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Abstract: Remote sensing of aquatic invasive plants has been relatively understudied for 

treatment monitoring applications. Invasive aquatic plants cause ecological distress as 

well as millions of dollars in damages and lost utility value and ecosystem services. 

Yellow floating heart (Nymphoides peltata) is a floating leaved macrophyte native to 

Southeast Asia and the Mediterranean. This plant has prolific spread potential and can 

create dense canopies that shade out other organisms. It was reported in Lake Carl 

Blackwell of Oklahoma in 2014. It covered over 20 hectares at its peak in 2019. The 

herbicide ProcellaCOR was applied to the infestation in the summer of 2019. The 

purpose of this research was to use Sentinel-2 satellite data and an unmanned aerial 

vehicle equipped with a MicaSense RedEdge-M camera to monitor the infestation and 

compare the sensors from spatial and spectral parameters. This can help lake managers 

integrate remote sensing tools into their monitoring programs in a cost-effective manner. 

A Sentinel-2 dataset was downloaded from the USGS EarthExplorer. UAV data was 

collected and processed in AgiSoft Structure-from-Motion. The Sentinel-2 and UAV 

datasets were classified by Maximum Likelihood Classification to compare ability to 

detect and delineate N. peltata with overall accuracies of 96.1% (kappa = 0.88) and 

94.3% (0.80), respectively. The spatial extent was manually digitized on all available data 

and compared with regression analysis with a significantly high relationship (R2 = 0.94; p 

< 0.001). This measure also indicated a 91% reduction of the infestation after the 

herbicide application, a reduction of almost 2% lake coverage to less than 0.1%, due to 

herbicide treatment. The sensors were also compared in their measurements of the 

Normalized Difference Vegetation Index (R2 = 0.40; p = 0.13) and the Fractional 

Vegetative Index (R2 = 0.39; p = 0.13) both of which had low significance. The spatial 

data from Sentinel-2 was used to make an estimation of the potential economic impact 

caused by this infestation by correlating it to the average lake value. 
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CHAPTER I 
 

 

INTRODUCTION 

 Remote sensing has been used since the 1970’s to image changes in vegetation 

(Lillesand, Chips & Keifer, 2015). Studies typically focused on measuring crop parameters with 

black and white aerial imagery or color infrared aerial imagery. Imaging platforms have evolved 

over time to include satellites and small unmanned aircraft equipped with multispectral cameras. 

Multispectral data can improve classification of plant species and estimate biological parameters 

like plant health and density (EO NASA, 2000). Remote sensing benefits include repetitive data 

collection over large survey areas. This reduces labor costs compared to field surveys (Villa et al., 

2018). Remote sensing is used in precision agriculture to detect basic biological parameters that 

would indicate the presence of weeds and disease (Lukas et al., 2016). Fewer applications have 

been executed for invasive plants in aquatic ecosystems (Gao et al., 2017; Joshi et al., 2004; Villa 

et al., 2015). 

 The negative impacts of invasive species cost the United States an estimated $120 billion 

annually in damages and management costs (Pimentel et al., 2005). The magnitude of costs 

incurred from individual invasive species varied widely based on the level of infestation, scale of 

treatment, and applied methods (Marbuah et al., 2014). The introduction of non-native species 

can have major impacts on ecosystem stability by interrupting nutrient cycles, outcompeting 

native species, affecting hydrology, or changing the physical structure of the environment
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(Kovalenko & Dibble, 2011; Simberloff, 2015). Invasive species often inhibit the use and value 

of natural resources for commercial and recreational purposes (Cacho, 2007).  

 The aquatic invasive plant Yellow floating heart (Nymphoides peltata) invaded Lake Carl 

Blackwell, which is a popular recreation area in north central Oklahoma. The infestation grew to 

cover over 20 ha in 2018 (Angle, 2019). The reservoir was treated in July of 2019 with the 

herbicide ProcellaCOR. The large expanse of the plant in monospecific mats and claims of short-

term results by the herbicide manufacturers made this an ideal study for using remote sensing.  

Monitoring in environmental projects is usually lacking because field surveys are 

laborious and costly (Lovett et al., 2007). Remote sensing offers a unique tool to survey land area 

quickly. The chosen sensor should be of appropriate scale resolution to measure the desired 

feature (Lillesand, Chips, & Keifer, 2015). Satellites and unmanned aerial vehicle (UAV) have 

benefits and limitations that affect their use in projects like vegetation monitoring. This study 

compares the open-source satellite Sentinel-2 to a UAV equipped with the multispectral, 

MicaSense Red Edge camera to monitor N. peltata over the summer of 2019.  

Imagery from both sensors were used in a Maximum Likelihood Classification to 

determine how well they could detect and classify N. peltate. The multispectral imagery was used 

to delineate the spatial coverage of the infestation and to calculate the Normalized Difference 

Vegetation Index (NDVI) (Jackson et al., 1983) with a simple workflow. The NDVI results were 

then used to calculate the pixel Fractional Vegetative Coverage (Song et al., 2017). The results 

from these analyses from the two platforms were compared to one another with linear regression 

to determine if they produce similar outcomes. 

 The objectives of this study are to: 

1. Compare accuracy to detect/classify N. peltata between sensors. 
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2. Measure plant response parameters (spatial extent, Normalized Difference Vegetation 

Index, Fractional Vegetative Cover) to herbicide treatment and compare between sensors. 

