be calculated by subtracting the 

operating costs of processing units and crude oil and purchased intermediate product costs from 

the revenue made by the final product sales: 

𝑅𝐸𝑉𝑃𝑅𝑂𝐷 =∑ [𝐴𝑚(𝑏𝑢, 𝑓𝑝𝑟, 𝑝𝑡𝑎𝑛𝑘, 𝑡)
𝑏𝑢,𝑓𝑝𝑟,𝑝𝑡𝑎𝑛𝑘,𝑡

∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝑓𝑝𝑟, 𝑡)] −∑[𝐹𝑖𝑛(𝑓, 𝑢, 𝑡) ∗ 𝑂𝐶(𝑢, 𝑡)]

𝑢,𝑡

− ∑ [𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈, 𝑡) ∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝑜, 𝑡)]

𝑐𝑡𝑎𝑛𝑘,𝑜,𝑡

 

−∑[𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃, 𝑡) ∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝐸𝑡𝑂𝐻, 𝑡)]

𝑡

    (3.7) 
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3.3.3.Final Product Pooling Problem  

The pooling problem is a nonlinear network flow problem that models the operation of the final 

product blending within the refinery where intermediate streams from the processing units are 

blended to produce final products. The problem then calls for finding the optimal flows in the 

network so as to minimize the cost of the pooling operations. Nonlinearities arise in attribute 

balances around pools since the pool attribute qualities as well as the inflows and outflows are all 

variables. The main challenge in finding optimal solutions to pooling problems is that the 

nonlinearities result in many local optima. 105 As shown in Figure 3.4, the pooling problem may 

be defined as a network flow problem over three sets of nodes: supply, transshipment, and 

demand nodes. Supply nodes represent the raw material components that flow to final product 

destinations (demand nodes) either directly or indirectly through pools (transshipment nodes). 

The unit costs as well as attributes, such as component concentrations of raw materials and final 

products are given. 105   

The pooling problem topology for the purpose of this study comprises 12 components, 2 product 

pools, 3 final product blends and 5 attributes as the target qualities for the final products. The 

first 3 components of 12 supplies are fuel gas from FCC, CRU and HC that will all blend in the 

fuel gas tank (FGT) to produce the final product fuel gas for the utility department.  The next 

five components include SRLN from CDU, gasoline from FCC, reformate from CRU, gasoline 

from HC, and ethanol which will all blend in the gasoline pool (GP) to produce the final product 

gasoline. The last four of the supply components, middle distillate (MD) streams from HDS and 

HT2 and light gas oil (LGO) from VB and DC will all blend in the diesel fuel pool (DFP) to 

produce the final product diesel fuel. The set path={ CDU.SRLN.GP, FCC.G.GP, FCC.FG.FGT, 
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Figure 3.4. Schematic Diagram of the Product Pooling Problem in this Study. 

CRU.REF.GP, CRU.FG.FGT,  HC.G.GP, HC.FG.FGT,  EtOHT.EtOH.GP, HDS.MD.DFP, 

HT2.MD.DFP, VB.LGO.DFP, DC.LGO.DFP} summarizes the potential connection and path of 

these streams. From the five attributes RON (research octane number) and MON (motor octane 

number) are to be within the specific quality domains for the gasoline product and CI (cetane 

index), S (sulfur content) and Vis122 (viscosity at 122 °F, cSt) to be met for the diesel fuel 

product. The set qual={RON, MON, CI, S, Vis122} also represents these qualities. For the final 

product pooling problem in this study a pq-formulation has been applied. For a detailed account 

of the pooling problem and pq-formulation in particular the interested reader is referred to 

Tawarmalani and Sahinidis. 105  The final product pooling problem model in this study is solved 

as a component of the refiner production planning model and its objective is to produce final 
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products whose outlet flowrate and terminal qualities meets the customer demand and 

specifications for the relative products. Therefore, its costs have been accounted for as the 

operating costs within the production planning objective function. However, the constraints for 

the pooling problem are presented as follows: 

3.3.3.1.Flow Constraints 

1.The amount of product pro coming from product pooling  pool at time period t, that is 

𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡), should be within the bounds of the product demand and the pool capacity: 

𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡) ≥ 𝑑𝑒𝑚𝑎𝑛𝑑(𝑝𝑟𝑜, 𝑡)        (3.8) 

𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡) ≤ 𝑝𝑠𝑖𝑧𝑒(𝑝𝑜𝑜𝑙)        (3.9) 

2. The sum of fractions 𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙, 𝑡) of the amount of product pro from product pooling 

pool at time period t which is contributed by component comp coming to pool, should be equal to 

one: 

∑ 𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙, 𝑡)

𝑐𝑜𝑚𝑝

= 1         (3.10)        

∀ 𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙  \𝑢𝑏𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙) > 0  

The conditional 𝑢𝑏𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙) > 0 states that there is a connection between component 

comp and product pooling pool. 

3. The sum of all fractions 𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙, 𝑡) of the amount of product pro from product pooling 

pool at time period t which is contributed by components comp coming to pool, should be equal 

to its total amount 𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡): 
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∑ [𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙, 𝑡) ∗  𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡)]

𝑐𝑜𝑚𝑝

= 𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡)          (3.11)        

∀ 𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙  \𝑢𝑏𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙) > 0  

∀ 𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜  \𝑢𝑏𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜) > 0 

The conditional 𝑢𝑏𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜) > 0  also states that there is a connection between product 

pooling pool and product pro. 

3.3.3.2. Quality Constraints 

1.The quantity of the property 𝑞𝑢𝑎𝑙 of the product pro from all components 𝑐𝑜𝑚𝑝 and all 

product pooling pool, should be within the specific lower and upper bounds: 

∑ ∑ [𝑐𝑞𝑢𝑎𝑙(𝑐𝑜𝑚𝑝, 𝑞𝑢𝑎𝑙) ∗ 𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙, 𝑡) ∗  𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡)]

𝑐𝑜𝑚𝑝𝑝𝑜𝑜𝑙

≥ ∑[𝑝𝑞𝑙𝑏𝑑(𝑝𝑟𝑜, 𝑞𝑢𝑎𝑙) ∗  𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡)]

𝑝𝑜𝑜𝑙

        (3.12) 

∀ 𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙  \𝑢𝑏𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙) > 0  

∀ 𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜  \𝑢𝑏𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜) > 0 

𝑝𝑞𝑙𝑏𝑑(𝑝𝑟𝑜, 𝑞𝑢𝑎𝑙) represents the lower bound value for quality qual of product pro. 

∑ ∑ [𝑐𝑞𝑢𝑎𝑙(𝑐𝑜𝑚𝑝, 𝑞𝑢𝑎𝑙) ∗ 𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙, 𝑡) ∗  𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡)]

𝑐𝑜𝑚𝑝𝑝𝑜𝑜𝑙

≤ ∑[𝑝𝑞𝑢𝑏𝑑(𝑝𝑟𝑜, 𝑞𝑢𝑎𝑙) ∗  𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡)]

𝑝𝑜𝑜𝑙

        (3.13) 

∀ 𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙  \𝑢𝑏𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙) > 0  
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∀ 𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜  \𝑢𝑏𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜) > 0 

𝑝𝑞𝑢𝑏𝑑(𝑝𝑟𝑜, 𝑞𝑢𝑎𝑙) represents the upper bound value for quality qual of product pro. 

3.4.Final Product Distribution by Pipeline  

Regarding the large volume of the petroleum products transported by pipeline across the globe, 

in this study a multiproduct pipeline for the purpose of final product distribution to depot has 

been considered. Petroleum products distribution by pipeline is also a widely explored problem 

for which variety of models have been presented. In this study, a multiproduct pipeline 

distribution model has been adopted from Moradi & MirHassani. 121  Figure 3.5. demonstrates a 

real-world pipeline network. 

 

Figure 3.5. A Real-world pipeline network 

The final products distribution by the multiproduct pipeline model is characterized by 43 

correlations representing product allocation to the batches, Lot-sizing, inventory management at 

the refinery and the distribution center, calculation of contaminated interface volume between 

consecutive batches of different products, discharging time of bathes at the DC, peak electricity 

hours and the initial conditions of the pipeline at the beginning of the scheduling horizon. A brief 
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representation of the mathematical model for the product distribution by pipeline is represented 

in Appendix B and a detail account is referred to Moradi and MirHassani. 121 

The objective function for the pipeline distribution is a multi-criteria function both operationally 

and  economically motivated and is generated by normalizing the objective function terms 

(Moradi & MirHassani. 121): 

(a) The difference between the total discharged volume and the total demands of customers 

is minimized: 

𝑚𝑖𝑛𝑍1 =
𝑑𝑖𝑓𝑓

∑ ∑ 𝐷𝑒𝑚𝑡,𝑝𝑝∈𝑃𝑡∈𝑇
     (3.14) 

(b) The minimum inventory level among all of the products on the last day of the scheduling 

horizon (𝑚𝑖𝑛𝑖𝑑) is maximized. A minmax strategy is utilized to maximize the inventory 

level of the product with the lowest final inventory level:  

max (𝑍2 = 𝑚𝑖𝑛𝑖𝑑)     (3.15) 

𝑚𝑖𝑛𝑖𝑑 ≤
𝑖𝑛𝑣|𝑇|,𝑝

𝑡𝑜𝑡𝑎𝑙

𝑖𝑛𝑣𝑝
𝑚𝑎𝑥          ∀ 𝑝 ∈ 𝑃       (3.16) 

(c) The underutilized pipeline capacity within the entire hours of the scheduling horizon is 

minimized: 

𝑚𝑖𝑛𝑍3 =
1

|𝑇|
   ∑(

𝑑𝑑𝑡 − 𝑇|𝐼|,𝑡
𝑑𝑖𝑠

𝑑𝑑𝑡
𝑡∈𝑇

)               (3.17) 

(d) The total violated peak electricity hours is minimized:   

𝑚𝑖𝑛𝑍4 =
1

|𝑇|
   ∑(

𝑝ℎ𝑡
𝑝𝑒𝑎𝑘𝑡

𝑡∈𝑇

)               (3.18) 
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(e) The total volume of contaminated interfaces occurring between two consecutive injection 

of different products is minimized: 

𝑚𝑖𝑛𝑍5 =
1

|𝐼||𝑇|𝑚𝑎𝑥𝑝,𝑞(𝑤𝑎𝑠𝑡𝑒𝑝,𝑞)
   ∑∑𝑖𝑛𝑓𝑖,𝑡

𝑡∈𝑇𝑖∈𝐼

               (3.19) 

(f) The back-order or demand loss resulting from the delays in meeting the customer 

demands by the due dates is minimized: 

𝑚𝑖𝑛𝑍6 =
1

|𝑃||𝑇|𝐵𝑚𝑎𝑥
   ∑∑𝐵𝑝,𝑡

𝑡∈𝑇𝑝∈𝑃

                    (3.20) 

Thus, the overall pipeline objective function is as follows. 

𝐶𝑂𝑃𝑅𝑃𝐷 = 𝑤1𝑍1 +𝑤2𝑍2 + 𝑤3𝑍3 +𝑤4𝑍4 +𝑤5𝑍5 +𝑤6𝑍6       (3.21) 

The first three terms of the objective function are operational and the remaining three are 

economical. 𝑤𝑙 is the weight of the objective l indicating the significance and priority of this 

criteria in the objective function. For the purpose of this study all 𝑤𝑙 are equal to 1 and all terms 

of the objective function are of the same priority. 

3.5. Refinery Utility System  

The industrial sector is reliant on utility supply of electricity, steam, hot water and other utilities 

to support its manufacturing processes. Plant machinery such as mixers, let-down valves, boilers, 

compressors, and condensers, are used for this purpose. Nowadays, high-energy intensive 

industries are inclined to produce all of their own needed utilities and particularly electricity. 

Such industrial processes are referred to as combined heat and power (CHP) or auto-production. 

CHP is an integrated technology as it simultaneously enhances the process energy efficiency 

while minimizing carbon footprint and greenhouse gas emissions.123 For the refining industry 
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with onsite utility systems, CHP is a popular technology. In this study, a utility system model has 

been adopted from Agha et al.67 The objective of this section is to describe this utility system 

model that will be integrated with the refinery production process. 

 While only fuel gas is produced internally by the refinery and considered, the model allows 

utilizing more than one fuel type for the utility system. Figure 3.6 represents a simplified 

representation of this system which is a slightly modified version adopted from Agha et al. 67   

The utility system model is characterized by 29 correlations representing fuel gas storage model, 

boiler model including associating fuel consumption with steam generation, boiler shutdown and 

restart constraints, harmful gas emission constraints, returned electricity for boiler consumption  

and steam return constraints, turbine and mixer models. A brief representation of the 

mathematical model for the utility system is presented in Appendix C and a detailed account is 

available in Agha et al.67 

The criterion used for the CHP based utility model objective function is the minimization of 

operational costs comprising of fuel cost, electricity purchase cost and penalty cost incurred due 

to the emission of harmful gases. 

𝐶𝑂𝑃𝑅𝑈𝑇𝐼𝐿 =∑ ∑ ∑ 𝑐𝑓𝑖 ∗ (𝐼𝑡,𝑗,𝑖 +

𝑖∈𝐹𝑈𝐸𝐿

𝑆𝐼𝑡,𝑗,𝑖)

𝑗∈𝐵𝑂𝐼𝐿

𝑇

𝑡

+∑𝐸𝐿𝑃𝑡 ∗ 𝐶𝐸𝐿

𝑇

𝑡

   

                                    + ∑ ∑ 𝑋𝑆𝑂𝑋𝑡,𝑗 ∗ 𝐶𝑆𝑂𝑋 +

𝑗∈𝐵𝑂𝐼𝐿

𝑇

𝑡

 ∑ ∑ 𝑋𝐺𝐻𝐺𝑡,𝑗 ∗ 𝐶𝐺𝐻𝐺

𝑗∈𝐵𝑂𝐼𝐿

𝑇

𝑡

           (3.22) 
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Figure 3.6. Simplified Representation of the CHP based Utility System in this Study [67] 

3.6. Integration Constraints 

To achieve the integration across the refinery departments, the inputs and outputs of every sub-

system should be correlated through the integration constraints: 

1.Unloading to production constraints: 

The amount of the crude blend coming out of the blending tank at time period t in the unloading 

model should be equal to the same amount going to the CDU at time period t in the production 

model: 

∑ ∑𝐹𝐵𝐶𝑗,𝑙,𝑡

𝑁𝐵𝑇

𝑗=1

= 𝐴𝑚(′𝐶𝑇′,′ 𝐶𝐵′,′ 𝐶𝐷𝑈′, 𝑡)             ∀𝑡 = 1,… ,𝑁𝑆𝐶𝐻

𝑁𝐶𝐷𝑈

𝑙=1

       (3.23)  

2.Production to product pooling problem constraints: 
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In every time period, the amount of all the components 𝑐𝑜𝑚𝑝 entering the product pooling 𝑝𝑜𝑜𝑙  

in the pooling problem, should be equal to the amount of all the commodities c coming from all 

units u entering the respective blending unit bu (gasoline or diesel pool) in the production model 

providing that these commodities and units are in the path of the respective blending unit : 

∑ [𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙, 𝑡) ∗  𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡)]

𝑐𝑜𝑚𝑝

=∑∑𝐴𝑚(𝑢, 𝑐, 𝑏𝑢, 𝑡

𝑐

) 

𝑢

         (3.24)        

 ∀𝑏𝑢 ∈ {𝐺𝑃,𝐷𝐹𝑃}, 𝑝𝑜𝑜𝑙 ∈ {1,2}, 𝑝𝑟𝑜 ∈ {1,2}       

\𝑢𝑏𝑞(𝑐𝑜𝑚𝑝, 𝑝𝑜𝑜𝑙) > 0   𝑎𝑛𝑑  \𝑢𝑏𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜) > 0  𝑎𝑛𝑑   𝑝𝑎𝑡ℎ(𝑢, 𝑐, 𝑏𝑢) 

3.Pooling problem to pipeline distribution constraints: 

In every time period, the amount of the respective product 𝑝𝑟𝑜 coming from the product pooling 

𝑝𝑜𝑜𝑙 in the pooling problem should be equal to the amount of the respective product P produced 

in the refinery side of the pipeline distribution model: 

𝑦𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜, 𝑡) = 𝑝𝑟𝑎𝑡𝑒𝑡,𝑃           (3.25) 

∀𝑡 = 1, … ,𝑁𝑆𝐶𝐻, , 𝑝𝑜𝑜𝑙 ∈ {1,2}, 𝑝𝑟𝑜 ∈ {1,2}, 𝑃 ∈ {𝑃1, 𝑃2}     \𝑢𝑏𝑦(𝑝𝑜𝑜𝑙, 𝑝𝑟𝑜) > 0 

        𝑝𝑟𝑎𝑡𝑒𝑡,𝑃 terms appear in equations (99-100) of the pipeline distribution model. 

4.Production to utility system constraints: 

 In every time period, the total amount of the fuel gas coming from all the respective units and 

entering the fuel gas tank in the production /pooling model should be equal to the amount of the 

utility fuel entering the fuel repository in the utility model:                                      

∑𝐴𝑚

𝑢

(𝑢,′ 𝐹𝐺′,′ 𝐹𝐺𝑇′, 𝑡) = 𝑃𝑅𝐹𝑡,𝑖           ∀𝑡 = 1,… , 𝑁𝑆𝐶𝐻         (3.26)  
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5. Overall integrated model objective function: 

The overall objective function for the integrated refinery model  is the net revenues from the 

production/pooling model minus the operating costs incurred by crude unloading, pipeline 

distribution and utility system: 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑅𝐸𝑉𝑃𝑅𝑂𝐷 − 𝐶𝑂𝑃𝑅𝑈𝑁𝐿 − 𝐶𝑂𝑃𝑅𝑃𝐷 − 𝐶𝑂𝑃𝑅𝑈𝑇𝐼𝐿  (3.27)  

3.7.Proposed Solution Methodology 

The integrated refinery problem (𝑷) considered in this study, can be represented as a nonconvex, 

mixed-integer nonlinear constrained problem (MINLP) with the following generic form as 

outlined by Castro et al.112: 

 

                                                                     max 𝑓0(𝑥, 𝑦)                          (3.28) 

                   subject to                 𝑓𝑞(𝑥, 𝑦) ≤ 0    ∀𝑞 ∈ 𝑄 ∖ {0} 

                                                    𝑓𝑞(𝑥, 𝑦) = ∑ 𝑎𝑖𝑗𝑞(𝑖,𝑗)∈𝐵𝐿 𝑥𝑖 𝑥𝑗 + 𝐵𝑞(𝑥) + 𝐶𝑞(𝑦) + 𝑑𝑞       ∀𝑞 ∈ 𝑄 

0 ≤ 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

                                              𝑥 ∈ 𝑅𝑚, 𝑦 ∈  {0,1}𝑟      ( ,  )                                (𝑷) 

Where vector  x denotes continuous non-negative variables and y  is a vector of  binary variables. 

Set BL represents an (𝑖, 𝑗)-index set that represents the bilinear 𝑥𝑖𝑥𝑗 terms in the problem. 

𝐵𝑞(𝑥) is nonlinear in 𝑥 and 𝐶𝑞(𝑦) includes binary variables. Set 𝑄 accounts for all functions 𝑓𝑞, 

the objective function 𝑓0 and all the constraints, 𝑎𝑖𝑗𝑞 and 𝑑𝑞 are scalars.  

As discussed earlier, this MINLP model for the integrated refinery problem is nonlinear and 

nonconvex due to the bilinear or quadratic terms in some of the material balance and blending 

correlations and highly nonlinear terms due to the presence of signomial, exponential or 

logarithmic terms in the yield and quality constraints. To handle this nonlinearity and 
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nonconvexity, a bi-level optimization strategy is devised .To linearize highly nonlinear terms, a 

lumped variable linearization (LVL) technique has been utilized in this study. In LVL, all 

variables 𝑥𝑖 within a nonlinear term 𝑁𝐿𝑇 in a constraint are aggregated into one lumped variable 

𝐿𝑉 and the entire statement is linearized. Prior to running the model, an initial value from the 

industrial data adopted from HPI manual 116 is assigned to every variable (𝑥𝑖 . 𝑙) and the overall 

calculated value is assigned to the initial value of the linearized lumped variable in the model 

(𝐿𝑉. 𝑙). Equation29 represents this concept in a mathematical definition: 

𝑁𝐿𝑇 = 𝑓(𝑥𝑖)  
            𝑨𝒑𝒑𝒍𝒚 𝑳𝑽𝑳            
→                𝐿𝑉

       𝑨𝒔𝒔 𝒈𝒏 𝑰𝒏 𝒕 𝒂𝒍 𝑽𝒂𝒍𝒖𝒆𝒔      
→                     𝐿𝑉. 𝑙 = 𝑓(𝑥𝑖 . 𝑙)       (3.29) 

To handle the bilinear or quadratic terms, normalized multiparametric disaggregation technique 

(NMDT) 106-113  has been utilized which is adopted from Castro112 and explained shortly in the 

following paragraphs. A summarized context of implementing normalized multiparametric 

disaggregation technique is outlined in Appendix D and a detail scope is referred to Kolodziej et 

al.106.110, Castro et al.109,111-112, Andrade et al.113 and Teles et al.107,108 

Assuming a nonconvex bilinear term  𝑤𝑖,𝑗 = 𝑥𝑖𝑥𝑗 , multiparametric disaggregation operates by 

discretizing 𝑥𝑗 over a set of powers , 𝑙 ∈ {𝑝, … , 𝑃} ,where 𝑃 = ⌊log10 𝑥𝑗
𝑈⌋ and p is a user defined 

value for a desirable accuracy level. 106,108,111 The radix based relations for P are on a radix 10 

discretization basis for the purpose of our study. Normalized version of multiparametric 

disaggregation technique discretizes 𝜆𝑗 ∈ [0, 1], an auxiliary variable that is used to represent 𝑥𝑗 

as a linear combination of its lower 𝑥𝑗
𝐿 and upper 𝑥𝑗

𝑈 bounds: 

𝑥𝑗 = 𝑥𝑗
𝐿 + 𝜆𝑗(𝑥𝑗

𝑈 − 𝑥𝑗
𝐿)      ∀ 𝑗       (3.30) 
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Figure 3.7. depicts the continuous representation of variable λj achieved by discretizing the 

domain up to a certain level p and adding a bounded variable ∆λj. 

