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Abstract

Modern high performance phased array antennas require large apertures to achieve

both high gain and narrow beamwidth. It is not practical to manufacture such large

apertures, so the full array is composed of smaller sub-arrays known as line-replaceable

units (LRU) which will then be assembled to create the final array. When the ra-

diation patterns of an individual LRU are measured, the array will be in a finite

environment. This means that the array will be impacted by edge effects, amongst

other factors, which will limit the measured array scanning performance. This project

focuses on the use of finite array embedded elements patterns to predict scanning per-

formance in the full array.

First, the fundamentals of scanning array antennas are reviewed. Then, the main

impacts of finite size on phased array scanning performance are discussed. In particu-

lar, theoretical phased arrays with and without both mutual coupling and diffraction

fields will be used to determine the impact these factors have on antenna scanning

patterns in the finite environment. The average element pattern is then introduced

as a way to accurately predict scanned radiation patterns of a full array using a sin-

gle element pattern. Individual antenna elements within a finite LRU are then used

to reproduce theoretical scanned array patterns along the principle planes. Finally,

future work is proposed to further validate the results.

x



Chapter 1

Introduction

1.1 Motivation

Phased array antennas offer many benefits over traditional antennas which have led

them to become a popular choice for use for radar and wireless communication.

These benefits include the ability to beam steer without moving parts, create mul-

tiple beams, digital beamforming, and many others. As phased arrays have become

popular for use in government and industry applications, design constraints including

cross-polarization levels, bandwidth, and sidelobe levels will continue to call for more

complex element geometries. Unfortunately, complex element geometry becomes an

issue when attempting to use EM simulators, especially when the array becomes

electrically large.

Modern high performance phased array radar systems are required to have high

gain and narrow beamwidth [1]. To meet these requirements, large phased arrays

systems are used, composed of hundreds if not thousands of elements. When an

array is very large, the array can be assumed to be infinite and floquet port analysis

can be used rather than simulating the entire array. The infinite array approach

allows for drastic reductions in computation time [2], but unfortunately it will not

accurately represent the diffraction fields and other factors that result due to the
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finite size of the array. The unit cell will assume that each element in the array is

identical in terms of both physical geometry and radiation characteristics. When the

array is manufactured, it will have a finite size and thus the introduction of edges to

the array will add diffraction fields which will change the radiation characteristics of

element depending on position and polarization.

To physically realize these electrically large arrays, the array is commonly man-

ufactured using smaller sub-arrays known as line-replaceable units (LRU) which are

then assembled to create the final array. These LRUs are smaller finite arrays with

typical sizes varying from around 8x8 to 10x10 [3] meaning that the infinite array

approximation will not be valid. In reality, the mutual coupling and diffraction fields

in the finite array will be truncated and not necessarily be represented with a single

unit cell simulation. To accurately characterize LRUs, these truncated fields need to

be accounted for as they will impact mutual coupling, element radiation patterns,

and the overall scanning performance of the array.

Ultimately, to accurately predict the performance of the physically realized ar-

ray, the finite array must be taken into consideration. This will be done by first

exploring planar array characteristics and analyzing the changes in mutual coupling,

diffraction fields, and other factors that will change due to the finite size of the array.

These changes in performance will then be related to show how the overall scanning

performance of the array changes due to the finite size of the array.
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1.2 Literature Review

The characterization of array scanning performance most often begins with the use of

the unit cell in an infinite array. It is used at the beginning of the design process for

many arrays as it will reveal many important characteristics of the array while also

being computationally less intensive than the simulation of an electrically large array.

While it is important, other methods have also been introduced to better represent

the scanned element patterns and scanning range in finite array antennas.

The infinite array was first introduced by Wheeler in [4] when he conceptualized

an array as a current sheet transmitting a transverse electromagnetic (TEM) mode

into a waveguide. This idea was then used to provide a solution for the radiation

resistance of a dipole in an infinite array. He then refined this idea in [5] where he

represented the array as an infinite current sheet which is then used to derive the

impedance variation with scan angle. The theory introduced by Wheeler in these

papers meant that it was now possible to determine array reflections without the

need to manufacture an array composed of hundreds of elements. The infinite array

then became widely used in the form of the waveguide simulator which utilizes the

walls to act as opposing electrical and magnetic boundary conditions.

This technique was then used by many to analyze the infinite array. It was used

in [6] - [10] and others to show that the element input impedance and mutual coupling

varies with scanning angle and position. In [11], Edelberg and Oliner used the waveg-

uide model to derive the input admittance of a slot in the infinite array environment.

Stark then expanded on Wheeler’s work [4] by deriving the radiation impedance of an

3



infinite array of dipoles for an arbitrary scanning angle in [12]. Farrell and Kuhn [13]

have derived a solution for an infinite array of waveguides. Array scan blindness has

been studied in depth in [14] and [15].

As technology advanced, the waveguide simulator was eventually implemented in

electromagnetic solvers through the use of Floquet analysis. Essentially the infinte

array can be viewed as the Fourier transform of an infinite number of sources placed at

regular intervals. The Fourier integral will result in a series of Dirac delta functions

and the continuous Fourier spectrum will discrete spectral lines [16]. The Floquet

modal series can then be expanded for the array of source functions with varying

amplitudes and phases to represent the scanned beam of the array.

Scanning performance of finite arrays started to become analyzed in dipole arrays

through the use of the impedance matrix in [17], [12], and [18]. These methods used

measured mutual impedances along with progressive phase shifts to calculate the

scan impedance for each element in the array. This was done for arrays composed

of elements with simple current distributions. For finite arrays with more complex

geometries, method of moment expansions could be used.

The Weiner-Hopf factorization procedure is used in [19] to analyze mutual coupling

along edge elements in a semi-infinite through the use of an infinite linear array.

This process allows for the calculation of the scanned reflection coefficient in the

semi-infinite array in terms of an integral of phased scan impedances in the scanned

reflection coefficient of the infinite array.

Ishimaru outlined a process to analyze scanning in finite periodic structures in

[20] by embedding a finite array into a matrix of identical arrays. This process first
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calculates the scanned element pattern for the infinite array which is then Fourier

transformed back to the finite aperture. The result is then convolved with a periodic

stucture of finite arrays. Finally, the result is inverse transformed over the structure

to result in the scan element pattern.

A simplified version of Floquet analysis has also been done in [21] and [22] using

the finite array. Using the measured mutual coupling of the finite array, the antenna

can be analyzed in depth using mutual impedance, mutual admittance, and scattering

parameters.

Using the previously mentioned impedance matrix method, Diamond detailed the

process of calculating the scan impedance and scan element patterns for a finite array

of dipoles in [18]. This was used to evaluate scanning performance of small arrays. The

scan resistance and gain of the center element was shown for the principle planes and

the scanned element patterns are obtained. Pozar also performed a similar analysis

later in [23] where a finite array of dipoles are analyzed. Using this approach a finite

dipole array was measured and mutual impedance was used to calculate the scanned

element pattern. The scanned reflection coefficient was then analyzed over scan angle

along with the embedded element patterns.

Scanning performance is most often evaluated to reveal any blind angles that may

exist in the array. Most modern approaches to analyze scanning performance still use

the impedance matrix method, but there has been work to more accurately predict

blind angles. In [24], the phase of the average scan impedance was used to predict

blind angles in finite dipole arrays. Scan blindness in a conformal finite phased array

of printed dipoles was investigated in [25]. A hybrid method of moments/ Green’s
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function technique was used to incorporate mutual coupling between dipoles and

surface waves. Sanadgol also uses traditional active impedance simulations of the

unit cell in addition to surface wave theory to accurately represent blind angles that

occur in finite arrays of printed dipoles [26].

