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Abstract:  

 

Hydrogels are networks of hydrophilic polymers which can retain large amounts of 

water. Poly(2-hydroxyethyl methacrylate) [poly(HEMA)] is a synthetic hydrogel well 

known for various biomedical applications due to excellent biocompatibility, high 

retention of water, and high mechanical and chemical stability, but, has limited 

applications in tissue engineering because of low cell-adhesion properties. Patterning 

surfaces of hydrogels with microscale features changes the surface properties and enables 

the regulation of functions of cultured cells. However, generating patterns of intricate 

microstructures onto the hydrogel surfaces remains challenging. In this work, arrays of 

micropillars were successfully patterned onto a hydrogel based on 2-hydroxyethyl 

methacrylate by using soft lithography technique. The self-delamination of the hydrogel 

induced by swelling in solvents such as phosphate buffered saline, deionized water, 60% 

ethanol, and absolute ethanol facilitated the reproducible replication of the pattern. The 

swelling, mechanical properties, and structural parameters of the hydrogel were studied 

in detail. The biological properties of the hydrogel were evaluated using HeLa cells and 

human mesenchymal stem cells. It was revealed that the attachment of cells on the 

intrinsically non-adhesive hydrogel was enhanced by the micropillars. As well, the stem 

cells tend to form aggregates on the hydrogel and the size and number of cell aggregates 

can be tuned by changing the height of the micropillars. The fabricated material was not 

cytotoxic and did not inhibit the chondrogenic and adipogenic differentiation of stem 

cells at the composition used in synthesis. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Hydrogels are three-dimensional, hydrophilic network polymers which have chemical or physical 

cross-links.1,2 The chemical cross-links can be either ionic or covalent while the chain 

entanglements or interactions such as hydrogen bonding and van der Waals forces are considered 

as physical cross-links.3 The hydrophilic nature of polymer chains allows penetration of water 

into the network while the cross-linked structure imparts flexibility so that the integrity of the 

polymer remains intact and chemical stability.4,5 As a consequence, the polymer swells by 

retaining a large quantity of water and forms a hydrogel. The water absorbed soft hydrogels 

possess the mechanical properties similar to the soft tissues and hence resemble the natural tissue 

environment. When synthesized from biocompatible monomers, the hydrogels find tremendous 

applications in the biomedical field as drug delivery systems6-8 and scaffolds in tissue 

engineering.9,10 

 

Characterization of the network structure of a hydrogel is important because these structural 

features affect the properties of the material in the aforementioned applications. The parameters 

which define the structure of a swollen hydrogel include volume fraction of the polymer in the 

swollen state, the cross-linking density, the average molecular weight between cross-links, and 

the network mesh or pore size.1,11 
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Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) is a widely studied synthetic hydrogel which has 

excellent biocompatibility, high retention of water, as well as high chemical and mechanical 

stability.12-14 During past few decades, HEMA has been copolymerized with various synthetic and 

natural monomers to acquire properties desirable for target applications; for instance, HEMA was 

copolymerized with N-isopropylacrylamide (NIPAAm) for temperature sensitivity,15 2‐(diisopropyl-

amino)ethyl methacrylate (DPA)16 or acrylic acid (AA)17 for pH sensitivity, N,N-(dimethylamino-

ethyl)methacrylate (DMAEMA) for both pH and temperature sensitivity,18 methyl methacrylate 

(MMA) to tune the swelling properties,19 and hemicellulose20 or polycaprolactone21 to increase 

biodegradability. 

 

Poly(HEMA)-based hydrogels have a broad range of biomedical applications that include soft contact 

lenses,22 artificial corneas,23 artificial skin,24 as a bone composite material,25 and as a dentin bonding 

agent.26 However, applications of poly(HEMA) hydrogels as scaffolds in tissue engineering where the 

cells are grown directly on the hydrogel are limited due to poor cell adhesion which is caused by the 

lack of cell binding domains.27,28 According to previous studies, the cell adhesion properties of non-

adhesive poly(HEMA) hydrogel can be improved by copolymerization of HEMA with hydrophobic 

monomers i.e. ethyl methacrylate (EMA),28,29 or by modification of the hydrogel surface with 

extracellular matrix (ECM) components such as collagen,30,31 and fibronectin.31 Furthermore, 

adhesion of cells onto intrinsically non-adhesive poly(HEMA)-based hydrogels was enhanced by 

introducing topographic features onto the surface.32 

 

Patterning hydrogel surfaces with micro to nanoscale topographic features changes the surface 

properties such as wettability33 and adhesion.34 Surface-patterned hydrogels can be fabricated by 

using the soft lithography technique where the features originally produced on a silicon wafer are 

transferred to the hydrogel surface with the aid of an intermediate elastomeric mold,                          
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i.e. poly(dimethylsiloxane) (PDMS) mold.35 However, the mechanical properties of the hydrogel, 

adhesion between the hydrogel and the mold, as well as the dimensions of the features may result in 

the incomplete transfer of pattern and low fidelity;36 thus, patterning of hydrogel surfaces remains 

challenging.   

 

The combination of properties of patterned-surfaces with hydrogels provides an excellent platform to 

regulate functions of cells, especially in tissue engineering applications. Tissue engineering is an 

emerging, interdisciplinary field that combines principles of life sciences and engineering to improve 

or regain functions of malfunctioning tissues.37 The main tissue engineering strategies utilize 

incorporation of suitable types of cells with materials that can be used as a platform to grow cells in 

vitro or as delivery devices to carry growth factors.38 The two main types of cells used in tissue 

engineering are embryonic stem cells (ES) and human mesenchymal stem cells (hMSCs).38 Human 

mesenchymal stem cells are undifferentiated, primary cells which can be isolated from various tissues 

or organs including bone marrow, umbilical cord, adipose tissue, placenta etc. The mesenchymal stem 

cells can be differentiated in vivo and in vitro into other specialized cell types such as osteoblasts 

(cells in bone tissue), chondrocytes (cells in cartilage tissue), and adipocytes (cells in fat tissue).39 The 

ability to self-renew, expand outside the body, and establish daughter cells make the mesenchymal 

stem cells desirable in tissue engineering applications.40 Once cultured on a surface with good cell 

attachment (i.e. tissue culture plastic or polystyrene), these mesenchymal stem cells show fibroblast-

like morphology having elongated shapes and grow as monolayers adherent to the surface.41 It has 

been reported that the cells interact with the surrounding environment and the properties of the 

materials such as elasticity42 as well as topographical features can influence their gene expression 

resulting changes in morphology, proliferation, and adhesion.43 A study published by Bucaro et al. 

reported that the arrays of nanoscale pillars provided contact guidance to the stem cells directing their 

attachment, growth, and differentiation patterns.44 Gunendiren et al. also has shown that the wrinkling 

patterns generated on the poly(HEMA) hydrogel surface can control the shape and the differentiation 
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of stem cells.45 Jeon and Alsberg reported the control of viability, proliferation rate, and 

differentiation of adipose-derived stem cells on a poly(ethylene glycol) (PEG) hydrogel using 

micropatterns created by different cross-linking of the hydrogel.46 Since previous studies evident that 

the surface features can determine the fate of stem cells, it is worthwhile to investigate the effect of 

topographical features and the dimensions of the pattern, patterned onto the surface of a non-adhesive 

hydrogel, on morphology, attachment, and differentiation of stem cells. 

 

In this study, a poly(HEMA/DMAEMA/TEGDMA) (HEMA = 2-hydroxyethyl methacrylate, 

DMAEMA = N,N-(dimethylaminoethyl)methacrylate, and TEGDMA = tetraethylene glycol dimeth-

acrylate) hydrogel patterned with hexagonal arrays of micropillars having dimensions of diameter    

(d) = 1 m, height (h) = 2 m or 6 m, and interpillar spacing (dint) = 3 m was fabricated using soft 

lithography technique. Chapter 2 describes the fabrication of the surface-patterned 

poly(HEMA/DMAEMA/TEGDMA) hydrogel. Here, the polymer-PDMS composite was soaked in a 

solvent, until the hydrogel delaminated from the mold to successfully transfer the micropattern. The 

effect of functionalization of the PDMS mold, swelling solvent, and the dimensions of the mold was 

investigated with respect to the transfer of pattern. Also, the temperature dependency of swelling of 

the poly(HEMA/DMAEMA/TEGDMA) hydrogels and kinetics of sorption were evaluated. Not only 

that, the compatibility of the hydrogel with two common histological sectioning protocols, paraffin 

and cryosectioning, was also examined to figure out the best technique for analyzing the behavior of 

the stem cells cultured on the hydrogels. 

 

The properties such as swelling, network parameters, and mechanical properties of poly(HEMA-

/DMAEMA/TEGDMA) hydrogels have not been broadly investigated, especially, at the composition 

used here; hence it is important to explore the properties of the hydrogel post synthesis. Chapter 3 

focuses on characterization of the fabricated polymer. The swelling of the hydrogel was studied in 
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four solvents: deionized water, phosphate buffered saline (PBS), 60% ethanol, and absolute ethanol, 

by means of solvent uptake. Since swelling of the polymer was crucial in the surface-patterning 

process, the swelling behavior was studied while the polymer was confined in the PDMS mold using 

a swelling-induced curvature of the hydrogel-PDMS composite and solvent uptake. Additionally, the 

mechanical properties, network parameters, solubility parameter, and biological properties of the 

polymer were also determined. 

 

Previous studies show that poly(HEMA)-based hydrogels patterned with different topographical 

features have interesting biological applications in controlling tissue growth,47 morphology, and 

differentiation lineage of cells.45 Chapter 4 highlights a potential application of poly(HEMA-

/DMAEMA/TEGDMA) hydrogel bearing micropillar arrays in biological studies. The goal of this 

work was to study the morphology, attachment, and differentiation of human mesenchymal stem cells 

(hMSCs) cultured on the fabricated hydrogels. As the cells tend to aggregate on the hydrogel, the 

effect of micropattern on the number and size of aggregates was investigated. As well, the 

differentiation potential of cells along chondrogenic and adipogenic lineages was also explored.   
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CHAPTER II 
 

 

SWELLING INDUCED SELF-DELAMINATION OF HYDROGELS FOR GENERATING 

MICROPILLARS ON THE SURFACE 

Note: Parts of this chapter was published in Jayasinghe, H. G, Tormos, C. J., Khan, M., 

Madihally, S., and Vasquez, Y., (2018), A soft lithography method to generate arrays of 

microstructures onto hydrogel surfaces; Journal of Polymer Science Part B: Polymer Physics, 56, 

1144-1157, (published by John Wiley & Sons, Inc., NJ), (DOI:10.1002/polb.24634) 

 

2.1. Introduction 

Hydrogels are cross-linked networks of hydrophilic polymers that absorb large quantities of 

solvents without dissolution and, therefore, exhibit volume expansion or swelling.2,4 Since 

swelling is a characteristic feature of a hydrogel, the swelling behavior of hydrogels has been 

broadly studied.5,48-52  The swelling of a hydrogel depends on the properties of the polymer, 

solvent,53 as well as the external factors such as pH,54 temperature,55 and ionic strength.18 The key 

features of hydrogels including high retention of water, mechanical properties akin to the natural 

tissues, and biocompatibility support hydrogels to mimic the natural biological environment; thus 

the hydrogels have been studied in a broad range of biological applications such as delivery 

systems,56 and scaffolds in tissue engineering.9 
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Surface properties of a hydrogel, such as hydrophobicity, can be altered by patterning the 

hydrogels with microscale features such as pillars, plates, and wrinkles.33,47,57-59 The two most 

common techniques used for fabrication of surface-patterned hydrogels are photolithography60 

and soft-lithography.35,60 Although photolithography has the advantage of generating high-

resolution features on solid and semi-solid systems, drawbacks such as high cost, the requirement 

of special conditions i.e., a clean room facility and the limitation of using photosensitive materials 

restrict its broad use.35,60 Soft lithography is a complimentary technique which uses an 

elastomeric mold or stamp as an intermediate template to transfer the topographical features 

originally created on silicon wafers by photolithography to the hydrogels or any other surface of 

interest. The use of an elastomeric mold allows patterning hydrogels with high fidelity and 

reproducibility.35,61 

 

Poly(dimethylsiloxane) (PDMS) is widely used as the elastomeric material in soft lithography due 

to favorable properties like low surface energy, good thermal stability, optical transparency, and 

its non-hygroscopic nature.35,62 After the polymerization of monomers in the PDMS mold, the 

hydrogel is removed from the mold, usually, by lifting off.47 However, the mechanical release of 

the hydrogel from the mold may result in the poor transfer of features depending on the feature 

size as well as intrinsic properties of the hydrogel including low mechanical strength and 

adhesion.63,64 In a study previously reported by Chiellini et al., swelling of the hydrogel was used 

to remove the surface-patterned hydrogel from a glass slide,32 but has not been applied in soft 

lithography techniques for demolding the hydrogels from the elastomeric mold. 

 

In this study, a surface-patterned hydrogel based on 2-hydroxyethyl methacrylate (HEMA), N,N-

(dimethylaminoethyl methacrylate) (DMAEMA), and tetraethylene glycol dimethacrylate 

(TEGDMA), which is the poly(HEMA/DMAEMA/TEGDMA) hydrogel, was fabricated using 

the soft lithography technique. Here, the swelling was utilized to remove the hydrogel from the 
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PDMS mold and revealed that the hydrogel has to be swollen until it delaminates from the PDMS 

mold automatically. Therefore, swelling and the other factors affecting the self-delamination 

process were studied in detail. Moreover, it is anticipated that the poly(HEMA-

/DMAEMA/TEGDMA) hydrogel will have potential biological applications. The use of this 

hydrogel in cell studies requires visualization techniques such as microscopy to better understand 

the behavior of the cells on the material. If the target application is in tissue engineering, hydrogel 

samples are generally evaluated by obtaining histological sections which provide information on 

interactions between cells and matrix, distribution of cells, growth patterns, and morphology of 

cells.65 Paraffin sectioning and cryosectioning are the most common sectioning techniques used to 

section the biological samples for light microscopy. Both techniques involve several handling 

steps such as dehydration and embedding. Sectioning hydrogels using paraffin or cryosectioning 

may result in poor quality sections if the hydrogel is unable to withstand the conditions used and 

protocols have to be optimized for each system. Thus, in this study, the compatibility of the 

poly(HEMA/DMAEMA/TEGDMA) hydrogel with paraffin or cryosectioning protocols was also 

investigated. 

 

2.2. Experimental 

2.2.1.  Materials 

SYLGARDTM 184 silicone elastomer (PDMS) was purchased from Dow Corning (Midland, MI). 

The chemicals HEMA (97%), DMAEMA (98%), TEGDMA (≥ 90%), 2-hydroxy-2-methyl-

propiophenone (97%), trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane, albumin from bovine 

serum (BSA), 2-phospho-L-ascorbic acid trisodium salt, and 10% neutral buffered formalin 

solution were obtained from Sigma-Aldrich (St. Louis, MO). Bone-marrow-derived human 

mesenchymal stem cells (hMSCs) at passage 2 were purchased from the Institute for 

Regenerative Medicine, Texas A&M University, College of Medicine (College Station, TX). 



9 
 

Minimum essential medium α (α-MEM) and ethylene glycol were obtained from Thermo Fisher 

Scientific (Waltham, MA). Fetal bovine serum–premium select (FBS) and ethanol (200 proof) 

were from Atlanta Biologicals (Flowery Branch, GA) and Pharmco-AAPER (Brookfield, CT), 

respectively. GibcoTM Penicillin Streptomycin (Pen Strep) and Dulbecco’s phosphate buffered 

saline (PBS) powder were purchased from Life Technologies (Grand Island, NY). Corning ITS + 

Premix universal culture supplement was obtained from Corning Inc. (Corning, NY). Tissue-

Tek® O.C.T. (optimal cutting temperature) compound, Sakura® Finetek was purchased from 

VWR (Radnor, PA). Water was deionized at a resistance of 18.1 Ω/cm using a Barnstead 

NanopureTM water purification system. 

 

2.2.2.  Generation of micropatterns 

The micropillar arrays were originally fabricated by UV projection lithography and Bosch Deep 

Reactive Ion Etching (DRIE) of single crystal silicon wafers. The hexagonal arrays of 

micropillars were generated with the following dimensions: diameter (d) = 1 m, height (h) = 2 

m or 6 m, and interpillar spacing (dint) = 3 m. In order to transfer the pattern onto the 

hydrogel, negative poly(dimethylsiloxane) (PDMS) molds of the original Si pattern were used. 

The PDMS molds were prepared as described elsewhere.44,66,67 Briefly, SylgardTM 184 silicone 

elastomer and curing agent were mixed thoroughly in a ratio of 10:1 wt. % and poured over the Si 

wafer, degassed in a vacuum to remove air bubbles, and thermally cured in an oven (BarnsteadTM) 

at 75 °C for 5 – 6 h. 
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2.2.3.  Synthesis of poly(HEMA/DMAEMA/TEGDMA) and transfer of micropillar 

patterns 

To synthesize the polymer, the monomers HEMA (the transduction monomer), DMAEMA (the 

functional co-monomer that makes the polymer pH sensitive), TEGDMA (the cross-linker) were 

thoroughly mixed with the initiator 2-hydroxy-2-methylpropiophenone in a ratio of 38:2:1:1 

mol/mol respectively, and the solvent mixture containing water and ethylene glycol (1:1 mol/mol) 

(as adapted from work published by You et al.68). Then, the mixture was poured over the PDMS 

molds and cured with 365 nm UV light using a DymaxTM light curing system (225 mW/cm2, 

Model 5000 Flood) for 90 s. After UV curing, the polymer-PDMS composites were cooled to 

room temperature and the polymer was peeled off or the composite was immersed in solvents to 

facilitate the pattern transfer. After delamination of the hydrogel from the PDMS mold, the 

hydrogel samples were serially dehydrated in a concentration series of ethanol, critical point dried 

(BAL-TEC CPD030), coated with Au/Pd (Balzers Union MED 010), and imaged using an 

Environmental Scanning Electron Microscope (FEI Quanta 600 FE – ESEM) to verify the 

transfer of the micropillar arrays. The unpatterned or blank hydrogel was prepared in the same 

manner, except for using a piece of an unpatterned or bare silicon wafer for the generation of 

PDMS molds. 