 

Figure 3.7. The continuous representation of variable λj by discretizing the domain up to a certain level p and 

adding a bounded variable ∆λj [112] 

The implementation of the normalized multiparametric disaggregation technique (NMDT) leads 

to the exact representation of bilinear terms 𝑤𝑖𝑗 = 𝑥𝑖𝑥𝑗  through a  set of mixed integer linear 

constraints resulting a relaxed optimization problem (PR) that is a relaxation of (P) (Castro et 

al.111,112) : 

                                                                           max   𝑓0
′(𝑥, 𝑦)                                        (3.31) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜           𝑓𝑞
′(𝑥, 𝑦) ≤ 0       ∀𝑞 ∈ 𝑄 ∖ {0} 

𝑓𝑞
′(𝑥, 𝑦) = ∑ 𝑎𝑖𝑗𝑞

(𝑖.𝑗)∈𝐵𝐿

𝑤𝑖𝑗 + 𝐵𝑞(𝑙𝑣) + 𝐶𝑞(𝑦) + 𝑑𝑞        ∀𝑞 ∈ 𝑄  

 

𝑥𝑗 = 𝑥𝑗
𝐿 + 𝜆𝑗(𝑥𝑗

𝑈 − 𝑥𝑗
𝐿)

𝜆𝑗 = ∑ ∑ 10𝑙 . 𝑘. 𝑧𝑗𝑘𝑙 
9
𝑘=0

−1
𝑙=𝑝 + ∆𝜆𝑗
0 ≤ ∆𝜆𝑗 ≤ 10

𝑝 

}    ∀𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿} 
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𝑤𝑖𝑗 = 𝑥𝑖𝑥𝑗
𝐿 + 𝜐𝑖𝑗(𝑥𝑗

𝑈 − 𝑥𝑗
𝐿)

𝜐𝑖𝑗 =∑ ∑ 10𝑙 . 𝑘. 𝑥̂𝑖𝑗𝑘𝑙 
9

𝑘=0

−1

𝑙=𝑝
+ ∆𝜐𝑖𝑗

𝑥𝑖
𝐿. ∆𝜆𝑗 ≤ ∆𝜐𝑖𝑗 ≤ 𝑥𝑖

𝑈 . ∆𝜆𝑗

∆𝜐𝑖𝑗 ≤ (𝑥𝑖 − 𝑥
𝐿). 10𝑝 + 𝑥𝑖

𝐿 . ∆𝜆𝑗

∆𝜐𝑖𝑗 ≥ (𝑥𝑖 − 𝑥
𝑈). 10𝑝 + 𝑥𝑖

𝑈 . ∆𝜆𝑗 }
 
 
 

 
 
 

   ∀(𝑖, 𝑗) ∈ 𝐵𝐿  

𝑥𝑖 =∑ 𝑥̂𝑖𝑗𝑘𝑙 
9

𝑘=0
         ∀(𝑖, 𝑗) ∈ 𝐵𝐿, 𝑙 ∈ {𝑝,… ,−1} 

∑𝑧𝑗𝑘𝑙

9

𝑘=0

= 1      ∀𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿}, 𝑙 ∈ {𝑝,… ,−1} 

𝑧𝑗𝑘𝑙𝑥𝑖
𝐿 ≤ 𝑥̂𝑖𝑗𝑘𝑙 ≤ 𝑧𝑗𝑘𝑙𝑥𝑖

𝑈      ∀ (𝑖, 𝑗),   𝑘 ∈ {0,… ,9}, 𝑙 ∈ {𝑝, … ,−1}   

0 ≤ 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

𝑥 ∈ 𝑅𝑚, 𝑤𝑖𝑗  , 𝜆𝑗 , 𝜐𝑖𝑗 , 𝑥̂𝑖𝑗𝑘𝑙 , ∆𝜆𝑗 , ∆𝜐𝑖𝑗 ∈ 𝑅 

                                                   𝑦 ∈  {0,1}𝑟   , 𝑧𝑗𝑘𝑙   ∈ {0,1}                                (𝑷𝑹) 

This leads to a mixed integer linear program (MILP) of the integrated refinery problem. By this 

manner, upon running the model, an upper bound value for the problem (P) is calculated and the 

binary variables are relaxed by assigning them their initial value from the previous run. In the 

next step, a nonlinear problem (NLP) is solved using a commercial global solver BARON to 𝜀 =

10−6 optimality criteria and global optimal solution for the integrated refinery problem is 

obtained in a reasonable solution time. Figure 3.5 illustrates the flowchart for the proposed 

solution algorithm. 

3.8. Deterministic Integrated Refinery Case Study 
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The mathematical framework based on the crude unloading, blending and inventory 

management, crude procuring and production planning, final product pooling problem, final 

product distribution by pipeline, utility system, the overall objective function of the integrated 

problem and specific constraints for the solution strategy are used to develop the entire integrated 

refinery planning model. The numerical results and discussion is presented in chapter 5. 
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Figure 3.8. Algorithmic Flowchart for the Proposed Solution Methodology. 
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Chapter 4 

STOCHASTIC INTEGRATED REFINERY MODEL  

4.1. Preface  

In this chapter, the stochastic integrated refinery model is employed for the strategic enterprise-

wide planning of the integrated refinery where the uncertainties in the final product demand and 

crude oil and final product market prices are accounted for. The uncertainties are handled 

through three modeling schemes: (1) a robust optimization algorithm with a known probability 

distribution function for the uncertain parameters (2) a fuzzy possibilistic programming 

approach, where possibility and necessity measures are adopted to reflect the decision makers’ 

risk preference (3) a risk aversion two-stage stochastic model coupled with Monte Carlo 

sampling with 100 independent realizations of uncertain demand and price data while managing 

the financial risk through imposing a penalty for risk by inclusion of the downside risk metric in 

the objective function. These methodologies are applied to an industrial case study, considering 

operations in a broad range of refinery supply chain integrating decisions such as crude 

unloading, crude procurement while accounting for the highly nonlinear nature of processing 

units, final product pooling and blending, inventory management, scheduling of product 

distribution by pipeline, utility system and environmental impacts. The planning horizon extends 

over a span of 7 years period. Further, in this study, broad comparisons are drawn between the 

solutions of three methodologies in handling uncertainty in terms of economic and operational 

objectives to illustrate the potential and trade-offs involved with these different methodologies. 

The results indicate significant economical and operational differences between the outcomes of 
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three methodologies while highlighting an obvious advantage of the robust optimization scheme 

depending on the decision maker’s risk attitude. 

The proposed strategy can be used as an effective decision-support tool for enterprise wide 

integrated production planning of an oil refinery in presence of uncertainty. These decisions 

range from adjusting the temperature distribution within the distillation unit to the process 

severity within the other refinery units to obtain desired cut point temperatures and maximum 

yield and desired property of final products which in turn results in a higher profit for a certain 

amount of crude feedstock. In addition, it provides a tool for refinery planner to make mitigating 

decisions on utility units operation, energy consumption, startup/shutdown operations, pipeline 

utilization, batch sequencing within pipeline and mitigate delayed or lost consumer demands and 

so on. 

To meet these objectives, the rest of this chapter is organized as follows: The problem statement 

is presented in the next section. The mathematical model for three methodologies in uncertainty 

treatment are outlined in section 3. The computational study results and discussion are presented 

in chapter 6. 

4.2.Problem Statement 

The focus of this study is the strategic planning for an integrated oil refinery with uncertainty in 

product demand and price data for both crude oil and final products. For an accurate and realistic 

modeling outcome both of these uncertainties need to be explicitly modeled within the planning 

strategy. The integrated refinery under study is identical to the system discussed in chapter 3 

under the deterministic model.  
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Uncertainty in demand and price data appear in the coefficients of the objective function as 

uncertain price data, as well as the coefficients and right-hand-side parameters of the inequality 

constraints as uncertain demand data. 

The corresponding stochastic integrated refinery planning model is similarly a nonconvex mixed 

integer nonlinear programming model (MINLP) and nonlinearity and nonconvexity within the 

model will be treated by the same an aggregation /disaggregation solution methodology based on 

lumped variable linearization (LVL) and normalized multiparametric disaggregation (NMDT) 

techniques.  

The stochastic integrated refinery problem will be formulated based on the same knowns and 

unknowns for the deterministic model with the exception that the planning horizon is 7 years and 

demand and price data are stochastic. The framework based on the objectives and constrains 

from the integrated refinery sub-systems, the methodologies to model uncertainty, and the 

heuristic to handle the nonlinearity and nonconvexity within the model is the underlying 

foundation for modeling and solving the stochastic integrated refinery problem in this study.  

4.3.Mathematical Model 

A stochastic multiperiod mixed integer-nonlinear programming (MINLP) model for the strategic 

enterprise-wide planning of an integrated refinery is developed while accounting for the 

uncertainties in the final product demand and crude oil and final product market prices. The 

constraints and variables in the models of refinery sub-systems are identical to the deterministic 

integrated refinery model with the exception of the following. The overall objective function for 

the integrated refinery model is the revenues from the final products’ sales minus the costs of 

purchasing crude oils and intermediates within the production/pooling model-where the 
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uncertainty in price data will be manifested- minus the investment costs for capacity expansion 

and operating costs incurred by crude unloading, utility system and pipeline distribution-where 

the uncertainty in the right-hand-side parameters of demand data will be handled. 

In addition, as discussed earlier, to model uncertainty through three methodologies the respective 

constraints and variables of the robust optimization scheme, fuzzy programming and two-stage 

stochastic programming with financial risk management are incorporated in the model. 

A brief account of the refinery models are outlined in appendices A-F in supporting materials. 

For a comprehensive description of these models the interested reader is encouraged to refer to 

Siamizade55 and Siamizade and Trafalis114,115.  

4.3.1.Constraints with Uncertain Parameters  

As discussed earlier, uncertainty in price data is manifested in the coefficients of the production 

objective function and uncertainty in demand data are appeared as the coefficients and right-

hand-side parameters of the product inventory and discharge constraints in the pipeline model. In 

the light of this clarification, the production objective function can be expanded as follows to 

display where the uncertain price parameters are correlated:   

 

𝑃𝑟𝑜𝑓𝑖𝑡 =∑ [𝐴𝑚(𝑏𝑢, 𝑓𝑝𝑟, 𝑠𝑡𝑎𝑛𝑘)
𝑢,𝑐,𝑢′

∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝑓𝑝𝑟) − 𝐹𝑖𝑛(𝑐, 𝑢) ∗ 𝑂𝐶(𝑢)

− 𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈) ∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝑜)  − 𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃)

∗ 𝑃𝑟𝑖𝑐𝑒𝑠(𝐸𝑡𝑂𝐻)]    (4.1) 

For demand data, the total inventory level of product p on DC end at the end of day t (𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙) 

correlates to the inventory from the previous day, sum of all batches discharged from the pipeline 
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during day t (∑ 𝑊𝑖,𝑡,𝑝𝑖 ), backorders from the same day (𝐵𝑡,𝑝) and previous day (𝐵𝑡−1,𝑝), and the 

demand on day t (𝐷𝑒𝑚𝑡,𝑝).Thus, for the first day, we have: 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝐼𝑛𝑖𝑡𝑣𝑝 −∑𝑊𝑖,𝑡,𝑝

𝑖∈𝐼

− 𝐵𝑡,𝑝  ≥ 𝐷𝑒𝑚𝑡,𝑝     ∀ 𝑡 ∈ 𝑇, 𝑡 = 1, 𝑝 ∈ 𝑃     (4.2) 

And for other days, we have: 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝑖𝑛𝑣𝑡−1,𝑝

𝑡𝑜𝑡𝑎𝑙 −∑𝑊𝑖,𝑡,𝑝
𝑖∈𝐼

+ 𝐵𝑡−1,𝑝 − 𝐵𝑡,𝑝  ≥ 𝐷𝑒𝑚𝑡,𝑝    ∀ 𝑡 ∈ 𝑇, 𝑡 > 1, 𝑝 ∈ 𝑃    (4.3) 

In the following sections, we will elaborate the 3 different methodologies mentioned earlier to 

model these uncertainties.   

4.3.2. Robust Optimization Framework  

Robust design can be regarded as an optimization approach which accounts for uncertainties by 

constructing robust counterparts F of the original objective function. By applying the robust 

counterpart methodology, the solution of the problem can be immune against the perturbations of 

the uncertain parameters.78 

Similar to the generic form of the stochastic mixed-integer linear programming problem 

considered by Janak and Floudas 92, the stochastic mixed-integer nonlinear programming 

problem (MINLP) of the integrated refinery can be represented as follows: 

𝐦𝐚𝐱          𝑓0(𝑥, 𝑦)                          (4.4) 

          𝐬. 𝐭.              𝑓𝑙(𝑥, 𝑦) = 𝐴𝑙(𝑥) + 𝐵𝑙(𝑦) + ∑ 𝑐𝑖𝑗𝑙(𝑖,𝑗)∈𝐵𝐿 𝑥𝑖𝑥𝑗+ 𝑑𝑙   ≤ 0     ∀𝑙 ∈ 𝐿 ⊂ 𝑄 

𝑓𝑢(𝑥, 𝑦) = 𝐴𝑢(𝑥) + 𝐵𝑢(𝑦) ≤ 𝑝         ∀𝑢 ∈ 𝑈 ⊂ 𝑄  

0 ≤ 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 
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𝑥 ∈ 𝑅𝑚, 𝑦 ∈  {0,1}𝑘      (𝑷) 

where x is a vector of continuous non-negative variables and y are binary variables. BL is 

an (𝑖, 𝑗)-index set that defines the bilinear 𝑥𝑖𝑥𝑗 terms present in the problem. 𝐴𝑞(𝑥) is nonlinear 

in 𝑥 and 𝐵𝑞(𝑦) includes binary variables. Set 𝑄 is the set of all constraints: set 𝐿 includes all 

functions 𝑓𝑙 with bilinear and highly nonlinear terms, set U  includes all functions 𝑓𝑢 and the 

objective function 𝑓0  which contains the uncertain parameters and 𝑐𝑖𝑗𝑙 and 𝑑𝑙 are scalars. 

Supposing that the uncertainty arises from both the coefficients and the right-hand-side 

parameters of the inequality constraints, namely, 𝑎𝑢𝑚, 𝑏𝑢𝑘  and 𝑝𝑢  where 𝑢 is the index of the 

uncertain inequality, 𝑚 is the index of the continuous terms, and 𝑘 is the index of the binary 

terms. Thus, we are concerned about the feasibility of the following inequality: 

∑𝑎̃𝑢𝑚
𝑚

𝑥𝑚 +∑𝑏̃𝑢𝑘
𝑚

𝑦𝑘 ≤ 𝑝̃𝑢       (4.5) 

Where 𝑎𝑢𝑚 , 𝑏𝑢𝑘 and 𝑝𝑢  are the nominal values of the uncertain parameters and 𝑎̃𝑢𝑚, 𝑏̃𝑢𝑘 and 

𝑝̃𝑢 are the “true” values of the uncertain parameters and  (~) sign denotes the uncertain 

parameters. Let’s assume that for inequality constraint u , the true values of the uncertain 

parameters are obtained from their nominal values by random perturbations 

𝑎̃𝑢𝑚 = (1 + 𝜖𝜉𝑢𝑚)𝑎𝑢𝑚 

                                              𝑏̃𝑢𝑘 = (1 + 𝜖𝜉𝑢𝑘)𝑏𝑢𝑘                                          (4.6) 

𝑝̃𝑢 = (1 + 𝜖𝜉𝑢)𝑝𝑢 

where 𝜉𝑢𝑚, 𝜉𝑢𝑘 and 𝜉𝑢 are independent random variables and 𝜖 > 0 is a given (relative) 

uncertainty level. 



104 

 

In this situation, a solution (x, y) is called robust if it satisfies the following (i) (x, y) is feasible 

for the nominal problem, and (ii) for every inequality u , the probability of violation of the 

uncertain inequality in Equation (4.5) (i.e., the left-hand-side exceeds the right-hand-side) is at 

most κ, here δ > 0 is a given feasibility tolerance and is introduced to allow a small amount of 

infeasibility in the uncertain inequality, and κ > 0 is a given reliability level. Thus, κ represents 

the probability of violation of constraint u where κ = 0% indicates that there is no chance of 

constraint violation, yielding the most conservative solution. 92 

𝑃𝑟 {∑𝑎̃𝑢𝑚
𝑚

𝑥𝑚 +∑𝑏̃𝑢𝑘
𝑚

𝑦𝑘 > 𝑝̃𝑢 + 𝛿max[1, |𝑝𝑢|]} ≤ 𝜅           (4.7) 

This robust optimization methodology was first introduced for linear programming problems 

with uncertain linear coefficients by Ben-Tal and Nemirovski 124 and was extended in Lin et 

al.125  and Janak et al.92 to consider uncertainty in MILP problems. Thus, in this work, our 

objective is to extend this robust optimization framework to MINLP problems to generate 

“robust counterpart” problem whose solution  is “reliable” and immune against uncertainty that 

can be described by a known probability distribution.  

If the probability distributions of the random variables 𝜉𝑢𝑚, 𝜉𝑢𝑘 and 𝜉𝑢 in the uncertain 

parameters are known, it is possible to obtain a more accurate estimation of the probability 

measures involved. Suppose that the distributions of the random variables 𝜉𝑢𝑚, 𝜉𝑢𝑘 and 𝜉𝑢 in 

equation (4.6) are all standardized normal distributions with known mean and standard deviation. 

Then, given an uncertainty level (𝜖), an infeasibility tolerance (𝛿), and a reliability level (𝜅), the 

following will be the  (𝜖, 𝛿, 𝜅)-robust counterpart (𝑅𝐶[𝜖, 𝛿, 𝜅]) of the original uncertain MINLP 

problem (p) from (4): 
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𝐦𝐚𝐱          𝑓0(𝑥, 𝑦)                          (4.8) 

𝐬. 𝐭.                 

𝑓𝑙(𝑥, 𝑦) = 𝐴𝑙(𝑥) + 𝐵𝑙(𝑦) + ∑ 𝑐𝑖𝑗𝑙
(𝑖,𝑗)∈𝐵𝐿

𝑥𝑖𝑥𝑗+ 𝑑𝑙   ≤ 0     ∀𝑙 ∈ 𝐿 ⊂ 𝑄 

𝑓𝑢(𝑥, 𝑦) = 𝐴𝑢(𝑥) + 𝐵𝑢(𝑦) ≤ 𝑝         ∀𝑢 ∈ 𝑈 ⊂ 𝑄  

∑𝑎𝑢𝑚
𝑚

𝑥𝑚 +∑𝑏𝑢𝑘
𝑘

𝑦𝑘 +  𝜖𝜆√ ∑ 𝑎𝑢𝑚2

𝑚∈𝑀𝑢

𝑥𝑢𝑚2 + ∑ 𝑏𝑢𝑘
2

𝑘∈𝐾𝑢

𝑦𝑘 + 𝑝𝑢2   

≤ 𝑝𝑢 + 𝛿 max [1, |𝑝𝑢|       ∀𝑢 

0 ≤ 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

𝑥 ∈ 𝑅𝑚, 𝑦 ∈  {0,1}𝑘      

where 𝑀𝑢 and 𝐾𝑢 define the sets of uncertain parameters 𝑎𝑢𝑚 and 𝑏𝑢𝑘, respectively, for 

constraint u, 𝜆 = 𝐹𝑛
−1(1 − 𝜅) and 𝐹𝑛

−1 is the inverse distribution function of a random variable 

with standardized normal distribution. Thus, λ and κ are related as follows: 

        𝜅 = 1 − 𝐹𝑛(𝜆)        (4.9) 

𝜅 = 1 − Pr(𝜉 ≤ 𝜆) 

              𝜅 = 1 − ∫
1

√2𝜋

𝜆

−∞
exp (

−𝜉2

2
)𝑑𝜉 

where ξ is a random variable with standardized normal distribution. For proof and more detail,  

theorem 2 from Janak et al.92 is recommended. 
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In light of these definitions, the constraints containing the uncertain parameters of price and 

demand data in equations (1-3) can be rewritten as follows to create the robust counterpart of the 

integrated refinery problem: 

𝑃𝑟𝑜𝑓𝑖𝑡   ≤ 

∑ [𝑃𝑟𝑖𝑐𝑒𝑠(𝑓𝑝𝑟)𝑢,𝑐,𝑢′ 𝐴𝑚(𝑏𝑢, 𝑓𝑝𝑟, 𝑠𝑡𝑎𝑛𝑘) − 𝑃𝑟𝑖𝑐𝑒𝑠(𝑜)𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈) −

𝑃𝑟𝑖𝑐𝑒𝑠(𝐸𝑡𝑂𝐻)𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃) − 𝐹𝑖𝑛(𝑐, 𝑢) ∗ 𝑂𝐶(𝑢)]  +𝛿 − 

𝜖𝜆√∑ 𝑃𝑟𝑖𝑐𝑒𝑠(𝑓𝑝𝑟)2

𝑢,𝑐,𝑢′

𝐴𝑚(𝑏𝑢, 𝑓𝑝𝑟, 𝑠𝑡𝑎𝑛𝑘)2 − ∑ 𝑃𝑟𝑖𝑐𝑒𝑠(𝑜)2

𝑢,𝑐,𝑢′

𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈)2 − ∑ 𝑃𝑟𝑖𝑐𝑒𝑠(𝐸𝑡𝑂𝐻)2

𝑢,𝑐,𝑢′

𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃)2 

(4.10) 

Where the Prices are the nominal or the deterministic values of the price data.Thus for demand 

data for the first day, we have: 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝐼𝑛𝑖𝑡𝑣𝑝 −∑𝑊𝑖,𝑡,𝑝

𝑖∈𝐼

− 𝐵𝑡,𝑝  ≥ 𝐷𝑒𝑚𝑡,𝑝 (1 +   𝜖𝜆 − 𝛿 )     ∀ 𝑡 ∈ 𝑇, 𝑡 = 1, 𝑝 ∈ 𝑃  (4.11) 

And for other days, we have: 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝑖𝑛𝑣𝑡−1,𝑝

𝑡𝑜𝑡𝑎𝑙 −∑𝑊𝑖,𝑡,𝑝
𝑖∈𝐼

+ 𝐵𝑡−1,𝑝 − 𝐵𝑡,𝑝  ≥ 𝐷𝑒𝑚𝑡,𝑝 (1 +   𝜖𝜆 − 𝛿 )     

∀ 𝑡 ∈ 𝑇, 𝑡 > 1, 𝑝 ∈ 𝑃    (4.12) 

Where the 𝐷𝑒𝑚𝑡,𝑝 are the nominal or the deterministic values of the demand  data for product p 

in time period t.  
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4.3.3. Fuzzy Possibilistic Programming Approach 

Whenever the statistical data and probability distribution are unreliable or even unavailable for 

the uncertain parameters, fuzzy set and possibility theory may provide an alternative which is 

simpler and less data demanding than the probability theory to deal with supply chain 

uncertainties 97. Fuzzy programming assumes that uncertain parameters in a mathematical model 

are fuzzy numbers defined on a fuzzy set associated with a membership function. The concept of 

fuzzy set, was first introduced by Bellman and Zadeh.126 

 Therefore, in this section, we utilize fuzzy set and fuzzy membership concept to describe these 

uncertainties. Tong et al.97 describe the fuzzy possibility and necessity measures as follows: 

Assume 𝜇𝐴 is the membership function for a fuzzy member 𝛼 in fuzzy set A. Possibility and 

necessity measures of the event that 𝛼 is in another fuzzy set B are defined as follows (Bellman 

and Zadeh 126; Inuiguchi 127): 

Π𝐴(𝐵) = sup
𝑟
𝑚𝑖𝑛(𝜇𝐴(𝑟), 𝜇𝐵(𝑟))   (4.13)  

N𝐴(𝐵) = inf
𝑟
𝑚𝑎𝑥(1 − 𝜇𝐴(𝑟), 𝜇𝐵(𝑟))   (4.14)   

where 𝜇𝐵 is the membership function for fuzzy set B, and Π𝐴(𝐵) determines the extent it is 

possible for the possibilistic variable 𝛼 -restricted by the possibility distribution 𝜇𝐴 – to be in the 

fuzzy set B. Furthermore, N𝐴(𝐵) determines the extent it is certain that the 𝛼 is in fuzzy set B. 