Many methods have been used and are still used to evaluate scanning perfor-

mance. The most convenient method is to use Floquet modal analysis on the unit

cell of an array to obtain infinite array scanning performance. In situations where the

array is finite, mutual impedances are normally measured to obtain scanned element

patterns as well as the active reflection coefficient. These methods are still used to

evaluate blind angles in scanning arrays, but there have been improvements in allow-

ing for mutual coupling to be analyzed along with surface waves to accurately predict

scanning performance in finite arrays.

1.3 Problem Statement

The process of designing a high performance phased array antenna typically involves

the use of an electromagnetic solver to simulate the design. If the antenna is con-

sidered electrically large, then the unit cell can be used to simulate the array in the

infinite array environment. While this approximation is very common, the physical

array is not infinite in reality and thus this method should only be used in the case

that each element can be approximated to have the same performance. The use of

the infinite array approach will give an analysis of an array where each element has

6



the same radiation characteristics and mutual coupling effects. In reality, the man-

ufactured array will be finite and can only be approximated with the unit cell. As

such, the use of the infinite array will be compared to the finite array to determine

the error that the use of the unit cell will introduce with such approximations. The

primary focus of this comparison is to investigate the changes in the array scanning

performance that occur with the approximations used for the infinite array.

1.4 Organization of the Thesis

The thesis is organized as follows. It begins with a review of the fundamental phased

array concepts in Chapter 2. Different radiating elements are discussed along with

the benefits and drawbacks that they introduce in the array environment. Basic array

theory will then be covered for both linear and planar configurations. Surface waves,

mutual coupling, and the active reflection coefficient will then be discussed. Chapter

3 outlines the major impacts that finite size will have on an array. This begins with

an analysis of the edge effects that occur in the array. Mutual coupling will then

be discussed and related to both element position and spacing. Array embedded

element patterns and radiation characteristics will then be presented. The use of the

active reflection coefficient will then be employed with simulated results to show how

scanning performance will change with array size. These factors are then used to

evaluate the overall scanning performance of the array. Chapter 4 will then analyze

manufactured antennas using the techniques from Chapter 3. This will be used to

compare measured scanning performance to the simulated infinite array to show the

7



impacts the finite array will have on the scanning performance. Finally, this thesis

will conclude with Chapter 5 which presents the current state of the project and the

future work that needs to be done.
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Chapter 2

Fundamentals of Phased Array Antennas

2.1 Introduction

The work proposed in this thesis focuses on variations in the simulated array per-

formance of the fully assembled array compared to the performance of smaller finite

sub-arrays which will ultimately be used to create the full array. In particular, a focus

will be placed on the scanning performance of arrays and the variations that occur

in scanning performance due to the size of the antenna. Prior to the investigation of

this topic, it would first be helpful to review some relevant concepts relating to the

functionality and design of array antennas. The array will be simplified to the basic

case of a uniform linear array to demonstrate the basic array theory. The factors that

influence the array pattern due to physical geometry will be discussed including array

geometry and spacing. This analysis will then be adjusted for the case of a planar

array to investigate the pattern variation due to the introduction of grating lobes.

The concept of coupling between antenna elements will then be discussed. Typical

sources of scanning blindness in array antennas including mutual coupling and surface

waves will then be reviewed. Finally, the active reflection coefficient will be discussed

as a way to analyze scanning performance in array antennas.
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2.2 Array Characteristics

The phased array antenna is generally composed of some arbitrary number of radiat-

ing elements which each have their own amplitude and phase. The antenna radiation

pattern can then be represented as the spacial Fourier transform of each element ex-

citation. The array pattern can also be viewed more intuitively as the product of the

isolated element pattern and the array factor. This concept will be explored further

below in the context of a linear array.

2.2.1 Linear Array Characteristics

The radiation pattern of the array is related to the radiation patterns of each indi-

vidual element along with the element positions and excitations. For simplicity, a

uniform linear array will be used to illustrate this concept. The array will be com-

posed of N elements aligned along the x-axis (φ = 0) for scanning in the θ̂ direction.

If each element has an identical radiation pattern, then the array pattern can be

expressed by

F (θ) = fi(θ)
N∑
n=1

ej(n−1)ψ (2.1)

where ψ = kd sin θ + β, fi is the isolated element pattern of the array, k is the

propagation constant 2π/λ, d is the element spacing, and β is the progressive phase

shift. It can be seen that the array pattern is simply the product of the isolated

element pattern and a phase term which is better known as the array factor.
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The array factor of the uniform array can be altered physically through the element

spacing or by adding a progressive phase shift between elements using T/R modules

or various other phase shifting techniques. This phase shift between array elements

can be used to steer the main beam of the array to a desired angle of θ. It can be

calculated for the uniform linear array by the expression

β = −kd sin θ0 (2.2)

where θ0 is the desired scan angle. This can easily visualised using simple geometry

seen in figure 2.1. The elements are uniformly separated by some distance d, so the

distance to the desired scanning angle is d sin θ which is simply multiplied by the

propagation constant to find the necessary phase shift.

r

r

r

1

2

3

r4
rN

θ

z

y x

1 2 3 4 N

{ { {dsinθ dsinθ dsinθ

d d d

θ

Figure 2.1: Progressive phase shift between array elements in a linear array.

This simple change in array factor is what sets phased arrays apart from traditional

antennas allowing for the ability to scan the main beam of the array without any

moving parts. It is becoming more common to physically realize these phase shifting
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techniques through the use of fully digital phased arrays which use T/R modules on

each element, but other feeding techniques can be used to create progressive phase

shifts. In particular, the use of a series-fed phased array allows for the array to be

fed using only a single source and then a progressive phase shift can be accomplished

by adjusting the frequency of the source thus adjusting the propagation constant.

As mentioned above, the array factor is a function of the spacing between elements

and their respective excitations. The element spacing will dictate the visible region

of the array. The visible region can be viewed as the extent of the array factor which

is visible in the array pattern. It can be represented by

V R = 2kd (2.3)

where d is the inter-element spacing and k is the propagation constant. The spacing

of the typical array is chosen to be half-lambda so that the visible region will be 2π

and there will only one main beam when scanning the array in the θ̂-direction to

±90◦. If the visible region is larger than π, then there will be another maximum in

the array factor leading to the creating of a grating lobe.

The grating lobe is the primary reason that half-lambda spacing is chosen. When

the spacing is increased the main beam of the array may be split depending on the

scanning angle and the spacing thus leading to a decrease in main beam power and an

increase in grating lobe radiation. In short, grating lobes are not desired so arrays are
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designed so that they do not occur. The grating lobe location can be easily calculated

using

d

λ
=

1

sin θ0 + sin θGL
(2.4)

where θ0 is the maximum scan angle and θGL is the angle that the grating lobe will

occur. For half-lambda spacing, the first grating lobe will occur at θ = +90 degrees

when the array is scanned to 90 degrees.

2.2.2 Planar Array Characteristics

The analysis of the planar array is the same as a linear array, but with the addition

of another dimension. Previously the φ̂ direction was held constant at 0, but it can

be scanned in the planar array so it is useful to use the spherical coordinate system.

The direction cosine space will be used to for this purpose allowing for the use of û

and v̂.

û = sin θ cosφ (2.5)

v̂ = sin θ sinφ (2.6)

As mentioned above, the array pattern of an array is simply the spacial Fourier

transform of each element excitation and position. The pattern of the planar array can

still be represented using equation 2.1, but with the addition of another dimension.

Again, this analysis will follow the assumption that each element in the array has
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the same radiation pattern. Ignoring mutual coupling, the array pattern of a planar

array is given by [27] to be

F (u, v) = fi(u, v)
N∑
n=1

M∑
m=1

ejk[(n−1)dx(u−u0)+(m−1)dy(v−v0)] (2.7)

where fi(u, v) is the isolated element pattern, dx and dy are the inter-element spac-

ings in the x̂- and ŷ-directions respectively, and u0 and v0 are the steering directions

in the û and v̂ planes, respectively.

