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Abstract: Identification and characterization of the Paleozoic Suwanee basin sedimentary 
sequence and the associated Pangea supercontinent transcurrent fault are critical in furthering our 
present understanding of tectonic history and its impacts today. However, explicit bounding of 
the Suwannee basin has manifested itself as difficult to delineate due to thick coastal plain cover, 
lack of well control and petrophysical analysis, and sparse seismic reflection data. The objective 
of this study is to present the results and analysis of two 2D seismic reflection datasets: 1) SC 
reflection profiles (collected 1979) and 2) SCO2 reflection profiles (collected December 2010 to 
January 2011) that demonstrate the prominent regional presence of a previously uninterpreted 
Paleozoic sedimentary section, the Suwannee basin sequence, near the Middleton Place 
Summerville Seismic Zone (MPSSZ) in onshore Eastern South Carolina, as well as associated 
structural deformation. Previously identified offshore, this package of low-frequency, near 
horizontal, laterally continuous reflectors are clearly separate and distinct from overlying 
Jurassic/Triassic sequences above the post-rift unconformity (PRU). The interpreted base of the 
Paleozoic sequence is defined by the lack of laterally continuous seismic reflectors marked by 
crystalline basement presence. It is believed that the Suwannee basin sequence can be mapped 
continuously over the entire study area, which is roughly 7,010 km2. Similar sedimentary 
sequences recognized from onshore exploration wells in Florida have been identified as part of 
the Suwannee basin sequence of Gondwanan origin. Identification of the presence and extent of 
these Gondwanan strata onshore implies: (1) the position of the Pangea supercontinent 
transcurrent fault lies roughly <40 km further northwest of the study area; (2) previously 
identified terranes (Brunswick, Charleston, Suwannee, Northern Florida) combine to represent 
Gondwana based on the size and presence of stable platform stratigraphy; (3) intraplate seismicity 
that occurs within the MPSSZ may be attributed to faulting observed within the study area. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Observation of a Paleozoic strata presence of Gondwanan (non-Laurentian) origin within the 

subsurface of southeastern United States was central in leading to Wilson’s (1966) influential 

work on the opening and closing of ocean basins (Boote and Knapp, 2016). Denoted as the 

Suwannee basin by King (1961), the sequence of early- to mid- Paleozoic strata was first 

identified from onshore petroleum exploration wells during the early 20th century in northern 

Florida, southern Alabama, and southern Georgia (Applin, 1951; Barnett, 1975) (Fig. 1a). 

However, continued identification of the Suwannee basin’s regional extent and associated 

boundaries of the Suwannee terrane (Fig. 1) have been challenging due to thick coastal plain 

cover, little analysis of deep well penetrations, and sparse onshore seismic reflection data 

(Williams and Hatcher, 1983; Tauvers and Muehlberger, 1987; Horton et al., 1989; Mueller at al., 

2014).  
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1.1 Suwannee Basin 

Extensive petroleum exploration during the early 20th century led to the discovery of Paleozoic 

age sedimentary rocks within the subsurface of the southeastern United States (Boote and Knapp, 

2016). First termed as the “Suwannee River Basin,” the Paleozoic sequence was found to be 

prominent in Florida, Georgia, and Alabama (Braunstein, 1957). The name was later shortened to 

the “Suwannee basin” (King, 1961). Given the continuous use of the term “Suwannee basin” to 

identify the region that contains the Paleozoic sedimentary sequence, this study will hold that 

convention in referencing the area containing the Paleozoic sedimentary sequence of Gondwanan 

terrane (Nelson et al., 1985; Poppe et al., 1995; Pollock et al., 2012, Boote and Knapp, 2016). 

Suwannee basin strata are distinct, both lithologically and faunally, from age-equivalent 

Appalachian foreland sequences (Boote and Knapp, 2016). Instead, the strata are closer related to 

similar age and faunal assemblage sedimentary rocks within the West Africa basins, such as the 

Bove Basin near Senegal and Guinea (Chowns and Williams, 1983; Boote and Knapp 2016). 

Furthermore, detrital zircon dating performed on the Suwannee basin sedimentary rocks revealed 

ages tying it to Gondwanan orogenic events not associated with those observed in southeastern 

Laurentian zircon records (Mueller et al., 1994; Mueller et al., 2014).  

The Paleozoic strata is characterized by Lower Ordovician quartzites, which are likely the result 

of sandstone exposure to partial, low-grade metamorphism, and Middle Ordovician to Middle 

Devonian fossiliferous shales and sandstones that overlie complex pre-Cambrian felsic volcanic 

and intrusive rocks (Applin, 1951; Barnett, 1975; Chowns and Williams, 1983) (Fig. 2).  
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Through the correlation of seismic refraction and reflection data alongside gravity and magnetic 

data, the Paleozoic sequence thickness onshore is expected to be 2.5-3 km, but wells drilled have 

penetrated only the upper 600 m of the sequence (Arden, 1974; Chowns and Williams, 1983; 

Thomas et al., 1989; Pollock et al., 2012). Further supporting Gondwanan deposition, the 

Fig. 1. (a) Map of southeastern North America (modified from Boote and Knapp, 2018) showing extent of Osceola 
arc (OA) constrained by Neoproterozoic intrusive (red dots) and extrusive (blue stars) rocks in the subsurface in 
relation to the Brunswick suture zone (BSZ; green bands) (Boote and Knapp, 2018). Subcrop of younger Paleozoic 
Suwannee Basin strata (SBS) lying unconformably above both the OA and BSZ shown in yellow (Boote and 
Knapp, 2018). Preserved lateral extent of the OA, BSZ, and SBS are limited by the younger Pangea supercontinent 
transcurrent fault (PSTF), Basement Hinge zone (BHZ), and Bahamas Fracture zone (BFZ). Black lines indicate 
seismic profiles used in (Boote and Knapp, 2018). Black stars represent the two wells in figure 1. (b) Magnetic 
anomaly map (modified from Boote and Knapp, 2018) in same area as figure 2a and seismic reflection profiles. 
Note spatial coincidence of Brunswick Magnetic anomaly (BMA) with BSZ locus. (c) Enlarged magnetic anomaly 
map of study area. Black lines indicate SCO2 and SC reflection seismic datasets used in this study, red stars 
indicate wells utilized that encountered Jurassic basalt, green stars indicate wells utilized that did encounter 
Jurassic basalt, red circles indicate refraction velocities greater than or equal to 5.4 km/s from (Ackermann, 1983) 
refraction velocity survey which indicate the presence of Jurassic basalt, green circles indicate refraction velocities 
less than 5.4 km/s which indicate no basalt presence.  