Then the relationship between possibility and necessity is described as follows: 

Π𝐴(𝐵) = 1 − N𝐴(𝐵)   (4.15) 

Now, let’s assume 𝐵 = (−∞,𝑔], i.e. B is a crisp set of real numbers not greater than 𝑔. It is 

further assumed that 𝛼 has a triangle membership function, where [𝛼𝑝  𝛼𝑚  𝛼𝑜] represents the 
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most pessimistic, most possible and most optimistic value of fuzzy number 𝛼. Figure 4.1 

reconstructed from Tong et al.97, is a helpful graphical representation to perceive the concept of 

possibility and necessity degree of 𝛼 ≤ 𝑔.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Possibility and necessity degree of (𝑎 ≤ 𝑔).[97] 

Then we can easily obtain the interpretations for possibility and necessity in equations 4.16 and 

17: 
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𝑃𝑜𝑠(𝛼 ≤ 𝑔) =  Π𝐴((−∞, 𝑔]) = sup  {𝜇𝐴(𝑟)|𝑟 ≤ 𝑔}        (4.16)   

=

{
 
 

 
 
0                                                   𝑔 ≤ 𝛼𝑝

𝑔 − 𝛼𝑝

𝛼𝑚 − 𝛼𝑝
                           𝛼𝑝 ≤ 𝑔 ≤ 𝛼𝑚

  1                                                   𝑔 ≥ 𝛼𝑚

 

   

𝑁𝑒𝑠(𝛼 ≤ 𝑔) =  N𝐴((−∞, 𝑔]) = 1 − sup  {𝜇𝐴(𝑟)|𝑟 > 𝑔}        (4.17)   

=

{
 
 

 
 
0                                                   𝑔 ≤ 𝛼𝑚

𝑔 − 𝛼𝑚

𝛼𝑜 − 𝛼𝑚
                           𝛼𝑚 ≤ 𝑔 ≤ 𝛼𝑜

  1                                                   𝑔 ≥ 𝛼𝑜

 

   

By definition, we can conclude that if the attitude of the decision maker is optimistic, possibility 

measure is a good choice, while in the pessimistic sense necessity gives the measurement of the 

worst case of that event.  

Similar to Tong et al.97, we define a least possibility or necessity measure or confidence level 𝜃 

at which the fuzzy constraints will hold. For the profit function (1) with fuzzy price parameters 

on it, we can reformulate it into equation (18), while maximizing C such that the possibility or 

necessity, for the objective value being greater than C is no less than the confidence level 𝜃: 

𝐦𝐚𝐱          𝐶 

𝐬. 𝐭.    𝑃𝑜𝑠/ 𝑁𝑒𝑠(𝑓0̃(𝑥, 𝑦) ≥ 𝐶)    ≥ 𝜃    (4.18) 

Similarly, for the constraints (2-3) where we have fuzzy uncertainties for demand data , 

we can simply use the following constraints:  

𝑃𝑜𝑠

𝑁𝑒𝑠(𝑓𝑢(𝑥, 𝑦) ≥ 𝐷𝑒𝑚̃)
≥ 𝜃    (4.19)   
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where 𝐶 is the referenced profit and 𝜃 is the confidence level for the possibility or necessity of 

total profit being greater than 𝐶. The selection of these criteria is based on the decision maker’s 

level of risk aversion and personal preference. 

Equations (18,19) can be reformulated into linear representations. Consider the situation in 

which the possibility measure for 𝛼 is less than or equal to 𝑔, we then use the following 

reformulations from Tong et al.97 and according to equation (16,17):  

𝑃𝑜𝑠(𝛼 ≤ 𝑔) ≥ 𝜃 ⇒ 𝑔 ≥ 𝛼𝑝 + 𝜃. (𝛼𝑚 − 𝛼𝑝)         (4.20) 

𝑃𝑜𝑠(𝛼 ≥ 𝑔) ≥ 𝜃 ⇒ 𝑔 ≤ 𝛼𝑜 − 𝜃. (𝛼𝑜 − 𝛼𝑚)        (4.21) 

𝑁𝑒𝑠(𝛼 ≤ 𝑔) ≥ 𝜃 ⇒ 𝑔 ≥ 𝛼𝑚 + 𝜃. (𝛼𝑜 − 𝛼𝑚)       (4.22) 

𝑁𝑒𝑠(𝛼 ≥ 𝑔) ≥ 𝜃 ⇒ 𝑔 ≤ 𝛼𝑚 − 𝜃. (𝛼𝑚 − 𝛼𝑝)        (4.23) 

To formulate the fuzzy possibilistic model for the integrated refinery planning, we decompose 

our profit function (1) into constraints  (4.24-29) and reformulate it for possibility and necessity 

measures to constraints (30,31) respectively : 

Possibility Measure: 

{𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑓𝑝𝑟) =∑ [𝐴𝑚(𝑏𝑢, 𝑓𝑝𝑟, 𝑠𝑡𝑎𝑛𝑘)
𝑢,𝑐,𝑢′

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑜(𝑓𝑝𝑟) − 𝜃𝑝𝑟𝑖𝑐𝑒

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑜(𝑓𝑝𝑟) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑓𝑝𝑟)))]    (4.24) 

{𝐶𝑜𝑠𝑡 (𝑜) = ∑ [𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈)𝑢,𝑐,𝑢′ ∗(𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝑜)  + 𝜃𝑝𝑟𝑖𝑐𝑒 ∗ (𝑃𝑟𝑖𝑐𝑒𝑠
𝑚(𝑜) −

𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝑜)) )]     (4.25) 

{𝐶𝑜𝑠𝑡 (𝐸𝑡𝑂𝐻) =∑ [𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃)
𝑢,𝑐,𝑢′

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝐸𝑡𝑂𝐻) + 𝜃𝑝𝑟𝑖𝑐𝑒

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝐸𝑡𝑂𝐻) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝐸𝑡𝑂𝐻)))]  
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(4.26) 

Necessity Measure: 

{𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑓𝑝𝑟) =∑ [𝐴𝑚(𝑏𝑢, 𝑓𝑝𝑟, 𝑠𝑡𝑎𝑛𝑘)
𝑢,𝑐,𝑢′

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑓𝑝𝑟) − 𝜃𝑝𝑟𝑖𝑐𝑒

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑓𝑝𝑟) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝑓𝑝𝑟)))] (4.27)    

{𝐶𝑜𝑠𝑡 (𝑜) = ∑ [𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈)𝑢,𝑐,𝑢′ ∗(𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑜) + 𝜃𝑝𝑟𝑖𝑐𝑒 ∗ (𝑃𝑟𝑖𝑐𝑒𝑠
𝑜(𝑜) −

𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑜)) )]     (4.28) 

{𝐶𝑜𝑠𝑡 (𝐸𝑡𝑂𝐻) =∑ [𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃)
𝑢,𝑐,𝑢′

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝐸𝑡𝑂𝐻) + 𝜃𝑝𝑟𝑖𝑐𝑒

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑜(𝐸𝑡𝑂𝐻) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝐸𝑡𝑂𝐻)))]  

(4.29) 

Possibility Measure: 

𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ [𝐴𝑚(𝑏𝑢, 𝑓𝑝𝑟, 𝑠𝑡𝑎𝑛𝑘)
𝑢,𝑐,𝑢′

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑜(𝑓𝑝𝑟) − 𝜃𝑝𝑟𝑖𝑐𝑒 ∗ (𝑃𝑟𝑖𝑐𝑒𝑠
𝑜(𝑓𝑝𝑟) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑓𝑝𝑟)))  

− 𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈) ∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝑜)  + 𝜃𝑝𝑟𝑖𝑐𝑒 ∗ (𝑃𝑟𝑖𝑐𝑒𝑠
𝑚(𝑜) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝑜)))  

− 𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃)

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝐸𝑡𝑂𝐻) + 𝜃𝑝𝑟𝑖𝑐𝑒 ∗ (𝑃𝑟𝑖𝑐𝑒𝑠
𝑚(𝐸𝑡𝑂𝐻) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝐸𝑡𝑂𝐻)) − 𝐹𝑖𝑛(𝑐, 𝑢)

∗ 𝑂𝐶(𝑢)]    (4.30) 

Necessity Measure: 
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𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ [𝐴𝑚(𝑏𝑢, 𝑓𝑝𝑟, 𝑠𝑡𝑎𝑛𝑘)
𝑢,𝑐,𝑢′

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑓𝑝𝑟) − 𝜃𝑝𝑟𝑖𝑐𝑒 ∗ (𝑃𝑟𝑖𝑐𝑒𝑠
𝑚(𝑓𝑝𝑟) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑝(𝑓𝑝𝑟)))   

− 𝐴𝑚(𝑐𝑡𝑎𝑛𝑘, 𝑜, 𝐶𝐷𝑈) ∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑜)  + 𝜃𝑝𝑟𝑖𝑐𝑒 ∗ (𝑃𝑟𝑖𝑐𝑒𝑠
𝑜(𝑜) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝑜))) 

− 𝐴𝑚(𝐸𝑡𝑂𝐻𝑇, 𝐸𝑡𝑂𝐻, 𝐺𝑃)

∗ (𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝐸𝑡𝑂𝐻) + 𝜃𝑝𝑟𝑖𝑐𝑒 ∗ (𝑃𝑟𝑖𝑐𝑒𝑠
𝑜(𝐸𝑡𝑂𝐻) − 𝑃𝑟𝑖𝑐𝑒𝑠𝑚(𝐸𝑡𝑂𝐻))

− 𝐹𝑖𝑛(𝑐, 𝑢) ∗ 𝑂𝐶(𝑢)]   (4.31) 

and constraints (4.2,3) for uncertain demand data are reformulated into constraints (4.32-35) for 

possibility and necessity measures of demand data: 

Thus, for the first day of demand data , we have: 

Possibility Measure: 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝐼𝑛𝑖𝑡𝑣𝑝 −∑𝑊𝑖,𝑡,𝑝

𝑖∈𝐼

− 𝐵𝑡,𝑝  ≥ 𝐷𝑒𝑚𝑡,𝑝
𝑝  + 𝜃𝐷𝑒𝑚𝑎𝑛𝑑 ∗ (𝐷𝑒𝑚𝑡,𝑝

𝑚 − 𝐷𝑒𝑚𝑡,𝑝
𝑝 )       ∀ 𝑡 ∈ 𝑇, 𝑡

= 1, 𝑝 ∈ 𝑃     (4.32) 

Necessity Measure: 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝐼𝑛𝑖𝑡𝑣𝑝 −∑𝑊𝑖,𝑡,𝑝

𝑖∈𝐼

− 𝐵𝑡,𝑝  ≥ 𝐷𝑒𝑚𝑡,𝑝
𝑚  + 𝜃𝐷𝑒𝑚𝑎𝑛𝑑 ∗ (𝐷𝑒𝑚𝑡,𝑝

𝑜 − 𝐷𝑒𝑚𝑡,𝑝
𝑚 )       ∀ 𝑡 ∈ 𝑇, 𝑡

= 1, 𝑝 ∈ 𝑃     (4.33) 

And for other days, we have: 

Possibility Measure: 
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𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝑖𝑛𝑣𝑡−1,𝑝

𝑡𝑜𝑡𝑎𝑙 −∑𝑊𝑖,𝑡,𝑝
𝑖∈𝐼

+ 𝐵𝑡−1,𝑝 − 𝐵𝑡,𝑝  

≥ 𝐷𝑒𝑚𝑡,𝑝
𝑝  + 𝜃𝐷𝑒𝑚𝑎𝑛𝑑 ∗ ( 𝐷𝑒𝑚𝑡,𝑝

𝑚 − 𝐷𝑒𝑚𝑡,𝑝
𝑝 )     ∀ 𝑡 ∈ 𝑇, 𝑡 > 1, 𝑝 ∈ 𝑃    (4.34) 

Necessity Measure: 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝑖𝑛𝑣𝑡−1,𝑝

𝑡𝑜𝑡𝑎𝑙 −∑𝑊𝑖,𝑡,𝑝
𝑖∈𝐼

+ 𝐵𝑡−1,𝑝 − 𝐵𝑡,𝑝  

≥ 𝐷𝑒𝑚𝑡,𝑝
𝑚  + 𝜃𝐷𝑒𝑚𝑎𝑛𝑑 ∗ ( 𝐷𝑒𝑚𝑡,𝑝

𝑜 − 𝐷𝑒𝑚𝑡,𝑝
𝑚 )     ∀ 𝑡 ∈ 𝑇, 𝑡 > 1, 𝑝 ∈ 𝑃    (4.35) 

Where 𝑃𝑟𝑖𝑐𝑒𝑠𝑝, 𝑃𝑟𝑖𝑐𝑒𝑠𝑜 and 𝑃𝑟𝑖𝑐𝑒𝑠𝑚 denote the most pessimistic, most optimistic and most 

possible uncertain price data for the commodities and 𝐷𝑒𝑚𝑡,𝑝
𝑝
, 𝐷𝑒𝑚𝑡,𝑝

𝑜  and 𝐷𝑒𝑚𝑡,𝑝
𝑚  represent the 

most pessimistic, most optimistic and most possible uncertain demand data for the product 𝑝 in 

time period 𝑡, and  𝜃𝑝𝑟𝑖𝑐𝑒 and 𝜃𝐷𝑒𝑚𝑎𝑛𝑑 denote the confidence level for the uncertain price and 

demand data. 

4.3.4. Two-Stage Stochastic Programming with Financial Risk management 

In this type of optimization problems some of the model parameters are considered uncertain 

random variables with a certain probability distribution. Some decisions are taken at the planning 

stage, that is, before the uncertainty is revealed, whereas a number of other decisions can be 

made only after the uncertain data become known. The first class of decisions are called first 

stage or “here and now”  decisions, and their associated period is referred to as the first stage. On 

the other hand, the decisions made after the uncertainty is unveiled are called second-stage or 

“wait and see” or recourse decisions and the corresponding period is called the second stage.128 

 The second stage decisions are mitigative decisions in an attempt to adapt the design to the 

realization of uncertain parameters. The general form of a two-stage mixed-integer linear 
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stochastic problem for a finite number of scenarios can be written as Birge and Louveaux 129 

stated: 

𝑀𝑎𝑥 𝐸[𝑃𝑟𝑜𝑓𝑖𝑡] = ∑𝑝𝑠
𝑠∈𝑆

𝑞𝑠
𝑇𝑦𝑠 − 𝑐

𝑇𝑥      (4.36)  

𝑠. 𝑡.  𝐴𝑥 ≤ 𝑏 

𝑇𝑠𝑥 +𝑊𝑦𝑠 ≤ ℎ𝑠      ∀𝑠 ∈ 𝑆 

𝑥 ≥ 0      𝑥 ∈ 𝑋 

𝑦𝑠 ≥ 0            ∀𝑠 ∈ 𝑆 

In the above model, 𝑥 represents the first-stage mixed-integer decision variables and 𝑦𝑠 are the 

second-stage variables corresponding to scenario s, which has occurrence probability 𝑝𝑠. The 

objective function is composed of the expectation of the profit generated from operations minus 

the cost of first-stage model appear in the coefficients 𝑞𝑠, the technology matrix 𝑇𝑠, and in the 

independent term ℎ𝑠. If W, the recourse matrix, is deterministic, the problem is referred as fixed 

recourse and ensures that the second-stage feasible region is convex and closed, and that the 

recourse function is a piecewise linear convex function in x.129 

Eppen et al.130 suggested that a major limitation of the two-stage stochastic models is that it does 

not take into account the variability of the second-stage profit but only its expected value. They 

proposed to use the concept of downside risk to measure the recourse cost variability and obtain 

solutions appealing to a risk-averse investor. To present the concept of downside risk, they 

assumed 𝛿(𝑥, 𝛺) as the positive deviation from a profit target 𝛺 for design x, that is  

𝛿(𝑥, 𝛺) = {
 𝛺 − 𝑃𝑟𝑜𝑓𝑖𝑡(𝑥)     𝑖𝑓    𝑃𝑟𝑜𝑓𝑖𝑡(𝑥)  < 𝛺

 0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
        (4.37) 
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To incorporate the concept of downside risk in the framework of two-stage stochastic models, 

𝛿𝑠(𝑥, 𝛺) is introduced as the positive deviation from the profit target 𝛺 for design x and scenario 

s and defined as follows: 

𝛿𝑠(𝑥, 𝛺) = {
 𝛺 − 𝑃𝑟𝑜𝑓𝑖𝑡𝑠(𝑥)      𝑖𝑓    𝑃𝑟𝑜𝑓𝑖𝑡𝑠(𝑥) < 𝛺
 0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

         ∀𝑠 ∈ 𝑆      (4.38)  

Because the scenarios are probabilistically independent, the expected value of 𝛿(𝑥, 𝛺) (i.e., 

downside risk) can be expressed as the following linear function of 𝛿  

𝐷𝑅𝑖𝑠𝑘(𝑥, 𝛺) = ∑ 𝑝𝑠𝛿𝑠(𝑥, 𝛺)

∀𝑠∈𝑆

       (4.39) 

Furthermore, Barbaro and Bagajewicz128 argued that downside risk is a function not only of the 

first-stage decisions but also of the aspiration or target profit level and minimizing downside risk 

at one level does not imply its minimization at another. Moreover, minimizing downside risk 

does not necessarily lead to minimizing financial risk for the specified target. Thus, they 

suggested that treating financial risk as a single objective presents some limitations, and 

proposed that risk to be managed over the entire range of aspiration levels. 

To incorporate the downside risk 𝐷𝑅𝑖𝑠𝑘(𝑥, 𝛺) as the measure to control financial risk into two-

stage stochastic model with a fixed recourse at different profit targets, Barbaro and Bagajewicz 

128 proposed the following model: 

𝑀𝑎𝑥 𝜇 (∑𝑝𝑠
𝑠∈𝑆

𝑞𝑠
𝑇𝑦𝑠 − 𝑐

𝑇𝑥) − ∑ 𝑝𝑠𝛿𝑠
∀𝑠∈𝑆

             (4.40)   

                                  𝒔. 𝒕.                    𝛿𝑠 ≥ 𝛺 + 𝑐
𝑇𝑥 − 𝑞𝑠

𝑇𝑦𝑠      ∀𝑠 ∈ 𝑆  

𝐴𝑥 ≤ 𝑏 
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𝑇𝑠𝑥 +𝑊𝑦𝑠 ≤ ℎ𝑠      ∀𝑠 ∈ 𝑆 

𝛿𝑠 ≥ 0 

𝑥 ≥ 0      𝑥 ∈ 𝑋 

𝑦𝑠 ≥ 0            ∀𝑠 ∈ 𝑆 

Where 𝜇 is referred to as the goal programming weight for downside risk formulations. In this 

case a full spectrum of solutions is accomplished by varying the profit target 𝛺 from small values 

around 𝛺 = min𝑠{ 𝑃𝑟𝑜𝑓𝑖𝑡𝑠(𝑥𝑆𝑃
∗ )} up to higher values around 𝛺 = max𝑠{ 𝑃𝑟𝑜𝑓𝑖𝑡𝑠(𝑥𝑆𝑃

∗ )}. In this 

way, solutions obtained for lower values of 𝛺 will generally respond to a risk-averse investor and 

solutions obtained with higher 𝛺 will be more appealing to risk-taker investors. 

In light of these definitions, our profit objective and constraints containing the uncertain 

parameters of price and data in equations 4.1-4.3 will be reformulated of into a two-stage 

stochastic model with downside risk as the risk metrics. The numerical results-obtained by three 

methodologies discussed here as appraisal methods to assess and model uncertainty- are 

presented in chapter 5.  
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Chapter 5 

NUMERICAL RESULTS AND DISCUSSIONS 

5.1. Empirical Nonlinear Models of Refinery Units 

The framework based on the nonlinear unit models, material balances and yield and property 

requirement constraints are used to develop the entire nonlinear refinery production planning 

model and is implemented in GAMS 131/ BARON 132 versions 24.7.4/16.8.24 and solved on a 

DELL Studio XPS 1645 (Intel®Core™ i7 CPU, 1.73 GHz and 8 GB RAM) running Windows 

10.0.16299.  

5.1.1.Refinery  case studies 

A total of 13 different refinery case studies have been created: The first 3 case studies with 

various product demands and throughputs are used to verify the effectiveness of the nonlinear 

refinery model utilizing the data-based CDU model (DBNLM) over the linear input-output 

model (IOM) with fixed yield and property for the products and the impact of introducing 

process nonlinearity on the total profit improvement. 

 Table 5.1 shows the results for the oil refinery under consideration in these 3 case studies. In 

these 3 case studies, the effectiveness of a nonlinear refinery model versus a fixed yield linear 

input-output model with varying throughput have been investigated. In the first case study the 

total throughput of the refinery to satisfy the product demands is only 12% of the total distillation 

capacity of the refinery and nonlinear model shows an apparent 26% improvement in overall 

profit of the refinery by calculating the yields and product properties through the correlations. 

The second case study represents a scenario where the total throughput of the refinery to satisfy 
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the product demands is 62% of the total distillation capacity of the refinery and nonlinear model 

shows an even higher  37% improvement in overall profit of the refinery. The third case study 

demonstrates a scenario where the total throughput of the refinery to satisfy the product demands 

is 90% of the total distillation capacity of the refinery and nonlinear model shows a highest 40% 

improvement in overall profit of the refinery and this trend suggests that if the refinery operates 

near to or at its full capacity, the overall profit optimization by accounting for the unit processes 

nonlinearity through the nonlinear unit models will be the highest. Figure 5.1 also consolidates 

these results and discussions  illustratively.  

Table 5.1. Improvement in Profit ($)-Data Based Nonlinear vs. Input-Output Model 

Case 

Study 

Total 

Product 

Demand 

(BPSD) 

Throughput 

(% of CDU 

Capacity) 

Calculated Profit ($) CPU Time (Sec) Improvement 

in Profit % 

Nonlinear Input-

Output 

Nonlinear Input-

Output 

1 28000 11.2 2,037,787 1,487,534 25.12 0.56 26 % 

2 140,000 56.0 2,143,006 1,697,926 114.93 1.91 37 % 

3 201,000 80.4 2,865,595 2,041,408 171.42 4.75 40 % 

 

 

 

 

 

 

 

 

Figure 5.1. Effectiveness of Nonlinear model vs. Input-Output Model 
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The next 10  case studies have compared two nonlinear planning models utilizing 2 different 

nonlinear CDU models, that is data-based model versus the model based on fractionation index 

(FI). The impact of different nonlinear CDU models on the total profit has been investigated by 

taking into account the effect of calculated cut point temperatures and pseudocomponents yields. 

Table 5.2 tabulates the data for these 10 case studies. In these case studies the total distillation 

capacity of the refinery is assumed to be 250,000 BPSD. In case study 4, the total product 

demand is only 10% of the refining capacity and production planning model with FI-based CDU 

model demonstrates an obvious 9.4% improvement in profit over the one with data-based CDU 

model. The higher computational time of the FI-based model is inherently related to the large 

scale of this model due to the fact that FI-Based model is an MINLP model with more equations 

and continuous variables in addition to binary variables in comparison with the data-based model 

which is an NLP model with fewer equations and continuous variables. As the demand increases 

through the following case studies and reaches the maximum refining capacity in case study 13, 

both models represent an obvious increase in the calculated profit while improvement in profit 

by FI-based model over the data-based model reaches a maximum of 14%.In addition, the 

computational disadvantage of the FI-based model in terms of CPU time dissipates. Figure 5.2 

also demonstrates these results graphically. 