3. Estimate the potential loss of use value to Lake Carl Blackwell due to N. peltata. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

Remote Sensing and Spatial Analysis 

Field surveys are often time-consuming, expensive, logistically challenging, and labor 

intensive. The development of satellite platforms has made it possible to gather repetitive imagery 

over large swaths of land. Most satellite platforms use multispectral cameras of varying spectral 

and spatial resolutions (Lillesand, Chips, & Keifer, 2015). This type of tool is ideal for 

monitoring vegetation and has gained attention for its utility to detect and observe invasive plants 

(Bradley, 2014; Husson, Hagner, & Ecke, 2014) and aquatic plants (Silva et al., 2008). Frequent 

high-resolution imagery has been too costly for most environmental projects until recently (Villa 

et al., 2018). All sensors continue to be limited to some degree by spectral, spatial or temporal 

resolutions, and poor weather conditions. 

Innovations in platform and sensor technology have improved upon some of these 

limitations with open-source satellite imagery and unmanned aerial vehicles ( UAV) equipped 

with multispectral cameras. Benefits of UAV include access to hard to reach areas, flexible data 

collection, and reduced labor. Limitations include battery power, range, high costs, and required 

technical knowledge (Husson, Hagner, & Ecke, 2014).  

Interest for environmental projects like invasive plant detection or treatment monitoring 

revolve around spatial resolution for estimating spread and coverage, and spectral resolution for 
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species classification and plant index calculation. It is possible to detect vegetation when there is 

sufficient spatial coverage, unique phenological or structural characteristics (Huang & Asner, 

2009; Penuelas et al., 1993). Scale resolution is an important aspect for environmental monitoring 

to choose the appropriate tool for different projects (Dash et al., 2018; Lukas et al., 2016; 

Mullerova et al., 2013). 

Sentinel-2 

The European Space Agency (ESA) launched the Sentinel-2 mission 2015 (Sentinel-A) 

and 2017 (Sentinel-B) as part of a program to provide high quality open-source data for earth 

observation. These two satellites have a return period of five days. The Multispectral Instrument 

(MSI) on board records thirteen spectral channels at 10, 20, and 60m (Table 1). The visible region 

(0.490 – 0.665 ɥm) and the Near Infrared Red (NIR) bands have 10m resolution. This sensor is 

unique in that it records four distinct channels of the Red Edge at 20m (Suhet, 2015).  

Imagery can be downloaded from the ESA Copernicus open-access HUB, or from the 

United States Geological Survey (USGS Earth Explorer, 2019) data viewer. This satellite 

produces image tiles approximately 100 x 100 km2 in UTM/WGS84 projection. The data for 

download must be pre-processed to Bottom-of-Atmosphere (BOA) imagery by applying 

atmospheric, terrain, and cirrus corrections (De Keukelaere et al., 2017). ESA provides an open-

source pre-processing software called the Sentinel Application Platform (SNAP) for users to 

apply these corrections to their downloaded data. 
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Table 1. Spatial and spectral resolutions of the bands of the Multispectral Instrument sensor on board 

Sentinel-2 satellites (ESA, 2019). 

 

MicaSense Red Edge Camera 

The MicaSense RedEdge-M is a multispectral camera that records across five 

wavelengths (Blue, Green, Red, Near IR, Red Edge). It records at a ground sample distance of 8.2 

cm per pixel, per band at 120 m altitude. Its spectral resolution ranges from 400 to 900 nm 

(MicaSense, 2019). 

Table 2. Spatial and spectral resolutions of the bands comprising the MicaSense RedEdge-M multispectral 

camera (MicaSense, 2019). 
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Classification 

Computer-based classification helps detect unwanted species earlier, improving control 

of invasive plants while reducing labor and costs (Hestir et al., 2008). Supervised classification 

methods, like the Maximum Likelihood Classification method, rely on spectral classes created by 

a human to train the computer to identify certain spectral patterns. The computer then assesses 

each pixel in an image for the statistical likelihood that it belongs to a particular class (Lillesand, 

Chips, & Kiefer, 2015). Pixel-based analysis has been shown to have higher accuracies than 

computer-based classifications compared to reference data (Belgiu & Csillik, 2018; Faidi, 

Hasson, Shamasuddin, 2018; Husson, Ecke, & Reese, 2016). 

Scale resolution has been shown to have significant impacts on classification accuracy 

(Mullerova et al., 2013). Luo et al (2016) used 30m Landsat TM imagery to measure seasonal and 

interannual variation of aquatic vegetation types. They used a classification tree calibrated with 

aquatic vegetation indices demonstrating some moderate to high accuracies. Villa et al (2015) 

performed a similar analysis concluding macrophyte communities can be mapped with medium 

resolution data (10 – 30m; 400 – 900nm) with different vegetation indices. Their results had 

overall accuracy of 90.41% with less than 20% error for each class. 

Maximum Likelihood Classification (MLC) is a common method in remote sensing 

analysis (Lillesand, Chips, & Keifer, 2015; Faidi, Hasan, & Shamsuddin, 2018). Valta-

Hulkkonen, Kanninen, and Pellikka (2004) used aerial imagery with different spectral and spatial 
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resolutions and processed them with MLC to relate the ground measurements of Common club-

rush (Schoenoplectus lacustris) to reflectance values before and after an ecosystem restoration 

project. They estimated a 30% decrease of biomass that was highly correlated (R2 = 0.889, p < 

0.001) to ground measurements measured in a GIS environment. A study in Lake Tasik Chini 

used Sentinel-2 imagery to discriminate land use/land cover and identify distributions of Indian 

lotus (Nelumbo nucifera) using Maximum Likelihood (Faidi, Hasan, & Shamasuddin, 2018). 

