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Abstract: Deep neural networks have been widely applied in various fields of many 
industries such as medical, security, and self-driving cars. They even surpass human 
performance in image recognition tasks; however, they have a worrying property. Neural 
networks are vulnerable to extremely small and human-imperceptible perturbations in 
images that lead them to provide wrong results with high confidence. Moreover, 
adversarial images that fool one model can fool another even with different architecture 
as well. Many studies suggested that a reason for this transferability of adversarial 
samples is the similar features that different neural networks learn; however, this is just 
an assumption and remains a gap in our knowledge of adversarial attacks. Our research 
attempted to validate this assumption and provide better insight into the field of 
adversarial attacks. We hypothesize that if a neural network representation in one model 
is highly correlated to the neural network representations of other models, an attack on 
that network representation would yield better transferability. We tested this hypothesis 
through experiments with different network architectures as well as datasets. The results 
were sometimes consistent and sometimes inconsistent with the hypothesis. 
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CHAPTER I 
 

 

INTRODUCTION 

Deep neural networks have been widely applied in various fields of industries such as medical, 

security, and self-driving cars, and surpassed human performance in image recognition tasks; 

however, a research by Szegedy et al. [6] discovered that neural networks had a worrying 

property. They were vulnerable to extremely small perturbation and wrongly label perturbed 

images with high confidence (Figure 1). Additional studies [11, 12, 13] also confirmed the 

vulnerability of deep neural networks.  

An adversary could exploit this property to cause disastrous consequences. A self-driving car 

could potentially interpret a stop sign as an advertisement banner and crash into other vehicles. 

Studies in [1, 10] have found that printed adversarial samples were still able to fool deep learning 

models as in Figure 2.

Figure 1. Adversarial attack on an image using FSGM method 
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Recently, a security team from McAfee [8] shared their research with the public showing that a 

modified speed limit 35 sign as in Figure 3 could trick the Tesla into interpreting it as a speed 

limit 85 sign. Also, another worry property of neural networks is that adversarial samples for one 

model can fool the other models of the same input dataset [5, 14, 15].  

 

In the current stage of adversarial attack literature, there is limited knowledge on the 

transferability of the attack as to why it happens or how it happens. One suggestion is that 

Figure 2. Printed adversarial image can still fool deep learning models 

Figure 3. Attack on a speed limit sign in an experiment conducted by McAfee. 
Tesla car interpreted speed limit 35 as speed limit 85 
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different neural networks learn similar features on the same input space; therefore, they are 

vulnerable [3]. However, this is just an assumption. In this project, the main objective is to study 

the effect of network representations on the transferability of adversarial attacks as follows: 

• Obtain the similarity matrix of the models 

• Attack each layer of the simpler models and transfer to more complex models 

• Explore different network architectures and dataset 

This research is an initial attempt to validating the assumption of shared features leading to 

transferability as well as narrowing the gap of knowledge in the adversarial attack literature.
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

In 2013, Szegedy et al. [6] published a study showing that neural networks had some intriguing 

properties. They found out that neural networks did not generalize as well as we thought. 

Imperceptible engineered noise would cause neural networks to fail at their tasks (Figure 4) 

despite being able to resist random decently. Szegedy’s research has opened up a whole new gap 

in our understanding of neural networks. Even though many efforts have been put into the 

literature, our knowledge remains limited in this area. Our study explores the unknown area and 

contributes to narrowing this gap. 

Figure 4. Neural networks do not generalize well with adversarial examples (a) and (b), even though they are robust to 
random noise (c) 
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Based on Szegedy’s work, Goodfellow et al. [2] introduced the fast gradient sign method (FGSM) 

that inspired many other attacks including the one we will utilize in our research. The idea of this 

attack is simple. Instead of minimizing the value of the loss function by using gradient descent, 

the attack performs a small perturbation in the directions that will maximize the loss function 

(gradient ascent) (Figure 1). This work acted as the basis for the activation attack that we used in 

our research to further explore the field of adversarial attacks. 

Papernot et al. [5] dug deeper into the black box scenario and provided a practical attack on real-

world image classifiers (Figure 5). The authors used a substitute model that mimics the decision 

boundary of the oracle model and then attack the substitute. The generated adversarial samples 

were then used on the oracle model and achieved a great success rate. Our project extended 

Papernot’s research by applying the idea of using a substitute model to fool the target model to 

perform further experiments on the transferability. 