Table 5.2 .Improvement in Profit ($)-Nonlinear CDU FI vs. Data-Based Model 

                  

Case 

Study 

Total 

Product 

Demand 

(BPSD) 

Calculated Profit ($) 

 

CPU Time (Sec) Improvement 

in Profit % 

 Data-Based FI Data-

Based 

FI 

4 25,000 3,161,030 3,458,167 19.41 68.88 9.4 % 

5 50,000 3,205,579 3,516,520 43.30 79.56 9.7 % 
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6 75,000 3,206,280 3,526,908 57.98 91.44 10 % 

7 100,000 3,262,421 3,608,238 81.11 111.92 10.6 % 

8 125,000 3,317,281 3,688,816 107.77 139.20 11.2 % 

9 150000 3,372,141 3,773,426 124.78 165.53 11.9 % 

10 175,000 3,427,001 3,865,657 145.64 193.77 12.8 % 

11 200,000 3,481,861 3,937,985 165.52 217.23 13.1 % 

12 225,000 3,536,721 4,021,251 188.23 236.13 13.7 % 

13 250,000 3,591,581 4,094,402 218.70 257.65 14 %  

 

Table 5.3 represents the calculated optimal cut point temperatures and yields for the major 

hydrocarbon cuts (HC) and pseudocomponents (PC) for the CDU FI model for case study 13 

with highest refinery throughput. The model has notably minimized the first pseudocomponent  

 

Figure 5.2. Effectiveness of Nonlinear CDU FI vs. Data-Based Model  
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(PC1) yield to zero as it does not contribute to meet the final product demands. The remaining 

pseudocomponents will be extracted in their preceding lighter hydrocarbon (HC) stage and their 

yields are optimized by the model to meet the major hydrocarbon’s (HC) demand.  

Table  5.3. Optimal Cut Point Temperatures and Yields – CDU FI Model 

Hydrocarbon Cuts/ 

Pseudocomponents 

Cut Point Temperature 

(K) 

Yield (% of CDU 

Feedstock) 

PC1 - 0 

Straight Run Gasoline (SRG) 288 10 

PC2 - 7.8 

Naphtha (N) 364 22.3 

PC3 - 7.6 

Reference Component - 0.1 

Kerosene (K) 438 16.7 

PC4 - 2.3 

Gas Oil (GO) 522 25.4 

PC5 - 5.8 

Residue (R)  603 7.0 

 

Table 5.4 also provides demand data and optimal value of production for the final products 

calculated by both nonlinear models for the case study 3 while the distillation unit operates at its 

full capacity. While both models have succeeded to meet the product demands, the FI-based 

model has judiciously produced more gasoline and less jet fuel regarding the higher sale price of 

gasoline. In addition, the FI-based model has consumed less ethanol than data-based model 

which will lead to a higher total profit. The comprehensive product yield and property data are 

provided through the supporting information.  
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Table 5.4. Deterministic Product Demand and Production Data Calculated by Nonlinear  

Models 

Final/Intermediate 

Product 

Product 

Demand  

(BPSD) 

Solver Calculated Production/Consumption   

(BPSD) 

CDU Data-Based Model CDU FI Model 

Gasoline  86000 86,791.57 93,142.71 

Jet Fuel 29000 34,608.07 29,495.408 

Diesel Fuel 72000 72,658.000 72,777.522 

Fuel Oil 14000 14,000  14,000 

Ethanol - 9700 8342 

 

Table 5.5 also represents the computational statistics of input-output and nonlinear models for 

case study 3. As the table has demonstrated and already stated the FI-based model is a larger 

MINLP model with 870 equations, 884 continuous variables and 55 binary variables and its 

slightly higher solution time of 226.30 (Sec) could be correlated to its size.  

Table  5.5. Computational statistics of input-output and nonlinear models for CS-3  

Model Model 

Type 

# of 

Equa

tions 

# of  

Continuous 

Vars. 

# of  

Binary 

Vars. 

Solution Time 

(Sec) 

Input-Output LP 131 166 - 4.75 

Nonlinear/Data-Based CDU NLP 423 561 - 181.42 

Nonlinear/FI-Based CDU MINLP 870 884 55 226.30 

 

5.2. Deterministic Integrated Refinery Case Study 

For the deterministic integrated refinery problem, the mathematical framework based on the 

crude unloading, blending and inventory management, crude procuring and production planning, 
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final product pooling problem, final product distribution by pipeline, utility system, the overall 

objective function of the integrated problem and specific constraints for the solution strategy are 

used to develop the entire integrated refinery planning model and is implemented in GAMS 131 

/BARON 132  versions 28.2.0/19.7.13 and solved on  Dell R430 and R730 servers with dual E5-

2670 v3 12-core CPUs with 64 GB RAM, all running CentOS 7 Linux release 7.3.1611 (Core). 

An industrial case study has been considered for this study. Table 5.6 compares the results for 

the economic objectives associated with the sequential and integrated models for the oil refinery 

under consideration in this case study. It can be clearly identified that the integrated model 

demonstrates a 7.3% higher production revenue, 27% less unloading cost and overall 10 % 

improvement in the net profit in comparison with the sequential model. All revenue and cost data 

are on a million US $ basis. 

Table 5.6. Comparison of the Economic Objectives: Integrated vs. Sequential Model 

Model 

 

Integrated Sequential 

Production(REVPROD)  4,408,290       4,087,100 

Utility (COPRUTIL) 797,650     797,650     

Unloading  (COPRUNL) 114,880 146,370       

Pipeline (COPRPD) 0.213 0. 296 

Profit 3,495,760 3,143,079 

 

Table 5.7, further clarifies these comparison and variables by demonstrating the operational 

objectives associated with the sequential and integrated models. The integrated model clearly 

predicts less consumption of fuel gas (Ih) for boiler operations and demonstrates a 31% reduction 

in fuel consumption. The integrated model avoids costly boiler shut down and start-ups and 

minimizes fuel consumption during this period (SI) to zero while the sequential model can not 

completely avoid this process and consumes almost 1369 tons of fuel gas. With less fuel 
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consumption, the turbines produce more electricity (XEL) in the integrated model, an obvious 

11% advantage over the sequential model. While neither of the models can meet the electricity 

demand from the production unit completely and require electricity to be purchased from an 

outside supplier (ELP), again the integrated model represents 42 times less need for an outsource 

to meet the electricity demand of the processing units. From an environmental footprint 

perspective, the integrated model appears to be more environmentally friendly versus the 

sequential model again: a 21% reduction in the greenhouse gas pollution (XGHG)  and 11.6% 

reduction in sulfur oxides emissions (XSOX).In regards to charging tank to CDU changeover and 

storage tank to charging tank setup or switchover the integrated model again surpasses the 

sequential model with no changeover (𝑧𝑗,𝑙,𝑡 = 0) and only 2 switchovers (𝛼𝑖,𝑡 = 2) while the 

sequential model enforces 1 changeover and 5 switchovers which are all associated with 

penalties and contribute negatively to the unloading cost. Both models succeed to avoid CDU 

shut down (𝑋𝐷𝑙,𝑡 = 0) which has negative effects on the CDU cuts and intermediate product 

quality and overall refinery processes. Within the pipeline distribution of the final products, the 

integrated model proves to be even more efficient than the sequential model. Z1-Z6 are aggregate 

normalized variables and interim objectives for the pipeline distribution and their results merit 

more clarifications. Z1 represents the difference between the total discharged volume of the final 

products to the pipeline and the total demands of customers normalized over the total demands of 

customers over the entire scheduling horizon. As the results in Table 5.7 suggest, the value of Z1 

for the integrated model is slightly positive and implies that the integrated model meets the 

demands and even slightly discharges more products towards the distribution center whereas the 

sequential model falls short of the demands and results in a negative value (-26) for this variable. 

The value of Z2 implies the inventory level of the product with the lowest final inventory level 
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on the last day of the scheduling horizon, which should be maximized. As the numbers suggest 

from Table 5.7, the integrated model represents a 46% improvement over the sequential model in 

maximizing the inventory level of the product with the lowest final inventory level on the last 

day of the scheduling horizon in order to prevent or minimize the lost or back orders in the next 

time period or scheduling horizon. The value of Z3 represents the underutilized pipeline capacity 

during the total hours of the scheduling horizon and while at the first look the sequential model 

apparently performs better in this regard by minimizing this value to zero, but this better 

performance comes at the expense of utilizing the pipeline even during the peak electricity hours 

which will  

Table 5.7. Comparison of the Operational Objectives: Integrated vs. Sequential Model 

Model 

 

Integrated Sequential 

Ih(ton)  15,693 20,557.73 

SI (ton) 0     1369.43 

XEL (MWh) 17,744.61 15,792.58 

ELP (MWh) 45.89 1997.91 

BEL (MWh) 290.50 290.50 

XGHG (ton) 3198.78 3869.43 

XSOX (ton) 40.66 45.38 

𝒛 ,𝒍,𝒕 0 1 

  ,𝒕 2 5 

𝑿𝑫𝒍,𝒕 0 0 

Z1 6.79E-04 -0.26 

Z2 1.159 0.630 

Z3 0.105 0 

Z4 0 0.738 

Z5 0 0.786 

Z6 0 0.213 
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demonstrate its negative effect on the value of Z4. The integrated model leaves the pipeline 

unutilized during the peak electricity hours and computes a value of 0.105 for Z3.This analysis 

can be further clarified by the value of Z4 which is zero for the integrated model while 0.738 for 

the sequential model. The value of Z5 determines the volume interfaces occurring between the 

injected batches containing different products and needs to be minimized. As expected, the 

integrated model minimizes this value to zero by not injecting different products in the 

subsequent batches into the pipeline while meeting the demand but the sequential model fails to 

achieve this goal and computes a value of 0.786 for Z5. The value of Z6 encodes the backorders 

or delays in meeting the demand by the due dates which should be minimized. The integrated 

model judiciously minimizes this value to zero while the sequential model again fails to 

accomplish this goal and settles with some lost orders represented by a value of 0.213 for Z6. 

Table 5.8 demonstrates the results for the economic objectives associated with the integrated 

model obtained by the proposed methodology versus BARON as a commercial global solver. It 

can be clearly identified that the proposed methodology demonstrates a 13% higher production 

revenue, 21% less utility cost, 2.5% less unloading cost and overall 19% improvement in the net 

profit in comparison with the commercial solver. 

Table 5.8. Comparison of the Economic Objectives: Proposed Heuristic vs. BARON 

Model 

 

Proposed Heuristic BARON 

Production(REVPROD)  5,093,900 4,408,290 

Utility (COPRUTIL) 659,322     797,650     

Unloading  (COPRUNL) 112,047 114,880 

Pipeline (COPRPD) 0.094 0.296 

Profit 4,322,531 3,495,760 
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Table 5.9, presents the results for the operational objectives associated with the integrated model 

solved by the proposed algorithm and commercial solver. The proposed methodology consumes 

far more less fuel gas (Ih) for boiler operations and demonstrates a 17% reduction in fuel 

consumption. It produces more electricity (XEL) by the turbines, an approximate 5% advantage 

over the commercial solver. While the integrated model solved by the commercial solver had 

failed to meet the electricity demand from the processing units and required some electricity to 

be purchased from an outside supplier (ELP =45.89 MWh), the proposed methodology meets this 

demand and minimizes this value to zero. In regards to the emission of harmful gases, the current 

algorithm produces more eco-friendly results than the commercial solver:  29% reduction in the 

greenhouse gas pollution (XGHG)  and 21% reduction in sulfur oxides emissions (XSOX). While 

both methods succeed to avoid CDU changeover (𝑧𝑗,𝑙,𝑡 = 0) and  CDU shutdowns (𝑋𝐷𝑙,𝑡 = 0) , 

proposed methodology also avoids the tank-tank setup or switchover (𝛼𝑖,𝑡 = 0) while the 

commercial solver introduces yet 2 switchovers (𝛼𝑖,𝑡 = 2). 

When we arrive at the results related to the pipeline distribution of products, Z1-the difference 

between the total discharged volume of the final products to the pipeline and the total demands 

of customers normalized over the total demands of customers- is minimized to zero by the 

proposed algorithm while it was slightly positive obtained by the commercial solver. It implies 

that the current method meets the demands without incurring extra pumping costs by injecting 

more products down the pipeline. For the value of Z2-the inventory level of the product with the 

lowest final inventory level on the last day of the scheduling horizon- which should be 

maximized the proposed method represents a 1.2 % improvement over the results obtained by 

the commercial solver. The value of Z3-the underutilized pipeline capacity within the total hours 

of the scheduling horizon- is the same for both methods who tend to leave the pipeline unutilized 
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during the peak electricity hours and compute a value of 0.105 for Z3. Eventually both methods 

avoid utilizing the pipeline during the peak electricity hours (Z4=0), minimize the contaminated 

volume of the interfaces between the consecutive injected batches containing different products 

to zero (Z5=0 ) and avoid the backorders or delays in supplying the demand by the due dates 

(Z6=0). 

Table 5.9. Comparison of the Operational Objectives: Proposed Heuristic vs. BARON 

Model 

 

Proposed Methodology BARON 

Ih(ton)  13,411 15,693 

SI (ton) 0 0     

XEL (MWh) 18,657.94 17,744.61 

ELP (MWh) 0 45.89 

BEL (MWh) 277.15 290.50 

XGHG (ton) 2268.54 3198.78 

XSOX (ton) 32.07 40.66 

𝒛 ,𝒍,𝒕 0 0 

  ,𝒕 0 2 

𝑿𝑫𝒍,𝒕 0 0 

Z1 0 6.79E-04 

Z2 1.173 1.159 

Z3 0.105 0.105 

Z4 0 0 

Z5 0 0 

Z6 0 0 

Table 5.10, provides the computational statistics of sequential model and integrated model 

solved by the commercial solver and proposed methodology (LVL+NMDT). The overall 

problem size, that is, the number of equations and continuous and binary variables are almost the 

same for both sequential and integrated model solved by BARON, but as the sequential model 
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just accounts for a portion of those equations and variables in each run of a sub-model associated 

with one the refinery activities, it has obviously introduced less CPU time (211.07 Sec) while 

producing sub- optimal results. The integrated model solved by BARON as discussed through 

the results of Tables (6.6,7), demonstrates a clear improvement in the economic and operation 

objectives over the sequential model but at the expense of a high solution time (7115.40 Sec) and 

yet fails to achieve a global optimal solution. Nevertheless, the integrated model solved by the 

proposed methodology presents far more improvement in economic and operation objectives but 

at a very competitive solution time (262.37 Sec) and obtains the global optimal solution.    

Table  5.10 . Computational Statistics of Sequential and Integrated Models  

Model Model 

Type 

# of 

Equat

ions 

# of  

Continuou

s Vars. 

# of  

Binary 

Vars. 

Solution 

Time (Sec) 

Solution 

Quality  

Sequential MINLP 3468 2611 466 211.07 Local 

Integrated MINLP 3489 2613 466 7115.40 Local 

Integrated + LVL 

+NMDT 

MINLP 12,350 6366 1096 262.37 Global 

 

5.3. Stochastic Integrated Refinery Case Study 

In order to demonstrate the performance of the proposed approach in dealing with demand and 

price uncertainty at the strategic planning of an integrated refinery, the 3 robust, fuzzy and 2-

stage stochastic programming strategies to handle uncertainty mentioned earlier have been 

applied to an industrial case study and solved with the aggregation/disaggregation global 

optimization scheme for the integrated refinery under study  for a 7-year planning horizon.  

The mathematical framework based on the crude unloading, blending and inventory 

management, crude procuring and production planning, final product pooling problem, final 
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product distribution by pipeline, utility system, the overall objective function of the integrated 

problem and specific constraints for the aggregation/disaggregation global optimization solution 

strategy within 3 different models are integrated with the associated constraints of the robust, 

fuzzy and 2-stage stochastic model with financial risk consideration to develop the entire 

stochastic integrated refinery planning model and are implemented in GAMS 131 28.2.0 and 

BARON 132 19.7.13 and solved on  Dell R430 and R730 servers with dual E5-2670 v3 12-core 

CPUs with 64 GB RAM, all running CentOS 7 Linux release 7.3.1611 (Core). 

In the robust model (RO), first a (relative) infeasibility tolerance level (𝛿) of 10% is considered 

for the normal uncertain parameters and an uncertainty level (𝜖) of 20% and a reliability level (𝜅) 

of 10% for the normal uncertain parameters, meaning that there is only a 10% chance of 

constraint violation. 

For the fuzzy model (FUZ), product demand and crude and product prices are considered as 

fuzzy members. The same notation as [𝛼𝑝  𝛼𝑚  𝛼𝑜] represents the most pessimistic, most 

possible and most optimistic value of fuzzy number 𝛼 -which is representing uncertain price and 

demand data here- to characterize the triangle fuzzy number 𝛼̃. 𝛼𝑚 is set to be the same value as 

𝛼 in the deterministic problem. 𝛼𝑝 and 𝛼𝑜 are set to be 20% less and 20% greater than the most 

possible values, respectively. The confidence level for possibility and  necessity are all set to 0.8. 

For the 2-stage stochastic model with downside risk metric (2-ST-DR), a Monte Carlo sampling 

scheme is used to sample 100 independent scenarios for demand and price data from a normal 

distribution with known mean and standard deviations. The results for this model is averaged 

over all 100 scenarios. 
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 Table 5.11, provides the computational statistics for the deterministic, Robust, Fuzzy and 2-

stage stochastic with downside risk models solved by the proposed methodology (LVL+NMDT). 

The overall problem size, that is, the number of equations and continuous and binary variables 

are almost the same for the deterministic, Robust, Fuzzy models while it rises drastically for the 

stochastic model regarding the higher number of scenario based variables and equations. 

Intuitively the associated CPU time for these models’ solutions and the solution quality follows 

the same pattern: while the first 3 models are solved within approximately 6 minutes and 

converge to the global optimum, 2-stage stochastic model with downside risk produces a sub- 

optimal result while the CPU time also soars to an extreme value of almost 3 hours. 

Table  5.11. Computational Statistics-Deterministic, Robust, Fuzzy and Stochastic Models  

Model Model Type # of 

Equatio

ns 

# of  

Continuo

us Vars. 

# of  

Binary 

Vars. 

Solution 

Time (Sec) 

Solution 

Quality  

Deterministic MINLP 12,338 12,443 1566 262.37 Global 

Robust MINLP 12,350 12,443 1566 348.29 Global 

Fuzzy MINLP 12,362 12,534 1566 360.296 Global 

2-ST-DR MINLP 145,307 149,817 7442 10,853.80 Local 

Table 5.12 compares the results for the economic objectives associated with the deterministic, 

Robust, Fuzzy and 2-stage stochastic with downside risk models. As it could be anticipated, 

accounting for uncertainty causes a sharp decline in the overall refinery’s net profit in 

comparison with the deterministic model. However the difference in the results of the 3 models 

with uncertainty is also remarkable: While the robust model reports 21% less net profit than the 

deterministic model as the price to obtain robustness, it demonstrates the best profile among 
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Table 5.12. Economic Objectives-Deterministic, Robust, Fuzzy and Stochastic Models 

Model 

 

Deterministic Robust Fuzzy 2-ST-DR 

Production(Revenue($M))  30,809.36 24,815.25 23,021.91 24,385.56 

Production(cpurchase($M)) 24,694.34 19,962.43 20,205.42 20,550.57 

Production(ipurchasee($M)) 246.25 195.42 344.35 308.07 

Utility (COST($M)) 291.14 231.05 304.59 275.06 

Unloading (COPR ($M)) 41.86 33.27 42.32 34.68 

Pipeline (ZOF) 0.094 0.096 -0.165 0.189 

Net Profit ($M) 5535.77 4393.08 2125.23 3217.18 

 

all three models with uncertainty: notably 41% better than fuzzy model and 20% better than the 

2-stage stochastic model which translates to more ($ 2.3 B) and ($ 1.1 B) profit respectively for 

the refinery over the span of  7 years planning horizon. Table 6.13 tabulates the economic 

decisions for the overall amount of all crude oils to be purchased in each time interval. While 

both fuzzy and stochastic models forecast a substantially less profit for the refinery, they require 

purchasing of more crude oils than deterministic model over the planning horizon. The robust 

model estimates a slightly less crude purchase while producing higher profit which yet again 

substantiates a better decision profile than the other 2 models. 

Table 5.13 indicates  the operational objectives associated with the deterministic, Robust, Fuzzy 

and 2-stage stochastic with downside risk models. The robust model clearly consumes less fuel 

gas (Ih) for boiler operations and demonstrates a 28% and 33% reduction in fuel consumption in 
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Table 5.13. Volume of Crude Oils Purchased at Time Periods (Mbbl) 

Deterministic, Robust, Fuzzy and Stochastic Models 

Time Period/ 

Model 

1 2 3 4 5 6 7 Total 

Deterministic 73 71 78 75 72 73 79 521 

Robust 68.34 67.21 79.19 73.74 74.12 69.85 81.57 514.02 

Fuzzy 71.33 69.96 80.33 77.43 75.68 73.48 78.66 526.87 

2-ST-DR 74.58 71.28 75.55 78.37 79.41 77.25 84.37 540.81 

 comparison with stochastic and fuzzy models respectively. All models judiciously avoid costly 

boiler shut down and start-ups and minimize fuel consumption during this period (SI) to zero. 

With less fuel consumption, the turbines produce more electricity (XEL) in the robust model, an 

obvious 40% and 25% advantage over stochastic and fuzzy models respectively. While neither of 

the models can meet the electricity demand from the production unit completely and require 

electricity to be purchased from an outside supplier (ELP), again the robust model performs 27% 

and 12% better than fuzzy and stochastic models in terms of need for an outsource to meet the 

electricity demand of the processing units. From an environmental footprint perspective, the 

robust model appears to be more environmentally friendly versus the other 2 models: a 24% and 

11% reduction in the greenhouse gas pollution (XGHG)  and 26% and 9% reduction in sulfur 

oxides emissions (XSOX) comparing the fuzzy and stochastic models. In regards to charging tank 

to CDU changeover and storage tank to charging tank setup or switchover, all models perform 

well with no changeover (𝑧𝑗,𝑙,𝑡 = 0) and only 2 switchovers (𝛼𝑖,𝑡 = 2) which its correspondent 

penalty contributes negatively to the unloading costs. All models succeed to avoid CDU shut 

down (𝑋𝐷𝑙,𝑡 = 0) which has negative effects on the intermediate product quality and overall 
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refinery processes. Within the pipeline distribution of the final products, the results of all models 

are conspicuous and the previous pattern is not as palpable here. Z1-Z6 are aggregate normalized 

variables and interim objectives for the pipeline distribution and their results merit more 

clarifications. Z1 represents the difference between the total discharged volume of the final 

products to the pipeline and the total demands of customers normalized over the total demands of 

customers over the entire time horizon . As the results in Table 5.14 manifest, the value of Z1 for 

the robust model is slightly positive and implies that robust model meets the demands and even 

slightly discharges more products towards the distribution center whereas the other 2 models 

result in negative values (-0.012 and -0.021) for this variable. The value of Z2 implies the 

inventory level of the product with the lowest final inventory level on the last day of the time 

horizon, which should be maximized. As the numbers suggest from Table 5.14, all models 

underperform and represent a negative contribution for this variable highlighting their failure in 

maximizing the inventory level of the product with the lowest final inventory level on the last 

day of the time horizon. The purpose of this maximization is to prevent or minimize the lost or 

back orders in the next scheduling horizon. The value of Z3 represents the underutilized pipeline 

capacity within the total hours of the scheduling horizons. All the models fail in minimizing this 

value to zero, however both robust and fuzzy models perform better than the stochastic model: a 

33% and 17% reduction in underutilized pipeline capacity respectively. The models effectiveness 

in avoiding the utilization of the pipeline during the peak electricity hours are implied through 

the values of Z4 and impressively all models have managed to minimize this value to zero. The 

value of Z5 determines the volume of contaminated interfaces occurring between the injected 

batches containing different products and needs to be minimized. While neither of the models 

have succeeded to avoid this cost, the fuzzy model here outperformed both robust and stochastic 
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models: a reduction of 6% and 27% in the contaminated interface volume better than robust and 

stochastic models. The value of Z6 encodes the backorders or delays in supplying the demand by 

the due dates which should be minimized. All models have accomplished this goal and  

minimized this value to zero. 

