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PREFACE 

For the past eight years a research program toward the identifi­

cation and tracking of tornadoes has been carried on at Oklahoma 

A & M College. In addition to a number of technical papers and re­

ports concerning the progress of this investigation, several excellent 

theses have been written covering, for the most part, the development 

of laboratory equipment and the analysis of sferic waveforms. For the 

past three years an increased emphasis has been placed on the signifi­

cance of sferic repetition rate with regard to azimuth. The investi­

gation described in this thesis was concerned with a study of sferics 

and the direct correlation of the sferic results to the radar data. 

This is the first of its kind to be presented in thesis form. 

Numerous obstacles handicapped the investigators when undertaking 

to obtain experimental data in the field of tornado research. A great 

deal of time was spent in watching a multitude of storms which failed 

to produce tornadoes. Even when tornadoes did occur, recorded data 

was often lost because of technical difficulties or unpredictable limi� 

tations in instrumentation. 

It was unfortunate that the tornadoes that occurred during the 

evening of May 25, 1955 were responsible for the tragedy that killed 

over 100 people in Oklahoma and Kansas. Ironically this same storm 

produced scientific information which has been invaluable in furthering 

the knowledge of tornado phenomena. The Tornado Laboratory was fortu­

nate to be in a posii;j_on where local meteorological conditions were 
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sufficiently clear to allow the unobscured reception of both radar and 

sferic data from the areas affected by the stormo 

A word of thanks is due Mro Ruben Do Kelly, Project Engineer, and 

Mro Melvin Oberst for the excellent maintenance of laboratory equipment; 

without which the data used in this thesis could not have been obtainedo 

A note of appreciation is made for the inspiration and helpful 

guidance of Dro Herbert Lo Jones in carrying out this researche 'Ihe 

author is greatly indebt,ed to Mr .. Wayne Fo Staats for his many helpful 

suggestions and opinions, and to Mr.. To Peyton Robinson for his assist= 

ance in the correction of the manuscript and for his many constructive 

commentso 
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CHAP'.IER I 

IN'.IRODtJC TION 

For countJ..ess years in his eternal fight for survival, man has 

wi. th.stood the many forces of natureo Although these forces are made 

evident through a nU111ber of different modes, probably the one phenome-

non that most affects his daily living is weather. Weather may be 
described as the perpetual attempt of nature.V s forces to reach a state 

or equilibrium. 'Ibis state is never reached, however
.)) 

due to the 

constant consumption of energy from the sun. 

Ordinarily, the process or force equalization, or change of state, 

has a beneficial effect; for example, the formation of crop-producing 

raino It is the rate of energy exchange that causes various physical 

destructive effects,, This destructive rate can vary widely from .. tor-

rential rains that produce floods to the swift and almost instantaneous 

obliteration of a tornadoo The degree of energy unbalance, or instabili-

ty of the air system., seems to provide a clue to the speed and thorough-

ness with which destruction can take place. 

For many years, the.-.dream of man has been the evolution of a plan 

to control the weather to meet his desires and demandso To date, the 

numerous methods proposed to further this idea have great]¥_ outnumbered 

the methods tried. Due to the energy magnitudes involved even those 

tried have netted, at best, questionable results on a very local basis. 

The natural alternative to weather control, then., would be a means of 

.... 



forecasting whereby protective measures could be' taken to minimize 

properzy- loss, and foremost.,. to eliminate human injuryo During the 

past decade, research in the field of meteorology has produced a 

combination of knowledge and instruments which has brought the state 

of the art of this science to a degree of great reliabili Wo 

These developed methods and procedures have been put into practice 

on a continuous basis by the United States Weather Bureauo 'Jhis has 

resulted in a routine of the regular accumulation of meteorological 

data together with the interpretation whereby the forecasts of oncoming 

storms may be made available to the areas concerned within hours or 

even �nutes before the forecasted event.. 'lhe fact that these warnings 

can be made with a high degree of certainzy- lml.kes them of practical 

valueo 

Because of the many variables involved within a storm complex, no 

one can predict exactly how or where the storm will strike, even though 

2 

the area of development has been determinedo Exact details such as wind 

velocity, moisture concentration� hail size i and li:ghtning intens_ity :rrru.st 

usually come to storm warning centers via co:mmunications circuits.� pro-

vided these circuits are still intact9 if this information is to be of 

any value in warning an area in the pa th of a storm,, These data may be 
' .

obtained from aircraft reconnaissance in the case of slow moving storms 2 

such as hurricanes 9 which usually exist for several days., 

For detection ,of tornadoes the problem of gathering the necessary 

exact information for warning purposes is magnified many fold., Wire 

communication circuits are usually disrupted and radios in the stricken 

area made inoperative before they can be put into useo This makes re-

porting from a devastated area highly unreliable,, The time between the 
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sigh ting of the tornado and the t:im.e when a warning is issued to an area 

in the path of the tornado is· cri tical o Thus far the only way of posi-

tively identifying the existence of a tornado is through observation of 

its physical structure.. Even its positive identification may be mistaken 

by the many who become victims of a sort of hysteria during the appr�ach 

of a precarious looking dark cloudo 

Lateral ground speeds of thirty to forty miles per hour or higher 

are not unco1llmon to tornadoes, and tornado paths are very unpredictableo 

,A:t present tornado alert areas determined by known meteorological infor-

mation cannot be pinned down to much less than ten to twenty thousand 

square miles". This area.I! even in sparsely populated areas, may include 

a great number of people who experience only slightly severe weathero 

Repeated '�false alarms11 have been proved to create an air of skepticism 

which has resulted in serious consequences in the event of an actual 

tornado .. 

A tornado can vary in du.ration from less than five minutes as the 

incipent tornadol to one lasting· several hourso 'Ihe ones of longer 

duration are'· naturally the most disastrous since the probability of their 

hitting a populated area is much greatero It is ob:vious that with 

tornadoes which exist for less than five minutes the chances for warning 

of their approach becomes extremely small.. If we therefore confine 

our study m tornadoes having existence of thirty minutes or longer:i we 

should have a situation where issuance of a warning becomes feasible and 

has practical value., 

lphi.llip N .. Hess, ninstallation and Operation of Electronic Sferic 
Detection Equipmentu., Unpublished Master v s Thesis p Oklahoma A�I College .I! 

(1950), Po 50=52o 



It can be seen from this discussion of problems encountered in 

tornado warning that time is a very important i'actoro A practical 

approach to a system of tornado warning would t:hen be to devise a 

means whereby some characteristic of a tornado.'s existence could be 

detected at a remote point from its actual locationo Once this charac­

teristic· is observed a warning could be forwarded to the area subject 

to the tornado«s i,nfluenceo 

It was this idea that led Dr. H. L. Jones and associates at 

4 

Oklahoma. A & M College to institute a search for any unusual character­

istics of torn.adic type storms. Through their efforts .s, techniques have 

been developed throughout several years of re.search toward the establish­

ment of, a practical warning system. 
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CHAP '.!ER II 

BASIC RESEARCH AND DEVELOPMENT BEFORE 1955 

Initial Research on Tornado Identificati.on 

Before an evaluation can be given to the specific work about to be 

· presented9 it is necessary to review the progress of the tornado program·

since its inception in 1947 ..