 

The structure of the polymer was characterized by solution and solid-state nuclear magnetic 

resonance (NMR), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) 

spectroscopy. The uncross-linked polymer (poly(HEMA/DMAEMA)) was dissolved in 

deuterated dimethylsulfoxide (DMSO-d6) for the solution-state proton NMR (1H NMR) while 13C 

solid-state Magic Angle Spinning (MAS) NMR spectra and ATR-FTIR spectra were obtained for 

the dehydrated cross-linked poly(HEMA/DMAEMA/TEGDMA) (see sections 3.2.4 and 3.3.1 for 

detailed procedure and spectra.) 
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2.2.3.1. The effect of functionalization of the PDMS mold on the transfer of micropillar 

pattern 

Prior to casting the hydrogel monomer mixture, the surface of the PDMS molds was 

functionalized with trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane as mentioned elsewhere.61,62 

Briefly, the PDMS molds were treated with a corona treater (Electro-Technic Products, BD-20) 

for 5 min and functionalized with trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane for 18 h in a 

vacuum desiccator. Here, an opened glass vial containing the silane (0.5 mL) was placed in the 

vicinity of the PDMS molds in the desiccator. The treated molds were used for fabrication of 

hydrogels. The polymer samples were mechanically released by peeling off from the molds. 

 

2.2.3.2. The effect of swelling solvent on the transfer of micropillar pattern 

The polymer-PDMS composites (blank and surface-patterned) were submerged in deionized 

water (DI water) for delaminating from the PDMS mold followed by refrigeration for 3 h. Also, 

the effect of pH of the swelling solvent toward pattern transfer was investigated. Here, the 

composites were immersed in buffer solutions of pH 3.0, 4.0, 5.0, and 6.0. The citrate buffer 

solutions (prepared from C6H8O7 and Na3C6H5O7) were used to maintain pH at 3.0, 4.0, and 5.0 

whereas the phosphate buffer (prepared from KH2PO4 and Na2HPO4) was used for pH 6.0. The 

delamination of the hydrogel from the mold was checked daily. 

 

The composites were also immersed in ethanol solutions in water; the concentrations of ethanol 

solutions were 20%, 40%, and 60% (v/v). Swelling and delamination of the hydrogel from the 

mold were checked in 30 min time intervals. In each experiment, the pattern transfer was verified 

by imaging with SEM as mentioned above. 
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2.2.4. Factors affecting self-delamination of the hydrogel from the PDMS mold 

Here, the effect of the dimensions of the well in the PDMS mold on self-delamination of the 

hydrogel was investigated. The length, width, and depth of the PDMS well were systematically 

changed as mentioned below. Since the self-delamination of hydrogel was fast, 60% ethanol 

solution was chosen as the swelling solvent in these experiments. The percent swelling, curvature 

of the hydrogel-PDMS composite, and time required for self-delamination were evaluated. The 

percent swelling (%Q) was determined, as the solvent uptake, from the Equation (2-1); 

%𝑄 =
𝑊𝑠 −  𝑊𝑖

𝑊𝑖
 ×  100 (2-1) 

where Wi is the initial mass of the hydrogel and Ws is the mass of the swollen hydrogel.18,71 Five 

samples were used for these experiments which were continued until at least three hydrogels were 

delaminated from the molds. 

 

2.2.4.1. Length to width ratio (aspect ratio) of the well 

The PDMS wells with different aspect ratios were prepared by changing the length and width of 

the pieces of bare silicon wafers while maintaining a constant thickness (Table 2-1).  

Table 2-1. Length, width, and aspect ratio of the PDMS well 

Length (cm) Width (cm) Aspect ratio 

2.0 2.0 1.0 

2.0 1.5 1.3 

3.0 1.0 3.0 

4.0 1.0 4.0 

3.0 0.5 6.0 

 

 

 



13 
 

2.2.4.2. The depth of the well 

The length, width, and depth of the PDMS well were changed to study the effect of depth on the 

self-delamination process. All three dimensions were changed so as to maintain the volume of the 

well (6.0 mL) constant (Table 2-2). The volume of the well determines the volume of the 

monomer mixture required to completely fill the well. At a constant volume, any effect that can 

be caused by the amount of material can be eliminated. 

Table 2-2. Length, width, and depth of the PDMS well 

Length (cm) Width (cm) Depth (mm) 

3.0 2.0 10.0 

4.0 2.0 7.5 

4.0 3.0 5.0 

6.0 4.0 2.5 

 

2.2.5.  Swelling of poly(HEMA/DMAEMA/TEGDMA) polymer at different temperatures 

The blank poly(HEMA/DMAEMA/TEGDMA) polymer was swollen in DI water, PBS, and 60% 

ethanol at different temperatures: 25 °C, 30 °C, 40 °C, 50 °C, and 60 °C. The percent swelling 

was determined at each temperature, in each solvent for 24 h.  

 

2.2.6. Sorption kinetics of poly(HEMA/DMAEMA/TEGDMA) hydrogel  

The blank poly(HEMA/DMAEMA/TEGDMA) samples were immersed in DI water, PBS, 60% 

ethanol, and absolute ethanol after recording the initial mass. The mass of the swollen hydrogels 

was recorded in 12 min time intervals for 2 h and the swelling ratio in terms of solvent uptake 

was determined by Equation (2-2); 

𝑄 =
𝑊𝑠 −  𝑊𝑖

𝑊𝑖
 (2-2) 

where Wi is the initial mass of the hydrogel and Ws is the mass of the swollen hydrogel.  
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The sorption mechanism of the polymer samples can be evaluated by fitting the data into the 

following equation (Equation (2-3));18,72,73 

𝑄 = 𝑘𝑡𝑛 (2-3) 

Here, Q is the uptake of solvent at time t, k is a constant characteristic of the system, and n is the 

kinetic exponent which defines the type of sorption mechanism. 

 

2.2.7.  Investigation of compatibility of the poly(HEMA/DMAEMA/TEGDMA) hydrogel 

with sectioning protocols 

To test the compatibility of the hydrogel with sectioning protocols, the human mesenchymal stem 

cells were cultured on the hydrogel samples (the cell experiments are described in details in 

chapter 4). Briefly, the blank and surface-patterned hydrogel samples were sterilized by 

autoclaving in PBS (30 min, 121 °C) and placed in the wells of 24-well plates for pre-incubation 

in complete culture media (α-MEM, supplemented with 16.7% FBS, and 1% Pen Strep (v/v)) 

overnight at 37 °C and 5% CO2 in a CO2 supplied humidified incubator (Symphony 5.3 A, VWR, 

Radnor, PA). Frozen hMSCs (5 × 105 cells/mL, 0.5 mL) at passage 3 were recovered and 

expanded in T125 flasks containing complete culture medium at 37 °C and 5% CO2 to produce 

cells required for the experiments. At 70% confluency, the cells were detached from the flasks 

and seeded onto the samples (seeding density = 1.6 × 105 cells/cm2). The cells were allowed to 

grow for two days and the spent media was replaced with either complete culture medium or 

chondrogenic differentiation medium (to promote the chondrogenic differentiation of cells – 

towards formation of cartilage tissue). The chondrogenic differentiation medium contained α-

MEM provided with high glucose (4.5 g/L), 10% FBS, 1% Pen Strep, 1 × 10-7 M dexamethasone, 

10% ITS + Premix tissue culture supplement, 50 µg/mL 2-phospho-L-ascorbic acid, and 10 

ng/mL TGF β1. At the end of the experiment (after two weeks), the samples were fixed with 10%  

neutral buffered formalin solution for 30 min. 
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2.2.7.1. Paraffin sectioning 

Prior to paraffin sectioning, the samples were serially dehydrated in ethanol (70% ethanol for 15 

min, 80% ethanol for 20 min, 95% ethanol for 20 min, 95% ethanol for 30 min, 100% ethanol for 

15 min, second 100% ethanol for 20 min, and third 100% ethanol for 30 min) and treated with 

toluene or xylene for 20 min, followed by a second toluene or xylene treatment for 30 min. Then 

the sample was embedded in molten paraffin for 20 min, followed by second and third molten 

paraffin embeds for 20 and 30 min respectively. Finally, the sample was embedded in molten 

paraffin for the fourth time followed by sectioning and staining with H & E (Hematoxylin and 

Eosin) and Alcian blue. [Note: The paraffin sectioning and related staining were performed at the 

Oklahoma Animal Disease Diagnostic Laboratory (OADDL), Center for Veterinary Health 

Sciences, OSU, Stillwater, OK.] 

 

2.2.7.2. Cryosectioning  

After fixing the cells, the samples were dehydrated in 30% sucrose (in PBS) overnight. The 

excess solution was wiped off and the sample was placed in a cryomold which was then 

completely filled with O.C.T (optimal cutting temperature) compound. The samples were allowed 

to equilibrate in O.C.T compound for ~2.5 h and frozen in liquid N2 : pentane bath (Liquid N2 : 

pentane bath maintains the temperature ~ -130 ºC, which helps to snap freeze the sample and 

minimize the formation of ice crystals). Immediately after freezing, the samples were stored in 

dry ice until sectioned. For sectioning, a cryoblock was fixed onto the sample holder using O.C.T 

compound and allowed to equilibrate at -20 °C in the cryostat for 1 h. Then the sections (7 µm 

thick) were cut and placed on the glass slides by touching the section with the glass slide at room 

temperature (this was done within 1 min to avoid freeze-drying of the sample). Normal glass 

slides or positively charged glass slides were used to collect sections. 
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2.3. Results and discussion 

2.3.1.  Factors affecting the transfer of micropillar patterns onto the hydrogel 

2.3.1.1. Functionalization of the PDMS mold  

Initial experiments showed that the mechanical detachment of the polymer from the PDMS mold 

without swelling resulted in the incomplete transfer of the pattern causing the pillars to be ripped 

off. The difficulty in transfer of the pattern was thought to result from the strong adhesion 

between the PDMS and poly(HEMA/DMAEMA/TEGDMA) polymer; therefore, the surface of 

PDMS molds was functionalized with trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane which is 

used as an anti-sticking agent in nanoimprint lithography74 and soft lithography75 to support the 

release of the mold. The corona treatment is expected to activate the surface groups on PDMS to 

ensure proper functionalization.76,77 Even with the surface functionalization, the transfer of 

micropattern onto the hydrogel was not successful as seen in the SEM images (Figure 2-1). The 

SEM images of the side view confirm the dot-pattern present in the top-view images corresponds 

to the bases or remaining parts of the micropillars that were ripped off from the hydrogel surface. 

Since the hydrogels were peeled off from the PDMS molds, the pillars might be ripped off due to 

the mechanical force. 
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Figure 2-1. The SEM images of hydrogels patterned with (a, c) 2 µm pillars and (b, d) 6 µm 

pillars, (c) and (d) are SEM images of side views of (a) and (b); the PDMS molds were surface-

functionalized prior to hydrogel fabrication. 

 

2.3.1.2. Swelling solvent 

The swelling of the polymer inside the PDMS mold induced a curvature of the hydrogel-PDMS 

composite, subsequently resulting delamination of the hydrogel from the PDMS mold. When 

immersed in DI water for 24 h, a curvature of the composite was observed and the hydrogels were 

detached from the edges of the well in the PDMS mold. Since the hydrogels were not completely 

detached, the composites were refrigerated for 3 h, while immersed in DI water, which supported 

the hydrogel to detach from the mold easily. The SEM analysis of the surface-patterned hydrogel 
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samples indicated the transfer of micropillars (Figure 2-2(a) and Figure 2-2(b)), but the pattern 

transfer was not reproducible (Figure 2-2(c) and Figure 2-2(d)). 

 

Figure 2-2. The SEM images of hydrogels patterned with (a, c) 2 µm pillars and (b, d) 6 µm 

pillars immersed in DI water followed by refrigeration. 

 

Due to the presence of DMAEMA units, the swelling of the poly(HEMA/DMAEMA/TEGDMA) 

hydrogel changes as a response to the pH of the medium. Since the swelling in DI water was 

insufficient to completely transfer the micropillar patterns onto the hydrogels, the effect of pH of 

the medium was evaluated. The blank hydrogels were delaminated from the molds in each 

solution after one day, but not the patterned hydrogels. The experiment was continued at pH 6.0 

for a week which resulted in detachment of the hydrogel from the edges. By applying a little 



19 
 

force, the hydrogels were completely detached from the mold. The SEM analysis of a hydrogel 

bearing 6 µm pillars indicated the transfer of micropillars onto the hydrogel sample (Figure 2-3). 

 

Figure 2-3. The SEM images of a hydrogel sample patterned with 6 µm pillars; the polymer-

PDMS composites were immersed in phosphate buffer solution at pH 6.0 for a week. 

 

The pattern transfer process in aqueous solutions was very time-consuming; therefore, the use of 

a good solvent in which the hydrogel can swell to a greater extent than in aqueous solutions was 

necessary to speed up the process. As previously reported, ethanol solutions are more compatible 

with poly(HEMA) hydrogel than water;78 thus, it was worthwhile to test the pattern transfer in 

ethanol solutions. Here, the polymer-PDMS composites were left in different ethanol solutions 

(20%, 40%, and 60% ethanol), checking the curvature and detachment of the hydrogel in 30 min 

intervals. Neither curvature nor detachment was observed in any solution during 90 min. After 

120 min and 240 min, the hydrogels were started to detach from the edges of the well, in 60% and 

40% ethanol solutions, respectively. The hydrogels were completely delaminated from the molds 

upon overnight immersion in 60% ethanol, but not in 40% ethanol. Even though the composite 

was slightly curved in 20% ethanol, no detachment of hydrogels was observed at any time point. 

The SEM images in Figure 2-4 clearly show that the pattern was successfully transferred in 60% 

ethanol. The high swelling obtained in 60% ethanol facilitated the self-delamination of the 
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hydrogel and the pattern transfer was successful and reproducible. The experiments performed in 

60% ethanol revealed that the surface-functionalization of the PDMS mold is not necessary when 

the swelling of the hydrogel itself can promote self-delamination of the hydrogel. 

 

Figure 2-4. The SEM images of poly(HEMA/DMAEMA/TEGDMA) hydrogels patterned with 

(a) 2 µm pillars and (b) 6 µm pillars immersed in 60% ethanol overnight. 

 

It is noteworthy that the hydrogels swelled in 60% ethanol solution were not stable upon storing 

in DI water as cracking of the hydrogel was observed in DI water. Although the hydrogel samples 

were transferred to DI water through a dilution series of ethanol (50%, 40%, 30%, 20% and 

10%), after equilibrating in each solution, cracking was observed upon reaching 20% ethanol 

solution. Since storage of the hydrogel in the aqueous medium is essential for biological 

applications, the pattern transfer should be achieved in an aqueous solution. Thus, PBS was tested 

as a swelling solvent for pattern transfer, as the PBS solution has a pH of 7.4 which is equal to 

physiological pH. However, the swelling in PBS was insufficient to facilitate the self-

delamination of the hydrogel from the PDMS mold, which is a key requirement for the successful 

transfer of micropillar arrays. To support the delamination of the hydrogel, the PDMS mold was 

immobilized onto a Petri dish prior to the fabrication step (Figure 2-5). As well, after immersing 

in PBS for ~48 h, the hydrogel was mechanically released from the edges to accelerate the 
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delamination process. The same method was used to successfully transfer the micropillar pattern 

in DI water. 

 

Figure 2-5. Transfer of micropillar patterns in PBS and DI water by immobilization of the PDMS 

mold onto a Petri dish. 

 

2.3.2.  Factors affecting self-delamination of the hydrogel from the PDMS mold 

The previous experiments confirmed that the micropillar pattern can be successfully transferred 

onto the hydrogel samples through self-delamination of the hydrogel induced by swelling. Apart 

from the swelling medium, the dimensions, i.e. length, width, and depth, of the well in the PDMS 

mold can also influence the self-delamination of the hydrogel, thereby controlling the 

effectiveness and reproducibility of pattern transfer process. 
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Figure 2-6. (a) The curvature of the hydrogel-PDMS composite as a function of time at different 

length to width ratios (1.0, 1.3, 3.0, 4.0, 6.0) of the PDMS well (or the hydrogel) at a constant 

depth and (b) 3-D graph that shows the percent swelling of the hydrogel based on depth of the 

well and surface area that is in direct contact with the swelling solvent. 