4 
 

 

Suwannee basin strata appear to represent a typical continental platform sequence with a mixed 

source of continental derived sands and marine muds that we expect to see in Gondwanan 

continental crust (Arden, 1974; Duncan, 1998). 

While previous studies have used the mappable extent of Suwannee basin rocks and associated 

Gondwanan affinity basement to attempt to delineate the boundaries of the Suwannee terrane 

onshore, there is a lack of constraint as far north as the Middleton Place Summerville Seismic 

Zone (MPSSZ). Our method of using seismic reflection data in correlation with well data 

provides additional, better defined constraints on the Suwannee basin boundaries within the study 

area. Based on the definition provided by previous authors, we will use the term “Suwannee 

basin” to define the last terrane sutured onto Laurentia that consists of Suwannee basin rocks 

overlying Gondwanan basement.  

 

1.2 Previous Alleghanian/Suwannee Suture Interpretations 

The Alleghanian/Suwannee suture in southeast North America represents the segregation of 

Laurentian terrane from Gondwanan terrane, associated with the formation of the supercontinent 

Pangea. It may have a different tectonic history than previously thought. Previous studies that 

have attempted to define the exotic terrane boundaries through the use of geophysical and 
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geologic data have provided locations for the Alleghanian suture (Boote and Knapp, 2016). The 

current interpretations for the suture are well constrained in western Georgia and Alabama, but 

fail to continue northward into the Carolinas (Fig. 1).  Previous interpretations of the suture’s 

position, with the exception of Boote and Knapp (2016; 2018), are primarily constrained by 

onshore data.  

With the use of aeromagnetic data, Higgins and Zeitz (1983) proposed the Alleghanian suture 

position along the northern boundary of the Charleston terrane as a NE-SW dextral strike-slip 

fault known as the Carolina-Mississippi fault (Boote and Knapp, 2016). At the same time, 

Chowns and Williams (1983) proposed a further south location, between Savannah and 

Charleston, Georgia, for the suture by mapping the subsurface extent of Gondwanan affinity 

sedimentary rocks using drill holes (Boote and Knapp, 2016). Then, Nelson et al. (1985) utilized 

seismic reflection data from the Consortium for Continental Reflection Profiling (COCORP) 

program to correlate the Alleghanian suture with a package of southward dipping reflectors and 

diffractions to suggest one location of the probable suture in western Georgia which coincides 

with the Brunswick Magnetic Anomaly (BMA) (Boote and Knapp, 2016). 

Fig. 2. Cross-section demonstrating regional geology within the study area. Two types of stratigraphic 
relationships are encountered. Within the asymmetric Triassic Ehrhardt basin, the presence of Triassic sediment is 
observed along with slight deformation (left). Outside of the Ehrhardt basin, the Triassic sediment is not present 
and all sequences remain relatively flat-lying (right). 



6 
 

 

There have been numerous instances in which authors suggest the BMA to closely define the 

Alleghanian suture (Tauvers and Muelhberger, 1987; McBride and Nelson, 1988; Horton et al., 

1989) (Fig. 1). However, Suwannee basin sedimentary sequences are found north of the anomaly 

onshore (Boote and Knapp, 2016). Subsequent studies found that the BMA was an unlikely 

candidate for the Alleghanian suture (Austin et al., 1990; Oh et al., 1991; Holbrook et al., 1994; 

Lizarralde et al., 1994) and a correlation for its existence still did not exist (Boote and Knapp, 

2016). However, (Boote and Knapp, 2018) confirmed the BMA’s presence to be related to the 

Brunswick suture zone (BSZ) and the presence of volcanic igneous rocks which are unrelated to 

the suturing of Gondwana and Laurentia (Figs. 2a and 2b).   

One of the more recent suture interpretations, termed the Suwannee suture instead of the 

Alleghanian suture, (PSTF; Fig. 1) is defined by both Mueller et al. (2014) and Thomas (2010) as 

overlying crustal scale dipping reflections, as seen in the COCORP profiles by Nelson et al. 

(1985), and conforming to the proposed dextral strike-slip stress regime of Hatcher (2010) (Boote 

and Knapp, 2016). While the proposed Suwannee suture zone remained largely coincident with 

the BMA, it could not account for the presence of Paleozoic Suwannee basin rocks found onshore 

north of the anomalous magnetic low (Boote and Knapp, 2016). Thus, Boote and Knapp (2016; 

2018) utilized legacy Atlantic margin seismic reflection data integrated with refraction studies 

and well data to determine the extent of the Suwannee basin sequence offshore and provide 

constraints of the last sutured Suwannee terrane onshore. Due to its consistent 4-6 km presence up 

to the coastline, Boote and Knapp (2016;2018) proposed an interpreted Suwannee suture zone to 

be slightly northwest of the study area described in this investigation (PSTF; Fig. 1a).  

Given the importance of understanding the extent of the Suwannee basin onshore in order to 

constrain the suture zone, the purpose of this study is to provide additional insight into the 

Suwannee basin’s characteristics onshore and to gain insight as to if the Suwannee suture zone 

experienced post-suture dextral strike-slip motion. By utilizing an integrated dataset consisting of 
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unpublished SCO2 seismic reflection data collected by the Department of Energy (DOE) during 

December 2010-January 2011, previously collected SC seismic reflection data (1979 vintage) 

(Hamilton et al., 1983), previously collected refraction velocity data (Ackermann, 1983), and well 

data (Fig. 1c) we are able to analyze the Suwannee basin’s characteristics in great detail. 

1.3 MPSSZ Seismicity 

The current focus of seismic activity within the MPSSZ, near Charleston, South Carolina, is a 

northwest trending zone that is active within a depth range of 2 to 12 km on a nearly vertical 

plane (Yantis et al., 1983). The shaking effects of the 1886 Charleston earthquake estimate that its 

Moment magnitude rage from Mw 6.9 to 7.3 (Johnston, 1996; Bakun and Hopper, 2004). The 

strongest shaking occurred in the area containing the town of Summerville which is located about 

25 km to the northwest of Charleston (Dutton, 1889).  