The Woodward .I) Oklahoma, tornado early in 1947 set a record in terms 

of loss of life and property.. After this tornado much interest was 

generated pursuant to a method through which cognizance of such storms 

might be established in sufficient time to permit the operation of an 

effective warning system.. The development of such a plan of research on 

tornado identification and txacking was undertaken at Oklahoma A & M. 

College 9 Stillwater ., Oklahoma, under the directorship of Dro H., L .. Jones 

and under the sponsorship of th
e 

Division of Engineering Research of the 

Oklal::oma. Institute of Tecbnology-o 

Initial investigative work began with the study of accumulated data 

on the lightning or nsferics 11 that usually accompany any type of thu.n.der·� 

storm.. Froni :this study a hypothesis was reached that the characteristics 

of sferics from an ordinary thunderstorm are different from the character= 

istics of sferics generated by storm cells containing tornadoes9 It 

appeared to be reasonable that the available energy- in a tornada'!utype 

thunderstorm would be considerable greater than that of other types of 

thunderstorms.. In addition� it was believed that the increased energy­

would be evident in generally two wayse First.I> there would be an increased 



number of strokes per unit time and second, each stroke would be more 

intense due to the increased amount of energy dissipatedo This idea 

was supported by the generally accepted theory of separation of elec­

trical charges iri the generation of thunderstorm electricityo l 

During the first two years of the tornado research the equipment 

used to investigate the characteristics of sferics consisted of a super-

heterodyne radio receiver whose output was connected to a cathode ray 

oscilloscopeo The receiver was tuned in the band of frequencies near 

400 kilocycleso 'Ihe cathode ray oscilloscope was mounted on one end of 

a bench and an electrically driven sixteen millimeter camera was 

6 

mounted at the other end of the bench and facing the oscilloscope screeno 

Extraneous 1.ightwas prevented from reaching the oscilloscope by a metal 

tube that allowed the observer to view the screen while pictures of the 

screen were being recordedo Due to the very random nature of sferic 

ac ti vi i:lf it was necessary to make each recording for a period of from 

one to two minutes in order that sufficient pertinent data cou.ld be 

obtaineda 

One of the difficulties of securing sf eric data of this -cype was 

in having the equipment. in operation at the time such information was 

available o During the initial phase of research;i schedules of opera= 

tion were based on what little meteorological information was available 

concerning severe weather., Radio and newspaper forecasts provided the 

only tornado warnings or alerts that were made., 

Despi.te the simplici i:lf of the equipment and the difficulty of ob= 

taining sufficient data, results of' these efforts justified cohtinued 

lHerbert Lo Jones, "A Sferic Method of Tornado Tracking and . 
Iden tificationu , Oklahoma Engineering Experiment Station ·Public a ti.on, 
Noo 82 .s, January� 1952 .9 Po3o 



investigati.ono The assumptions initially made regarding the character-

'1 
' 

istics of sferics as an index of storm severity were generally borne out 

in the earJ.y experiments. Further studies naturally dictated modifica-

tion of the equipment as requirements were discoveredo One of the most 

important changes .in equipment design was made just prior to the Tornado

Season of 19500 Since most of the waveform presentations were of the 

modulated type .:, it was decided to use a wide band video amplifier2 in= 

stead of the tu�ed receiver!) 

After obtaining sufficient data with this modifications, a rather 

interesting discovery was made concerning severe storms accompanied by 

tornadoes and hailo There appeared to be a pronounced high frequency 

component of sferics most prevalent in the band ranging from one hundred 

to two hundred and fifty kilocyclesG 'I'his discovery was a very important 

factor in the design of the more elaborate equipment which is in use 

today .. 

Establishment of the Tornado Laboratory 

The present Tornado Laboratory3 was established in the Spring of 

1950& It is located three miles northwest of the College at the Still-

water Airport which is operated by Oklahoma A & M College.. 'Ihe Tornado 

Laboratory is situated at the end of the southeast taxi strip at an 

elevation slightly higher than the surrounding terraino This location 

2 
Hess .9 p .. 13., 

3nResearch on Tornado Identification11, First Quarter]y Prof.ess
Report, Signal Corps Research, Project No., 172B=0 3 19.52 .:i pp; 6-� 
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was selected in 0rder to attain freedom from local electrical static� 

sufficient elevation, and a road that is passable during the periods 

of bad weather that accompany severe storms .. 

Between 19.50 and 1953 the main items of equipment located at the 

'Ibrnado Laboratory consisted of the Harmonic Analyzer o� Sferic Detector 

developed at Oklahoma A & M College� together rl th the APQ-13 radar and 

the AN/GRD�ll static direction finder borrowed from the Signal Corps 

Engineering Laboratories .. A PE-197 Power Unitj) also on loan, was in= 

stalled in case of power failures, a not uncormnon occurren�e .. 'during local 

severe weathero 

Beginning with the storm season of 1952 :J d.a ta was recorded from the 

equipment by the .. use of two ·cameras. Radar scope pie tures were made 
I 

wi th a 3.5 millimeter automatic single frame camera; since all data rela-

tive to sferic activity are displayed by a momentary light trace on an 

oscilloscope screenj) sferic records were obtained by the use of a 35

millimeter continuous type motion picture camera. lhe instantaneous 

nature of sferic data thus permitted a continuous recording., Simultaneous 

recordings were made of'g (a) the directional tr�ces of the AN/GRD=lA 

Direction Fi�der; (b) the sf'eric wave form; (c) a coding system to indi­

cate sweep speed on the waveform presentation, (d) a record of the time 

for each second; (e) a record of the date for each recordo 'lb insure 

that data was taken iri regular sequence an electrical timing device was 

constructed to take both radar and sferic pictures automatically at 

preset intervalso4 

4 11Research on 'furn.ado Iden tifica tion11, Eighth Quarterly Proe;ress
Report$ Signal Corps Research Project Noo 172B...09 1952, pp .. 6-8. 
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It was not until the ana]ysis of the records taken in 1952 that 

the value of the previous research had been realized o Material progTess 

was evidenced in: (a) the discovery of a possible relationship between 

the severity of a storm and the rate o.f arrival of sferics from that 

storm; (b) the accumulation of experience relative to the observation of 

squall line and frontal movements peculiar to the Great Plains Area; 

and (c) the associated development of equipment and techniques necessary 

for the study of the sferic emissions from the related storm centerso 

It was a fortunate turn of events that found meterological research 

pertinent to fue forecasting of tornadoes. developed simultaneously with 

the research at Oklahoma A & M College.. A method of forecasting tornado 

areas in the Great Plains area was developed by Colonel E. J., Fawbush 

and :Major R .. C. Miller of the Uo S. Air Weather Service at Tinker Air 

Force Base; Oklahoma5 <> It was through the cooperation between the Se­

vere Storm Center at Tinker Air Base and the Sferic Research Group at the 

Tornado Laboratory that there was obtained an increased understanding of 

the individual storm movements and. increci.sed efficiency in the time spent

in observations made at the Laboratory. 