 

2.3.2.1. Length to width ratio (aspect ratio) of the well 

As depicted by the graph in Figure 2-6(a) the increase in length to width ratio decreases the 

maximum angle of the curvature of the hydrogel-PDMS composite, which was considered as the 

critical angle required for the self-delamination process. Increase in length to width ratio of the 

well from 1.0 to 6.0 decreased the critical angle from 30º to 22º. As well, the time required for 

self-delamination was slightly affected by the length to width ratio as the hydrogels took ~4.5 h at 

a ratio of 1.0 and ~3.5 h at the ratios of 3.0, 4.0, and 6.0 to delaminate from PDMS molds. The 

results clearly show that the rectangular shape (length to width ratio > 1) is more important than 

the square shape (length to width ratio = 1) to speed up the self-delamination process. The 

changes in length and width at a constant thickness lead to changes in the volume of the hydrogel 

monomer mixture poured onto the well. Thus, the amount of the polymer may influence the 

swelling subsequently affecting the delamination process. 
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2.3.2.2. The effect of the depth of the well and the surface area of the polymer on swelling  

In this experiment, the length, width, and depth were changed, so as not to change the volume and 

hence the mass of the polymer. The constant amount of material used here eliminates any effect 

that can be caused by the polymer amount. The 3-D graph in Figure 2-6(b) shows that the largest 

area, which is in direct contact with the swelling solvent (24 cm2) and the smallest depth (0.25 

cm) resulted in the highest percent swelling which supported the fastest delamination of the 

hydrogel. A large amount of solvent can enter into the hydrogel when a large area is in direct 

contact with the swelling solvent and the solvent has to move a short distance to reach the 

opposite surface of the hydrogel. Table 2-3 shows the dimensions of the PDMS molds (or 

hydrogel) and the time required for self-delamination. 

Table 2-3. Dimensions of the PDMS well and the time required for self-delamination 

Length (cm) Width (cm) Depth (cm) Time (h) 

3.0 2.0 1.0 72 

4.0 2.0 0.75 60 

4.0 3.0 0.5 48 

6.0 4.0 0.25 24 

 

2.3.3.  Swelling of poly(HEMA/DMAEMA/TEGDMA) hydrogel at different temperatures 

As the temperature varied from 30 °C to 40 °C, percent swelling of the hydrogel decreased from 

28% to 17% (DI water), 26% to 16% (PBS), and 218% to 190% (60% ethanol). The percent 

swelling was slightly increased upon reaching 60 °C.  

 

Previous studies report that the swelling of poly(HEMA)-based hydrogels reaches a minimum at 

temperatures between ~55 °C and ~60 °C and exhibits a high swelling below and above those 

temperatures.79-81 When the polymer is in contact with water, hydrogen bonding between the 
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water molecules and the polymer chains allows water to enter into the polymer and the polymer 

swells. Upon swelling the polymer dilutes with water. Below 55 °C or 60 °C, the swelling is 

favored by the negative enthalpy of dilution (ΔHdil) and high swelling is observed. As the 

temperature increases, the system absorbs heat from the surrounding and enters to a state of high 

enthalpy. Subsequently, the hydrogen bonding decreases and the bound water is converted to free 

water. The hydrogel deswells by expelling the free water from the network. Although the ΔHdil is 

negative, the swelling is restricted, indicating unfavorable entropy of dilution (ΔSdil < 0). The 

decrease in ΔSdil was attributed to interactions between the hydrophobic groups of the polymer 

network and water, which again results in penetration of water into the network. As a 

consequence, the swelling of the hydrogel increases as the temperature of the system exceeds the 

temperature that corresponds to the minimum swelling (~55 °C – ~60 °C).80-81 Because of the 

small amount of DMAEMA used in the formulation, it is likely that swelling is nonionic. 

 

2.3.4.  Sorption kinetics of poly(HEMA/DMAEMA/TEGDMA) hydrogel  

When a polymer sample is placed in a solvent, penetration of the solvent from the polymer 

surface creates a boundary separating the swollen region and the unswollen region. The solvent 

which diffuses through the polymer causes relaxation of the polymer chains and swelling of the 

polymer in front of the boundary.73 The diffusion process can have Fickian, non-Fickian or Case 

II kinetics based on the rates of the solvent diffusion and polymer relaxation. In Fickian kinetics, 

the rate of the solvent diffusion is lower than the rate of polymer relaxation. A diffusion rate 

greater than the rate of polymer relaxation results in non-Fickian behavior, whereas case II 

kinetics is observed when both rates are closer to each other.82 
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As mentioned in the experimental section (section 2.2.6), the sorption mechanism of the polymer 

samples can be evaluated by fitting the data into the Equation (2-3). A linear plot of swelling 

ratio, Q, vs square root of time is indicative of Fickian kinetics.72 As seen in the graph in Figure 

2-7, the linear plots of swelling ratio vs the square root of time (R2 values > 0.994) obtained for 

all solvents reveal that the uptake of solvents by the poly(HEMA/DMAEMA/TEGDMA) exhibit 

Fickian kinetics. 

 

As well, a more quantitative measure of sorption kinetics can be obtained by plotting log Q as a 

function of log T (T = time), where the kinetic exponent n is determined from the slope. If n = 0.5 

the sorption mechanism is said to be Fickian and if n = 1 the sorption process is Case II. If n falls 

within 0.5 – 1 range the process follows non-Fickian or anomalous kinetics.72 The n values 

calculated from the swelling data of this study are 0.5621 (±0.0168) (in DI water), 0.5435 

(±0.0130) (in PBS), 0.6001 (±0.0050) (in 60% ethanol), and 0.5306 (±0.0135) (in absolute 

ethanol). The n values indicate slight deviations from the normal Fickian kinetics suggesting that 

the penetration is more toward diffusion controlled, but there might be a contribution from non-

Fickian processes such as relaxation of polymer chains.73 Nevertheless, in 60% ethanol, n = 0.6 

implies more contribution from non-Fickian processes. A study published by Refojo reports that 

poly(HEMA) may have a secondary structure, which is stabilized by hydrophobic interactions, in 

addition to the chemically cross-linked primary structure.83 The same study states that these 

hydrophobic interactions are broken in the presence of organic solvents such as alcohols and 

acetone and the swelling is remarkably increased. A similar phenomenon can be expected for the 

poly(HEMA/DMAEMA/TEGDMA) polymer when swollen in 60% ethanol and the penetration 

of solvent can be influenced by the solvation of hydrophobic interactions.  
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Figure 2-7. The graph of swelling ratio of hydrogels (in different solvents) as a function of 

square root of time. The R2 values were 0.995 (DI water), 0.996 (PBS), 0.999 (60% ethanol), and 

0.995 (absolute ethanol).  

 

2.3.5.  Investigation of compatibility of the poly(HEMA/DMAEMA/TEGDMA) hydrogel 

with sectioning protocols 

2.3.5.1. Paraffin sectioning 

Sectioning of the hydrogel samples with the cells was necessary to clearly visualize the cell 

aggregates attached to the hydrogels bearing micropillar patterns. To recognize the cells, the 

sections were stained with H & E (Hematoxylin and Eosin) and Alcian blue stains. The light 

microscopy images in Figure 2-8 show the sections of hydrogel samples obtained from paraffin-

sectioning. The photos demonstrate that the cell aggregates were detached from the hydrogel 

surface during sectioning process which involved several dehydration steps and solvent treatment 

steps; however, in some photos, the detached cell aggregates can be seen in the vicinity of the 

hydrogel section (Figure 2-8(a) – (c)).  Although the micropillars are visible in some areas, they 
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seemed to be damaged. As well, twisting and tearing of the hydrogels was observed in some 

sections. However, as shown by the section stained with Alcian blue (Figure 2-8(d)), the sections 

of cell aggregates attached to the hydrogel were found occasionally.  Overall, paraffin sectioning 

does not fulfill the initial requirement of better visualization of the cell aggregates on the 

hydrogels bearing micropillars as the cell aggregates and the microstructures were damaged. 

 

Even though H & E staining is widely used in histology as a primary staining technique to 

evaluate the morphology, the pink color of hydrogel sections indicates that the stains were 

absorbed by the hydrogel. The absorption of stains by the hydrogel may interfere with 

microscopy of the cells. 

 

Figure 2-8. Light microscopy images of hydrogel samples subjected to paraffin-sectioning; (a), 

(b), (c) the sections were stained with H & E stain and show the cell aggregates detached from the 

hydrogel sample, and (d) a section with a cell aggregate stained by Alcian blue. 
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2.3.5.2. Cryosectioning 

Cryosectioning is another technique which is recommended for sectioning hydrogels mainly 

because of the compatibility with hydrogels as the drying steps are not necessary. From the 

preliminary studies, cryosectioning did not appear to be a good method for the 

poly(HEMA/DMAEMA/TEGDMA) hydrogels mainly due to the difficulty of collecting and 

retaining the hydrogel sections on glass slides.  

 

An issue common to both paraffin and cryosectioning techniques of the poly(HEMA-

/DMAEMA/TEGDMA) system was that a large number of sections had to be collected since the 

cells form aggregates on the hydrogel sample, unlike a layer of cells uniformly spread over the 

entire sample. The tendency of not having good sections of the cell aggregates on a hydrogel 

section was very high. Since both sectioning techniques were not suitable, it was decided to stain 

the hydrogels with cultured cells directly (as described in chapter 4).   

 

2.4. Conclusions 

This study reports the investigation of factors critical to the transfer of micropillar pattern 

reproducibly and with high fidelity onto the poly(HEMA/DMAEMA/TEGDMA) hydrogel by the 

soft lithography technique. The self-delamination of the hydrogel from the PDMS mold induced 

by swelling was the key factor in the successful transfer of micropillar patterns with aspect ratios 

as high as 6. A detailed analysis of factors such as functionalization of PDMS molds, swelling 

solvent, as well as the dimensions of the mold provides a better control over the successful and 

effective transfer of microscale features onto the poly(HEMA/DMAEMA/TEGDMA) hydrogel. 

As well, the effect of temperature on swelling of the hydrogel and kinetics of swelling provides 

an insight of swelling of the hydrogel in different solvents. The other important aspect of this 

study is the evaluation of the compatibility of the system with two widely used histological 
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techniques: paraffin and cryosectioning, especially because of the potential biological 

applications of the poly(HEMA/DMAEMA/TEGDMA) hydrogel. This study further suggests that 

the direct application of staining procedures is an alternative approach for this system as none of 

the sectioning techniques were able to produce good sections of the fabricated 

poly(HEMA/DMAEMA/TEGDMA) hydrogel to clearly show the details of cells or cell-matrix 

interactions under the conditions used.  
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CHAPTER III 
 

 

A SOFT-LITHOGRAPHY METHOD TO GENERATE ARRAYS OF MICROSTRUCTURES 

ONTO HYDROGEL SURFACES 

Note: This chapter was published in Jayasinghe, H. G, Tormos, C. J., Khan, M., Madihally, S., 

and Vasquez, Y., (2018), A soft lithography method to generate arrays of microstructures onto 

hydrogel surfaces; Journal of Polymer Science Part B: Polymer Physics, 56, 1144-1157, 

(published by John Wiley & Sons, Inc., NJ), (DOI:10.1002/polb.24634) 

 

3.1. Introduction  

In nature, examples of surfaces with microscopic patterns having superior hydrophobic, self-

cleaning and adhesive properties abound.84-87 Examples include the ribbed structured skin of a 

shark,88 the surface of a lotus leaf,89 and the microscale setae of a gecko’s foot pads.90,91 Extensive 

research on synthetic mimics of these microstructures have resulted in surfaces that dynamically 

change rigidity,92 adhesion,93 or wettability,94,95 to surfaces that function as anti-biofouling 

coatings.96-97 Microstructured surfaces are also used in innovative applications that include force 

sensors,92 biosensors,98,99 drug delivery systems,100 actuators,101,102 photonic structures,103 

optoelectronics,104 piezoelectric devices,105 and in cellular adhesion,44,106 migration,107 and 

differentiation studies.108-111 Use or implementation of microstructured surfaces for many 

biological applications is limited, however, by the types of materials that can be patterned with 

such fine features because many of these materials are not biodegradable and their mechanical 

properties are incompatible with natural tissues. 
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Hydrogels have been extensively studied for biological applications, because properties such as 

high retention of water, biocompatibility, biodegradability, and tunable mechanical properties 

enable hydrogels to mimic an endogenous cellular environment.112-117 Some of the most 

successful techniques for patterning hydrogels include photolithography60 and soft-

lithography35,118  methods, which includes microcontact printing,119 embossing,120 microfluidic 

patterning,121 and micromolding.122 Yet, patterning hydrogels with microscale features continues 

to be a challenge due to adhesion, low mechanical strength, and the characteristic swelling 

properties of the hydrogels themselves.64,123  Typical hydrogels exhibit an elastic modulus of a few 

kPa but are only successfully patterned at the micron level when the elastic modulus of the 

polymer is on the order of a few GPa.33,123 Additionally, hydrogel micromolding and related soft-

lithography techniques make use of surface modification with adsorbed proteins or self-

assembled monolayers to reduce or overcome adhesion between the gel and the mold.64 

 

This chapter focuses on the fabrication of poly(HEMA/DMAEMA/TEGDMA) (HEMA = 2-

hydroxyethyl methacrylate, DMAEMA = N,N-(dimethylaminoethyl)methacrylate and TEGDMA 

= tetraethylene glycol dimethacrylate) hydrogel patterned with micropillars by the soft-

lithography technique. The surface-patterning process involves a very simple method that utilizes 

the swelling properties of the hydrogel itself to overcome the adhesion problem while allowing 

softer hydrogels (MPa) to be patterned using soft-lithography techniques. A hydrogel based on 

poly(HEMA) was chosen to pattern since poly(HEMA)-based hydrogels have been broadly 

studied for applications in drug delivery,124 controlled release,54 and as scaffolds for tissue 

engineering.71 The formulation for the co-polymer, poly(HEMA/DMAEMA/TEGDMA), was 

adapted from the work published by You  et al.68 and yielded an elastic modulus of 8 MPa. Others 

have also previously reported the successful patterning of poly(dimethylsiloxane) (PDMS) and 

polyurethanes with micron and sub-micron feature sizes at the same elastic modulus.123 Here, the 
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arrays of micropillars with a diameter (d) of 1 m, pitch (dint) of 3 m, and a height (h) of either 2 

m or 6 m were successfully replicated when a solvent with a moderate solubility parameter in 

the hydrogel was chosen as the swelling solvent such as phosphate buffered saline (PBS), 

deionized water (DI water), absolute ethanol, and 60% ethanol. The soft, elastomeric PDMS 

template was found to be a good confining material since it allows for nearly isotropic swelling of 

the hydrogel and relieves buckling without causing the hydrogel to crack or fail. Additionally, the 

biological properties (cell attachment and viability) of the fabricated hydrogel were evaluated by 

culturing HeLa cells on the hydrogel. It was revealed that the hydrogel is cytocompatible and the 

micropillars enhance the cell attachment properties of the hydrogel. 

 

3.2. Experimental 

3.2.1. Materials 

SYLGARDTM 184 silicone elastomer (PDMS) was obtained from Dow Corning (Midland, MI). 

The chemicals 2-hydroxyethyl methacrylate (HEMA, 97% - the transduction monomer), N,N-

(dimethylaminoethyl)methacrylate (DMAEMA, 98% - the functional co-monomer that makes the 

polymer pH sensitive), tetraethylene glycol dimethacrylate (TEGDMA, ≥ 90% - the cross-linker), 

2-hydroxy-2-methylpropiophenone (97%), deuterated dimethylsulfoxide (DMSO-d6), albumin 

from bovine serum (BSA), Tween® 20, Triton® X-100, and 10% neutral buffered formalin were 

purchased form Sigma-Aldrich (St. Louis, MO). Ethylene glycol and glass slides (7.5 × 2.5 × 0.1 

cm) were purchased from Fisher Scientific (Fair Lawn, NJ). Ethanol (200 proof) was purchased 

from Pharmco-AAPER (Brookfield, CT). Epoxy OG142 was obtained from Epoxy Technology 

(Billerica, MA). Dulbecco’s phosphate buffered saline (PBS) powder, GibcoTM Penicillin 

Streptomycin (Pen Strep), Trypsin-EDTA (0.05%), Molecular ProbesTM Rhodamine phalloidin 

and InvitrogenTM 4′,6-diamidino-2-phenylindole (DAPI) were purchased from Life Technologies 

(Grand Island, NY). GibcoTM RPMI 1640 media and ReadyProbes® cell viability imaging kit 
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(blue/red) were obtained from Thermo Fisher Scientific, (Waltham, MA). HycloneTM donor calf 

serum was purchased from GE Healthcare Life Sciences (Pittsburg, PA). Water was deionized at 

a resistance of 18.1 Ω/cm using a Barnstead NanopureTM water purification system. 

 

3.2.2. Generation of the surface pattern  

Silicon (Si) micropillar arrays were fabricated by UV projection lithography and Bosch Deep 

Reactive Ion Etching (DRIE) of single crystal silicon wafers. A hexagonal array of micropillars 

was fabricated with features corresponding to the following dimensions: diameter (d) = 1 m, 

height (h) = 2 m or 6 m, and interpillar spacing (dint) = 3 m. In order to transfer the pattern 

onto the other materials, i.e. epoxy or hydrogel, negative poly(dimethylsiloxane) (PDMS) molds 

of the original Si pattern were used. The PDMS molds were prepared as described 

elsewhere.44,66,67 Briefly, SylgardTM 184 silicone elastomer and curing agent were mixed 

thoroughly in a ratio of 10:1 wt. % and poured over the Si wafer, degassed in a vacuum to remove 

air bubbles, and thermally cured in an oven (BarnsteadTM) at 75 °C for 5 – 6 h. The PDMS molds 

were prepared in round petri dishes (60 mm × 10 mm) and had a diameter of 51.94 (±0.58) mm 

and a thickness of 4.78 (±0.58) mm. 

