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ABSTRACT 

 

Since the completion of the Human Genome Project in 2003, scientists have had a map of 

all the base pairs that make up human DNA. Beginning in 2008, RNA-seq was developed that 

allowed scientists to directly sequence messenger RNA that is transcribed by genes in cells. In 

2011, computing power and cost of sequencing (1) was just beginning to reach a point to allow 

for high-throughput sequencing experiments that could define a person’s genome and 

transcriptome and identify potential disease-causing mutations, having important implications for 

personalized medicine. One year later, the capability to interrogate the transcriptome of a single 

cell became possible with the introduction of single-cell RNA-seq (scRNA-seq) (2). Previous 

bulk studies represent an ensemble of transcriptomes from many cells and therefore could mask 

important differences. Studies have shown that individual cells have remarkable heterogeneity, 

even when isolated from a seemingly homogeneous populations (3). Although single-cell 

technology exists, the need for experts that can analyze and interpret the large and high-

dimensional data that is produced from next-generation sequencing experiments is high. For 

example, the number of scRNA-seq datasets uploaded to the Gene Expression Omnibus (GEO) 

has increased from 15 in 2012 to over 15,000 in 2020 (4). Therefore, my primary objective for 

graduate school was to develop a solid background in bioinformatics and to apply next-

generation sequencing and microfluidic technology to questions in human disease.  
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To meet this objective, I have used multiple biologic systems to garner expertise in 

bioinformatics by exploring functions of the transcription factor, ARID3a. ARID3a is an 

understudied protein, with unknown functions, that is expressed in hematopoietic cells during 

development, and in various types of adult stem cells (5). It is a member of a large family of 

epigenetic regulators and dimerization of ARID3a is necessary for binding to DNA in a sequence 

specific fashion (6,7). The few studies that investigate the function of ARID3a indicate that it has 

functions in both activating and repressing gene expression. The first role of ARID3a in 

activating expression came from studies in B cells isolated from mice. These studies revealed 

that ARID3a is required for proper immunoglobulin heavy chain expression through binding the 

intronic heavy chain enhancer (8-10). Later studies would reveal that ARID3a expression is 

developmentally restricted and that it binds directly to promoter/enhancer regions of the 

pluripotency master regulators OCT4, SOX2, and NANOG to contribute to their repression in 

mouse embryonic fibroblasts and stem cells (11,12). However, the mechanism by which ARID3a 

contributes to activation or repression of gene expression remains elusive. Therefore, my goals 

were to use sequencing technology to investigate 1) the importance of ARID3a in biologically 

important systems (i.e. lupus, hematopoietic cells, erythropoiesis) and 2) provide insights into the 

functions of ARID3a using different techniques (i.e. RNA-seq, ATAC-seq, single-cell RNA-

seq). 

To meet these goals, I have used RNA-seq to show that ARID3a expression is associated 

with disease activity in two cell types, plasmacytoid dendritic cells (pDCs) and low density 

neutrophils (LDNs) which are key players in inflammatory pathways observed in patients with 

systemic lupus erythematosus (SLE) (13). The RNA-seq data I generated also show that ARID3a 

is lowly expressed in pDCs and LDNs isolated from both SLE patients and healthy controls. 



3 
 

Therefore, it was not possible to perform typical differential expression analysis based on 

ARID3a+ and ARID3a- samples. This finding also explains why other investigators using 

traditional RNA-seq analysis have not identified ARID3a to be important to disease activity in 

these cell types. Instead, I performed unsupervised hierarchical clustering to show that the RNA-

seq data cluster based on the levels of ARID3a protein and that SLE disease activity scores 

strongly correlate with ARID3a protein (13). I also show through correlation analysis that 

ARID3a functions epigenetically through repressing and activating many genes.  

Previous work revealed that ARID3a deletion in mice resulted in embryonic lethal 

phenotype but the rare survivors had a significant reduction in erythrocytes and B cells (14). 

Using the early hematopoietic cell line, K562, which can be stimulated with hemin to induce 

erythrocyte differentiation, I show with RNA-seq that ARID3a protein is necessary for fetal 

globin expression and erythrocyte development. My data identify genes affected by ARID3a 

expression and indicate that ARID3a functions in a cell type specific fashion. The Assay for 

Transposase-Accessible Chromatin (ATAC)-seq data I generated using K562 cells show for the 

first time that ARID3a alters chromatin accessibility of enhancer regions essential for the 

induction of erythroid-specific genes. These findings allowed me to learn bulk RNA-seq and 

ATAC-seq analyses and led to the investigation of ARID3a in primary human cells using single 

cell RNA-seq. 

Single cell RNA-seq was performed on hematopoietic stem cells (HSCs) from aged and 

young donors and reveal that ARID3a levels have an impact on B cell fate decisions. This work 

show that single cell technology can be used to identify changes based on ARID3a transcript in 

HSCs.  
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Finally, to accomplish my goal of applying the technologies described above to human 

disease, I have employed microfluidic technology to capture single naïve B lymphocytes from 

SLE patients. Healthy naïve B cells do not express ARID3a.  However, ARID3a is present in 

~50% of the naïve B cells of SLE patients. Additionally, since ARID3a is an intracellular 

protein, it is not possible to isolate ARID3a+ B lymphocytes without affecting RNA integrity. 

Therefore, I have employed microfluidic technology to capture single ARID3a-expressing and 

ARID3a negative naive B lymphocytes from SLE patients. Briefly, B lymphocytes were isolated 

using known surface markers representing naïve B cell subsets and were then captured on a 

Fluidigm C1 Single-Cell Auto Prep system. At present, there are significant knowledge gaps, 

which will be detailed in Chapter 2, regarding how the expression of ARID3a contributes to 

increased disease activity and what causes the increased inflammatory responses in SLE patients. 

We hypothesize that ARID3a expression will identify autoreactive naïve B cells that have broken 

tolerance and/or are part of the inflammatory responses observed in SLE.  
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ABSTRACT 

Systemic lupus erythematosus (SLE) is a devastating and heterogeneous autoimmune 

disease that affects multiple organs, and for which the underlying causes are unknown. The 

majority of SLE patients produce autoantibodies, have increased levels of type-I inflammatory 

cytokines, and can develop glomerulonephritis. Recent studies indicate an unexpected but strong 

association between increased disease activity in SLE patients and the expression of the DNA-

binding protein ARID3a (A + T rich interaction domain protein 3a) in a number of peripheral 

blood cell types. ARID3a expression was first associated with autoantibody production in B 

cells; however, more recent findings also indicate associations with expression of the 

inflammatory cytokine interferon alpha in SLE plasmacytoid dendritic cells and low-density 

neutrophils. In addition, ARID3a is expressed in hematopoietic stem cells and some adult kidney 

progenitor cells. SLE cells expressing enhanced ARID3a levels show differential gene 

expression patterns compared with homologous healthy control cells, identifying new pathways 

potentially regulated by ARID3a. The associations of ARID3a expression with increased disease 

severity in SLE, suggest that it, or its downstream targets, may provide new therapeutic targets 

for SLE. 

INTRODUCTION 

The autoimmune disease systemic lupus erythematosus (SLE) affects approximately one 

million Americans (15), with symptoms ranging from rash and fatigue, to severe organ 

dysfunction (16,17). Disease severity varies according to the degree of organ involvement, and 

the level of inflammation and systemic deposition of autoantibody-containing immune 

complexes, and is quantified using scores that combine measurements of these criteria as SLE 
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disease activity indices (SLEDAI scores) (16,17). The underlying mechanisms that lead to SLE 

are unknown, but several key features of the disease are present in the majority of patients. These 

include breaks in humoral tolerance that result in the production of autoimmune antibodies; 

inflammation typically characterized by increased levels of Type I cytokines, such as interferon 

alpha (IFNα); and, lupus-induced kidney damage, known as lupus nephritis. Renal involvement 

occurs in nearly 60% of SLE patients (18), and results in high healthcare costs (15) and mortality 

(19). Very few effective therapies for SLE exist. Current treatments include Rituximab, an 

antibody that targets the majority of B lymphocytes, and Belimumab, an antibody that also 

targets B cells through the B cell survival factor, BLyS (B Lymphocyte Stimulator) or BAFF (B 

cell Activating Factor) (20). Both drugs have broadly immunosuppressive effects through 

general B-cell inhibition, and fail to target the specific sources of autoimmune antibodies 

directly. Therefore, new therapeutic targets are badly needed. Our data now suggest that the 

DNA-binding protein ARID3a (A + T rich interaction domain protein 3a) is overexpressed in a 

number of hematopoietic cell types in SLE peripheral blood compared with healthy controls, and 

that expression of ARID3a is associated with increased SLEDAI scores. Although a number of 

contributing factors are likely to influence SLE pathology, in this review, we will highlight the 

molecular and cellular associations of ARID3a with the common lupus pathologies of 

autoantibody production, interferon induction, and the promotion of clinical nephritis. 

ARID3a, or Bright (B cell regulator of immunoglobulin (Ig) heavy chain transcription) as 

it was first called in the mouse, was originally discovered as a transcription factor that increases 

Ig-heavy chain transcription and binds to the intronic heavy chain enhancer, where it is 

associated with epigenetic effects and the organization of chromatin into transcriptionally active 

domains by interactions with nuclear matrix associated regions (8-10,21,22). ARID3a is not 



8 
 

required for the initiation of Ig production, but requires dimerization and association with both 

Bruton’s tyrosine kinase (BTK) and TFII-I (Transcription Factor II-I) for activity in B 

lymphocytes (9,23,24)\. Binding sites for ARID3a were first identified 5′ of the promoter of the 

V1 S107 gene, a gene necessary for responses to phosphorylcholine (25). In humans, there are 15 

ARID family proteins, most of which have epigenetic functions, and are members of larger 

chromatin-modifying complexes that act in part through protein domains associated with discrete 

epigenetic functions (6,7,26). The three members of the ARID3 family are distinguished as 

smaller proteins that have an extended DNA-binding domain that confers increased sequence 

specificity compared to other ARID family members but lack obvious protein domains 

associated with epigenetic functions (Figure 1A). Because ARID3a can act as both an activator 

and suppressor of transcription (8,9,12), ARID3a may regulate gene expression as a DNA-

specific tether that recruits other epigenetic modifiers to those sites (Figure 1B,C). 
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Figure 1. Schematic diagrams of ARID3a (A + T rich interaction domain protein 3a) 

domains and functions. (A) The four protein domains of ARID3a are shown, including the 

extended DNA-binding domain (hashed ends), the nuclear localization motif (KIKK), the helix-

loop-helix regions (orange and yellow boxes), and amino acid numbers. The short carboxyl 

terminus has not been given a name or function. (B). ARID3a is proposed to induce nucleosome 

sliding, potentially disrupting the binding of other transcription factors, and potentially recruiting 

new transcription factors. (C). ARID3a DNA-interacting protein complexes can have either 

activating or repressing functions. Some of the known interacting proteins are shown. A3a—

ARID3a; TF—transcription factor; HDAC—histone deacetylase; TFII-I—transcription factor II-

I; P—phosphorylation; BTK—Bruton’s tyrosine kinase. 

Although most ARID family members are expressed ubiquitously, ARID3a expression is 

tissue and developmentally restricted to hematopoietic and other adult stem cells, and to 

particular types of mature cells in the hematopoietic lineage (27). The expression of ARID3a is 

tightly regulated during B cell development in both mice and humans, and is the highest in the 

bone marrow pre-B and germinal center-activated B cells, while other B cell subsets, including 

the majority of mature splenic B cells, lack both ARID3a mRNA and protein (28,29). During B 

lymphocyte development in mice, ARID3a expression is tightly regulated, such that it is 
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expressed in transitional T1 B cells, down-regulated at the T2 cell stage where tolerance 

checkpoints have been identified (30,31), and turned off at the level of transcription in naïve 

follicular B cells (32,33). Others have shown recently that ARID3a is required for fetal lineage 

B1 B cell development (29,34). ARID3a is also expressed in mature B1 and marginal-zone (MZ) 

B cells, two cell types associated with autoimmunity in several systems (32,35-39). Figure 

2 summarizes where ARID3a is expressed during healthy B lymphocyte development. 

 

Figure 2. ARID3a expression is enhanced in systemic lupus erythematosus (SLE) B cell 

subsets compared to healthy controls. A diagram depicts B lineage development in healthy 

(top panel) and SLE patients (bottom panel) from the bone marrow to the periphery. Red nuclei 

denote cell subsets that express ARID3a. The inset shows the induction of ARID3a and 

interferon alpha (IFNα; green circles), and the effect of those ARID3a-expressing B cells on 

healthy pDCs. In SLE patients, larger cells and gold stars indicate those cell subsets with 

increased numbers of ARID3a+ cells and associated IFNα production. Blue immunoglobulin (Ig) 

indicates non-self-reactive Ig, while gold Ig indicates the subsets of cells that can also produce 

autoreactive Ig. pDCs—plasmacytoid dendritic cells; LDN—low density neutrophils; A3a—

ARID3a. 
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2. ARID3a and Autoantibodies in SLE 

Several years ago, we discovered that the constitutive expression of murine 

ARID3a/Bright in all B lymphocyte lineage cells in transgenic mice resulted in antinuclear 

antibody (ANA) production in young mice and immune complex deposits in the kidneys of older 

mice (35,36). ANAs and anti-DNA antibodies typically increase during flares of SLE disease 

activity and are hallmarks of lupus in 50%–70% of SLE patients (35,40). ANA production in 

ARID3a-transgenic mice was observed on two genetic backgrounds and was associated with 

increases in transitional T1 B cells and MZ B cells (36), subsets previously associated with 

autoimmune disease activity in mice and humans (39,41-43). In addition, chimeric mice 

generated from hematopoietic stem cells taken from the transgenic mice also developed ANAs 

and increased MZ B cell subset numbers, indicating that the constitutive ARID3a expression was 

directly linked to the production of ANAs and increases in MZ cells (35). 

To determine if ARID3a was over-expressed in lupus B lymphocytes, we assessed the 

numbers of peripheral blood B cells for ARID3a expression in healthy controls, patients with 

rheumatoid arthritis, and SLE patients (44). Surprisingly, SLE circulating blood peripheral B 

lymphocytes had dramatically increased ARID3a expression (44). Examination of a random 

cross section of 115 lupus patients revealed abnormally high numbers of circulating ARID3a+ B 

cells (up to 40-fold increases) compared with healthy controls and patients with rheumatoid 

arthritis (44). ARID3a was expressed in all of the nine SLE B cell subsets we examined, 

including naïve B cells that typically do not express ARID3a transcripts in healthy controls 

(Figure 2) (28,44). Longitudinal analyses of 37 SLE patients revealed that numbers of ARID3a-

expressing B lymphocytes varied over time in each patient and within individual B cell subsets, 

but the total numbers of ARID3a-expressing B cells, irrespective of the subset, were associated 
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with increased SLEDAI scores (p = 0.0039) (44). ARID3a expression in each B cell subset was 

bimodal, with only a fraction expressing ARID3a, and there was no direct relationship with 

specific organ involvement or any autoantibody specificity (44,45). ARID3a was expressed in 

both healthy and SLE MZ-like B cells, suggesting it may have innate immune functions in those 

cells (44,46,47). Intriguingly, Epstein Barr virus (EBV) exposure has been associated with 

increased lupus susceptibility (47), and some anti-DNA antibodies cross react with the EBNA1 

protein (47,48). Others showed that EBV requires and recruits ARID3a for expression of the 

EBNA C promoter that maintains viral latency, associating this virus with ARID3a expression 

(49). Thus, ARID3a likely plays important roles in innate immunity in healthy B cells and may 

be over-expressed in SLE in a fashion similar to our ARID3a transgenic mice that developed 

autoantibodies. 

These data led us to hypothesize that ARID3a-expressing naïve B cells might be 

predisposed to produce autoantibodies. We sorted naïve B cells from both healthy controls and 

SLE patients, and generated 37 monoclonal antibodies from those cells, but failed to observe 

skewing toward specific Igs associated with autoimmunity in the SLE naïve B cells, perhaps 

because of the small number of Igs examined (45). However, when we isolated total B cells from 

SLE patients with high versus low ARID3a-expression, and examined them for differential gene 

expression (46,50), we found associations with known mediators of disease activity. Specifically, 

many genes associated with IFNα expression (IRF3, IRF5, IFI44, and OAS1), toll-like receptors 

(TLR9 and TLR7), and anti-apoptotic genes (BCL2 and BCL2L1) were upregulated in the 

samples with increased ARID3a expression (50). Additionally, our unpublished scRNA-seq data 

from naïve SLE B cells also show an upregulation of OAS1, IFI27, and IRF3, and confirm 

that BCL2L1 is linked to pathways associated with ARID3a (Figure 3A). YY1, an important 
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suppressor and epigenetic regulator, binds to sites in the IgH enhancer that overlap the ARID3a 

binding sites, and was co-expressed with ARID3a in naïve B cells from SLE patients (Figure 

3A) (51). Transcripts from 13 IFN signature genes were significantly upregulated in SLE B cells, 

and five of those, including EPSTI1, IFI27, and OAS1, were increased over 20-fold (50). The 

gene signatures for the ARID3a-expressing B cells indicate a strong correlation to IFN, 

suggesting a potential connection between ARID3a and the lupus-associated cytokine, IFNα. 

 

Figure 3. ARID3a expression is associated with diverse genes in distinct cell types. (A). An 

ingenuity pathway analysis (IPA) network was generated using genes differentially expressed in 

single cell RNAseq of naïve SLE B cells with a differential ARID3a expression. Green indicates 

upregulation and red indicates downregulation, while the genes associated with these pathways, 

but not differentially regulated in the B cells, are colorless. (B). SLE LDNs and pDCs shared 

nine differentially expressed genes associated with the ARID3a expression and listed here. (C). 

GO analyses of the nine ARID3a-associated genes differentially regulated in both pDCs and 

LDNs indicate the most significant pathways associated with their expression. 

A number of labs demonstrated that SLE patients display altered epigenetic marks in 

peripheral blood cells (50,52). Elegant studies by Scharer et al. indicate that SLE resting naïve B 
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cells are already epigenetically distinct from healthy control B cells (52,53), suggesting that 

epigenetic changes might define unique transcriptomes in SLE. However, no epigenetic regulator 

was specifically associated with the signatures observed in these studies, and the data were 

obtained from all SLE patients, regardless of disease activities (53). ARID3a has several 

characteristics of an epigenetic regulator. It alters chromatin accessibility of the Ig enhancer in 

mice ((21), our unpublished data), and the mouse homologue co-precipitated with at least one 

histone modifying enzyme (12). In addition, our unpublished data suggest that ARID3a recruits 

epigenetic machinery. We found that whole blood from SLE patients with increased numbers of 

ARID3a-expressing B cells showed decreased methylation of promoters for a number of Type I 

interferon genes, including IFNα2 and IFNα6, compared to SLE samples with normal levels of 

ARID3a-expressing B cells (46,50). While these data do not directly associate ARID3a with 

open chromatin at those IFNα loci, these data suggested that ARID3a could be specifically 

associated with alterations in IFNα expression at the epigenetic level. 

3. ARID3a and IFNα in SLE 

Consistent with the data from other labs indicating that human B lymphocytes can secrete 

IFNα (54), the intracellular staining of SLE B lymphocytes revealed that IFNα is produced by a 

subset of B cells, most of which co-express ARID3a (46). Indeed, we found that a subset of MZ-

like healthy B cells can be stimulated with the TLR9 agonist CpG to increase ARID3a and IFNα 

expression (46). EBV-transformed B cell lines express both ARID3a and IFNα, and were used to 

demonstrate that ARID3a inhibition reduced the production of both proteins (46). These data, 

along with time course data indicating ARID3a expression could be induced in healthy cells 

prior to IFNα expression (46), link ARID3a with IFNα expression in B cells, and suggest that 

ARID3a may contribute to IFNα regulation. 
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The major sources of type-I IFN production in SLE are thought to be plasmacytoid 

dendritic cells (pDCs) and granulocytes, rather than B lymphocytes (55,56). Therefore, we 

investigated if ARID3a-expressing B cells might have a helper cell activity and induce IFNα 

production in healthy pDCs. The addition of previously CpG-stimulated healthy donor B cells 

expressing ARID3a and IFNα to autologous pDCs upregulated IFNα production in the pDCs 

(Figure 2 inset) (46). To our surprise, the pDCs that expressed IFNα also co-expressed ARID3a, 

emphasizing the association between ARID3a and IFNα expression, and demonstrating that 

mature cells other than B lymphocytes express ARID3a (46). We next queried whether SLE 

patient pDCs and low-density neutrophils (LDNs) express ARID3a in association with IFNα. 

Indeed, we observed a very strong correlation between ARID3a and IFNα expression in lupus 

pDCs (Figure 2) (13). However, the ARID3a and IFNα expression in the pDCs did not correlate 

highly with the SLEDAI scores, suggesting that other factors or cell types more strongly 

influenced disease activity (13). 

LDNs are much more abundant than pDCs in SLE, comprising up to 54% of patient 

peripheral blood mononuclear cells, and they have been associated with both IFNα production 

and increases in autoimmune activity (57). Neutrophils exposed to circulating chromatin produce 

significant amounts of IFNα in healthy individuals and in SLE patients (58). We found that SLE 

LDNs also showed increased levels of ARID3a protein expression compared with LDNs from 

healthy controls (Figure 2) (13). ARID3a was also strongly associated with IFNα expression in 

SLE LDNs, and was, surprisingly, more closely associated with increases in SLEDAI scores than 

IFNα levels (13). These data support a role for ARID3a in IFNα-associated pathologies in SLE 

and suggest that ARID3a may contribute to other disease-associated activities not directly 
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correlated with IFNα levels. Indeed, others showed that IFNα levels do not associate well with 

SLE disease activity (59). 