The forecast data from the Severe Storm Center made it possible to 

initiate operations at the Tornado Laboratory in time to observe the 

early formation of the squall line on the radar 9 and to record the- initial 

s.f erics generated by the squall line during the preliminary growth of the 

individual thunde�stormso Subsequent forecasts during the period of activi= 

ty made it possible to concentrate on specific areas of severe storm 

incidence as indicated by the changing meteorological conditionso 

'Major E .. Jo Fawbush:, Captain R .. C., Miller .s and Captain Lo C., Starrett, 
11An Empirical Method of Forecasting Turnqdo Development .. 11 Bulletin of the 
American Meteorological Society"' January.\) 1951.? PP .. 1-9.. 

-- - --
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Early in 1953 when interest was mounting in rate of sferic arrival, 

the Evans Signal Laboratories shipped the Sferic Incidence Azimuth Inte-

grator to the Tornado Laboratory for installation and testing. This 

device consisted basically of a photo-electric cell mounted behind a re­

volving slit. The slit was electrically driven so as to scan the azimuth 

scale of the Cathode Ray Tube of the Direction Finder. When a stroke 

occurred while the slit was in line with the azimuth from which the 

stroke arrived, the light from the oscilloscope screen was tr:'ansmitted 

through the slit to the photo cell to form a voltage pulse. When several 

rapid successive strokes occurred from a given azimuth, which was usually 

the case, the resultant series of voltage pulses were counted in an elec-

tronic integrator., The output from the integrator was fed to a pen 

mechanism which plotted a continuous record of sferic activitv" over the 

en tire 360° azimuth., 

1he accuracy of such a device is limited by some of the shortcomings 

of the AN/GRD-ll Direction Finder�6 When a lightning discharge produces 

an electromagnetic wave with strength of a sufficient magni tu.de to over-

load the circuits of the direction finder, a family of concentric ellipses 

will result. The major axis of these ellipses may or may not coincide 

with the correct direction of arrival of the sferic o Such a display of 

light on the oscilloscope screen causes light to reach the photo tube 

erroneous]y and causes a subsequent error in the recording., This limita= 

tion also causes the sferic records taken by the continuous motion 

picture camera to be confusing to the analyst., A correlation between 

counts by the sferics integrator and those counted by the analyst is 

therefore difficult to obtain., 

6nResearch on Tornado Identificationu 
ri Final Report, Signal Corps 

Research Contract No., 172B--O� 1954� Po 22., 



Basic Concepts of Lightning 

According to Schonland7 » Norme118 , and others.l) a typical cloud to 

ground flash of lightning is initiated by what is commonly called a 

:u. 

leader process, descending in discreet steps from the cloud through non-

ionized air to the ear tho As it travels downward· it z,ig-zags and 

branches to form the characteristic of lightning discharges.. When this 

stepped leader reaches the earth.I) the return streamer advanc�s rapidly 

back along this ionized path to form the vivid lightning stroke common-

ly observedo Subsequent or multiple strokes are preceded by a dart 

leader which travels down the existing channel in a continuous streamer. 

The current carried by the initial-leader process is know from field 

change stud,ies to be in the order of 100 amperes.. The peak current in 

the re turn s �ke has been de terrnined from various lines of evidence 

to be in the order of 20 .ll OOO amps ,, though in extremely heavy bolts it 

has been measured as high as 100.ll OOO a.mpse 

Appleton and Chapman9 first analyzed the electrical field changes 

associated with a lightning stroke and demonstrated that such field 

changes are complicated by the superposition of electrostatic .I) induction 

and radiation effects represented respectively by the three terms on the 

7B., F .. Jo Schonland .ll 
11 'Ib.understorms and Their Elec trical Effects 11

9 
Physical Socie:t;y: of London, Proceedings ;1 Vol., 55, Pt .. 6 :, 19bJ .. PP .. 445 ... 458 ..

8T. Wo Wormel.\l tlLightning" .ll Royal Meteorological Sociew.� Quarter]z 
Journal, Vol., 79 .', 1953. . , 

9Eo No Appleton and F., W. Chapman, 11 0n the Nature of 4tmospherics 
IV'f1, Royal Society£!. London:, Proceedings, Vol. 158, January 1937, PP., 1-22. 



right side of the equation: 

E - M ,� n3 
1 x 

� 

where E � Elec t.J:"ic field at the earth I s surf ace 
M · ti Electric moment 
D � Distance 
t r:1. Time 

For distances D < 62 miles !) the first two terms --::"":l'
D

M + 1 
fl.) � 

predominate; between 62 and 300 miles the middle or inductive term 

predominates; and beyond 300 miles the radiation or 11 atmospheric 11 

effect d2M is the grea testo 
·� 
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The major radiation pulse is of course produced by the high current

return stroke. The original wave front generated by this stroke is 

aperiodic at its inception, however;1 at some distance from the point of 

origin the wave assumes a damped semi-sinusoidal chp.rac ter due to 

progressive reflections from the ionosphere� According to Schonland� 

the mean rate of speed of the return stroke is about 5 x 1o4 kilometers 

per second. When we consider that the average length of these strokes 

is from 3 to 5 kilometers, it follows that the average frequency of the 

maximum radiated pulse would be ��
oh 

or 10 kilocycles per second&

Adcock and ClarkelO made some experi.ments to ascertain how the energy 

..: fell off below this frequency., It was found that the energy received 

was fairly well maintaj.ned down to 7 .,5 kilocycles per second but that 

a marked dimilm tion occurred below this" 

10:F., Adcock and Co Clarke J 11 The Location of 'Jhunderstorrns by 
Radio Direction Finding11

;) Institute of Electr'ical Engineers .9 Journal 
Vol ... 94 2 Pt., III� March9 1947 .pp., 11TI'=l25.. 

-



Another source of radiated energy is in the stepped end dart 

leader processes. If we consider that the average length of each 

stepped leader is in the order of 30 meters and its effective rate 

of travel is about the same as the return stroke, namely 5xlo4 

kilometers per second, we· can calculate that the duration of these 

steps is in the order of 6 microseconds ., thus giving rise to a radia-

tion in the range of 150-200 kilocycles per second. The High 

Frequency Direction Finder was· thus designed to have a peaked response 

in this vicinity. 

Installation of High Frequency Direction Finder 

At the close of the 1954 tornado season the cons true ti.on of a: new 

high :frequency direction fmderll was completed. This new equipment 

13 

was designed to tune over a frequency range of approxil!l.ate]y 100 to 

150 kilocycles as compared with the ten kilocycle frequency of the 

AN/GRD-lA Direction Finder. Design considerations, as mentioned pre-

viously., were based in part on the accumulated data pertaining to high 

frequency characteristics of sferics :from severe storms. 

Subsequent testing demonstrated that elliptical pips encountered 

with the AN/GBD-lA Direction �inder were definitely reduced in recorded 

results taken with the high frequency direction finder. .One of the 

logical explanations for this fact is that when two lightning strokes 

occur at almost the ,ame instant., but at different locations ., the 

direction finder must recover from o�e indication in the period of 

11 "Research on Tornado Identification"1
,., Eleventh Q:uarterly Pro­

gress Report., S�gnal Corps Research Project Noe 172B·O:, 1954., pp.T-14. 



time that is sufficiently short to permit successful indication of the 

second stroke.· 'Jh:i.s is accomplished by the increased frequency of 

operation. If a period of time corresponding to 50 cycles of the in­

coming wave train is required to indicate a given stroke, regardless 

of the operation frequency of the direction finder, then the 10 kilo­

cycle system will require a period of .50/10,000 or 5 milliseconds to 

indicate the same stroke. Thus the high frequency s;y-stem is capable 

of indica. ting strokes at a rate that is approximately fifteen times as 

fast as the 10 kilocycle system. 