Table 5.14. Comparison of the Operational Objectives:  Deterministic, Robust, Fuzzy and Stochastic Models 

Model Deterministic Robust Fuzzy 2-ST-DR 

 

Ih(ton)  5,727,945 4,430,565 6,002,886 5,178,635 

SI (ton) 0     0 0 0 

XEL (MWh) 6,976,783 6,349,558 4,795,441 5,850,478 

ELP (MWh) 16,750 13,026 17,551 15,095 

BEL (MWh) 106,033 81,158 111,472 95,938 

XGHG (ton) 1,167,555 916,064 1,223,777 1,055,819 

XSOX (ton) 14,841 11,559 15,580 13,406 

𝒛 ,𝒍,𝒕 0 0 0 0 

  ,𝒕 2 2 2 2 

𝑿𝑫𝒍,𝒕 0 0 0 0 

Z1 6.79E-04 0.002 -0.012 -0.021 

Z2 1.159 -0.821 -0.990 -0.931 

Z3 0.105 0.128 0.145 0.163 

Z4 0 0 0 0 

Z5 0 0.810 0.762 0.978 

Z6 0 0 0 0 

ZOF 0.094 0.096 -0.165 0.189 

 

Eventually, regarding the better performance of robust counterpart model (RC), we conducted 6 

case studies to investigate the effect of reliability level (𝜅) on profit in presence of variations in 



136 

 

levels of uncertainty (𝜖 = 10 and 20%) and infeasibility (𝛿 =  10, 15 and 20%). Figure 6.3 

illustrates the results of these studies. As it’s been displayed in Figure 6.3, while the reliability 

level approaches to 1, that is the probability of violation of the uncertain constraints increases, 

regardless of the levels of uncertainty and infeasibility, the calculated profit for all studies 

approaches the value of profit for the deterministic model with no uncertainty, an approximate 

value of $ 5536 M.  

In addition, as it is expected, for a given reliability level, the maximal profit that can be achieved 

decreases as the uncertainty level increases, which highlights more conservative decisions at the 

presence of uncertainty. In an opposite manner, at a given reliability level, the maximal 

achievable profit rises as the infeasibility tolerance level increases, which allows for more 

audacious planning approach if violations of demand and price constraints can be tolerated to a 

higher extent. 

To draw meaningful conclusions on the dominance of uncertainty (𝜖)  and infeasibility (𝛿) level 

at a certain reliability level (𝜅 = 30%) or higher, it’s enough to compare the curves for case 

study (𝜖 = 20% & 𝛿 = 20%) and (𝜖 = 10% & 𝛿 = 10%): while the former has higher 

uncertainty level and expected to  produce less profit, has surpassed the latter and produced 

higher profit on levels of (𝜅 = 30%) or higher. This is an indication that while at lower levels of 

reliability level (𝜅), uncertainty (𝜖)  might be a dominating factor, at higher levels of reliability 

level (𝜅) the infeasibility (𝛿) level has higher significance. 

These results are in agreement with findings of Janak et al.125 and confirm their results on the 

correlation of these 3 parameters associated with the robust counterpart model in an even more 

transparent fashion and with less outlying result data. 
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Figure. 5.3. Effect of reliability level on profit at different uncertainty and infeasibility levels. 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

 

Linear process models are not suitable for refinery process modeling, since refinery processes are 

inherently nonlinear and the refinery planning problem based on the input-output or approximate 

linear models may sacrifice the refining profitability or product quality. Moreover, different 

refinery processes are tightly interconnected and coherent entities, and attempting to solve each 

part in a sequential hierarchical manner may result in infeasible or suboptimal solutions. 

Furthermore, the oil industry is subject to uncertainties such as unpredictable product demand 

and unstable market prices and uncertainty, if not taken into account, could lead to infeasible or 

suboptimal designs.  

In this study, to account for the nonlinearity in the refinery processing units, first a complete 

model for the refinery wide production planning was presented. For the fractionation unit, two 

nonlinear models were introduced: first a data-based CDU model, then another nonlinear model 

for CDU based on the Geddes fractionation index (FI). For the remaining refinery units, 

empirical nonlinear unit models were utilized. On this basis, the nonlinear refinery-wide 

production planning model created the global maximum solutions for the overall refinery profit 

in 13 case studies. The results of the case studies substantiate the huge advantage of the 

nonlinear model over the linear input-output  model. In addition, from a fractionation 

perspective, the effectiveness of the nonlinear CDU model based on fractionation index (FI) over 

the data-based model was demonstrated. Ultimately, the product yield and quality data calculated 

by nonlinear model and compared with the final product property requirements prove the 
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effectiveness of this model in computing refinery product yield and properties within reasonable 

precisions and requirements. 

Next to integrate the refinery supply chain sub-systems and solve the refinery planning model 

within a deterministic enterprise-wide integrated model rather than a hierarchical model, in this 

study a novel optimization approach with a multi-period mixed-integer nonlinear programming 

(MINLP) model was presented. The integration of the refinery network was implemented across 

the different echelons of the refinery supply chain including crude unloading, oil procuring while 

accounting for the highly nonlinear nature of the processing units, final product pooling and 

blending, inventory management, product distribution by pipeline and the utility system. The 

results of the refinery integrated and sequential models both solved by the commercial solver 

were compared where the integrated model demonstrated clear improvements in both economic 

and operational objectives. A hybrid aggregation/disaggregation methodology based on lumped 

variable linearization (LVL) and normalized multiparametric disaggregation technique (NMDT) 

was presented as a two-level optimization algorithm. In the next step, the integrated model was 

solved by the proposed methodology, and its results were compared with the ones obtained by 

the commercial solver. The results from the proposed method introduced even far more 

improvements in both economic and operational objectives while obtaining ε-global optimal 

solutions in very competitive solution time. These benefits reinforce the point that planning and 

process decisions need to be integrated.  

Eventually, to account for uncertainties in the final product demand and crude oil and final 

product market prices, a stochastic integrated refinery planning model was devised. To model the 

uncertainties, three different methodologies such as robust programming, fuzzy possibilistic 

programming and two-stage stochastic programming with fixed recourse and downside risk 
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metric were utilized. These methodologies were applied to an industrial case study, comprising 

the integrated oil refinery operations over a planning horizon of 7 years and solved by the 

proposed global optimization framework. The results of three different uncertainty appraisal 

methodologies were compared with the deterministic model at the absence of uncertainty. As it 

was anticipated, accounting for uncertainty caused a sharp decline in the overall refinery’s net 

profit in comparison with the deterministic model. Among the three different methodologies to 

treat uncertainty, the robust framework outperformed the other two models in terms of both 

economic and operational objectives with exception of the pipeline model. In regards to the 

pipeline model, the results of all models are conspicuous and the same pattern of performance 

was not obtained. In reference to the robust counterpart parameters, it was demonstrated that 

while at lower levels of reliability level (κ), uncertainty (ϵ) might be a dominating factor; at 

higher levels of reliability level (κ) the infeasibility (δ) level becomes more significant. 

 

For future work, the consideration and incorporation of the following research is recommended: 

1-The nonlinear CDU model is a complex matter and still subject of ongoing investigations and a 

computationally less intensive model yet with high fidelity can enhance the effectiveness of the 

refinery planning model. 

2- The use of crude cocktails instead of single crude fed into distillation units should be 

accommodated in the production planning model. 

3-The crude blending problem should also be modeled rigorously through a generalized pooling 

problem at the refinery’s front end. 
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4- The feeding rate fluctuation of CDU through an Inherent Upset Minimization (IUM) 

procedure must be accounted for. 

5-The environmental impacts of the refining operations should be penalized and accounted for in 

a more realistic and rigorous manner. 

6-For the product distribution through a pipeline, the realistic tree configuration for the pipeline 

should be considered and deliveries to multiple depots or distribution centers must be 

incorporated within the design. 

7- Transport phenomena specifically fluid dynamical effects, e.g. pressure drops, multiphase 

flows etc. should be incorporated in pipeline models 

8-Maritime or vehicular routing problem should be incorporated within the planning model to 

accommodate for the crude distribution for multisite refineries or distribution of final products 

by trucks from depots to final consumer markets such as gas stations. 

9-Crude selection, purchase policy and cross-hedging with future contracts should be considered.  

10-Price elasticity, symmetry/asymmetry between price of crude oil and petroleum products 

should be accounted for  
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NOMENCLATURE 

 

Unloading Model 

Indices 

c               crude type 

i               storage tank 

j                charging tank 

k               key component 

l                 crude distillation unit 

m               alias for time interval 

t                 time interval 

v                crude oil vessel 

Parameters 

CC                charging tanks changeover cost 

CINBTj         charging tanks j inventory cost per unit time per unit volume 

CINSTi         storage tanks i inventory cost per unit time per unit volume 

CS                cost penalty for shutdown 

CSEAv          sea waiting cost for vessel v 

CSSU           cost penalty for switching to another tank during tank-tank transfers 

CUNLv         unloading cost for vessel v 

DMq            demand of crude mix q 

H                 Length of scheduling horizon 
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NBT            number of charging (blending) tanks 

NCDU         number of CDUs 

NCOMP      number of key components 

NST             number of storage tanks 

NSCH          number of time intervals in scheduling horizon 

NV               number of vessels 

NC               number of crude types 

TARRv         arrival time of vessel v 

TFv              time vessel v begins to unload 

TLv              time vessel v finishes unloading 

𝜀1𝑞             violation parameter due to decrease in demand 

𝜀2𝑞             violation parameter due to increase in demand 

𝜇1              user defined parameter that determines interval–interval variations for CDU l 

throughput  

                    

Variables 

𝐶𝑂𝑃𝑅𝑈𝑁𝐿          operating cost 

CBb,i       end time for discharge of batch b ∈ Bi from storage tank i into a charging tank 

LBb,i       length of unloading operation of batch b ∈ Bi   from storage tank i  

SBb,i       starting time for discharge of batch b ∈ Btk   from storage tank i 

ddi            emptying due date for storage tank i 

𝑟𝑡𝑖            release time of storage tank i denoting the time the content of tank i is available 
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fbcj,l,k,t       volumetric flow rate of component k from charging tank j to CDU l at time t 

fsbi,j,k,t       volumetric flow rate of component k from storage tank i to charging tank j at time t 

fvsv,i,k,t          volumetric flow rate of component k from vessel v to storage tank i at time t 

FBCj,l,t           volumetric flow rate from charging tank j to CDU l at time t 

FBCmaxj,l     maximum volumetric flow rate from charging tank j to CDU l 

FBCminj,l      minimum volumetric flow rate from charging tank j to CDU l 

FSBi,j,t            volumetric flow rate from storage tank i to charging tank j at time t 

FSBmaxi,j      maximum volumetric flow rate from storage tank i to charging tank j 

FSBmini,j       minimum volumetric flow rate from storage tank i to charging tank j 

FVSv,i,t           volumetric flow rate from vessel v to storage tank i at time t 

FVSmaxv,i    maximum volumetric flow rate from vessel v to storage tank i 

FVSminv,i     minimum volumetric flow rate from vessel v to storage tank i 

M                big M  takes a value equal to the storage capacity of the tanks 

vbj,k,t            volume of component k in charging tank j at time t 

vsi,k,t             volume of component k in storage tank i at time t 

VBj,t             volume of charging tank j at time t 

VBmaxj        maximum volume of charging tank j 

VBminj         minimum volume of charging tank j 

VSi,t              volume of storage tank i at time t 

VSmaxi        maximum volume of storage tank i 

VSmini         minimum volume of storage tank i 

VVv,t            volume of crude oil vessel v at time t 
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wsi,k                   concentration of component k in storage tank i 

wsmaxi,k     maximum concentration of component k in storage tank i 

wsmini,k      minimum concentration of component k in storage tank i 

wbj,k             concentration of component k in charging tank j 

wbmaxj,k     maximum concentration of component k in charging tank j 

wbminj,k     minimum concentration of component k in charging tank j 

wvv,k            concentration of component k in crude oil vessel v 

Dj,l,t                    binary variable that denotes charging tank j is charging CDU l at time interval t 

XDl,t         binary variable that indicates shutdown of CDU l at time t 

XFv,t         binary variable that denotes that vessel v starts unloading at time t 

XLv,t         binary variable that denotes that vessel v stops unloading at time t 

XWv,t       binary variable that denotes that vessel v is unloading to a storage tank at time t 

XWSi,j,t    binary variable that denotes that storage tank i transferring to charging tank j at time t 

𝑋𝑉𝑣,𝑖,𝑡    binary variable that denotes that vessel v is connected to storage tank i at time t 

𝑌𝐶𝑐,𝑖      binary variable that denotes that crude type c is stored in storage tank i  

Zj,l,t          binary variable that denotes that charging tank j charges the CDU l at time t 

𝛼𝑖,𝑡         binary variable that denotes that storage i tank is set up for tank-tank transfer 

 

Refinery Production Model  

Sets 

C= set of all commodities c 

U = set of all units u 
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BU=set of blending units (GP,JFP,DFP,FOP) 

Ptank = set of final product tanks (GT,JFT,DFT,FOT) 

Ctank = set of crude tanks 

CT = crude tank 

Ps = set of all the properties calculated for the specified CDU fraction s 

SCDU = set of CDU fractions 

QOu,c =set of properties q of product c leaving unit u 

𝑢𝑝𝑟 = set of products from unit 𝑢 

𝑓𝑝𝑟 = set of final products  

fccpr = product streams set from the FCC unit 

crupr = product streams set from the CRU unit   

hcpr = product streams set  from the HC unit  

Vbpr = product streams set from the VB unit  

dcpr = product streams set  from the DC unit  

𝑝𝑎𝑡ℎ𝑢(𝑢, 𝑐, 𝑢′) = a set that verifies the product 𝑐 is on that flow path from unit 𝑢 to unit 𝑢′ 

i        crude component i  in FI model 

j     crude cut or separation unit j in FI model 

HC    set of hydrocarbon components in crude oil feed to the CDU in FI model 

PsC   set of pseudocomponents in crude oil feed to the CDU in FI model 

Continuous Variables 

𝐹𝑖𝑛(𝑓, 𝑢) = inlet flowrate of  feedstock into unit u 

𝐹𝑜𝑢𝑡(𝑢, 𝑐) = outlet flowrate of commodity c from unit u  
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𝐴𝑚(𝑢
′, 𝑐, 𝑢) = the amount of  commodity 𝑐 coming from unit 𝑢′ to unit 𝑢  

Vol_frac(c,u)=volume fraction of commodity c in unit u 

𝑌(𝑐, 𝑢) = volumetric yield of commodity c from unit u  

𝑌𝑤(𝑐, 𝑢) = weight yield of commodity c from unit u  

yieldu,c = constant percent yield of unit u for product c for a specific crude 

POucq = property q of product 𝑐 leaving unit u  

𝑝𝑟𝑜(𝑢′, 𝑐′, 𝑞) = property 𝑞 of commodity 𝑐′ coming from unit 𝑢′ to unit 𝑢 

Fj,i      feed stream of component i to crude cut j 

PBj,i      bottom product stream of crude cut j of component i 

PDj,i      top product stream of crude cut j of component i 

F_totalj  total feed stream to fractionation unit crude cut j 

PD_totalj   total top product stream to fractionation unit crude cut j 

PB_totalj  total bottom product stream to fractionation unit crude cut j 

Kj,i      equilibrium constant in crude cut j for component i 

 j,i      relative volatility in crude cut j for component i with component ref 

Pvj,i      vapor pressure in crude cut j for component i 

Tbi   boiling point temperature of component i (K) 

TIj       initial boiling point temperature for crude cut j 

TEj       end boiling point temperature for crude cut j 

Tj        separation temperature of crude cut j(cut point temperature) 

Trj,i      reduced temperature of component i in crude cut j 

x_PBj,i   component i composition fraction in bottom product stream PB of crude cut j 
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x_PDj,i   component i composition fraction in top product stream PD of crude cut j 

γi,j         place holder for the selected FI value for component i at the crude cut j 

Binary Variables 

Y(i,j)   0-1 variable for stripping (FIs) or rectifying (FIr) value of the fractionation index  

            associated with component i for crude cut j   

Parameters 

C = Conversion Level, LV.PCT. 

FQP = Feed Quality Parameter 

P = Operating pressure, psig 

ASF  = Aromatic Saturation Factor 

CCR  = Conradson Carbon Residue, Wt%  

EP= End-Point Temperature 

FCC   = Volume Fraction FCC Stocks in Feedstock 

VGC   = Viscosity-Gravity Constant 

NC5        = Normal Pentane Insolubles Content, Wt. Pct. 

VBN   = Viscosity Blending Number 

𝑝𝑛𝑐,𝑞 = lower bound on the property q of product c 

𝑝𝑥𝑐,𝑞 = upper bound on the property q of product c 

𝐷𝑒𝑚𝑎𝑛𝑑 (𝑓𝑝𝑟)= demand of product fpr 

x =Operating variable 

N2A = Naphthene content plus 2 times the aromatic content of feedstock, volume  fraction 

GASO/ C3 PROD = Ratio of C5/400 (Gasoline) to C3/400 Product (400 F end point gasoline) 
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M_L     big M value for  separation temperatures greater than the component boiling point  

M_U     big M value for separation temperatures smaller than the component boiling point  

Tc(i)   critical temperature of pseudocomponent i (K)  

Pc(i)   critical pressure of pseudocomponent i (Bar) 

PVA(i)  parameter A for the vapor pressure of component i in Antoine’s equation 

PVB(i)  parameter B for the vapor pressure of component i in Antoine’s equation 

PVC(i)  parameter C for the vapor pressure of component i in Antoine’s equation 

w(i)    Acentric factor of pseudocomponent i 

Commodities 

O = Crude Oil Feedstock 

G = Gasoline 

DF = Diesel Fuel 

JF = Jet Fuel 

FO = Fuel Oil 

ETOH =Ethanol 

GASO= total gasoline 

LCO= light cycle oil 

HCO= heavy cycle oil 

COKE= coke 

REF= Reformate  

RG= Refinery Gas  

 NAP= Naphtha 
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MD= Middle Distillate 

FG = Fuel Gas 

 LPG= Liquefied Petroleum Gas 

LGO=  Light Gas Oil 

 HGO= Heavy Gas Oil 

 R= Residue  

SRLN= straight-run light naphtha 

 SRHN= straight-run heavy naphtha 

Kero= kerosene 

 Diesel= diesel 

VGO= vacuum gas oil 

VR= vacuum residue 

Rsd= residue (CDU Model) 

C3/400= C3(at operational mode to produce maximum yield of gasoline at 400 F  

                  end point) 

Product Yield 

RG        = Refinery GAS (C1 through C3) Yield, Wt. Pct. 

FG         = Fuel Gas Yield, Wt. Pct. 

FO        = Low Sulfur Fuel Oil Yield (Wt. Pct.) 

C3    LPG  = C3    LPG Yield, LV Pct. 

C4    LPG  = C4    LPG Yield, LV Pct. 

LPG = Total Liquefied Petroleum Gas Yield, LV Pct. 
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H  = Hydrogen Consumption (Wt. Pct.) 

HO   = Hydrogen Consumption (SCF/Bbl) 

H2S   = Hydrogen Sulfide Yield, Wt. Pct. 

NH3   = Ammonia Yield, Wt. Pct. 

NAP  = Naphtha Yield, Wt. Pct. 

LGO        = Light Gas Oil Yield, Wt. Pct. 

HGO        = Heavy Gas Oil Yield, Wt. Pct. 

TGO        = Total Gas Oil Yield, Wt. Pct. 

COKE      = Coke Yield, Wt. Pct. 

C3/400= Yield of C3/400 Product (LV PCT.) 

REFBASE = Base reformate yield at 200 psig, vol. pct. 

REFORMATE = Reformate yield corrected for operating pressure, scf/bbl 

HC        = Hydrocarbon Product Yield (WT. PCT.) 

LG         = Light Gasoline Yield, Wt. Pct. 

KERO    = Kerosene/Jet Fuel Yield, Wt. Pct. 

HN        = Hydrotreated Naphtha Yield (Wt. Pct.) 

MD        = Hydrotreated Middle Distillate Yield (Wt. Pct.) 

VN        = Visbreaker Naphtha Yield, LV Pct. 

ATB         = Atmospheric Residue Yield, LV Pct. 

VTB         = Vacuum Residue Yield, LV Pct. 

VFO        = Visbreaker Fuel Oil Yield, LV Pct. 

VTB       = Vacuum Residue Yield, LV Pct.(Visbreaker) 
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Product Quality 

RVP = Reid vapor pressure, psia 

RONCL = Research Octane Number (Clear) 

MONCL = Motor octane number (clear ) 

RON = Research octane number (clear ) of 𝐶5+  reformate divided by 100 

PON= Posted octane number (clear) 

CI   = Cetane Index 

K         = Watson Characterization Factor 

VABP  = Volumetric Average Boiling Point, F 

S        = Sulfur Content, Wt. Pct. 

N        =    Nitrogen Content, Wt. Pct. 

SG  = Specific gravity (60 F/60 F) 

PP  = Pour Point, F 

FP = Freeze Point, F 

API   = API Gravity, API 

B     = Bromine Number 

AP    = Aniline Point, F 

A    = Aromatic Content, LV Pct. 

SP    = Smoke Point, mm 

LN  = Luminometer Number  

P        =    Paraffin Content (Wt. Pct.) 

O        =    Olefin Content (Wt. Pct.) 
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CP        =    Naphthene Content (Wt. Pct.) 