 

More PDMS molds were generated using the epoxy replicates of the original pattern as the 

intermediate substrates so as not to damage the original Si wafer. The Aizenberg group has 

previously demonstrated that epoxy replicas can be easily produced from a PDMS mold with 

excellent fidelity.67 Here, the epoxy replicas were generated by pouring a pre-polymer solution 

(Epotek OG142) into a negative PDMS mold of the original micropillar pattern and curing under 

365 nm UV light using a DymaxTM light curing system (225 mW/cm2, Model 5000 Flood) for    

60 s. After cooling, the epoxy was removed from the mold and used to produce several other 

replica molds from PDMS. 
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3.2.3. Fabrication of surface-patterned poly(HEMA/DMAEMA/TEGDMA) hydrogel 

The monomers HEMA, DMAEMA, TEGDMA were mixed with the initiator 2-hydroxy-2-

methylpropiophenone in a ratio of 38:2:1:1 mol/mol respectively, and the solvent mixture 

containing water and ethylene glycol (1:1 mol/mol). The composition of the monomers for the 

hydrogel was adapted from the work published by You et al.68 After mixing thoroughly, the 

mixture was poured over the PDMS mold and cured with 365 nm UV light for 90 s. After cooling 

to room temperature, the hydrogel was submerged in PBS, DI water, 60% ethanol or absolute 

ethanol and was allowed to swell until delaminated from the mold (Scheme 3-1). 

 

Scheme 3-1. Microstructured hydrogel samples were fabricated using soft-lithography. 

Micropillars with dimensions corresponding to a diameter (d) of 1 m, a height (h) of 2 m or     

6 m, and interpillar spacing (dint), or pitch, of 3 m were etched into a Si wafer. Negative molds 

of the micropillar pattern were produced in PDMS. A mixture of all the components used to 

synthesize poly(HEMA/DMAEMA/TEGDMA) was poured onto the negative PDMS mold and 

photopolymerized. The poly(HEMA/DMAEMA/TEGDMA) hydrogel was swollen in various 

solvents to promote delamination from the PDMS mold. 
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Hydrogels containing no microstructures, referred to as blank hydrogels, were also fabricated in 

the same manner except for using an unpatterned piece of Si wafer (2.5 cm × 1.0 cm × 3 mm) to 

prepare the initial PDMS mold. Hydrogels patterned with 2 µm pillars and the blank hydrogels 

had dimensions corresponding to 2.5 cm × 1.5 cm × 3 mm whereas hydrogels patterned with       

6 µm pillars had dimensions corresponding to 2.5 cm × 1.0 cm × 3 mm. 

 

3.2.4. Characterization of the structure of the polymer 

The structure of the polymer was characterized by solution and solid-state nuclear magnetic 

resonance (NMR), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) 

spectroscopy. Proton NMR (1H NMR) spectra of the uncross-linked polymer were collected on a 

Bruker Avance III HD 400 MHz spectrometer. For solution-state NMR (1H NMR), the polymer 

was prepared without the TEGDMA cross-linking agent, purified in DI water, dried at 120 °C, 

and dissolved in deuterated dimethylsulfoxide (DMSO-d6). 13C solid-state Magic Angle Spinning 

(MAS) NMR spectra of the dried, cross-linked polymer samples were obtained using a Bruker 

DSX Avance 300 MHz spectrometer. ATR-FTIR spectra of dehydrated, solid 

poly(HEMA/DMAEMA/TEGDMA) samples were taken on a Thermo Scientific NicoletTM iSTM 

50 FTIR spectrometer. 

 

3.2.5. Confirmation of the micropillar pattern transfer 

The transfer of the patterns was verified by imaging with an Environmental Scanning Electron 

Microscope (FEI Quanta 600 FE – ESEM). Prior to imaging with SEM, the hydrogel samples 

were serially dehydrated in a concentration series of absolute ethanol in water, critical point dried 

(BAL-TEC CPD030), and coated with Au/Pd (Balzers Union MED 010). Furthermore, the 

samples were imaged using a Leica SP2 confocal microscope with a 63× oil immersion objective 

to confirm the heights of the micropillars patterned on the hydrogels. Thin sections of patterned 

hydrogel samples were obtained using a sharp razor blade and mounted in water in a cavity slide 
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for optical imaging. The heights of micropillars were measured using ImageJ 1.47t software 

(Wayne Rasband, National Institutes of Health, USA). 

 

3.2.6. Swelling studies 

Swelling experiments were performed on free and PDMS confined hydrogel samples. The blank 

hydrogel samples were peeled off from the PDMS molds after UV curing and are referred to as 

the free hydrogels. The initial mass of the hydrogel samples was recorded prior to submerging in 

solvents. The mass of the swollen hydrogel was recorded at 2 h time intervals until the mass 

remained constant. Hydrogel samples were removed from the solvent and blotted with a paper 

towel prior to mass measurements. Five hydrogel samples were used for all swelling experiments 

unless otherwise indicated. Percent swelling (%Q) of poly(HEMA/DMAEMA/TEGDMA) 

hydrogels was calculated by means of solvent uptake using Equation (3-1), 

 
%𝑄 =

𝑊𝑠 −  𝑊𝑖

𝑊𝑖
 ×  100 (3-1) 

where Wi is the initial mass of the hydrogel and Ws is the mass of the swollen hydrogel.18,71 

 

The PDMS confined polymers are the polymer-PDMS composites where the polymer samples 

were not removed from the molds. The polymer-PDMS composites were also subjected to 

swelling experiments. The mass of the polymer-PDMS composites was recorded until a constant 

mass reached or the hydrogel delaminated from the mold. When the polymer was swelling inside 

the mold the composite became curved. The curvature of the composite was recorded every 2 h 

for 48 h or until the hydrogel delaminated from the mold. Digital images of the confined 

hydrogels were taken using a Nikon D3200 digital camera. ImageJ 1.47t software was used to 

determine the angle of curvature (θ) (Figure 3-1) of the PDMS mold using the low bond 

axisymmetric drop shape analysis (LB-ADSA) method of the drop analysis plug-in. 
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Figure 3-1. The polymer-PDMS composite was curved upon swelling of the polymer confined in 

the mold. The angle of curvature (θ) was measured to evaluate the swelling of the polymer in the 

mold. 

 

3.2.7. Determination of solubility parameter (δ) of the hydrogel 

As an extension of the swelling study, the solubility parameter of the 

poly(HEMA/DMAEMA/TEGDMA) was determined using the method developed by Gee.125,126 

The same technique was previously used by Çaykara et al. to determine the solubility parameter 

of poly(HEMA/IA) (IA = itaconoic acid - CH2(COOH)C(COOH)CH2) hydrogel.127  

 

According to Gee, the relationship between the volumetric swelling ratio of a polymer in a 

solvent of solubility parameter δ is given by the Equation (3-2): 

 𝑄𝑣

𝑄𝑣,𝑚𝑎𝑥
= 𝑒−𝑎𝑄𝑣 (𝛿𝑆𝑜𝑙𝑣𝑒𝑛𝑡− 𝛿𝑃𝑜𝑙𝑦𝑚𝑒𝑟)2

 (3-2) 

Here, 𝑄𝑣 is the volumetric swelling ratio, 𝑄𝑣,𝑚𝑎𝑥 is the maximum volumetric swelling ratio, 𝑎 is 

a constant, and 𝛿𝑆𝑜𝑙𝑣𝑒𝑛𝑡 and 𝛿𝑃𝑜𝑙𝑦𝑚𝑒𝑟 are the solubility parameters of the solvent and polymer, 

respectively. The solubility parameter of a polymer is the same value as the solvent in which the 

highest swelling is observed.  

 

In order to determine the solubility parameter of the poly(HEMA/DMAEMA/TEGDMA) 

hydrogel, free, blank polymer samples were allowed to swell in solvents, with different δ values, 
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(Table 3-1) until the weight of the swollen hydrogel was constant. Then, the equilibrium swelling 

ratio by volume 𝑄𝑣 was calculated using Equation (3-3): 

 
𝑄𝑣 = 1 + (

𝑊𝑠

𝑊𝑖
− 1)

𝜌𝑝𝑜𝑙𝑦𝑚𝑒𝑟

𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡
 (3-3) 

where Wi is the initial mass of the hydrogel, Ws is the mass of the swollen hydrogel, 𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡 and 

𝜌𝑝𝑜𝑙𝑦𝑚𝑒𝑟 are the densities of the solvent and polymer, respectively.127 To determine the density of 

the polymer (𝜌𝑃𝑜𝑙𝑦𝑚𝑒𝑟 ), the volume of the polymer samples was measured by the solvent 

displacement method in hexane, a solvent that has a negligible effect on swelling of the hydrogel. 

Then the 𝑄𝑣 values were plotted against the δ of the solvents to infer the solubility parameter of 

the polymer. 

Table 3-1. The solvents used for determination of δPolymer and their solubility parameter values 

(δ)128  

Solvent Solubility Parameter [δ] (MPa1/2) 

Triethanolamine 36.7 

1-Butanol 23.2 

Acetonitrile 24.4 

Acetone 20.3 

Isopropyl alcohol 23.5 

Ethanol 26.6 

Methanol 29.7 

Ethylene glycol 32.9 

DMF 24.8 

DMSO 26.6 
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3.2.8. Mechanical testing 

The mechanical properties of the hydrogel samples were evaluated by tensile tests performed 

using an INSTRON mechanical testing system (Model 5542). Hydrogel samples with dimensions 

of 7.0 cm × 2.5 cm × 0.3 cm were prepared using a PDMS mold as described previously. 

Mechanical properties of the polymer samples were evaluated in both the unswollen and swollen 

states. Poly(HEMA/DMAEMA/TEGDMA) samples were swollen in PBS, DI water,               

60% ethanol, and absolute ethanol for 15 - 20 h prior to mechanical testing. Specimens were 

stretched at a constant rate of 5 mm/min. Data was collected every 50.00 mN and recorded using 

the associated Merlin (INSTRON) software. The elastic modulus was calculated from the slope of 

the linear portion of the stress–strain curve using a strain range of 0.0000 – 0.0006 for unswollen 

samples and 0.0000 – 0.0700 for swollen samples. A Mitutoyo Absolute Digimatic Caliper 

(Mitutoyo (UK) Ltd) was used to measure the dimensions of the samples before and after 

swelling. All data are presented as means ± standard deviation for n = 5. Statistical significance 

was determined using ANOVA analysis (single factor at p < 0.05). 

 

3.2.9. Determination of weight-average molecular weight and network parameters 

The weight-average molecular weight (𝑀𝑤
̅̅ ̅̅̅) of the polymer was determined using the static light 

scattering (SLS, Malvern Zetasizer Nano system). The uncross-linked polymer, 

poly(HEMA/DMAEMA), was prepared as mentioned previously without adding the cross-linking 

agent TEGDMA. After UV curing the polymer was purified by immersing in DI water for           

2 – 3 days followed by drying in a desiccator for about a week. Then the polymer was dissolved 

in N,N-dimethyl formamide (DMF) to prepare the stock solution (concentration of 0.01 g/mL).   

A series of polymer solutions with different concentrations (1.00, 2.50, 7.50, and 10.00 mg/mL) 

were prepared by diluting the required amounts of the stock solution with DMF. Toluene was 

used as the standard. 
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Effective cross-linking density and the molecular weight between cross-links were determined for 

the swollen hydrogel samples. The Flory-Huggins rubber elasticity model was used to determine 

the effective cross-linking density (𝜈𝑒̅) by plotting  (in kPa) vs. (-1/2) using the equation 

below:129  

 
𝜏 = 𝑅𝑇𝜐𝑒̅𝜙−1 3⁄ (𝛼 − 

1

𝛼2
) (3-4) 

Here,  is the applied force per unit area of the swollen hydrogel,  is the ratio of deformed length 

to undeformed length of the swollen hydrogel.  The cross-linking density was calculated from the 

slope of the resulting linear plot, and substituting; R is the universal gas constant                  

(8.314 kPa·dm3/mol·K), T temperature (294.1 K), and 𝜙 is the volume fraction of the polymer in 

the swollen hydrogels. 

 

The dimensions of the polymer in swollen and unswollen states were measured by the caliper and 

𝜙 was determined by the Equation (3-5) 

 
𝜙 =

𝑈𝑛𝑠𝑤𝑜𝑙𝑙𝑒𝑛 𝑣𝑜𝑙𝑢𝑚𝑒

𝑆𝑤𝑜𝑙𝑙𝑒𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 
 (3-5) 

The molecular weight between cross-links, 𝑀𝐶
̅̅ ̅̅ , was calculated according to the Equation (3-6),2 

 
𝜏 =  

𝜌𝑅𝑇

𝑀𝐶
̅̅ ̅̅

 (1 −  
2𝑀𝐶

̅̅ ̅̅

𝑀𝑁
̅̅ ̅̅

)(𝛼 −
1

𝛼2
)(

𝜙

𝜙0
)1 3⁄  (3-6) 

where ρ is the density of the polymer, 𝑀𝐶
̅̅ ̅̅  is the average molecular weight between cross-links, 

𝑀𝑁
̅̅ ̅̅  is the number-average molecular weight of the uncross-linked polymer, 𝜙  and 𝜙0are the 

polymer volume fraction in the fully swollen and relaxed states, respectively. The relaxed state 

refers to the polymer immediately after cross-linking, but before any swelling takes place. The 

volume fraction of the polymer at the relaxed state was found to be 0.83. Here, it is assumed that 

𝑀𝑁
̅̅ ̅̅  >>> 𝑀𝐶

̅̅ ̅̅ . The weight-average molecular weight (Mw = 63000 g mol-1) of uncross-linked 

polymer, poly(HEMA/DMAEMA), was determined by SLS; therefore, the assumption made in 

the above calculation was considered reasonable. 
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3.2.10. Evaluation of biological properties of synthesized hydrogel 

Frozen HeLa cells (1 × 106 cells/mL, 1.00 mL) were recovered and expanded in T125 flask 

containing complete culture media (RPMI-1640 medium supplemented with 10% (v/v) donor calf 

serum (DCS), and 1% Pen Strep) at 37 °C and 5% CO2 in a CO2 supplied humidified incubator 

(Symphony 5.3 A, VWR, Radnor, PA). At 70% confluency, the cells were subcultured in T175 

flasks containing complete culture media to produce enough cells for further studies. 

 

For subculturing, the cells were detached from T125 tissue culture flask by incubating with 

trypsin-EDTA for 2 min at 37 °C and 5% CO2.  Complete culture media (double the volume of 

trypsin-EDTA) was added to deactivate trypsin and the cell suspension was centrifuged at      

2000 rpm for 2 min. The cell pellet was dispersed in new growth media, mixed with Tryphan blue 

(Thermofisher Scientific) and the cell count was obtained using a Countess® automated cell 

counter (Thermo Fisher Scientific). The cells were divided into T175 flasks and cultured at 37 °C 

and 5% CO2 in the humidified incubator until 70% confluent. 

 

The biological properties (cell attachment and cytotoxicity) were evaluated by culturing HeLa 

cells on both unpatterned (blank) and patterned hydrogel samples (with 2 µm and 6 µm pillars). 

The hydrogel substrates were autoclaved in PBS and disks with a diameter of 10 mm were 

punched, using a cork borer, under sterile conditions. Prior to seeding cells, the hydrogel disks 

were pre-incubated overnight in complete culture media in 24-well plates. At the                     

70% confluency, the cells were detached, centrifuged, and counted as mentioned in the 

subculturing process.  
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The spent media was aspirated from the wells containing the hydrogel substrates and fresh media 

was added to each well. Then the samples were seeded with the HeLa cells. The seeding densities 

are mentioned below. The control experiments were carried out in the same way except for the 

culturing cells in the normal wells without hydrogel disks. Each cell experiment was done in 

triplicates.  

 

For the attachment study, the seeding density was 8.0 × 103 cells/cm2. The cells were incubated 

for one week while changing the media every other day. The attachment and proliferation of 

HeLa cells on each substrate were analyzed daily. Each day, a set of samples was fixed with   

10% neutral buffered formalin for 30 min, permeabilized with Triton® X-100 in 0.1% BSA in 

PBS for 15 min, and stained with Rhodamine phalloidin (1:1000 dilution in 0.1% BSA and   

0.1% Tween® 20 in PBS) for 2 h at room temperature in the dark. Each step was followed by two 

rinsing steps in 0.1% BSA in PBS. The nuclei were counterstained with DAPI (1:5000 dilution in 

0.1% BSA and 0.1% Tween® 20 in PBS) for 5 min at room temperature in the dark. Finally, the 

samples were washed with PBS and imaged using an Olympus-IX83 inverted microscope. 

Bright-field and fluorescence images (through RFP and DAPI channels) of randomly selected 

fifteen fields of view were taken from each sample. The number of adherent cells in each spot 

was counted from the DAPI-stained photos by using the analyze particles built-in function of 

ImageJ 1.47t software.  

 

The cell viability assay was carried out at two different time points: one day and seven days after 

seeding the cells (seeding densities 8.0 × 103 cells/cm2 for the seven-day experiment and           

2.6 × 104 cells/cm2 for the one-day experiment). For the seven-day experiment, the growth media 

was refreshed every other day. At the end of each time period (one day or seven days) the cell 

viability was evaluated by using ReadyProbesTM cell viability imaging kit, blue/red, according to 

the manufacturer’s instructions. Briefly, two drops of each NucBlue® Live and propidium iodide 
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were added to each well and incubated for 10 min at room temperature in the dark. Bright-field 

and fluorescence images (through RFP and DAPI channels) of randomly selected ten fields of 

view were taken from each sample.  The number of total cells (from blue stained-image) and the 

dead cells (from red stained-image) were counted in each spot by using the analyze particles 

built-in function of ImageJ 1.47t software. The cell viability was calculated as the percentage of 

live cells in each spot. 