Additional experience has shown that the range of the high fre­

quency direction finder is such that the sferics received are confined 

to storms within about a 250 mile radius of the Tornado Laboratory. 

This range is comparable to the normal opera ting range of the radar. 

From an analytical point of view this is quite advantageous since pips 

appearing on the scope can usually be assumed to be originating from 

echos displayed on the radar scope rather than from some storm several 

hundred miles away. 



CHAPTER III 

PLAN OF LABORA 'IORY OPERATION 

Procedure Prior to Storm 

In Oklahoma the approxirnate time between February 15 and June 15 

is considered a period when tornadoes are most likely to occur. A 

very unique feature of the weather during this period is the almost 

weekJ.J- occurrence of an active squall line with the associated thunder­

stormso 

A typical storm cycle during the spring months begins with the 

formation of an active cold front in eastern New Mexico and Colorado. 

,The required tirne to complete the cycle varies from two to four days, 

after which the system has moved across Oklahoma and Kansas and well 

into Arkansaso Although sferic data is available from the very start, 

the squall line usually does not come into· operating range until some­

time during the first or second afternoon or eveningo Redevelopment of 

severe activity in the vicinity of the Tornado Laboratory is no t uncom­

mon during �e following day. Most activity begins about 11 A.Mo and 

continues until 4 ·A.M. or 5 A.M. the following morningo The collection 

of data through such an extended period of time is ibdeed a feat of 

pl:zy-sical endurance. 

1',pproximately 48 hours previous to the development of a storm 

system, radio and television provide the.necessary forecast as to 

when the Oklahoma area is to affected. On the morning of the expected 

15 
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day of activi-cy, contact is made with the Severe Weather Center at 

Tinker Air Force Base regarding the· ti.me and location of the expected 

outbreak. '.lhe 'lbrnado Laboratory is then opened for operation a few 

hours previous to this time. 

The equipment placed in operation during the 1955 tornado season 

was the APQ-13 radar, the High Frequency Direction Finder, and the 

wave form presentation. .The AN/GRD-ll Direction Finder was not operated 

due to the -fact that it was in the process of modification during the 

entire season. 

In placing the laboratory equipment in operatiqn all apparatus is 

·turned on a few ho urs before the expected outbreak time to ins�e 

proper functioning and to ma:ke necessary adjustments or replacements. -

During this time all camel"as are loaded, clocks are set at standard 

time, and date cards are placed in their respective holders. A log 

sheet is started on which all pertinent information is entered at 

regular intervals regarding the progress of the storm. 

Data. Collection During Storm 

When all equip�nt is ·,functioning properly, "the automatic tinrl,.ng 

device which controls all cameras is activated. During normal procedure 

a set of pie tur�e is taken for each five �nute period throughout the ... 

duration of the �to"1• When the' radar c�ra is triggered into op�ra­

tion 'at each of �he1;1e periods, a relay mechanism operates the single 

fra� camera for ea9h two revolutions of the antenna until a set of 

thre, �o:nseeutive p:ieturtas is ta.ken of the radar presentation. A dup­

lica tla r�dar scope :tij available for viewing purposes. 1Tb.ere is a 

. manua� operateci button beside the vierlng ·scope that makes it possible 
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to obtain additional sets of pictures if desiredo 

Once the sferic camera is started it will photograph incoming 

sferic information continuous]¥ until another automatic pre-set timing 

circuit turns it offo The sferic camera can be set to record data for 

intervals ranging from two seconds to 30 seconds, depending upon the 

amount of data requiredo Usual}¥ ten to fifteen seconds is sufficient. 

Twent.Y second intervals were used.I) however, in the storm investigation 

to be presented here.. During the running time of the sferic camera.11 

the film is advanced at the rate of one and seven-eights inches. per 

second.. Each second of elapsed time is recorded on the film by a 

neon marker bulbo The timing circuit that controls the neon bulb also 

triggers a stroboscopic flashing tube which illuminates an electric 

clocko Information recorded during each interval takes the form of a 

line of directional pips resulting from sferics received at that particu=

lar time by the High Frequency Direction Finder. Waveform presentations 

can be switched, by a switching device� onto the same cathode ray tube 

that presents the directional pipso This is usual]¥ done for a period 

sufficient to record a set of waveform pictureso The camera is operated 

manual}¥ for this purposeo 



CHAPTER IV 

·I 

THE TORNADOES OF MAY 25 ,, 1955 

Meteorological Conditions of May 259 . 1955 

On May 25,.. 1955,. meterological conditions were typical of a 

tornado situation in Oklahomao As a result there was considerable 

instability throughout the stateo '.Ibe components of the storm mechan­

ism were a complex low pressure system and a mass of Pacific air moving· 

through Arizona behind a front of maritime tropical air that had 

a1riady: progressed northward across the sta�l& 'lhis tropical air had 
. 

. .  , 
covered the entire state at the surface by 18.30 CST and the low pressure 

system had adva�ced to the extreme western tip of the Oklahoma Panhandleo 

'.!he pacific front extended from the point of low pressure south.ward 

through the Panhandle and :Sig Bend areas of Texaso Widely scattered 

thunderstorms, some with damaging wind and hail, were reported from the 

western two-thirds of the state throughout the day., . A damaging storm 

occurred as ear� as 0755 CST in the Blackwell-Newkirk area of north­

central Oklahoma. A little after 1500 CST, a tornado was reported on 

the ground in the Texas Panhandle moving northeast into west-central 

Oklahoma and funnels' were also sighted about 1800 CST in the general 

area but about 15 miles. to the north. 

. lwayne Fo Staats and Charles Mo Turrentine, "Some ·Observations and 
Radar Pictures _of the Blackwell and Udall 'lbrnadoes of May 25, 1955� .,

Bulletin of ·the-·American Meteorological Society, 1956
.s, 

Scheduled for 
PUblica ti.Ono 18 

.I 



Pa.th of Blackwell and Udall Tornadoes 

'.Ihe echo that was ·subsequently associated with the Blackwell and 

Udall tornadoes developed on the station radar at 1850 CST and pro-
' 

' 

ceeded northward. Figure 1 is a composite radar tracing showing the 

l9 

initial development of. the storm 45 miles southwest o.f Stillwater ne-ar 

Oklahoma Cit, together with the approximate movement of this echo at 

one-half hour intervals.during its·existence. The relative position of 

towns along it_s path are also shown on the figure along with the posi-

tion of the s tation radar. 

Figure 2 shows a map of the area traversed by the two tornadoes 

with' the dotted line representing .the' approximate paths of each. 'Ihe 

multiple dots at the terminal areas of each path represent areas of 

widespread ,partial destruction. 