LDNs undergo spontaneous NETosis, a process whereby inflammatory extracellular 

nucleic acids decorated with histones, enzymes, and antimicrobial peptides capable of entrapping 

bacteria are extruded from cells, and this occurs at higher rates in LDNs than in normal density 

neutrophils (57,60,61). This raises the possibility that LDNs may serve as a source for DNA and 

chromatin that could trigger TLR9 responses and reactivate self-reactive memory B cells 

(55,60,62-64). Indeed, others showed that NETs that contact neighboring B cells can stimulate 

nucleotide-sensing TLRs and promote T-independent B cell activation (65). In a lupus mouse 

model, the depletion of neutrophils reduced the splenic B cell numbers, serum BAFF, and anti-

dsDNA IgG levels, and immune complex deposits in the kidneys (66). In addition to NET 

production, LDNs and other neutrophils possess immunomodulatory properties capable of 

directly and indirectly stimulating autoimmune B cells (67-70). B-helper neutrophil (NBH) 

subsets identified in the spleen by Puga et al. (65), produce the B-cell stimulating factors BAFF, 

APRIL (A Proliferation-Inducing Ligand), and IL-21, and parallel functions of T cells. NBH cells 

also exhibit high rates of spontaneous NETosis, making them oddly similar to LDNs (65); 

however, these cells have not been examined for ARID3a expression. Because ARID3a is over-

expressed in lupus pDCs, LDNs, and B cells (13,44,46), we hypothesize that ARID3a contributes 

to interactions between these three cell types in lupus. Others found that bone marrow-derived 

neutrophils generate IFNα and stimulate early B cell precursors (71). Therefore, inflammatory 

events in LDNs associated with ARID3a expression may precede the activation of autoimmune 

anti-self B cells in lupus. Indeed, recent studies indicate that transitional bone marrow B cells, 
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the precursors of mature B cells in patients with SLE, already have an IFN and autoimmune 

signature (41). 

Gene expression data from pDCs and LDNs with high levels of ARID3a protein provide 

new insights into genes associated with autoimmunity and increases in SLEDAI scores. 

Transcriptomic analyses of pDCs stratified by ARID3a protein expression levels identified 189 

genes associated with both ARID3a and IFNα expression in pDCs, and only 122 differentially 

expressed genes with significant R2 values in LDNs (13). These genes were tightly co-regulated 

in both cell types suggesting that ARID3a is either tightly associated with a master regulator of 

gene transcription, or that it is a master regulator itself (13). Only nine differentially expressed 

genes were shared between LDNs and pDCs, in keeping with the cell-type specific effects of 

ARID3a on gene pathway regulation (Figure 3B,C) (13). In addition, because ARID3a protein 

expression was more tightly associated with increases in the SLEDAI scores in LDNs than in 

pDCs, we postulate that the relatively small number of genes associated with ARID3a 

expression, but not with IFNα, will identify new mediators of disease activity in SLE. The 

ARID3a-associated LDN genes include eight transcription factors and two epigenetic factors that 

may function downstream of ARID3a, as well as a number of noncoding RNAs with potential 

regulatory functions. 

4. ARID3a and Nephritis 

While there is no direct evidence that ARID3a is associated with the development of 

nephritis in SLE patients, there are a number of interesting observations that suggest it could 

be. NANOG and SOX2 are two genes frequently associated with ARID3a expression (Figure 

3B), and with cell fate commitment (72-74). These two genes play important functions in stem 

cells, and along with OCT4, may be regulated by ARID3a (11,12). In X. laevis, ARID3a is 
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expressed in kidney stem cells, where it binds to enhancers of the genes required for the 

regeneration of nephric tubules and changes histone 3 lysine 9 (H3K9me3) levels, allowing the 

expression of the LHX1 gene critical for tubule formation(72,75). Our unpublished data also 

reveal ARID3a expression in human adult kidney progenitor cells, suggesting it may play a role 

in human nephrogenesis as well. Additionally, resident renal cells secrete IFNα in a lupus 

nephritis mouse model (75), but it is not known whether IFNα secretion in these cells is 

associated with ARID3a expression. One might envision that the over-expression of ARID3a 

within kidney cells could alter gene expression patterns, contributing to inflammation and the 

autoimmune complexes observed in SLE that ultimately result in renal dysfunction. 

5. ARID3a and Hematopoiesis 

ARID3a is also expressed in a number of hematopoietic progenitors (27,76,77), and is 

required for B lineage development in both mouse and man (14,76). The knockdown of ARID3a 

in human cord blood leads to increases in myeloid lineage development, with associated 

reductions in the B lymphoid lineage (76). Although the precise mechanisms of ARID3a 

function in stem cells have not been fully elucidated, knockout mice die between days 12 and 14 

of gestation when hematopoiesis moves from the yolk sac to the fetal liver (14). Homozygous 

knockout embryos exhibit 90% depletion of hematopoietic stem cells (HSCs), suggesting 

ARID3a is critical for normal numbers of HSC development, and embryos without ARID3a are 

deficient in erythrocyte development, perhaps explaining lethality (14). HSCs are included in the 

hematopoietic stem and progenitor cells (HSPCs), a heterogeneous population of cells that 

consists of both primitive progenitor cells (HSCs, and multipotent progenitors (MPPs)), and 

committed progenitor cells (multi-lymphoid progenitors or MLPs and multi-myeloid progenitors 

or MMPs), and these cells are ultimately responsible for generating all mature hematopoietic 
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cells, including B cells, pDCs, and LDNs (Figure 4). HSPCs from SLE patients have been 

proposed to be dysfunctional and exhibit defects in proliferation (78,79), as well as deficiencies 

during hematopoietic transplantation for SLE, which result in the re-emergence of disease and/or 

engraftment failure (80,81). 

 

Figure 4. ARID3a is expressed in healthy and SLE hematopoietic progenitors, and the 

levels of ARID3a affect lineage decisions. Cell subsets with ARID3a expression in healthy 

individuals are indicated with the red font, while gold stars indicate populations with increased 

numbers of ARID3a-expressing cells in SLE patients. The effects of increased or inhibited levels 

of ARID3a (arrows up or down) on HSCs (1), RBCs (2) early myeloid lineage development (3), 

early B lymphoid development (4), late myeloid lineage development (5), and late B lineage 

development (6) are shown by thicker arrows for increases, or with a symbol showing that 

development is blocked. HSCs—hematopoietic stem cells; MPPs—multipotent progenitors; 

MMPs—multi-myeloid progenitors; MLPs—multi-lymphoid progenitors; TCPs—T cell 

progenitors; NKPs—natural killer cell progenitors; pDCs—plasmacytoid dendritic cells; 

RBCs—red blood cells. 
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Our studies suggest that SLE HSPCs are also associated with the autoimmune 

dysregulation of ARID3a. ARID3a is expressed at varying frequencies in a subset of cells in all 

defined progenitor populations of healthy controls (76,77) (Figure 4). In SLE patients, increased 

numbers of ARID3a+ cells existed in all progenitor subpopulations compared to healthy controls, 

although the total number of circulating hematopoietic progenitors did not differ between SLE 

patients and healthy individuals (77). This suggests that ARID3a expression is abnormal, even in 

early hematopoietic precursors in SLE patients. Other studies found slightly reduced numbers of 

circulating HSPCs in SLE patients (78,79), but they did not assess ARID3a expression. When 

HSPCs from SLE patients were transplanted into immunodeficient mice, the engraftment and 

development were similar between the samples with low numbers of ARID3a-expressing cells 

and those with high numbers of ARID3a-expressing cells (77), suggesting that ARID3a over-

expression does not affect engraftment potential. However, all of the mice that received HSPCs 

with high numbers of ARID3a-expressing cells generated human ANAs, while only 16% of the 

mice that received HSPCs with low numbers of ARID3a-expressing cells generated ANAs (77), 

again associating ARID3a levels with autoantibody production. As mentioned above, SLE 

patient HSPCs that have increased numbers of ARID3a-expressing cells show increased 

frequencies of ARID3a expression in all progenitor populations, suggesting that if ARID3a is 

induced in the early populations of cells, it is either maintained throughout development, or that 

it is continually induced in maturing subsets. 

There are few mechanistic studies defining the differences between healthy and SLE 

HSPCs. Moonen et al. reported that circulating hematopoietic progenitors, which also have the 

capacity to repair vascular damage associated with atherosclerosis, exhibit reduced functional 

capacity in SLE patient-derived samples, but they did not assess hematopoietic development 
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(78). We found that SLE HSPCs with low numbers of ARID3a+ cells proliferated less well 

compared with both healthy control and SLE samples with increased numbers of 

ARID3a+ HSPCs, possibly because of the lower expression levels of IL7R required for cell 

proliferation (77). Importantly, HSPCs can also respond to TLR9 ligands in vitro, with increased 

expression of both ARID3a and IFNα ((46), unpublished data). IFNα signaling in HSCs induces 

proliferation and exit from quiescence, and under chronic conditions, reduces the numbers of 

quiescent HSCs in the bone marrow pool (82,83). However, others reported that HSCs under 

chronic IFNα exposure return to quiescence rapidly after initial exposure (84). Because IFNα can 

act autonomously on the cells that produce it (85), the associated outcomes of exposure are likely 

to be diverse. 

The importance of ARID3a for B lineage development in mice was demonstrated in 

multiple systems, and has increased our understanding of ARID3a function (14,29,32,34-36). 

Several studies revealed that ARID3a expression in B lineage progenitors drives development 

toward B1 lineage over B2 lineage (29,34). Interestingly, when ARID3a was overexpressed in 

murine bone marrow progenitor B cells, the B1a cells that do not require the expression of a 

surrogate light chain for generation were increased, with those cells showing autoreactive BCR 

repertoires (29). Pre-B and immature B cells also exhibited increased expression 

of MYC and BHLHE41, and showed decreased expression of SIGLEC-G and CD72 compared 

with wild type progenitor cells (29). The reduction of SIGLEC-G and CD72 was hypothesized to 

contribute to the autoreactive nature of the B1 cells generated, as both are negative regulators of 

BCR signaling, while the increases in MYC and BHLHE41 expression likely promote the 

survival of autoreactive B cells (29). These data provide mechanistic insights for the 
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autoantibody production in ARID3a transgenic mice and imply that ARID3a expression in B 

cells from SLE patients may also contribute to the autoantibody phenotype. 

ARID3a inhibition in human HSCs also resulted in an increased expression of the 

myeloid lineage-associated transcription factors CEBPB and CSF1, as well as a reduction 

in TCF3, the gene for E2A (76). Furthermore, when ARID3a was overexpressed in cord blood 

HSPCs, myeloid lineage cell development was impaired (76). The HSPCs from SLE patients 

with fewer ARID3a-expressing cells produced fewer B lineage cells in culture compared to both 

healthy donor cells and SLE HSPCs with high numbers of ARID3a-expressing cells (77). 

Conversely, SLE samples with increased numbers of ARID3a-expressing HSPCs showed in vitro 

expansion equivalent to healthy controls, with increased B lineage cell development (77). 

Together, these data suggest that alterations in ARID3a levels during early hematopoiesis in SLE 

patients could have profound effects on mature cell phenotypes and lineage pathways, as shown 

in Figure 4, even before known B cell tolerance checkpoints occur. 

Elegant studies by a number of laboratories reveal that multiple hematopoietic cell types, 

which we have not discussed here, are likely to play important roles in SLE pathogenesis, 

including T cells, macrophages, basophils, and innate lymphoid cells (86,87). Hematopoiesis is 

an inter-regulatory process, so these cells may also be affected differentially through interactions 

with cells that express ARID3a. Indeed, ARID3a expression modifies gene expression pathways 

in a cell-type specific fashion in the cells in which it is expressed, based on our transcript 

analyses (13,46,50,76). To date, we have not observed ARID3a expression in any T cell or 

monocyte subset; however, our unpublished data show ARID3a transcripts in a subset of NK 

cells. Our data suggest that ARID3a can contribute to hematopoietic lineage decisions, perhaps 

resulting in skewing of cell frequencies. Skewing of mature hematopoietic subsets is a common 
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characteristic of SLE (44,57,88-91), and although we have not definitively shown that ARID3a 

contributes to that skewing, the data certainly suggest that possibility. 

6. Regulation of ARID3a Expression 

Although ARID3a expression levels clearly change in both healthy inflammatory 

responses and in multiple SLE cell types, the presumed extracellular triggers that induce ARID3a 

expression have not been clearly elucidated. Many differentially expressed genes in SLE have 

been identified through genome-wide associated studies (GWAS), and are associated with single 

nucleotide polymorphisms (SNPs) that provide a genetic component to the risk of developing the 

disease (92). Although SNPs can be found in the coding regions of ARID3a, they do not affect 

the amino acid sequence, likely because defects in ARID3a function are embryonic lethal in 

multiple organisms, including mice (14,93,94). Nearly 80% of the SNPs associated with lupus 

are located in non-coding DNA (92). Therefore, it is possible that ARID3a may interact 

differentially with the regulatory regions affected by these SNPs. This is an area of current 

interest. A number of studies suggest that epigenetic alterations, including changes in histone 

acetylation, are associated with SLE (95). ARID3a has been shown to co-precipitate with histone 

deacetylases in mice (73), but it is unclear whether it is associated with deacetylases in human 

SLE cells. Interestingly, in mice, the inhibition of histone deacetylases was effective in reducing 

autoantibody responses (96). Clearly, additional studies are required in order to determine how 

ARID3a regulates other genes and how it is regulated. 

Chromatin and other nuclear antigens exposed by NETs are highly opsonized, can 

activate IFNα responses through TLR9, and have been postulated to trigger autoimmune 

responses in multiple inflammatory diseases (62,63,97). Our data indicate that healthy B lineage 

cells and hematopoietic progenitors respond to TLR9 engagement by increasing ARID3a 
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expression ((46), unpublished data). In early B lineage cells, ARID3a is down-regulated by 

miRNAs of the 125 family (98), and it is likely to be similarly regulated in pDCs and LDNs, 

because transcripts for ARID3a are present in healthy control pDCs and LDNs in the absence of 

detectable ARID3a protein (13,29). Let-7 regulates ARID3a levels in mouse hematopoiesis, and 

controls the switch from fetal to adult B lineage development (29,34), but the role of Let-7 in 

human B lymphopoiesis is not known. The dysregulation of miRNAs has also been implicated as 

a contributing factor for disease pathogenesis in SLE (99), and it is possible that ARID3a levels 

are upregulated in multiple hematopoietic cells in SLE as a consequence of deficiencies in the 

appropriate regulatory RNAs. Additional studies will be required in order to determine whether 

ARID3a overexpression in SLE is the result of increased activation, decreased regulation, or a 

combination of both processes. 

7. Clinical Implications 

The heterogeneous nature of SLE pathogenesis and the lack of understanding of the 

underlying mechanisms that cause the disease limit therapeutics to those that treat symptoms. 

Treatments often include glucocorticoids and broad immunosuppressive therapies that act to 

diminish immune responses as a whole and perturb normal immune functions against disease. 

Our data show increased expression of ARID3a in B cells, pDCs, and LDNs from patients with 

SLE, and associate that increased expression with increases in disease activity. Nothing is known 

regarding the function or expression of ARID3a in other autoimmune diseases. In a limited 

patient sample, we did not observe ARID3a over-expression in the B lymphocytes of patients 

with rheumatoid arthritis (44). However, ARID3a-expressing cells have been observed in colon 

cancer (100) and B cell lymphomas (101). The miRNA Let-7 may regulate ARID3a expression 

in some cell types, and the dysregulation of Let-7 has been associated with a number of different 
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cancers, where ARID3a expression might also occur (102). It will be critical to determine in 

those cases if ARID3a expression is intrinsic to the cancer tissue, or if it is the result of 

infiltrating immune cells. Many diseases are expected to yield activated immune cells that may 

express ARID3a in a higher abundance than in healthy tissues. 

Our data show strong associations between ARID3a expression and production of IFNα. 

IFNα is an inflammatory cytokine proposed to play a major role in SLE, and it is currently the 

target of several clinical trials that indicate that targeting IFNα responses may be beneficial (103-

106). Our data in B lymphocytes suggest that ARID3a may function upstream of IFNα (46). 

Therefore, we propose that new therapies targeting ARID3a directly may be beneficial for the 

treatment of SLE. Because ARID3a over-expression in SLE is limited to a percentage of cells 

within any given cell type (i.e., B cells, LDNs, and pDCs), one might imagine that the reversible 

inhibition of this protein could provide directed therapies that would inhibit the ARID3a-

expressing subsets of cells without impairing the normal immune responses in cells that do not 

express ARID3a. It should be noted that there is no evidence that increases in ARID3a are 

causally related to SLE disease pathogenesis. However, the plethora of associations of increased 

ARID3a expression with disease activity in multiple cell types provides strong circumstantial 

evidence that ARID3a has a major role in SLE pathogenesis, and that ARID3a inhibition may 

have significant therapeutic benefits in this difficult to treat disease. 
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ABSTRACT 

Type I interferons (IFN) causes inflammatory responses to pathogens, and can be 

elevated in autoimmune diseases such as systemic lupus erythematosus (SLE). We previously 

reported unexpected associations of increased numbers of B lymphocytes expressing the DNA-

binding protein ARID3a with both IFN alpha (IFNα) expression and increased disease activity in 

SLE. Here, we determined that IFNα producing low density neutrophils (LDNs) and 

plasmacytoid dendritic cells (pDCs) from SLE patients exhibit strong associations between 

ARID3a protein expression and IFNα production. Moreover, SLE disease activity indices 

correlate most strongly with percentages of ARID3a+ LDNs, but were also associated, less 

significantly, with IFNα expression in LDNs and pDCs. Hierarchical clustering and 

transcriptome analyses of LDNs and pDCs revealed SLE patients with low ARID3a expression 

cluster with healthy controls and identified gene profiles associated with increased proportions of 

ARID3a- and IFNα-expressing cells of each type. These data identify ARID3a as a potential 

transcription regulator of IFNα-related inflammatory responses and other pathways important for 

SLE disease activity. 

http://creativecommons.org/licenses/by/4.0/
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INTRODUCTION 

ARID3a (A-T rich interacting domain 3a) is a DNA-binding protein that modulates gene 

expression, increasing immunoglobulin gene expression in B lymphocytes and repressing 

expression of other genes in neonatal fibroblasts (11,12,23). We previously described increases 

in the number of circulating ARID3a+ B lymphocytes in SLE patients, and found that these cells 

are associated with increases in disease activity indices as defined by SLEDAI scores (SLE 

disease activity indices) (44). Others found that B lymphocytes produce Type I IFNs during 

development and in response to infections (107-109). We have also shown that induction of 

ARID3a protein in healthy B lymphocytes results in Type I IFN production (46), suggesting an 

unexpected link between ARID3a and IFN. Furthermore, SLE patient B lymphocytes with high 

levels of ARID3a expression also exhibited increases in IFN signature gene expression compared 

to healthy controls and SLE B cells with low ARID3a expression levels (46,50). Together, these 

data suggest that ARID3a expression in both SLE and healthy B cells is associated with IFN 

production. 

In healthy individuals, Type I IFNs are essential for immune responses against 

intracellular pathogens, including viruses that trigger anti-DNA and anti-RNA responses (110). 

Virtually all cells can produce and respond to IFNs, with differing cell type-specific responses 

that can be detrimental (111). Increased plasma Type I IFN, mainly IFNα, occurs in 

approximately half of adult SLE patients, and is associated with increased disease activity (112-

116). IFNα expression in autoimmune diseases results in different gene signatures than those 

produced by viral infections (117), and dysregulated IFNα levels in SLE activate a panel of IFN-

regulated genes, commonly referred to as an IFN signature (118). Transcriptomic analyses of 

whole blood from pediatric SLE patients further defined this gene signature (119). Although 
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increases in IFNα accelerated disease onset (120-122), and depletion of major subsets of IFNα-

producing cells ameliorated autoimmunity in several mouse models (123,124), the reasons for 

elevated IFNα expression in SLE patients is unknown. Several clinical trials using treatments 

that inhibit IFN production as therapies for SLE are ongoing, [reviewed in ref. (125). Thus, 

understanding underlying mechanisms associated with increased IFNα production is important. 

Plasmacytoid dendritic cells (pDCs) are thought to be a major source of IFNα in SLE 

patients, [reviewed in ref. (126). Other cell types, including neutrophils (55,127,128), also 

contribute to IFNα production in SLE. A population of low density neutrophils (LDNs) present 

in the peripheral blood mononuclear fraction of pediatric SLE patient samples have enhanced 

capacity to synthesize IFNα (55), contributed to tissue damage in adult SLE patients (57,129), 

and were also associated with increased disease activity in SLE (57,61,130). We demonstrated 

that healthy, ARID3a+ B lymphocytes induced both IFN production and ARID3a expression in 

autologous pDCs (46). These data led us to hypothesize that ARID3a might be a biomarker for 

IFN production in pDCs and other cell types, including LDNs. 

Nothing is known regarding ARID3a expression in pDCs and LDNs, including whether 

its expression is correlated in these cells with increased IFN production. Therefore, we assessed 

levels of intracellular ARID3a and IFNα in pDCs and LDNs from healthy controls and SLE 

patients with a wide range of disease activity. ARID3a protein levels correlated with IFNα levels 

in both pDCs and LDNs. To identify genes associated with ARID3a expression in LDNs and 

pDCs, RNA-seq was performed and expressed genes were correlated with ARID3a protein 

levels. Our data define gene profiles associated with ARID3a and IFN expression in both pDCs 

and LDNs and implicate ARID3a as a regulator of innate immune responses in these cells. 