The array factor is now dependent of phase terms in both the û and v̂ allowing for

the theoretical ability to scan the beam over the hemisphere of the phase of the array.

Progressive phase shifts between elements in both the x̂- and ŷ-directions allow for

this possibility.

The concept of the visible region of the array mentioned above comes in useful with

the planar array. The grating lobes will occur based on both inter-element spacings

and the direction of the main beam angle along the θ̂- and φ̂-axes. The visible region

of the array can be viewed in sine space as a function of the main beam angle. A grid

array is created in figure 2.2 using

up = u0 +
pλ

dx
, p = 0,±1,±2, ... (2.8)

vq = v0 +
qλ

dy
, q = 0,±2,±2, ... (2.9)

and plotted along the inverse element spacing lattice to show the angles that grating

lobes occur. The inner circle in figure 2.2 represents the visible region of the array.
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Figure 2.2: Grating lobe diagram for a planar array, adapted from [27].

The intersections between the visible region and the surrounding circles represent the

scan angles where a grating lobe will occur.

2.3 Radiating Elements for Phased Arrays

Phased array antennas have been created using many different radiating elements,

but most fall under the category of either a wire antenna, aperture antenna, or patch

antenna. In this section, radiating elements falling into each of these categories will

be discussed briefly along with the benefits and drawbacks that occur when using

them.
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Wire antennas are created out of various shapes of wire to form a radiator. Com-

mon shapes include a loop, helix, and simply a straight wire. The half-wave dipole

is simply a straight wire and perhaps the most well studied radiating structure. It

is therefore very well defined using closed-form equations [28]. The half-wave dipole

is composed of two center-fed arms of length λ/4 each to result in an overall size of

λ/2. The electric and magnetic field components of the dipole will be given by

Eθ ' jη
I0e

−jkr

2πr

[
cos(π

2
cos θ)

sin θ

]
(2.10)

Hφ ' j
I0e

−jkr

2πr

[
cos(π

2
cos θ)

sin θ

]
(2.11)

Total radiated power, directivity, and radiation resistance can then be calculated

from equations 2.10 and 2.11. The simple geometry means that it can be well defined

through closed-form solutions because they have known current distributions. It has

been widely studied and used in scanning arrays in the form of the printed dipole array.

The printed dipole still remains an excellent candidate for use in scanning arrays due

to its simplicity geometry and compatibility with modern fabrication techniques. It

can also be designed for moderate bandwidths through the use of an integrated balun.

Despite the many positives of using printed dipoles, this antenna only has a single

polarization, so the printed dipole cannot be used for polarimetric radars.

An aperture antenna is created using a cutout in the surface of a conductor to

create an aperture for a guided wave to radiate from. Common forms of aperture
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antennas include slot antennas, horn antennas, and waveguides. The current distri-

bution for these elements isn’t as simple as in a wire antenna, but a complementary

antenna can be found as in figure 2.3 and Babinet’s Principle can be used to relate

the slot to a dipole. Slot antenna arrays can be easily manufactured by cutting slots

in the side of a waveguide. This will allow for better power handing than using a

dipole array, but the array will need to be series fed meaning beam steering will need

to be achieved using frequency-scanning. Like dipoles, slot antennas also only have a

single polarization which make it impractical for use in polarimetric radars.

Figure 2.3: Self complementary antennas: (a) A planar dipole antenna. (b) A com-
plementary slot antenna, adapted from [29].

The microstrip patch antenna is perhaps the most well used element type for

array applications. The patch antenna is low-profile, inexpensive, and can be easily

manufactured using modern microstrip techniques. Patch antennas can be easily

integrated into the printed circuit board along with the rest of the circuit allowing for

the addition of monolithic microwave integrated circuits (MMIC) for use as amplifiers

and phase shifters.

Many patch shapes can be used, but they are most often either rectangular or cir-

cular geometries are chosen. Various methods have be used to model these geometries
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including transmission-line, cavity, and full-wave models. While the transmission-line

model is not as accurate as the cavity model and full-wave simulations, it allows for

a more intuitive understanding of how a patch works. For a rectangular patch, the

transmission-line model will represent the two radiating edges of the patch as two

parallel slots with an equivalent admittance given by the substrate height, dielectric

constant, and patch width. The equivalent circuit model is shown in figure 2.4.

Figure 2.4: A rectangular patch and the equivalent transmission-line model, adapted
from [28].

A number of equations were formulated in [30] to accurately design the patch.

First an effective dielectric constant for the patch is formulated. When the width of

the patch is larger than the thickness of the substrate, the effective dielectric constant

is given by [28]

εe =
εr + 1

2
+
εr − 1

2

[
1 + 12

h

W

]−1/2

(2.12)
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where W is the width of the patch, h is the substrate height, and εr is the relative

permittivity of the substrate. The effective permittivity is then used to calculate the

extension because of the fringing fields on the edges of the patch using [28]

∆L

h
= 0.412

(εe + 0.3)
(
W
h

+ 0.264
)

(εe − 0.258)
(
W
h

+ 0.8
) (2.13)

where ∆L is the additional length gained by the patch due to fringing fields. Finally,

the resonant frequency of the patch is calculated for the dominant TM010 mode [28].

(frc)010 =
1

2(L+ 2∆L)
√
εe
√
µ0ε0

(2.14)

2.4 Mutual Coupling

Typical array analysis, including previous analysis in this chapter, makes a few as-

sumptions about the array characteristics to create simple equations to describe ra-

diation characteristics. The current distribution of each radiating element is assumed

to be known, proportional to element excitation, constant with scan angle, and all

radiators are assumed to be identical. For a physically realizable antenna, none of

these assumptions hold true. In reality, the current distribution of each element will

vary with position, element geometry, and element excitation amongst other factors.

Element radiation patterns are dependent on these factors primarily because of in-

teractions between elements commonly referred to as mutual coupling.

When an antenna is surrounded by one or more antennas, part of the radiated

energy from one antenna will be coupled to the other. The amount of coupled energy
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will vary depending on the element radiation characteristics, inter-element separation,

and antenna polarization. The inevitable presence of mutual coupling in the array

environment means that the isolated element radiation characteristics will differ from

the performance seen in the array environment. Each element will experience some

amount of mutual impedance due to interactions between elements which will impact

each radiator in the array differently depending on the element location in the finite

array.

Coupling can happen in the feed network of the array but, can be minimized

through proper impedance matching. This allows for the array to be modeled as

an array of independent generators with their own source voltages and impedances.

With this approach each element will have a voltage given by

V1 = Z11I1 + Z12I2 + · · ·+ Z1NIN

V2 = Z12I1 + Z22I2 + · · ·+ Z2NIN

...

VN = Z1NI1 + Z2NI2 + · · ·+ ZNNIN

(2.15)

where Vn and In are the voltage and current in the nth element. The mutual impedance

Zmn will then be given by

Zmn =
Vm
In

∣∣∣∣
Ii=0

,∀i 6= n (2.16)

when all other elements are open-circuited.

In practice mutual coupling is difficult to compute, but studies have been done to

characterize mutual impedance. In general the following trends have been observed
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for mutual coupling in arrays [31]. Coupling will be related to the embedded element

pattern of the element in the array and more coupling will be seen in elements with

broader radiation patterns. Elements with polarizations that are aligned parallel will

experience more coupling when aligned collinear. Finally, the magnitude of mutual

impedance will decrease as distance between radiators increases. This effect is illus-

trated in figure 2.5 which shows the mutual impedance seen by a dipole when another

element is place parallel at varying distances.

Figure 2.5: Mutual impedance between dipoles of varying distance, adapted from [32].