A. severe tornado developed from this isolated thunderstorm complex

a.bout 26 nautical miles north northwest of the 'Ibrnado Laboratory at 

about 2100 CST and moved in a northerly direction.. It then crossed 

u .• .S. Highway 60 about one mile east of .'Ibnkawa., Oklahoma, at 2115 CST 

and headed in a direction a little east of north.to a point two and 

one-half miles southeast of Blackwell. .The storm then curved to the 

northwest, npre or less following the qhikaskia River into the south­

eastern part of Blackwell. As it passed through the ea.stern section of 

Blackwell at abo:ut 2130 CST., the funnel curved to the north again and 

continued in this direction to a point some three and_ one-half nautical 

miles south of the Kansas-Oklahoma border., Here the tornado, riow of 

somewhat diminished intensity, assumed a northwesterly direction, passing 

into Kansas and dissipating in the vicinity of South Haven, Kansas, at 

about 2200 CST. 
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Figure 1. Compnsite Tracing of Tornado Rado.r Echo. May 25, 1955 
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About twenty minutes before this tornado dissipated, another 

funnel touched the ground about five nautical miles east of the 

path of the Blackwell funnel and approximately one nautical mile 

north of Peckham, Oklahoma., 'Ihis funnel 'moved in 8; slightly north 

northwesterly direction.s then curved northeast passing just west of 
I 

Geuda Springs,' Kansas, a little after 2,200 CST.. I�· continued to 

move in a northeast direction for a few miles, then curved to the 

northwest for several miles and back to the northeast again until it 

reached the Arkansas River southeast of Oxfard 1 Kansas.. Here it 

followed the river in a general northerly direction for about three 

miles, passing one-half mile east 'of Oxford at 2220 CST.. After 

22-

leaving; the river two miles north of Oxford, ,it curved again to the 

northe.ast, passing directly over Udall 9 Kans,as at 2230 CST.. Immediate-

],y after leaving Udall, it apparently 'began to dissipate as it contiri.-

ued curving to the east.. Beyond Udall there was little evidence of 

total destruction but rather a wide belt of partial destruction extend-

ing an additional 10 miles& 

Radar Results of May 25� 1955

A serie,s of consecutive radar pictures was obtained throughout 

the evening of May 25 by the automatic recording procedure ou tlinsp.. 

in the preceeding sections.. Although radar scope pictures are avail.,,. 

able for each five minutes during the entire storm, the pictures pre.:. 

sented here are the most revealing and are so spaced as to illustrate 

the progress and development of the tornado echo., Since there are. 

several echos present in each photograph, the specific tornado echo 

may be identified by reference to the composite tracing in Figure 1 .. 



23 

On all radar scope prints the displayed range markers represent 

ten nautical miles on the groundo The mechanism of the radar camera is 

such that the date card and clock are shown as mirror images with the 

date card in the northwest quadrant. It should be noted that the periph­

eral azimuth scale is 13° in error, but that the cross hairs are oriented 

at the true cardinal directions with ·the cross-hair arrow pointing n©rtho 

At the time of these exposures ., the radar transmitter was double pulsing, 

causing spurious images of most echos more distant than about 50 miles. 

All apparent echos occurring/at the same azimuth but about 50 miles 

nearer the station should be regarded with suspicion although it is 

possible to d-istinguish the spurious echos from the actual echos after 

careful investigationo 

The radar echo from which the Blackwell and Udall tornadoes ultimate­

]y developed ca.me into existence near Oklaho� Ci-cy at about 1850 CSTo 

It is barely perceptible in Figure 3A at an azimuth of 203° , 56 miles 

from the '.Ibrnado Laboratory., ... :The echo is shown 20 minutes later in

Figure 3Bj and is located at 210° at 35 miles.. Figures 30 and 3D at 

214°
., 29 miles and 2200 

.l> 20 miles respectively., show the north-northeast ... 

erly course and the increasing dimensions of the echo during the time 

intervals indicated., 

The photographs in Figures 4 · A, B, c, and D show the radar echos at 

approximately 15 minute intervals during the next 60 minutes.o The tor­

nado echo is_ seen passing just west of t!J.e_. station with its e8:stern edge

extending i�to the gi'ound clutter. In Figures 5 A!) B ., c., and· D ,l) the 

progress of the echo be tween 2053 CST and· 2109 CST is shown. The western 

edge of the tornado echo should be noted with regard to its peculiar and 

rapidly changing shape. The tornado was formed and on the ground at 



Figure 3. Rnd::Jr Photographs, Liay 25, 1955 

A. 1050 CST B. 1909 CST

- C. 192L1 CST D. 1939 83'.C



Figure 4. Radnr Phntngraphs, i':lny 25, 1955 

n. 200S C:.'.:i'l'

C. 202).;. C.S'l'
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Figure 5. Rc1dor Ph0tngraphs, i'.iDy 25, 1955 

A. 2053 CST D. 2059 C.ST

C. 210!..i. CST
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2104 CST and was located at 339° , 25! miles from the station, or about 

four miles south of the echo boundary in Figure 5C.. The first evidence 

.of the development of the cyclonic protuberance or hook on the echo is 

similar to those previously observed in the Illinois1 and Massachusetts2 

tornadoes o This is shown in Figure 5D o 

Figures 6 A 1 Bs, C, and D show clearly the counter-clockwise folding 

action of the cyclonic hook until its closure at 2129 CST, the same 

time the tornado struck the south side of Blackwell, Oklahomao From 

the time of the tornado passage reported by witnesses along its paths, 

it was found that the tornado was on the ground very near the tip of the 

protuberance in Figure 6A and 6B, and near the bulb of the protuberance 

at 346° !; 38 miles in Figure 6c .. 

The completion of the cyclonic folding of the protuberance into 

the parent echo is shown in Figure 7A, as the tornado moved north out 

of Blackwell., The dark portion at the left of the echo in Figure 7B 

and 7C is possibly the hollow core believed to be associated with the 

vortex of the tornado funnel.. From the ground path survey it was as= 

sUJlled that the Udall tornado developed near the right side of the core 

in Figure 7Co 

There is a striking similari t,r in the development of the Blackwell 

and Udall tornadoes as compared with the Massachusetts tornadoes of 

lo-.. E .. Stout and F .. A .. Huff, 11Radar Records Illinois 'Ibrnadogene­
sis", Bulletin of the American Meteorological Sociew, June� 1953, 
PP• 281-284 · " ·. · 

2s., Penn., Co Pierce, and Je K .. McGuire ., IIThe Squall Line and 
Massachusetts 'Ibrnadoes ·of June 9, 195311

; Bulletin of the American 
Meteorologica.LSociety, March, 1955, pp. 116=1220 - - · · 
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Figure 6. Radar Photographs, Eay 25, 1955 

ii.. 211L!. CST 

C. 2123 · CST

iJ • 2 llS' c.s 'I'. 