They estimated that their analysis yielded 89% accuracy.  

Hill et al (2017) mapped the invasive Yellow flag iris (Iris pseudacorus L.) in their study 

area by three methods: field, manual image interpretation, and image classification of UAV 

imagery. They concluded that manual digitization in a GIS environment was often more accurate 

and faster than pixel-based classification methods. This was true when identifying large 

monospecific stands of vegetation (Silva et al., 2008), but is more time consuming with increased 

complexity (Husson, Ecke, & Reese, 2016).  

Measuring Biological Parameters 

Measuring vegetation spatial extent over time is a common application in remote sensing. 

It can be useful for defining treatment areas and estimating project costs. It also helps direct 

management practices like herbicide treatments, fertilizer application, and watering regimes 

(Joshi et al., 2004). It is essential to be able to quickly and accurately make these types of 

estimates, since control needs change over the course of a season. Spatial measurements have 

been used to correlate vegetation models to ground observations (Ma et al., 2008; Matese et al., 

2017). 

Analysis of multispectral imagery is an effective method for researchers to estimate many 

biological parameters of vegetation. Several reviews of remote sensing studies of invasive plants 

found that non-native species were often distinguishable from natives based on novel text, 



  

9 
 

biochemistry, growth patterns or phenological differences (Huang and Asner, 2009; Bradley, 

2014). Parker Williams & Hunt (2002) mapped the invasive Leafy spurge (Euphorbia esula) in 

North American rangelands using high resolution airborne imagery. Using a spectral mixture 

analysis, they found the distinctive color of Leafy spurge was spectrally unique from native 

prairie and forest species so that it could be detected remotely. 

Spectral distinctions of vegetation are analyzed using vegetation indices. The most 

common vegetation index is the Normalized Difference Vegetation Index (NDVI) (Jackson et al., 

1983). It is used as a way to measure photosynthetic activity through chlorophyll production. 

NDVI is a ratio of the red and near-infrared (NIR) channels of multispectral measurements. It 

determines the density of green (chlorophyll) within a pixel and has been strongly correlated to 

plant biomass, percent canopy cover, density, and health (Villa et al., 2014; Ma et al., 2008; 

Penuelas et al., 1993; Wang, Sun, & Liu, 2012).  

Farid Muhsoni et al (2018) analyzed 24 spectral indices calculated from Sentinel-2 

imagery to measure density of mangrove forests and determined NDVI could most accurately 

estimate biomass and canopy density along a coastline. Henick (2012) used NDVI to monitor 

crop stress from management practices. The author found that NDVI changed over different life 

stages and that it could predict crop yield. Duan et al (2017) found that NDVI measured with the 

MicaSense RedEdge M were highly correlated to field plot sensor measurements to differentiate 

wheat cultivars. 

NDVI can be used to calculate biological parameters such as fractional vegetative cover 

(FVC) (Song et al, 2017). FVC estimates what percent of the pixel signal is from vegetation and 

can be a proxy for estimating biomass or density. This formula indexes the NDVI with its lowest 

value (soil) and highest value (healthy vegetation). The result is a measurement that reflects the 

percent of chlorophyll productivity in a pixel that should reduce the influence of non-vegetative 
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signals. Imagery without a NIR channel can still be used to measure FVC, but instead of the 

NDVI the Visible Atmospherically Resistant Index (VARI) is used. Gitelson (2002) developed 

this index to use the visible range reflectance to estimate the amount of green reflectance in a 

pixel as a proxy to estimate plant health. The results of this index can then be used in the FVC 

equation. 

Aquatic ecosystems pose an extra challenge in remote sensing analyses (Wang et al., 

2012). Open water strongly absorbs red and NIR electromagnetic radiation, whereas plants 

strongly reflect in the NIR. Signatures from different aquatic plant types (submerged, floating and 

emergent) have key differences that are due to the depth at which they grow and the influence of 

water (Penuelas, 1993). Water strongly absorbs red and NIR electromagnetic radiation, so the 

presence of water can interfere with radiometric signal of submerged or floating vegetation 

(Kaplan & Avdan, 2017; Ma et al., 2018; Villa et al., 2018; Silva et al., 2008). 

Multi-Platform Studies 

Remote sensing tools come in a wide range of spatial, spectral, and temporal resolutions. 

Landsat has spatial resolutions of 15 to 60 m and a return time of 16 days. This is great for 

monitoring global patterns, but is not necessarily useful for small scale studies. New sensor 

technology and platforms are being developed that increase resolution and should be evaluated 

for their use in environmental projects. Recent studies correlate sensors by scaling their measured 

parameters to one another to determine if they produced similar results.  

Dash et al (2018) estimated forest health with a modified NDVI using UAV (MicaSense 

RedEdge 3) and RapidEye (6.5m2) satellite imagery to detect physiological stress in trees from 

herbicide treatment. They carried out time-series analyses of different vegetation indices in 

ArcMap and correlated them to images from both sensors using regression models. They found 

that both sensors had significant capability to detect plant stress from various indices. Lukas et al 
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(2016) did a correlation analysis of vegetation indices using UAV and Landsat Operational Land 

Imager. Their results showed positive correlation to field measurements, but each sensor had 

specific limitations that affected their success for monitoring. 