2.5 Active Reflection Coefficient

As previously stated, the array scan impedance will depend on the steering angle of

the array. This scan dependence can easily be shown mathematically by viewing the
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array as an infinite current sheet carrying charge parallel to an axis as proposed by

Wheeler [5]. Figure 2.6 shows the case of the current sheet in receiving mode in the

the E− and H−plane.

H-Plane

Magnetic

Wall

Hs

Is

H

E-Plane

Electric

Wall

Hs

H

Is

Figure 2.6: Current sheet plane of scan, adapted from [5].

If the array is matched to the impedance of free space at normal incidence when

θ = 0, then there will be an impedance mismatch over scan angles. In the H−plane,

an oblique incident wave will see a section of the current sheet that is larger than the

wavefront, thus the apparent resistance is decreased by cos θ. The reflection coefficient

will be

Γ =
cos θ − 1

cos θ + 1
= − tan2 θ

2
(2.17)

Oblique incidence in the E−place will give the opposite result. The seen section

of the current sheet seen will be smaller than the wavefront and the resistance will

increase giving the reflection coefficient

Γ =
1− cos θ

1 + cos θ
= tan2 θ

2
(2.18)
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The above cases are for the case of an array in receiving mode. Typically the antenna

reflection coefficients are viewed from the perspective of the array transmitting, so

the coefficient sign will be reversed in this case.

Physical antennas will obviously perform differently than viewing the array an

infinite current sheet, but this experiment establishes that the impedance seen by the

antenna element will change with respect to the scan angle. This is known as the

scan or active impedance which be shown to be a useful tool in analyzing array scan

performance. The array can then be analyzed in the case where the array is driven

by free or forced excitation.

In the case of forced excitation, each element will be driven with some constant

voltage and the phase will be altered for beam-steering. The element currents will

then be a function of the driven voltage and the impedance matrix

[V ] = [Z][I] (2.19)

where the impedance matrix contains all inter-element impedances and is given by

Z =



Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

...
...

. . .
...

ZN1 ZN2 · · · ZNN


(2.20)

where the mutual impedances will be measured between each element with respect

to another while the rest of the array is open circuited. The full array pattern can
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then be viewed as the sum of element patterns with coefficients given by current on

each radiator multiplied by the isolated element pattern. The array scan impedance

will be given by [33]

Za =
∑
p

∑
q

Znm,pq
Ipq
Inm

(2.21)

where Znm,pq is the mutual impedance between the “nm” and “pq” elements.

This type of approach assumes that each element is fed by a constant voltage

source. In practice, impedance mismatches between the radiators and feed network

will decrease the applied voltage. It is more practical to use the free excitation

viewpoint where the feed network can be viewed as a voltage source in series with

some resistance leading to a constant available power source. Constant power sources

can then be viewed using scattering parameters.

[Vr] = [S][Vi] (2.22)

where Vi and Vr are the incident and reflected voltages. Equation 2.21 can be rewritten

in terms of the scattering parameters to find the active reflection coefficient Γa for

element nm using

Γa =
∑
p

∑
q

Snm,pq
Apq
Anm

(2.23)

where the element excitation coefficient A will vary in phase between elements when

scanning and in amplitude if a taper is used to decrease sidelobes.
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As mentioned earlier, impedance will change with scan angle so it intuitively makes

more sense to view the spacial active reflection coefficient

Γa =
∑∑

Snme
−jk(nu+mv) (2.24)

so that reflections can be seen for any scan angle of the array. All that is needed for

this calculation is the element positions and the scattering matrix. Unfortunately, it is

difficult to theoretically calculate the coupling coefficients, but a network analyzer can

easily be used to measured them in a physical array. The active reflection coefficient

proves very useful when determining angles of blindness that will occur when scanning

an array.

2.6 Scan Blindness

In some arrays, there will be some steering angles at which little to no power will

be radiated, also known as blind angles. This phenomenon can be caused by mutual

coupling or surface waves and is commonly analyzed using either the active reflection

coefficient or scan impedance. At certain beam angles, the reflection coefficient can

be increased to near unity resulting in cancellation of the main beam. Likewise, the

array radiation pattern will experience a null at the same angle. Blindness typically

occurs when a higher order mode cancels the dominant mode. These higher order

modes can either be produced internally or externally to the antenna. Blindness in

phased arrays is often said to be caused by “surface waves”. This terminology is often

misleading and has essentially become a way to describe blind angles regardless of the
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source of blindness. There are many types of blindness that can occur, but a couple

common ones will be discussed here.

The antenna substrate is a dielectric slab which will support TE and TM modes

which can impact the antenna radiation depending the dielectric constant and sub-

strate height. The propagation constant of these supported modes can be solved for

as given by the procedure in [34] using transcendental equations. For a grounded

dielectric slab of thickness d and permittivity εr propagation will be assumed in the

+z-direction. There will be two regions, inside the dielectric and the free-space above

the dielectric. For a TM mode the cutoff wave numbers for each region will be defined

as

k2c = εrk
2
0 − β2 (2.25)

h2 = β2 − k20 (2.26)

and general solutions to the wave equations in each region can be found. boundary

conditions can then be applied and a non-trivial solution can be obtained. After some

simplification that following transcendental equations will result

(kcd)2 + (hd)2 = (εr − 1)(k0d)2 (2.27)

kcd tan kcd = εrhd (2.28)
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and the cut-off frequency of the TM modes will be given by:

fc =
nc

2d
√
εr − 1

, for n = 0, 1, 2, · · · (2.29)

Using numerical methods, the transcendental equations are solved to determine

the supported TM modes. Figure 2.7 shows the plotted solutions for the cutoff

frequencies of supported TM modes in the array substrate. This process can easily

be repeated to solve for the supported TE modes. The resulting transcendental

equations will be:

k2c + h2 = (εr − 1)k20 (2.30)

−kcd cot kcd = hd (2.31)

with a TE cutoff frequency given by

fc =
(2n− 1)c

4d
√
εr − 1

for n = 1, 2, 3, · · · (2.32)
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Figure 2.7: Graphical solution of the transcendental equation for the cutoff frequency
of the TM surface wave mode, adapted from [34].

2.7 Summary

This chapter focused on the fundamental array theory that will be referenced through-

out this thesis. It began by reviewing the concept of scanned array antennas and the

use of applying a progressive phase shift along the array to accomplish beam-steering

in a linear array. Planar array scanning was then discussed along with both the

visible region and the concept of grating lobes. Radiation characteristics of both

dipoles and rectangular patches were then reviewed. Mutual coupling in the form of

inter-element mutual impedance was then discussed and with the active or scanned

reflection coefficient. Finally, the topic of scan blindness was reviewed by calculating

the additional supported TE and TM modes that an antenna substrate will support.

These fundamental concepts will be used again in Chapter 3 when the finite array is
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explored more in depth and in chapter 4 when a method to predict full array patterns

is proposed.
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Chapter 3

Finite Phased Array Analysis

3.1 Introduction

Modern phased array radars for weather applications require an antenna with a high

gain, a narrow beamwidth, and high spacial resolution. To meet these requirements,

the array needs to have an electrically large aperture which could have a size of around

8 meters by 8 meters in some cases. When the array is very large, the infinite array

approach can be used to get a prediction of array performance, but it is not entirely

accurate. To physically realize the array, the aperture must be divided into smaller

subarrays which can then be assembled to create the full array. Sizes of subarrays may

vary, but may be around 8 elements by 8 elements and therefore can’t be considered

as infinite. To accurately reflect the performance of the full array, the finite size of

these subarrays must be considered.