• 2129 ,_;,:,; •
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Figure 7. Radar Photographs, May 25, 1955 

ii.. 2135 C�i'l' B. 2140 CuT

C. 21!-1-5 CS'l' J. 21:;5 C,./i'
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June 9, 1953. In both cases an initial hook developed on the radar 

echo some 20 to 30 minutes after the formation of the first tornadoo 

'Ihis is followed by the development of another tornado a. few miles to 
. ' .' 

the right of the first at a_bout the time that· the first funnel,. begins 
,' ' I 

to curve to the left, and s.ome 15 minutes before the first tornado 

dissipates o

Figures 8A, B, C·,· and D show the progress of the to.rnado echo 

after it had crossed the state line into Kansas., In Figure A the 

tornado echo centered at 359° , 60 miles and moved in a north=north-
I 

easterly direction to apparently meet wi th another echo centered at 

348° , 65 nrl,les that was moving. along an east-northeast course. From 

the ground damage ·survey it was. near this point of intersection that 
·., 

the tornado began to intensify., Figures 8B and 8C show the comb�ned
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echos coincident with the torna9-o at Udall., Kansas, at 3590 » 75 miles.,

In Figure 8D, some fifteen minutes later, the. echos have almost

dissipated.

Sferic Results of May 25, 1955

'.Ihe tornado season of 1955 was highlighted on May 25th by a ., 

major storm with accompanying tornadoeso This was the first major. 

storm that occurred subsequent to the installation of the high frequency 

direction finder., Sfe:ric records in the form of directional pips ·were 

obtained by using the procedure already described., Examples of the -cy-pe 

of sferic information recorded a.re shown in Figure 9 A and B.and Figure 

10 A and B.. Waveform records of incoming sferics were also takeno An

analysis of these data is not included in this thesis. 



Figure 8. Radar Photographs, Eay 25, 1955 

I.. 2209 CST 

C. 2229 C.ST



Figure 9A. Film record of sferics. biay 25, 1955. High int6nsi ty. 

Figure 9B. Film record nf sforics. !.;:iy 25, 1955. High intensity. 



Figure lOA. Film record of sferics. i.Iay 25, 1955. High intensity. 

Figure lOB. Film record of sferics. i1ay 25, 1955. Lo·.: intensity. 
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Since the camera used to record sferic informat.ion is of the 

continuous recording variety, the line of directional pips shown may 

be considered as a time axis. On the 35mm film this time base would 

correspond to one and seven-eighths inches of film advance per second 

of elapsed time. Since the photographs shown are enlarged portions of 

the 35mm film.l> the time interval for each print sho:wn would represent 

between one-half and two-thirds of a second. 

It will be noticed that the rate of sferic arrival is very high 

in Figure 9A and 9B and Figure lOA., compared to that in Figure lOB. At 

about 2J25 CST, just before the tornado struck Blackwell, the gain and 

scope intensity of the High Frequency Direction FindE?r were reduced in 

an attempt to provide a better film record. It was found on developing 

the film that both the gain and scope intensity had been cut too much. 

Therefore ., the sferic records before 2125 CST are referred to as "high 

intensi tyn and those after 2125 C.ST as n1ow intensi tytt. 

In the analysis of this recorded sferic information, each direc­

tional pip that was sufficiently long enough to permit the establishment 

of a direction was evaluated as to its azimuth to the nearest two degree 

sector. It was found that due to halation effects of the phosphor 

coating on the cathode ray tube ., a single pip commonly occupies more 

than a one degree sectore Consequently, evaluation of pips to the 

nearest two degree sector was used through the analysis. Considering 

the comparatively broad sector of sferic acti'\f.ity of any storm., it has 

been found that two degree resol,u tion of pips provides a useful repre­

sentation of the different sferic intensities 'within a storm complex. 
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'lhe directional pips recorded on a 35mm-film strip are necessarily 

quite small. By the use of a Recordak microfilm viewer, located in the 

Oklahoma A & M College Library., it was possible to magnify the sferio 

information about fifteen times ., thus providing sufficient size to per-
- ·  

mi t an accurate evaluation. An ordinary transparent protractor was

used to determine tre angle of each pip relative to the eas�west base

line established by the cathode ray trace in quiescent position. Stand-

ard compass references were used to assign an· azimuth to a pip., with

zero degrees at the northo

In a.rd.er to systematize the tabulation of the results of sferic 

evaluation, a data sheet was prepared with horizontal colunm.s listing 

the wo degree sectors and the vertical columns listing seconds of a 

given time interval. .As the az imuth of each pip was measured it was re-

corded in the block representing the azimuth and time of appearance. 

For a given time inter_val all pips along a given two degree sector were 

totaled and averaged over the particular time interval counted.. All 

sectors averaging less than one half' stroke per second were disregarded. 

The averaged rates of sf eric arrival were than plotted on graphs with 

the horizontal and vertical axis showing azimuth and stroke rate respec­

tivelyo steric plots of this type are shown in Figures 11 to 21 inclu-

sive. 

From Figures 9A and B.9 and lOA, it can be seen that the sferic 

activi-cy- was very heavy and than an accura te count o:f lightning strokes 

was extremely difficult to obtain. The resolution of pips obtained 

with a film speed of 1 7/8 inches per second ., which necessitated run-

ning the film tt-ansport mechanism at nearly top speed., was inadequate 

f'or the hi.gh stroke rates found in a storm of sucli high intensity... It 



is evident that opportunities to acquire data of this nature are rare 

indeed and that instrumentation deficiencies cannot readi]y be rectified 

in a repeated experiment.. It therefore becomes a problem of identifying 

each individual stroke from the sferic records at hand by increased reso­

lution through the use of optical equipment available and the exercising 

of careful judgment by the ana]yst. 

With these limitations in mind, an attempt was made to count the 

multitude of sferics recorded during the Blackwell-Udall storm .. The 

end results justified the time and effort required in making the neces­

sary counts., The counts from one second to the next were reasonably 

consistent as well as those from one period to the nexto Figure 11 

illustrates the results of counting and plotting the directional pips 

for three consecutive seconds, with the average of the three seconds $hown 

in Figure 19(1·. Considering the broad sector of activity, it is apparent 

that there is not too much difference from one second to the next. · In 

addition it should be mentioned that two of these three second periods 

were counted by one analyst and one period by another., '!he consistency 

of the stroke-azimuth distributions indicates that there was little 

difference in the criteria used by each ana]ysto To further test this 

aspect of the analysis, a count of the strokes occurring during the 

same second was made by the two ana:]ysts., each -without refer�nce to the 

results of the o,ther., Azimuth distributions of these counts are shown 

in Figure 12 • 

As mentioned earlier, a 20 second run was made each five minutes 

for the duration of· the storm. Due to the limitations in the number 

of personnel available and equipment for ana]yis:i.s, it was a:h impossible 

task to count all strokes recordedo It was found th.at during the height 
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of the storm. when tthigh intensi ty-u film records were taken, there were 

between 150 and 200 pips occurring during one secondo Average time 

to accurately identify, evaluate, and tabulate this number of strokes 

was about one-half hour o 

9ince the primary interest of this investigation is to identify 

the conditions consistent with the inception of tornadoes and with 

subsequent tracking of the tornado path, the m.ain area of interest 

was selected as the time period from which practical warning infor­

mation could be obtainedo With this in mind, it was decided to 

examine the time period be tween one hbur before and one hour after 

the inception of the tornadoo In addition� it was decided to evaluate 

the data for three consecutive seconds at regular 15 minute intervals 

during this two hour t:i.ln.e perie>d under ana]ysis.9 with full 20 seeond 

counts to be .. :ma.de .. at regular 30 minute intervals beginning with one 

half hour prior to the inception of the tornado. The latter counts 

were made to establish some form of a reference to ascertain the 

validi -cy of the three second coun to 

The resulting plots made of the stroke counts during the time 

interval mentioned above are shown in Figure 13 to 21 inclusive. It 

will be noticed that only the sector between 280° and 20°is included 

during each time interval, except for 2053 CST, shown in Figure 17. 
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Since almost all sferics were originating between the azimuths indicated., 

only the one plot was made of the much less active sectors of azimutho 

'Ihis plot is ty-pical of the sferie activity- from these sectors during 

the period of these analyseso No sferics were received at the Tornado 

Laboratory during this period from 30 to 180 degrees azimuth. 