Nymphoides peltata 

Nymphoides peltata is an invasive freshwater plant that was first reported at Lake Carl 

Blackwell (LCB) Oklahoma in 2014. It is native to Eurasia and the Mediterranean and considered 

invasive in several countries including the United States. Commercial sale and export of N. 

peltata has been considered the primary method of dispersal to new water bodies. 

Nymphoides peltata reproduces via fertilization, vegetative expansion, fragmentation, or 

colonizing propagules. Flowering occurs from June to October in North America. Flowers are 

bright yellow with 5 fringed petals that are 3 – 4 cm in diameter. Fruit pods are 1.2 – 2.5 cm wide 

capsules after pollination (Darbyshire & Francis, 2008). Van der Velde & Van der Heijden (1981) 

reported an average density of 180 fruits/m2 in a Swedish infestation. Fruits contain 40 – 80 

elliptical seeds. They are 4 – 5 mm in length and have trichomes that form interlocking chains of 

floating seeds (Nault & Mikulyuk, 2009). Trichomes may aid in dispersal by allowing seeds to 

adhere to waterfowl and foraging wildlife that travel between waterbodies (Cook, 1990). Seeds 

require certain conditions for germination as N. peltata is generally limited to well buffered waters 

with mineral substrates, such as clay (Van der Velde, 1979). Seeds can withstand significant 

desiccation (Smits, et., 1988), but need high oxygen and light levels to germinate. 

This plant forms complex structures composed of rhizomes, stolons, leaves and 

adventitious roots. Shoots can become heart-shaped leaves 3 – 15 cm in diameter that are bright 

green and have slightly scalloped margins (Brock et al., 1983; Grosse & Mevi-Schutz, 1987). 

Huang et al (2014) measured the buoyancy of N. peltata seeds and germination rates in response 

to environmental factors and concluded that vegetative expansion contributes more to area 
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colonization. Zhonghua et al (2007) reported that a single plant can produce over 100 new plants 

in 12 weeks from their rhizomes.  

Nohara (1991) used aerial imagery to measure the rate of spread of N. peltata. They 

found N. peltata could expand its spatial extent vegetatively from 3.8 – 10.0 m/year in any one 

direction. This rate of expansion could be overwhelming and have negative effects, especially in 

smaller waterbodies. Colonization of new areas of a waterbody are attributed to fragments or 

propagules. Nymphoides peltata can form a new individual from plant fragments that have at least 

one node (Darbyshire & Francis, 2009). This makes physical removal extremely challenging and 

could have contrary effects. 

Nymphoides peltata in the United States 

The United States Department of Agriculture and Plant Health Inspection Service 

assessed the invasive potential of N. peltata and rated it a High-Risk species due to its ecosystem 

impacts and establishment/spread potential (USDA APHIS, 2012). Infestations have been 

confirmed in 32 states and is designated as a noxious weed in Connecticut, Maine, Massachusetts, 

Oregon, Vermont, and Washington (NRCS, 2019; ODA, 2018). The introduction and dispersal of 

non-native species is largely attributable to economic activities in trade and transport (Lovell & 

Stone, 2006). Nymphoides peltata is introduced to new areas anthropogenically. It is not federally 

regulated as a noxious weed and can be commercially grown and sold, often as an ornamental. 

States have individual noxious weed lists and develop invasive species management 

plans. Oregon has added YFH to the state Noxious Weed List to reduce introduction. The Oregon 

Department of Agriculture recommend physical removal in small ponds. Their studies suggest 

that endothall, diquat, imazamox and imazapyr could be effective treatment options (ODA, 2018).  

The Massachusetts Office of Coastal Zone Management wrote the MA Aquatic Invasive 

Species Management Plan, mentioning YFH as a species to be aware of. It has not been updated 
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or supplemented since 2002 and does not provide specific management advice (MA OCZM, 

2002). Other states have not provided official plans to find and eradicate N. peltata.  

There is no commercial regulation of YFH in Oklahoma and it is not on the Oklahoma 

noxious species list (PLANTS USDA, 2019). YFH has been previously reported in Oklahoma 

ponds located in McCurtain county in 1948 and 1958. It was also reported in Lake Texoma in 

1947 (USGS NAS, 2019). These populations are no longer present. YFH was discovered in the 

Lake Carl Blackwell reservoir in Payne County, Oklahoma in 2014. 

Nymphoides peltata in Other Countries 

Countries such as Ireland, New Zealand, Canada, and Sweden have had infestations of N. 

peltata and all have designated it as a pest or noxious weed (Nault & Mikulyuk, 2009). It has been 

confirmed in 16 Irish waterbodies. They plan to create the Ireland Invasive Species Action Plan for 

N. peltata. This will outline how to limit the impact of the plant by preventing new introductions 

and establishing eradication methods. Policies have been put in place to restrict sales of non-native 

species in order to prevent invasive species expansion. They also plan to take steps to increase 

public awareness of the negative impacts of non-native plants and to promote native species (Kelly 

& Maguire, 2009).  

New Zealand claims eradication of N. peltata in its boundaries. They continue to manage 

it by banning its sale distribution. They harvest newly found infestations until its coverage is zero 

(Champion, Hofstra, & Winton, 2019). 