 

With transferability, as mentioned before, a suggestion is the similarity of learned features of the 

models. The idea that sparked such a suggestion was the work of Yosinski et al. [7]. Their 

research inspires not only the transfer learning area but also the study in black-box adversarial 

attacks. In [7], they substituted a portion of the un-trained models with the parts from pre-trained 

Figure 5. Substitute method on attacking a black-box model. The adversary train a substitute model with the use of 
both normal and synthesis input (via Jacobian-based Dataset Augmentation), perform attack on the this model to 
generate adversarial samples 
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models to test their hypothesis that neural networks learn similar features given the same input 

dataset (Figure 6). The results did confirm that using a portion of the pre-trained models helped 

speed up the learning process of the new models. Many transferable adversarial attack methods 

are based on Yosinki et al.’s work including [3]. 

 

The idea that neural networks learn similar features on the same input inspired Inkawhich et al. 

[3] to create a black-box attack with highly effective transferability. As mentioned before, this 

attack (activation attack) assumed that neural networks of the same input dataset learn similar 

features, and thus attacking features would yield a better transfer rate. Activation attack’s 

objective is to modify the activation of layers of an input image so that they will become similar 

to the activation of another image, thus fooling the model (Figure 7). 

Figure 6. Transfer learning process. Using pre-trained layers, the learning time is reduced significantly for the 
untrained models. This behavior suggests that models learn similar features. 
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Kornblith et al. [4] provided us a valuable tool to generate a similarity matrix (Figure 8) of two 

neural networks through layer-wise comparison and aggregation, details will be discussed in the 

following sections. 

 

Our research complements both [3] and [4] by utilizing their methods to perform experiments on 

the effect of similar features on the transferability of adversarial attack, thus, it provides a better 

insight for this inexplicit area of the literature.

Figure 7 . Activation Attack. Modifying the input image so 
that the activations of it becomes more similar to a target 
image 

Figure 8. Similarity Matrices between layers of one 
model to layers of other models even with different 
architectures 
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CHAPTER III 
 

 

METHODOLOGY 

This section explores the technical details of the tools we used in our experiments including the 

work of [3] and [4]. We will first discuss the metrics that were used to measure the similarity as 

well as the effectiveness of the transfer attack. Then, the activation attack of [3] will be discussed 

and followed by the experiment setup. 

A. Metrics 

1. Effectiveness of the transferability 

The measurement of the effectiveness of a transfer attack is considered the error that the attack 

introduces into the target model: 

Ei = Ea − En 

Where 𝐸𝐸𝑖𝑖 is the introduced error, 𝐸𝐸𝑎𝑎 is the error of the model on the adversarial samples, and 𝐸𝐸𝑛𝑛is 

the error of the model on the clean input. By using this measurement, we could completely focus 

on the effect of the attack that is carried on the model without having to pay attention to other 

details. 
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2. Similarity 

An intuitive approach to measure the similarity between two vectors is the dot product. 

⟨a, b⟩ = � aibi

n

ı̇=0

 

Higher value indicates that the two vectors are more related. Similarly, the dot product can be 

applied to comparing the similarity between two feature matrices as in Figure 9. X represents the 

activation of layer A for all of the input of one model and Y represents the activation of a layer in 

model Y. Each row is the flatten array of activated features of a model. 

 

When we calculate the norm on 𝑋𝑋𝑇𝑇𝑌𝑌, we could retrieve a single value for the comparison score. 

As mentioned in [4], instead of using feature comparison as above, we could use example 

comparison Figure 10 instead. 

Figure 9. Using the dot product to obtain the similarity between features of 2 different model 
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We could then turn 𝑋𝑋𝑋𝑋𝑇𝑇 and 𝑌𝑌𝑌𝑌𝑇𝑇 into vectors and take the dot product of them. According to [4], 

it turns out that the “sum of squared dot products between features is the same as the dot product 

between the reshaped inter-example similarity matrices” 

 ‖XTY‖22 = ⟨vec(XXT), vec(YYT)⟩ 

However, this similarity score is not usable without normalization. Layers of each model have 

different sizes. If a layer is large, it will lead to a higher score; therefore, a layer of model A 

might be less similar to a layer of model B but will have a higher similarity score if either layer of 

the models is large enough. To normalize this score, the geometric definition of the dot product is 

utilized.  