An infinite array will be composed of elements with identical performance in

terms of radiation patterns, reflection coefficients, mutual coupling, and scanning

performance. To accurately model a large array, these assumptions cannot be made

for the subarrays that are used to create the full radar system. Most notably, both

the co-polar and cross-polar radiation patterns of array elements will change due to

diffraction fields that are introduced by the edges of the array. Mutual coupling in
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the array will also change in the array depending on element position and number of

neighboring elements. This chapter will address these changes and others that occur

due to the finite size of the array and analyze how the size will alter array scanning

performance.

3.2 Radiating Element

A dual-polarized microstrip patch antenna with differential feeding was chosen as

the radiating element for the simulated data seen throughout this chapter and in

Chapter 4. Differential feeding was chosen to both decrease cross-pol levels and allow

for even excitation of the element for symmetric radiation. To decrease computation

time, feeding was accomplished in simulation using two coaxial probes rather than a

complex feed network. Two probes fed 180 degrees out of phase were used for each

polarization. Figure 3.1a shows how the radiating element is fed. The element is

designed for a center frequency of 3 GHz and λ/2 spacing was chosen to eliminate

grating lobes. Antenna design is not the focus of this project, so the element was

designed to be geometrically simple to decrease computation times.
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Figure 3.1: (a) A cartoon showing the radiating element port layout. (b) The radi-
ating element unit cell in HFSS.

3.3 Diffraction Fields

The reality of the finite array is that no matter how large it may be, a planar array

will always have edges. These edges will diffract the fields radiated by the antenna

resulting in diffraction fields that are commonly referred to as “edge effects”. The

impact of edge effects will change depending on element position and polarization

and as a result each element in the array will have a unique radiation pattern. The

main factors attributing to edge effects in phased arrays will be discussed including

ground plane size, element position, and polarization. In this section, it is desired

to look only at the impacts that are caused due to edge effects and as such mutual

coupling will be mitigated by using only simulations of isolated elements. Mutual

coupling will be explored in more detail in Section 3.4.

The finite size of the array ground plane will introduce ripples in the radiated

patterns. The size of the ground plane will change the number of ripples introduced
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in the pattern and the position of the element in the ground plane will determine how

symmetric the pattern is. If an element is placed at the center of the ground plane,

the number of ripples in the radiation pattern will increase symmetrically as the size

of the ground plane increases as shown in figure 3.2. While ripples are introduced in

the co-pol patterns, only minor changes will be seen in the cross-polarization patterns

of the antenna due to symmetric ground plane.
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Figure 3.2: E-plane radiation patterns of an isolated microstrip patch antenna on a
ground plane of finite size. (a) co-pol radiation, (b) cross-pol radiation.

Edge effects will have the most notable impact when an element is not located at

the center of the ground plane because the diffraction fields are no longer symmetric.

This will alter both the co- and cross-pol radiation patterns in different ways. For

example, when a dual polarized element is polarized in the x̂-direction and offset

by 0.125λ from the center of a 4λ by 4λ ground plane in the +x̂-direction, the rip-

ples introduced due to diffraction fields will mean the radiation pattern is no longer

symmetric. There is little to no change in the radiation patterns with respect to an

offset in the +ŷ-direction because the element is polarized in the opposite direction.
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However, if this offset is applied and the element is polarized in the ŷ-direction then

the same effect would be seen.

A similar impact will be seen in the cross-pol of the isolated element. If the

same 0.125λ offset is applied in the +x̂-direction, no change will be seen in cross-

polarization levels for an element polarized in the x̂-direction despite changes in co-

pol radiation because the cross-pol fields are still symmetric. However, if the same

0.125λ offset is applied in the +ŷ-direction, cross-pol diffraction fields will no longer

be symmetric and an increase in cross-pol levels will be seen.

These simulations have been performed for a dual-polarized isolated microstrip

patch antenna polarized in the x̂-direction and placed on a finite ground plane of

size 4λ by 4λ. The patch was then offset by 0.125λ in the +x̂-direction. This offset

was then applied in the +ŷ-direction, and then in both directions. E-plane co- and

cross-pol patterns are seen in figure 3.3. It is shown that element radiation patterns

will be negatively impacted along a plane in which asymmetric diffraction fields will

occur. For this simulation, co-pol diffraction fields are asymmetric in the E-plane

when the element is offset in the +x̂-direction and cross-pol diffraction fields in the

E-plane are asymmetric when the element is offset in the +ŷ-direction.
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Figure 3.3: E-plane normalized radiation patterns of a horizontally polarized isolated
element offset 0.125λ from the center of the array. (a) co-pol radiation, (b) cross-pol
radiation.

Finite array size will mean that diffraction fields will never be symmetric unless

the element is located in very center of the array. Practically speaking, in a sub-array

of 8 by 8 elements, the four central elements will have very similar radiation patterns.

However, each element in the array will experience different uneven diffraction fields

based on the position of the array. This will especially be seen in elements that are

located on the edges of the array as shown in figure 3.4. For example, when a patch

is polarized in the ŷ-direction and then moved to a corner of the array, there will no

longer be symmetry in the diffraction fields in both the co- and cross-pol directions.

Therefore, co-pol radiation pattern will be uneven and the cross-pol levels will be

increased in the principle planes compared to an element in the center of the array.

Likewise, if the same element is positioned near the center of the +ŷ edge then co-

pol diffraction symmetry will be maintained and a symmetric pattern will be seen.
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However, for cross-polarization symmetry is not maintained with this positioning

resulting in higher cross-pol levels.
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Figure 3.4: E-plane (blue), D-plane (red), and H-plane (green) co-polar (solid) and
cross-polar (dashed) radiation patterns of an isolated element on a ground plane of
finite size located at (a) corner (b) edge (c) center.
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3.4 Mutual Coupling

The total gain of the array will be related to the gain of each individual element in

the array. While each element may share the same geometry, gain will vary from

the isolated element because of electromagnetic coupling between elements known

as mutual coupling. Inter-element coupling will change depending on the size of

the array, element spacing, position, and geometry. There have been attempts to

characterize this coupling, but unfortunately this is not an easy task as each element

will have unique radiation characteristics especially when the array is finite. In this

section, mutual coupling will be analyzed in the finite array to show its impact on

scanning performance.

Intuitively, when an array is larger, there are more elements to couple to and

therefore higher levels of inter-element coupling will be seen throughout the array.

While more elements will be present in the array, coupling levels drastically decrease

with distance no matter the size of the array. Four different dual-polarized phased

arrays were simulated with the same geometry with varying sizes to compare mutual

coupling levels. The E- and H-plane coupling values to the center element are seen

in figure 3.5. It is seen especially that coupling in the H-plane decreases rather

predictably with position no matter the size of the array. In the E-plane, results are

similar, but not as symmetric based on location. This is because the patch is fed

using a single coaxial probe and is therefore unbalanced in the E-plane.
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Figure 3.5: Coupling to center element in a linear array. (a) E-plane (b) H-plane.

3.4.1 Element Spacing

Traditionally λ/2 spacing between elements is used in phased array design, but ad-

justing this distance will have a clear effect on mutual coupling. A finite 7x7 patch

array will be used to demonstrate this case. Inter-element spacing is adjusted at inter-

vals from 0.4λ to 0.7λ and an infinite ground plane is used to mitigate the diffraction

fields that will occur so that only mutual coupling can be analyzed. The 2D graph

of the scattering matrix of the center element shows the expected results in figure

3.6. When the elements are closer, higher levels of coupling are seen. This is much

more dramatic when the embedded element pattern of the same element is shown.

As element spacing is decreased, the embedded element pattern begins to broaden.

Likewise, larger spacings result in narrow radiation patterns.
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Spacing = 0.7 , Reference = 4, 4

1 2 3 4 5 6 7

Element Column

1

2

3

4

5

6

7

E
le

m
e

n
t 

R
o

w

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

(d)

Figure 3.6: Coupling seen by the center element relative to all other elements. (a)
0.4λ element spacing. (b) 0.5λ element spacing. (c) 0.6λ element spacing. (d) 0.7λ
element spacing.