In the spring of 1974, the USGS undertook a multidisciplinary study of the 1886 Charleston 

earthquake region to investigate the cause of the earthquake, evaluate future seismicity, and better 

understand subsurface stratigraphy. Part of this study involved the acquisition of multichannel 

seismic reflection data that consisted of 10 seismic profiles (the same SC reflection dataset used 

in this study) (Hamilton et al., 1983).  The resulting interpretation proposed 3 northeast trending 

fault planes (see Fig. 1 from Hamilton et al., 1983): (1) Drayton Fault; (2) Cooke Fault; (3) Gants 

Fault. The faults are interpreted where local dip of reflections are anomalously steep, disrupted 

laterally, and offset (Hamilton et al., 1983). Thus, the configurations of these reflections suggest 

tectonic significance (Hamilton et al., 1983). It is also important to note that the fault plane trends 

of the Drayton, Cooke, and Gants faults parallel that of the Helena Banks fault which has been 

significantly substantiated (see Fig. 1 from Behrendt et al., 1983).  

Later, Weems and Lewis (2002) and Chapman and Beale (2008, 2010) aimed to describe the 

geologic setting of the epicentral area and find evidence for the source of seismicity within the 
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MPSSZ region. Utilizing well data, seismic reflection data, and potential field data, they found 

that the Coastal Plain and early Mesozoic sediments comprised most of the near surface 

stratigraphy. Furthermore, Cretaceous and Cenozoic marine sediments provided thick cover 

beneath the Coastal Plain and early Mesozoic sediment. Chapman and Beale (2010) also 

documented evidence for extensive faulting within the early Mesozoic rocks. Seismic profiles 

imaged associated folding and faulting of Cretaceous and Cenozoic Coastal Plain sediments at 

five locations in the 1886 epicentral region (Chapman and Beale, 2010). They proposed that, 

given its spatial association with the seismogenic activity that occurs in the region, these faults 

were likely related to the earthquakes that are occurring (Chapman and Beale, 2010). 

In an additional study, Chapman and Beale (2016) utilized data from an eight-station temporary 

seismic network that operated for one year in the Summerville area alongside the previously 

mentioned shallow crustal reprocessed seismic reflection profiles and analogies drawn from their 

recent study on the 2011 Mineral, Virginia earthquake (Chapman, 2013; Wu et al., 2015) to 

propose yet another hypothesis as to the cause of the 1886 Charleston event. It is in this study that 

they propose that modern seismicity in the region is the result of later-term aftershock activity of 

the 1886 earthquake (Chapman and Beale, 2016). Furthermore, they present evidence suggesting 

that the earthquakes are originating in a single, extensive tabular zone that trends south and dips 

to the west (Chapman and Beale, 2016).  

Various tectonic models have been suggested to explain the origin of seismogenic activity that 

occurs within the MPSSZ. These models have consisted of everything from compressional 

stepovers, restraining bends, and intersections of major strike-slip and reverse faults (Chapman 

and Beale, 2016). The fault source for the major 1886 earthquake has been a challenging problem 

to solve. Previous studies have utilized geophysical, geological, and geomorphological data in an 

attempt to find the source of these events (Chapman and Beale, 2016). The motivation behind this 

study is to see if any new discoveries may further substantiate or refute previously proposed 
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hypotheses, particularly under the framework of the Suwannee basin’s presence within this 

region.  
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CHAPTER II 
 

 

STUDY AREA 

 

Previous analyses of the study area, which covers roughly 7,010 km2 within onshore Eastern 

South Carolina (Fig. 1), have concluded that the region is a Triassic rift basin, correlated with the 

South Georgia Rift basin (SGR), with earthquake focal depths varying from 2-12 km and focal 

mechanisms trending N60E (Heffner et al., 2011). Previous interpretation of subsurface geology 

has denoted that regional stratigraphy consists of (shallow to deep): (a) Cenozoic to Cretaceous 

Coastal Plain sedimentary sequence; (b) Jurassic Basaltic layer; (c) Late Triassic Redbed 

sequence; (d) Early to Mid-Triassic Crystalline basement (Gohn, 1983; Hamilton et al., 1983; 

Schilt et al., 1983; Chapman and Beale, 2008). However, analysis and interpretation from this 

study revises the previous subsurface geology to include the Suwannee basin sedimentary 

sequence overlying Gondwanan basement, both of which were previously interpreted as Triassic 

crystalline basement (Figs. 1 and 3).  

Regional structure outside of Triassic basins consists of generally flat-lying, laterally extensive 

sedimentary sequences with some near vertical faulting apparent. However, within the Triassic 

basin present in the study area, known as the Ehrhardt basin, we see slight deformation occurring 

within both the Paleozoic Suwannee basin sequence as well as the Triassic basin sequence while 

Coastal Plain and Jurassic sedimentary sequences remain relatively flat lying (Fig. 3).  
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Fig. 3. SCO2-1 reflectivity seismic profile uninterpreted (a), cosine of phase profile uninterpreted (b), and 
interpreted reflectivity co-rendered with cosine of phase (c). SCO2-1’s location (Fig. 1c) lies within an 
asymmetrical Triassic rift basin within the study area. It demonstrates the stratigraphic relationships of the 
Cretaceous Coastal Plain sedimentary sequence (CP), Jurassic sedimentary sequence (JR), Triassic sedimentary 
sequence (Tr), Paleozoic Suwannee basin sedimentary sequence (PZ), and basement. SCO2-1 shows the slight 
deformation we see within both the Triassic and Paleozoic sequences when located within a Triassic rift basin. The 
deformation is highlighted by the disruption of lateral consistency and abrupt dip change within reflector packages 
in both the reflectivity and cosine of phase profiles. The Norris-Lightsey #1 well contains palynology samples 
reinforcing the Triassic basin’s presence (Traverse, 1987).  
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CHAPTER III 
 

 

METHODS 

 

The purpose of this study is to build upon the formerly mentioned work of Thomas (2010), 

Mueller et al. (2014), Boote and Knapp (2016), and Boote and Knapp (2018) to further constrain 

the extent of the Suwannee basin such that the location of the Suwannee suture zone can be better 

refined as the Pangea supercontinent transcurrent fault and its location further north, near eastern 

onshore South Carolina, can be better defined. By utilizing an integrated data set consisting of 

seismic reflection data (SCO2 and SC datasets), refraction velocities, and well data, we can better 

constrain our observations. Furthermore, due to the study location’s presence near the MPSSZ, 

structural deformation is observed to see if it has any correlation to known seismicity within the 

region.  