 

3.3. Results and discussion 

3.3.1. Synthesis and characterization of poly(HEMA/DMAEMA/TEGDMA) hydrogel 

UV or visible light-initiated polymerizations are widely used in the synthesis of hydrogels due to 

ease of preparation, mild reaction conditions (e.g. ambient or physiological), and fast curing 

times.130 Here, poly(HEMA/DMAEMA/TEGDMA) hydrogels were prepared by UV initiated 

radical polymerization to produce a network polymer as demonstrated in Scheme 3-2. All 

components–monomers, cross-linking agent, initiator, and solvents–are mixed together to 

generate randomly cross-linked networks upon UV irradiation for 90 s.60 The hydrogel was 

prepared by mixing HEMA, DMAEMA, TEGDMA and 2-hydroxy-2-methylpropiophenone in a 

ratio of 38:2:1:1 mol/mol, respectively. The solvent mixture consisted of water and ethylene 

glycol in a ratio of 1:1 mol/mol. 

 

Structural characterization of the polymer was performed using nuclear magnetic resonance 

(NMR) both in the solution and solid-state. The polymer was synthesized without the TEGDMA 

cross-linking agent and dissolved in deuterated dimethylsulfoxide (DMSO-d6) in preparation for 

solution NMR (1H NMR) studies. 1H NMR spectra confirm the formation of the 

poly(HEMA/DMAEMA) polymer (Figure 3-2).  
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Furthermore, ATR-FTIR spectra (Figure 3-3(a)) and 13C solid state NMR (Figure 3-3(b)) of the 

cross-linked polymer, poly(HEMA/DMAEMA/TEGDMA), confirm the presence of all three 

units; HEMA, DMAEMA, and TEGDMA in the network polymer. 

 

Scheme 3-2. Random co-polymerization of HEMA, DMAEMA, and TEGDMA results in a 

network polymer, poly(HEMA/DMAEMA/TEGDMA). 

 

In the 1H NMR spectrum, the peak (d), relevant to the proton on the OH of HEMA, (chemical 

shift, δ = 4.8 ppm) and the peak (b), relevant to Hs of CH3 groups attached to N of DMAEMA   

(δ = 2.2 ppm) confirm the presence of both HEMA and DMAEMA in the polymer. Furthermore, 

the two peaks (a) present at δ = 0.8 ppm and δ = 1.0 ppm represent the Hs of CH3 groups in both 

HEMA and DMAEMA units. As well, the peaks (c) at δ = 3.6 ppm and δ = 3.9 ppm are due to 

the Hs in CH2 groups of the dangling groups of monomers. Generally, the peaks responsible for 

the double bond present in the monomer units appear between δ = 5.5 ppm and δ = 6.5 ppm. 
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Absence of any peaks in this area of the 1H NMR spectrum of poly(HEMA/DMAEMA) further 

suggests the formation of a polymer.  

 

 

Figure 3-2. 1H NMR spectrum of the poly(HEMA/DMAEMA) polymer without cross-linking 

agent (TEGDMA) (in DMSO-d6; 400 MHz). 

 

 

Figure 3-3. (a) ATR-FTIR spectrum and (b) 13C NMR spectrum (Solid State; 300 MHz) of 

poly(HEMA/DMAEMA/TEGDMA) cross-linked polymer. 
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In the ATR-FTIR spectrum, the broad peak (a) present between 3250 and 3500 cm-1 represents 

the –OH group of HEMA units; peak (b) present ~3000 cm-1 represents the C-H (sp3) bond; peak 

(c) at 2250 cm-1 represents the N-C bond, confirming the incorporation of DMAEMA units; peak 

(d) at 1700 cm-1 is the characteristic peak of -C=O groups; and peak (e) present ~1000 cm-1 

represents the C-O-C bond of TEGDMA units.  

 

In the 13C NMR spectrum the peak (a) present at δ = 17 ppm represents the –CH3 carbon in 

HEMA and DMAEMA units; peak (b) at δ = 45 ppm represents the Cs in CH3 groups attached to 

N in DMAEMA, which confirms the presence of DMAEMA units in the polymer; peak (c) at      

δ = 59 ppm represents the Cs in -CH2 groups in the polymer backbone; peak (d) present at            

δ = 67 ppm represents the C in –CO groups of TEGDMA and confirms the incorporation of 

TEGDMA units in to the network; and peak (e) is due to the –C=O groups present in the polymer. 

 

3.3.2. Confirmation of the micropillar pattern transfer 

Standard lithography and etching techniques were used to fabricate the micropillar array into a 

silicon wafer with the desired feature sizes and dimensions. Poly(HEMA/DMAEMA/TEGDMA) 

hydrogels were patterned with the micropillar structures using soft-lithography techniques,  

wherein a negative mold of the etched Si wafer is generated in PDMS.57,100,108 The mixture of 

monomers, cross-linking agent, initiator, and solvents was cast onto the PDMS mold and UV 

cured. Patterned and unpatterned (blank) hydrogel samples were produced in the same fashion 

(see Experimental Section).  Hydrogel replicas of the microstructures were swollen in a solvent, 

DI water, PBS, 60% ethanol, or absolute ethanol, until they delaminated from the mold. Peeling 

the hydrogels from the PDMS mold without initially swelling the hydrogel resulted in ripping, 

incomplete transfer of the micropillar pattern, clogging, or damage to the PDMS mold (Figure   

3-4). 
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Figure 3-4. An SEM image of a hydrogel that was peeled off from the mold without swelling; the 

inset shows an enlarged SEM image; only the bases of the pillars can be seen as the micropillars 

were ripped off from the base due to the force applied when peeling off. 

 

The SEM images shown in Figure 3-5 confirm the successful transfer of the micropillar array 

pattern onto the hydrogel surface. The replication process was particularly fast and had the 

highest fidelity and reproducibility when 60% ethanol was used as the swelling solvent. Cross-

sections of the patterned hydrogels were imaged using light microscopy to confirm that the 

micropillars were completely and successfully reproduced. Images in Figure 3-5(e) and Figure 

3-5(j) illustrate that the micropillars on the hydrogel surface are replicas of the original 

micropillar patterns (d =1 µm; h = 2 µm, or 6 µm) etched into the master Si wafers. 
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Figure 3-5. The SEM images of poly(HEMA/DMAEMA/TEGDMA) hydrogels patterned with 

micropillars. (a-d) Hydrogels patterned with micropillars of height = 2 μm and (f-j) height =        

6 μm. Poly(HEMA/DMAEMA/TEGDMA) hydrogels were patterned with microstructures in a 

variety of swelling solvents including: (a, f) DI water, (b, g) PBS, (c, h) 60% ethanol, and (d, i) 

absolute ethanol. Light microscopy images of hydrogel cross-sections confirm that the heights of 

the micropillars patterned onto the hydrogel surface correspond to the original heights of (e) 2 µm 

and (j) 6 µm etched into the Si wafer. 

 

3.3.3. Swelling studies 

The graphs in Figure 3-6 show the amount of time it takes for blank (unpatterned) 

poly(HEMA/DMAEMA/TEGDMA) hydrogels to swell in a particular solvent. At equilibrium, 

the percent mass swelling ratio (%Q) of free and blank hydrogels exceeds 200% and 100% in the 

solvents 60% ethanol and absolute ethanol, respectively (Figure 3-6(a) and Figure 3-7). This 

result was in agreement with published work by Guvendiren et al. on swelling studies of 

poly(HEMA) hydrogels in ethanolic solutions.78 It took approximately 10 h for the free hydrogels 

to reach the maximum %Q in 60% ethanol and absolute ethanol. In DI water and PBS, it only 

took 2 h for the hydrogels to reach the equilibrium percent mass swelling ratio of 40% (Figure   

3-6(a)). A significantly reduced %Q was observed in PDMS confined hydrogels upon swelling as 

compared to the free hydrogels (Figure 3-6(b)). This occurs due to the delamination of the 

hydrogel from the PDMS mold prior to complete swelling. 
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Figure 3-6. The swelling behavior of the poly(HEMA/DMAEMA/TEGDMA) hydrogel in DI 

water, PBS, 60% ethanol, and absolute ethanol. The percent mass swelling ratio (%Q) of (a) free 

and (b) PDMS-confined poly(HEMA/DMAEMA/TEGDMA) as a function of time;                   

(c) A comparison of %Q of the free and PDMS-confined hydrogels in the various swelling 

solvents within a time span of 6 h. [Note: The experiments were performed with blank 

(unpatterned) hydrogels.] 
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Figure 3-7. The percent mass swelling (%Q) of poly(HEMA/DMAEMA/TEGDMA) hydrogel-

PDMS composites immersed in (a) PBS, (b) DI water, (c) 60% ethanol, and (d) absolute ethanol. 

PDMS molds and blank hydrogel samples are included for comparison. Blank samples and 

hydrogels patterned with micropillars of h = 2 μm show no significant difference in percent 

swelling. A larger difference in percent swelling is observed for surfaces patterned with 

micropillars of h = 6 μm, but this was attributed to the slightly different dimensions in these 

samples (see Experimental Section). 

 

The mass swelling ratio decreased 1.5-fold in absolute ethanol and 3-fold in 60% ethanol when 

confined by PDMS (Figure 3-6(b) and Figure 3-6(c)). Such a change in %Q was not observed 

for swelling experiments carried out in either DI water or PBS (Figure 3-6(c)) since the %Q is 

only 40% and delamination of the hydrogel does not occur readily.  
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The poly(HEMA/DMAEMA/TEGDMA) hydrogels swollen in 60% ethanol delaminated from the 

PDMS mold before the 10 h mark (Figure 3-6(b)). Nevertheless, in both DI water and PBS, 

PDMS confined hydrogels took much longer (10 h) to reach the same equilibrium %Q (40%) 

when compared to free hydrogels (2 h) (Figure 3-6(b)). Similar swelling behavior was observed 

for hydrogels patterned with micropillar arrays irrespective of their height (Figure 3-7). 

 

During the swelling experiments carried out for the PDMS-confined hydrogels, limited expansion 

of the hydrogel along the transverse direction generated a compressive stress inside the polymer 

network resulting in curvature of the PDMS mold upon swelling. Figure 3-8(a) shows 

representative images of the curvature of the hydrogel-PDMS composite with time for hydrogels 

swollen in 60% ethanol. The largest angle of curvature was found to be at θ = 29° (8 h) for the 

hydrogel-PDMS composite swollen in 60% ethanol, which is consistent with the maximum %Q 

observed in this system prior to delamination (Figure 3-8(b)). 

 

Delamination occurs once the compressive stress exceeds the adhesive forces between the 

hydrogel and the substrate,131-133 which for this system occurs when the angle of curvature of the 

swollen hydrogel and PDMS mold is greater than 20°, or at a volumetric swelling ratio of 2.01 

(Figure 3-9). This angle is achieved in 60% ethanol or absolute ethanol and results in self-

delamination (~2 h in 60% ethanol). When the hydrogels confined in the PDMS molds are 

swollen in PBS and DI water, the edges of the hydrogel are mechanically released from the mold 

and the PDMS is immobilized onto a surface to facilitate the delamination process. The swollen 

hydrogels delaminate from the mold after 3 - 4 days. 
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Figure 3-8. A curvature is induced in the PDMS mold as the confined hydrogel is swollen in 

solvent: (a) The digital photographs that show the curvature of the hydrogel-PDMS composite as 

it swells in 60% ethanol, (b) The angle (θ) of the hydrogel-PDMS composite as a function of time 

when the hydrogel swells in various solvents. 
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Figure 3-9. The volumetric swelling ratio (Qv) of (a) blank, free (b) blank, PDMS-confined 

poly(HEMA/DMAEMA/TEGDMA) hydrogel in PBS, DI water, 60% ethanol, and absolute 

ethanol, (c) A comparison of Qv of the free and confined hydrogels.  

 

The curvature measurements follow the same trend as the %Q values where there is no significant 

effect from the pattern or the pillar height (Figure 3-10). When the composites are immersed in 

PBS and DI water the swelling of the hydrogels is insufficient for the delamination and the 

curvature measurements reach a plateau at ~30 h. In contrast, the swelling of the hydrogel 

facilitates self-delamination when swollen in 60% and absolute ethanol; however, the patterned 

hydrogels require a longer time to delaminate from the mold than the blank hydrogels. 
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Figure 3-10. The curvature of poly(HEMA/DMAEMA/TEGDMA) hydrogel-PDMS composite 

immersed in (a) PBS, (b) DI water, (c) 60% ethanol, and (d) absolute ethanol. PDMS molds and 

unpatterned hydrogel samples are included for comparison. Unpatterned and patterned hydrogels 

with micropillars of h = 2 μm show no significant difference in curvature. A larger difference in 

curvature is observed for surfaces patterned with micropillars of h = 6 μm, but this was attributed 

to the slightly different dimensions in these samples (see Experimental Section). 
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3.3.4. Determination of solubility parameter of the hydrogel 

Successful swelling of poly(HEMA/DMAEMA/TEGDMA) in ethanolic solutions is attributed to 

a favorable solubility parameter of the hydrogel in the solvent. As reported in previous studies, 

the maximum swelling is achieved when the solvent has the same solubility parameter (δ) as the 

polymer, (δSolvent ~ δPolymer).125,126,134 The solubility parameter of the polymer, δPolymer, by inference, 

is approximately the same value as the solvent having the highest affinity towards the polymer. 

The solubility parameter of the poly(HEMA/DMAEMA/TEGDMA) hydrogel (δPolymer) was 

estimated to be 25 – 27 MPa1/2 using the method developed by Gee125 (Figure 3-11), since 

the highest swelling of the hydrogels was observed with solvents having an interaction 

parameter in this range. Additionally, the swelling of the hydrogels was evaluated in a series of 

ethanol-water mixtures (Figure 3-12). The maximum swelling ratio of this series of ethanolic 

solutions was obtained in 60% ethanol (the solubility parameter is approximately 35 MPa1/2): a 

solvent that swells the hydrogel moderately. This result is in agreement with swelling studies of 

poly(HEMA) hydrogels previously published by Guvendiren et al.78 Solvents having moderate to 

strong polar interactions will generally be good solvents for poly(HEMA/DMAEMA/TEGDMA), 

which can be attributed to the hydroxyl and amine pendant groups on the polymer chain. 

Consequently, 60% ethanol, as a solvent with a moderate solubility parameter in the hydrogel, 

allows for moderate swelling that results in delamination without ripping or tearing of the 

hydrogel.  
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Figure 3-11. The volumetric swelling of the poly(HEMA/DMAEMA/TEGDMA) hydrogel vs 

solubility parameter in different solvents. 

 

Figure 3-12. The percent mass swelling (%Q) in a series of ethanol-water mixtures. 
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3.3.5. Mechanical testing and determination of network parameters 

The mechanical properties of the hydrogel are important to the replication process. The  elastic 

modulus of ~8 MPa obtained for the poly(HEMA/DMAEMA/TEGDMA) hydrogels facilitates 

the fabrication process since this value is comparable to the elastic modulus of PDMS and other 

UV curable polyurethane polymers that have been successfully patterned with micro and 

nanoscale features.115 Poly(HEMA/DMAEMA/TEGDMA) is one of the softest hydrogels to be 

patterned with such small features, although  Chandra et al. previously demonstrated that 

poly(HEMA) based polymers could be patterned at the sub-micron level when the elastic 

modulus ranged from 1580 – 1790 MPa.33,57 The mechanical properties of 

poly(HEMA/DMAEMA/TEGDMA) hydrogels are shown in Figure 3-13 and were evaluated in 

both the swollen and unswollen states. Tensile tests were performed on the swollen hydrogel 

samples after they reached equilibrium swelling (15 – 20 h). The elastic modulus, ultimate tensile 

strength, and break strain were determined from stress-strain curves (Figure 3-13(a) and Figure 

3-13(b)). As expected, the highest values for the elastic modulus (~8 MPa), ultimate tensile 

strength (~570 kPa), and break strain (~1.92 mm/mm) were obtained for the unswollen polymer 

samples (Figure 3-13). Additionally, when the poly(HEMA/DMAEMA/TEGDMA) samples 

were swollen in 60% ethanol, a 35-fold reduction in the elastic modulus was measured compared 

to the unswollen sample. Swelling the polymer in the other solvents resulted only in a 20-fold 

decrease in the elastic modulus: 414 kPa (in PBS), 357 kPa (in DI water), and 372 kPa (in 

absolute ethanol). Ultimate tensile strength decreased a marked 27- fold in 60% ethanol, but only 

by about an order of magnitude in the other solvents evaluated (Table 3-2). Similarly, the lowest 

break strain, 0.09 mm/mm, was measured in 60% ethanol (Table 3-2). Even though the 

polymerization was not rigorously controlled under an inert atmosphere, the mechanical 

properties of the random co-polymer poly(HEMA/DMAEMA/TEGDMA) were consistent (Table 

3-2). The reduced mechanical properties of the hydrogel swollen in 60% ethanol likely result 

from stretching and rupture of some of the physical cross-links between the polymer chains 
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during swelling.135,136 This can be verified in Figure 3-13(c) by a statistically significant 

reduction in the cross-linking density. The reduction in the mechanical properties upon swelling 

may also aid in the replication of the micropillar pattern by the soft-lithography process.2,135,137 

 

Figure 3-13. Evaluation of mechanical properties and the network parameters of 

poly(HEMA/DMAEMA/TEGDMA) hydrogels. Stress-strain curves of (a) unswollen and          

(b) swollen cross-linked polymers, (c) Cross-linking density (*p < 0.01 between the groups 

indicated) and (d) 𝑀𝐶
̅̅ ̅̅  of hydrogels was determined based on the swelling solvent. 
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Table 3-2. Elastic modulus, ultimate tensile strength, and break strain of 

poly(HEMA/DMAEMA/TEGDMA) hydrogels after swelling in each solvent for 15 – 20 h. 

 

The elastic modulus was calculated from the slope of the linear part (initial slope) of the stress-strain curve 

The ultimate tensile strength and the break strain were respectively determined from the stress and strain 

corresponding to the break point where the samples ruptured. 