Nymphoides peltata was first planted in the Arbogaan River in Sweden in 1933 and has 

since spread to around 40 waterbodies. Control measures include mechanical harvesting and 

chemical treatments. Neither of these treatment options have been considered successful 

(Carlsson & Kataria, 2008).  
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Populations of N. peltata have been reported in the Canadian provinces: Ontario, Quebec, 

British Columbia, Nova Scotia, and Newfoundland and Labrador. Canada has strict aquatic 

herbicide use restrictions, so they recommend landowners use physical control methods. It is 

suggested that draining and allowing the soil to dry sufficiently may destroy the seedbed in 

smaller waterbodies. Benthic barriers may also be an alternative or additional measure 

(Darbyshire & Francis, 2009). 

Control of Nymphoides peltata  

Oregon Department of Agriculture Noxious Weed Program tried multiple methods to 

eradicate a 1.2-acre YFH infestation in Willow Sump, Umpqua National Forest. Initially they 

attempted physical removal, which took place over three weeks. One month later the infestation 

had completely regenerated. Benthic barriers were tested and after two years were removed and 

had promising results, however, in their ecosystem the presence of willow trees made widespread 

use impractical. They subsequently chose to apply an herbicide known as Imazapyr, which 

yielded a 95% reduction in the following year (ODA, 2018). 

Zhu et al (2019) studied the impacts of mechanical YFH removal at Lake Taihu in China. 

Over 196 km2 of vegetation was removed using machinery. They found that re-establishment next 

year ranged from 29 – 95% of the previous extent and that success rates varied by the month 

removal took place.  

A treatment by the Florida Collier County Storm Water Management achieved partial 

control of Crested Floating Heart (Nymphoides cristata, CFH). They used an application 

combination of glyphosate and imazapyr. The herbicides reduced foliar coverage, but after four 

weeks the infestation had regenerated (Willey & Langeland, 2018).  

Crested Floating Heart is of the same genus as Nymphoides peltata and would share 

many physiological traits, including a similar response to a hormone-based herbicide. Beets and 
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Netherland (2018) conducted an outdoor mesocosm study to measure the response of invasive 

plants Hydrilla and CFH and two native species to florpyrauxifen-benzyl (FPB). They were 

testing concentration dose and exposure time to biomass reduction, as well as water column 

concentration. After 24 hours, the concentration of FPB or byproducts were below detectable 

limits. Hydrilla biomass declined 68 – 80% after 28 days and CFH biomass declined 89 – 100%. 

The amount of biomass affected was positively correlated to the length of exposure time, but 

there was no significant increase in control when doubling concentrations from 24 to 48 ug/L. 

The native species Sagittaria lancifolia was not impacted by FPB, but the pickerel weed was 

nearly eliminated. 

ProcellaCOR 

Lake Carl Blackwell management planned to treat their infestation of N. peltata with the 

herbicide ProcellaCOR in July 2019 (Angle, 2019). The active ingredient of ProcellaCOR is 

florpyrauxifen-benzyl and was developed by the SePRO corporation with Dow Agrosciences 

(MDA, 2018). It is a Weed Science Society of America Group 4 herbicide. This means it 

interferes with plant reproduction and growth processes. It has only been on the market for 

approximately two years at the time of study. It had been previously tested for ecological impacts 

for over eight years before being approved for use the EPA. (SePro, 2019). 

The US EPA classified ProcellaCOR as a Reduced Risk herbicide due to its short 

residence time and half-life in water (2 – 6 days). There are no known health risks to wildlife or 

people from bodily exposure (MDA, 2018). ProcellaCOR has been used to successfully treat 

infestations of N. peltata and several other invasive aquatic weeds (e.g., hydrilla and milfoil) in 

12 states (SePRO, 2019). The producers estimate complete reduction of N. peltata 6 – 8 weeks 

after application with no adverse impacts on water quality or native taxa.  
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Beets and Netherland (2018) conducted an outdoor mesocosm study to measure response 

to dose concentration and exposure time from invasive plants Hydrilla and CFH to 

florpyrauxifen-benzyl (FPB). The concentration of FPB or byproducts were below detectable 

limits within 24 hours. Hydrilla biomass declined 68 – 80% after 28 days and CFH biomass 

declined 89 – 100%. The amount of biomass affected was positively correlated to the length of 

exposure time. 

Economic Review 

The introduction and dispersal of non-native species is largely attributable to economic 

activities in trade and transport (Lovell & Stone, 2006). Many articles have emerged that estimate 

the damage costs of invasive species in the US in recent years. These estimates vary widely from 

<$1 million USD to 12% of the gross domestic product (Marbuah et al, 2014). It is necessary to 

have an accounting of bioeconomic features like spread, control, and damage processes to 

estimate established invader damage impacts (Epanchin-Niell & Hastings, 2010). A literature 

review by Marbuah et al (2014) concluded most studies of invasive species control failed to 

monitor the results of their chosen strategy. This was confirmed by a review conducted by 

Ketternring and Adams (2011). 