A ⋅ B = |A||B| cos(θ) ⇒ cos(θ) =
A ⋅ B

|A||B| 

The cosine of the angle θ between vector A and B will provide us a value in the range of [-1, 1]; 

however, since the vectors in our research are positive (we do not have negative pixels), cos(θ) 

Figure 10. Inter-example similarity matrix 



11 
 

returns a value between [0, 1]. Therefore, the normalized similarity score could be calculated as 

follows: 

‖XTY‖2

‖XXT‖‖YYT‖ =
⟨vec(XXT), vec(YYT)⟩

‖XXT‖‖YYT‖  

B. Attack Algorithm 

1. Loss Function 

𝐽𝐽𝐴𝐴𝐴𝐴(𝐼𝐼𝑡𝑡, 𝐼𝐼𝑠𝑠) = ‖𝑓𝑓𝐿𝐿(𝐼𝐼𝑡𝑡)− 𝑓𝑓𝐿𝐿(𝐼𝐼𝑠𝑠)‖2 = ‖𝐴𝐴𝑡𝑡𝐿𝐿 − 𝐴𝐴𝑠𝑠𝐿𝐿‖2 

The target of activation attack is to minimize the difference between the layers of the source and 

the target images, thus minimizing the loss function 𝐽𝐽𝐴𝐴𝐴𝐴. It is simply the Euclidean distance 

between the activation of the source and target images at a particular layer. For source image 𝐼𝐼𝑠𝑠, 

the activation at layer L is 𝑓𝑓𝐿𝐿(𝐼𝐼𝑠𝑠) = 𝐴𝐴𝑠𝑠𝐿𝐿 . Similarly, the target image 𝐼𝐼𝑡𝑡  is 𝑓𝑓𝐿𝐿(𝐼𝐼𝑡𝑡) = 𝐴𝐴𝑡𝑡𝐿𝐿 . 

2. Attack Algorithm 

Activation Attack utilizes a variant of the iterative momentum attack. With the use of the signs of 

momentum, it iteratively modifies each pixel in a small amount until some K steps are achieved. 

The formula for momentum is as follows: 

𝑚𝑚𝑘𝑘+1 = 𝑚𝑚𝑘𝑘 +
𝛻𝛻𝐼𝐼𝑘𝑘𝐽𝐽𝐴𝐴𝐴𝐴(𝐼𝐼𝑡𝑡 , 𝐼𝐼𝑘𝑘)

�𝛻𝛻𝐼𝐼𝑘𝑘𝐽𝐽𝐴𝐴𝐴𝐴(𝐼𝐼𝑡𝑡 , 𝐼𝐼𝑘𝑘)�
1

 

The momentum is considered the weighted accumulation of gradients, In here, we have 𝑚𝑚0 = 0 

and for iteration 𝑘𝑘, 𝐼𝐼𝑘𝑘  is the modified source image. Once we have the momentum, the next step 

is to perturb the source image in the direction of this momentum: 

𝐼𝐼𝑘𝑘+1 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑘𝑘 − 𝛼𝛼 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑘𝑘+1), 0,1) 
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3. Target Selection 

The activation attack relies on modifying an image so that its activation becomes similar to the 

target image. The steps to obtain the targets for the attack are as follows: 

• For each class of the input, select 10 samples and save them to a dictionary 

• For each input image, randomly select a target class, and return the target sample with the 

largest distance to the input image of the selected target class 

C. Experiment Setup 

We conducted our experiments on MNIST and CIFAR-10 datasets. In both datasets, we attacked 

the pre-trained traditional 2-layer CNN (CNN-2) and 3-layer CNN (CNN-3) (Figure 11), and 

observed the effect they would have on the other more complex models. We used default 

parameters as mentioned in [4] except for α = 0.25. 

 

The more complex models we used in this experiment were based on VGG (Visual Geometry 

Group) architecture [9]. This architecture utilizes the stacking of smaller convolutional filters, 

such as 3x3 instead of the traditional 5x5. Using this stacking nature, we created and pre-trained 

Figure 11. Network architectures used for performing the adversarial attack 
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CNN-5 for MNIST and VGG-2 and VGG-3 for CIFAR-10 as in Figure 12. For MNIST, we 

performed transferability test from CNN-2 to CNN-3, and CNN-5, and from CNN-3 to CNN-5. 

For CIFAR-10, we performed the test from CNN-2 to CNN-3, VGG-2, and VGG-3, and from 

CNN-3 to VGG-2 and VGG-3. 

 

We chose to experiment on VGG-based models because they were more complex than the 

traditional CNN but not as complex as models such as ResNet or GoogleNet; therefore, we could 

better observe the nature of transfer attack without having to worry about additional factors from 

the highly complex models that might affect the attack. 