MATERIALS AND METHODS 
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Patients and healthy controls 

Healthy age and sex-matched controls and patients who met a minimum of four 

American College of Rheumatology Classification Criteria for SLE (131) were recruited after 

informed consent from the Oklahoma Medical Research Foundation (OMRF) Oklahoma Lupus 

Center in accordance with OMRF (IRB compliance #06-19) and OUHSC (IRB compliance 

5946) Institutional Review Board approvals and in accordance with the Declaration of Helsinki. 

SLE patients (127) ranging in age from 21 to 73 (96% female, SLEDAI 0 to 8, Table 1) and 11 

healthy controls were recruited for this study. All patients were under treatment regimens at 

blood draw (Table 1). 
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Table 1. Study subject demographics. 

Subject Race Gender Age SLEDAI Treatment 

SLE 1 C F 71 4 HCQ 

SLE 2 C F 73 3 HCQ 

SLE 3 C F 62 0 HCQ, MTX 

SLE4 C F 71 0 AZA 

SLE 5 AA F 51 6 HCQ, RTX 

SLE 6 C F 43 8 PDN,Q 

SLE 7 AA F 34 5 HCQ 

SLE 8 NA/H F 29 4 AZA, HCQ 

SLE 9 AA F 32 4 HCQ 

SLE 10 AA M 56 6 PDN, AZA, HCQ 

SLE 11 H F 39 0 MTX, HCQ, PDN 

SLE 12 A F 52 0 AZA 

SLE 13 C F 36 1 AZA, HCQ 

SLE 14 C F 34 2 MTX, HCQ, PDN 

SLE 15 AA F 18 0 PDN, AZA, HCQ 

SLE 16 A M 35 6 HCQ 

SLE 17 AA F 21 2 MMF, PDN, HCQ 

SLE 18 C F 28 2 PDN, HCQ 

SLE 19 C F 45 6 HCQ, RTX 

SLE 20 AA F 42 2 PDN, HCQ 

SLE 21 C F 64 2 PDN, HCQ, HC 

SLE 22 AA F 59 6 MTX, HCQ 

SLE 23 AA F 50 4 MMF, ADA, HCQ 

SLE 24 AA F 36 4 PDN, HCQ 

SLE 25 AA F 53 4 HCQ, RTX, PDN 

SLE 26 C F 55 2 MTX, HCQ, B 

SLE 27 C F 62 0 PDN, AZA, HCQ 

C1 C F 48 N/A 
 

C2 C F 55 N/A 
 

C3 C F 35 N/A 
 

C4 C F 46 N/A 
 

C5 C M 57 N/A 
 

C6 C F 50 N/A 
 

C7 C F 34 N/A 
 

C8 AA F 63 N/A 
 

C9 AA F 40 N/A 
 

C10 C F 44 N/A 
 

C11 C F 33 N/A   
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SLE patients (SLE) and healthy controls (C) are listed. Races are: A- Asian, AA- African 

American, C- Caucasian, H-Hispanic, NA - Native American. Age at time of blood draw and 

gender (F-female, M-male) are indicated. Disease activity indices (SLEDAI scores) and drug 

treatments are indicated for patients. Drugs: HCQ-hydroxychloroquine, MTX-methotrexate, 

AZA- Azathioprine, RTX- Rituximab, PDN-Prednisone, HC- Hydrocortisone, ADA- Humira, 

B- Benlysta, MMF-Cellcept, Q-Quinacrine. 

Sample preparation 

Total peripheral blood mononuclear cells (PBMCs) from patients and healthy controls 

were isolated from heparinized peripheral blood with Ficoll Paque Plus (GE Healthcare, Fisher 

Scientific cat# 45-001-749). Two million PBMCs were stained for flow cytometric analysis and 

the remaining cells were either cryopreserved for later use or were immediately enriched as 

described below for either LDNs or pDCs. Patient plasma samples were stored at −80 °C until 

assay. LDNs were isolated for RNA analyses from either cryopreserved or freshly isolated 

PBMCs using the EasySep Human Neutrophil Enrichment Kit (cat# 19257, Stemcell 

Technologies) according to manufacturer instructions. Isolation of pDCs was performed using 

the human Plasmacytoid Dendritic Cell Isolation Kit II (cat# 130-097-415, Miltenyi Biotec) 

according to manufacturer instructions using LD columns (cat# 130-042-901, Miltenyi Biotec). 

Patient samples chosen for RNA analyses were based on population cell numbers and ARID3a 

expression levels identified by flow cytometric evaluation of total PBMCs. 

Flow cytometry analyses 

pDCs were defined as CD3−CD20−CD56−CD11c−CD123+CD304+ [35,36]. LDNs 

were defined as CD3−CD20−CD56−CD14−CD15+CD16+CD16b+ [32]. The use of CD16b was 

used as a marker to ensure exclusion of NK cells (132) that may express ARID3a (our 

unpublished data). Appropriate matching isotype controls from Biolegend were used for gating. 

Following surface marker staining, cells were fixed with fixation buffer (BD Biosciences), 
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permeabilized with Transcription Factor Fixation/Permeabilization Buffer kit (eBioscience) and 

stained for IFNα and ARID3a. IFNα-Phycoerythrin (Clone LT27:295, cat# 130-092-601) 

recognizes the majority of the IFN-α subtypes, but not IFN-α2b. Human-specific anti-ARID3a 

antibodies were generated in goats by our laboratory against a peptide sequence from the amino 

terminal portion of ARID3a (G-R-G-R-E-G-P-G-E-E-H-F-E), and were purified over a peptide 

column, verified by western blot and mobility shift against in vitro translated human ARID3a 

and B cell nuclear extracts containing ARID3a (23,28). A rabbit anti-goat Fluorescein (Cat# 

6160-02) was used as the secondary antibody. Doublet exclusion was used to ensure analyses of 

single cells prior to forward/side scatter gating. Data were collected using an LSRII (BD 

Biogenics) and FACSDiva (BD Biosciences) software version 4.1 or Stratedigm S1200Ex and 

CellCapTure acquisition software and were analyzed using FlowJo (Tree Star) software version 

10. Specific antibodies used were: human lineage markers CD3 Pacific Blue (clone UCHT1, cat# 

300434), CD20 Pacific Blue (Clone 2H7, cat# 302330), and CD56 Pacific Blue (Clone 5.1H11, 

cat# 362552), CD11c-Brillian Violet 605 (Clone 3.9, 301636), CD16-Allophycocyanin-Cyanin7 

(Clone 3G6, cat#302018), CD14-Allophycocyanin (Clone 63D3, cat#367118), CD304-Brilliant 

Violet 510 (Clone 12C2, cat# 354515), CD15-Brilliant Violet 605 (Clone W6D3, cat# 323032), 

and CD19-Phycoerythrin-Cyanin5.5 (Clone HIB19, cat# 302210) from Biolegend, CD123-

Allophycocyanin-Vio770 (Clone AC145, cat#130-104-196) from Miltenyi Biotec, and CD16b-

Alexa fluor700 (Clone 245514, cat# FAB1597N) from R&D Systems. 

RNA-seq 

RNA from enriched LDNs and pDCs was isolated using the MagMAX mirVana Total 

RNA Isolation Kit (Applied Biosystems, cat# A27828) according to manufacturer instructions. 

RNA concentrations were measured with an Impen Nanophotometer. RNA samples were 
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prepared for sequencing using the Ovation RNA-Seq v2 (NuGEN Technologies) kit and libraries 

were constructed using Ovation Ultralow Library System V2. Library concentration and 

fragment size distribution was determined using Agilent High Sensitivity D1000 kit on an 

Agilent 2200 TapeStation (Agilent Technologies). Paired-end (2 × 75bp) sequencing was 

performed on a NextSeq platform using SBS v2 chemistry. 

Fastq files were analyzed using FastQC and low quality reads and sequencing adapters 

were trimmed using Trimmomatic (133). A Bowtie index of raw fastq files was created based on 

the UCSC knownGene (hg38) transcriptome, and paired-end reads were aligned directly to this 

index using default parameters (134). RSEM (135) was run using default parameters on the 

aligned reads to estimate gene expression levels. Library quality metrics, such as genomic 

mapping rates, library and the fraction of ribosomal RNA in each library were calculated. Two 

SLE pDC, one healthy control pDC, and one SLE neutrophil samples were excluded due to low 

library size and poor alignment. Differential gene expression was analyzed using limma (136). 

Unsupervised hierarchical clustering was performed on differentially expressed genes 

(FDR < 0.05). Pathway analyses were performed using Ingenuity Pathway Analysis (Qiagen). 

Heatmaps in Fig. 8 were constructed of all genes that significantly correlated with % IFNα+ or % 

ARID3a+ cells by Spearman's correlation (unadjusted p < 0.05). All correlation coefficients of 

all top genes with respect to each other and % protein-expressing cells were then plotted using 

the unsupervised clustering heatmap R package corrplot. 

Plasma IFNα activity 

The WISH endothelial cell line (ATCC, CCL-2; gift from S. Kovats) that expresses IFNα 

receptors, but cannot use endogenous IFN pathways, was used to measure IFN-responsive gene 

activation [43,44]. WISH cells (50,000 cells/well) were cultured 1:2 with SLE patient or control 
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plasma, or recombinant human IFNα2a (Invitrogen, cat# 111001) at 75U per well, in DMEM 

supplemented with 10% FBS for 6 h at 37 °C prior to lysis for RNA isolation with Tri-reagent 

(Sigma, cat# T9424). RNA concentration was determined by Implen Nanophotometer. cDNA 

synthesis was performed using iScript™ gDNA Clear cDNA Synthesis Kit (Bio-Rad, cat# 

1725034). qPCR was performed on a Bio-Rad CFX96 real time PCR machine with the following 

program: 1: 1 min at 95 °C, 2: 10 s at 95 °C, 3: 30 s at 57 °C, repeat 2 & 3 40 times, hold at 4 °C. 

Primers for IFI44 and HPRT were purchased from IDT (137). IFI44 forward primer: 5′CTC 

GGT GGT TAG CAA TTA TTC CTC 3′, reverse primer: 5′AGC CCA TAG CAT TCG TCT 

CAG 3’. HPRT forward primer: 5′ TTG GTC AGG CAG TAT AAT CC 3′, reverse primer: 

5′GGG CAT ATC CTS CAA CAA AC 3’. Data were normalized to HPRT1. Fold-increases 

were calculated relative to the values of IFI44 for unstimulated cells. 

Data analyses 

Simple linear regression analyses of SLEDAI scores and proportions of cells producing 

ARID3a and IFNα were performed by best fit linear regression using Prism (Graphpad) version 

7 (p < 0.05 indicates the slope of the best-fit line differs from 0). Data was log-transformed 

where indicated to satisfy assumptions of normality. For RNA-seq data, genes with FDR-

adjusted p values of less than 0.05 from Limma were considered differentially expressed. Genes 

that were expressed at a transcript per million (TPM) of greater than one in at least one sample 

were kept for downstream analysis. TPM values were log transformed. For correlations with 

protein expression, TPM values were correlated with % ARID3a+ or % IFNα+ cells using 

Spearman's Correlation (R statistical software, p values were not adjusted). A subset of those 

genes was also analyzed by linear regression. Stepwise additive and subtractive multiple linear 



37 
 

regression models of SLEDAI were performed independently for pDCs and LDNs using the R 

function stepAIC within the MASS package. 

Data sharing statement 

RNA-seq data are publicly available through the GEO NCBI database under the 

accession number GSE117836. For original data, contact carol-webb@ouhsc.edu. 

RESULTS 

Association of ARID3a and IFNα protein expression in LDNs and pDCs 

Healthy controls and SLE patients with a range of SLEDAI scores from 0 to 8 were 

recruited (Table 1). Total PBMCs were subjected to flow cytometry using surface markers to 

identify LDNs and pDCs, and intracellular staining identified IFNα and ARID3a protein 

expression (Fig. 5A, B). T lymphocytes typically do not express ARID3a or IFNα and served as 

internal controls for intracellular staining integrity for each PBMC sample (Fig. 5C). Healthy 

controls showed fewer than 20% ARID3a and IFNα-expressing LDNs (Fig. 5D). However, 

ARID3a protein expression correlated strongly with IFNα expression (R2 = 0.64, p < 0.0001) in 

LDNs of SLE patients (Fig. 5D). Similarly, in pDCs from SLE patients, ARID3a and IFNα 

protein expression were strongly correlated (R2 = 0.81, p < 0.0001), while healthy controls had 

few cells expressing either protein (Fig. 5E). Interestingly, increased percentages of ARID3a-

expressing LDNs were found in SLE patients with increased disease activity indices (SLEDAI 

scores) by univariate linear regression (Fig. 5F), while disease activity was less strongly 

associated with percentages of ARID3a+ pDCs (Fig. 5G). Surprisingly, while ARID3a and IFNα 

protein levels are correlated in both pDCs and LDNs, ARID3a expression in LDNs is more 

significantly associated with disease activity scores. 

mailto:carol-webb@ouhsc.edu
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Figure 5. ARID3a expression in SLE LDNs and pDCs is correlated with IFNα 

production, and with disease activity in LDNs. Flow cytometry of healthy control (n = 9) and 

SLE patient LDNs (CD3−CD20−CD56−CD14−CD15+CD16+CD16b+) and pDCs 

(CD3−CD20−CD56−CD11c−CD123+CD304+) (n = 23) were evaluated for intracellular 

ARID3a and IFNα protein expression. Representative gating strategies for LDNs (A), pDCs (B) 

and internal control T cells (C) are shown. Associations between %ARID3a+ and %IFNα+ 
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LDNs (D) and pDCs (F) were analyzed by linear regression. Associations between patient 

SLEDAI scores at the time of blood draw and % ARID3a+ LDNs (E) and pDCs (G) were 

determined by linear regression analyses. R2 and p values are presented. Each point represents an 

individual patient sample. Solid points are samples used for later transcriptome analyses. 

 

IFNα expression is weakly associated with disease activity 

We next assessed associations of IFNα protein expression levels in LDNs and pDCs with 

increased disease activity scores. Only poor correlations with SLEDAI scores were observed for 

IFNα expression in the LDNs (Fig. 6A), unlike what we observed for ARID3a (Fig. 5F). 

Furthermore, IFNα expression was only weakly associated with SLEDAI scores in pDCs (Fig. 

6B). Evaluation of IFN signatures and IFNα plasma activity (represented by IFI44 gene 

expression) revealed weak associations with numbers of IFNα-expressing LDNs or pDCs (Fig. 

6C and D). Likewise, IFNα plasma activity was only weakly associated with numbers of 

ARID3a-expressing LDNs or pDCs (Fig. 6E and F). Similar results were found using the IFIT1 

gene (not shown). To further examine the potential influence of numbers of ARID3a- or IFNα-

producing cells on SLEDAI, we performed additive and subtractive step-wise multiple linear 

regression on all SLE samples using R. Multiple regression was performed independently for 

LDNs (n = 19) and pDCs (n = 20). SLEDAI was associated with % ARID3a+ LDNs (R2 = 0.65, 

p = 0.00003), while % IFNα+ LDNs did not contribute significantly to the predictive effect of the 

model. In contrast, while % IFNα+ pDCs contribute significantly to the model predicting 

SLEDAI (R2 = 0.29, p = 0.015), % ARID3a+ pDCs does not. Therefore, ARID3a was more 

strongly associated with disease activity in LDNs than in pDCs. 
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Figure 6. IFNα only weakly associates with disease activity and ARID3a expression. SLE 

samples were analyzed for associations between SLEDAI scores and % IFNα+ LDNs (A) and 

pDCs (B) via linear regression. Plasma IFNα activity, via induction of the IFNα signature gene 

IFI44 was measured by qRT-PCR, and log-transformed values were tested for association with 

% IFNα+ (C,D) and %ARID3a+ (E,F) LDNs (C,E) and pDCs (D,F) via linear regression. R2 and 

p values are given. 
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High ARID3a expression is associated with distinct gene profiles in LDNs and pDCs 

To better understand how ARID3a, a transcription regulator, contributes to disease 

activity, RNA-seq analyses were performed on isolated samples of LDNs and pDCs from healthy 

controls and SLE patient samples with a wide range of ARID3a protein expression. ARID3a is 

an intracellular protein, so it is not possible to sort for ARID3a+ cells without damaging RNA 

integrity. In addition, pDCs and LDNs are non-abundant subsets that are notoriously short-lived. 

To assess the feasibility of performing transcriptome analyses with these cell types, we 

undertook a pilot study using cryopreserved PBMCs from 3 healthy samples, 3 SLE samples 

with low numbers of ARID3a+ cells (<40%, Fig. 5D, solid dots), and 3 SLE samples with high 

numbers of ARID3a+ cells (>70%). Samples that failed to meet library quality control criteria 

were eliminated from analyses. In both LDNs and pDCs, high-ARID3a SLE samples clustered 

together by gene expression, while low-ARID3a SLE samples clustered with healthy controls 

and were indistinguishable by gene expression profiles (Fig. 7A). Unlike our findings in B 

lymphocytes where ARID3a transcripts correlate closely with ARID3a protein levels (46,50), all 

LDN and pDC samples expressed ARID3A transcripts regardless of SLE or control status. These 

data were confirmed with freshly isolated cells from 2 healthy controls, and 2 each of high and 

low ARID3a-expressing SLE samples. As in cryopreserved samples, fresh SLE samples with 

low numbers of ARID3a-expressing cells clustered with healthy controls using unsupervised 

hierarchical clustering of gene expression patterns (Fig. 7B). These data suggest that ARID3a, as 

a transcription regulator, could directly or indirectly contribute to differences observed in gene 

expression patterns in SLE patients. 
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Figure 7. Gene expression patterns of SLE LDN and pDCs samples with low ARID3a 

protein levels resemble healthy controls. Gene expression patterns obtained from RNA-seq of 

healthy control and SLE patient LDN and pDC samples with a wide range of ARID3a protein 

expression (solid points in Fig. 1D, E) were subjected to unsupervised hierarchical clustering of 

genes with FDR adjusted p values < 0.05. Heat maps of top differentially expressed genes from 

cryopreserved (A) and freshly isolated (B) LDNs and pDCs are shown. Patient (S) and control 

(C) samples are indicated with relative levels of ARID3a protein expression. 
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Figure 8. Cells expressing both ARID3a and IFNα protein exhibit co-regulated gene 

profiles in pDCs and LDNs. Transcriptomes from 9 SLE pDC samples with varying levels of 

ARID3a and IFNα protein expression as shown by flow cytometry (A) were evaluated for 

associations between TPM and % ARID3a+ or % IFNα+ cells by Spearman's correlation. (B) 

Examples of linear regression analyses of 3 representative genes are shown with R2. (C) Genes 
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significantly (p < 0.05) correlated with expression of both ARID3a and IFNα in pDCs were 

clustered via heatmap with % ARID3a+ pDCs by Spearman's correlation coefficient value (left 

panel); similarly, those genes were clustered with numbers of IFNα+ pDCs (right panel). The 

analysis was repeated in LDNs (D, E). Color of cells indicates positive (red) or negative (blue) 

correlation coefficient of gene expression when compared to % ARID3a+ or % IFNα+ cells; 

intensity indicates strength of coefficient. 

 

ARID3a and IFNα protein levels are associated with distinct gene profiles 

Due to constitutive ARID3a transcript expression in LDNs and pDCs, determining how 

ARID3a is associated with changes in gene expression in Fig. 7 required analysis of data in 

association with ARID3a protein levels. Therefore, Spearman correlation analyses were 

performed to identify genes associated directly or indirectly with ARID3a or IFNα protein levels, 

as determined by flow cytometry (Fig. 8A). Variable total numbers of pDCs and LDNs are 

common in SLE blood samples [30,32,45], consistent with our findings. Hierarchical clustering 

analyses were used to cluster the samples according to protein expression with transcriptome 

data from nine samples of SLE patient pDCs with ARID3a protein frequencies ranging from 

100% to virtually undetectable levels. In pDCs, 592 genes were significantly correlated with 

ARID3a protein expression levels (Spearman's correlation, unadjusted, p < 0.05), while 680 

genes were found to be correlated with IFNα protein levels in the same samples (unadjusted 

p < 0.05). Three examples of genes associated with % ARID3a+ pDCs (Fig. 8B) have potential 

roles in gene regulation. In the pDCs, 189 genes were significantly associated with both ARID3a 

and IFNα protein expression, and heat maps representing the pairwise correlation coefficients 

(Spearman's correlation) among genes correlated with either ARID3a or IFNα expression are 

shown in Fig. 8C. These data reveal two tightly correlated clusters of genes that appear to be up- 

or down-regulated in tandem, suggesting the presence of genetic profiles tightly correlated with 

ARID3a protein expression. Similar analyses were performed using transcriptome data obtained 
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from 10 samples of SLE patient LDNs that ranged in ARID3a protein expression levels from 100 

to 3.2% (Fig. 8D). These data show 223 genes correlated with ARID3a protein expression in 

LDNs, while 1552 genes are correlated with IFNα protein expression in these same cells 

(unadjusted p < 0.05). Genes correlated with both ARID3a and IFNα protein expression (122 

genes) are shown in association with ARID3a or IFNα in hierarchical clustered heat maps (Fig. 

8E). Two major groups of up- or down-regulated genes are visible when plotted by association 

with ARID3a (left panel) or IFNa (right panel) for both pDCs and LDNs (Fig. 8C and E). 

Therefore, ARID3a may be linked to other master regulators that control expression of large 

groups of genes, or it may itself function as a master regulator. 