 There are three essential components to link economics and invasive plant management: 

knowledge of plant control and populations, plant populations and lake use, lake use and lake-

based value (Adams & Lee, 2007). Florida state agencies used preference surveys to measure 

angler willingness-to-pay for the removal of invasive aquatic plant cover. Adams and Lee (2007) 

used these survey results and known invasive plant coverages of water hyacinth, water lettuce, 

and hydrilla in 13 waterbodies. They established an empirical bioeconomic model by using 

observations of plant coverages, control costs, fishing activity and lake characteristics as 
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simulated control. They used this to estimate potential lost fishing benefits from $64.78 million 

per year on 13 waterbodies. 
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CHAPTER III 
 

 

METHODOLOGY 

Analyses of this study were carried out under the same geographic and projection 

coordinate systems (WGS 84 UTM Zone 14N) to ensure comparable measurements. Satellite and 

UAV images were clipped to the hydrogeologic extent of Lake Carl Blackwell to maintain the 

same number of rows and columns for analysis. A dataset of satellite and UAV imagery from 

2019 was first processed with the Maximum Likelihood Classification (MLC) to determine the 

detectability of N. peltata at the respective sensor resolutions. The same dataset was then visually 

assessed to determine the spatial extent of the vegetation. This was followed by spectral analyses 

to calculate the NDVI and FVC. Regression analysis was performed for a dataset of temporally 

corresponding dates of the satellite and UAV data. A dataset from 2018 composed of Sentinel-2 

and RGB UAV imagery was validated using ground measurements. An estimation of the 

economic impact of N. peltata at Lake Carl Blackwell was conducted following spectral analyses. 

Study Area 

Lake Carl Blackwell is a 1,300-ha reservoir with an average depth of 4.9 m located in 

north central Oklahoma (36.1344 N, 97.2302 W) (Figure 1) (Toetz, 2009). The reservoir is in a 

watershed that is characterized by agricultural production. Soils are composed of sandy, silty 

loam and generally have high clay content (Howick & Wilhm, 1985). Average annual 

temperatures range between 9  ͦC and 34  ͦC. Annual precipitation averages 96.52 cm (OK 

EPSCOR, 2019). Most of the N. peltata infestation was located in the north central arm of the
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reservoir. It dominated areas along the shoreline and smaller inlets (Angle, 2019). The satellite 

records data for the entire lake but the UAV was limited to smaller areas. An area referred to as 

Cove D is where the multispectral UAV imagery was captured in 2019 (Figure 1). 

 

 

     

Figure 1. Lake Carl Blackwell is the study location. The top image is Sentinel-2 imagery (6-29-19). On 

the bottom left is the inlet containing the majority of the infestation and the red circles indicate where 
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field data was collected. The image on the bottom right is a UAV image (7-11-19) and defines the 

observation area known as Cove D. 

Data Collection and Preprocessing 

Sixteen Sentinel-2 images were downloaded from the USGS Earth Explorer from May – 

October 2019 for use in this study (Table 3). Images of the location Tile T14SPF were selected 

based on the visibility of the study area. Images where more than 10% of the infestation was 

obscured by clouds were excluded from analysis. All data were pre-processed to Bottom of 

Atmosphere (BOA) reflectance using the ESA program SNAP and the Sen2Cor plugin v 7.0.0. 

This is a necessary pre-processing step in order to correct for atmospheric distortion. Only 10 m 

bands 2, 3, 4, and 8 (Table 1) were used for image classification.  

Table 3. Sentinel-2 (n = 16) and UAV (n = 12) imagery collection dates from 2019, Tile T14SPF 

and the study area, respectively. Dates denoted with (*) are used for direct comparisons between 

the two sensors. 

Day of Year Sentinel-2 UAV Day of Year 

150  5/30/2019 *6/12/2019 163 

160  *6/9/2019 *7/11/2019 192 

175  6/24/2019 7/17/2019 198 

180  6/29/2019 *7/19/2019 200 

190  *7/9/2019 *7/24/2019 205 

200  *7/19/2019 7/25/2019 206 

205  *7/24/2019 7/29/2019 210 

210  *7/29/2019 *7/31/2019 212 

240  *8/28/2019 8/7/2019 219 

250  *9/7/2019 8/14/2019 226 

260  9/17/2019 *8/28/2019 240 

270  9/27/2019 *9/11/2019 254 

290  10/17/2019   

295  10/22/2019   

300  10/27/2019   

A MicaSense RedEdge Multispectral camera mounted to drone model DJI Matrice-100 

was used to collect spectral data from Cove D (Figure 1). It was collected 12 times between June 

and September 2019 (Table 3). The imagery was composed of five bands (Table 2) (Red, Green, 

Blue, NIR, RE) and had a spatial resolution of approximately 8 cm. The UAV was flown to 
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correspond with Sentinel-2 satellite overpass dates as often as possible. Orthomosaics of the 

scene were generated using the Structure-from-Motion algorithm in AgiSoft PhotoScan mapping 

software (Figure 2). Seven dates from Sentinel-2 and the Red Edge that correspond temporally 

were selected for comparisons of N. peltata spatial coverages, NDVI, and FVC using linear 

regression (Table 2). 

 

Figure 2. Example of UAV orthomosaics of Cove D composited with AgiSoft Structure-from-Motion. Dots 

indicate the camera location upon capture and oblong shapes are error estimates that range from -4 to 4 m. 

Image Analysis 

The workflow (Figure 3) for the satellite and UAV data followed these steps: (1) pre-

process satellite data to BOA reflectance and composite aerial photos into orthomosaics; (2) 

Maximum Likelihood Classification and accuracy assessment which involves the creation of 
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training and validation regions of interest (ROI); (3) Processing data, includes hand-digitizing the 

spatial extent of N. peltata, the generation of multitemporal NDVI and FVC datasets; (4) 

Comparison of the results obtained from these two datasets with different resolutions using 

regression analysis. Validation was done by overlaying field sampling points from 2018 over 

FVC computed from UAV and Sentinel-2 imagery collected in 2018. 