It is shown in figure 3.6 that the highest levels of mutual impedance will be

from neighboring elements, but not all elements will have a full ring of neighboring

elements like the center element does. Corner and edge elements will not have the
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same number of bordering elements which result in asymmetric mutual impedance

effects along certain dimensions.

3.4.2 Element Position

Proximity to the edge of the array not only impacts diffraction fields seen in section

3.3, but mutual coupling will change to a degree as well. In the infinite array each

element will experience the same amount of coupling regardless of position. However,

in the finite array, element position will mean that elements closer to the edge will

have fewer elements in close proximity and uneven amount of mutual impedance.

A dual-polarized 8x8 element microstrip patch array was designed and simulated

with an infinite ground plane to eliminate edge effects and observe changes in mutual

coupling. Similar to figure 3.4, radiation patterns have been plotted for a corner,

edge, and center element in the array. Results seen in figure 3.7 show how the mutual

coupling will change the radiation characteristics of element based on the position.

Diffraction fields are not present, so most notably no ripples are introduced into

co-polar radiation patterns and edge elements have fairly symmetric patterns. Cross-

polarization levels in the E-plane for both the egde and corner elements are increased

because inter-element is now asymmetric due to the element position.
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Figure 3.7: E-plane (blue), D-plane (red), and H-plane (green) co-polar (solid) and
cross-polar (dashed) embedded element radiation patterns in an 8x8 element array
located at (a) corner (b) edge (c) center.

Admittedly the impacts of mutual coupling on array embedded element patterns

are minor compared to how diffraction fields impact radiation characteristics, however
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results are consistent. When either mutual coupling or diffraction fields are asym-

metric along a dimension performance radiation characteristics will be impacted.

3.5 Active Reflection Coefficient

The active or scanned reflection coefficient has proven to be a very useful tool in

determining array scanning performance. For the infinite array, it can be easily

obtained through simulation using floquet port analysis and simply varying theta

and phi scan angles. The result will show reflections that the array will experience

when scanning at various angles. For a finite array, the active reflection can be

calculated for each element using a traditional scattering matrix. This means that

scanning performance of a manufactured array can be calculated without the need

to install phase shifters and measure the radiation pattern in a near-field or far-field

system. In this section, the process of calculating the scanned reflection coefficient

will be detailed for the case of a typical finite array. This process will then be repeated

for a dual-polarized differential-fed 8x8 element array.

As discussed earlier in Chapter 3, there are a multitude of factors that are impacted

by the finite size of the array. Mutual coupling, element geometry, array lattice,

diffraction fields, and other variables will change resulting in changes in scanning

performance related to array size. For these reasons, it is impossible to come to a

single closed-form solution that will predict scanning range for every single array.

However, it is very clear that the size of the array will change the active reflection

coefficient in the array and therefore no longer agree with the unit cell. In this section
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the array unit cell will be used to obtain the active reflection coefficient of the infinite

array. Finite arrays of varying sizes will then be modeled and simulated to compare

changes in the active reflection coefficient that result due to finite size.

The purpose of this array is to illustrate the changes in the active reflection co-

efficient that result because of the finite array size. As such, a rather simple single

polarized probe-fed microstrip patch antenna will be used for the unit cell. The patch

is then designed and tuned to resonate at 3 GHz. The x and y dimensions of the unit

cell are chosen to be λ/2 so that half-lambda spacing is used for the infinite array.

The unit cell is then simulated and scanned along the principle planes to obtain the

active reflection coefficient for the infinite array.

The scanned reflection coefficient of the infinite array seen in figure 3.8 is to be

expected. The array is well matched at broadside, but reflections increase as the

scanning angle becomes more extreme. If wider scanning angles were desired, there

are techniques that can be used to impedance match the antenna with the scan

angle, but that is beyond the scope of this thesis. As scanning approaches θ = 90◦,

the active reflection coefficient approaches unity because the ground plane is infinite

and therefore it is impossible to scan any further.

The active reflection coefficient was then calculated for finite arrays of varying

sizes using scattering parameters and the theory explained in Chapter 2. Results for

3x3, 5x5, 7x7, and 9x9 element arrays are shown in figure 3.9. When the array size

is smaller, the array experiences less reflections at higher scan angles in part due to

decreased ground plane size.
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Figure 3.8: The active reflection coefficient of an infinite array of single-polarized
microstrip patch antenna.
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Figure 3.9: Calculated active reflection coefficient of the center element of a finite
array of varying size (a) 3x3 array. (b) 5x5 array. (c) 7x7 array. (d) 9x9 array.
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3.6 Scanning Performance

A fully assembled array system will typically be composed of smaller sub-arrays which

are typically around the size of 8 by 8 elements in size. The goal of this section is to

understand the impacts that this finite size will have on the scanning performance of

the array. So far this chapter has been primarily focused on factors that impact the

radiation characteristics. Diffraction fields resulting from the introduction of edge

effects in the array will introduce ripples in co-polar radiation patterns as well as

increases in cross-polar radiation levels. Mutual coupling will change the resonant

frequency of an element as well as increase cross-pol radiation levels depending on

the position. These factors will now be taken into consideration to show how finite

size will impact the array.

In a large array, the full array pattern will approximately be the array factor mul-

tiplied by the isolated element pattern. Array elements are then given a progressive

phase shift to accomplish beam-steering. In the finite array, the approximation using

an isolated element will not be valid because diffraction fields and mutual coupling

need to be accurately accounted for. When testing a single LRU in an anechoic

chamber, the array will clearly be finite and performance will suffer, but this will not

necessarily reflect performance that will be seen when the array is fully assembled. It

is then necessary to create a model of the array that isn’t as impacted by edge-effects

that will not be seen in the full array. This can be done by using measured radiation

patterns in the LRU to create an average embedded element for the array.
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As previously discussed, an 8 by 8 LRU has been simulated and embedded element

patterns have been obtained for the finite array. The array was also simulated using

only a single element that was shifted into corresponding element positions to obtain

isolated element patterns which show the impacts of edge effects on element radiation.

Figures 3.10, 3.11, and 3.12 show the radiation patterns of each individual element

inside the 64 element array with and without mutual coupling.

Figure 3.10: E-plane V-pol normalized radiation patterns for each element at 3 GHz
when all others terminated in an 8x8 dual-polarized array (blue) compared to the
radiation pattern of the isolated element (black) at the same position. Co-pol (solid)
and cross-pol (dashed). In all plots in this figure, the y-axis represents magnitude of
the radiation pattern of each element (dB) and the x-axis represents the radiation
angle in the E-plane.
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Figure 3.11: D-plane V-pol normalized radiation patterns for each element at 3 GHz
when all others terminated in an 8x8 dual-polarized array (red) compared to the
radiation pattern of the isolated element (black) at the same position. Co-pol (solid)
and cross-pol (dashed). In all plots in this figure, the y-axis represents magnitude of
the radiation pattern of each element (dB) and the x-axis represents the radiation
angle in the D-plane.
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Figure 3.12: H-plane V-pol normalized radiation patterns for each element at 3 GHz
when all others terminated in an 8x8 dual-polarized array (green) compared to the
radiation pattern of the isolated element (black) at the same position. Co-pol (solid)
and cross-pol (dashed). In all plots in this figure, the y-axis represents magnitude of
the radiation pattern of each element (dB) and the x-axis represents the radiation
angle in the H-plane.

Each element has its own unique radiation pattern which is ultimately impacted

by both mutual impedance and edge effects within the array. To predict the scanning

performance of the finite array, it is not possible to just use a single element within

the array because it will not accurately account for the edge effects of the finite

array. Instead, it is proposed that an average element pattern is obtained where

each individual element pattern is phase shifted into the center position of the array

and averaged together to create a single pattern using all elements within the array.
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Pattern averaging will be discussed in more detail in Chapter 4, but it will be used

here briefly.