A subset of genes are associated with both ARID3a and IFNα expression 

Numbers of genes significantly associated with ARID3a and/or IFNα protein levels 

(p < 0.05) are presented as Venn diagrams for both pDCs (Fig. 9A) and LDNs (Fig. 9B). Overlap 

in the Venn diagrams showing genes associated with both ARID3a and IFNα protein expression 

are the genes depicted in the heat maps in Fig. 9C and E. Genes most strongly associated with 

both ARID3a and IFNα protein expression in pDCs with absolute r values of 0.7 or greater are 

listed (Fig. 9C). Similarly, genes with absolute r values of 0.6 or greater that correlated with both 

ARID3a and IFNα protein levels in LDNs are indicated (Fig. 9D). Gene Ontology enrichment 

analyses of gene sets correlated with both ARID3a and IFNα in both cell types are significantly 

enriched for sulfite oxidation and metabolic degradation pathways. The interferome webtool 

(http:interferome.org) also validated associations of these genes with interferon pathways. Genes 

associated with ARID3a expression alone in pDCs are enriched for IL17 antiviral responses. The 

genes associated only with ARID3a expression in LDNs are enriched for other transcription 

factors (31%), long non-coding RNAs and miRNAs, RNA-binding proteins and enzymes that 
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modify chromatin. These data are consistent with ARID3a functions as a master transcription 

regulator. 
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Figure 9. Distinct gene subsets are associated with both ARID3a and IFNα protein in pDCs 

and LDNs. Venn diagrams depict genes associated with ARID3a and IFNα protein levels in 

pDCs (A) and LDNs (B). Genes that correlated with both ARID3a and IFNa protein expression 

in the Venn diagrams above with absolute ARID3a associated r values > 0.7 in pDCs (C) and 

with absolute ARID3a-associated r values > 0.6 in LDNs (D) are listed. 

 

DISCUSSION 

The ability to segregate SLE patients with high and low disease activity would be 

clinically beneficial. We found that the transcription regulator ARID3a is expressed in LDNs and 

pDCs, and that expression of ARID3a is associated with IFNα production in those cells. 

Surprisingly, high numbers of ARID3a-expressing LDNs are also associated with increased 

disease activity indices in SLE. Transcriptome analyses of patient samples with broad ranges of 

ARID3a expression revealed that samples with the highest percentage of ARID3a-expressing 

cells showed distinct gene profiles compared to SLE samples with low numbers of ARID3a-

expressing cells which clustered with the healthy control samples for both pDCs and LDNs. 

Finally, gene expression profiles suggest that ARID3a is a regulator of inflammatory pathways 

involved in SLE. 

While increased plasma IFNα has been associated with increased disease activity (112-

116), others noted that IFNα gene signatures were not associated with longitudinal changes in 

disease activity (59). Similarly, we found weak correlations between IFNα-expression and 

increased disease activity in both LDNs and pDCs, and were surprised that ARID3a expression 

is more highly associated with disease activity in LDNs. Our data suggest that IFNα may also 

contribute to disease activity, but are consistent with data suggesting that factors other than IFNα 

production contribute to SLEDAI scores in SLE (57,129,138,139). 
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Our data identify genes associated with both ARID3a and IFNα protein expression. 

Interestingly, the large majority of genes that are correlated with ARID3a and/or IFNa 

production differ between pDCs and LDNs, indicating that ARID3a expression identifies gene 

profiles that are cell type specific. The large numbers of genes that are coordinately up- and/or 

down-regulated as a group in association with ARID3a expression in both pDCs and LDNs 

suggest that ARID3a may act as a master gene regulator, or that it is closely associated with 

other master gene regulators. In LDNs, thirty-one percent of the genes associated with variation 

in ARID3a protein expression are transcription factors, including SOX2 and NANOG. Other 

ARID family proteins affect large numbers of genes epigenetically, [reviewed in ref. (7,140). In 

single cell analyses of the K562 cell line, ARID3a is associated with distinct regulatory states 

and chromatin configurations (141). More recently, ARID3a was shown to bind near the edges of 

enhancer regions in many cell types (142), suggesting it may also function epigenetically. 

We did not observe upregulation of any of the 13 IFNA subtypes in our analyses, despite 

the presence of IFNα protein in both LDNs and pDCs. The levels of individual IFNA transcripts 

may be below the level of detection using RNA-seq technology. IFNA detection typically 

requires quantitative PCR analyses. Therefore, RNA-seq data have limitations that may preclude 

detection of all transcripts differentially expressed in association with ARID3a protein 

expression. Another limitation of RNA-seq data highlighted by our study is that RNA levels do 

not always correlate with protein levels. Others demonstrated that ARID3a is regulated by 

miRNAs in early hematopoiesis (34,98). These studies suggest that regulation of ARID3a by 

miRNAs is cell type-specific. We speculate that miRNA regulation of ARID3a also occurs in 

pDCs and LDNs, and that miRNA control of protein expression would allow rapid responses to 

extracellular signals potentially explaining the discrepancy between ARID3A transcripts and 
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protein levels in these cells. Our RNA-seq data did not detect the miR125b and lin28b miRNAs 

associated with ARID3a regulation in early B lymphocyte progenitors. Further experiments will 

be required to determine if other differentially expressed miRNAs with potential ARID3a target 

sites may function in neutrophils and pDCs. 

Our data implicate ARID3a as an important regulator of inflammatory responses and 

IFNα production in several cell types, and identify gene profiles associated with ARID3a 

expression in pDCs and LDNs from SLE patients. Most surprising was the finding that increased 

disease activity in SLE is more strongly associated with frequencies of ARID3a+ LDNs than 

with IFNα+ cells. While a major function of pDCs is cytokine secretion, LDNs also undergo 

NETosis (57,129). Therefore, ARID3a may regulate genes important for disease activity, but that 

are distinct from IFNα regulatory pathways. 

We do not know whether ARID3a regulates IFN production, or if IFNα production 

stimulates ARID3a expression in pDCs and LDNs. However, in B lymphocytes, 

developmentally less mature cells expressed ARID3a without IFNα, and induction of ARID3a 

transcripts occurred prior to detection of IFNα transcripts (46). Furthermore, inhibition of 

ARID3a in a B cell line also inhibited IFNα expression (46). Regardless of which protein is 

upstream in pDCs and LDNs, a large number of genes appear to be co-regulated in correlation 

with ARID3a and IFNα. These data strongly suggest that ARID3a is associated with other master 

regulators of gene expression, and that it could be mechanistically involved in innate immune 

responses in SLE. We speculate that ARID3a and its gene targets may offer new therapeutic 

approaches. 
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Chapter 2 Addendum 

The following manuscript (13), Ratliff ML, Garton J, Garman L, et al. ARID3a gene 

profiles are strongly associated with human interferon alpha production. J Autoimmun. 

2019;96:158-167. doi:10.1016/j.jaut.2018.09.013, provided an important opportunity to learn 

how to analyze bulk RNA-seq data by performing differential expression and correlation 

analyses on SLE patient samples. My contributions were to process and perform differential 

expression analysis on plasmacytoid dendritic cells (pDCs) and low density neutrophils (LDNs) 

from SLE patients with varying levels of both disease activity and ARID3a protein. Both pDCs 

and LDNs are important cell types where ARID3a is overexpressed in SLE patients and is 

associated with interferon expression.  
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Bulk RNA-seq analyses were performed on two separate batches of pDCs and LDNs 

from SLE patients. The first batch was processed from frozen samples while the second batch 

was processed the day the samples were collected.  Briefly, the raw sequencing files were 

processed by removing sequencing adapters and low quality reads from each sample using 

Cutadapt with the following code: 

cutadapt -a ADAPTER_FWD -A ADAPTER_REV -o out.1.fastq -p out.2.fastq 

reads.1.fastq reads.2.fastq 

Where ADAPTER_FWD represents 5’ Nextera XT sequencing adapters: 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCG

TCTTCTGCTTG, CTGTCTCTTATACACATCT, AGATGTGTATAAGAGACAG, 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG, 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 

And ADAPTER_REV represents the 3’ Nextera XT sequencing adapters: 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT

ATCATT, CTGTCTCTTATACACATCT, AGATGTGTATAAGAGACAG, 

CTGTCTCTTATACACATCTGACGCTGCCGACGA, 

CTGTCTCTTATACACATCTCCGAGCCCACGAGAC 

Reads.1.fastq and reads.2.fastq represent the forward and reverse raw sequencing reads. 

This code results in the generation of two fastq files, now designated out.1.fastq and 

out.2.fastq, for both the forward and reverse reads that no longer contain Illumina Nextera XT 

sequencing adapters. This allows for more accurate mapping of raw reads to the reference human 

genome. 
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Next, a Bowtie2 index was generated based on the UCSC knownGene transcriptome and paired-

end reads were aligned directly to this index using Bowtie2. All alignments were performed on 

OUs Supercomputing Center for Education and Research (OSCER) supercomputer.  

bowtie2-build genomes.fna Homo_sapiens 

This code creates a database of indexed .bt2 files that will be used to align the paired end reads 

using RSEM (135). Next, RSEM, which uses the Bowtie2 index described above, was employed 

on the OSCER supercomputer using default parameters to obtain transcripts per million (TPM) 

values for each gene: 

 rsem-calculate-expression -p 8 \ 

 --paired-end \ 

 --bowtie2 –bowtie2-path /opt/oscer/software/Bowtie2/bin \ 

 --estimate-rspd \  

 --append-names \ 

 --output-genome-bam \ 

 /scratch/jgart10/sample1_R1.fastq \ 

 /scratch/jgart10/sample1_R2.fastq \ 

 /home/jgart10/Homo_sapiens/RSEM_GRCh38ref_topleveldna \ 

 /scratch/jgart10/<Sample name>/<Sample name>_trim_RSEM_expression 

 

The code above generates a gene x sample matrix and contains all estimated expression 

values (i.e expected counts, fragments per kilobase of transcript per million mapped reads 

(FFPKM), and transcripts per million (TPM), for each gene that had reads mapping to their 

respective gene. However, this code generates the expression matrix for each sample 

individually. Since it is unreasonable to combine gene expression values for each sample 



53 
 

manually, the following code was written in R to automate this process and generate a single file 

containing TPM values all samples: 

dr="C:/Users/jgart10/Desktop/SLE/" 

fls=list.files(dr,"results") 

fOneSpl=read.table(paste(dr,fls[1],sep=""),header=T,sep="\t") 

bigTable=data.frame(fOneSpl[,1:4]) 

flsN=sapply(fls,function(x) strsplit(x,"_")[[1]][1]) 

for(j in 1:length(fls)){ 

   fOneSpl=read.table(paste(dr,fls[j],sep=""),header=T,sep="\t") 

  

jj=match(as.character(bigTable[,"transcript_id.s."]),as.character(fOneSpl[,"transcript_id.s

."])) 

   cat(j,sum(is.na(jj)),"\n") 

   mat=fOneSpl[jj,c("expected_count","TPM","FPKM")] 

   colnames(mat)=paste(flsN[j],colnames(mat),sep="__") 

   bigTable=data.frame(bigTable,mat) 

} 

bigTable=data.frame(rowId=paste("r",1:nrow(bigTable),sep=""),bigTable) 

write.csv(bigTable,file=paste(dr,"allSamples_RSEM_toplevel_expression.genes.results",

sep=""),row.names=F,quote=T) 

The above code generates a single file containing the expected counts, FPKM, and TPM values 

for all samples. To obtain only the TPM values for all of the samples into a single file, the 

following code was used: 

 bigMat=bigTable[,c(2,grep("_TPM",colnames(bigTable)))] 

write.csv(bigMat,file=paste(dr,"allSamples_RSEM_TPM",sep=""),row.names=F,quote=

T) 

Next, genes that had expression values of 0 for all samples were removed to reduce noise in 

downstream analyses and then TPM values were log transformed:  

jjj=which(apply(bigMat[,-1],1,function(x) sum(x==0))==(ncol(bigMat)-1)) 
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bigMat=bigMat[-jjj,] 

bigMat[,-1]=apply(bigMat[,-1],2,function(x) log(x+1)) 

 

Genes with expression values of TPM >1 in half of the samples were retained for downstream 

analyses. Differential expression analysis was performed using limma (136) within R using the 

following code: 

library(limma) 

mat=bigMat[,grep("TPM",colnames(bigMat))] 

prtQF=factor(c("Ctr","Prot")[1*(prtQ>0)+1],levels=c("Ctr","Prot")) 

jjc=match(tolower(sapply(colnames(mat),function(x) 

strsplit(gsub("X","",x),"__")[[1]][1])),tolower(sapply(names(prtQ),function(x) gsub(" 

","",x)))) 

prtQF=prtQF[jjc] 

 

design <- model.matrix(~prtQF) 

fit <- lmFit(mat, design) 

fit <- eBayes(fit); names(fit) 

range(p.adjust(fit$p.value[,2],"fdr")) 

fitM=data.frame(bigMat,tScore=fit$t[,2],pVal=fit$p.value[,2],qVal=p.adjust(fit$p.value[,

2],"fdr")) 

colnames(fitM)[match(c("tScore","pVal","qVal"),colnames(fitM))]=paste(c("tScore","pV

al","qVal"),"over70",sep="__") 

write.csv(fitM[fitM$pVal__num<0.05,],file=paste(dr,"statResultsSelected.csv",sep=""),r

ow.names=F,quote=T) 

 

 The above code analyzes differential expression of samples that had ARID3a protein 

levels greater than 70% and generates a csv file containing the p values, fold change values, and 

expression values for genes identified to be significant for each sample and was used to make 
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heatmaps in Figure 7 of this chapter. Hierarchical clustering was performed using R on 

differentially expressed genes (DEGs) identified by limma.  

library("ggplot2") 

fitM=read.csv(file=paste(dr,"statResultsSelected.csv",sep=""),as.is=T) 

jj=sort(which(fitM$pVal__num<0.01));length(jj) 

mat=log(as.matrix(fitM[jj,grep("TPM",colnames(fitM))])+1) 

colnames(mat)=sapply(colnames(mat),function(x) strsplit(x,"__")[[1]][1]) 

row.names(mat)=sapply(as.character(fitM$gene_id)[jj],function(x)  

heatmap.2(mat,scale="row",trace="none",dendrogram="none",Colv=F,Rowv=F,col=blue

red(41),density.info="none",key.xlab=NA,cexCol=1,cexRow=1,keysize=0.8,main="Sele

cted genes, pval ordered") 

An unexpected finding from these analyses was that protein levels of ARID3a did not 

correlate with RNA transcript levels in either neutrophils or pDCs. All samples had near equal 

expression values of ~2-3 TPM for ARID3a. Even healthy controls without ARID3a protein 

produced transcripts. Therefore, it was not possible for perform traditional differential expression 

analysis based on samples expressing ARID3a and those that did not express ARID3a. This then 

required analyses of gene transcript data in association with ARID3a or IFNa protein levels 

determined by flow cytometry. Finally, with the help of Lori Garman and Kathryn White, the 

expression files generated were used to find genes that correlated with ARID3a protein levels in 

pDCs and LDNs from SLE patients.  
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ABSTRACT 

ARID3a is an understudied member of a large family of epigenetic regulators associated 

with both increases and decreases in gene expression in hematopoietic cells. Recent molecular 

analyses in human erythropoietic systems revealed increases in ARID3a transcript levels 

implicating potential roles for ARID3a in human erythrocyte development. However, ARID3a 

transcript levels do not faithfully reflect protein levels in many cell types, and potential functions 

and requirements for ARID3a during erythropoiesis have not been explored. Therefore, we used 

the human erythroleukemic cell line K562 as an in vitro model system to elucidate functions of 

ARID3a protein in human erythropoiesis.  Stimulation of K562 cells with hemin induced visible 

globin production and accompanying modifications in gene expression by three days post 

induction. Knockdown of ARID3a in hemin-stimulated cells inhibited fetal globin production 

and reduced levels of surface proteins associated with erythroid differentiation. Temporal RNA-

seq data link ARID3a expression with the important erythroid regulators GATA1, GATA2 and 

KLF1. ARID3a inhibition resulted in down regulation of 227 genes that were upregulated in 

control hemin-stimulated cells.  Ablation of ARID3a using CRISPR-Cas9 in K562 cells 
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confirmed the requirement for ARID3a in globin gene expression in this model system and 

allowed ATAC-seq analyses of epigenetic structures affected by ARID3a, identifying roles for 

ARID3a in intergenic regions that may function as enhancers. These data define biologically 

relevant roles for ARID3a in maintenance of chromatin structure and show the protein is 

required for human fetal globin gene expression.  

INTRODUCTION 

Multipotent hematopoietic stem cells (HSCs) and progenitor cells are essential for 

maintaining appropriate levels of red blood cells and platelets during erythropoiesis (143,144).  

Although studied extensively, the gene programs that drive erythropoiesis have not been fully 

elucidated. Decreased levels of hemoglobin gene transcripts and maturational arrest of erythroid 

lineages in thalassemia’s are associated with defects in expression of the transcription factors 

GATA1, GATA2 and KLF1, as well as with changes in chromatin accessibility of enhancer 

regions for the globin genes (145). Temporal studies using defined hematopoietic systems reveal 

the possibility that precise manipulation of these important regulatory events could lead to 

modulation of specific erythropoietic diseases and regeneration of blood cells (146-150).  The 

genes within the β-globin gene cluster are expressed in a developmentally controlled manner 

with embryonic globin (HBZ) being expressed first in the yolk sack, followed by fetal globin 

(HBG1/HBG2) during primitive erythropoiesis, and finally adult (HBB/HBD) globin genes 

during definitive erythropoiesis (149,151). The erythroid-specific globin gene cluster is regulated 

by an upstream cis-regulatory region, the locus control region (LCR) (152,153), that binds to 

specific transcription factors allowing accessibility to the embryonic and adult globin in a 

developmentally controlled fashion (154-156). However, gene expression studies alone provide 

limited information about the causative regulators involved.  
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The A+T rich binding protein ARID3a is a member of a large family of proteins, many of 

which have important roles as epigenetic regulators (157). Modulation of ARID3a levels can 

both suppress and enhance gene expression in a cell type-specific fashion (reviewed in (5,158)). 

ARID3a was identified as a highly differentially expressed gene in primitive erythropoiesis in 

the mouse (144) and as a potential regulator of hemogenic reprogramming in conjunction with 

GATA2 through motif associations (150). In addition, single cell ATAC-seq analyses in K562 

cells implicated ARID3a as a potential transacting factor marginally associated with epigenomic 

variability along with GATA1 and GATA2 (141). However, recent data emphasize potential 

discrepancies in protein versus transcript levels during human erythropoiesis, particularly for 

GATA1 (159). Our recent data in human granulocytic cells further emphasize the fact that 

ARID3a transcripts do not always correlate with protein levels (13). Although we previously 

found that ARID3a-deficient mice die in utero at E12.5 due to failed erythropoiesis and 90% 

reduction of hematopoietic stem cells (14), suggesting that ARID3a could be important for 

erythropoiesis in mice, it was unclear if failed erythropoiesis resulted directly from requirements 

for ARID3a during erythropoiesis or from earlier hematopoietic progenitor defects. Thus, the 

role of ARID3a protein in human erythropoiesis and epigenetic regulation has not been defined.  

Our earlier data indicated that the human monomyelocytic cell line K562 constitutively 

expresses ARID3a protein (28). This human cell line has long been used as a model for 

erythrocyte and myeloid lineage development and can be induced with several different stimuli 

to differentiate into erythroid cells that express high levels of embryonic and fetal globin genes 

(159-163). Therefore, we used this model system to determine if ARID3a protein is required for 

human globin gene expression.  Furthermore, we used temporal transcriptome analyses and 

integrated chromatin accessibility data from ATAC-seq to determine how ARID3a affects gene 
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expression patterns during induction of erythroid lineage differentiation. These results identify 

new epigenetic functions for ARID3a in human erythropoiesis.  

MATERIALS AND METHODS 

Cell Culture and Transfection  

K562 (ATCC® CCL-243™) cells were plated in triplicate at 1x105 per well in 6-well plates 

with RPMI 1640 + 7.5% fetal calf serum overnight at 37°C prior to treating cells with 0.04 mM 

hemin (Sigma), as previously described (164). Cells were harvested at 24, 48 and 72 hours and 

viabilities were assessed using trypan blue exclusion. To evaluate erythroid lineage 

differentiation, cells were stained with benzidine to detect globin expression, as reported 

previously (165). Briefly, cells were resuspended in 25μL phosphate-buffered saline (PBS) and 

stained at a 1:1 ratio with benzidine solution made with 30% fresh hydrogen peroxide. At least 

200 cells were evaluated per replicate. Lentivirus expressing shRNA specific for ARID3a, or an 

unrelated control shRNA, both of which co-express green fluorescent protein (GFP) allowing 

visualization of infected cells, were purchased from Genecopoeia, Inc,Rockville,MD and used at 

a multiplicity of infection of 0.6 to 1.0, as previously described (11). The ARID3a sequence 

targeted was GCAGTTTAAGCAGCTCTA from exon 2, and does not react with other ARID 

family members (11).  K562 cells were infected with virus 30 minutes to 3 hours prior to 

stimulation with hemin in the presence of 8 μg/ml polybrene as we have done previously (11). 

Lentivirus transfection efficiency was assessed via GFP expression using a Zoe Fluorescent 

Imager, BioRad, on day two and was typically >70%.   

     

Flow Cytometry  



61 
 

Antibodies to the transferrin receptor, an erythroid precursor marker, CD71 APC-Cy7 

(Biolegend Cat # 33410) and the glycophorin A erythrocyte marker CD235a PE-Cy7 (Biolegend 

Cat # 349112) were used for surface staining to evaluate erythroid lineage differentiation. 