 

Figure 3. Illustration of the workflow used to compute spectral indices and extract their values from multi-

temporal datasets. All collected images were processed using this method. 
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Supervised Classification and Accuracy Assessment 

The MLC was carried out in the ENVI image analysis software package (Harris 

Geospatial, 2019) on all image dates found in Table 2. Training and validation datasets were 

created from ROIs for each date. Classes were (1) N. peltata, (2) other vegetation (OV), and (3) 

water. All satellite and UAV image were clipped to the boundary of Lake Carl Blackwell so that 

only the pixels within the hydrogeologic boundary were classified.  

  

Figure 4. Left: Classified Sentinel-2 image (7-09-19). Right: Classified UAV image (7-11-19). 

Reference points were created from imagery and served as reference data for the MLC 

accuracy assessments. A confusion matrix compared the reference data to the classification 

outputs for every class. Statistical parameters calculated from the confusion matrix are the 

Overall Accuracy (OA),the Kappa Coefficient Producer’s Accuracy (PA) and User’s Accuracy 

(UA). The OA is the percentage of pixels from all classes that were classified correctly. The 

Kappa Coefficient is the measurement of how well classified pixel values agree with values from 

reference classes, if the map were created using random classification. The PA is the accuracy of 

how well features in the map are correctly classified by the maker. The UA is the probability that 

a classified pixel represents the actual feature in the field (Harris Geospatial, 2019). This study 
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compares the outcomes from each sensor to classify N. peltata. The number of pixels classified 

can estimate the spatial coverage of the plant, which can be compared to hand-digitized extents. 

Spatial Extent Over Time 

The N. peltata infestation was hand-digitized in ArcMap v 10.6.1 (ESRI, Redlands, CA) 

to view the changes of spatial extent. This was carried out in order to: (1) understand the 

population dynamics lake wide for immediate management purposes, and (2) compare the extent 

to that estimated from the MLC because it can be more accurate than computer-based 

classification. This approach is useful for environmental managers until automatic classification 

of images can be improved for this species. All available data from the Sentinel-2 satellite and the 

UAV (Table 2) were digitized. Sentinel-2 covers the entire extent of the lake and allows the 

quantification of the entire infestation. The UAV was only flown over area Cove D to document 

the effects of herbicide application. The plant was distinguishable in the images based on its 

unique physiology, large extent, and first-hand knowledge of the spatial analyst.  

   
4/20/19 6/29/19 7/29/19 
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Figure 5. Nymphoides peltata (yellow) hand digitized in ArcGIS. Top: Close-ups of where the majority of 

the infestation is located. Date (4-20-19) is the earliest image where N. peltata is visible. Date (6-29-19) 

was the peak coverage date and 10 days prior to herbicide treatment. Date (7-29-19) is the infestation 20 

days post-application. Bottom row: UAV imagery of study area Cove D. The high spatial resolution allows 

for precise estimations of plant area. 

Multitemporal NDVI 

The satellite and UAV imagery underwent the same workflow post pre-processing 

(Figure 3) to determine the NDVI and FVC values of the N. peltata infestation. This study 

calculated the following indices in Esri’s ArcMap: (1) Calculate the NDVI; (2) Clip the NDVI 

with a shapefile to the lake extent, terrestrial vegetation; (3) Use the NDVI of the lake area to 

calculate FVC; (4) Extract the NDVI and FVC using peak coverage spatial extent. 

It is standard to use Band 8 (NIR) and Band 4 (Red) (Table 1) to calculate the NDVI 

(Equation 1) for Sentinel-2. Bands 4 (NIR) and 3 (Red) were used (Table 2) to calculate NDVI 

for the UAV data. NDVI (Equation 1) was calculated for every pixel in an image and was given a 

value (-1 to 1). Pixels with values less than zero were associated with soils and non-vegetation 

(Jackson et al., 1983).  

All imagery was clipped to the extent of the hydrologic boundary of Lake Carl Blackwell 

to maintain the equal extent of observation for all calculations. Pixels were selected and ArcMap 

was used to determine average value, standard deviation, minimum, and maximum. The peak 

spatial coverage of N. peltata was used to extract corresponding values to observe the change of 

vegetation response over time. Analysis values from the infestation for Sentinel-2 and UAV were 

6/12/19 7/19/19 8/28/19 
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extracted for each available date and compared with linear regression to determine if there were 

significant relationships between the measurements of the sensors. 

Normalized Difference Vegetation Index: 

NDVI = (NIR – Red) / (NIR + Red) (Equation 1) 

  

The extent of N. peltata was then clipped from the terrestrial area and spectral values extracted 

using the coverage of the peak extent to measure the change over time. The FVC (Equation 2) 

(Song et al., 2017) uses the isolated NDVI values of N. peltata to estimate what percent, or 

density, of each pixel represents vegetation. It is calculated as: 

Fractional Vegetation Coverage: 

FVC = [(NDVI - NDVImin) / (NDVImin - NDVImax)] * 100 (Equation 2) 

where NDVI is the Index; NDVImin is the lowest calculated pixel value, indicating low or no 

vegetation; NDVImax is the highest calculated pixel value, indicating full vegetation cover. The 

index is multiplied by 100 to give a percent coverage value. 