'Ihe radar echo associated with the thunderstorm complex that 

subsequently developed into the Blackwell and Udall tornadoes was 

positioned almost due west of the 1brnado Laboratory at the time 

of the stroke count shown in Figure 13,, The resolution of pips is 

always most difficult along the east-west axis in the film recording. 

It was, however, possible to make an approximate evaluation. This 

evaluation shows that very little lightning was coming from that echo 

at this time. The sferic activii:if which shows a peak at about 325 

degrees was apparently originating from the large echo located in the 

azimuth sec tor from 308° to 350° .. 

At 2024 CST the radar echo from which the tornado originated had 

moved to about ten nautical miles northwest of the Tornado Laboratory., 

It will be noted from Figure 14 that the peak of sferic activity had 

shifted to about 3350 o Here both radar echos were now in line with the 

station radar and it must be concluded that the sferics coming from 

this direction were the total emanating from the two echos,, However !) 

since the total number of pips shows only a slight decrease, there is 

a good possibilii:if that the more distant was beginning to dissipate at 

a rate that just about balanced the increasing rate of sferic activity 

of the tornado echoo 

It will be noticed that the g-raph for the tweni:if second interval 

peaks at an azimuth that is very close to that for the count taken 

over the three second interval, although the former peak is of smaller 

amplitude and broader than the latter.. The explanation for this dif­

ference is that a single thunderstorm cell does not in general contin­

uously produce lightninge A highly active cell might produce as high 

as one burst per secondo 'Ihis is probably i:J:'ue also for'a t9rnado i:ifpe 
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thunderstorm cell, and would explain wey the curve for the three second 

count always seems to peak at the same azimuth as the tornado echo. In 

the curve of the 20 second count, all cells within the storm complex have 

been represented in the total count. There may have been several seconds 

of elapsed time between successive bursts in the minor thunderstorm cellso 

'.Ihis would account for the average sferic rate of arrival being relatively 

low when averaged over a 20 second period. Most certainly the peak 

sferic activity would be lower for the 20 second average than for the 

three second average, when the latter was made over an interval of 

relatively high activity. 

The sferic distribution at 2038 CST is shown in Figure 1.5. Although 

there is a slight drop in peak value, the total' sferics in the active 

sector has increased slightlyo Also the azimuth of the peak of sferic 

activity is not v;ery pronounced, although it might be estimated as 
\ 

336 to 338 degrees by the vertical extension of sides of the triangle 

formed by the curve as the sector of maximum activity is approached. 

In Figure s 16, 18, and 19, showing the time periods of 20.53 5) 2108,, 

and 2123 CST respectively, the total sferics received over the sector 

of maximum activity levels off to a rather constant value.. The peak of 

sferic activity continues to increase slightly and becomes more pronounced. 

'.lhese three time p:eriods are illustrations of sferic distributions during 

the inception of the tornado and 30 minutes thereafter. The most remark-

able feature of these curves is that the azimuths of the peaks of sferic 

activity coincide closely with the actual position of the tornado at the 

time of occurrence. 

'.Ihe sferic records taken after 212.5 CST are of the 11 low intensi-cy 11 

type due to the 'reduced gain and scope intensity of the High Freqµ ency 
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Direction Finder. The stroke counts made from these records therefore 

were not directly comparable to the evaluations made from 11 high inten-

sity" records. In order to make the graphs taken after 2125 CST appear 

similar to those of the earlier periods, a total count for five seconds 

was used rather than an average stroke rate per second as previously 

described. 'Ille significance of the curves made on such a basis lies in 

the azimuth of peak sferic ac tivi t,v rather than the total sf eric count. 

The rates of sferic arrival from a given azinmth should be viewed 

relative to another azimuth rather than to some absolute value. 

In Figures 20 and 21 sferic distributions from "low intensi ty11 

counts are shown. These graphs show a marked shift of peak sferic 

activity to the, right, near 354°. Refering to Figure 20 it will be 

noted that this shift of activity is concurrent with the time of incep-

tion of the tornado which subsequently passed through Udall, Kansaso 

l.i.9 

This shift of activity to the right may be indicative oi' the development 

of this new tornado six miles to the right of the waning Blackwell 

tornado. 

Correlation of Radar and Sferic Results 

While several references were made to the positions of the radar 

echoes in the discussion of sferic results, it is indeed difficult to 

r-eadily identify pertiiilent azimuths on the small radar photographs

shown in Figures 3A to BD, inclusive. In order to facilitate the 

necessary correlation between the radar and sferic results, radar 

photographs made at certain intervals were enlarged to such an extent 

that they might be compared directly with the sferic distributions at 

corresponding times. Reversals of the radar photographs were made in 

the enlargements
1 

to permit the addition of sferic distribution curves 
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and marginal information. These additions ·were made in India ink. This 

method of presentation shows not onzy the portion of the radar echo that 

is most active, but also how sferic activity is oomfined to a given echo 

within a storm complex that bears surveilance.. Correlative photos were 

made at appropriate time intervals before, during, and after the inception 

of the Blackwell tornado. 

As mentioned previously the large echo situated between 40 and 50

miles northwest of the 'Ibrnado Laboratory at 2024 CST was in line with 

the closer echo that produced the Blackwell 'tornado. This situation is 

shown in Figure 22. The peak sferic activity is concentrated along a 

334° azimuth and was coincident with the center of both echos. The 

sector of maximum activity seems t.p cover the same sector occupied by 

the larger and more distant echo, whereas the tornado echo covered a 

much larger sector. It is believed that the sector of maximum activity 

would have been considerabzy broader if the tornado echo had been the 

most active at the time, due to the proximity of this latter storm to 

the Tornado Lal::oratory. This partial]¥ substantiates the belief 

already expressed that most of the lightning at that time was emanating 

from the more distant echo. 

In Figure 23 the distant echo has practical]¥ dissipated and most of 

the sferics appear to be originating -from the sector encompassing the 

tornado echo. It was estimated that about this time period, approximately 

2053 CST, the tornado ca1ne into existenceo The azimuth of peak sferic 

activity is about 340° , with the higher stroke rates occurring at azi­

muths to the left of the peak. 'Ihis would indicate that the western 

portion of the echo was most active. From eye witnesses and damage 

surveys it was found that' the first evidence of tornado existence was in 
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the area under the western portion of the ec ho. 