Appropriate isotype controls from Bio Legend were used for gating. Myeloid lineage detection 

was evaluated using surface markers CD24 APC (Biolegend Cat # 311118) and CD33 PE-Cy5 

(Biolegend Cat # 303406). Following surface marker staining, cells were fixed with fixation 

buffer (Bio Legend Cat # 420801), permeabilized with Foxp3/Transcription Factor Staining 

Buffer Set (Invitrogen eBioscience Cat # 00552300) and stained for ARID3a with goat anti-

human ARID3a peptide-specific antibody, as we described previously (76). Donkey anti-goat 

IgG PE (Invitrogen Cat# Pl31860) was used as the secondary antibody. Data were collected on a 

Stratedigm S1200Ex and data were analyzed using FlowJo (Tree Star) software version 10. 

RNA-seq and Analyses  

Total RNA from triplicate samples treated with and without hemin, ARID3a shRNA, and/or 

scrambled shRNA was isolated using NucleoSpin RNA XS kits (Macherey-Nagel, Cat # 

740902.50). RNA concentrations were measured with an Impen Nanophotometer. RNA integrity 

numbers were obtained using an Agilent 2200 TapeStation. Library construction was performed 

as described previously (13). Briefly, the Ovation RNA-Seq v2 (NuGEN Technologies) kit was 

used to generate sequencing libraries. Paired-end (2 x 50bp) sequencing was performed on a 

NovaSeq platform.  Fastq files were demultiplexed and sequencing adapters were removed using 

Cutadapt (166). Briefly, we created a Bowtie (134) index based on the UCSC knownGene (167) 

transcriptome, and aligned paired-end reads directly to this index using Bowtie2. The average 

sequence depth was 21M reads with an average alignment of 83% mapping to the hg19 genome 

assembly. Next, we ran RSEM v1.3.0 (135) using default parameters to obtain transcript per 
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million (TPM) values for each gene. Genes with expression values of TPM > 1 in half of the 

samples were retained, leaving 11,869 transcripts for downstream analyses. Differential gene 

expression was analyzed using DESeq2 v3.5 (168). Differentially expressed genes (FDR < 0.05) 

with fold changes ≥ 2 were used for Ingenuity Pathway Analysis (Qiagen) (IPA). Hierarchical 

clustering (Euclidean) was performed on differentially expressed genes (FDR value adjusted < 

0.05) and heatmaps were generated with the pHeatmap package in R.  Principal component 

analysis (PCA) was performed in R using the prcomp function.  

 

ARID3a knockout 

Genome editing of ARID3a was performed via CRISPR/ Cas9 mutation of the K562 cell line 

contracted through Synthego (Redwood City, CA). Briefly, modified guide RNA ARID3a-

932711 (5’-CCTCGTAAGTCCAGTCGCCG-3’ [TGG]-PAM) targeting exon 3 was chosen to 

be specific for ARID3a. A bulk knockout sample of greater than 70% knockout was then single 

cell sorted via flow cytometry for isolation of homozygous ARID3a knockout clones. Sixty-six 

clones visually confirmed to have only one cell per well after sorting were allowed to grow, and 

19 clones were screened by flow cytometry for ARID3a protein expression. Eight of the 19 

clones were then selected as being wild type, or potentially homozygous knockout, and levels of 

ARID3a expression were confirmed by Western blotting using a commercial ARID3a antibody 

(mouse monoclonal IgG Catalog# sc-398367, Santa Cruz Biotech). Homozygous colonies and 

wild type colonies were used for ATAC-seq analyses.  

 

Western Blotting 
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For protein detection, total cell extracts from 1x106 cells were resuspended in 50µL of 

Laemmli sample buffer containing 5% 2-mercaptoethanol. Following 5 min boiling at 90 °C, 

10µL of extract was loaded onto pre-cast Mini-PROTEAN TGX (BioRad Cat# 456-1093) gel 

and transfer was done for 1 h on nitrocellulose 0.2µM (BioRad). Membranes were blocked in 1% 

gelatin in TBST for 1 h at room temperature, as previously described (169). Blots were probed 

overnight for ARID3a and actin with mouse anti-ARID3a and rabbit anti-β-actin, respectively. 

Following incubation with primary antibody, blots were washed three times for 10 mins with 

TBST and probed with secondary antibody for 1 h at room temperature. The secondary antibody 

for ARID3a was goat anti-mouse IgG and rabbit anti-goat IgG for actin. Blots were then washed 

three times for 10 min with TBST. Proteins were detected using the AP conjugate substrate kit 

(BioRad Cat # 170-6432).  

 

ATAC-seq and analyses 

ATAC-seq libraries were generated from wild type and ARID3a-/- K562 clones treated with 

or without hemin. Duplicate samples of 30,000 cells were washed in cold PBS, pelleted by 

centrifugation and lysed using cold lysis buffer (10mM Tris-HCl, pH 7.4, 10mM NaCl, 3mM 

MgCl2, 0.1% IGEPAL CA-630). Nuclei were collected by centrifugation and the pellet was 

resuspended in 50µL transposase reaction mix (25µL 2x TD buffer, 2.5µL transposase (Illumina 

Nextera FC121-1030 TDE1 and TD buffer) and 22.5µL nuclease-free water). The transposition 

reaction was incubated at 37°C for 30 min. Samples were cleaned using a MiniElute kit (Qiagen) 

following manufacturer’s protocol and eluted in 10µL buffer EB. Library construction was done 

by PCR in a reaction mix containing 25µL 2x NEBNext PCR master mix (New England 

Biolabs), 10µL transposed sample, and 5µL primer mix (1.25µM each of Nextera XT adapter1 
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and adapter2 primer mix). PCR conditions were 72°C for 5 min, 98°C for 30s, and 11 cycles 

(98°C for 10s, 68°C for 30s, 72°C for 1 min), ending with 72°C for 5 min. PCR amplified 

sequencing libraries were cleaned with AMPure Beads (Beckman Coulter). Library quality was 

determined by analysis on an Agilent TapeStation. 

For each sample, 25-99 million 50bp paired-end reads were obtained on an Illumina NextSeq 

sequencer. All data processing steps were performed within the Partek Flow Genomics Analysis 

software. Fastq files were processed and both sequencing primers and Nextera transposase 

adapters were removed using Cutadapt. Trimmed reads were aligned to the hg19 GRCh37 

reference genome using Bowtie2v2.2.5 with parameters –very-sensitive -X 2000 (134). Low 

quality (-Q 30) and duplicate reads, and reads mapping to the ENCODE project blacklist, 

mtDNA and rDNA genes were removed.  MACS2 (170) was used to call peaks for duplicate 

samples using the parameters -q 0.05 --nolambda --slocal 1000 --llocal 10000 -m 5 50 --shift 0 --

extsize 200 --fe-cutoff 1.0.The ATAC peaks of pooled replicate samples were annotated to 

genomic regions such as transcription start sites(TSS), introns, and exons using RefSeq version 

89. Each peak was annotated in relation to these genomic elements and may have multiple gene 

annotations. DESeq2 v3.5 was run on the ATAC peaks to identify differential chromatin 

accessibility in wild type vs ARID3a-/- samples with an FDR cutoff of 0.05 (168).  

Statistics  

Data for viability, benzidine stain and time course were plotted and all statistical analyses 

were performed using Prism (Graphpad) version 7. A one-way ANOVA was used for 

comparisons of multiple groups, followed by Tukey posttest for multiple comparison corrections. 

All statistical tests and corresponding P values are stated in the figure legends. P values <0.05 

were considered significant. 
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RESULTS  

ARID3a knock down inhibits globin production and expression of erythrocyte markers. 

The human K562 erythroleukemia cell line can be used as an in vitro model of erythroid and 

megakaryocyte lineage differentiation when stimulated with hemin (171). K562 cells treated 

with hemin for five days showed visible production of red, hemoglobin-producing cells in vitro 

(Figure 10A). While cells treated with control shRNA (Figure 10A, right) resembled those 

treated with hemin only, cells that received ARID3a shRNA showed no obvious red cells (Figure 

10A, middle). This effect was robustly evident in pelleted cells, and in cells treated with 

benzidine to enhance globin visibility (bottom, Figure 10A).  Time course analyses indicated that 

near maximal globin production (77.5 %) was achieved in hemin treated cells by day three of 

treatment, and reduced numbers of globin-producing cells were apparent as early as day one after 

inhibition of ARID3a (Figure 10B).  Inhibition of globin expression in ARID3a-inhibited 

samples varied slightly but averaged 24% percent on day three (Figure 10C).  Viabilities and cell 

numbers were equivalent on day three in all cultures (Figure 10D), suggesting ARID3a did not 

function by causing cell death or by inhibiting cell division. These data suggested that most 

responses necessary for induction of globin occur within the first three days of culture.  

Flow cytometric analyses of cells on day three of culture confirmed that ARID3a inhibition 

resulted in less ARID3a protein (Figure 10E). Furthermore, erythrocyte lineage markers CD71 

(TFRC) and CD235a (GYPA) were reduced and enhanced as expected by hemin treatment 

(Figure 10F). However, cells treated with ARID3a-specific shRNA, with or without hemin 

stimulation, more closely resembled unstimulated cells with respect to expression of these 
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surface markers (Figure 10F). Samples treated with ARID3a shRNA alone did not show 

significant reductions in either CD235a or CD71or CD33 (Figure 10F, G), suggesting that the 

reduction in these surface markers is due to a block in differentiation. Similarly, while hemin 

stimulation resulted in increased expression of monocyte marker CD33 and CD24, cells treated 

with ARID3a-specific shRNA more closely resembled untreated cells (Figure 10G). The control 

shRNA stained cells expressed surface markers similar to those of hemin treated cells. Together, 

these data suggest that ARID3a protein is necessary for globin production and differentiation 

down the erythrocyte lineage in hemin-stimulated K562 cells. 
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Figure 10. ARID3a is required for hemin-induced fetal globin production and erythroid 

maturation. K562 cells were treated with hemin with and without prior transduction of cells 

with lentivirus expressing ARID3a-specific shRNA or unrelated shRNA control virus for six 

days. (A) Untreated and benzidine stained cell pellets of hemin-stimulated K562 cells reveal 
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brown colored globin production. (B) Time course data from three individual experiments show 

percentages of globin producing cells elucidated microscopically over 6 days with and without 

ARID3a inhibition. (C) Cumulative data show percentages of benzidine positive cells from 5 

individual experiments analyzed on day three (P< 0.0001, one-way ANOVA). (D) Percentages 

of viable K562 cells counted via trypan blue exclusion on day three are shown. (E) Flow 

cytometric histograms indicate numbers of cells expressing intracellular ARID3a (shaded peaks) 

compared to isotype controls (dotted lines). Solid vertical lines depict peak intensities of control 

unstimulated cells. Graphs are presented in normalized mode.  Flow cytometry indicates surface 

staining of proteins associated with erythrocyte (F) and monocyte lineage differentiation (G) are 

shown for each treatment condition. Data are representative of 5 experiments. 

ARID3a inhibition of hemin stimulated cells results in down regulation of genes associated 

with erythroid differentiation.   

To further explore the block in erythroid differentiation in ARID3a inhibited samples, we 

performed a time course RNA-seq experiment over three days in K562 cells treated with or 

without hemin and with or without ARID3a inhibition. Triplicate samples from each treatment 

condition were sequenced and differential expression analyses were performed to identify genes 

affected by ARID3a inhibition. Principal component analysis revealed treatment-dependent 

patterns that ordered as expected during erythropoiesis (Figure 11). Untreated samples clustered 

away from hemin-stimulated samples and ARID3a-inhibited samples clustered more closely to 

untreated samples (Figure 11). Furthermore, samples on days two and three clustered closely 

together but away from day one samples, suggesting that most cells had terminally differentiated 

by day three. Samples treated with shRNA targeting ARID3a clustered between untreated and 

hemin treated samples (Figure 11), indicating perturbed differentiation.  
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Figure 11. ARID3a inhibition alters transcription profiles of hemin-induced K562 cells. 

Principal component analysis of K562 cells treated with hemin both with and without ARID3a 

inhibition every day for three days is shown. Individual dots represent triplicate cultures 

sequenced on days 1-3. Numbers indicate the day of isolation and letters (A-D) represent the 

different treatment conditions (A=untreated, B=hemin treated, C=hemin-treated with control 

shRNA and D= hemin treated with ARID3a-shRNA). Cell treatments are grouped and labeled 

accordingly. Variance along PC2 is due to differentiation and variance along PC1 is due to 

treatment.  

Analyses of the transcriptomes within and between samples treated with or without hemin 

and ARID3a shRNA revealed tight clustering of transcriptomes from different days. There are 

numerous significant (n=3 per group, FDR < 0.05) temporal changes in gene expression on each 
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day, with each treatment (hemin, shRNA) exhibiting unique transcriptomes (Figure 12). To 

identify the genes required for erythroid lineage differentiation in this model system, we first 

performed hierarchical clustering on differentially expressed genes in hemin versus untreated 

cultures at each of days one through three (Figure 12A). Differential expression analyses 

identified 846, 2,228, and 1,055 differentially expressed genes (DEGs) on days one, two, and 

three, respectively, in K562 cells stimulated with hemin as compared to untreated controls. 

Select genes, including those previously reported to be important for globin expression and 

erythroid differentiation are indicated in Figure 12A. As expected, we confirmed expression of 

key genes involved in the differentiation toward the erythroid lineage, such as GATA1, GATA2, 

ALAS2, and NFE2, although they were not all differentially expressed on all three days. Alpha- 

(HBA1, HBA2) and β-globin (HBG1, HBG2) genes were significantly induced on all three days 

upon treatment with hemin. Erythroid genes TAL1, KLF1, MYB, and GFI1B were differentially 

expressed on day 2.  These data agree with previous transcriptome analyses of hemin-stimulated 

K562 cells using microarrays (164,172,173).  As expected, pathway analyses identified 

erythrocyte development among the top pathways. GO pathway analysis of upregulated genes on 

day one revealed enrichment of pathways involved in heme synthesis, iron hemostasis, 

thioredoxin and translation initiation (data not shown). Transcription, mRNA splicing, nuclear 

export, and autoimmune pathways were enriched in hemin-treated samples by day two.  Histone 

and nucleosome processes were also enriched in the DEGs from day two. These pathways were 

also enriched at day three indicating that most of the changes at the level of transcription were 

evident by day two. 
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Figure 12. Both hemin induction induces globin-associated genes within three days, while 

ARID3a inhibition alters those gene expression profiles. (A) Heatmaps of differentially 

expressed genes in triplicate cultures of untreated vs hemin-treated cells for days one to three. 
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Numbers of differentially expressed genes (FDR < 0.05, FC ≥ 1.5, n = 3) are indicated below the 

heatmaps. Select genes previously associated with erythrocyte differentiation are indicated.  (B) 

Hierarchical clustered heatmaps of genes affected by ARID3a inhibition during three days of 

hemin stimulation of triplicate cultures are shown as in (A). Total numbers of differentially 

expressed genes are given at the panel bottoms and select genes are indicated. 

To identify genes affected by ARID3a inhibition that perturbed hemin-induced erythroid 

lineage differentiation, we performed similar analyses of DEGs from hemin-treated cultures with 

or without ARID3a shRNAs and performed hierarchical clustering of those genes on days one 

through three (Figure 12B). Numbers of DEGs ranged from 39 to 723, with day two having the 

highest number of DEGs (Figure 12B). Indeed, when ARID3a expression was suppressed by 

RNA interference, hemin-induced transcriptional activation of GATA1-targeted genes encoding 

α-globin, NFE2, PRG2, HMBS, PPOX, and ANK1 was strongly attenuated two days after hemin 

treatment. The expression of erythroid differentiation markers CD71 (TFRC) and GYPB were 

also significantly reduced upon ARID3a inhibition. Additionally, both α- and β-globin genes 

were significantly reduced on the first two days while only α-globin genes were downregulated 

on day 3. This is consistent with the reduction in the number of erythroid-differentiated 

benzidine positive cells by three days of hemin treatment (Figure 10).  

Principal component analyses (Figure 11) revealed that hemin stimulated cells were 

differentiated by day two, and that most of the genes affected by ARID3a inhibition were 

apparent by that time as well. Therefore, we focused on genes differentially expressed on day two. 

A Venn diagram indicates overlapping DEGs affected by each treatment condition (Figure 13A). 

Hemin induction affected more genes than were affected by ARID3a inhibition. These analyses 

identified 227 overlapping DEGs upregulated by hemin treatment and downregulated by ARID3a 

inhibition (Figure 13A). Pathway analyses of this gene list identified SLE signaling, mRNA 

processing (GO:0006396), RNA splicing (GO:0008380) and chromatin binding (GO:0003682) 

pathways (Figure 13B). Identification of over-represented transcription factor binding sites in the 
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227 genes induced by hemin and repressed by ARID3a shRNA showed significant enrichment in 

genes with binding sites for GATA1 (163/227), GATA2 (62/227), TAL1, PAX5 (127/227), 

SP1(66/227), and ARID3a, among others (Figure 13C). Essential TFs for erythropoiesis (GATA1, 

GATA2, KLF1, NFE2) and their cofactors/mediators (MED1 and LDB1) were all inhibited on day 

two in samples treated with hemin and shRNA. Additionally, members of the polycomb 

repressive complex, such as EZH2, are essential regulators of erythropoiesis and were also 

inhibited by ARID3a shRNA on day two. A list of the top 35 most significantly differentially 

expressed genes affected by hemin stimulation and those repressed by ARID3a inhibition is given 

in Table 2. Among the top DEGs repressed by ARID3a, the majority were either transcription 

factors, micro RNAs, or other small nuclear RNAs involved in splicing.  
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Table 2. Most significantly differentially expressed genes on Day 2 

 

Ingenuity Pathway Analysis (IPA) of differentially expressed genes (FDR < 0.05, FC > 1.5) 

on day one indicated that transcription factors such as MYC, STK11, and TP53 were inhibited 

       Gene Log2 Fold Change Adj P Value        Gene Log2 Fold Change   Adj P Value

TXNIP 5.24 6.25E-15 SH3BGR 2.29 4.02E-07

OSGIN1 3.68 3.63E-16 HSPA5 2.05 7.51E-10

HBZ 3.52 6.64E-16 HERPUD1 1.83 4.88E-11

AKR1C1 3.01 1.89E-14 ARG2 1.75 2.36E-09

SQSTM1 2.99 1.22E-24 ALDH1A1 1.61 7.07E-07

MCM5 2.74 1.07E-18 NFE4 1.43 3.92E-12

HBA2 2.54 2.68E-15 SEC24D 1.40 3.58E-07

HBE1 2.47 3.58E-21 BEX2 1.29 4.11E-06

NQO1 2.41 2.22E-32 CREG1 1.28 2.85E-06

HBG2 2.12 2.33E-15 LCP1 1.22 4.33E-07

GCLM 2.08 5.83E-19 SERPINH1 1.20 5.91E-06

PPP1R15A 2.05 2.15E-13 RTN4 1.16 3.14E-08

FTL 2.02 3.63E-16 ACOT13 1.15 6.60E-07

HBA1 1.98 3.73E-13 TDP2 1.11 1.49E-07

HBG1 1.94 1.02E-11 TPM4 1.11 4.53E-08

TXNRD1 1.52 9.58E-12 CTSD 1.11 1.78E-08

FTH1 1.47 4.70E-12 PGD 1.05 3.26E-06

CREM 1.41 1.28E-14 ACTB 1.02 2.38E-06

TXN 1.20 6.53E-14 CTSB 1.02 1.39E-06

PRKCSH -1.18 3.70E-16 SND1 0.96 8.32E-07

FKBP2 -1.44 1.47E-11 COPA 0.89 2.56E-07

UCA1 -1.52 6.71E-13 GSR 0.88 2.85E-06

SERPINH1 -1.60 1.47E-11 ANXA5 0.88 1.47E-10

PDIA3 -1.63 2.29E-19 SEC61A1 0.80 1.54E-06

DNAJB11 -1.69 4.11E-14 CALU 0.80 1.71E-09

AC068631.2 -1.95 9.98E-12 SSX1 0.77 1.23E-07

HSP90B1 -1.97 3.99E-19 NQO2 0.73 5.36E-06

HERPUD1 -1.99 2.64E-14 PSMC1 0.68 1.35E-06

NMU -2.01 3.65E-11 SEM1 0.61 4.33E-07

HYOU1 -2.07 7.01E-19 TNNI3 -1.04 8.32E-07

PDIA6 -2.19 2.54E-17 VARS -1.06 2.82E-07

MANF -2.24 8.93E-16 LINC01029 -1.10 1.26E-06

PDIA4 -2.35 1.43E-14 MARCKSL1 -1.14 4.84E-07

HSPA5 -2.35 7.91E-14 HEMGN -1.95 7.51E-10

CALR -2.57 9.34E-17 TXNIP -4.15 9.81E-11

Hemin Vs Hemin + ARID3a shRNAUntreated Vs Hemin



75 
 

while let7 gene targets, ATF4, FN1, and ELK1 were activated. In addition, when the 227 genes 

affected both by hemin and ARID3a were interrogated, networks with functions related to cell 

cycle, cell death and survival, and cell morphology were identified. Interestingly, ARID3a was 

included in the network and was associated with FOS and YY1 (Figure 13D-E).  
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Figure 13. ARID3a expression is linked to key genes and transcription factors important 

for erythropoiesis. (A) A Venn diagram indicates numbers of differentially expressed genes on 

day two of treatment with and without hemin and ARID3a (FDR < 0.05, FC ≥ 1.5, n=3). (B) GO 

analyses indicates pathways important for the 227 genes that are affected by ARID3a inhibition 

and hemin induction. (C) The most highly represented transcription factor binding motifs of the 
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227 overlapping genes are shown. (D, E) Network analyses of the 227 differentially expressed 

genes in (A) reveal related genes. Log2 fold-change values from the untreated vs hemin 

comparison (left) were overlaid onto the top network identified by IPA using the 227 

overlapping genes. Red color indicates upregulated genes and green color indicates 

downregulated genes.  (E) Log2 fold-change values from the hemin vs hemin and ARID3a 

shRNA were overlaid onto the top network. 