M     = Metals (Nickel and Vanadium) Content (ppm wt) 

BP    = Boiling Point, F 

FPBI= freezing point blending index  

PPBI= pour point blending index  

VBI122 = viscosity blending index  at 122 °F 

VBI210 = viscosity blending index  at 210 °F 

Vis122 = viscosity at 122 °F, centistokes (cSt) 

Vis210 = viscosity at 210 °F, centistokes (cSt) 

SUS210  =Saybolt Universal Viscosity at 210 F, SSU 

CS122 = Viscosity at 122 F, CS 

CS210  = Viscosity at 210 F, CS 

Subscripts 

f  =  feedstock 

g  = gas (C1 through C4) (HT&HDS) 

g  = light gasoline (HC) 

n  = naphtha 

k  = kerosene/jet fuel 

d  = distillate 

lgo  = light gas oil 

hgo  = heavy gas oil 

atb   = atmospheric residue 



166 

 

vtb   = vacuum residue 

vfo  = visbreaker fuel oil 

r = residual fuel oil 

s=CDU fraction 

Units 

BPSD = barrel per stream day 

Pipeline Distribution  Model 

Sets 

i,j   discharging batches during a day 

p, q   refined petroleum products 

t, tt  daily periods of the time horizon 

Parameters 

ddt        last hour of the time period t 

Demt,p   demand for product p on day t 

Initvp    initial inventory level of product p at DC 

Init- volumei,t,p volume of initial batches  

Init-Ti,t discharging time of initial batches 

𝐼𝑛𝑣 𝑝
𝑐𝑙𝑖𝑒𝑛𝑡𝑠−𝑚𝑖𝑛   minimum allowed storage capacity of clients for product p at DC 

𝐼𝑛𝑣 𝑝
𝑐𝑙𝑖𝑒𝑛𝑡𝑠−𝑚𝑎𝑥  maximum allowed storage capacity of clients for product p at DC 

𝐼𝑛𝑣 𝑝
𝑡𝑜𝑡𝑎𝑙−𝑚𝑖𝑛  minimum allowed total storage capacity for product p at DC 

𝐼𝑛𝑣 𝑝
𝑡𝑜𝑡𝑎𝑙−𝑚𝑎𝑥 maximum allowed total storage capacity for product p at DC 

Lotminp       minimum allowed volume for every discharged batch of product p 
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 lotmaxp    maximum allowed volume for every discharged batch of product p 

M       a very large number 

peakt      peak hours in time period t 

pratet,p   produced output volume of product p on day t 

pw     maximum allowable interference 

Rinitvp      initial inventory level of product p at the refinery 

𝑅𝑖𝑛𝑣𝑝
𝑚𝑖𝑛 minimum allowed storage capacity for product p at the refinery 

 𝑅𝑖𝑛𝑣𝑝
𝑚𝑎𝑥 maximum allowed storage capacity for product p at the refinery 

setlp duration of the settling period for a batch of product p 

vbmin; vbmax minimum and maximum allowed continuous flow rates 

vp   pipeline volume 

wastep,q contamination volume between consecutive batches of products p and q 

Continuous variables 

Cubi,t,p  cumulative volume of a sequence of successive batches of product p up to the ith batch  

on day t 

Bt,p     shortage volume of product p at the DC to meet the demand on day t 

Di,t,tt   volumetric distance between the ith batch on day t and the first batch on day tt 

diff   difference between the total discharged volume and total demand for all products 

infi,t contaminated volume of the ith batch on day t 

inji,t,p,tt size of the ith discharged batch on day t, including product p injected on day tt 

𝑖𝑛𝑣𝑡,𝑝
𝑐𝑙𝑖𝑒𝑛𝑡𝑠  inventory level of product p at the DC on day t ready to supply the customer demand 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙  total inventory level of product p at DC on day t 
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minid lowest total inventory among all products on the last day 

pht    used peak hours on day t 

Rinvt,p inventory level of product p at the refinery on day t 

𝑇𝑖,𝑡
𝑑𝑖𝑠 discharging time of the ith batch on day t 

WI,t,p size of the ith batch on day t, including product p 

Binary variables 

xi,t,tt = 1 if injection of the ith batch on day t starts on day tt; otherwise, 0 

yi,t,p = 1 if the ith batch on day t contains product p; otherwise, 0 

Utility System Model 

Indices 

I    fuels 

j   units (processing equipment /boilers/turbines) 

q piecewise segment of efficiency curve 

t time period 

v   utility 

Sets 

BOIL    set of boilers in CHP plant 

FUEL   set of fuels in CHP plant 

J    set of processing equipment in manufacturing unit 

TURB set of turbines in CHP plant 

UTILITY set of utilities provided by CHP plants; {LP, MP, HP, electricity} 

Parameters 
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aj       consumption coefficient for MP steam redirected towards boiler 

bj         consumption coefficient for electricity required to carry out boiler operation 

cci    calorific value of fuel (MJ/kg) 

cfi    cost of fuel (V/ton) 

CEL   electricity purchase cost (V/MWh) 

CGHG     cost incurred for emissions of GHG (V/ton) 

CSOX     cost incurred for emissions of SOx (V/ton) 

cpti       capacity of storage repository for fuel i (tons) 

ghgi     coefficient of GHG released from boiler due to fuel i 

ehsti     exhaust steam parameter for turbine j (defined as a fraction of TXHPt,j) 

h         enthalpy values based on steam temperature and pressure (MJ/kg) 

Imaxj,i    quantity of fuel i that is required to attain maximum steam level in boiler j 

Iminj,i    quantity of fuel i that is required to attain minimum steam level in boiler j 

𝐼𝑞̅,𝑗,𝑖      fuel threshold of the piecewise efficiency curve segment q 

Q                total number of piecewise segments 

SIdemj,i     quantity of fuel i that is used during starting-up phase of boiler j 

soxi            coefficient of SOx released from boiler due to fuel i 

ssfi              safety stock parameter for fuel i (defined as a fraction of cpti) 

T                       time horizon 

TXHPmaxt,j      maximum amount of steam that can enter turbine j in time period t 

TXHPmint,j         minimum amount of steam that can enter turbine j in time period t 

XHPmaxj             maximum amount of steam that can be produced by boiler j 
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XHPminj               minimum amount of steam that can be produced by boiler j 

𝑋𝐻𝑃 ̅̅ ̅̅ ̅̅ ̅
𝑞,𝑗,𝑖                steam threshold of the piecewise efficiency curve segment q 

𝜂𝑗,𝑖                             efficiency of boiler j with fuel i 

𝜂𝑗                             efficiency of the turbine j  

Binary variables 

Aq,t,j,I              to determine the boiler efficiency as a function of boiler load factor 

SBt,j,i              to determine whether boiler j is operational during time period t using fuel i 

FSBt,j,i            to determine whether boiler j is being restarted during time period t using fuel i 
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Appendices  

Appendix A. 

The following is a brief representation of the crude oil unloading model adopted from Hamisu et 

al. (2013). 

A.1. Operating rules 

1. Vessel unloading sequence: 

a. Vessel arrives and leaves the docking station only once throughout the scheduling horizon. 

∑ 𝑋𝐹𝑣,𝑡

𝑁𝑆𝐶𝐻

𝑡=1

= 1                         𝑣 = 1, … ,𝑁𝑉    (𝑨 − 𝟏)  

∑ 𝑋𝐿𝑣,𝑡

𝑁𝑆𝐶𝐻

𝑡=1

= 1                      𝑣 = 1,… ,𝑁𝑉    (𝑨 − 𝟐) 

b. A vessel can only unload after it arrives at the docking station as determined at the planning 

level. 

𝑇𝐹𝑣 ≥ 𝑇𝐴𝑅𝑅,𝑣                     𝑣 = 1,… ,𝑁𝑉        (𝑨 − 𝟑) 

c. The initiation and completion times are defined as: 

𝑇𝐹𝑣 = ∑ 𝑡𝑋𝐹𝑣,𝑡

𝑁𝑆𝐶𝐻

𝑡=1

                          𝑣 = 1,… ,𝑁𝑉       (𝑨 − 𝟒)    
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𝑇𝐿𝑣 = ∑ 𝑡𝑋𝐿𝑣,𝑡

𝑁𝑆𝐶𝐻

𝑡=1

                          𝑣 = 1,… ,𝑁𝑉    (𝑨 − 𝟓) 

   d. Two vessels cannot unload their contents at the same time. Therefore the preceding vessel 

must finish unloading one time interval before the later vessel begins to unload. 

𝑇𝐹𝑣+1 ≥ 𝑇𝐿𝑣 + 1                    𝑣 = 1,… , 𝑁𝑉       (𝑨 − 𝟔) 

e. A vessel unloading is accomplished between two time intervals: initiation time, TFv and 

completion time, TLv 

𝑋𝑊𝑣,𝑡 ≤ ∑ 𝑋𝐹𝑣,𝑚

𝑡

𝑚=1

 

𝑋𝑊𝑣,𝑡 ≤ ∑ 𝑋𝐿𝑣,𝑚

𝑁𝑆𝐶𝐻

𝑚=𝑡

 

                          𝑣 = 1,… , 𝑁𝑉,         𝑡 = 1,… , 𝑁𝑆𝐶𝐻    (𝑨 − 𝟕)      

f. The unloading duration is bounded by TFv and TLv. 

𝑇𝐿𝑣 − 𝑇𝐹𝑣 ≥ 1                    𝑣 = 1,… ,𝑁𝑉        (𝑨 − 𝟖)    

3. Standing gauge operation:  

Flow in and out of tanks simultaneously is not allowed. 

a. For storage tanks: 

𝑋𝑊𝑆𝑖,𝑗,𝑡 ≤ 1 − 𝑋𝑊𝑆𝑣,𝑖,𝑡           (𝑨 − 𝟗)    

 𝑣 = 1,… ,𝑁𝑉, 𝑖 = 1, … ,𝑁𝑆𝑇, 𝑗 = 1,… ,𝑁𝐵𝑇, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻                           
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b. For charging tanks: 

𝐷𝑗,𝑙,𝑡 ≤ 1 − 𝑋𝑊𝑆𝑖,𝑗,𝑡        (𝑨 − 𝟏𝟎)    

  𝑖 = 1, … ,𝑁𝑆𝑇, 𝑗 = 1,… ,𝑁𝐵𝑇, 𝑙 = 1,… ,𝑁𝐶𝐷𝑈, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻                           

4.Only one connection is allowed at any time period t: 

a. Flow from vessel to storage tank 

∑𝑋𝑉𝑣,𝑖,𝑡

𝑁𝑆𝑇

𝑖

= 1   (𝑨 − 𝟏𝟏) 

  𝑣 = 1,… , 𝑁𝑉, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻                           

∑𝑋𝑉𝑣,𝑖,𝑡

𝑁𝑉

𝑣

= 1   (𝑨 − 𝟏𝟐) 

  𝑖 = 1,… , 𝑁𝑆𝑇, 𝑡 = 1, … ,𝑁𝑆𝐶𝐻          

b. Flow from storage tank to charging tank 

∑𝑋𝑊𝑆𝑖,𝑗,𝑡

𝑁𝐵𝑇

𝑗

= 1   (𝑨 − 𝟏𝟑) 

  𝑖 = 1,… ,𝑁𝑆𝑇, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻                           

∑𝑋𝑊𝑆𝑖,𝑗,𝑡

𝑁𝑆𝑇

𝑖

= 1   (𝑨 − 𝟏𝟒) 

  𝑗 = 1,… , 𝑁𝐵𝑇, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻          

c. Flow from charging tank to CDU 



174 

 

∑ 𝐷𝑗,𝑙,𝑡

𝑁𝐶𝐷𝑈

𝑙

= 1   (𝑨 − 𝟏𝟓) 

  𝑗 = 1,… ,𝑁𝐵𝑇, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻                           

∑𝐷𝑗,𝑙,𝑡

𝑁𝐵𝑇

𝑗

= 1   (𝑨 − 𝟏𝟔) 

 𝑙 = 1,… ,𝑁𝐶𝐷𝑈, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻       

5. Semi-continuous constraints are applied for feedstock to CDU 

These ensure operation of the unit within the design flow rate and assumes no flow when CDU 

shut down. For normal operation the constraint is represented as: 

𝐹𝐵𝐶𝑚𝑖𝑛𝑗,𝑙 ≤ 𝐹𝐵𝐶𝑗,𝑙,𝑡 ≤ 𝐹𝐵𝐶𝑚𝑎𝑥𝑗,𝑙        (𝑨 − 𝟏𝟕) 

  𝑗 = 1,… ,𝑁𝐵𝑇, 𝑙 = 1, … ,𝑁𝐶𝐷𝑈, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻                           

 When CDU shuts down, 

𝐹𝐵𝐶𝑗,𝑙,𝑡 = 0              (𝑨 − 𝟏𝟖) 

𝑗 = 1, … ,𝑁𝐵𝑇, 𝑙 = 1,… , 𝑁𝐶𝐷𝑈, 𝑡 = 1, … ,𝑁𝑆𝐶𝐻                           

 6. Flow constraint from storage tank to charging tank:  

The total quantity received by charging tank (s) must not exceed the maximum flow rate from 

storage tanks.  

∑𝐹𝑆𝐵𝑖,𝑗,𝑡

𝑁𝑆𝑇

𝑖

≤ 𝐹𝑆𝐵𝑚𝑎𝑥𝑖,𝑗         (𝑨 − 𝟏𝟗)     
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                           𝑗 = 1,… , 𝑁𝐵𝑇, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻                           

7. Demand violation constraints: 

 For demand of crude blend q from charging tank j, Equation (A-20) represents supply to meet 

exact or below actual demand and Equation(A-21) to account for supply to meet the exact or 

above actual demand. 

∑ ∑ 𝐹𝐵𝐶𝑗,𝑙,𝑡

𝑁𝑆𝐶𝐻

𝑡=1

≥

𝑁𝐶𝐷𝑈

𝑙=1

𝐷𝑀𝑞(1 − 𝜀1𝑞)      (𝑨 − 𝟐𝟎)     

𝑗 = 1, … ,𝑁𝐵𝑇, 𝑞 = 1,… ,𝑁𝐵𝑇                           

 ∑ ∑ 𝐹𝐵𝐶𝑗,𝑙,𝑡

𝑁𝑆𝐶𝐻

𝑡=1

≤

𝑁𝐶𝐷𝑈

𝑙=1

𝐷𝑀𝑞(1 − 𝜀2𝑞)      (𝑨 − 𝟐𝟏) 

𝑗 = 1, … ,𝑁𝐵𝑇, 𝑞 = 1,… ,𝑁𝐵𝑇                           

     𝜀1𝑞 is a parameter that specifies the demand violation of crude blend q in the negative 

direction (below the actual demand) and 𝜀2𝑞 in the positive direction (above the actual demand). 

When each of these parameters is 0, a demand violation is not allowed.  

8. Continuous flow constraint:  

At any time, a charging tank should be charging the CDU: 

∑𝐷𝑗,𝑙,,𝑡

𝑁𝐵𝑇

𝑗

= 1     (𝑨 − 𝟐𝟐)     

𝑙 = 1,… , 𝑁𝐶𝐷𝑈, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻                           

9. Flow fluctuation constraints:  
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Flow fluctuations in  CDU charging rate should be avoided because it disrupts CDU operation 

and may generate off specification cuts.  

𝐹𝐵𝐶𝑗,𝑙,𝑡−1  ≥ 𝐹𝐵𝐶𝑗,𝑙,𝑡(1 − 𝜇1)        (𝑨 − 𝟐𝟑)                      

𝑗 = 1, … ,𝑁𝐵𝑇, 𝑙 = 1,… , 𝑁𝐶𝐷𝑈, 𝑡 = 1, … ,𝑁𝑆𝐶𝐻 − 1          

 𝐹𝐵𝐶𝑗,𝑙,𝑡−1  ≤ 𝐹𝐵𝐶𝑗,𝑙,𝑡(1 + 𝜇1)            (𝑨 − 𝟐𝟒)                             

𝑗 = 1,… ,𝑁𝐵𝑇, 𝑙 = 1, … ,𝑁𝐶𝐷𝑈, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻 − 1                               

𝜇1 is a user defined parameter with values ranging between zero and one. If 𝜇1 is set at zero, no 

variation is allowed in interval–interval quantity. For the purpose of our study a value of 0.1 has 

been used. 

10. Changeover penalty:  

This is to consider a penalty cost associated with the changeover of CDU with the charging 

tanks.  

𝑍𝑗,𝑙,𝑡 ≥ 𝐷𝑗,𝑙,𝑡 − 𝐷𝑗,𝑙,𝑡−1         (𝑨 − 𝟐𝟓)       

    𝑗 = 1,… , 𝑁𝐵𝑇, 𝑙 = 1,… ,𝑁𝐶𝐷𝑈, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻 − 1             

𝑍𝑗,𝑙,𝑡 ≥  𝐷𝑗,𝑙,𝑡−1 − 𝐷𝑗,𝑙,𝑡            (𝑨 − 𝟐𝟔) 

    𝑗 = 1,… , 𝑁𝐵𝑇, 𝑙 = 1, … ,𝑁𝐶𝐷𝑈, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻 − 1          

The term 𝐶𝐶 × 𝑍𝑗,𝑙,𝑡  is added to the objective function. CC is the cost penalty for changeover. 

11. Shutdown constraints:  

These are included to permit both shutdown and continual operations for CDU.  



177 

 

𝐹𝐵𝐶𝑗,𝑙,𝑡  ≥ (1 − 𝑋𝐷𝑙,𝑡)𝐹𝐵𝐶𝑙𝑜𝑗,𝑙,𝑡     (𝑨 − 𝟐𝟕)            

𝑗 = 1, … ,𝑁𝐵𝑇, 𝑙 = 1,… , 𝑁𝐶𝐷𝑈, 𝑡 = 1, … ,𝑁𝑆𝐶𝐻 − 1                    

𝐹𝐵𝐶𝑗,𝑙,𝑡  ≤ (1 − 𝑋𝐷𝑙,𝑡)𝐹𝐵𝐶𝑢𝑝𝑗,𝑙,𝑡   (𝑨 − 𝟐𝟖) 

𝑗 = 1,… ,𝑁𝐵𝑇, 𝑙 = 1, … ,𝑁𝐶𝐷𝑈, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻 − 1                               

The binary variable 𝑋𝐷𝑙,𝑡 is zero during normal operation and takes on the value of 1 when CDU 

shuts down. The term 𝐶𝑆 × 𝑋𝐷𝑙,𝑡 is added to the objective function. CS is the cost penalty for 

shutdown. 

12. Set-up or tank switchover constraint:  

A set-up cost is incurred anytime switching occurs between storage tanks and charging tanks 

transfer. The term 𝐶𝑆𝑆𝑈 × 𝛼𝑖,𝑡 is added to the objective function. CSSU is the cost penalty for 

switching from tank to tank during tank-tank transfers. 

𝛼𝑖,𝑡 ≥ 𝑋𝑊𝑆𝑖,𝑗,𝑡 − 𝑋𝑊𝑆𝑖,𝑗,𝑡−1         (𝑨 − 𝟐𝟗)    

  𝑖 = 1,… ,𝑁𝑆𝑇, 𝑗 = 1,… , 𝑁𝐵𝑇, 𝑡 = 1,… ,𝑁𝑆𝐶𝐻 − 1                           

   A.2. Hydraulic capacities  

1. Flow constraints:  

Flow of the crude oil is bounded by the capacity of the pumping system available.  

a. Flow from vessel to storage tank 

𝐹𝑉𝑆𝑚𝑖𝑛𝑣,𝑖𝑋𝑊𝑣,𝑖,𝑡 ≤ 𝐹𝑉𝑆𝑣,𝑖,𝑡 ≤ 𝐹𝑉𝑆𝑚𝑎𝑥𝑣,𝑖𝑋𝑊𝑣,𝑖,𝑡   (𝑨 − 𝟑𝟎) 

  𝑣 = 1,… ,𝑁𝑉, 𝑖 = 1, … ,𝑁𝑆𝑇, 𝑡 = 1, … ,𝑁𝑆𝐶𝐻                           
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b. Flow from storage tank to charging tank 

𝐹𝑆𝐵𝑚𝑖𝑛𝑖,𝑗𝑋𝑊𝑆𝑖,𝑗,𝑡 ≤ 𝐹𝑆𝐵𝑖,𝑗,𝑡 ≤ 𝐹𝑆𝐵𝑚𝑎𝑥𝑖,𝑗𝑋𝑊𝑆𝑖,𝑗,𝑡  (𝑨 − 𝟑𝟏) 

  𝑖 = 1, … ,𝑁𝑆𝑇, 𝑗 = 1,… ,𝑁𝐵𝑇, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻                           

c. Flow from charging tank to CDU. 

𝐹𝐵𝐶𝑚𝑖𝑛𝑗,𝑙𝐷𝑗,𝑙,𝑡 ≤ 𝐹𝐵𝐶𝑗,𝑙,𝑡 ≤ 𝐹𝐵𝐶𝑚𝑎𝑥𝑗,𝑙𝐷𝑗,𝑙,𝑡 

𝑗 = 1,… , 𝑁𝐵𝑇, 𝑙 = 1,… ,𝑁𝐶𝐷𝑈, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻          (𝑨 − 𝟑𝟐)                 

2. Capacity constraints:  

The volume of crude oil in storage and charging tanks at any time must be within the upper and 

lower bounds of the containing medium. 

a. Storage tank capacity limitation 

𝑉𝑆𝑚𝑖𝑛𝑖 ≤ 𝑉𝑆𝑖,𝑡 ≤ 𝑉𝑆𝑚𝑎𝑥𝑖        (𝑨 − 𝟑𝟑)                   

  𝑖 = 1,… ,𝑁𝑆𝑇, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻         

b. Charging tank capacity limitation. 

𝑉𝐵𝑚𝑖𝑛𝑗 ≤ 𝑉𝐵𝑗,𝑡 ≤ 𝑉𝐵𝑚𝑎𝑥𝑗         (𝑨 − 𝟑𝟒)                    

  𝑗 = 1,… ,𝑁𝐵𝑇, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻        

3. Crude oil material balance. 

a. Crude oil vessel: volume of crude oil in vessel v at time t equals the difference between the 

initial crude volume and the overall volume transferred from the vessel up to time t. 
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𝑉𝑉𝑣,𝑡 = 𝑉𝑉𝑣,0 −∑∑ 𝐹𝑉𝑆𝑣,𝑖,𝑚

𝑡

𝑚=1

𝑁𝑆𝑇

𝑖=1

     (𝑨 − 𝟑𝟓)             

                          𝑣 = 1,… , 𝑁𝑉, 𝑡 = 1,… , 𝑁𝑆𝐶𝐻               

   b. Storage tank: volume of crude oil in storage tank i at time t equals the sum of the initial 

volume stored in the storage tank with the volume transferred into the storage tank up to time t, 

less volume transferred from the storage tank up to time t. 

𝑉𝑆𝑖,𝑡 = 𝑉𝑆𝑖,0 +∑∑ 𝐹𝑉𝑆𝑣,𝑖,𝑚 −∑ ∑ 𝐹𝑆𝐵𝑖,𝑗,𝑚

𝑡

𝑚=1

𝑁𝐵𝑇

𝑗=1

𝑡

𝑚=1

𝑁𝑉

𝑣=1

   (𝑨 − 𝟑𝟔) 

                          𝑖 = 1,… ,𝑁𝑆𝑇, 𝑡 = 1, … ,𝑁𝑆𝐶𝐻                           

c. Charging tank: volume of crude mix in charging tank j at time t equals the sum of the initial 

volume of crude mix in the charging tank with the volume transferred into the charging tank up 

to time t, less volume transferred from the charging tank up to time t. 

𝑉𝐵𝑗,𝑡 = 𝑉𝐵𝑗,0 +∑∑ 𝐹𝑆𝐵𝑖,𝑗,𝑚 − ∑ ∑ 𝐹𝐵𝐶𝑗,𝑙,𝑚

𝑡

𝑚=1

𝑁𝐶𝐷𝑈

𝑙=1

𝑡

𝑚=1

𝑁𝑆𝑇

𝑖=1

         (𝑨 − 𝟑𝟕) 

                         𝑗 = 1,… ,𝑁𝐵𝑇, 𝑡 = 1, … ,𝑁𝑆𝐶𝐻                           
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Appendix B. 

The following is a brief representation of the product distribution by pipeline model adopted 

from Moradi & MirHassani (2015).   

1.Allocating products to the batches 

Each day, a newly discharged batch is one of the products or it is empty. 

∑𝑦𝑖,𝑡,𝑝
𝑝∈𝑃

 ≤ 1                       ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇    (𝑩 − 𝟏)  

The empty batches should be left at the end of the sequence of batches each day, i.e., if one of 

the considered batches contains no product, then all of the subsequence batches on the day will 

be considered empty. 