'Ihe tornado echo is shown with its characteristic hook on the south­

western portion of the echo in Figure 240 At this time the tornado was 

on the ground, some two to three miles southeast of Blackwell, Oklahoma. 

Damage surveys indicate the tornado had become most intense near this 

point. Since the tornado funnel is believed to be within the bulb of 

the echo protruberance� it is quite interesting to find that not on]y 

does the azimuth of peak sferic activity coincide with the center of 

the bulb,· but that the sixoke rate has reached a maximum value along 

this same azimutho It should also be noted that the sferic distribu= 

tion curve rises rather sharp]y at the left of the peak and tapers off 

more gradually to zero at the extreme right edge of the echo. The 

relative]y low strok� counts appearing between 310° and 340° are believed 

to be coming from the squall line appearing just northwest of the tornado 

echo. 



CHAP'IER V 

Summary and Conclusion 

In the foregoing analysis· an attempt was made to find some character-

istics from the radar and sferic records taken on May 25, 1955, that could 

be used to locate and track a severe storm and to identify the possiple 

existence of a tornado within this same storme Based on the present day 

knowledge of the unique features of severe storms and the mechanisms of 

tornadoes, several pertinent facts were found within the analysed data 

that would support these proposed theorieso Where possible, comparisons 

of results were made with the findings of other allied research projects 

in this field of study., 

In summarizing, the analysis of results appear to indicate that the 

radar provided an acc;:1I'ate indication of the size, intensity, speed, and

direction of all thunderstorm cells existent in the area under observa-

tiono· It was found also that in the portion of the radar echo believed 

to contain the tornado funnel, reflectable material was :i.Jnpelled in such 

a fashion that it appeared on the radar screen as a counter-clockwise 

folding hooko One of the criteria being currently used as a verification 

of tornado occurrence is the evidence of rotation in the resultant damageo 

This rotational aspect was dynamically demonstrated in the'radar photoso 

Although these characteristic hooks have appeared on radar scopes 

in a few other instances where tornadoes have occurred, it would be 

erroneous to rely on radar as a primary method of tornado identification., 

51 
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One lirni ta tion of radar is that frequently many ordinary precipitation 

echos take on appearances of hooks or appendages through the random 

movement of rain particles within a thunderstorm cello These echos 

could easily be confused with the echo phenomenon associated with a 

tornado,. In the May 25th storm the hook did not develop until some 

15 to 20 minutes after the tornado was on the ground9 whereas in 

other recorded occasions the hook was either concurrent with or be= 

fore the inception of the tornado., At this time 3 it is not known 

positively that a hook or appendage will develop with every tornado } 

or if there is a relationship between hook development and tornado 

magnitudeo 

From the results of the sferic analysis it was found that } within 

limits of visualevaluation ., azimuths of maximun1 stroke counts were 

consistent with the movements of the tornadoes when checked against 

the actual path of travel determined by physical survey.. Sectors of 

maximum sferic activit.y- were confined to the same azimuth boundaries 

as sec tors defined by limits of the tornado echo.. Sf eric ac ti vi ty in 

the thunderstorm system that generated the tornadoes apparently in­

creased very rapdily during the JO minute period prior to the develop= 

ment of the Blackwell tornado ., and' it reached a maximum count for the 

entire storm at 2123 CST, when the tornado was believed to be at the 

highest intensi W o While these observations do not necessarily consti­

tute a positive method of tornado identification, they do demonstrate 

a definite trend toward the identification of the nucleus of a severe 

storm by the radar-sferic method" 

The sferic activi cy associated with the tornado echo was vr;3ry high 

as compared with that from other thunderstorm cells in the area, al though 



it was not appreciably greater than the sferic activity from the large 

echo in the Blackwell area about one hour before the tornado echoo This 

echo, shown in Figure 22, between 40 and 50 miles northwest of the Tor­

nado Laboratory, failed to produce any known tornadoeso Although it 

would only be speculative at this time, there is a reasonable possibili­

ty that high sferic activity and possible tornado inception are
9 to a 

great extent,, a function of local meteorological conditions and that 

the thunderstorm serves as a triggering mechanism for the generation of 

the tornadoo Many meteorological measurements must be made, with more 

emphasis on detail ., in the vicinity of a tornado area before a definite 

relationship can be establishedo 'Ihese meteorological measurements 

should be accompanied by sferic recordings taken simultaneouslyo It 

is of interest to note that the non= tornado echo moved through the 

Blacktvell area with a velocity of about 18 knots compared to the torna= 

do echo which moved at about 33 knotso 

Sferic records employed independently of other storm locating equip= 

ment are limited in application because it is difficult tD accurately 

determine the distance to the point of origino It is when sferic data 

is correlated with radar presentations that an accurate appraisal of a 

storm complex is readily obtained., When using radar and sferic data on 

a practical operating basis J both elements must necessarily provide in­

formation which can be quickly evaluated as to storm severity and area 

of concerno Radar provides a continuous picture of echo positions 

relative to the radar station; towns or areas of concern may be readily 

determined by reference to a mapo Sferics, on the other hand, must be 

evaluated with regard to azimuth and number per unit time o This aspect 

of counting of impulses per unit time requires some form of integration 
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if the various &zimuth intensities are to be determinedo The counting of 

sferics from film records, as set forth in the foregoing analysis, is 

rather cumbersome when used on a practical operating basis. The solution 

to the problem of quickly and efficiently obtaining the necessary inte­

gration, was realized by the installation of an electronic counter which 

automatically performed the integration of the impulseso 

A Sferics Incidence Azimuth Integrator was designed and built by 

personnel on the Tornado Research staff to meet this needo This inte­

grator is similar to the one previously described in Chapter II except 

that the cathode ray tube is scanned through a specially designed opti= 

cal system rather than the direct transmission of light to the photo 

tube as was the case for the earlier modelo The complete 360° range 

of azimuth is sampled every six minutes to provide a curve of sferic 

intensity versus azimuth as shown in Figure 250 This record shown was 

made made on June 17� 19550 It was the first of its kind because it 

was actually obtained during a test run on the new device. Since the 

instrument was not calibrated at that time j the recordings of the 

mim.ber of strokes per second are, from a quantitative view point
3 

only 

relative. The azimuth of peak sferic activity was indicated as approx­

imately 300° 0 This azimuth is coincident with the recorded radar echo 

obtained at the same time. 'l'he radar recording is shown in Figure 26 0 

It is significant that a tornado was reported at the location and time 

of the recorded datao This tornado was not officially confirmed. 

Figure 27 is a photograph of the sferic record that demonstrates the 

predominance of directional pips in the vicinity of the 3000 azimuth. 

Several improved techniques in instrumentation have been planned9 

and are now being developed for the approaching tornado season of 1956., 
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In addition to continued testing of the new electronic stroke counter 

previously described, several improvements in the photographic technique 

for directional pips are· being accomplished. Of primary impoJrtance are 

··the installation of a variable-speed film-transport mechanism designed

for higher available speeds, together with a circuit designed to rotate

the axis of the cathode ray tu.be in order to permit resolution of direc-

tional pips from the east-west directions comparable to that for the

north-south directionso These new equipments will materially increase
.• 

" !t; 

both the quanti cy- and operation application of useable data for the

tornado season of 1956.
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