3.1 SCO2 Seismic Data 

The SCO2 seismic reflection data was collected from Dec. 2010 to Jan. 2011 (Fig 2c). 

Acquisition parameters (summarized in Table 1) consist of rolling into a split spread followed by 

a rollout utilizing a vibroseis source sweeping from 10-72 Hz for 8000 ms while 240 stations 

record. Each station is comprised of 12 geophones (10 Hz) over a 52 m spread such that the 12 

geophones could be stacked into a single station and improve the signal to noise ratio of the 

acquisition. The geophones record for 6000 ms at a 2 ms sample rate. Shot points are halfway 

between station locations (or 26 m from each station).  
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Table 1 
Generalized Acquisition Parameters for SCO2 Seismic Reflection Survey 

Polarization  P-wave 
Energy Source Vibroseis Unit (8-72 Hz Sweep for 8000 ms) 
No. of Stations 240 (12 geophones spaced across 52 m - per station) 
Geophone Frequency 10 Hz 
Shot Offset 26 m (shot point in between stations spaced 52 m apart)  
Station Spacing 52 m  
Sample Rate 2 ms 
Maximum Fold 240 
Spread Configuration Roll into split spread and roll out 

 

3.2 SC Seismic Data 

In 1979 the U.S. Geological Survey (USGS) acquired 140 km of multichannel seismic reflection 

data along ten profiles termed SC1-SC10 (Fig. 1c). The profiles were collected to obtain regional 

coverage throughout the area of Charleston, SC to investigate features related to seismogenic 

activity, particularly the 1886 earthquake that occurred (Behrendt and Hamilton, 1982).  

Acquisition parameters (summarized in Table 2) consisted of a split spread with a vibroseis 

source. The source occurs between stations which are 120 m away. There are 60 m between 

stations with 48 stations causing as much as 1500 m of separation from the last station to the 

vibration point, on either side. The source generated a seven-second sweep ranging from 10-60 

Hz. The sample rate is 4 ms with a 3 s total recording time.  
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Table 2 
Generalized Acquisition Parameters for SC Seismic Reflection Survey 

Polarization  P-wave 
Energy Source Vibroseis Unit (10-60 Hz Sweep for 7000 ms) 
No. of Stations 48 
Geophone Frequency 10 Hz 
Shot Offset 60 m (shot point in between stations spaced 120 m apart)  
Station Spacing 120 m  
Sample Rate 4 ms 
Maximum Fold 12 (from paper) 
Spread Configuration Split Spread 

 

3.3 Well Data 

Available well data consisted of six wells: (1) Norris-Lightsey #1 (NL-1); (2) Rizer #1 (RZR-1); 

(3) Dorchester 211 (DOR-211); (4) Clubhouse Crossroads #1 (CC1); (5) Clubhouse Crossroads 

#2 (CC2); (3) Clubhouse Crossroads #3 (CC3) (Fig 2c.). Both NL-1 and RZR-1 lie on seismic 

line SCO2-1 with available density and sonic data in LAS file format such that they can be tied 

into the SCO2-1 profile. DOR-211 lies on seismic line SCO2-5 with available density and sonic 

data in LAS file format such that it can be tied into the SCO2-5 profile. Wells CC1-3 intersect 

profile SC1, but only well descriptions are available. Thus, they were not able to be tied into the 

seismic profile itself. However, the descriptions still aid in interpretation.   

 NL-1 (Fig. 4) is a deep oil test well drilled ~70 km west of Summerville, South Carolina in 

Colleton County. It penetrated the base of the Coastal Plain sediment at a depth of ~610 m before 

it reached a total depth of ~4115 m within Triassic sediment (Heffner, 2013). Pollen collected 

from cuttings between 1373 m and 2184 m were dated by Traverse (1987) to be Triassic in age.  

RZR-1 (Fig. 4) is a scientific well in Colleton County, ~3 km SW of NL-1. It encountered diabase 

while reaching a total depth of ~1890 m. DOR-211 (Fig. 4) is located in Dorchester County, 
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South Carolina. It is located ~42 km NE of NL-1 and reached a total depth of ~631 m where it 

bottomed in basalt. 

CC#1 (Fig. 4), located 40 km NW of Charleston, SC drilled through Coastal Plain sediment until 

it reached a total depth of 792 m where it bottomed in 42 m of Jurassic age basalt. CC#2 (Fig. 4), 

located just SW of CC#1, encountered similar lithology in which it drilled to a depth of 907 m. 

CC#3 (Fig. 4), furthest SW from CC#1, also encountered the same lithology and reached a total 

depth of 1152 m in which it bottomed in redbeds. 

 

 

 

 

Fig. 4. Generalized stratigraphic columns for all wells used in this study demonstrating Coastal Plain sediment, 
Jurassic basalt, Jurassic redbeds, diabase and Triassic sediment.  
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3.4 Pre-Stack Processing (SCO2 Seismic Data)  

A traditional pre-stack processing flow was utilized to obtain adequate stacked profiles within the 

SCO2 seismic dataset. Halliburton’s SeisSpace was the software used to process the pre-stack 

data. The processing flow (summarized in Table 3) began with importing the raw SEGY shot 

gathers into SeisSpace. Then, a 2D land geometry spreadsheet was created and applied to the raw 

shot gathers. Next, if necessary, the vibroseis shot gathers were correlated. The following steps 

consisted of multiple muting methods – trace kills on noisy traces, upper end muting, and spectral 

analysis to create an ormsby bandpass filter (with a 60 Hz notch filter). Then, automatic gain 

control was applied to enhance the inherently low amplitude reflection signal. Next, CDP sorted 

shot gathers were utilized to allow a properly performed velocity analysis. ‘Supergather’ 

Semblance Velocity analysis was used to pick optimum stacking velocities. 15 CDPs per panel 

were used. After velocity analysis was complete, the velocity volume was slightly smoothed. 

Lastly, datum statics, normal moveout corrections (NMO), and predictive deconvolution were all 

applied to the CDP gathers.  The purpose of the predictive deconvolution was to dissipate any 

coherency in reflectors that may occur as multiples. The CDPs were then stacked to create a 

seismic profile.   