 

The weight-average molecular weight (𝑀𝑤
̅̅ ̅̅̅) of the polymer, as determined by the static light 

scattering, was 63.1 (±2.17) kDa (the second virial coefficient, A2, was 2.27 × 10-4 (±4.42 × 10-5) 

mL mol/g2).  

 

3.3.6. Evaluation of biological properties 

The cell attachment and cytotoxicity of poly(HEMA/DMAEMA/TEGDMA) hydrogel were 

evaluated using HeLa cells. The cells were cultured on blank (unpatterned) and patterned 

hydrogel substrates for seven days and the number of cells attached to the samples was assessed 

daily. Figure 3-14 illustrates the attachment and viability of HeLa cells cultured on hydrogel 

substrates over seven days. As depicted by the graph in Figure 3-14(a), at day 1, the attachment 

of HeLa cells onto the poly(HEMA/DMAEMA/TEGDMA) hydrogel was significantly enhanced 

when the hydrogel surface is patterned with micropillars. Interestingly, attachment of HeLa cells 

on the patterned hydrogels was comparable to the attachment of cells on tissue culture plastic 

(There is no statistical significance between the number of cells adhered to the control and 

Swelling Solvent Elastic Modulus 

(kPa) (×102) 

Ultimate Tensile 

Strength (kPa) 

Break Strain 

(mm/mm) 

Unswollen 81.0 (±6.8) 570 (±97) 1.92 (±0.142) 

PBS 4.14 (±0.74) 55.9 (±16.8) 0.150 (±0.035) 

DI water 3.57 (±0.63) 52.8 (±10.3) 0.137 (±0.021) 

60% Ethanol 2.20 (±0.36) 21.0 (±4.9) 0.090 (±0.028) 

Absolute ethanol 3.72 (±0.37) 40.0 (±17.0) 0.215 (±0.007) 
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surface-patterned hydrogel when p < 0.05). Figure 3-14(b) shows a graph of the number of HeLa 

cells present on the hydrogel substrates and control wells over the seven days. The number of 

cells attached to the hydrogels with micropillar arrays is significantly greater than the blank 

(unpatterned) hydrogel throughout the experiment. This confirms that hydrogels with micropillar 

arrays support the retention of cells on the substrate. A similar trend was observed by Schulte et 

al. on starPEG (PEG = poly(ethylene glycol) hydrogels where the attachment of fibroblast cells 

increased when the hydrogels were patterned with pillars.138 The improved attachment of cells on 

the patterned hydrogel surfaces can be attributed to the decreased hydrophilicity of the hydrogel 

due to the presence of the micropillars on the surface.28,33 

 

The results show that the micropillar pattern promotes attachment of cells on the material; 

however, the height of the pillars did not appear to have a prominent effect on the attachment of 

HeLa cells. Furthermore, Figure 3-14(b) shows that the number of cells attached to the hydrogels 

increases, day by day, over the duration of the experiment. Hence, it is clear that 

poly(HEMA/DMAEMA/TEGDMA) hydrogel, at the composition used in this study, does not 

inhibit the proliferation of HeLa cells. The cytotoxicity of the material was further evaluated by 

the cell viability assay. The cell viability was determined at two time frames: 24 h and seven 

days. Figure 3-14(c) shows that more than 90% of the adhered cells on the hydrogel are viable at 

both time frames. Since the cell viability on poly(HEMA/DMAEMA/TEGDMA) is comparable 

to the viability of cells on tissue culture plastic, it is clear that the material is not toxic at the 

composition that was used in the fabrication process. The cell viability assay was performed on 

both blank (unpatterned) and patterned hydrogels (with 2 µm and 6 µm pillars). The viability 

remained the same in all hydrogels, regardless of the presence of the pillars or the pillar height. 

So that, the data obtained for hydrogel patterned with 2 µm pillars is shown for clarity (Figure   

3-15). 
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Figure 3-14.  The attachment of HeLa cells onto hydrogels (a) after 24 h and (b) over 7 days; (c) 

Graph of the viability of HeLa cells grown on hydrogel samples with 2 µm pillars after 24 h and   

7 days; Polystyrene or tissue culture plastic was used as the control. The statistical significance 

between the groups is indicated (*p < 0.05). 
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Figure 3-15. Viability of HeLa cells cultured on hydrogel samples for 1 day and 7 days; the blue 

stain (NucBlue® Live) stained the nuclei of all cells while the red stain (propidium iodide) 

stained the nuclei of dead cells. 

 

Figure 3-16 illustrates the bright-field and fluorescence microscopy images of HeLa cells 

attached to the tissue culture plastic (a-d), blank hydrogel (e-h), and hydrogels patterned with 

micropillars of 2 µm (i-l), or 6 µm (m-p), at day 3. On the hydrogel substrates, the HeLa cells 

maintain mostly a rounded morphology with only some cells exhibiting elongated or spread 

morphologies (Figure 3-16(e)-(p)). In contrast, cells develop elongated or spread morphology on 

the tissue culture plastic (Figure 3-16(a)-(d)). As seen in the phalloidin-stained images, these 

rounded cells grew little protrusions that provide evidence for the attachment of cells on the 

hydrogel substrate. The rounded morphology of the HeLa cells is not indicative of cell death as 
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has been shown by Lyndon in his study where the mammalian cells were cultured on synthetic 

hydrogels with high equilibrium water content (70 – 90%).27 Another interesting observation was 

that the cells formed clusters as they grew on the hydrogel substrates (Figure 3-16). The cells 

appeared to interact more strongly with each other rather than with the substrate, led to the 

formation of cell clusters.138 An increase in cell number, growth of protrusions, formation of cell 

clusters, and viability data clearly show that the HeLa cells continuously grow and proliferate on 

the hydrogel substrates even though they do not have spread morphology. SEM images of 

surface-patterned hydrogels with HeLa cells also confirmed that the micropillars on the hydrogels 

remain intact even after seven days of cell culture (Figure 3-17). 

 

Figure 3-16. Fluorescence microscopy images of HeLa cells on hydrogels cultured for 3 days:  

(a-d) control experiment (polystyrene/tissue culture plastic), (e-h) blank (unpatterned) hydrogels,   

(i-l) hydrogels patterned with 2 µm pillars, and (m-p) hydrogels patterned with 6 µm pillars. 
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Figure 3-17. The SEM images of HeLa cells on hydrogel samples bearing (a) 2 µm pillars and 

(b) 6 µm pillars after 7 days of cell culture. The SEM images shown in the insets were taken at an 

angle of 45° to clearly show that the micropillars remain intact during the cell culture period.  

 

3.4. Conclusions 

This study demonstrated that micropillar arrays could be successfully and reproducibly patterned 

onto soft poly(HEMA/DMAEMA/TEGDMA) hydrogels by soft-lithography techniques when the 

hydrogels were swollen in solvents until delamination. The fabrication process is simple, less 

cumbersome, and results in the uniform and complete transfer of pattern onto the hydrogel 

surface. It is worthwhile to note that a soft poly(HEMA/DMAEMA/TEGDMA) hydrogel, which 

has an elastic modulus ~8 MPa, was patterned with a micropillar pattern of an aspect ratio as high 

as 6. The key factor was the utilization of solvents with moderate solubility parameters that are 

closer to the solubility parameter of the polymer, poly(HEMA/DMAEMA/TEGDMA). The 

PDMS serves a good material to utilize as a mold since it does not swell in many solvents,139 

allows for the isotropic swelling of hydrogel, and the dimensions of the mold can be easily 

designed.  
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The cell attachment and cytotoxicity studies show that the micropillar pattern on the hydrogel 

promoted the attachment of HeLa cells onto poly(HEMA/DMAEMA/TEGDMA) hydrogel, 

which is non-adhesive otherwise. In vitro studies show that the material is not toxic to the cells. It 

is anticipated that the surface pattern will support the attachment of other types of mammalian 

cells such as stem cells and hence poly(HEMA/DMAEMA/TEGDMA) hydrogel bearing 

micropillars, will  be suitable for the potential applications in tissue engineering as scaffolding 

materials. This work is expected to facilitate the patterning of soft hydrogels for applications such 

as force sensors,92 biosensors,98,99 non-biofouling coatings,140 drug delivery systems,124 

actuators,102 and as scaffolds in tissue engineering.111 
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CHAPTER IV 
 

 

SURFACE-PATTERNED POLY(HEMA/DMAEMA/TEGDMA) HYDROGELS TO 

CONTROL SIZE AND NUMBER OF STEM CELL AGGREGATES AS A POTENTIAL 

SCAFFOLDING MATERIAL 

 

4.1.       Introduction  

Tissue engineering, an emerging area in biomedical sciences, has opened up new pathways to 

cure damaged or malfunctioning tissues by either in vivo regeneration or implantation of tissues 

grown in vitro.37 The construction of a functional tissue, in vivo or in vitro, utilizes stem cells and 

biomaterials as scaffolds that directly interact with the tissue. The scaffolding material not only 

provides the structural support to growing tissues, but also can determine the fate of the cells.141 

Polymers,142-144 ceramics,145-146 and metals147-149 are commonly used as biomaterials in tissue 

engineering for past few decades;150-153 nevertheless, the incompatibilities,154 in mechanical 

properties,155 porosity,156 and degradability,157 of the material with surrounding tissues158 and 

blood159 causes complications and creates a need to improve the properties of existing 

biomaterials or to design novel materials with desirable characteristics.160 As reported by 

Wichterle et al., among various polymeric materials, chemically or physically cross-linked 

hydrophilic polymer networks (or hydrogels) comprise the three key features that biomaterials 

should possess: desirable water content, resistance to biological reactions, and permeability to 

metabolic products.161 Moreover, favorable mechanical properties, biocompatibility,
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degradability, and the ability to cast into different shapes and sizes enable hydrogels to resemble 

the natural biological environment;162 thus, hydrogels have been broadly studied for potential 

biological applications including scaffolds in tissue engineering,142,163,164 delivery systems for 

therapeutic agents,6,165,166 and in bionanotechnology.167,168 

 

Use of hydrogels as scaffolding materials requires an excellent control over structure, surface 

chemistry, and physical properties that are crucial for regulating the responses of cells. Previous 

studies report that the mechanical properties,42,169,170 surface topography,138,171 wettability,172 and 

surface functional groups173,174 are some of the factors that direct adhesion,172,175 orientation,176,177 

migration,178 shape,179 phenotype,180,181 proliferation,182,183 and differentiation of stem cells.108,184 

Hydrogels can be modified either chemically or physically by changing the composition173,185 and 

patterning surfaces with different topographical features138 respectively, to acquire the desired 

properties. 

 

Since the surface topography controls the biological properties of materials, hydrogels patterned 

with nano and microscale features have been extensively studied to obtain a better understanding 

and manipulation of the functions of cells.178,186 The topographical features on intrinsically non-

adhesive hydrogel surfaces, such as poly(ethylene glycol) (PEG), were found to improve the 

attachment of cells.138 Moreover, cells adopt a specific morphology based on the underlying 

structural features and subsequently differentiate along a distinct lineage. For an example, 

Guvendiren et al. reported that the hMSCs maintained an elongated shape when cultured on 

poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels bearing lamella-shaped wrinkles and 

round morphology on the hexagonal wrinkles. They have further observed that osteogenic 

differentiation was upregulated on the lamella pattern and adipogenic differentiation was 

upregulated on the hexagonal wrinkle pattern.45 The morphology of cells, as demonstrated by 

previous research, is another important parameter that influences the differentiation pathway.45,187 
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A round morphology of stem cells induces adipogenesis or chondrogenesis whereas a well-

spread, elongated morphology facilitates osteogenesis; however, for the chondrogenic 

differentiation of hMSCs, the formation of a three dimensional matrix is also important.188  

 

Recently, several studies have reported utilization of three-dimensional cell culture conditions 

because the traditional two-dimensional culture systems fail to resemble the natural tissue 

environment.189-191 Three-dimensional cell cultures have been commonly developed by various 

strategies, which include cell pellet culture,192 forced aggregation technique,193  as well as 

culturing cells on non-adhesive surfaces194 and surfaces bearing nano195 and micro196 

topographical features such as pillars, wells, and grooves. Among different topographical 

features, pillars supported the round morphology and aggregation of cells.195,197  Even though, the 

effect of nano and micropillars on the morphology and differentiation of stem cells has been 

widely explored,44,111,198 the manipulation of cell aggregates with the aid of pillar dimensions has 

not been broadly investigated. 

 

In this work, the poly(HEMA/DMAEMA/TEGDMA) (DMAEMA = N,N-(dimethylaminoethyl)-

methacrylate and TEGDMA = tetraethylene glycol dimethacrylate) hydrogels patterned with 

hexagonal arrays of micropillars with a diameter (d) of 1 m, pitch (dint) of 3 m, and a height (h) 

of either 2 m or 6 m were utilized to induce aggregation of human mesenchymal stem cells 

(hMSCs), within 24 h after seeding the cells. (See Chapter 2 for the fabrication of surface-

patterned poly(HEMA/DMEMA/TEGDMA) hydrogel.) Moreover, the use of the height of 

micropillars to control the number and size of the cell aggregates was studied. The largest cell 

aggregates were formed on hydrogels bearing 6 µm pillars whereas the 2 µm pillars yielded the 

highest number of cell aggregates. Furthermore, the differentiation studies revealed that the 

hMSCs are capable of differentiating along adipogenic and chondrogenic pathways on the 
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poly(HEMA/DMAEMA/TEGDMA) hydrogel. Overall, this work demonstrates that surface-

patterned poly(HEMA/DMAEMA/TEGDMA) hydrogel has potential applications as a 

scaffolding material since the micropillars can be used to manipulate the number and size of 

hMSC aggregates while improving the cell attachment properties of the material.    

 

4.2.       Experimental  

4.2.1.    Materials  

SYLGARDTM 184 silicone elastomer (PDMS) was purchased from Dow Corning (Midland, MI).  

Bone-marrow-derived human mesenchymal stem cells (hMSCs) at passage 2 were purchased 

from the Institute for Regenerative Medicine, Texas A&M University, College of Medicine 

(College Station, TX). Minimum essential medium α (α-MEM) and ethylene glycol were 

obtained from Thermo Fisher Scientific (Waltham, MA). Fetal bovine serum–premium select 

(FBS) and isopropyl alcohol 99% were purchased from Atlanta Biologicals (Flowery Branch, 

GA) and Pharmco-AAPER (Shelbyville, KY), respectively. HEMA, DMAEMA, TEGDMA,      

2-hydroxy-2-methylpropiophenone, albumin from bovine serum (BSA), 2-phospho-L-ascorbic 

acid trisodium salt, dexamethasone, β-glycerol phosphate disodium salt pentahydrate, insulin 

(human recombinant), isobutylmethylxanthine, Oil Red O, goat serum donor herd, Pronase E, 

Fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse Immunoglobulin secondary 

antibody (anti-mouse IgG (whole molecule)-FITC) produced in goat, 10% neutral buffered 

formalin solution, Triton® X-100, Tween® 20, and agarose low gelling temperature were 

purchased from Sigma-Aldrich (St. Louis, MO). Anti-collagen type II primary antibody (COLII) 

was obtained from Developmental Studies Hybridoma Bank, University of Iowa (Iowa City, IA) 

and mouse preimmune IgG was from Vector Laboratories (Burlingame, CA). GibcoTM Penicillin 

Streptomycin (Pen Strep), Trypsin-EDTA (0.05%), Dulbecco’s phosphate buffered saline (PBS) 

powder, Molecular ProbesTM Rhodamine phalloidin, and InvitrogenTM 4′,6-diamidino-2-

phenylindole (DAPI) were purchased from Life Technologies (Grand Island, NY).  Transforming 
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growth factor beta 1 (TGF β1) human recombinant (HEK) and Corning ITS + Premix universal 

culture supplement were obtained, respectively, from PromoCell GmbH (Heidelberg, Germany) 

and Corning Inc. (Corning, NY).  

 

4.2.2.    Fabrication of surface-patterned poly(HEMA/DMAEMA/TEGDMA) hydrogels 

The hydrogel samples bearing surface patterns of micropillars of different heights (2 µm and        

6 µm) were prepared using PDMS molds – the negative replicas of original surface-patterned Si 

wafers. (Generation of the surface pattern on Si wafer was described previously in chapter 2). The 

monomers HEMA, DMAEMA, TEGDMA were mixed with the initiator 2-hydroxy-2-

methylpropiophenone in a ratio of 38:2:1:1 mol/mol respectively, and the solvent mixture 

containing water and ethylene glycol (1:1 mol/mol). The composition of the hydrogel was 

adapted from work published by You et al.68 After mixing thoroughly, the mixture was poured 

over the PDMS molds, immobilized onto Petri dishes, and cured with 365 nm UV light using a 

DymaxTM light curing system (225 mW/cm2, Model 5000 Flood) for 90 s. After cooling to room 

temperature, the polymer-PDMS composites were submerged in PBS and allowed to swell until 

delaminated from the molds. The edges of the hydrogels were mechanically released to facilitate 

the delamination process. After delamination, the hydrogels were stored in PBS until used for 

further experiments. 