Chromatin accessibility is altered in ARID3a KO K562 cells 

Alpha-globin genes (HBA1, HBA2, and HBZ), components of mediator complexes important 

for erythropoiesis (MED1), and histone subunits were among the 227 genes induced by hemin 

and down-regulated by ARID3a, suggesting ARID3a has a role in globin transcription or 

mediates cofactor binding to transcription start sites (TSS) of erythroid-specific genes through 

epigenetic mechanisms. To explore the hypothesis that ARID3a regulates lineage-specific genes 

by altering chromatin accessibility, we used CRISPR-Cas9 gene editing in K562 cells to generate 

clones with biallelic inactivation of ARID3a for ATAC-seq analyses (Figure 14). Single guide 

RNAs (sgRNAs) targeting exon 3, which codes for the extended DNA-binding domain specific 

to ARID3 family members, were used to generate genomic deletions of ARID3a (Figure 14A). 

Bulk deleted clones were then single cell sorted and individual clones were screened for deletion 

by PCR (not shown), flow cytometry and western blotting (Figure 14B-C).  Two clones (BH and 

AL) selected via reduced intracellular staining were confirmed to exhibit no detectable protein 

via western blotting and were used with wild type clones for ATAC-seq analyses.  
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Figure 14. Clones of homozygous CRISPR-Cas9 ARID3a knockouts in the K562 cell line 

were identified and isolated. (A). Schematic diagram of the sgRNA cut-site that causes a 

deletion of part of the extended-ARID DNA-binding domain. (B) Flow cytometry was used to 

identify clones with reduced staining for intracellular ARID3a protein, as shown for clone BH 

versus the wild type clone. Quadrant gates were set according to isotype controls. (C) ARID3a 

protein levels were measured by western blotting of wild type and CRISPR-Cas9 KO clones BH 

and AL for 100,000 cells per lane. Actin was used to confirm protein loading in each lane (lower 

panel).    

 

DESeq2 identified 690 genomic regions with differential chromatin accessibility in 

ARID3a+/+ vs ARID3a-/- K562 cells, and 385 were mapped near genes (Figure 15). Among the 

385 genes was MAPK14 (P38), which acts as a break for erythropoiesis through JNK-mediated 

inhibition (174). Overlap analysis of the 385 differentially expressed genes identified by ATAC-

seq with the 227 genes from the RNA-seq data revealed 5 genes (SNHG12, SERTAD1, VPS37B, 
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PPP1R15A, SLC25A25) that are associated with ARID3a expression in hemin-induced K562 

cells. SERTAD1, VPS37B, PPP1R15A, and SLC25A25 all contain TFBSs for GATA1, GATA2, 

and TAL1. SERTAD1 has implications in blood cell development in mice (175). These genes 

have no known functions in erythropoiesis; however, SHNG12 and SERTAD1 have been 

implicated to inhibit cell proliferation (176). PPP1R15A and VPS37B are involved in translation 

initiation and protein trafficking, respectively. These data suggest ARID3a may function in 

regulating cell differentiation through inhibiting certain histone methyltransferases or by 

activating genes involved in translation initiation.  A large percentage of differentially accessible 

sites were also intergenic regions (Figure 15B). Unsupervised hierarchical clustering of all 690 

regions indicated that wild type and knockout regions grouped together and showed both 

increased and decreased regions of accessibility associated with ARID3a deficiency (Figure 

15C). Alterations in chromatin accessibility were particularly evident in large intragenic regions 

(Figure 15D) that may represent enhancers. A list of the top 10 regions that were most 

significantly up- or downregulated between wild type and ARID3a KO clones are listed in 

Figure 15E, and eight of those are intragenic regions of unknown significance.  
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Figure 15. Ablation of ARID3a in K562 cells results in changes in chromatin accessibility. 

(A) Differential expression analyses of wild type and ARID3a-/- KO K562 cells (n = 2 clones per 

group, FDR < 0.05, log FC > 2). Dark red dots represent individual peaks with FDR < 0.05 (y-

axis) and log FC > 2 (x-axis).  Several genes with high differential accessibility are labeled. (B) 

The genomic distribution of differentially expressed ATAC peaks in K562 wild type versus 

ARID3a knockout cells is shown. The human genome was portioned into seven bins relative to 

RefSeq genes. TSS, transcriptional start site; TTS, transcriptional termination site. (C) An 

unsupervised hierarchical clustered heatmap of differentially expressed ATAC regions between 

wild type and ARID3a-/- KO K562 clones reveals clustering of knockout versus wildtype clones 

and revealed two clusters of genomic regions with reciprocal expression. (D) Intergenic regions 

show differential chromatin accessibility of two representative regions highly affected by 

deletion of ARID3a. Gray bar indicates ARID3a ChIP sites from ENCODE. (E) List of the top 

10 upregulated and downregulated differentially accessible regions between wild type and 

ARID3a KO K562 cells. 

 

ARID3a deficiency directly affects chromatin regions associated with globin gene 

regulation 

The globin locus control (LCR) region upstream of the fetal globin genes is critical for 

developmental regulation of those genes. This LCR revealed reduced accessibility in ARID3a-/- 

clones compared to wild type clones (Figure 16A). Data from ENCODE identified ARID3a 

binding sites via ChIP-seq (Figure 16A), in many cases with overlapping GATA1, GATA2, and 

TAL1 TF binding sites. The erythroid-specific TF loci for NFE2 and TAL1 were also 

significantly less accessible in ARID3a-/- clones than in wild type cells (Figure 16B-C). The 

surface marker CD71 that was down-regulated at both the protein and transcript level (Figures 10 

and 12), also exhibited reduced accessibility in ARID3a deficient cells (not shown). Together, 

these data suggest that ARID3a is required to maintain appropriate chromatin configurations for 

globin gene expression and erythropoietic differentiation in K562 cells.  
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Figure 16. ARID3a affects chromatin accessibility of transcription factors and regulatory 

regions important for globin expression. (A). Chromatin accessibility of the β-globin genes 

and locus control region in wild type and ARID3a-/- KO K562 cells (n = 4 clones per group, FDR 

< 0.05, logFC > 2) stimulated with and without hemin. Gray bars and dotted rectangles indicate 

transcription factor binding sites for ARID3a, GATA1, GATA2, and TAL1 identified in K562 

cells by ENCODE. Chromatin accessibility in wild type and ARID3a-/- KO clones of the 

erythroid-specific TFs NFE2 (B) and TAL1 (C) are shown.  

 

DISCUSSION 

In this study, we demonstrated that ARID3a protein is required for hemin-induced, 

erythrocyte lineage differentiation of the human K562 model cell line. Knockdown of ARID3a 

with shRNA resulted in a visible reduction in globin production and downregulation of 

erythroid-lineage associated surface markers CD235a (GYPA) and CD71 (TFRC) without 

affecting viability. RNA-seq analyses of ARID3a-inhibited samples identified 227 genes that 

required ARID3a for hemin induced differentiation, confirmed downregulation of globin genes 

(HBA1, HBA2, and HBZ) and revealed that ARID3a deficiency led to blocks in differentiation 

and repression of key erythroid-specific TFs (GATA1, GATA2, KLF1, NFE2) and genes 

encoding critical cofactors (MED1, LDB1, CCAR1) for hemoglobin expression. Furthermore, our 

data reveal that ARID3a acts as an epigenetic regulator that is required for appropriate chromatin 

accessibility of genes and enhancer regions essential for erythroid maturation.  These data 

indicate a previously unappreciated role for ARID3a in human erythropoiesis and are the first to 

document genomic sites altered by depletion of ARID3a.  

We previously found that ARID3a knockout embryos exhibited profound defects in 

erythropoiesis at day 12.5 of gestation (14). Consistent with our observations, Kingsley et al., 

found ARID3a transcripts were enriched 22-fold in primitive erythropoiesis in the mouse (144). 

Additional studies in human erythroid progenitors indicated that the ARID3a gene locus was 

differentially methylated during early erythropoiesis with higher expression in fetal erythroblasts 
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(177). More recently, the ARID3a locus was identified to be differentially methylated in human 

primary basophilic erythroblasts (178). Further, others linked ARID3a with the erythroid master 

regulators, GATA1 and TAL1, in human erythropoietic studies that determined transcription 

factor landscapes of enhancers in erythroid progenitors (156,179). Our studies extend those data, 

and definitively demonstrate a requirement for ARID3a protein in human erythroid development.  

We identified 227 differentially regulated genes associated with ARID3a and erythropoiesis 

in this system. These genes showed significant enrichment of the transcription factor binding 

sites, GATA1 and GATA2. Both GATA1 and GATA2 are critical regulators of erythropoiesis 

(180-183). GATA2 is expressed in erythroid precursors (184), and as GATA1 levels increase, 

GATA2 is replaced by GATA1 at many sites throughout the genome, a process called GATA 

switching (185,186). Studies of enhancer turnover in CD34+ cells suggested that ARID3a could 

be associated with the GATA2-to-GATA1 switch, raising the possibility that ARID3a could be 

involved in epigenetic modifications in those cells (144). ENCODE data of K562 cells showed 

considerable overlap between GATA1, GATA2, and ARID3a binding sites in many genes 

important for erythropoiesis, suggesting ARID3a may function with those factors, either as a 

transcription factor or as an epigenetic regulator mediating opening/closing of chromatin in 

enhancer/promoter regions. Indeed, four of the five genes identified by overlap analysis of the 

RNA-seq and ATAC-seq data contained ARID3a, GATA1, GATA2, and TAL1 binding sites. 

Moreover, the GATA switch is mediated by positioning of polycomb subunits EZH2 (187). 

EZH2 was significantly downregulated upon inhibition of ARID3a in our studies and our 

unpublished data suggest it may interact directly with ARID3a in K562 cells.  Further studies 

will be needed to explore if ARID3a is important for the GATA switch through regulation of, or 

interactions with EZH2.  



85 
 

Our ATAC data reveal decreases in chromatin accessibility in erythroid-specific enhancer 

regions in ARID3a-/- clones, including the LCR region that is essential for the expression of 

embryonic, fetal, and adult globin genes in a developmentally controlled manner. EHMT1 adds 

repressive H3K9me2 marks to the LCR region (188), and showed 2-fold increased accessibility 

in ARID3a KO clones. EHMT1 also adds repressive histone marks to H3K9me2 at the γ-globin 

locus in human adult erythroid cells, thereby reducing expression of both γ-globin and fetal 

globin (62). Future studies will be required to how ARID3a contributes to these effects. 

However, our data suggest that ARID3a may participate in mediation of multiple epigenetic 

events necessary for erythropoiesis, and that these events may require context-dependent 

transcriptional activities.  

ARID3a was originally discovered as a DNA-binding protein in the mouse (Bright) that 

upregulated transcription of the immunoglobulin heavy chain locus in B lymphocytes in response 

to cytokine and antigen stimulation (189,190), and was later discovered to suppress the Oct4 

gene, participating in pluripotency regulation (11,12). In addition, our data here and in other 

human blood cells suggest that ARID3a over- and under-expression is associated with 

differential gene expression patterns in a cell type-specific fashion (13). Therefore, it is likely 

that ARID3a functions in coordination with other epigenetic factors to mediate its effects. 

Indeed, these data indicate that ARID3a knockdown contributes to alterations in chromatin 

accessibility in a wide range of genomic sites that are both associated with coding and intragenic 

regions (Figure 6). We postulate that many of the intragenic regions may function as enhancers; 

although it is likely that that function will also exhibit cell type specificity and the requirement 

for transcription factors that may be absent from the K562 cell line.  
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Out of the 690 differentially accessible regions identified by ATAC-seq, 305 of these regions 

were located in intergenic regions with unknown function.  Moreover, there were 8 intergenic 

regions among the top 20 most differentially accessible regions (Figure 15). The importance of 

intergenic regions is emphasized by a study on the super-enhancer-derived RNA, alncRNA-

EC7/Bloodlinc, which is required for terminal erythropoiesis and red blood cell production 

(191). Our ATAC data show reduced accessibility of this enhancer region (not shown). It is not 

currently possible to distinguish which of these intergenic regions with altered chromatin 

accessibility directly contribute to erythropoietic functions, versus other hematopoietic events. 

For example, some of these regions may be important in other hematopoietic cells where 

ARID3a is linked to disease activity, such as lupus (13,192). Histone subunits (HIST1H2BN, 

HIST1H3B, HIST1H3H, and HIST1H4J), chromatin remodelers (SAT2B), heme biosynthesis 

enzymes (ALAS1), and genes implicated in Systemic Lupus Erythematosus (SLE) signaling 

pathways (PPP1R15A and TROVE2) were repressed by ARID3a shRNA on day two. Thus, it is 

not possible from these data alone to elucidate the functions of ARID3a-regulated regions in 

other cell types.  

Understanding how hemoglobin expression and erythropoiesis are regulated is critical for the 

development of new therapeutics for diseases such as sickle cell disease and thalassemia’s. 

Further elucidation of how ARID3a functions in erythropoiesis could lead to development of 

therapeutic agents for blood disorders and for SLE, for which few drugs are currently available. 

Together, these data expand our knowledge of the importance of ARID3a in hematopoiesis, and 

particularly in erythroid lineage development and define new regulatory roles for ARID3a. 

DATA AVAILABILITY  
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RNA-seq data are publicly available through the GEO NCBI database under the accession 

number GSE131649. For original data, contact carol-webb@ouhsc.edu.    
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Chapter 3 Addendum  

Although, chapter 3 elucidated new functions for ARID3a in lupus, it did not provide 

opportunities for traditional analyses (i.e. differential expression analysis by analyzing ARID3a+ 

vs ARID3a- samples) of RNA-seq data because ARID3a was post-transcriptionally regulated in 

both LDNs and pDCs (13)(Chapter 3). ARID3a was expressed at low levels in all samples while 

protein levels varied greatly. Therefore, we took advantage of an additional project ongoing in 

the lab that suggested ARID3a is a critical for erythropoiesis. ARID3a knockout mice exhibited 

low numbers of erythrocytes and died between days 9 and 12 of development due to failed 

about:blank
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erythropoiesis. The role of ARID3a in human erythropoiesis has not been studied. Stimulation of 

the human K562 cell line with hemin has been shown to induce fetal globin synthesis and 

erythrocyte differentiation. Because K562 cells constitutively express ARID3a, we used this cell 

line to determine if ARID3a is important for human erythrocyte differentiation. Knockdown of 

ARID3a with shRNA in hemin stimulated K562 cells resulted in inhibition of globin production 

by >75%. To determine what genes were affected by loss of ARID3a, we performed a series of 

RNA-seq experiments at various times after hemin stimulation with and without ARID3a. The 

processing of raw fastq sequencing files were performed as described in Chapter 3. However, 

instead of using limma, DESeq2 was used to perform differential expression analysis. 

pAnno <- read.csv(file="colDataB2.csv") 

dds <- DESeqDataSetFromMatrix(countData = round(counts), colData = pAnno, design 

= ~ Levels) 

#remove genes that are expressed less than an average of 10 TPMs across all samples 

keep <- rowSums(counts(dds)) >= 10 

dds <- dds[keep,] 

The above code loads in the gene expression file, removes lowly expressed genes from 

the gene expression matrix, and the pAnno represents an annotation file that lets the program 

know which sample is in a specific condition (i.e. wild type, hemin treated, etc).  

resA2vB2<- results(dds, contrast=c("Levels", "A2","B2")) 

resOrderedA2vB2 <- resA2vB2[order(resA2vB2$pvalue),] 

summary(resA2vB2) 

sum(resA2vB2$padj < 0.1, na.rm=TRUE) 

resdataA2vB2 <- merge(as.data.frame(resA2vB2), as.data.frame(counts(dds,normalized 

=TRUE)), by = 'row.names', sort = FALSE) 

#write.csv(resdataA2vB2, file = paste0("A2vB2_A3AK562-results-with-

normalized.csv")) 
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This is an example code for differential expression analysis between untreated K562 

samples processed on day 2 (“A2”) and hemin treated samples processed on day 2 (“B2”), 

creates a matrix that is ordered by p values, concatenates gene names to the DESeq2 results file, 

and then saves the results as a csv file. Next, a heatmap of the top significantly differentially 

expressed genes were generated with the following code: 

library(pheatmap) 

rld <- rlog(dds, blind = FALSE) 

topgenes <- head(rownames(resOrderedA2vB2)) 

mat <- assay(rld)[topgenes,]  

mat <- mat - rowMeans(mat) 

df <- as.data.frame(colData(dds)[,c("Condition","Levels")]) 

pheatmap(mat, annotation_col=df) 

 

The code above was performed for each conditions analyzed in Figure12 of this chapter. The 

PCA plot in Figure 11 was generated in R using the code: 

 plotPCA(rld, intergroup = “Levels”) 

ARID3a shRNA-inhibited cells confirmed inhibition of globin gene products. Erythroid specific 

transcription factors were also inhibited in samples treated with ARID3a shRNA while myeloid 

surface markers were induced. Several critical upstream regulators of ARID3a were also 

identified in these analyses. These data are the first to suggest that ARID3a is important for cell 

fate decisions in erythropoiesis in human cells and identify potential important targets of 

ARID3a in this process. In addition, ATAC-seq was performed on ARID3a-/- K562 cells to look 

for differences in chromatin accessibility.  
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ABSTRACT 

Immunologic aging leads to immune dysfunction, significantly reducing the quality of 

life of the elderly. Aged-related defects in early hematopoiesis result in reduced lymphoid cell 

development, functionally defective mature immune cells, and poor protective responses to 

vaccines and pathogens. Despite considerable progress understanding the underlying causes of 

decreased immunity in the elderly, the mechanisms by which these occur are still poorly 

understood. The DNA-binding protein ARID3a is expressed in a subset of human hematopoietic 

progenitors. Inhibition of ARID3a in bulk human cord blood CD34+ hematopoietic progenitors 

led to developmental skewing toward myeloid lineage at the expense of lymphoid lineage cells in 

vitro. Effects of ARID3a expression in adult-derived hematopoietic stem cells (HSCs) have not 

been analyzed, nor has ARID3a expression been assessed in relationship to age. We 

hypothesized that decreases in ARID3a could explain some of the defects observed in aging.  

INTRODUCTION 

The US Census Bureau estimates that nearly a quarter of the US population will be over 

the age of 65 by the year 2060 (193). A major consequence of aging is a decline in immune 

function. Both murine and human studies revealed age-related defects in early hematopoietic 

development, and functional defects in mature immune cell populations, that result in decreased 

potentials to mount protective immune responses in aged individuals (reviewed in 194), as 

exemplified by increased susceptibility to influenza and pneumonia in the elderly. Human 

hematopoiesis is a dynamic process requiring complex regulation of multiple gene expression 

pathways for lineage commitment and resulting in development of diverse numbers of blood cell 

types (195). Several studies indicate that aged hematopoietic stem cell (HSC) frequencies are 

increased in both human and mouse (196,197). Bulk CD34-expressing hematopoietic stem and 
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progenitor cells (HSPCs) from aged donors exhibit epigenetic and transcriptional changes that 

promote self-renewal over differentiation (198,199). In old age, cells in the hematopoietic 

progenitor pool accumulate decreased telomere lengths and DNA damage markers, and their 

developmental potential becomes increasingly skewed toward myeloid versus lymphoid lineage 

development (198-201). Identification of the changes in old age that alter the development of 

mature immune cells, and possibly contribute to their dysfunction, will require mechanistic 

studies that better define potential differences in gene regulatory mechanisms critical for lineage 

choices.  

 The transcription factor ARID3a is an understudied member of a large family of proteins 

with epigenetic functions (27,202,203). Previous studies indicated that ARID3a can contribute to 

repression and enhancement of transcription in a cell type-specific fashion (169,204,205). 

Regulation of transcription through ARID3a may be associated with epigenetic functions that 

affect large subsets of genes and lineage decisions (21,192, our unpublished data,204,206).  

ARID3a deficient mice die in utero between days 12 and 14 of gestation, but exhibited a 90% 

reduction in HSCs numbers in the fetal liver associated with defective erythropoiesis and B 

lymphopoiesis (14). Functional loss of ARID3a in B lineage cells, either through ARID3a 

dominant negative transgenic mice or rare adult ARID3a-/- mice, revealed important roles for 

ARID3a in B1 B cell lineage development and function (14,207). These data were recently 

confirmed using conditional knockout mice, showing definitively that ARID3a is required for B1 

B lineage development in mice. Loss of functional ARID3a in B lineage cells in mice directly 

impaired  normal protective immune responses to  infection with S. pneumoniae (207),  an 

organism associated with pneumonia in aged individuals (24, 25).  Forced expression of ARID3a 

in mouse B lineage cells resulted in enhanced development of B1 and MZ B cells versus 
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conventional follicular B cells (208), suggesting ARID3a levels can modulate B lineage 

responses in mice. Mechanisms responsible for generating B1 lineage B cells in man remain 

controversial (209,210) . Together, these data identify ARID3a as an important regulator of B 

lymphopoiesis. 

Roles for ARID3a in human hematopoiesis are less clear. We found that ARID3a is 

variably expressed in healthy human HSPCs, including total CD34+ HSPCs, HSCs, multipotent 

progenitor (MPP), multi-lymphoid progenitors (MLP), and multi-myeloid progenitors (MMP) 

derived from adult peripheral blood (211), but the functional significance of expression in those 

progenitors is not clear. In functional studies with human cord blood HSPCs, where ARID3a 

expression dominates the majority of those cells, manipulation of ARID3a resulted in skewing of 

lineage development with promotion of myeloid over lymphoid lineage differentiation upon loss 

of ARID3a expression and increased B lymphopoiesis upon over-expression of ARID3a (76).  