Table 3 
Standard Procedures Used for Processing SCO2 Profiles 

1. SEGY Import 
2. 2D Land Geometry 
2a. If necessary, Correlation of Vibroseis Shot Gathers 
3. Muting (Trace Kills, Upper End Muting, Ormsby Bandpass Filtering) 
4. Automatic Gain Control  
5. CDP Sort 
6. Supergather Semblance Velocity Analysis 
7. Datum Statics 
8. Normal Moveout Correction 
9. Predictive Deconvolution 
10. CDP Stack 
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3.5 Post-Stack Analysis (both SCO2 and SC Seismic Data) 

Any post-stack analysis, performed in Schlumberger’s Petrel software, aided in the interpretation 

stage of the analysis. By decomposing the reflectivity signal into its individual components, 

known as attributes, discrepancies within the data can be more easily identified and consistencies 

within reflector packages become more apparent. Thus, correlation of reflector packages within 

the 2D profiles become easier. The attributes utilized consist of: Root Mean Square (RMS) 

amplitude, Instantaneous Phase, and Cosine of Phase. 

RMS Amplitude 

RMS amplitude (Equation a) computes a scaled rms average of reflectivity on instantaneous trace 

samples over a specified window. It often resembles a smoother version of a reflectivity volume. 

As reflectivity is indicative of acoustic impedance and acoustic impedance is the product of 

density and velocity, RMS amplitude provides the ability to visualize amplitude anomalies (bright 

spots, dim spots, change in amplitude character) on an absolute scale rather than a relative scale. 

Hence, it can be helpful in identifying coarse-grained facies, compaction related effects, and 

unconformities (Koson et al., 2014).   

 

 

 

 

 

Equation representing the RMS Amplitude volume calculation where T(i) represents a single trace sample, over a 
specified vertical window length of n samples for each sample in an input trace T.  

Eq. A: 
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Instantaneous Phase 

Instantaneous phase (ϕ(t)) (Equation b) is given by the arc tangent of the seismic trace (T(t)) and 

its Hilbert transform (H(t)). It is measured in degrees from -180 to 180. Given its independence 

from amplitude, it is useful in showing continuity by demonstrating consistency of phase, 

discontinuity by demonstrating a phase change, and bedding configuration by showing phase 

characteristic of that bedding.  

 

Cosine of Phase 

Cosine of phase (C(t)) is also independent of amplitude and shows bedding very well. It is 

smoother than instantaneous phase and is helpful when used in conjunction with instantaneous 

phase. It is derived simply by taking the cosine of phase (ϕ(t)).  

ϕ(t)=tan-1[H(t)/T(t)] 
where (T(t)) is the seismic trace and (H(t)) is its Hilbert transform 

Eq. B: 
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CHAPTER IV 
 

 

RESULTS AND DISCUSSION 

 

4.1 Suwannee Basin Sequence 

Throughout all 15 seismic profiles, we see a consistent presence of near horizontal, low 

frequency, laterally continuous package of reflectors lying beneath either Triassic or Jurassic 

sediment (Fig. 5 and 6). This package is interpreted as Suwannee basin sediment. Furthermore, 

the attributes of this reflector package are maintained throughout all 15 profiles. These attributes 

can act as a seismic signature for the Suwannee basin sequence reflectors. 

When looking at the reflectivity profiles, we see a significant peak marking the top of the 

Paleozoic Suwannee basin sequence (Fig. 6). This is consistent with what we would expect as the 

overlying Triassic and Jurassic sediments have lower velocities, but are also likely less 

compacted which would give them lower elasticity constant values relative to the underlying 

Suwannee basin sequence. Furthermore, the RMS amplitude of the boundary between the 

Suwannee basin sequence and overlying sediment is marked by a laterally continuous anomalous 

high (Fig. 7). As previously mentioned, RMS amplitude is effective for highlighting the facies 

change that occurs from the presence of the underlying Suwannee basin sequence and compaction 

related effects. Hence, it is likely picking up these two variables and their impact on the overall 

reflectivity of the boundary. 
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Fig. 5. Uninterpreted reflectivity profiles SCO2-6 (a), SCO2-4 (b), SC2 (c), and SC7 (d) covering the entire 
stratigraphic section seen in the study area outside of the Triassic rift basin. These profiles were chosen because 
they provide regional coverage within the study area (Fig. 1c). 
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Fig. 6. Interpreted reflectivity profiles SCO2-6 (a), SCO2-4 (b), SC2 (c), and SC7 (d) covering the entire 
stratigraphic section seen in the study area outside of the Triassic rift basin. These profiles were chosen because 
they provide regional coverage within the study area (Fig. 1c). Note that all 4 profiles demonstrate near-horizontal 
dip, lateral continuity, and low frequency within the original seismic trace reflector packages for the sedimentary 
Paleozoic section. Solid red lines indicate faulting that correlates with magnetic high boundaries (Fig 18) and 
demonstrate disruption of lateral continuity, amplitude loss, and sudden dip change through the entire Suwannee 
basin sequence down to basement. Dashed red lines indicate accessory faulting based on disruption of lateral 
continuity, amplitude loss, and sudden dip change. 
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Fig. 7. Interpreted root mean square (RMS) amplitude profiles SCO2-6 (a), SCO2-4 (b), SC2 (c), and SC7 (d) 
covering the entire stratigraphic section seen in the study area outside of the Triassic rift basin. These profiles were 
chosen because they provide regional coverage within the study area (Fig. 1c). Note that all 4 profiles demonstrate 
a laterally continuous amplitude anomaly at the boundary marking the top of the Paleozoic sequence.  Solid red 
lines indicate faulting that aligns with magnetic high boundaries (Fig 18) and demonstrate amplitude loss through 
the entire Suwannee basin sequence down to basement. Dashed red lines indicate accessory faulting based on 
disruption of lateral continuity and amplitude loss. 
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Both instantaneous phase and cosine of phase were used alongside RMS amplitude and 

reflectivity to interpret the top of the Paleozoic sequence.  