Array radiation patterns for a large array can be estimated by multiplying the

element pattern of the isolated pattern by the array factor. For a finite array, a single

center element can be used as well, but an average element pattern multiplied by the

array factor will give a more accurate prediction of the full pattern as demonstrated

in Chapter 4. As illustrated in Figure 3.13, the embedded element pattern of each

element in an 8x8 S-band array is overlapped with the average of all elements for

each cut (E-, D-, H-plane) at 3 GHz. In the E-plane, the co-polar embedded ele-

ment patterns are very similar presenting a variability in gain of about ±2 dB at

±45 degrees. However, the cross-polar embedded element patterns are significantly

different for each element in the array and in each cut. From element to element,

cross-pol can change around ±10 dB. This is mainly attributed to diffraction fields

due to symmetry of each element with respect to the edges of the ground plane.

In the D-plane (Figure 3.13b), co-polar patterns are even less sensitive than in

the E-plane with a variability of ±1 dB at ±45. However, little change is seen in the

cross polarization levels and variability is about ±5 dB. This is not because there are

no diffraction fields, but the cross-polarization levels are very high in comparison to

the diffraction fields.

In the H-plane (Figure 3.13c), the cross-pol levels are very similar to the E-plane.

This is because a microstrip patch antenna with a differential feed is being used.

Embedded element co-polar patterns have a variability of ±1 dB at ±45. However,

the cross-polarization changes significantly depending on element position. In this
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case, cross-pol variance is about ±15 dB. The reason for the high variability is because

the cross-pol is aligned to the fields of the patch in the E-plane.

(a) (b)

(c)

Figure 3.13: Overlapped embedded element patterns (black) for 8x8 array at 3 GHz
with its average radiation pattern (colored) for a finite vertically polarized array. (a)
E-plane, (b) D-plane, (c) H-plane. Co-pol (solid), cross-pol (dashed).

3.7 Summary

Finite array antennas will ultimately suffer from edge effects and differences in ele-

ment radiation characteristics depending on the position of the element in the array.

50



Diffraction fields will result in more significant changes seen in both co- and cross-pol

radiation patterns, but mutual coupling will do this as well. Both of these factors are

greatly impacted by the symmetry in the array. For instance, a center element will

experience roughly the same amount of diffraction fields and mutual coupling along

each plane. When this symmetry is lost, uneven mutual impedance and diffraction

fields will result in increased cross-polarization levels. To accurately represent the

finite array diffraction fields should not be ignored by representing the full array with

an isolated element pattern multiplied by the array factor. Instead, all individual

embedded element patterns can be averaged together to result in a single average

element pattern. In the next chapter, pattern averaging will be explored more in

depth and used to predict the performance of the full array.
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Chapter 4

Array Scanning Prediction

4.1 Introduction

The radiation characteristics of array line-replaceable units (LRU) are normally tested

outside of the full array and therefore diffraction fields on a single sub array will be

more prevalent than what will be seen in the full array. To accurately represent the

performance of the full array, an average embedded element can be obtained from the

array adding element patterns together along with a phase shift to electrically shift

the element to the center of the array. Ultimately it is desired to average element

patterns to obtain an average element pattern that will resemble the average pattern

seen in the full array.

4.2 Average Element Pattern

The resulting average element pattern will depend on the number of patterns added

together. The overall goal of the average embedded element patterns is to determine a

appropriate number of elements that should be averaged in order to obtain a pattern

resembling the embedded element pattern seen in the full array pattern when all LRUs

are assembled. The average element pattern will first be used along rows and columns

in the array to show when cross-polarization cancellation occurs. The antenna used
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for this experiment will be an 8x8 element dual-polarized microstrip patch array which

will be vertically polarized. Figure 4.1 shows the layout of the array.

1

Figure 4.1: Dual-polarized 8x8 element array.

First, the rows of the array will be averaged. If a single row is averaged together,

no cross-polarization cancellation will occur. This is because the array is polarized

along the rows, so there is no destructive interference occurring in cross-polarization

patterns. In other words, for cross-pol cancellation to occur, elements need to be

added along the plane orthogonal to the plane of polarization. In this case, the array

is polarized along the rows of the array so an array column needs to be average for

cross-polarization cancellation to occur. For example, in figure 4.2a the first row is

averaged and the average cross-polarization pattern does not decrease. The same

result is seen when the last row of the array (row eight) is averaged in figure 4.2b. As

stated, for this polarization elements in the same column need to be averaged so that

element cross-polarization patterns will destructively interfere and result in a lower

average cross-polarization pattern. It would then stand to reason that averaging both
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the other rows of the array (rows one and eight) would then result in a decrease of

the average cross-polarization levels as seen in figure 4.2c.
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Figure 4.2: The embedded radiation pattern of each element in an 8x8-element ver-
tically polarized microstrip patch array antenna and the average radiation pattern at
3 GHz in the E-plane using (a) row one, (b) row eight, and (c) rows one and eight.
Co-pol (solid), cross-pol (dashed), embedded radiation patterns (black), and average
radiation pattern (blue).

Averaging the array along plane of cross-polarization (array columns) will mean

that cross-pol cancellation will occur, but the average co-polarization patterns will not

accurately represent the performance of the full array because there will be no addition

along the plane of co-polarization. The average co-pol pattern along a column will be

impacted by uneven diffraction fields from edge effects resulting in an asymmetrical

average co-pol radiation pattern. This is demonstrated in average E-plane radiation

patterns of column one in figure 4.3a and the average E-plane patterns of column

eight in figure 4.3b. When both columns one and eight are averaged as in figure 4.3c.

The edge effects will cancel and result in a symmetric co-pol radiation pattern.
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Figure 4.3: The embedded radiation pattern of each element in an 8x8-element ver-
tically polarized microstrip patch array antenna and the average radiation pattern at
3 GHz in the E-plane using (a) column one, (b) column eight, and (c) columns one
and eight. Co-pol (solid), cross-pol (dashed), embedded radiation patterns (black),
and average radiation pattern (blue).

Averaging the H-plane of the array elements will yield similar results to the E-

plane. However, since the H-plane is orthogonal to the E-plane, the planes in which

co- and cross-polarization occur will now be switched. This will mean that cross-

polarization cancellation will occur in the H-plane when a row is averaged. Figures

4.4a and 4.4b show averaging along rows one and eight, respectively. It can be noted

that the co-polar radiation patterns are asymmetric edge effects. When both rows

one and eight are averaged together in figure 4.4c, edge effects will be symmetric

resulting in a symmetric co-polar pattern in the H-plane.
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Figure 4.4: The embedded radiation pattern of each element in an 8x8-element ver-
tically polarized microstrip patch array antenna and the average radiation pattern at
3 GHz in the H-plane using (a) row one, (b) row eight, and (c) rows one and eight.
Co-pol (solid), cross-pol (dashed), embedded radiation patterns (black), and average
radiation pattern (green).

It will then be seen that averaging along the columns of the array in the H-

plane will result in pattern addition along the plane of co-polarization in the H-plane.

Cross-pol cancellation will not occur as seen in the E-plane. The result will mean that

edge effects will be even in the co-pol patterns but not in cross-polarization patterns.

Averaging either column one or column eight in figures 4.5a and 4.5b, respectively,

will result in uneven cross-polarization cancellation. However, when both columns

are averaged together as in figure 4.5c, cancellation will occur and the averaged cross-

polarization pattern will be decreased.
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Figure 4.5: The embedded radiation pattern of each element in an 8x8-element ver-
tically polarized microstrip patch array antenna and the average radiation pattern at
3 GHz in the H-plane using (a) column one, (b) column eight, and (c) columns one
and eight. Co-pol (solid), cross-pol (dashed), embedded radiation patterns (black),
and average radiation pattern (green).