 

The unpatterned or blank hydrogel samples were generated from the same methodology except 

for using a piece of a bare silicon wafer in preparation of PDMS molds. The PDMS molds were 

prepared as mentioned elsewhere.44,66,67 Briefly, SylgardTM 184 silicone elastomer and curing 

agent were mixed thoroughly in a ratio of 10:1 wt. % and poured over the Si wafer, degassed in a 

vacuum to remove air bubbles, and thermally cured in an oven (BarnsteadTM) at 75 °C for 5 – 6 h. 
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4.2.3.  Stem cell studies on surface-patterned poly(HEMA/DMAEMA/TEGDMA) hydrogels 

4.2.3.1. Preparation of hydrogels and cells  

After fabrication, the blank and surface-patterned hydrogel samples were sterilized by 

autoclaving in PBS (30 min, 121 °C). The disks were punched from the sterile hydrogel samples 

with a diameter of 5 mm or 10 mm to fit into wells of 24 and 96-well plates, respectively, using 

cork borers, under sterile conditions. Prior to seeding the cells, the hydrogel disks were placed in 

the well plates and pre-incubated in complete culture media (α-MEM, supplemented with    

16.7% FBS, and 1% Pen Strep (v/v)) overnight at 37 °C and 5% CO2 in a CO2 supplied 

humidified incubator (Symphony 5.3 A, VWR, Radnor, PA). Each cell experiment was 

performed in triplicates unless otherwise mentioned. 

 

Frozen hMSCs (5 × 105 cells/mL, 0.5 mL) at passage 3 were recovered and expanded in a T125 

flask containing complete culture medium at 37 °C and 5% CO2. At 70% confluency, the cells 

were subcultured in T175 flasks containing complete culture media to produce enough cells for 

further studies. For subculturing, the cells were detached from T125 tissue culture flask by 

incubating with trypsin-EDTA for 2 min at 37 °C and 5% CO2.  Complete culture media (double 

the volume of trypsin-EDTA) was added to deactivate trypsin and the cell suspension was 

centrifuged at 2000 rpm for 2 min. The cell pellet was dispersed in new growth media, mixed 

with Trypan blue (Thermo Fisher Scientific) and the cell count was obtained using a Countess® 

automated cell counter (Thermo Fisher Scientific). The cells were divided into T175 flasks and 

cultured at 37 °C and 5% CO2 in the humidified incubator until 70% confluent, to produce 

enough cells for the experiments. All cell experiments were performed with cells at passage 4. 

Statistical analysis of cell experiments was determined by ANOVA (single factor at p < 0.05), 

unless otherwise mentioned. 
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4.2.3.2. The effect of surface pattern and seeding density on morphology of stem cells 

The morphology of hMSCs on poly(HEMA/DMAEMA/TEGDMA) hydrogels was evaluated 

based on the micropillar pattern and seeding density. At 70% confluency, the cells were detached, 

centrifuged, and counted as mentioned in the subculturing process. The spent media was aspirated 

from the wells containing the hydrogels and new media was added to each well. Then the samples 

were seeded with hMSCs (seeding density = 1.0 × 104 cells/cm2). Control experiments were 

carried out in the same way except for culturing cells on blank wells without hydrogel disks 

(tissue culture plastic). After 24 h, the cells were fixed with 10% neutral buffered formalin for   

30 min, permeabilized with Triton® X-100 in 0.1% BSA in PBS for 15 min, and stained with 

Rhodamine phalloidin (1:1000 dilution in 0.1% BSA and 0.1% Tween® 20 in PBS) for 2 h at 

room temperature in the dark. Each step was followed by two rinsing steps in 0.1% BSA in PBS. 

The nuclei were counterstained with DAPI (1:5000 dilution in 0.1% BSA and 0.1% Tween® 20 

in PBS) for 5 min at room temperature in the dark. Finally, the samples were washed with PBS 

and imaged using an Olympus-IX83 inverted microscope. 

 

To evaluate the effect of seeding density on morphology, hMSCs were seeded on hydrogels, 

patterned with 2 µm pillars, at different seeding densities: 7.8 × 104 cells/cm2, 1.6 × 105 cells/cm2, 

3.1 × 105 cells/cm2, and 1.6 × 106 cells/cm2. After 72 h of culture, the cells were fixed and stained 

with Rhodamine phalloidin and DAPI, and imaged from RFP and DAPI channels. 

 

4.2.3.3. Evaluation of attachment of hMSCs onto hydrogels and effect of surface pattern 

The hMSCs were cultured on the blank and surface-patterned hydrogels as previously mentioned. 

The seeding density was 3.0 × 104 cells/cm2. The attachment and formation of cell aggregates 

were analyzed after 24 h of culture by fixing and staining the cells with DAPI. The DAPI-stained 

images were analyzed from ImageJ 1.47t software (Wayne Rasband, National Institutes of 

Health, USA) to quantify the cells present on the hydrogel surface. The sliding paraboloid method 
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was used to subtract background and the rolling ball radius was set to 50.0 pixels. After 

background subtraction, integrated density was measured for individual cell aggregates. The 

integrated density of an aggregate was divided from that of a single nucleus to quantify the 

number of nuclei in an aggregate. Similarly, the number of total nuclei was determined from the 

same method except for taking the nuclei present in the entire image into account.   

 

Cell aggregates are loosely attached to the surface due to the hydrophilicity of the hydrogel and 

can be easily washed away during media exchange.  To evaluate the loss of cell aggregates from 

media exchange, media was replaced either by aliquots (Method A) or completely (Method B) 

using a micropipette (seeding density was 3.1 × 104 cells/cm2 and the cells were cultured for five 

days by refreshing media every other day). In Method A, a portion of spent media (250 µL) was 

removed and replaced with the same volume of new media ensuring that the hydrogel surface was 

covered throughout the entire time. The process was repeated 3 - 4 times to make sure that the 

spent media was replaced with sufficient new media. In Method B, the spent media was 

completely (1 mL at once) removed before adding new media. Bright-field images were taken 

before each media change. After five days, the aggregates were counted on each sample and 

compared to the number of aggregates present at day 1. Two methods were statistically compared 

using a Student T-test (p < 0.05). 

 

 

 

 

 



74 
 

4.2.4.    Differentiation of hMSCs on poly(HEMA/DMAEMA/TEGDMA) hydrogels 

4.2.4.1. Adipogenic differentiation 

The hMSCs at passage 4 were seeded on hydrogel substrates at three different seeding densities 

(3.1 × 104 cells/cm2, 1.6 × 105 cells/cm2, and 2.6 × 106 cells/cm2). After two days, the spent 

medium was replaced with either complete culture medium or adipogenic differentiation medium. 

The adipogenic differentiation medium consisted of α-MEM, 10% FBS, 1% Pen Strep, 1 µM 

dexamethasone, 0.5 mM isobutylmethylxanthine, and 1 µg/mL insulin. The media was refreshed 

every other day and the experiments were carried out for two weeks. For the control experiments, 

the hMSCs were cultured on blank wells without hydrogel disks. 

 

After two weeks, the cells were fixed in 10% neutral buffered formalin for 2 h at room 

temperature and stained with Oil Red O according to the manufacturer’s instructions to assess 

adipogenic differentiation. Briefly, 0.3% Oil Red O stock solution, prepared in isopropanol, was 

diluted with distilled water to generate a 0.18% working solution. The fixed cells were incubated 

in 60% isopropanol for 5 min followed by staining with the Oil Red O solution for 15 min at 

room temperature. Then the cells were washed with distilled water until the water became clear. 

Bright-field images of each sample were obtained from the Olympus-IX83 inverted microscope. 

 

4.2.4.2. Chondrogenic differentiation 

For chondrogenic differentiation experiments, hMSCs at passage 4 were seeded on hydrogel 

substrates at a seeding density of 1.6 × 105 cells/cm2. The cells were allowed to grow for two days 

and the spent media was replaced with either complete culture medium or chondrogenic 

differentiation medium. The chondrogenic differentiation medium contained α-MEM provided 

with high glucose (4.5 g/L), 10% FBS, 1% Pen Strep, 1 × 10-7 M dexamethasone, 10% ITS + 

Premix tissue culture supplement, 50 µg/mL 2-phospho-L-ascorbic acid, and 10 ng/mL TGF β1. 

TGF β1 factor and 2-phospho-L-ascorbic acid were added to a mixture of α-MEM, glucose, FBS, 
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Pen Strep, dexamethasone, and ITS + Premix tissue culture supplement prior to use. The cells 

were incubated at 37 °C and 5% CO2 for two weeks and the media was refreshed every other day.  

 

For the positive control experiments, hMSC spheroids were formed as previously reported.199     

A 2% solution of agarose (in DMEM, 150 µL) was poured into the wells of a 96-well plate. After 

solidification of the agarose, cells were seeded at a density of 1.6 × 104 cells/mm2 and incubated 

at 37 °C and 5% CO2 for 24 h to form the spheroids. Then, the cell spheroids were transferred to 

centrifuge tubes containing either chondrogenic differentiation media or normal culture media 

and incubated at 37 °C and 5% CO2 for two weeks. For the negative control experiments, the 

cells were seeded in wells without hydrogel disks for the same time period in either chondrogenic 

differentiation medium or normal culture medium. 

 

Chondrogenic differentiation of the cells was confirmed by Alcian blue staining and 

immunostaining experiments. At the end of the experiment, the cells were fixed with 10% neutral 

buffered formalin for 2 h and washed with DI water. Then, the samples were incubated in the 

Alcian blue staining solution, prepared in 3% acetic acid solution (pH 2.5), for 4 h in the dark at 

room temperature. The samples were washed with the destaining solution (3% acetic acid) thrice. 

After each wash, the samples were left in DI water for 20 min and finally stored in PBS. Bright-

field images of each sample were obtained from the Olympus-IX83 inverted microscope. 

 

For immunostaining experiments, the cells were fixed and then digested in Pronase E solution for 

20 min for epitope unmasking. After the Pronase E digestion, the cells were permeabilized with 

0.1% Triton® X-100 in PBS for 15 min, rinsed with PBS, followed by incubation in 10% goat 

serum in PBS for 1 h. Then the samples were incubated in primary antibody solutions (anti-

collagen type II primary antibody solution (COLII), 1:10 dilution in 1% goat serum or IgG, 

1:2000 dilution in 1% goat serum) for 3 h at room temperature. After rinsing with PBS twice, the 
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samples were incubated in the secondary antibody (FITC-conjugated goat anti-mouse IgG) 

solution (1:50 dilution) in PBS with 0.05% Tween® 20 for 2 h at room temperature. The samples 

were washed with PBS three times, counterstained with DAPI for 5 min, and imaged by the 

Olympus-IX83 inverted microscope using GFP and DAPI channels. 

 

4.2.5. Degradation of poly(HEMA/DMAEMA/TEGDMA) hydrogel 

The degradation of the fabricated hydrogel under physiological conditions was evaluated for        

8 weeks. After fabrication, the blank hydrogel samples were dried in a vacuum desiccator to a 

constant weight (w1). Then the samples were immersed in PBS and incubated at 37 °C and       

5% CO2. The samples were removed from PBS on a weekly basis and dried in a vacuum 

desiccator to a constant weight (w2). The percentage (%) weight loss was determined by the 

following equation: 

 % 𝑤𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 =
(𝑤1 −  𝑤2)

𝑤1
 ×  100 (4-1) 

 

4.2.6. Wettability of poly(HEMA/DMAEMA/TEGDMA) hydrogel 

The wettability of blank and surface-patterned hydrogels was evaluated by measuring the water 

contact angle. Prior to contact angle measurements, the blank hydrogels were dried by several 

methods: oven-dried at 120 °C overnight, dried in a vacuum desiccator for 3 days, or blot-dried 

with a paper tissue, just before the measurements, to remove the excess solution on the surface 

[The samples were stored in PBS after fabrication and rinsed with DI water before drying.] The 

patterned hydrogel samples were also blot-dried with paper tissues to remove moisture on the 

surface [The patterned samples were not dried in the oven or desiccator since the drying process 

may result in the collapse of the micropillars.] 
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The contact angle was measured by the sessile drop method using a laboratory-made contact 

angle instrument which is equipped with a movable stage to hold the sample, a micropipette to 

deliver a water droplet onto the surface of the sample, and a high-resolution Proscope camera 

which can record 15 fps at a 640 × 480 resolution.200 Images of deionized water droplets (5 µL) 

placed on at least four different spots on the top surface of a single hydrogel sample were used for 

contact angle analysis. Three samples were tested for each type of hydrogel. The contact angle 

was analyzed from low bond axisymmetric drop shape analysis (LB-ADSA) method of the drop 

analysis plug-in of ImageJ 1.47t software. 

 

4.3.       Results and discussion 

4.3.1.    Analysis of morphology of hMSCs on hydrogel samples  

Poly(HEMA/DMAEMA/TEGDMA) hydrogels bearing hexagonal arrays of microscale pillars on 

the surface were fabricated using UV initiated radical polymerization and soft-lithography 

technique, as mentioned in the experimental section. The micropillar patterns have following 

dimensions: diameter (d) = 1 m, height (h) = 2 m or 6 m, and interpillar spacing (dint) = 3 m. 

The behavior of hMSCs on the fabricated material was investigated by seeding cells on both 

blank or unpatterned and surface-patterned hydrogels.  

 

The morphology of the hMSCs cultured on hydrogels was analyzed 24 h after seeding the cells. 

The fluorescent images in Figure 4-1 depict an elongated morphology of cells on both blank and 

patterned hydrogels in contrast to the spread and flat morphology observed on the tissue culture 

plastic. The hMSCs cultured on hydrogels have small cell bodies compared to the tissue culture 

plastic; however, irrespective of the surface pattern, the cell bodies are relatively similar in size 

on all hydrogels. Moreover, the hMSCs grew flat lamellipodia-like extensions on the blank 

hydrogel whereas, on the patterned surfaces, thin filopodia-like structures were produced         
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(the arrowheads point out the flat (Figure 4-1(a)) and thin (Figure 4-1(b) and (Figure 4-1(c)) 

protrusions). The extensions show little or no difference in branching on the surface-patterned 

hydrogels in comparison to the blank hydrogels. Nevertheless, on the polystyrene surface, the 

cells formed actin stress fibers whereas on the hydrogel surface the actin stress fibers were not 

prominent.  

 

Figure 4-1. Fluorescent images (10×, imaged through RFP and DAPI channels) of hMSCs on 

hydrogels with (a) no pattern (blank), (b) 2 µm pillars, (c) 6 µm pillars, and (d) tissue culture 

plastic; the actin filaments and nuclei were stained with Rhodamine phalloidin and DAPI, 

respectively. The arrows indicate the spread and thin extensions grown from the cell bodies. 

 

Interestingly, on the hydrogel samples, the majority of the cells tend to aggregate and form 

clusters (Figure 4-1(a)-(c)). The formation of cell aggregates can be attributed to the cell-cell 

interactions stronger than the cell-surface interactions.138 Figure 4-2 shows an enlarged image of 

a cell aggregate on a hydrogel sample with 2 µm pillars and highly branched-extensions grown 
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from the aggregate. In contrast, such extensions were hardly found on the blank hydrogels. 

Compared to the hydrogels patterned with 2 µm pillars, the cell aggregates produced more 

extensions on the samples with 6 µm pillars. The micropillars may serve as anchoring points to 

the cells, which may facilitate the attachment of the cell aggregates onto the hydrogel (Figure    

4-2(a), Figure 4-3(a) and Figure 4-3(b)). 

 

Figure 4-2. (a) Bright-field and (b) fluorescent images of a cell aggregate on a hydrogel surface 

bearing 2 µm pillars; actin and nuclei were stained with Rhodamine phalloidin and DAPI, 

respectively. 

 

SEM images in Figure 4-3 show that hMSCs cultured on the hydrogel surface tend to form either 

elongated (Figure 4-3(a)) or spheroid (Figure 4-3(b)) aggregates. Elongated cell aggregates 

formed thin, hair-like protrusions, which are few micrometers long whereas spheroid aggregates 

produced thin, short protrusions. In contrast to the cells attached to the hydrogels bearing 

micropillars, on the blank hydrogels, cells produced large and spread cell bodies (Figure 4-3(c)) 

and flat, branched extensions.   
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Figure 4-3. The SEM images of hMSCs aggregates on hydrogel samples bearing (a) 2 µm pillars, 

(b) 6 µm pillars and (c) no pillars (blank) 

 

The effect of seeding density on the formation of cell aggregates was investigated using the 

following seeding densities: 7.8 × 104 cells/cm2, 1.6 × 105 cells/cm2, 3.1 × 105 cells/cm2, and     

1.6 × 106 cells/cm2.  At the low seeding density more single cells were observed; as the seeding 

density increased the number of single cells decreased and the formation of cell aggregates was 

prominent (Figure 4-4). 

 

Figure 4-4. Morphology of hMSCs cultured on poly(HEMA/DMAEMA/TEGDMA) hydrogel 

samples at (a-d) low seeding density (1.6 × 105 cells/cm2) and (e-h) high seeding density          

(1.6 × 106 cells/cm2). At low seeding density single cells are observed on the hydrogels, but at 

high seeding densities, the aggregates are prominent. 
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The effect of surface pattern toward the formation of cell aggregates was evaluated from the 

DAPI-stained images of hMSCs cultured for 24 h on hydrogels. The intensity corresponding to 

the nuclei in a cell aggregate was divided by the intensity of the nucleus of a single cell to 

determine the number of nuclei (or cells) in an aggregate (x). Based on the number of nuclei in an 

aggregate, the cell aggregates were categorized into three classes: small, intermediate, and large. 

A small cell aggregate had less than 10 nuclei while a large one had more than 100 nuclei.        

An intermediate cell aggregate had between 10 to 100 nuclei. 

 

As demonstrated by the graph in Figure 4-5(a) there is a noticeable difference in the number of 

small and large cell aggregates, depending on the surface pattern. On the blank hydrogels, the 

cells tend to form small and intermediate aggregates whereas on the surface-patterned hydrogels 

formation of large cell aggregates is prominent. Specifically, the formation of small aggregates 

was promoted by micropillars of 2 µm height while the 6 µm pillars facilitated the formation of 

large cell aggregates. Interestingly, there was no statistically significant effect from the 

micropillars for the formation of intermediate cell aggregates (10 to 100 nuclei) although the 

number of intermediate aggregates increased on the patterned hydrogels. The graph in Figure    

4-5(b) shows the average number of cells attached to each type of hydrogel and indicates that the 

attachment of hMSCs was significantly enhanced by the micropillars on the hydrogel surface. 