Instantaneous phase and cosine of phase are useful in showing not only lateral continuity, but 

highlighting unconformities as well. Thus, they are effective for showing the boundary that marks 

the top of the Paleozoic, the PRU (Figs. 8 and 9), in areas where amplitude may not be quite as 

effective. When we have the presence of Jurassic aged basalt, constrained by well data, seismic 

signature, and refraction velocities (Ackermann, 1983), we tend to see lower amplitude values 

and less bright reflectors beneath the Jurassic top (Figs. 6a, 6c, 6d and 7a, 7c, 7d). This is likely 

the result of the basalt being such a strong boundary that it returns most of the reflective energy 

back to the surface. This leaves less energy to propagate deeper into the subsurface than in areas 

where the basalt is not present. However, both phase calculations are independent of amplitude 

and allow for improved interpretations as they highlight the lateral continuity of the deeper 

reflector packages. The top of the Paleozoic demonstrates laterally continuous phase 

characteristics (Figs. 8 and 9). Furthermore, subtle stratigraphic pinch-outs within the Jurassic 

sedimentary sequence can be observed (particularly in Figs. 8a and 9a). Lastly, both phase 

calculations allow us to better qualitatively observe the change in reflector package frequency 

between the Jurassic sediment and Suwannee basin sediment. This signature is highlighted by the 

increased vertical gap (change in time) between black and white (degree equivalent) phase within 

the Paleozoic as opposed to the more frequent vertical occurrence of phase equivalent reflectors 

within the Jurassic sequence. This type of behavior within the seismic data, when isolated, is very 

helpful in picking the boundary that marks the top of the Paleozoic.  
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Fig. 8. Instantaneous Phase profiles SCO2-6 (a), SCO2-4 (b), SC2 (c), and SC7 (d) covering the entire 
stratigraphic section seen in the study area outside of the Triassic rift basin. These profiles were chosen because 
they provide regional coverage within the study area (Fig. 1c). Note that all 4 profiles demonstrate lateral 
continuity at the boundary marking the top and throughout the Paleozoic sequence. Solid red lines indicate faulting 
that aligns with magnetic high boundaries (Fig 18) and demonstrate disruption of lateral continuity and sudden dip 
change through the entire Suwannee basin sequence down to basement. Dashed red lines indicate accessory 
faulting based on disruption of lateral continuity and sudden dip change. 
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Fig. 9. Cosine of Phase profiles SCO2-6 (a), SCO2-4 (b), SC2 (c), and SC7 (d) covering the entire stratigraphic 
section seen in the study area outside of the Triassic rift basin. These profiles were chosen because they provide 
regional coverage within the study area (Fig. 1c). Note that all 4 profiles demonstrate lateral continuity at the 
boundary marking the top and throughout the Paleozoic sequence. Solid red lines indicate faulting that aligns with 
magnetic high boundaries (Fig 18) and demonstrate disruption of lateral continuity and sudden dip change through 
the entire Suwannee basin sequence down to basement. Dashed red lines indicate accessory faulting based on 
disruption of lateral continuity and sudden dip change. 
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The consistent presence of the Suwannee basin sequence throughout all 15 seismic profiles, 

which is confirmed through the correlation of the picked top of Paleozoic boundary utilizing the 

original reflectivity profiles and the calculated attributes that confirm its presence, suggests that 

the revised position of the Suwannee Suture Zone (SSZ) proposed in Boote and Knapp (2018) is 

likely accurate, other than the fact that we believe it is a strike-slip boundary rather than a suture 

zone. Furthermore, throughout most of the profiles we see little relative deformation of the 

Suwannee basin sequence which is reiterated by the resulting structure maps produced from our 

interpretation of the seismic dataset (Figs. 10 and 11).  

This suggests that the Gondwanan terrane was not emplaced where we observe it today during the 

collision of Gondwana and Pangea. Thus, we propose that there must be a component of strike-

slip motion present that emplaced the Suwannee basin sequence in its current position today. 

Otherwise, we would see evidence of collisional deformation present within the sequence. It is 

our belief that a massive strike slip branch that is 50 km wide separates Gondawanan terrane from 

Laurentian terrane throughout the Southeast region of present day United States. This strike slip 

branch is termed the PSTF (Fig. 1c). 

The areas where significant deformation is observed within the Suwannee basin all occur as a 

result of faulting as seen on seismic profiles SCO2-1, SCO2-4, SCO2-5, SCO2-6, SCO2-7, and 

SC6. At the locality of the faults, we also see a significant amount of thinning of the Suwannee 

basin (Figs. 12 and 13). When plotted on the magnetic anomaly map (Fig. 14), the faults and their 

projected planes appear to be spatially coincident with boundaries marking the edge of anomalous 

magnetic highs that occur within the study area. 

Thus, it is our belief that the magnetic highs that occur within the study area are a result of the 

crystalline basement interacting with the magnetic survey that was taken. Subsequently, the 

presence of the magnetic highs is a function of the thickness of the Paleozoic Suwannee basin 
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sequence (Fig. 15). In other words, when the Suwannee basin is significantly thinned, the 

crystalline basement is able to interact with the magnetic survey and produce the resulting highs. 

However, when the Suwannee basin thickness is greater than the threshold necessary for the 

crystalline basement to interact with the magnetic survey, we tend to see lower magnetic values.      
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Fig. 10. Top of Paleozoic Suwannee basin structure map in the time domain. Note the presence of the Triassic 
Basin and its generally northwest trending dip indicated by the contour gradient increase along seismic line SCO2-
1. The remaining Paleozoic structure is relatively flat-lying. 
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Fig. 11. Top of Paleozoic Suwannee basin structure map in the depth domain. Note the presence of the Triassic 
Basin and its generally northwest trending dip indicated by the contour gradient increase along seismic line SCO2-
1. The remaining Paleozoic structure is relatively flat-lying. 
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Fig. 12. Paleozoic Suwannee basin isochron map. Note the substantial thickness changes that occur at the northern, 
northwestern, and southern most portions of the map. These thickness changes are a result of faulting as seen on 
Figs. 3, 6, 7, 8, 9, and 17. The substantially thinned portions are also spatially coincident with magnetic highs seen 
on Fig. 18. We believe the thinned Suwannee basin section allows the basement to interact with the magnetic 
survey and produce the magnetic high anomalies that occur within the Study area 
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Fig. 13. Paleozoic Suwannee basin isochore map. Note the substantial thickness changes that occur at the northern, 
northwestern, and southern most portions of the map. These thickness changes are a result of faulting as seen on 
Figs. 3, 6, 7, 8, 9, and 17. The substantially thinned portions are also spatially coincident with magnetic highs seen 
on Fig. 18. We believe the thinned Suwannee basin section allows the basement to interact with the magnetic 
survey and produce the magnetic high anomalies that occur within the Study area 
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Fig. 14. Magnetic anomaly map showing location of faults in relation to magnetic features and the seismic dataset. 
Note the Ehrhardt basin fault bounding the Triassic basin seen on seismic profile SCO2-1, the newly interpreted 
Harleyville fault which bounds the northern magnetic high where substantial Paleozoic Suwannee basin thinning 
occurs, and Gants fault which bounds the southern magnetic high where substantial Paleozoic Suwannee basin 
thinning also occurs. 