∑𝑦𝑖+1,𝑡,𝑝
𝑝∈𝑃

 ≤ ∑𝑦𝑖,𝑡,𝑝
𝑝∈𝑃

                       ∀ 𝑖 ∈ 𝐼, 𝑖 < |𝐼|, 𝑡 ∈ 𝑇    (𝑩 − 𝟐)  

In addition, if on day t, no batch is to be discharged (∑ 𝑦1,𝑡,𝑝 = 0)𝑝  , then on the subsequent days, 

no batches will be discharged.  

∑𝑦𝑖,𝑡+1,𝑝
𝑝∈𝑃

 ≤ ∑𝑦𝑖,𝑡,𝑝
𝑝∈𝑃

                       ∀ 𝑖 ∈ 𝐼, 𝑖 = 1, 𝑡 ∈ 𝑇, 𝑡 < |𝑇|   (𝑩 − 𝟑)  

2.Lot-sizing 

The size of a batch of product p should be in a specific range ([minlotp; maxlotp]). In addition, the 

volume of fictitious batches is zero; therefore: 

𝑦𝑖,𝑡,𝑝  × 𝑙𝑜𝑡𝑚𝑖𝑛𝑝  ≤ 𝑊𝑖,𝑡,𝑝  ≤ 𝑦𝑖,𝑡,𝑝  × 𝑙𝑜𝑡𝑚𝑎𝑥𝑝                ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃    (𝑩 − 𝟒)  
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If only the constraint above is considered, it is possible for some consecutive nonempty batches 

to include product p and to comprise a single lot of p, and thus the maximum batch size may be 

violated. Supposing that 𝐶𝑢𝑏𝑖,𝑡,𝑝 is the cumulative volume of a sequence of successive batches of 

product p up to the ith batch on day t, this variable is determined by Equations (B-5) and (B-6), 

and it should be lower than the maximum batch size. 

𝐶𝑢𝑏𝑖,𝑡,𝑝  ≥  𝐶𝑢𝑏𝑖−1,𝑡,𝑝 +𝑊𝑖,𝑡,𝑝 − 𝑙𝑜𝑡𝑚𝑎𝑥𝑝  ( ∑ 𝑦𝑖,𝑡,𝑞
𝑞∈𝑃−{𝑝}

)     ∀ 𝑖 ∈ 𝐼, 𝑖 > 1, 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃    (𝑩 − 𝟓)  

𝐶𝑢𝑏𝑖,𝑡,𝑝  ≥  𝐶𝑢𝑏𝑗,𝑡−1,𝑝 +𝑊𝑖,𝑡,𝑝 − 𝑙𝑜𝑡𝑚𝑎𝑥𝑝  ( ∑ 𝑦𝑖,𝑡,𝑞
𝑞∈𝑃−{𝑝}

) ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑖 = 1, 𝑡 ∈ 𝑇, 𝑡 > 1, 𝑝 ∈ 𝑃    (𝑩 − 𝟔)  

The nonnegative variable diff is defined as being equal to the difference between the total 

discharged volume and total customer demand in the time horizon, which is minimized by the 

objective function. 

𝑑𝑖𝑓𝑓 =∑∑∑𝑊𝑖,𝑡,𝑝
𝑝∈𝑃𝑡∈𝑇𝑖∈𝐼

−∑∑𝐷𝑒𝑚𝑡,𝑝
𝑝∈𝑃𝑡∈𝑇

     (𝑩 − 𝟕)      

3.Product inventories at the DC 

The total inventory level of product p at the end of day t (𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙) is equal to the sum of 

inventory from the previous day and any inventory discharged during day t (∑ 𝑊𝑖,𝑡,𝑝𝑖 ), which 

backorders from the previous day (𝐵𝑡−1,𝑝), and the demand on day t (𝐷𝑒𝑚𝑡,𝑝) will be excluded. 

In addition, it is possible for the DC to encounter an inventory shortage as high as 𝐵𝑡,𝑝. Thus, for 

the first day, we have: 

 𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑛𝑖𝑡𝑣𝑝 + ∑ 𝑊𝑖,𝑡,𝑝𝑖∈𝐼 − 𝐷𝑒𝑚𝑡,𝑝 + 𝐵𝑡,𝑝     ∀ 𝑡 ∈ 𝑇, 𝑡 = 1, 𝑝 ∈ 𝑃    (𝑩 − 𝟖)  
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For other days, we have: 

𝑖𝑛𝑣𝑡,𝑝
𝑡𝑜𝑡𝑎𝑙 = 𝑖𝑛𝑣𝑡−1,𝑝

𝑡𝑜𝑡𝑎𝑙 +∑𝑊𝑖,𝑡,𝑝
𝑖∈𝐼

− 𝐷𝑒𝑚𝑡,𝑝 − 𝐵𝑡−1,𝑝 + 𝐵𝑡,𝑝     ∀ 𝑡 ∈ 𝑇, 𝑡 > 1, 𝑝 ∈ 𝑃    (𝑩 − 𝟗) 

The total and available inventory levels of each product on each day should lie within a specified 

range, as follows. 

𝑖𝑛𝑣𝑝
𝑡𝑜𝑡𝑎𝑙−𝑚𝑖𝑛   ≤ 𝑖𝑛𝑣𝑝

𝑡𝑜𝑡𝑎𝑙  ≤ 𝑖𝑛𝑣𝑝
𝑡𝑜𝑡𝑎𝑙−𝑚𝑎𝑥                ∀𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃    (𝑩 − 𝟏𝟎)  

4.Interface volume between consecutive batches 

If the ith batch of day t contains product p and the next batch contains product q, the 

contaminated volume of the ith batch on day t is assumed to equal 𝑤𝑎𝑠𝑡𝑒𝑝,𝑞 . The continuous 

variable 𝑖𝑛𝑓𝑖,𝑡 represents the amount of the contaminated volume of the ith batch on day t. 

On each day, a batch is mixed with the next batch. If batch i is not the last batch of day t, its 

interface can occur with the (i + 1)th batch of day t. 

𝑖𝑛𝑓𝑖,𝑡  ≥  𝑤𝑎𝑠𝑡𝑒𝑝,𝑞(𝑦𝑖,𝑡,𝑝 + 𝑦𝑖+1,𝑡,𝑞 − 1)          ∀ 𝑖 ∈ 𝐼, 𝑖 < |𝐼|, 𝑡 ∈ 𝑇, 𝑝, 𝑞 ∈ 𝑃    (𝑩 − 𝟏𝟏) 

If batch i is the last batch of day t, its interface can occur with the first batch of day t + 1. 

𝑖𝑛𝑓𝑖,𝑡  ≥  𝑤𝑎𝑠𝑡𝑒𝑝,𝑞(𝑦𝑖,𝑡,𝑝 + 𝑦𝑗,𝑡+1,𝑞 − 1)    ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑖 = |𝐼|, 𝑗 = 1, 𝑡 ∈ 𝑇, 𝑡 < |𝑇|, 𝑝, 𝑞 ∈ 𝑃    (𝑩 − 𝟏𝟐) 

5.Discharging time 

During each day, one or more batches are discharged at the DC. The discharge duration of each 

batch depends on the flow rate. Discharging the first batch of day t starts from the earliest hour 

of day (𝑑𝑑𝑡−1) and finishes at time (𝑑𝑑𝑡−1 + (
1

𝑣𝑏
) × ∑ 𝑊𝑖,𝑡,𝑝)𝑝 .Thus, 
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𝑑𝑑𝑡−1 + (
1

𝑣𝑏𝑚𝑎𝑥
)∑𝑊𝑖,𝑡,𝑝 ≤ 𝑇𝑖,𝑡

𝑑𝑖𝑠 ≤

𝑝∈𝑃

𝑑𝑑𝑡−1 + (
1

𝑣𝑏𝑚𝑖𝑛
)∑𝑊𝑖,𝑡,𝑝
𝑝∈𝑃

     ∀ 𝑖 ∈ 𝐼, 𝑖 = 1, 𝑡 ∈ 𝑇  (𝑩 − 𝟏𝟑) 

The discharging of the other batch starts after the previous batch  𝑇𝑖−1,𝑡
𝑑𝑖𝑠   and finishes at time 

 𝑇𝑖−1,𝑡
𝑑𝑖𝑠 + (

1

𝑣𝑏
) × ∑ 𝑊𝑖,𝑡,𝑝𝑝  .Thus,  

𝑇𝑖−1,𝑡
𝑑𝑖𝑠 + (

1

𝑣𝑏𝑚𝑎𝑥
)∑𝑊𝑖,𝑡,𝑝 ≤ 𝑇𝑖,𝑡

𝑑𝑖𝑠 ≤

𝑝∈𝑃

𝑇𝑖−1,𝑡
𝑑𝑖𝑠 + (

1

𝑣𝑏𝑚𝑖𝑛
)∑𝑊𝑖,𝑡,𝑝
𝑝∈𝑃

     ∀ 𝑖 ∈ 𝐼, 𝑖 > 1, 𝑡 ∈ 𝑇    (𝑩 − 𝟏𝟒) 

6.Peak electricity hours 

Discharging the last batch on day t should be finished before the peak hours unless the required 

pumping is performed during 𝑝ℎ𝑡  hours in the peak hours. 

      𝑇𝑖,𝑡
𝑑𝑖𝑠 ≤ 𝑑𝑑𝑡 − 𝑝𝑒𝑎𝑘𝑡 + 𝑝ℎ𝑡        ∀ 𝑖 ∈ 𝐼, 𝑖 = |𝐼|, 𝑡 ∈ 𝑇        (𝑩 − 𝟏𝟓) 

The used peak hours are less than or equal to the total peak hours on day t and these variables are 

minimized in the objective function. 

𝑝ℎ𝑡 ≤ 𝑝𝑒𝑎𝑘𝑡        ∀ 𝑡 ∈ 𝑇        (𝑩 − 𝟏𝟔) 

7.Inventory management at the refinery 

The variable 𝐷𝑖,𝑡,𝑡𝑡 is defined as equal to the volumetric distance between the ith discharged 

batch on day t and the first batch on day tt (𝑡𝑡 ≤  𝑡), which is obtained from Equations (B-(17-

19)). The volumetric distance between the (𝑖 − 1)th discharged batch on day t and first batch on 

day tt (𝐷𝑖−1,𝑡,𝑡𝑡) plus the volume of this batch is equal to the volumetric distance between the 

next and first batches on day tt. 

𝐷𝑖,𝑡,𝑡 = 0         ∀ 𝑖 ∈ 𝐼, 𝑖 = 1, 𝑡 ∈ 𝑇   (𝑩 − 𝟏𝟕) 
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𝐷𝑖,𝑡,𝑡𝑡 = 𝐷𝑗,𝑡−1,𝑡𝑡 +∑𝑊𝑗,𝑡−1,𝑝
𝑝∈𝑃

    ∀ 𝑖, 𝑗 ∈ 𝐼, 𝑖 = 1, 𝑗 = |𝐼|, 𝑡, 𝑡𝑡 ∈ 𝑇, 𝑡𝑡 <  𝑡   (𝑩 − 𝟏𝟖) 

𝐷𝑖,𝑡,𝑡𝑡 = 𝐷𝑖−1,𝑡,𝑡𝑡 +∑𝑊𝑖−1,𝑡,𝑝
𝑝∈𝑃

    ∀ 𝑖 ∈ 𝐼, 𝑖 > 1, 𝑡, 𝑡𝑡 ∈ 𝑇, 𝑡𝑡 <  𝑡   (𝑩 − 𝟏𝟗) 

If the volumetric distance between the ith batch on day t and the first batch on day tt belongs to 

the interval [𝑣𝑝, 𝑣𝑝 + ∑ ∑ 𝑊𝑖,𝑡𝑡,𝑝]𝑝∈𝑃𝑖∈𝐼 , then injecting this batch causes the discharge of some 

batches of day tt, and thus its discharge starts on day t and the binary variable 𝑥𝑖,𝑡,𝑡𝑡will be equal 

to 1. Equations (B-(20-22)) provide these conditions. 

𝐷𝑖,𝑡,𝑡𝑡 ≥ 𝑣𝑝 × 𝑥𝑖,𝑡,𝑡𝑡    ∀ 𝑖 ∈ 𝐼, 𝑡, 𝑡𝑡 ∈ 𝑇, 𝑡𝑡 ≤  𝑡   (𝑩 − 𝟐𝟎) 

𝐷𝑖,𝑡,𝑡𝑡 ≤ 𝑣𝑝 +∑∑𝑊𝑖,𝑡𝑡,𝑝 +𝑀(1 − 𝑥𝑖,𝑡,𝑡𝑡)

𝑝∈𝑃𝑖∈𝐼

    ∀ 𝑖 ∈ 𝐼, 𝑡𝑡 ∈ 𝑇, 𝑡𝑡 ≤  𝑡   (𝑩 − 𝟐𝟏) 

∑ 𝑥𝑖,𝑡,𝑡𝑡
𝑡𝑡∈𝑇,𝑡𝑡≤ 𝑡

= 1         ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, ((𝑖, 𝑡) 𝑂)   (𝑩 − 𝟐𝟐) 

If the injection of the ith batch on day t starts during day tt, then the injected volume must be 

equal to 𝑊𝑖,𝑡𝑡,𝑝 ; otherwise, it must be equal to zero and thus: 

𝑖𝑛𝑗𝑖,𝑡,𝑝,𝑡𝑡 ≤ 𝑀𝑥𝑖,𝑡,𝑡𝑡    ∀ 𝑖 ∈ 𝐼, ∀ 𝑡, 𝑡𝑡 ∈ 𝑇, 𝑡𝑡 ≤  𝑡, ∀ 𝑝 ∈ 𝑃   (𝑩 − 𝟐𝟑) 

𝑊𝑖,𝑡,𝑝 −𝑀(1 − 𝑥𝑖,𝑡,𝑡𝑡) ≤ 𝑖𝑛𝑗𝑖,𝑡,𝑝,𝑡𝑡 ≤ 𝑊𝑖,𝑡,𝑝    ∀ 𝑖 ∈ 𝐼, ∀ 𝑡, 𝑡𝑡 ∈ 𝑇, 𝑡𝑡 ≤  𝑡, ∀ 𝑝 ∈ 𝑃   (𝑩 − 𝟐𝟒) 

The inventory level of product p at the refinery on day tt is equal to the sum of the inventory 

level on the previous day plus the production volume of product p on day tt minus the injected 

volume. To calculate the inventory level at the refinery, it is assumed that the daily output of 

each product is known (𝑝𝑟𝑎𝑡𝑒𝑡𝑡,𝑝). In addition, when the injection of a batch starts on day tt, the 

total volume of this batch is subtracted from the refinery inventory on day tt. 
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𝑅𝑖𝑛𝑣𝑡𝑡,𝑝 = 𝑅𝑖𝑛𝑖𝑡𝑣𝑝 + 𝑝𝑟𝑎𝑡𝑒𝑡𝑡,𝑝 −∑∑𝑖𝑛𝑗𝑖,𝑡,𝑝,𝑡𝑡
𝑡∈𝑇𝑖∈𝐼

,   ∀ 𝑝 ∈ 𝑃, 𝑡𝑡 = 1   (𝑩 − 𝟐𝟓) 

𝑅𝑖𝑛𝑣𝑡𝑡,𝑝 = 𝑅𝑖𝑛𝑣𝑡𝑡−1,𝑝 + 𝑝𝑟𝑎𝑡𝑒𝑡𝑡,𝑝 −∑∑𝑖𝑛𝑗𝑖,𝑡,𝑝,𝑡𝑡
𝑡∈𝑇𝑖∈𝐼

,   ∀ 𝑝 ∈ 𝑃, 𝑡𝑡 > 1   (𝑩 − 𝟐𝟔) 
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Appendix C. 

The following is a brief representation of the utility system model adopted from Agha et al. 

(2010). 

1.Fuel storage model 

The amount of fuel i entering the boiler j and producing HP steam (high pressure) in the period t 

is represented by It, j, i . The fuel repository has a certain capacity and initial amount of fuel 

ORF0,i stored in it is assumed as known. The Equation (C-1) models the fuel tank mass balance. 

Fuel leaving the repository depends on the demands of the boiler. 

𝑂𝑅𝐹𝑡,𝑖 = 𝑂𝑅𝐹𝑡−1,𝑖 + 𝑃𝑅𝐹𝑡,𝑖 − ∑ (𝐼𝑡,𝑗,𝑖 +

𝑗∈𝐵𝑂𝐼𝐿

𝑆𝐼𝑡,𝑗,𝑖)     (𝑪 − 𝟏) 

∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿, ∀ 𝑡 = 1,… , 𝑇 

2.Boiler model 

Equation (C-2) models the fuel i consumption in boiler j as a function of the amount of high 

pressure (HP) steam produced, calorific value of fuel, boiler efficiency and the enthalpy 

difference between superheated steam and feed-water heaters. This is a nonlinear equation but 

simplifying assumptions are used to develop a representative linear equation. There are still two 

variables in the equation, boiler efficiency 𝜂𝑗,𝑖 and fuel consumption 𝐼𝑞̅,𝑗,𝑖. 

𝐼𝑞̅,𝑗,𝑖 =
(ℎ𝑏 − ℎ𝑓𝑤) ∗ 𝑋𝐻𝑃̅̅ ̅̅ ̅̅

𝑞,𝑗,𝑖

𝑐𝑐𝑖. 𝜂𝑞,𝑗,𝑖
     (𝑪 − 𝟐) 

∀ 𝑞 ∈ 𝑄, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿 

 In order to include the effect of the efficiency variation with the varying load factor and at the 

same time guarding the condition of linearity, piecewise linear approximation is used and three 

linear discretized pieces are considered (Q= 3), where: 

                        𝑋𝐻𝑃̅̅ ̅̅ ̅̅
0,𝑗,𝑖 = 𝑋𝐻𝑃𝑚𝑖𝑛𝑗;             𝑋𝐻𝑃̅̅ ̅̅ ̅̅

1,𝑗,𝑖 = 0.5 ∗ 𝑋𝐻𝑃𝑚𝑎𝑥𝑗;  (𝑪 − 𝟑) 
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𝑋𝐻𝑃̅̅ ̅̅ ̅̅
2,𝑗,𝑖 = 0.75 ∗ 𝑋𝐻𝑃𝑚𝑎𝑥𝑗;            𝑋𝐻𝑃̅̅ ̅̅ ̅̅

3,𝑗,𝑖 = 𝑋𝐻𝑃𝑚𝑎𝑥𝑗; 

Equations (E-(4-6)) develop this piecewise linear approximation curve, quantifying fuel 

consumption with the varying load factor. Equation (E-4) determines XHPt,j,i the amount of HP 

steam being generated in the boiler. It joins q linear equations by use of binary variables Aq,t,j,i 

and continuous variables xq,t,j,i.  

 𝑋𝐻𝑃𝑡,𝑗,𝑖 =∑𝐴𝑞,𝑡,𝑗,𝑖

𝑄

𝑞=1

∗  𝑋𝐻𝑃̅̅ ̅̅ ̅̅
𝑞−1,𝑗,𝑖 + 𝑥𝑞,𝑡,𝑗,𝑖 ∗ ( 𝑋𝐻𝑃̅̅ ̅̅ ̅̅

𝑞,𝑗,𝑖 − 𝑋𝐻𝑃̅̅ ̅̅ ̅̅
𝑞−1,𝑗,𝑖)    (𝑪 − 𝟒)    

∀ 𝑡 = 1, … , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿 

𝐼𝑡,𝑗,𝑖 =∑𝐴𝑞,𝑡,𝑗,𝑖

𝑄

𝑞=1

∗  𝐼𝑞̅−1,𝑗,𝑖 + 𝑥𝑞,𝑡,𝑗,𝑖 ∗ ( 𝐼𝑞̅,𝑗,𝑖 − 𝐼𝑞̅−1,𝑗,𝑖)   (𝑪 − 𝟓)    

∀ 𝑡 = 1, … , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿 

Equation (E-6) enforces that, at maximum, only one binary variable 𝐴𝑞,𝑡,𝑗,𝑖 will have the value 

‘‘1’’, while Equation (E-7) limits the value of continuous variable 𝑥𝑞,𝑡,𝑗,𝑖 between 0 and 1.  

∑𝐴𝑞,𝑡,𝑗,𝑖

𝑄

𝑞=1

≤ 1        ∀ 𝑡 = 1, … , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿     (𝑪 − 𝟔) 

0 ≤ 𝑥𝑞,𝑡,𝑗,𝑖 ≤ 𝐴𝑞,𝑡,𝑗,𝑖         ∀ 𝑞 ∈ 𝑄, ∀ 𝑡 = 1,… , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿     (𝑪 − 𝟕) 

2.2. Boiler shutdown and restart constraints 

Once the boiler is shutdown, it will require a minimum of two time periods before it can start 

generating steam again. During the restart phase, the boiler uses 𝑆𝐼𝑑𝑒𝑚𝑡,𝑗,𝑖 amount of fuel 

without producing any steam. The boiler is in its operational phase  when (𝑆𝐵𝑡,𝑗,𝑖 = 1) and when 

(𝑆𝐵𝑡,𝑗,𝑖 = 0) the boiler is in the shutdown state  

Equation (C-8) determines that boiler being operational in the future time period depends on the 

current state of the boiler as well as the state of boiler in the previous time interval . 

𝑆𝐵𝑡+1,𝑗,𝑖 ≤ 𝑆𝐵𝑡,𝑗,𝑖 + (1 − 𝑆𝐵𝑡−1,𝑗,𝑖)         (𝑪 − 𝟖)       
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∀ 𝑡 = 2,… , 𝑇 − 1, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿      

Equations (C-9) and (C-10) establish that ‘boiler restart’ in a given time interval will occur only 

if it is operational in the future period and it is not operational in the current time interval.  

𝐹𝑆𝐵𝑡+1,𝑗,𝑖 ≤ 𝑆𝐵𝑡+1,𝑗,𝑖    ∀ 𝑡 = 1, … , 𝑇 − 1, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿  (𝐂 − 𝟗)    

𝐹𝑆𝐵𝑡+1,𝑗,𝑖 ≥ 𝑆𝐵𝑡+1,𝑗,𝑖 − 𝑆𝐵𝑡,𝑗,𝑖    ∀ 𝑡 = 1,… , 𝑇 − 1, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿  (𝐂 − 𝟏𝟎) 

Fuel consumed during the restart phase without producing steam is represented by Equation (C-

11).  

𝑆𝐼𝑡,𝑗,𝑖 = 𝐹𝑆𝐵𝑡,𝑗,𝑖 ∗ 𝑆𝐼𝑑𝑒𝑚𝑗,𝑖     ∀ 𝑡 = 1,… , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿, ∀ 𝑖 ∈ 𝐹𝑈𝐸𝐿  (𝐂 − 𝟏𝟏) 

2.3. Emission constraints 

Eqs (C-12) and (C-13) model the amount of SOx and greenhouse gas (GHG) emissions from the 

boiler. 