ARID3a expression in circulating peripheral blood HSPCs from lupus erythematosus patients is 

upregulated compared to similar cells from healthy individuals, although the role of ARID3a in 

those cells is unknown.  These data suggest the need for further experiments to determine how 

ARID3a levels affect adult human hematopoiesis.  

 We hypothesized that one explanation for reduced B lymphopoiesis and increased 

numbers of myeloid cells in aged versus young individuals is that ARID3a expression is reduced 

in HSCs from healthy aged individuals compared to healthy young individuals, or that its 

function in those cells is impaired. Our results indicate that peripheral blood HSCs from aged 

donors exhibit reduced frequencies of ARID3a-expressing cells compared with young donors. 

Furthermore, modulation of ARID3a levels in aged and young donor-derived HSCs altered B 

lymphopoiesis in vitro. Finally, single cell RNA-seq analyses of revealed differences in gene 
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expression patterns in ARID3a-expressing progenitors from aged versus young individuals that 

are linked to age-associated hematopoietic changes. 

METHODS 

Single-cell RNA-seq 

 HSCs from 4 young (ages 19-40) and 4 aged (ages 61-70) individuals (2 males and 2 

females each) were FACS-sorted and immediately used for single cell analyses. Smart-seq/C1 

libraries were prepared on the OUHSC Consolidated Core Laboratory Fluidigm C1 system using 

the SMARTer Ultra Low RNA Kit (Clontech) according to the manufacturer’s protocol. Cells 

were loaded on a 5-10 μm RNA-seq microfluidic IFC at a concentration of 200,000/ml. Capture 

site occupancy was surveyed using a standard light microscope and recorded to verify cell 

capture. Sequencing library amplification was performed using Nextera XT Index primers 

(Illumina) according to manufacturer’s protocol. Barcoded library concentration and fragment 

size distribution was determined using Agilent High Sensitivity D1000 kit on an Agilent 2200 

TapeStation (Agilent Technologies) at the OMRF Genomics Core Facility. Paired-end (2 x 50bp) 

sequencing was performed on a NovaSeq 6000 platform by the OMRF Genomics Core Facility. 

 Paired-end reads were aligned to the hg38 genome assembly with STAR using default 

parameters. The Partek Genomics Suite was run on the aligned reads to estimate gene expression 

levels. Cells that had greater than 25% of counts mapping to mitochondrial genes indicate 

stressed or dying cells and were excluded from analyses. The number of detected genes was 

44,025 across 301 cells for aged samples and 39,417 genes across 264 cells for young samples. 

Log normalized counts per millions (CPM) were log2-transformed and used for tSNE 

visualization and differential expression analyses. Data from aged and young samples were 
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interrogated separately based on ARID3a expression, with >0.5 CPM denoting ARID3A+ cells 

and <0.5 CPM denoting ARID3A- cells for further analysis. ANOVA analysis was performed 

within the Partek Flow software to identify DEGs with 2-fold or greater changes in expression 

and a False Discovery Rate (FDR) < 0.05. IPA analyses were performed on significant DEGs. 

RNA-seq data are publicly available through the GEO NCBI database under the accession 

number GSE138544. 

Data Analyses 

Data were statistically evaluated using the non-parametric Mann Whitney U test or the 

non-parametric Wilcoxon paired test to compare distribution of variables between groups. 

Correlations were evaluated using Pearson’s Correlations. Statistical analysis was performed 

with Prism (Graphpad) software version 8.2. Differential gene expression was analyzed using 

ANOVA within the Partek Genomics Suite. Gene ontology analyses on differentially expressed 

genes were analyzed within the Partek Flow Genomics Suite using the gene set enrichment tool. 

P values of less than 0.05 were considered significant. 

 

RESULTS 

To identify genes associated with ARID3a expression in HSCs from aged versus young 

donors, we performed single cell RNA-seq analyses and analyzed each cell for the presence and 

level of ARID3a transcription as shown by the scatter plot (Fig. 18A). Analyses of ARID3A 

transcript by qPCR from bulk HSCs of known ARID3a protein expression suggest that transcript 

and protein expression in bulk HSCs correlate (data not shown). There were 153 ARID3a+ and 

148 ARID3a- cells from aged donors and 172 ARID3a+ and 92 ARID3a- cells from the young 
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donors. Three-dimensional t distributed stochastic neighbor embedding plots (tSNE) of 301 aged 

and 264 young HSCs from 8 donors revealed considerable spread in dimensionality in the aged 

(circles) versus young (squares), shown as overlays (Fig. 18B and C). This suggests that isolation 

of HSCs using standard surface markers (Fig. 17A) results in cells that are heterogeneous with 

respect to their transcriptomes in both aged and young donors. Identification of ARID3a-

expressing cells, as indicated by blue symbols, reveals widespread ARID3a expression in both 

aged and young HSCs, with increased clustering of ARID3a-expressing cells toward the right-

hand side in the aged donor cells (Fig. 18B). Ingenuity Pathway Analyses (IPA) analyses of 

ARID3a-associated genes and non-ARID3a associated genes from aged donors revealed 

enrichment in pathways associated with cell cycle, regulation of B cell apoptosis, negative 

regulation of B cell activation, and positive regulation of histone methylation in the ARID3A 

cells (Fig 18D). Similar analyses of young donor cells indicated enrichment of pathways 

associated with lymphocyte homeostasis, JAK-STAT signaling and nucleic acid binding in the 

ARID3A cells (Fig 18E).  
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Figure 17. PBMCs from aged individuals show reduced frequencies of ARID3a+ HSCs. 

Human HSCs expressing ARID3a were identified by flow cytometry from total PBMCs of 54 

healthy adults (ages 18-70). (A) Representative gating from young (left) and aged (right) donors 

are shown. (B) Numbers of HSCs/ml of blood are plotted against age with a line of best fit. Red 

samples indicate samples from donors ≥ 65 years of age. (C) Frequencies of ARID3a+ HSCs are 

plotted against age. Frequencies (D) and numbers (E) of ARID3a+ HSCs for young (open circles) 

and aged (closed circles) donors are shown. (F) Mean Fluorescence Intensities (MFI) of 

ARID3a+ HSCs from young and aged donors are presented.  Averages and standard error bars 

are shown. Statistical significance was determined by Mann Whitney U test and Pearson’s 

Correlation. 
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Direct comparison of ARID3a-expressing cells from aged versus young donors revealed 

253 genes down-regulated >2-fold and 195 up-regulated genes. IPA of the ARID3a-associated 

genes from the young donors and the ARID3a-associated genes in the aged donors revealed 

enrichment in pathways associated with B1 B cell differentiation lymphocyte differentiation, 

type 1 interferon signaling, and regulation of gene expression in the aged donor cells (Fig 18F). 

The most highly up-regulated gene in the aged ARID3a+ HSCs versus young donor ARID3a+ 

HSCS is AIF1, a gene associated with macrophage activation (Fig. 18G), while the most highly 

down-regulated gene encodes a chemokine, PPBP. In addition, at least four transcription factors 

HES1, MAFB, ATF4 and JAK1 are differentially regulated in aged versus young ARID3a-

expressing HSCs. Thus, alterations in gene expression profiles in young versus aged ARID3a-

expressing cells may be the result of changes in these regulatory proteins. Together, ARID3A-

expressing cells in aged donors differ in gene expression patterns from ARID3A-expressing 

young donor HSCs. 
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Figure 18. ARID3a+ HSCs from aged donors express altered transcriptomes compared to 

ARID3a+ HSCs from young donors. Single-cell RNA-seq expression profiles from 4 young 

(ages 19, 21, 37, and 40) and 4 aged (ages 61, 66, 68, and 70) donors were obtained and analyzed 

based on ARID3A transcript levels (ARID3A+  >0.5 CPM, ARID3A-  <0.5 CPM). Data from 264 

young donor cells (172 ARID3A+ and 92 ARID3A-) and 301 aged donor cells (153 ARID3A+ and 

148 ARID3A-) were assessed. (A) ARID3A transcript levels for young and aged donor cells are 

shown. TSNE plots of aged donor HSCs (circles) are overlaid with shaded young donor HSCs 

(squares) (B) and ARID3a expression levels are indicated by intensities of blue dots. In (C), 

TSNE plots are overlaid with young donor HSCs over the shaded aged donor HSCs for better 

visibility of the ARID3a-expressing cells in each group. The top GO terms enriched in DEGs 

from ARID3a+ vs ARID3a- Aged HSCs are given with p values (D) and for young ARID3a+ 

versus ARID3a- cells in (E). (F) Top GO terms directly comparing ARID3a+ cells in aged versus 

young donors are shown. (G) The most differentially expressed genes in ARID3a+ HSCs in aged 

versus young donors are presented with negative or positive fold change (FC).  

 

DISCUSSION 

The data presented here suggest that HSCs from both aged and young donors contain 

equivalent numbers of ARID3a-expressing cells, although total frequencies of ARID3a+ cells 

were reduced in aged individuals. Analyses of hematopoietic lineage potential revealed that aged 

donor HSCs yielded reduced numbers of B cells compared to those derived from young donor 

HSCs, despite the presence of equivalent total numbers of ARID3a-expressing progenitors. 

These data suggest ARID3a expression alone is insufficient to cause age-associated shifts in B 

cell generation. Surprisingly, the aged donor-derived B cells retained CD34 expression to a 

greater degree than B lymphoid lineage cells derived from young donors, implying the aged 

donor B lineage cells could be less mature than young donor derived B cells. Artificial over-

expression of ARID3a in aged donor-derived HSCs suggested that increased ARID3a expression 

resulted in better B lineage development without retention of surface CD34. ARID3a expression 

was critical for B lineage development from young donor peripheral blood-derived HSCs, 

consistent with our previous findings using HSCs from cord blood (76). Importantly, single cell 

RNA-seq of both aged and young donor HSCs expressing ARID3a revealed a number of 
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transcriptome differences between these cells, suggesting that the ARID3a-expressing cells in 

aged individuals differ at the molecular level from ARID3a-expressing cells from young 

individuals. These differences may contribute to the functional differences observed in 

hematopoiesis in vitro.  Together, these data suggest that ARID3a-expressing progenitor cells in 

aged individuals differ at the transcription and functional level from those present in young 

individuals. 

In support of our surface expression data suggesting that the ARID3a-expressing cells 

from aged individuals differ from ARID3a+ HSCs in the young, single cell transcriptome 

analyses revealed major differences in gene expression as well. GO analyses of young ARID3A-

expressing HSCs and aged ARID3A-expressing HSCs reveal an enrichment in the pathways 

associated with B1 B cells differentiation in the aged cells (Fig 18D). Several elegant studies 

from the Hardy group in the last few years have elucidated the role of ARID3a in B1 B cell 

development in fetal/neonatal murine development (212-214). While human B1 cell 

identification remains controversial, others reported that cord blood HSPCs and mouse fetal liver 

HSPCs are very similar phenotypically and functionally (215,216). We previously found that 

~75% of human umbilical cord blood HSCs express ARID3a where it is important for B lineage 

development (76). These data suggest the interesting possibility that the ARID3a-expressing 

HSCs from aged donors could be enriched for B1 lineage-like development and might have 

fewer precursors that would ultimately result in conventional B lymphocytes. Murine bone 

marrow derived B1 B cells are suggested to be continually generated into old age (217), a 

population that has been reported to have separate progenitors than conventional B cells (218). 

Alternatively, age-associated B cells (ABCs) are a unique heterogeneous subset of B cells that 

have been the focus of study for several laboratories in the last decade. First described separately 
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by both the Cancro and Marrack research groups, these cells expand in old age and have been 

attributed to origins from multiple types of B lineage cells, including B1 B cells (219-221). 

However, no one has demonstrated the origins of those cells from early hematopoietic 

progenitors. Our data suggest that alterations in humoral immunity attributed to alterations in B 

cell maturation in aged individuals are already evident at the gene level in early hematopoietic 

stem cells.  The differences in gene expression that we observed between young and aged donor 

HSCs are generally consistent with published reports from others using young and aged HSPCs 

(222,223). However, as shown in Figure 18, considerable heterogeneity remains at the 

transcriptome level even in purified HSCs. The ability to directly compare populations with the 

B cell-associated protein ARID3a underscores additional differences in aged versus young 

donor-derived HSCs, and present a new caveat that even within the ARID3a-expressing cells, 

some progenitors may be predisposed to develop into B1 versus conventional B cells as 

suggested by the GO analyses. More studies are clearly needed to better define the discrete 

progenitors within HSCs and the associated transcriptome differences between young and aged 

individuals.  

 

CONCLUSIONS 

  The data presented here demonstrate that ARID3a-expressing HSCs total numbers are 

equivalent between old and young donors, yet the aged donor HSCs produced fewer B cells in 

vitro. Functional defects in aged donor ARID3a-expressing HSCs were reflected both in 

expression of surface protein markers and at the transcriptome level, suggesting either that the 

ARID3a-expressing HSCs from aged donors are functionally defective in maturation responses, 

or that the HSCs expressing ARID3a in aged donors reflect skewing of a precursor subset of B 
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lineage cells with different capacities to expand in these in vitro cultures. In addition, these data 

highlight the expansion of HSCs in aged individuals that do not express ARID3a, raising the 

possibility that these cells contribute to age-associated defects in hematopoiesis.   

Chapter 4 Addendum 

ARID3a is expressed in hematopoietic stem cells (HSCs) and a colleague in the lab 

discovered that ARID3a expression changed in HSCs from aged individuals. My goal was to 

help analyze differences in ARID3a expression at the single cell level to prepare for analyzing 

naïve B cells using scRNA-seq. Therefore, my contribution to this manuscript (Ratliff ML, 

Garton J, James JA,Webb CF. ARID3a Expression in Human Hematopoietic Stem Cells is 

Associated with Age-Related Reduction in B Lineage Development. Immunity & Aging. 2020; In 

Press) was to analyze the scRNA-seq data from 4 aged and 4 young samples where we found 

reduced ARID3a expression in stem cells from individuals over the age of 55 when compared to 

samples from young individuals. Briefly, quality control was performed on the raw fastq files 

whereby sequencing adapters were trimmed and low quality paired-end reads were removed 

before aligning them to the hg38 assembly of the human genome using the STAR program (224). 

The Partek Genomics Suite was run on the aligned reads to estimate gene expression levels. 

Cells that had greater than 25% of counts mapping to mitochondrial genes indicate stressed or 

dying cells and were excluded from analyses. The number of detected genes was 44,025 across 

301 cells for aged samples and 39,417 genes across 264 cells for young samples. Log normalized 

counts per millions (CPM) were log2-transformed and used for t-Distributed Stochastic Neighbor 

Embedding (t-SNE) visualization and differential expression analyses. Data from aged and 

young samples were interrogated separately based on ARID3a expression, with >0.5 CPM 

denoting ARID3a+ cells and <0.5 CPM denoting ARID3a- cells for differential expression 
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analysis. ANOVA was performed to identify DEGs with 2-fold or greater changes in expression 

and a FDR < 0.05. Significant DEGs were then subjected to IPA analysis to identify enriched 

pathways and gene networks.  
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CHAPTER 5 

ROLE OF ARID3A IN SLE NAÏVE B CELLS  

The entirety of the work in this chapter was processed and analyzed by me. Colleagues in 

the Webb lab aided in collection of B cell subsets from PBMCs. I was tasked with staining and 

sorting using flow cytometry, capture of single cells, extraction of RNA, cDNA synthesis, 

quality control (i.e. obtaining RNA integrity numbers, fragment size distribution, concentration 

of RNA/cDNA, preprocessing of sequencing reads), ligation of sequencing adapters, design of 

sequencing library indices, fragment size purification of libraries, pooling/normalization of 

libraries for sequencing, preprocessing of sequencing files and data analysis (as described in 

Chapter 2-4).  

Copyright Information 

N/A 

Allocation of Contribution 

The entirety of this chapter, including sample processing and data analysis, was written by me. 

 

ABSTRACT 

Systemic autoimmune diseases, which include systemic lupus erythematosus (SLE), 

systemic sclerosis, and rheumatoid arthritis, among others are a complex group of disorders that 

effect millions of people. Systemic lupus erythematosus is an autoimmune disorder that 

primarily effects young women and is characterized by the loss of tolerance to self with the 

destruction of host tissue. The cause of SLE is currently unknown and new treatment options 

have been scarce. Previous data also linked ARID3a expression to interferon alpha (IFNa) 

expression. IFNa is a cytokine previously associated with inflammatory responses in nearly half 
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of all lupus patients. Recently, the DNA-binding protein ARID3a was found to be highly 

correlated with disease activity in SLE patients (44,46). Furthermore, ARID3a is not normally 

expressed in naïve B cells from healthy individuals but is highly expressed in naïve B cells from 

SLE patients.  We hypothesize that ARID3a-expressing naïve B cells are precursors to marginal 

zone (MZ)- like B cells that secrete interferon and can induce interferon production in other cell 

types, leading to the associated disease phenotypes in SLE (46). The long-term goal of this 

project is to develop a better understanding of how ARID3a expression contributes to disease 

activity in SLE, and to identify therapeutic targets and surface biomarkers specific to ARID3a+ B 

cell subsets. Next-generation sequencing (NGS) and microfluidic technology will be used to 

capture single ARID3a-expressing and ARID3a negative B lymphocytes and to examine the 

transcriptome within individual B cell subsets in SLE patients. At present, there are significant 

knowledge gaps regarding how the expression of ARID3a contributes to increased disease 

activity and what causes the increased inflammatory responses in SLE patients. Because ARID3a 

is associated with alterations in chromatin accessibility, we expect there to be differentially 

expressed genes under the control of ARID3a regulation. Therefore, our current studies have 

taken advantage of the bimodal expression of ARID3a within individual SLE samples and 

single-cell technology to perform RNA-seq analyses. We predict that these studies will be 

important for the understanding of how ARID3a expression contributes to disease activity in 

SLE patients and will provide new information on its role in development.  

INTRODUCTION 

B cells are essential for adaptive immunity and their development requires strict 

regulation (225,226). They are important in modulating immune responses to self and foreign 

antigens, and dysregulation of complex signaling networks are implicated in increased 
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autoimmune disease activity, such as in systemic lupus erythematosus (SLE) (227).  The cause of 

SLE is unknown and only one new treatment has been developed to treat SLE in more than 60 

years (228); however, previous studies demonstrated that AT-rich interacting domain 3a 

(ARID3a), a DNA-binding protein, is more abundant in SLE B lymphocytes than in healthy 

control B cells (44). Increased levels of ARID3a-expressing B cells correlate with increased 

disease activity (44,46). Interestingly, recent studies indicated that ARID3a is important for the 

expression of the key inflammatory cytokine, interferon-alpha (IFNa), in B lymphocytes and 

other cell types (44-46). Others have observed a correlation between IFN transcriptional 

signatures in peripheral blood cells and SLE disease activity (SLEDAI) (112). Indeed, ARID3a-

expressing B lymphocytes appear to denote a new type of B effector cell that can induce IFNa 

expression in other cell types (46). Single cell analysis on PBMCs from SLE patients identified 

clusters of autoreactive naive B cell subsets that have high levels of TLR7 expression, which 

may be precursors double negative (DN2) (229,230) and activated naïve B cells (230). It could 

be possible that these ARID3a-expressing cells have broken the tolerance checkpoint, which 

allows autoreactive B cells to survive and expand (227). Therefore, it is important to better 

define the characteristics of these cells. ARID3a is bimodally expressed in both SLE and healthy 

controls, such that only a fraction of the cells within a given B cell subset express ARID3a at any 

given time. We hypothesize that ARID3a is an important contributor to increased disease activity 

in SLE patients.  Further, since deletion of ARID3a in K562 resulted in changes to chromatin 

accessibility (Chapter 3, manuscript submitted) we suppose that it will influence gene expression 

patters, either directly or indirectly, in B lymphocytes. The proposed research objective will use 

new single-cell technology to perform RNA-seq analyses of ARID3a-expressing and ARID3a 
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negative SLE B cells to better define differentially expressed genes. This manuscript aims will 

shed light on how ARID3a expression contributes to disease pathogenesis in patients with SLE. 

 

METHODS 

Flow cytometry and B cell isolation 

SLE B cells from PBMCs were enriched for B lymphocytes via negative selection using 

magnetic beads (Stem Cell Technologies), and were then fluorescence activated cell sort (FACS) 

purified using doublet exclusion to isolate single cells of > 99% purity. PBMCs were isolated 

from heparinized peripheral blood (~15 ml) with Ficoll-Paque Plus (GE Healthcare), and stained 

with the following fluorochrome-labeled antibodies: CD19 PE-Cy5, CD10 Pacific Blue 

(BioLegend), IgD PerCP-Cy5.5, CD27 PE-Cy7, and IgM APC (Southern Biotech). When 

possible, B cells were fixed (3% paraformaldehyde) and permeabilized (0.1% Tween-20) prior to 

staining with goat anti-human ARID3a antibody and a rabbit anti-goat IgG FITC secondary 

(Invitrogen). Gating for individual B cell subsets was described previously (44) and used with 

the following B (CD19+) cell subset markers: naïve (IgD+CD27−CD10+) B cells. Isotype controls 

(Caltag, BD Pharmingen, and eBioscience) were used for gating. Data (500,000 events per 

sample) were collected using an LSRII (BD Biogenics) and FACSDiva (BD Biosciences) 

software version 4.1 and were analyzed using FlowJo (Tree Star) software version 9.5.2.  