50 
 

 

 

  

Fig. 15. (a) Magnetic anomaly map showing location of faults in relation to magnetic features and the seismic 
dataset, as seen previously. (b) Paleozoic Suwannee basin isochron map, as seen previously. Note the spatial 
correlation of substantially thinned Suwannee basin and magnetic highs as well as faults bounding both the 
magnetic highs and Suwannee basin thickness changes.   

A 

B 



51 
 

 

4.2 MPSSZ Seismicity 

Throughout the SC and SCO2 seismic datasets, high angle faults were observed (Figs. 16, 17, 18, 

19, and 20). Many of these faults were observed in (Hamilton et al., 1983) with some additional 

faults interpreted in this study. However, in the (Hamilton et al., 1983) study, the faults were not 

projected into the Suwannee basin sequence due to the skepticism that the sequence was present 

in their study. The presence of this sequence and the faults projecting into it implicates these 

faults may be related to the 1886 earthquake as well as more recent activity that occurs within the 

MPSSZ. 

The faults are interpreted where we see a disruption of lateral continuity of reflector packages 

within the reflectivity profiles, an abrupt dip change within reflectors, and sudden amplitude loss 

(Figs. 16, 17, 18, 19, 20). Furthermore, attributes of the seismic profiles such as RMS amplitude, 

instantaneous phase, and cosine of phase assist in being able to isolate and better observe such 

characteristics within the seismic data. Hence, in the same location where the lateral disruption of 

seismic events occurs, we see abrupt changes in phase continuity on both the instantaneous phase 

and cosine of phase profiles (Figs. 16d, 16e, 17d, 17e, 18d, 18e, 19d, 19e, 20d, 20e). 

Phase changes can be indicative of lateral pinch outs in bedding. However, those would be 

gradual phase changes. Here, where the interpreted fault branches are located, we see abrupt 

phase changes and lateral discontinuities. Both of these seismic signatures emphasize the 

presence of fault structure. In addition, both phase attributes allow us to observe abrupt dip 

changes within reflectors which is also indicative of fault presence. Lastly, the cross-cutting 

relationship of the faults relative to bedding planes instills an amplitude disruption within the 

reflectors as they interact with the fault planes (Figs. 16, 17, 18, 19, 20). Utilizing the RMS 

amplitude profiles (Figs. 16c, 17c, 18c, 19c, 20c), we can isolate the average amplitudes of 

reflectors within a time window and observe this lateral discontinuity of average amplitude 
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consistency across a given reflector. The RMS amplitude was utilized due to its ability to 

highlight amplitude on an absolute scale rather than a relative scale which is beneficial for 

observing amplitude anomalies. 

Some of the interpreted fault branches can be correlated with each other to produce fault planes 

projecting in a two-dimensional space. When the branches are correlated, they are oriented NE-

SW parallel to the Helena Banks fault (see Fig. 1 from Behrendt et al., 1983) (Fig. 21). When all 

of the fault planes, with the exception of the Harleyville and Ehrhardt basin fault planes, are 

projected they intersect the locus of major seismicity within the MPSSZ (see Fig. 1 from 

Hamilton et al., 1983). Thus, it is proposed that these structures are likely related to much of the 

seismicity within the region, including the major 1886 earthquake. However, it is impossible to 

make that claim with absolute certainty based off of what is observed in this dataset alone.    
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Fig. 16. Seismic reflectivity profile SC4 (a) and interpreted (b) and its associated attribute calculations: RMS 
amplitude (c); Instantaneous phase (d); and Cosine of phase (e). Each profile consistently exhibits features 
signifying the presence of the Drayton Fault branch previously interpreted by Behrendt et al. (1983). The solid line 
indicates the portion of the fault branch interpreted with high confidence. The dashed portions of the fault branch 
are interpreted with lower confidence. Note the disruption of lateral continuity and sudden amplitude loss within a 
and b, the sudden amplitude loss in c, and the abrupt disruption of lateral continuity and dip change in d and e all 
occurring at the location of the fault.  
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Fig. 17. Seismic reflectivity profile SC1 (a) and interpreted (b) and its associated attribute calculations: RMS 
amplitude (c); Instantaneous phase (d); and Cosine of phase (e). Each profile consistently exhibits features 
signifying the presence of the Cooke Fault branch previously interpreted by Behrendt et al. (1983). The solid line 
indicates the portion of the fault branch interpreted with high confidence. The dashed portions of the fault branch 
are interpreted with lower confidence. Note the disruption of lateral continuity and sudden amplitude loss within a 
and b, the sudden amplitude loss in c, and the abrupt disruption of lateral continuity and dip change in d and e all 
occurring at the location of the fault. 
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Fig. 18. Seismic reflectivity profile SC10 (a) and interpreted (b) and its associated attribute calculations: RMS 
amplitude (c); Instantaneous phase (d); and Cosine of phase (e). Each profile consistently exhibits features 
signifying the presence of the Cooke Fault branch previously interpreted by Behrendt et al. (1983). The solid line 
indicates the portion of the fault branch interpreted with high confidence. The dashed portions of the fault branch 
are interpreted with lower confidence. Note the disruption of lateral continuity and sudden amplitude loss within a 
and b, the sudden amplitude loss in c, and the abrupt disruption of lateral continuity and dip change in d and e all 
occurring at the location of the fault. 
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Fig. 19. Seismic reflectivity profile SC6 (a) and interpreted (b) and its associated attribute calculations: RMS 
amplitude (c); Instantaneous phase (d); and Cosine of phase (e). Each profile consistently exhibits features 
signifying the presence of the Gants Fault branch previously interpreted by Behrendt et al. (1983). The solid line 
indicates the portion of the fault branch interpreted with high confidence. The dashed portions of the fault branch 
are interpreted with lower confidence. Note the disruption of lateral continuity and sudden amplitude loss within a 
and b, the sudden amplitude loss in c, and the abrupt disruption of lateral continuity and dip change in d and e all 
occurring at the location of the fault. 
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Fig. 20. Seismic reflectivity profile SCO2-6 (a) and interpreted (b) and its associated attribute calculations: RMS 
amplitude (c); Instantaneous phase (d); and Cosine of phase (e). Each profile consistently exhibits features 
signifying the presence of the Gants Fault branch previously interpreted by Behrendt et al. (1983). The solid line 
indicates the portion of the fault branch interpreted with high confidence. The dashed portions of the fault branch 
are interpreted with lower confidence. Note the disruption of lateral continuity and sudden amplitude loss within a 
and b, the sudden amplitude loss in c, and the abrupt disruption of lateral continuity and dip change in d and e all 
occurring at the location of the fault. 