𝑋𝑆𝑂𝑋𝑡,𝑗 = ∑ 𝑠𝑜𝑥𝑖 ∗ (𝐼𝑡,𝑗,𝑖 +

𝑖∈𝐹𝑈𝐸𝐿 

𝑆𝐼𝑡,𝑗,𝑖)    ∀ 𝑡 = 1,… , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿    (𝐂 − 𝟏𝟐)    

𝑋𝐺𝐻𝐺𝑡,𝑗 = ∑ 𝑔ℎ𝑔𝑖 ∗ (𝐼𝑡,𝑗,𝑖 +

𝑖∈𝐹𝑈𝐸𝐿 

𝑆𝐼𝑡,𝑗,𝑖)    ∀ 𝑡 = 1, … , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿    (𝐂 − 𝟏𝟑)    

2.4. Boiler electricity and steam return constraints 

The amount of medium pressure steam redirected back to preheat water and electricity used by 

the feed water pump to inject water into the boiler are modeled by Equations (C-14) and (C-15). 

𝑅𝐸𝑇𝑡,𝑗 = 𝑎𝑗 ∗ ∑ 𝑋𝐻𝑃𝑡,𝑗,𝑖
𝑖∈𝐹𝑈𝐸𝐿 

    ∀ 𝑡 = 1,… , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿    (𝐂 − 𝟏𝟒)    

𝐵𝐸𝐿𝑡,𝑗 = 𝑏𝑗 ∗ ∑ 𝑋𝐻𝑃𝑡,𝑗,𝑖
𝑖∈𝐹𝑈𝐸𝐿 

    ∀ 𝑡 = 1,… , 𝑇, ∀ 𝑗 ∈ 𝐵𝑂𝐼𝐿    (𝐂 − 𝟏𝟓)    

3.Turbine model 

The high pressure steam comes into the first stage of the multi-stage back pressure steam turbine 

where it expands and ultimately leaves as medium pressure steam. This medium pressure steam 

then enters the second turbine stage and leaves as low pressure steam. Finally the low pressure 
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steam enters the third stage of the turbine and exits at a very low pressure. This ‘exhaust steam’ 

is above the saturated steam level but it is not fit for the process requirements. 

After each stage, some quantities of medium pressure (MP) and low pressure (LP) steam are 

extracted from the turbine to meet the steam demands of the manufacturing unit. Another source 

for meeting MP and LP steam demands is by expanding the steam through pressure release 

valves (PRVs). Equation (C-16) models the turbine mass balance. 

𝑇𝑋𝐻𝑃𝑡,𝑗 = 𝑋𝑀𝑃𝑡,𝑗 + 𝑋𝐿𝑃𝑡,𝑗 + 𝑋𝐸𝐻𝑆𝑇𝑡,𝑗  ∀ 𝑡 = 1, … , 𝑇, ∀ 𝑗 ∈ 𝑇𝑈𝑅𝐵    (𝐂 − 𝟏𝟔)  

Equation (C-17) places limiting constraint on quantity of steam that can be extracted from the 

turbine. 

𝑋𝐸𝐻𝑆𝑇𝑡,𝑗  ≥ 𝑒ℎ𝑠𝑡𝑗 ∗ 𝑇𝑋𝐻𝑃𝑡,𝑗         ∀ 𝑡 = 1,… , 𝑇, ∀ 𝑗 ∈ 𝑇𝑈𝑅𝐵    (𝐂 − 𝟏𝟕) 

Equation (C-18) furnishes the turbine energy balance which quantifies the electricity generated 

by the turbine. It is further assumed that the turbine efficiency  𝜂𝑗  remains constant. 

                      𝑋𝐸𝐿𝑡,𝑗 = 𝜂𝑗 ∗ [𝑇𝑋𝐻𝑃𝑡,𝑗 ∗ (ℎ𝑏 − ℎ𝑚) + (𝑇𝑋𝐻𝑃𝑡,𝑗 − 𝑋𝑀𝑃𝑡,𝑗) ∗ (ℎ𝑚−ℎ𝑙)       

           +(𝑇𝑋𝐻𝑃𝑡,𝑗 − 𝑋𝑀𝑃𝑡,𝑗 − 𝑋𝐿𝑃𝑡,𝑗) ∗ (ℎ𝑙−ℎ𝑒)]   (𝐂 − 𝟏𝟖)  

∀ 𝑡 = 1,… , 𝑇, ∀ 𝑗 ∈ 𝑇𝑈𝑅𝐵     

4. Mixer model 

Mixers are hypothetical devices and are only used to achieve the material balance of HP, MP and 

LP steam. Equations (C-(19-21) provide the mass balance of the HP, MP and LP steam 

respectively. 

∑ ∑ 𝑋𝐻𝑃𝑡,𝑗,𝑖
𝑗∈𝐵𝑂𝐼𝐿𝑖∈𝐹𝑈𝐸𝐿 

− 𝐿𝑋𝐻𝑃𝑡 − ∑ 𝑇𝑋𝐻𝑃𝑡,𝑗
𝑗∈𝑇𝑈𝑅𝐵

≥ 𝐷𝑒𝑚𝐻𝑃𝑡        (𝐂 − 𝟏𝟗) 

∀ 𝑡 = 1, … , 𝑇 

𝐿𝑋𝐻𝑃𝑡 + ∑ 𝑋𝑀𝑃𝑡,𝑗
𝑗∈𝑇𝑈𝑅𝐵 

− 𝐿𝑋𝑀𝑃𝑡 − ∑ 𝑅𝐸𝑇𝑡,𝑗
𝑗∈𝐵𝑂𝐼𝐿

≥ 𝐷𝑒𝑚𝑀𝑃𝑡      (𝐂 − 𝟐𝟎) 

∀ 𝑡 = 1, … , 𝑇 



190 

 

𝐿𝑋𝑀𝑃𝑡 + ∑ 𝑋𝐿𝑃𝑡,𝑗
𝑗∈𝑇𝑈𝑅𝐵 

≥ 𝐷𝑒𝑚𝐿𝑃𝑡    ∀ 𝑡 = 1,… , 𝑇       (𝐂 − 𝟐𝟏) 

Equation (C-22) models the amount of electricity generated onsite and the electricity purchased 

from an external source: 

∑ 𝑋𝐸𝐿𝑡,𝑗 + 𝐸𝐿𝑃𝑡
𝑗∈𝑇𝑈𝑅𝐵 

≥ 𝐷𝑒𝑚𝐸𝐿𝑡 + ∑ 𝐵𝐸𝐿𝑡,𝑗      ∀ 𝑡 = 1,… , 𝑇   (𝐂 − 𝟐𝟐)

𝑗∈𝐵𝑂𝐼𝐿 
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Appendix D. 

The following is a brief representation of the aggregation/disaggregation global optimization 

scheme based on normalized multiparametric disaggregation technique (NMDT) proposed by 

Castro (2016) and lumped variable linearization (LVL) technique used in this study. Figure 3.8 

illustrates an algorithmic flowchart for this proposed methodology. 

The integrated refinery problem (𝑷) considered in this study, can be classified as a nonconvex, 

mixed-integer nonlinear constrained problem (MINLP) with the following general form as 

outlined by Castro (2016): 

                                                                     max 𝑓0(𝑥, 𝑦)                          (𝑫 − 𝟏) 

                   subject to                 𝑓𝑞(𝑥, 𝑦) ≤ 0    ∀𝑞 ∈ 𝑄 ∖ {0} 

                                                    𝑓𝑞(𝑥, 𝑦) = ∑ 𝑎𝑖𝑗𝑞(𝑖,𝑗)∈𝐵𝐿 𝑥𝑖 𝑥𝑗 + 𝐵𝑞(𝑥) + 𝐶𝑞(𝑦) + 𝑑𝑞       ∀𝑞 ∈ 𝑄 

0 ≤ 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

                                              𝑥 ∈ 𝑅𝑚, 𝑦 ∈  {0,1}𝑟      ( ,  )                                (𝑷) 

where x is a vector of continuous non-negative variables and y are binary variables. BL is 

an (𝑖, 𝑗)-index set that defines the bilinear 𝑥𝑖𝑥𝑗 terms present in the problem and it is assumed 

that it is possible to infer finite upper bounds 𝑥𝑈on variables 𝑥𝑖 and 𝑥𝑗. 𝐵𝑞(𝑥) is nonlinear in 𝑥 

and 𝐶𝑞(𝑦) includes binary variables. Set 𝑄 includes all functions 𝑓𝑞, the objective function 𝑓0 and 

all the constraints, 𝑎𝑖𝑗𝑞 and 𝑑𝑞 are scalars. 

Given a nonconvex bilinear term  𝑤𝑖,𝑗 = 𝑥𝑖𝑥𝑗  , multiparametric disaggregation works by 

discretizing 𝑥𝑗 over a set of powers , 𝑙 ∈ {𝑝, … , 𝑃} ,where 𝑃 = ⌊log10 𝑥𝑗
𝑈⌋ and p is chosen 

by the user so as to reach a certain accuracy level. S.13-15 The formula for P assumes 
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discretization with base 10 in this study. Normalized version of multiparametric disaggregation 

technique discretizes 𝜆𝑗 ∈ [0, 1], an auxiliary variable that is used to compute 𝑥𝑗 as a linear 

combination of its lower 𝑥𝑗
𝐿 and upper 𝑥𝑗

𝑈 bounds: 

𝑥𝑗 = 𝑥𝑗
𝐿 + 𝜆𝑗(𝑥𝑗

𝑈 − 𝑥𝑗
𝐿)      ∀ 𝑗       (𝑫 − 𝟐) 

The exact representation of 𝜆𝑗 can be achieved by considering an infinite number of 

positions l ∈ 𝑍− in the decimal system, 

𝜆𝑗 = ∑ 𝜆𝑗𝑙
𝑙∈𝑍−

        ∀ 𝑗      (𝑫 − 𝟑)   

and by picking the appropriate digit k ∈ {0, 1, . . . , 9} for each power l. This can be stated as 

a disjunction (Balas, 1979 ; Raman and  Grossmann, 1994), where binary variables 𝑧𝑗𝑘𝑙 take the 

value of one if digit k is selected 

for position l for discretized variable 𝜆𝑗:  

⋁[
𝑧𝑗𝑘𝑙

𝜆𝑗𝑙 = 10
𝑙 . 𝑘
]

9

𝑘=0

        ∀ 𝑗 , 𝑙 ∈  𝑍−     (𝑫 − 𝟒)   

The convex hull reformulation (Balas,1985) of the disjunction in (F-4) can be simplified so as to 

generate a sharp formulation without disaggregated variables. (Oral and Kettani,1992) 

𝜆𝑗 = ∑ ∑10𝑙 . 𝑘.

9

𝑘=0𝑙∈𝑍−

 𝑧𝑗𝑘𝑙       ∀ 𝑗      (𝑫 − 𝟓)   

∑𝑧𝑗𝑘𝑙

9

𝑘=0

= 1       ∀ 𝑗, 𝑙  ∈ 𝑍−    (𝑫 − 𝟔) 

Multiplying variable 𝑥𝑖 by (D-6) and substituting 𝑥𝑖𝑥𝑗 and 𝑥𝑖𝜆𝑗 with bilinear variables 𝑤𝑖𝑗 

and 𝜐𝑖𝑗 leads to, 

𝑤𝑖𝑗 = 𝑥𝑖𝑥𝑗
𝐿 + 𝜐𝑖𝑗(𝑥𝑗

𝑈 − 𝑥𝑗
𝐿)      ∀ (𝑖, 𝑗)       (𝑫 − 𝟕) 
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Substituting (D-5) into the definition of 𝜐𝑖𝑗 leads to the appearance of bilinear terms involving 

the product of a continuous and a binary variable. 

𝜐𝑖𝑗 = ∑ ∑10𝑙 . 𝑘.

9

𝑘=0

𝑥𝑖
𝑙∈𝑍−

 𝑧𝑗𝑘𝑙       ∀ (𝑖, 𝑗)      (𝑫 − 𝟖)   

An exact linearization can be performed  by introducing new continuous variables  

𝑥̂𝑖𝑗𝑘𝑙 = 𝑥𝑖 𝑧𝑗𝑘𝑙 so that: 

𝜐𝑖𝑗 = ∑ ∑10𝑙 . 𝑘.

9

𝑘=0

𝑥̂𝑖𝑗𝑘𝑙
𝑙∈𝑍−

       ∀ (𝑖, 𝑗)      (𝑫 − 𝟗)   

                                        𝑧𝑗𝑘𝑙𝑥𝑖
𝐿 ≤ 𝑥̂𝑖𝑗𝑘𝑙 ≤ 𝑧𝑗𝑘𝑙𝑥𝑖

𝑈       ∀ (𝑖, 𝑗),   𝑘 ∈ {0,… ,9}, 𝑙 ∈ 𝑍−       (𝑫 − 𝟏𝟎)   

Finally, multiplying (D-6) by 𝑥𝑖 and replacing the bilinear terms by the new continuous variables 

results in, 

𝑥𝑖 =∑𝑥̂𝑖𝑗𝑘𝑙

9

𝑘=0

      ∀ (𝑖, 𝑗), 𝑙  ∈ 𝑍−    (𝑫 − 𝟏𝟏) 

Since it is impossible to compute the infinite sums over all negative integers, 𝜆𝑗 will be 

represented to a finite accuracy level by replacing 𝑙 ∈ 𝑍− with 𝑙 ∈ {𝑝, 𝑝 + 1, … ,−1}, where p is a 

negative integer chosen by the user. In order to close the gap between discretization points so 

as to allow for all possible values for 𝜆𝑗 , slack variables ∆𝜆𝑗 are introduced that are bounded 

between 0 and 10𝑝. The continuous representation of 𝜆𝑗 is then given by: 

𝜆𝑗 = ∑ ∑ 10𝑙 . 𝑘. 𝑧𝑗𝑘𝑙 
9
𝑘=0

−1
𝑙=𝑝 + ∆𝜆𝑗         ∀𝑗   (𝑫 − 𝟏𝟐)     

0 ≤ ∆𝜆𝑗 ≤ 10
𝑝           ∀𝑗   (𝑫 − 𝟏𝟑)   
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Following the same reasoning as before, the continuous representation of the bilinear term 𝜐𝑖𝑗= 

𝑥𝑖 . 𝜆𝑗 is, 

𝜐𝑖𝑗 = ∑∑ 10𝑙 . 𝑘. 𝑥̂𝑖𝑗𝑘𝑙
9

𝑘=0
𝑙∈𝑍−

+ 𝑥𝑖 . ∆𝜆𝑗       ∀(𝑖, 𝑗)   (𝑫 − 𝟏𝟒) 

The newly appeared bilinear terms 𝑥𝑖 . ∆𝜆𝑗 are going to be relaxed using the McCormick 

envelopes (McCormick,1976), which in this case coincide with the reformulation linearization 

technique bound factor products 𝑥𝑖 − 𝑥
𝐿 ≥ 0, 𝑥𝑈 − 𝑥𝑖 ≥ 0, ∆𝜆𝑗 ≥ 0 and 10𝑝 − ∆𝜆𝑗 ≥ 0 65,66. 

Variables ∆𝜐𝑖𝑗 replace 𝑥𝑖 . ∆𝜆𝑗 in Equation (D-14). 

𝑥𝑖
𝐿 . ∆𝜆𝑗 ≤ ∆𝜐𝑖𝑗 ≤ 𝑥𝑖

𝑈. ∆𝜆𝑗     ∀ (𝑖, 𝑗)   (𝑫 − 𝟏𝟓)  

(𝑥𝑖 − 𝑥
𝑈). 10𝑝 + 𝑥𝑖

𝑈. ∆𝜆𝑗 ≤ ∆𝜐𝑖𝑗 ≤ (𝑥𝑖 − 𝑥
𝐿). 10𝑝 + 𝑥𝑖

𝐿. ∆𝜆𝑗     ∀ (𝑖, 𝑗)   (𝑫 − 𝟏𝟔) 

The full set of mixed integer linear constraints for the exact representation of bilinear terms 

𝑤𝑖𝑗 = 𝑥𝑖𝑥𝑗  is thus given by Equations (D-2, D-7, D-(11-16)), leading to the new optimization 

problem 

(PR) that is a relaxation of (P). In other words, (PR) is feasible for values of 𝑤𝑖𝑗 , 𝑥𝑖  and 𝑥𝑗 

that do not satisfy 𝑤𝑖𝑗= 𝑥𝑖𝑥𝑗  

                                                                    max   𝑓0
′(𝑥, 𝑦)                                        (𝑫 − 𝟏𝟕) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜           𝑓𝑞
′(𝑥, 𝑦) ≤ 0       ∀𝑞 ∈ 𝑄 ∖ {0} 

𝑓𝑞
′(𝑥, 𝑦) = ∑ 𝑎𝑖𝑗𝑞

(𝑖.𝑗)∈𝐵𝐿

𝑤𝑖𝑗 + 𝐵𝑞(𝑙𝑣) + 𝐶𝑞(𝑦) + 𝑑𝑞        ∀𝑞 ∈ 𝑄  
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𝑥𝑗 = 𝑥𝑗
𝐿 + 𝜆𝑗(𝑥𝑗

𝑈 − 𝑥𝑗
𝐿)

𝜆𝑗 = ∑ ∑ 10𝑙 . 𝑘. 𝑧𝑗𝑘𝑙 
9
𝑘=0

−1
𝑙=𝑝 + ∆𝜆𝑗
0 ≤ ∆𝜆𝑗 ≤ 10

𝑝 

}    ∀𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿} 

   

𝑤𝑖𝑗 = 𝑥𝑖𝑥𝑗
𝐿 + 𝜐𝑖𝑗(𝑥𝑗

𝑈 − 𝑥𝑗
𝐿)

𝜐𝑖𝑗 =∑ ∑ 10𝑙 . 𝑘. 𝑥̂𝑖𝑗𝑘𝑙 
9

𝑘=0

−1

𝑙=𝑝
+ ∆𝜐𝑖𝑗

𝑥𝑖
𝐿. ∆𝜆𝑗 ≤ ∆𝜐𝑖𝑗 ≤ 𝑥𝑖

𝑈 . ∆𝜆𝑗

∆𝜐𝑖𝑗 ≤ (𝑥𝑖 − 𝑥
𝐿). 10𝑝 + 𝑥𝑖

𝐿 . ∆𝜆𝑗

∆𝜐𝑖𝑗 ≥ (𝑥𝑖 − 𝑥
𝑈). 10𝑝 + 𝑥𝑖

𝑈 . ∆𝜆𝑗 }
 
 
 

 
 
 

   ∀(𝑖, 𝑗) ∈ 𝐵𝐿  

𝑥𝑖 =∑ 𝑥̂𝑖𝑗𝑘𝑙 
9

𝑘=0
         ∀(𝑖, 𝑗) ∈ 𝐵𝐿, 𝑙 ∈ {𝑝,… ,−1} 

∑𝑧𝑗𝑘𝑙

9

𝑘=0

= 1      ∀𝑗 ∈ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿}, 𝑙 ∈ {𝑝,… ,−1} 

𝑧𝑗𝑘𝑙𝑥𝑖
𝐿 ≤ 𝑥̂𝑖𝑗𝑘𝑙 ≤ 𝑧𝑗𝑘𝑙𝑥𝑖

𝑈      ∀ (𝑖, 𝑗),   𝑘 ∈ {0,… ,9}, 𝑙 ∈ {𝑝, … ,−1}   

0 ≤ 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

𝑥 ∈ 𝑅𝑚, 𝑤𝑖𝑗  , 𝜆𝑗 , 𝜐𝑖𝑗 , 𝑥̂𝑖𝑗𝑘𝑙 , ∆𝜆𝑗 , ∆𝜐𝑖𝑗 ∈ 𝑅 

                                                   𝑦 ∈  {0,1}𝑟   , 𝑧𝑗𝑘𝑙   ∈ {0,1}                                (𝑷𝑹) 
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Appendix E. 

Tables E1-E5 with  deterministic system information for integrated refinery model 

Table E1. Maximum Capacity of Refinery Unit u (bb/d) 

Refinery Unit Capacity 

CDU 250000 

FCC 140000 

CRU 80000 

HC 70000 

HT1 50000 

HT2 50000 

HDS 80000 

VB 80000 

DC 84000 

GT 100000 

DFT 95000 

EtOHT 15000 

 

Table E2. Deterministic Demand Data for Commodity c (Mbbl/yr)  

Commodity  Time Period 

1 2 3 4 5 6 7 

G      31.40 28.11      29.56         32.74       29.57       28.74          27.63 

DF          26.28     29.82      30.10        25.33       27.43       29.17          28.96 
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Table E3. System information for pipeline distribution model 

Product IDmin(p) 

(m3) 

IDmax(p)  

(m3) 

Minlotp 

(m3) 

Maxlotp 

(m3) 

Setlp 

(day) 

Interface Volume 

(m3) 

P1 P2 

P1 4000 88,742 8000 30000 1 0 15 

P2 8000 38,833 8000 30000 1 15 0 

Peak(t)      

 Peak hours in              

time period t 

1 2 3 4 5 6 7 

8 6 5 6 7 6 7 

Initv(p)  Initial Inventory for Each Product at DCs (m3) P1 P2 

28,420 10,505 

IR0(P)  Initial inventory level of product p at the refinery (m3) 23,567 9271 

IRmin(p)      Minimum allowed storage capacity for product p at the 

                      refinery (m3) 

10,000 10,000 

IRmax(p)      Maximum allowed storage capacity for product p at the 

                      refinery (m3) 

100,000 100,000 

Bmax          Maximum Backorder or Lost Demand 

vp               Pipeline volume(m) 

frmax         Maximum allowed pumping flow rate (m3\h) 

8600 

141,810 

100,000 

 

Table E4. Deterministic Price Data for Commodity c ($/bbl)  

Commodity  Time Period 

1 2 3 4 5 6 7 

G      117.13 118.49      120.74         122.52       119.98       116.37         121.30 

DF          137.25     139.62      136.81        135.24       141.55       140.29          138.66 
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Table E5. System information and operating characteristics for the CHP based utility plant 

aj   consumption coefficient for MP steam redirected towards boiler BOIL1 BOIL2 

0.1 0.1 

 bj   consumption coefficient for electricity required to carry out boiler 

operation 

0.002 0.003 

XHPmax  maximum amount of steam that can be produced by boiler j (kg) 16000 17000 

XHPmin  minimum amount of steam that can be produced by boiler j (kg) 8000 8500 

hfw     enthalpy of boiler feed-water (MJ\kg) 0.56677 0.56677 

hb  enthalpy of superheated steam from boilers to turbines (MJ\kg) 3.06677 3.06677 

SIdem quantity of fuel gas used during starting-up phase of boiler (ton) 2.024 4.093 

ehst  exhaust steam parameter for turbine j         TURB1 TURB2 

0.05 0.05 

TXHPmax  maximum amount of steam that can enter turbine j in time 

period t (kg) 

500 500 

η  efficiency of the turbine j 0.8 0.8 

hm enthalpy of MP steams from turbines (MJ\kg) 2.95509 2.95509 

hl  enthalpy of LP steams from turbines (MJ\kg) 2.83875 2.83875 

he  enthalpy of Exhaust steams from turbines (MJ\kg) 2.75268 2.75268 

cci  calorific value of fuel (MJ\kg)  

Cf  cost of fuel (US$\ton)   

CEL    electricity purchase cost (US$\MWh)   

CGHG   cost incurred for emissions of GHG (US$\ton)   

CSOX cost incurred for emissions of SOx (US$\ton)   

Cpti    capacity of storage repository for fuel i (tons)  

ghgi coefficient of GHG released from boiler due to fuel i   

23 

55.49 

88.79 

19.98 

25.53 

10,000 

2.466 

 