 

Figure 12. More complex architectures used to observe the effect of transfer attack 
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CHAPTER IV 
 

 

FINDINGS 

Before the experiment, we predicted that if a layer of model A was more correlated the layers of 

model B, it would yield better transferability if we attacked that layer comparing to the other 

layers of model A. In Figure 13, when we summed up the total similarity score for each layer, we 

obtained a score of 0.3845 for 1st layer, 0.4197 for the 2nd layer, and 4.315 for the 3rd layer. By 

our prediction, attacking the 3rd layer should yield the highest 𝐸𝐸𝑖𝑖, then 2nd layer, and 1st layer 

should come last.  

 

 

Figure 13. Similarity matrix of CNN-3 and CNN-5 
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Indeed, in the case of transferring adversarial samples from CNN-3 to CNN-5, the results in 

Table 1 were consistent with our prediction.  

  
    Layer 1 Layer 2 Layer 3 

  𝐄𝐄𝐧𝐧 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 

CNN-3 0.008 0.204 0.196   0.358 0.35   0.534 0.526   

CNN-5 0.027 0.27 0.243 3.845 0.328 0.301 4.197 0.421 0.394 4.315 

Table 1. Transferability of CNN-3 to CNN-5 

However, that was not the case for all of the scenarios. Results from Table 2 suggested that when 

transferring from CNN-2 to CNN-3, despite having a larger similarity score (2.745 > 2.557), the 

attack on layer 1 (0.122) did not perform as well as the attack on layer 2 (0.155). 

  
    Layer 1 Layer 2 

  𝐄𝐄𝐧𝐧 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 

CNN-2 0.009 0.246 0.237   0.428 0.419   

CNN-3 0.008 0.13 0.122 2.745 0.163 0.155 2.557 
CNN-5 0.027 0.294 0.267 4.164 0.304 0.277 4.306 

Table 2. Transferability of CNN-2 to CNN-3 and CNN-5 

We observed the same behavior on the CIFAR-10 dataset. The results from Table 3 and 4 

followed our hypothesis in some cases such as CNN-2 to VGG-2 and VGG3, and did not in the 

other cases such as CNN-2 to CNN-3, CNN-3 to VGG-2 and VGG-3. 
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    Layer 1 Layer 2 

  𝐄𝐄𝐧𝐧 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 

CNN-2 0.449 0.588 0.139   0.68     

CNN-3 0.443 0.554 0.111 2.682 0.613 0.17 2.677 

VGG-2 0.424 0.533 0.109 3.281 0.568 0.144 3.629 

VGG-3 0.403 0.559 0.156 4.454 0.566 0.163 5.211 

Table 3. Transferability of CNN-2 to CNN-3, VGG-2, and VGG-3 

  
    Layer 1 Layer 2 Layer 3 

  𝐄𝐄𝐧𝐧 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 𝑬𝑬𝒂𝒂 𝑬𝑬𝒊𝒊 Similarity 

CNN-3 0.443 0.563 0.12   0.652 0.209   0.725 0.282   

VGG-2 0.424 0.557 0.133 3.161 0.538 0.114 3.591 0.521 0.097 3.539 
VGG-3 0.403 0.545 0.142 4.242 0.55 0.147 5.186 0.53 0.127 5.269 

Table 4. Transferability of CNN-3 to VGG-2 and VGG-3 

One possible reason for this inconsistent behavior that we believe is the significance of individual 

layers. In our experiments, we considered the similarity of a layer of model A to all of the layers 

in model B. However, the correlation of individual layers from model B might play a role in the 

transferability of the attack. For example, considering a 2-layer CNN (CNN-2) and a 3-layer 

CNN (CNN-3). Assume that the total similarity of layer 1 of CNN-2 to all of the layers in CNN-3 

is higher. If the correlation of layer 1 of CNN-2 to layer K of CNN-3 is less than the correlation 

of layer 2 to layer K, the attack on layer 2 may yield better results because the correlation to layer 

k is more significant compared to the other layers. Further research is necessary to study this 

behavior. 
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Another interesting behavior we observed in our results is that deeper layers tend to provide more 

error for the attack. We believe a reason for this is the nature of deep neural networks, where 

class-specific features extracted in the deeper layers are more sensitive compared to the general 

features extracted in the early layers.
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CHAPTER V 
 

 

CONCLUSION 

Our experiment contributed a deeper view into the transferability of adversarial attacks by 

extending the work of [3] and [4]. We explored the assumption that similar features lead to the 

transferability of adversarial attacks. The hypothesis that the higher similarity would yield a more 

efficient attack was used as the basis for our experiments. We found that the results were 

sometimes consistent and sometimes not consistent with our guess. Further research in the 

significance of individual layers is necessary to complete the view of the picture of this 

assumption. We also noticed that attacking the deeper layers tends to yield a more efficient 

attack. 
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