Here, the total number of nuclei seen in the DAPI-stained images, which includes nuclei of both 

single cells and aggregates, was considered in the quantification. 
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Figure 4-5. Attachment of hMSCs onto hydrogel samples after 24 h of seeding cells; (a) average 

number of cell aggregates (x is the number of nuclei in an aggregate) and (b) average number of 

cells on blank and surface-patterned hydrogel samples. *indicates the statistical significance 

between the groups (p < 0.05). 

 

Several days of cell culture may cause the loss of cell aggregates during media exchanges. The 

loss of cell aggregates was evaluated by either changing media in aliquots (Method A), to ensure 

that the hydrogel surface was covered with media during the entire time, or completely (Method 

B). The comparison between the two methods showed that replacing the media in aliquots 
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(Method A) facilitates the retention of cell aggregates on hydrogels after five days of culture; 

however, the effect was statistically significant only on the hydrogels with 2 µm pillars (Figure 

4-6). On the hydrogels bearing 6 µm pillars, the number of aggregates neither increased nor 

decreased considerably during the five days when the media was exchanged in aliquots. In 

contrast, the number of aggregates was increased on the blank hydrogels after five days. The 

complete removal of spent media (Method B) caused loss of cell aggregates on all hydrogels, but 

the effect was not prominent on the blank as compared to the patterned hydrogels. Moreover, 

both methods had a similar effect on the hydrogels patterned with 6 µm pillars (since there is no 

statistically significant difference at p < 0.05) although the retention of cell aggregates was 

slightly improved upon changing media in aliquots. Overall, the results suggest that the retention 

of cell aggregates on the poly(HEMA/DMAEMA/TEGDMA) hydrogel can be enhanced by slow 

and less-disturbed media changes. The key point is that one must ensure that the surface is 

covered with media during the entire media exchange and to minimize any disturbances. 

 

Figure 4-6. The effect of media change on retention of cell aggregates on hydrogel samples; 

Method A – media was changed in aliquots so that the hydrogel surface was covered by media 

entire time, Method B – spent media was completely removed before adding new media.  
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4.3.2.    Differentiation of hMSCs on poly(HEMA/DMAEMA/TEGDMA) hydrogels 

Here, the differentiation of hMSCs along chondrogenic and adipogenic differentiation pathways 

was investigated. Formation of cell aggregates on the poly(HEMA/DMAEMA/TEGDMA) 

hydrogel motivated the differentiation studies along chondrogenic lineage whereas the soft nature 

of the fabricated hydrogel inspired the adipogenic differentiation studies.  

 

4.3.2.1. Adipogenic differentiation  

Adipogenic differentiation was evaluated by staining cells with Oil Red O after two weeks of 

culture (Figure 4-7). Both single cells and aggregates cultured with adipogenic supplements 

showed positive staining for Oil Red O indicating adipogenic differentiation. The oil droplets 

stained with Oil Red O were clearly visible in single cells on hydrogels (Figure 4-7(b)), which 

were similar to the positive control experiment (Figure 4-7(d)). Individual oil droplets could not 

be imaged directly in the aggregates due to the high intensity caused by the large number of cells 

in an aggregate. Nevertheless, the dark red color of the cell aggregates (Figure 4-7(c)) was 

considered a positive indicator for adipogenic differentiation. The single cells on the hydrogels, 

which were treated with normal culture medium, stained very light red color showing little or no 

adipogenic differentiation. In the negative control experiments, the cells did not produce oil 

droplets as indicated by the lack of staining with Oil Red O (Figure 4-7(h)). 

 

The effect of seeding density toward adipogenic differentiation of hMSCs was also studied. The 

cell aggregates were stained positively for adipogenesis, regardless of the seeding density. 

Interestingly, the large cell aggregates formed on the hydrogel samples with 6 µm pillars stained 

a dark red color even in the absence of adipogenic supplements (Figure 4-8). The red color 

appeared on the edges of the cell aggregates can be an indication of positive adipogenic 

differentiation and the black-brown color in the center is due to the poor penetration of light 

through the aggregate caused by the thickness of the aggregate. 
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Figure 4-7. Light microscopy images of hMSCs stained with Oil Red O after two weeks of 

culture on (a, e) blank (unpatterned) hydrogels, (b, f) hydrogels patterned with 2 µm pillars,       

(c, g) hydrogels patterned with 6 µm pillars, and (d, h) control experiment (polystyrene/tissue 

culture plastic). AM = Adipogenic differentiation medium, CCM = complete culture medium 

 

 

Figure 4-8. Light microscopy images of Oil Red O-stained, large cell aggregates formed on 

hydrogel samples bearing 6 µm pillars treated with normal culture medium at different seeding 

densities (a) 1.6 × 105 cells/cm2 and (b) 2.6 × 105 cells/cm2. 
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4.3.2.2. Chondrogenic differentiation  

After two weeks of culture, chondrogenic differentiation of hMSCs was characterized by two 

methods: Alcian blue staining and immunostaining. The light microscopy (bright-field) images in 

Figure 4-9 show the cell aggregates stained blue in color, a positive indicator of chondrogenic 

differentiation. Moreover, the cell aggregates formed on the hydrogels show the positive staining 

even in the absence of external growth factors (Figure 4-9(e)-(g)). Under both treatments, the cell 

aggregates were positively stained with Alcian blue, but not the single cells and the effect of 

pillar height was not appear to be prominent. In contrast, no positive staining was observed in the 

cells grown on tissue culture plastic in both chondrogenic and complete culture media (Figure   

4-9(d) and Figure 4-9(h)). After 10 days of treatment with chondrogenic differentiation media, 

the cells on the tissue culture plastic started to detach from the wells which reduced the total 

number of cells (Figure 4-9(d)). This is in line with the observation made by Glennon-Alty and 

coworkers where the cells at the edge of the substrate detached and retracted to the center to form 

multilayers.201  

 

Figure 4-9. Light microscopy images of hMSCs stained with Alcian blue after two weeks of 

culture on (a, e) blank (unpatterned) hydrogels, (b, f) hydrogels patterned with 2 µm pillars,       

(c, g) hydrogels patterned with 6 µm pillars, and (d, h) control experiment (polystyrene/tissue 

culture plastic). CHM = Chondrogenic differentiation medium, CCM = complete culture medium 



87 
 

Immunostaining for type II collagen, the major extracellular component in cartilage,167 was 

performed to further confirm the chondrogenic differentiation of hMSCs on 

poly(HEMA/DMAEMA/TEGDMA) hydrogel. Data obtained from Alcian blue staining and 

attachment study together suggest that the hydrogels patterned with 6 µm pillars are the most 

suitable for chondrogenic differentiation. [The former showed that the micropillar height did not 

significantly affect on differentiation of cells as long as aggregates were formed and the latter 

confirmed that hydrogels patterned with 6 µm pillars yielded large cell aggregates.] Since large 

spheres of hMSCs resulted a higher expression of chondrogenic markers, as observed by Lu et 

al.202, hydrogels with 6 µm pillars were chosen for the immunostaining experiments. As shown by 

the fluorescence images in Figure 4-10(c) and Figure 4-10(g), type II collagen was detected in 

the cell aggregates in both media. Unlike the chondrogenic differentiation medium which induces 

the differentiation of cells, the complete culture medium supports the continuous growth of cells; 

therefore, large cell aggregate can be seen on the hydrogel samples treated with normal culture 

medium. Similar to the cell aggregates on the hydrogels, the hMSC spheroids produced by the 

agarose well method were positively stained for type II collagen in both media. Type II collagen 

was not detected in the cells grown on tissue culture plastic (negative control).  

 

Generally, in vitro chondrogenesis is performed in serum-free media mainly because of the 

poorly defined composition of serum and undesirable effects introduced by serum on 

differentiation experiments, which are highly dependent on external growth factors.203-205 On the 

other hand, serum is essential for attachment and growth of cells.205 In this study, the experiments 

performed in the serum-free chondrogenic medium failed due to the loss of cell aggregates after 

few days of culture (Figure 4-11). Since poly(HEMA/DMAEMA/TEGDMA) hydrogel itself has 

low cell attachment properties the FBS is crucial for maintaining the desired cell attachment. 

Therefore, the chondrogenic medium used for the above experiments required FBS.   
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Figure 4-10. Light microscopy images of cell aggregates on hydrogels bearing 6 µm pillars: (a, e) 

bright-field, (b, f) DAPI, (c, g) immunostained for type II collagen (COL II), and (d, f) overlay of 

DAPI and COL II images. CHM = Chondrogenic differentiation medium, CCM = complete 

culture medium 

 

 

Figure 4-11. Light microscopy images of hMSCs cultured in chondrogenic differentiation 

medium (a) without FBS (serum-free) and (b) with FBS; the cells were stained with Alcian blue. 

 

The immunostaining experiments were carried out in 24-well plates (diameter of hydrogel disks = 

10 mm) since the initial experiments performed in 96-well plates (diameter of hydrogel disks =   

5 mm) were unsuccessful due to the formation of one or two large aggregates instead of several 

small and intermediate aggregates. Most of these cell aggregates were loosely attached and 

washed away during media changes.   



89 
 

As seen in both adipogenic and chondrogenic differentiation experiments, the hMSCs 

differentiated along both lineages even in the absence of externally provided growth factors. 

Differentiation of hMSCs in the normal culture medium can be attributed to the endogenous 

production of growth factors by the cells and the modulation of differentiation pathway by the 

properties of the substrate, i.e. stiffness and surface chemistry.201,206-208 On the other hand,      

Park, et al. reported that surface properties alone are unable to promote the differentiation along a 

specific lineage, especially to preferentially select between chondrogenesis and adipogenesis; 

thus the external growth factors are necessary.209  

 

4.3.3.    Degradation of poly(HEMA/DMAEMA/TEGDMA) hydrogel  

The degradation study shows that the poly(HEMA/DMAEMA/TEGDMA) hydrogel is very stable 

at the physiological conditions. The experiment was performed for 8 weeks and the hydrogels 

showed only a 2.4% weight loss after 8 weeks of incubation in PBS at 37 °C (Figure 4-12). 

Previous studies report that non-degradable hydrogels restrict cell spreading and promote round 

morphology, because the cells are incapable of degrading the polymer chains to obtain sufficient 

space for their spreading and movements, but the viability and proliferation of cells were not 

affected.210-212 These studies suggest that, in addition to the surface chemistry, the low 

degradability of poly(HEMA/DMAEMA/TEGDMA) hydrogel may provide an extra support to 

the formation of aggregates by limiting spreading of the cells. However, introduction of 

biodegradable groups into the poly(HEMA/DMAEMA/TEGDMA) hydrogel, maintaining the 

ability to induce formation of cell aggregates, would be favorable in tissue engineering 

applications.   
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Figure 4-12. The graph of % weight loss for poly(HEMA/DMAEMA/TEGDMA) hydrogel as a 

function of time. 

 

4.3.4.    Wettability of poly(HEMA/DMAEMA/TEGDMA) hydrogel 

The wettability of the fabricated hydrogel was determined by measuring contact angle from the 

sessile drop method. Table 4-1 presents the contact angles obtained for blank and surface-

patterned hydrogel samples. As expected, the contact angle of the hydrogel increased from     

~55° (blank) to ~67° (2 µm pillars) and ~72° (6 µm pillars) indicating a decrease in 

hydrophilicity. However, drying of the samples in an oven at 120 °C completely evaporated water 

and the samples were completely dry; thus the surface became hydrophobic (contact angle ~95°). 

When the samples were blot-dried or dried in a vacuum desiccator, the contact angles were ~56° 

and ~57°, which might be due to the incomplete removal of water. An increase in hydrophobicity, 

resulting from the micropillars, supports the enhanced attachment of cells on the surface-

patterned hydrogels.28,33 
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Table 4-1. Contact angle measurements of hydrogel samples subjected to various drying 

methods. 

Hydrogel Sample Contact Angle (°) 

Blank (dried in a desiccator) 56.707 (±3.955) 

Blank (blot-dried) 55.464 (±4.387) 

2 µm pillars (blot-dried) 67.113 (±0.850) 

6 µm pillars (blot-dried) 71.968 (±1.652) 

Blank (oven-dried at 120 °C) 94.698 (±2.176) 

 

4.4.       Conclusions  

This study shows that poly(HEMA/DMAEMA/TEGDMA) hydrogels patterned with micropillar 

arrays on the hydrogel surface provide excellent control over the size of the cell aggregates. 

Micropillars also enhance the attachment of cells to the hydrogel surface. It is noteworthy that the 

manipulation of morphology and size of the aggregates was achieved by physical cues without 

chemically modifying the hydrogel. Furthermore, this study suggests that the retention of cell 

aggregates can be increased by slow, less-disturbed media exchanges to ensure the hydrogel 

surface is covered with media during the entire time. Finally, the differentiation studies revealed 

that the poly(HEMA/DMAEMA/TEGDMA) hydrogel does not inhibit the differentiation of 

hMSCs aggregates along both adipogenic and chondrogenic lineages regardless of the presence of 

the external growth factors. Overall, this study demonstrates that the surface-patterned 

poly(HEMA/DMAEMA/TEGDMA) hydrogels can be potentially used as a scaffolding material 

for engineering adipose and cartilage tissues. 
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CHAPTER V 
 

 

SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

In this study, a hydrogel based on 2-hydroxyethyl methacrylate (HEMA), N,N-(dimethyl-

aminoethyl)methacrylate (DMAEMA), and tetraethylene glycol dimethacrylate (TEGDMA) was 

synthesized. The hexagonal arrays of microscale pillars with dimensions of diameter (d) = 1 m, 

height (h) = 2 m or 6 m, and interpillar spacing (dint) = 3 m were transferred onto the surface 

of hydrogels using a soft-lithography technique. Here, a poly(dimethylsiloxane) (PDMS) mold 

was used as the intermediate stamp which had the negative of the original pattern. This study 

revealed that the swelling of the hydrogel until delamination was successful for transferring the 

micropillars onto the hydrogel, instead of the lift-off method which is generally used for 

demolding in soft-lithography. The fastest method for pattern transfer was found to be the 

immersion in 60% ethanol due to notable swelling. In deionized water and phosphate buffered 

saline (PBS) the swelling was insufficient to promote self-delamination; thus, the PDMS mold 

was immobilized onto a Petri dish and the hydrogels were mechanically released from the edges 

to facilitate the delamination. 

 

The swelling of the hydrogel confined in the PDMS mold induced a curvature in the hydrogel-

PDMS composite. The hydrogel itself delaminated from the PDMS mold when the angle of 

curvature exceeded 20 °, therefore, the angle can be used as a successful measure to predict the 

self-delamination of the hydrogel. Furthermore, properties such as swelling of the hydrogel in 
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different solvents, network parameters, solubility parameter, and mechanical properties were 

determined to better understand the structure and swelling behavior of the fabricated hydrogel. As 

well, the study was further extended to explore the temperature dependency of swelling of the 

hydrogel and swelling kinetics. Among the swelling solvents used in the study, 60% ethanol was 

found to be the best solvent for the poly(HEMA/DMAEMA/TEGDMA) hydrogel. The solubility 

parameter was estimated to be between 25 - 27 MPa1/2 and the elastic modulus was ~8 MPa. The 

mechanism of initial absorption of solvents was likely to have more contribution from Fickian 

kinetics and the swelling behavior based on the temperature follows the typical trend where the 

swelling passes through a minimum between 40 - 50 °C. 

 

As the poly(HEMA)-based hydrogels are well known for biological applications such as tissue 

engineering, the cell attachment and cytotoxicity of the fabricated hydrogel were evaluated using 

HeLa cells and human mesenchymal stem cells. The studies of HeLa cells demonstrated that the 

hydrogel is not cytotoxic and the micropillars improved the attachment of cells to the hydrogel. 

Furthermore, the stem cells aggregated on the poly(HEMA/DMAEMA/TEGDMA) hydrogel 

indicating low attachment. However, the micropillar patterns were able to improve the number of 

cell aggregates compared to the blank hydrogel. Moreover, the height of the micropillars 

influences the number and size of the cell aggregates as the 2 µm pillars facilitated the formation 

of small and intermediate cell aggregates while the 6 µm pillars supported large aggregates. The 

differentiation studies confirm that the adipogenic and chondrogenic differentiation of stem cells 

can be promoted on the hydrogel. The micropillar arrays indirectly affect the differentiation of the 

stem cells by controlling the formation of aggregates. Overall, the surface-patterned 

poly(HEMA/DMAEMA/TEGDMA) hydrogel was fabricated using the soft-lithography 

technique and the properties of the hydrogel were analyzed in detail to have a better 

understanding of the network structure and swelling behavior. As well, the potential of the 

biological applications of this hydrogel was demonstrated from cell studies. 
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As future studies, the poly(HEMA/DMAEMA/TEGDMA) polymer can be synthesized with 

different ratios of HEMA:DMAEMA:TEGDMA  in the monomer feed to tune the properties of 

the material. Changing the composition will alter the swelling properties of the hydrogel which 

may affect the pattern-transfer process. As well, the change in composition may further enhance 

the cell attachment properties of the material. Obtaining the desired cell adhesion properties yet 

maintaining the aggregation of stem cells will be an interesting direction for future investigations 

related to biological applications. Furthermore, cell attachment properties can be improved by 

introducing extracellular matrix components such as collagen or fibronectin. Once the in vitro 

studies successfully show the potential tissue engineering applications of the 

poly(HEMA/DMAEMA/TEGDMA) polymer, this study can be extended to in vivo studies. 
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