The same averaging done for both the E- and H-planes will not result in cross-

polarization cancellation in the diagonal plane. In both the E- and H-planes, cross-

pol cancellation occurs when patterns are averaged along the dimension of the array

orthogonal to the corresponding. However, if the same process of averaging is done

along the rows and columns with the diagonal plane, this does not happen.
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Figure 4.6: The embedded radiation pattern of each element in an 8x8-element ver-
tically polarized microstrip patch array antenna and the average radiation pattern at
3 GHz in the D-plane using (a) row one (b) row eight, and (c) rows one and eight.
Co-pol (solid), cross-pol (dashed), embedded radiation patterns (black), and average
radiation pattern (red).
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Figure 4.7: The embedded radiation pattern of each element in an 8x8-element ver-
tically polarized microstrip patch array antenna and the average radiation pattern at
3 GHz in the D-plane using (a) column one, (b) column eight, and (c) columns one
and eight. Co-pol (solid), cross-pol (dashed), embedded radiation patterns (black),
and average radiation pattern (red).

4.3 Full Array Scanning

It has been shown that to obtain an accurate average element pattern, there needs to

be symmetry in the elements chosen to be averaged so that both the co- and cross-pol

patterns average in the principle planes to reduce the impacts of diffraction fields from

edge effects. In this section, various sub-arrays will be averaged within a single LRU

will be averaged to obtain a single average element pattern to accurately represent

both the co- and cross-polarization patterns that will be seen when all the LRUs and

assembled to create the full array.

Using the traditional isolated element pattern multiplied by the array factor of

the antenna will not accurately reflect the cross-pol seen in the full array. When the

isolated is placed on a finite ground plane as in figure 4.8, cross-polarization levels

will be drastically increased due to edge effects, but in reality when the LRUs are

assembled these edge effects will be decreased. Alternatively, if the radiation patterns
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of an isolated element on an infinite ground plane are used to create the full array

patterns, no edge effects will be included in the resulting patterns. It is necessary to

average the array elements to allow for diffraction fields to cancel due to the symmetry

of the array.
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Figure 4.8: Co-pol (solid) and cross-pol (dashed) radiation patterns for an isolated
element on an infinite ground plane (black) and a finite ground plane (colored) for
the E-plane (blue), D-plane (Red), and H-plane (Green) which the microstrip patch
is vertically polarized (a-c) and horizontally polarized (d-f).

Averaging the entire finite array will lead to an excessive presence of diffraction

fields in the resulting patterns, thus inaccurately representing the full array perfor-

mance. Alternatively, when the outer elements of the array are terminated and the

rest are averaged it is possible to better predict the average element pattern for the

full array. When the full array is assembled it will contain 64 individual 8x8 element
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subarrays for a total of 4096 dual-polarized elements. Unfortunately, due to compu-

tational limitations, it was not possible to obtain an average element pattern for the

full array, so the 8x8 element array was simulated with an infinite ground plane and

the elements were averaged together. This case will be used as an approximation for

the average patterns of the full array. Subsections of the finite array will then be used

to attempt to predict this pattern.

The resulting average array patterns are seen in figure 4.9. Again the goal is to

use the finite array patterns to replicate the average array patterns of the 8x8 array

with an infinite ground plane. The sub-arrays within the LRU were chosen such

that the array is symmetric along the principle planes to allow for the cancellation of

diffraction fields introduced due to the finite size of the array. As such, it was chosen

to terminate the outer ring of elements first to result in a 6x6 finite array with a ring

of dummy elements. This process was then repeated to obtain a 4x4 array with two

rings of dummy elements and finally a 2x2 element array with three rings of dummy

elements. The resulting sub-arrays were then averaged and compared to the reference

8x8 element array radiation patterns with an infinite ground plane.

Figure 4.9 indicates that terminating the outer two rings of elements (4x4 sub-

array) will result in a pattern that most accurately represents the full 64x64 element

array. It is common to terminate all array elements except for the very center el-

ements to predict full array performance, but this is not enough elements to allow

for cancellation of diffraction fields. Cross-polarization levels were highest when this

method was chosen.
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Figure 4.9: Co-pol (solid) and cross-pol (dashed) average radiation patterns for mi-
crostrip patch antenna LRU sub-arrays for the E-plane (blue), D-plane (Red), and
H-plane (Green) which the element is vertically polarized (a-c) and horizontally po-
larized (d-f).

With an accurate predication of what the full array average element pattern will

be, the array factor can then used to reproduce the patterns expected in the full

64x64 element array as shown in figure 4.10. The array factor can be phase shifted

and multiplied by this average element pattern to approximate full array scanning

performance. While this method can be used to predict co-polar radiation patterns,

the main benefit of this method is that it provides a more accurate method to predict

the cross-pol radiation patterns of the full array.
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Figure 4.10: Co-pol (colored) and cross-pol (black) scanned radiation patterns for a
64 element microstrip patch array for the E-plane (blue), D-plane (Red), and H-plane
(Green) which the element is vertically polarized (a-c) and horizontally polarized (d-
f).

4.4 Summary

The use of the average element pattern allows for cancellation of diffraction fields

in the principle planes due to pattern addition. For this cancellation to occur an

element needs to be averaged with a symmetric element in the plane of interest. For

co-pol patterns to be symmetric, an element should be averaged with the pattern of

the element along the same principle plane, but on the opposite side of the array.

For cross-pol pattern to be symmetric, an element should be averaged with opposite

element along the plane orthogonal to the desired principle plane. To obtain a good
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average pattern there should be both proper symmetry and as many elements as

possible.

To represent the scanning performance of the full array, the use of the average

element pattern was employed. Different sub-arrays within the LRU were averaged

to obtain a pattern that most accurately represents the average element patterns of

the full array. The elements averaged in the LRU were chosen to allow for diffraction

field cancellation, and the outer two rings of elements were terminated to decrease

the edge effects seen in the finite array. Finally, the average element pattern was then

scanned to predict the full array scanning performance.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

This thesis project focuses on analyzing how the finite size of a measured array LRU

will impact the scanning performance of the subarray. When radiation patterns are

obtained for the LRU in an anechoic chamber, the array will not be in the same

infinite array environment in which it is was designed or intended to operate, so they

will not necessarily indicate the performance of fully assembled array.

This project has demonstrated that diffraction fields from edges will impact the

radiation characteristics of a finite microstrip patch array antenna. Diffraction fields

were shown to be sensitive to both element position and ground plane size. For

instance, when a patch is located at the center of a ground plane it will experience

symmetric diffraction fields. However, when the patch is offset from the center of the

array, asymmetric edge effects will change ripple size in co-polar radiation patterns

and cross-polarization levels will be increased. In short, diffraction fields mean that

each element will placed in a finite environment.

As such, a method of pattern averaging has been proposed as a more accurate

way to predict the full array co- and cross-polarization patterns of the full array by

terminating edge elements within the LRU and then electrically shifting the embedded
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element patterns to the center of the array so that they can be averaged to create

a single average element pattern which is then multiplied by the array factor to

approximate the full array patterns.

5.2 Future Work

The results presented in this thesis were obtained using simulations of phased array

antennas. In particular, a dual-polarized differential-fed 8x8 element array was simu-

lated to predict scanning performance when placed into a larger 64x64 element array.

Averaging a smaller subarray of the 8x8 element array resulted in cancellation of edge

effects and a decrease in the predicted cross-polarization levels. It was not possible to

obtain a physical antenna to test this analysis on, but it is possible that due to errors

in both the manufacturing and measurement processes that the measured phase of

each embedded element pattern will not be as precise meaning that measured pat-

terns will not be as symmetric and simulated results and less cancellation diffraction

fields from edge effects may occur.
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