E 
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Fig. 21. Magnetic anomaly map, as previously seen, showing location of faults in relation to magnetic features and 
the seismic dataset. Note the Ehrhardt basin fault bounding the Triassic basin seen on seismic profile SCO2-1, the 
newly interpreted Harleyville fault which bounds the northern magnetic high where substantial Paleozoic 
Suwannee basin thinning occurs, and Gants fault which bounds the southern magnetic high where substantial 
Paleozoic Suwannee basin thinning also occurs. In regards to seismicity within the MPSSZ, the Gants, Cooke, and 
Drayton faults seem to be the most likely candidates.   
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CHAPTER V 
 

 

CONCLUSIONS AND ADDITIONAL RESEARCH 

 

The integration and synthesis of two seismic datasets, well data, refraction velocities, and seismic 

attributes aided in interpretation and correlation of the Suwannee basin sedimentary sequence. 

Furthermore, it aided in interpreting fault planes present on the seismic profiles. The Suwannee 

basin sedimentary sequence’s presence throughout all 15 of the seismic profiles indicates the 

proposed position of the Suwannee Suture Zone by (Boote and Knapp, 2018) is likely the location 

of the Pangea supercontinent transcurrent fault, a large strike-slip boundary separating Gondwana 

from Laurentia. Furthermore, the sedimentary sequence’s relative lack of deformation implies 

that the currently emplaced Suwannee basin strata was at a different location during the time of 

collision between Pangea and Gondwana. In other words, the sequence was likely emplaced in its 

current location by strike slip movement. The current interpretation implies evidence for the 

hypothesis that the Pangea supercontinent transcurrent fault is present roughly 40 km northwest 

of the study area described here. 

In addition, the Suwannee basin’s presence, characteristics, and interpreted faults within it have 

their own implications for the presence of magnetic highs seen on the magnetic anomaly map and 

seismicity that occurs within the MPSSZ. The high-angle fault presence within the analyzed 

seismic data, suggested by the disruption of lateral continuity of reflector packages within the 
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seismic profiles, an abrupt dip change within reflectors, and sudden amplitude loss, and their 

projected fault plane orientations trending toward the locus of earthquake activity within the 

MPSSZ suggests that these large-scale faults could be responsible for seismicity that occurs 

within the region. Furthermore, the fault planes are consistent with expected orientation of 

deformation resulting from the regional stress regime. The planes parallel the Helena Banks fault 

plane which has been substantiated by numerous studies. It promotes further research into 

structure within the epicentral region of seismogenic activity of the MPSSZ.   

Some discrepancies with the analysis from this study include the loss of vertical resolution that 

occurs deep within the seismic profiles in both the SCO2 and SC datasets. In particular, in both 

the SCO2-1 and SCO2-3 lines, the Triassic basin sediment overlies the Suwannee basin sequence. 

Thus, greatly reducing the amount of seismic energy that is able to propagate and interact with 

those deeper targets. Furthermore, similar issues occur where the Jurassic basalt maintains a thick 

consistent presence. On a similar note, fault branch projections deep into the seismic sections can 

become somewhat ambiguous as additional factors begin to disrupt signal coherency, such as 

diabase presence causing noise interference, natural high-cut filtering, and amplitude loss. 

Additionally, there is no well control that penetrates deep enough to aid in interpretation of 

deeper propagating fault branches.    

Additional research could include the processing and analysis of the SCO2 3D seismic volume. 

This volume would add data density and potentially further support or disprove the interpretation 

of the 2D seismic profiles. It would also prove helpful in connecting the gaps between some of 

the profiles, where there is no data. Newly acquired seismic data utilizing modern methods of 

acquisition may assist in the ability to better resolve deep within the Suwannee basin sequence, as 

well as fault branches and their planal projections. Furthermore, if additional seismic data were 

collected to the west, northwest of the study area then we may be able to define exactly where the 

boundary is that separates Paleozoic strata of Laurentian origin from that of Gondwanan origin.  
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Additional wells drilled throughout the concentrated study area would also provide higher vertical 

resolution in regards to lithologic boundaries and subtle sedimentary sequence changes that 

would assist in reconstructing the tectonic history of the region.  
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Fig. 22. Uninterpreted seismic reflectivity profile SC02-1 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 23. Uninterpreted seismic reflectivity profile SC02-3 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 24. Uninterpreted seismic reflectivity profile SC02-4 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 25. Uninterpreted seismic reflectivity profile SC02-5 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 26. Uninterpreted seismic reflectivity profile SC02-6 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 27. Uninterpreted seismic reflectivity profile SC02-7 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 



95 
 

 

  

Fig. 28. Uninterpreted seismic reflectivity profile SC1 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 29. Uninterpreted seismic reflectivity profile SC2 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 30. Uninterpreted seismic reflectivity profile SC3 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 31. Uninterpreted seismic reflectivity profile SC4 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 

Fig. 32. Uninterpreted seismic reflectivity profile SC6 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 33. Uninterpreted seismic reflectivity profile SC7 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 34. Uninterpreted seismic reflectivity profile SC8 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 35. Uninterpreted seismic reflectivity profile SC9 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 36. Uninterpreted seismic reflectivity profile SC10 (a), RMS amplitude (b), cosine of phase (c), and 
instantaneous phase (d). 
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Fig. 37. Jurassic isochron map. 
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Fig. 38. Jurassic isochore map. 
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Fig. 39. Top of Jurassic structure map in depth. 
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Fig. 40. Top of Jurassic structure map in two way time. 
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Fig. 41. Triassic isochron map. 
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Fig. 42. Triassic isochore map. 



109 
 

 
  

Fig. 43. Top of Triassic structure map in depth. 
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Fig. 44. Top of Triassic structure map in two way time. 
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Fig. 45. Paleozoic Suwannee basin isochron map. 
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Fig. 46. Paleozoic Suwannee basin isochore map. 
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Fig. 47. Top of Paleozoic Suwannee basin structure map in depth. 
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Fig. 48. Top of Paleozoic Suwannee basin structure map in two way time. 
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Fig. 49. Co-render of magnetic anomaly map with interpreted fault planes and Paleozoic Suwannee basin isochron 
map. 
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