Single-cell RNA-seq 

 Total (CD19+) B cells from one SLE patient and naïve B cells from three SLE patients 

were FACS-sorted and immediately used for single cell analyses. Smart-seq/C1 libraries were 

prepared on the Fluidigm C1 system using the SMARTer Ultra Low RNA Kit (Clontech) 
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according to the manufacturer’s protocol. Cells were loaded on a 5-10 μm RNA-seq microfluidic 

IFC at a concentration of 200,000/ml. Capture site occupancy was surveyed using a standard 

light microscope and recorded to verify cell capture. Sequencing library amplification was 

performed using Nextera XT Index primers (Illumina) according to manufacturer’s protocol. 

Barcoded library concentration and fragment size distribution was determined using Agilent 

High Sensitivity D1000 kit on an Agilent 2200 TapeStation (Agilent Technologies) at the OMRF 

Genomics Core Facility. Paired-end (2 x 50bp) sequencing was performed on a NovaSeq 6000 

platform by the OMRF Genomics Core Facility. 

 Paired-end reads were aligned to the hg38 genome assembly with Bowtie2 using default 

parameters. Gene expression estimates (TPM) were generated using RSEM. Sequencing adapters 

and low quality reads were removed within the Parteks Genomics Suite using Cutadapt. Cells 

that had greater than 25% of counts mapping to mitochondrial genes indicate stressed or dying 

cells and were excluded from analyses. Gene expression, in transcript per millions (TPM), were 

log2-transformed and used for PCA visualization and differential expression analyses. Data from 

naïve (CD19+ IgM+ IgD+) B cell SLE samples were batch corrected and interrogated together 

based on ARID3a expression, with >0.5 TPM denoting ARID3A+ cells and <0.5 TPM denoting 

ARID3A- cells for further analysis. GSA analysis was performed within the Partek Flow software 

to identify DEGs with 2-fold or greater changes in expression and a False Discovery Rate (FDR) 

< 0.05. DEGs were then subjected to pathway and network analysis using Ingenuity Pathway 

Analysis (Qiagen). 

RESULTS 

We processed naïve (CD19+ IgM+ IgD+) B cells from three SLE patients (Figure 18). We 

previously identified ARID3a protein, but not transcript, levels to be associated with large 
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changes in gene expression in LDNs and pDCs of SLE patients (13). Flow cytometry was used 

to determine investigate if ARID3a protein levels correlate with transcript in B cells, when 

possible (Figure 19). Indeed, one representative sample had 93% of naïve B cells expressing 

ARID3a protein and 84% of cells expressing ARID3a transcript. Although it was not possible to 

measure ARID3a protein levels for every sample, data from the several that we looked at suggest 

that transcript correlates with protein in these cell types. A representative diagram of our single 

cell isolation, sequencing, and analysis is shown in Figure 20.   

 



111 
 

 

Figure 19. Percentage of ARID3a+ B cells levels were measured by flow cytometry. Naïve 

(IgM+ IgD+) B cells show a tight correlation between transcript (84% of cells ARID3a+, not 

shown) and protein levels (bottom right panel).  
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Figure 20. Schematic diagram of isolation, sequencing, and analysis of scRNA-seq. Capture 

rate of single cells was confirmed by visual inspection using a standard light microscope prior to 

construction of sequencing libraries. Preprocessing of raw sequencing reads for each cell was 

performed prior to binning single cells based on ARID3a expression. Principal component 

analysis was performed on all detected genes of high-quality cells. Differential expression 

analysis was then performed on ARID3a+ vs ARID3a- cells. Differentially expressed genes were 

then subjected to pathway and network analysis using Ingenuity Pathway Analysis.  
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Figure 21. PCA plot using all detected genes in high-quality single cells from one CD19+ 

(n=58) and three naïve (CD19+ IgM+ IgD+)(n=249) SLE patient reveals ARID3a+ cells 

cluster together and away from ARID3a- cells. ARID3a expression for each individual cell is 

indicated by the red-orange colors.  

Principal component analysis was performed on both the total (CD19+) and the naïve 

(CD19+ IgM+ IgD+) B cells to determine how ARID3a+ cells compare to ARID3a- cells (Figure 

21). Since PCA groups cells with similar expression patterns and ARID3a+ cells cluster together, 

we hypothesize that we will identify DEGs that differ between ARID3a+ and ARID3a- B cells. 

This analysis reveals that ARID3a-expressing B cells cluster together and away from all other 

cells, suggesting that ARID3a expression is associated with a distinct transcriptome or cell type. 

We then chose to focus our analysis on naïve B cells because this is the cell population in SLE 

patients that have increased expression of ARID3a when compared to healthy controls (44,46). A 

total of 248 naïve SLE B cells from three SLE patients were captured and analyzed together. 
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Quality control was performed on these cells prior to PCA and differential expression analyses. 

Cells with 25% or greater reads mapping to mitochondrial genes were removed, leaving 179 

cells for downstream analysis (Figure 22). 

Figure 22. Quality control of scRNA-seq data from 3 SLE naïve B cell samples. Violin plots 

showing the density of the numbers of detected genes (left panel) and the percentage of 

sequencing reads mapping to mitochondrial genes (right panel) for each of the 248 cells isolated 

from 3 SLE naïve B cell samples. Cells with less than 25% mitochondrial reads were retained, 

leaving 179 cells for downstream analysis (red circles). 

PCA analysis on the remaining 179 naïve B cells from three SLE patients also indicate 

ARID3a expression is associated with a unique transcriptome (Figure 23). Therefore, these data 

suggest that it is possible to identify cells with ARID3a protein by measure transcript levels with 

RNA-seq. Because the PCA analyses showed clustering of cells that expressed ARID3a 

transcript, we performed differential expression analyses on ARID3a+ (transcripts per million 

(TPM) > 0.5) vs ARID3a- (TPM < 0.5) to determine how ARID3a-expressing cells differ at the 

transcription level from naïve B cells that do not express ARID3a in the same subsets of SLE 

patients. This classification resulted in 90 ARID3a+ cells and 89 ARID3a- cells.  
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Figure 23. PCA plot using all detected genes in single naïve B cells from 3 SLE patients 

reveals ARID3a+ cells cluster together and away from ARID3a- cells. Individual naïve B 

cells that passed quality control are plotted. Red color indicates ARID3a+ cells, gray color 

indicates ARID3a- cells, and the shape of each cell indicates the SLE patient they were isolated 

from.  

 

To investigate transcripts associated with ARID3a expression, differential expression 

analysis was performed on ARID3a+ (n=90) vs ARID3a- (n=89) naïve B cells from 3 SLE 

patients. This analysis identified 3,006 differentially expressed genes (DEGs) (FDR < 0.05, FC ≥ 

±2) (Figure 24). The top 10 up- and downregulated genes are displayed in Table 3.  
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Figure 24. Volcano plot of differentially expressed genes (FDR < 0.05, FC > 2) identified by 

analyzing ARID3a+ vs ARID3a- naïve B cells from 3 SLE patients. 3,006 genes were 

identified by this analysis. 
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Table 3. Top DEGs identified by analyzing ARID3a+ vs ARID3a- naïve B SLE cells 

 

 

Among the most significant pathways were oxidative phosphorylation, iron homeostasis 

pathways, B cell receptor signaling, SLE and TLR signaling pathways (not shown). TLR7 was 

identified to be 3-fold upregulated in ARID3a+ cells and signaling through this receptor results in 

transcription of pro-inflammatory genes, such as IFNa.   
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Figure 25. ICGS analysis of 179 CD19+IgM+IgD+ B cells from three SLE 

patients. Heatmap of genes delineated by ICGS (excluding cell-cycle genes) in scRNA-seq 

data (n=179 cells). Gene expression clusters were generated using hierarchical-

ordered partitioning and collapsing hybrid (HOPAC) algorithm. Three clusters were identified 

(top green, blue, and red bars). ARID3a was highly expressed in naïve B cells within cluster 3 

(red bar).  

Hierarchical-ordered partitioning and collapsing hybrid analysis identified 3 clusters 

within the naïve single cell data (Figure 25). Cluster 1 (Figure 25, green bar) was enriched for 

DNA methyltransferase, DNMT3A, PRRG3, RAB12, and ZNF302. ARID3a was enriched in 

cluster 3 (Figure 25, red bar), along with the NFKB inhibitor, NFKBIB, IRF1, and BAG1. It is 

important to mention that these data are preliminary and additional samples are required to 

increase statistical power.  
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Interestingly, Ingenuity Pathway Analysis (IPA) identified the EHMT1 gene network to 

be inhibited in ARID3a+ naïve B cells (Figure 26). Our ATAC-seq data on ARID3a-/- KO K562 

cells identified significant upregulation of EHMT1 (Chapter 3, manuscript submitted). This 

suggests ARID3a may directly control the expression of EHMT1 in multiple cell types.  

 

Figure 26. Casual network analysis using IPA identified EHMT1 network to be 

significantly inhibited in ARID3a+ naïve B cells. Orange color indicates upregulation, blue 

(EHMT1) and green (POU5F1) indicate downregulation. Orange lines indicate the gene 

upregulates the downstream targets. Yellow lines indicate unknow interaction between the 

downstream targets. 

 

DISCUSSION  

It has previously been shown that ARID3a is differentially expressed in naïve B cells of 

SLE patients (44,46). Patients with SLE have major blood B lymphocyte alterations, including 

expansion of activated naïve B cells (231-233), PCs, and extrafollicular DN2 cells (229). This 

study demonstrates that ARID3a+ naïve B cells have a distinct transcriptome when compared to 

naïve B cells that do not express ARID3a. At the time of writing this chapter, we expect to 
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process 3 additional SLE patient samples to obtain sufficient numbers of cells for statistical 

validity. Although this work is ongoing, I hypothesize that ARID3a-expressing cells represent 

precursors of immune cells fated to contribute to autoimmunity, or new subsets of cells that are 

not properly deleted in lupus compared to healthy individuals. To date, these data support this 

hypothesis and we show that ARID3a+ naïve B cells have increased expression of pro-

inflammatory mediators and differential expression of TFs involved in cell fate commitment.  

Differential expression analysis between ARID3a+ vs ARID3a- identified the 

upregulation of TLR7 and IRF4.  IRF4 is involved in differentiation of naïve B cells into 

antibody secreting cells and receptor editing (234). Normally ignorant naïve B cells, which have 

not been exposed to antigen, may be activated when their autoantigens are also ligands for TLRs. 

Some mice models have been shown to the ability to be activated through a TLR7-dependent 

process (235). It could be that ARID3a+ naïve B cells are more inclined to escape tolerance and 

induce clonal expansion of autoreactive naïve B cells into plasma cells through increased TLR7 

signaling (236). B cells can internalize CpG sequences, which results in production of anti-

chromatin autoantibodies. Autoantibodies against DNA, chromatin, and ribonucleoproteins are 

produced in SLE. It could be that ARID3a expression activates TLR7, lowering the threshold for 

activation by self-antigen. The increased expression of IRF4 in ARID3a+ could also increase the 

differentiation of naïve B cells activated by self-antigens. This suggests that increased ARID3a 

levels in naïve B cells of SLE patients affects editing of autoreactive BCRs or predisposes naïve 

B cells to become activated by self-antigen. but it is unclear why these autoreactive B cells 

escape anergy and clonal deletion. One possibility is that ARID3a+ cells either expand rapidly to 

bypass tolerance or by inhibiting apoptosis pathways In support of this notion that ARID3a-

expressing naïve B cells escape clonal deletion, suppressors of apoptotic pathways, such as 
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IKBKB and XIAP, were upregulated in ARID3a+ naïve B cells (Figure 27). Double negative 

switched memory (DN2) (CD19+ IgD- CD27- CXCR5-) B cells were recently found to be 

expanded in SLE patients and are hypersensitive to TLR7 stimulation (229).  Since this work 

focused solely on precursor naïve B cells, we were not able to identify if ARID3a is enriched in 

DN2 cell populations. We hypothesize that ARID3a+ naïve B cells in SLE patients may be 

poised to differentiate into DN2 cells. Our data support this as many of the genes found to be 

significantly upregulated in DN2 cells, such as IRF4, were also upregulated in ARID3a+ naïve B 

cells from SLE patients. In addition, ARID3a+ naïve B cells had high expression of CD38, 

TLR7, IL10RA, FCRL2, FCRL3, FCRL5, FGR, TFEC, and CD9 (Figure 27), supporting the 

notion of its extrafollicular, potentially autoreactive precursor DN2 phenotype (230).  

 

Figure 27. Gene expression in ARID3a+ and ARID3a- naïve B cells. Expression, in TPM, of 

select transcripts in scRNA-seq data. 
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Although, we did not see high expression of T-bet (TBX21), which is uniquely expressed 

at high levels in DN2 cells (229), but it may be that ARID3a+ naïve B cells are a precursor to 

DN2 cells. To further support this hypothesis, our data show decreased expression of FOXO1 

and BACH2, a TF that inhibits terminal differentiation of plasma cells (PCs), and increased 

expression of ZEB2, a TF involved in effector cell differentiation (not shown). This finding is 

consistent with our ATAC data presented in Chapter 3 identified increased accessibility of the 

BACH2 locus upon deletion of ARID3a in K562 cells. Additional studies are needed to confirm 

if ARID3a+ naïve B cells preferentially differentiate into DN2 and subsequently into autoreactive 

PC and/or plasmablasts that generate autoantibodies.  

It is unclear if ARID3a directly causes increased expression of TLR7 or IRF4. Decreases 

in DNA methylation has previously been observed in PBMCs with high levels of ARID3a levels 

in patients with SLE (50). Indeed, ARID3a+ naïve B cells are enriched in clusters with decreased 

expression of DNMT3a (Figure 26). It is possible that ARID3a causes changes in expression of 

these genes by altering the chromatin landscape by regulating known histone methyltransferases, 

such as DNMT3a and EHMT1, which adds repressive methyl marks to H3K9 histone subunits 

(188). Our data also identified EHMT1 networks to be inhibited, which is consistent with our 

ATAC-seq data from ARID3a-/- K562 cells where we identified significant increase in 

accessibility of the EHMT1 locus.  We have previously shown that deletion of ARID3a in K562 

cells results in altered chromatin accessibility of developmentally controlled genes essential for 

erythrocyte differentiation, some of which is inhibited by EHMT1. We are currently awaiting 

additional data from 4 SLE naïve B cell samples which increase statistical validity and will 

support the genes already discussed. Further studies are needed to determine if ARID3a acts as 

an epigenetic regulator in naïve B cells.  
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CHAPTER 6 

SUMMARY 

ARID3a was originally identified to be required for proper expression of 

immunoglobulin heavy chain in B cells (reviewed in Chapter 1). Further investigation discovered 

that ARID3a is required for B cell development and is highly expressed in naïve B cells of SLE 

patients compared to healthy controls. The cause of the observed IFN signature in PBMCs from 

SLE patients remains unknown (119). This led us to investigate the role of ARID3a in two other 

cell types important in IFNa production and inflammatory responses in SLE, pDCs and LDNs. In 

Chapter 2, I performed differential expression analysis, which led to the discovery that ARID3a 

protein, but not transcript, is strongly associated with increased disease activity in both pDCs and 

LDNs. Hierarchical clustering on DEGs show that patient samples cluster based on ARID3a 

protein levels, but not transcript levels in pDCs and LDNs. These data show for the first time that 

ARID3a is expressed in pDCs and LDNs and that ARID3a protein can be used as a biomarker 

for increased disease activity in SLE. In addition, my work reveals that ARID3a functions as an 

epigenetic regulator in these cell types, by repressing and activating multiple genes.  We then 

hypothesized that ARID3a functions in a cell-type specific fashion and is important for other cell 

types.  

The rationale for this came from early studies on ARID3a knockout mice, which proved 

to be embryonic lethal for >90% of littermates (14). The rare survivors exhibited parlor and 

lacked erythrocytes. Using the erythroid model cell line, K562, I show that ARID3a is essential 

for hemin-induced differentiation and fetal globin expression. Knockout of ARID3a blocks 

erythrocyte development and inhibits fetal globin expression. Fetal globin expression is induced 

by a GATA2-to-GATA1 switch and a study by Buenestro et al identified ARID3a TF binding 
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motifs to be enriched in genes regulated by GATA1/GATA2 (141). My RNA-seq analysis on 

K562 cells identified 227 genes that require ARID3a. This study also identified significant 

inhibition of erythroid master regulators, GATA1, GATA2, and TAL1. Moreover, significant 

enrichment of these TFs was found in the 227 genes associated with ARID3a expression. The 

ATAC-seq data that I generated from CRISPR/Cas9 ARID3a-/- K562 clones also show a 

significant overlap of transcription factor binding sites for ARID3a and GATA1, GATA2, and 

TAL1. These erythroid-specific master regulators are known to be responsible for changing 

chromatin structure such that erythroid genes are transcribed in a developmentally controlled 

manner (148,184,186,187). Furthermore, ATAC-seq on ARID3a KO K562 cells revealed drastic 

changes to chromatin accessibility when compared to wild type. Among the differentially 

accessible regions identified in the ATAC-seq data, many contained overlapping TFBSs for 

GATA1 and GATA2. These data show for the first time that ARID3a functions as an epigenetic 

regulator and is necessary for differentiation of erythroid precursors. In support of this notion, we 

identified significant increase in accessibility of the histone lysine methyltransferase, EHMT1, 

which is responsible for adding repressive methylation marks to histones at the erythroid-specific 

LCR (188). Inhibition of EHMT1 is required for induction of fetal globin genes (188). EHMT1 

pathways were significantly inhibited in ARID3a+ naïve B cells (discussed below) (Figure 26). 

However, the role of EHMT1 in B cells is unknown. Together, these data reveal that ARID3a 

functions as an epigenetic regulator, either directly through binding cell type specific enhancer 

regions or indirectly through controlling expression of epigenetic regulators.  

In Chapter 4, we provide proof of concept that ARID3a-expressing cells within the same 

individual and sorted with the same surface markers showed differential gene expression. 

Additionally, these data raise the possibility that current surface marker identification of cell 
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subsets may be insufficient to identify cells with similar transcriptomes. It is not possible to 

isolate ARID3a+ cells as intracellular staining requires fixation and affects RNA integrity. Bulk 

RNA-seq masks true cellular heterogeneity by averaging transcripts in a cell population. For 

example, not all cells express ARID3a and bulk RNA-seq studies could make it difficult to 

unravel the functions of ARID3a. scRNA-seq gets around this by allowing for the differential 

expression analysis of ARID3a+ (CPM ≥ 0.5) vs ARID3a- (CPM < 0.5) cells, within and between 

patient samples. More work is needed to determine how cells with similar surface markers have 

different transcriptomes and what factors cause some cells to differentiate into different cell 

types. This will be important for B cells where some cells go on to display autoimmune 

characteristics and indicate that ARID3a-expressing cells could be direct precursors of those B 

cells. The data presented in Chapter 4 also reveal that ARID3a+ cells in aged individuals differ 

from those in young individuals and these differences could be the result of expansion of 

precursors of different cell types. scRNA-seq analysis revealed that aged HSCs differ from 

young, even within defined subsets important for B cell differentiation. ARID3a levels cause 

changes in lineage decisions of HSCs into different cell types. Additionally, the differences 

found with B1 lineage cells explain why immune responses to some vaccines are reduced.  

SLE is a complicated autoimmune disease with many clinical manifestations. It has been 

previously demonstrated that nearly half of SLE patients have expanded numbers of ARID3a-

expressing B cells (46). ARID3a+ B cells can also produce IFNa upon TLR stimulation with 

CpG, and may represent a new type of B effector cell that is expanded in SLE (46). 

Although ARID3a can be expressed in large numbers of B lymphocytes in SLE patients, and 

total numbers of ARID3a-expressing B cells are increased in patients with increased 

disease activity, no individual subset of B cells expresses ARID3a in one-hundred percent of the 
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B cells in that subset. Because ARID3a is uniquely expressed in naïve SLE B compared to 

healthy B cells, further studies to better define the characteristics of these cells are needed. The 

goal of Chapter 5 was to determine how ARID3a affects gene expression in ARID3a+ and 

ARID3a- SLE B cells. ARID3a is an intracellular protein, and isolation of ARID3a-expressing B 

cells requires permeabilization of cells and interferes with RNA integrity.  In Chapter 5, I took 

advantage of single cell technology to capture single ARID3a+ and ARID3a- naïve B cells. 

Differential expression analysis identified 3,006 DEGs and identified upregulation of genes 

involved in TLR and SLE signaling as well as IFNa production, which strongly correlates to 

increased disease activity in patients with SLE (13,119). Out of the 3,006 DEGs, 680 genes are 

uncharacterized, highlighting how little is still known about the role ARID3a in SLE. The work 

presented in Chapter 5 will lead to additional information regarding genes with undiscovered 

function. To gain a better understanding of the complex interplay within SLE naive B cells, it 

will be important to use transcriptomic, ATAC-seq (DNA accessibility), and ChIP-seq (i.e. 

histone marks) data to build a model that faithfully illuminates functions of ARID3a at distinct 

stages of B cell development in SLE patients at the systems level, and to find new targets to treat 

SLE for which only one treatment has been developed in the past 60 years. More work is needed 

to identify if ARID3a+ naïve B cells are precursors to effector cell types that exacerbate SLE by 

producing autoantibody secreting cells, or if they activate other effector cells that go on to cause 

a feedforward loop of interferon production.   

More detailed studies on enhancer activity in ARID3a+ vs ARID3a- cells will be 

important for determining if ARID3a functions through regulating enhancer accessibility. New 

high-throughput assays that measure enhancer activity, such as self-transcribing active regulatory 

region sequencing (STARR-seq), would be able to detect enhancers genome-wide in a 
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quantitative (237). In combination with scATAC-seq and scRNA-seq, a model that faithfully 

represents the genes/enhancers that are regulated by ARID3a and will identify new drug targets 

for diseases, such as SLE.   
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