Field Validation 

Field measurements were collected at Lake Carl Blackwell in 2018 that estimated the 

plant coverage on 2 m2 quadrats at various locations in the infestation. These points were 

organized in a grid to collect points approximately 20 m apart in order to prevent spatial 

autocorrelation. Quadrat coverages (FVCground ) were correlated to FVC calculated for Sentinel-2 

imagery(FVCSentinel-2) from 2018. It was also correlated to FVC calculated for RGB UAV imagery 

(FVCUAV) collected in the summer of 2018 from a previous study (Angle, 2019). The satellite 

imagery underwent the same processing procedures as the 2019 dataset. The RGB UAV data was 

collected with a DJI Phantom4 drone and an off-the-shelf camera (~1 cm spatial resolution). It 
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was necessary to first approximate the Visible Atmospherically Corrected Index (Equation 3) 

prior to calculating the FVC, since this UAV dataset lacks an NIR band. 

Visible Atmospherically Corrected Index (Gitelson, 2002): 

VARI = (Green – Red) / (Green + Red – Green) (Equation 3) 

  

Field observations were imported to ArcMap and then buffered to a 10 m zone. The 

corresponding image data was extracted using the Zonal Statistics Tool. Available ground data 

was correlated to the 2018 FVCSentinel-2 data for 198 observation pairs on 10 dates (7-19-18; 7-29-

18; 8-3-18; 8-28-18; 9-22-18; 9-27-18; 10-22-18; 10-27-18). The 2018 FVCUAV for two dates (7-

31-18; 8-9-18) were correlated to 45 ground points. Figure 6 illustrates the sampling pattern used 

in coves with UAV imagery and satellite imagery. 

     

Figure 6. i. FVCSentinel-2 (8-3-18) with field observation points buffered to 10m overlain for zonal statistics 

extraction. ii: FVCUAV imagery (Top, 8-9-18) (Bottom, 7-31-18) with field observation points to a 10m buffer 

overlain for zonal statistics. 
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Statistical Analysis 

Linear regression is a statistical method that estimates the conditional response 

relationship between datasets (Seber & Lee, 2012). This study determined if there was a linear 

relationship between the satellite and UAV imagery for different parameters (spatial extent, 

NDVI values, FVC). Basic statistical values selected from Cove D were used to model a linear 

regression to infer the strength of the relationship between sensor spectral resolution. Linear 

regressions were conducted using Microsoft Excel for a dataset of seven temporally overlapping 

dates of satellite and UAV imagery over Cove D (Table 2), as well as ground coverage to the 

FVCSetinel-2 and the FVC UAV. 

The classification results from Sentinel-2 and UAV imagery cannot be directly compared 

to each other due to significant differences of area covered by each. The area of N. peltata 

reported from the MLC step was then compared to manually derived spatial extent of the 

corresponding sensor using regression analysis. This indicates if classification accuracy is 

comparable to manual classification and if it is valuable in vegetation monitoring. 

Economic Analysis 

The costs of sensors and the analysis of the imagery are an important aspect to consider. 

Satellite imagery of very high resolution or targeted return time can be more expensive than what 

is reasonable for most environmental projects. The costs of UAV and cameras are also very 

expensive though they offer flexible data collection on demand. This study considers the costs of 

equipment in addition to treatment and administrative costs associated with the project. 

Management at Lake Carl Blackwell has tried in the past to control the N. peltata infestation with 

little success. A review of costs from 2018 and 2019 were analyzed to estimate the costs per 

hectare of treatment for both years. 
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The value of the lake area as a whole can be deduced from the revenue generated. LCB is 

a popular recreation area that is open for boating and fishing year-round and generates revenue 

through the sale of: annual permits, nightly camping, daily permits, equestrian usage, and leased 

sites. Accounting of the monthly revenue was provided by LCB management and analyzed in 

Microsoft Excel for the months of April to October 2019. The average monthly revenue was 

calculated and used as a benchmark to estimate the Monthly Lake Value (MLV) (Equation 4).  

Equation for Monthly Lake Value: 

MLV = Σ Monthly Revenue of LCB ÷ 7 months (Equation 4) 

The MLV was expanded to estimate Monthly Hectare Value of LCB by dividing the 

MLV by the waterbody area (1,300 ha) (Equation 5). The MHV gives an approximation of how 

much each ha on the lake is worth in terms of recreational access. 

Equation for Monthly Hectare Value: 

MHV = MLV ÷ 1,300 ha  (Equation 5) 

The Potential Lost Value (PLV) can be estimated by multiplying this value by the 

number of ha of N. peltata that are present. The average ha value was selected for this calculation 

for each month. The PLV is essentially the lost value of the lake as an impact from the spatial 

extent of N. peltata over time (Equation 6): 

Equation for Potential Lost Value: 

PLV = MHV × ha of N. peltata  (Equation 6) 
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CHAPTER IV 
 

 

RESULTS 

Image Classification and Accuracy Assessment 

Sixteen images from Sentinel-2 were classified to an extent of approximately 9x12 km. 

Three classes (Figure 4) were produced from the Maximum Likelihood Classification (MLC) and 

the parameters OA, Kappa Coefficient, PA, and UA were generated for the N. peltata vegetation 

class (Figure 7). The OA ranged from 75.5% to 100%, which equated to an average of 96.1%. 

One of these dates had an OA of 75.5% and the rest were greater than 92%. Reported Kappa 

Coefficients were 0.27 to 1.0. The lowest coefficient value corresponds to the lowest OA on 10-

27-19 (DOY 300). The PA (50 – 100%) and UA (22.7 – 100%) reflect the confusion matrix 

results of N. peltata vegetation class as compared to the reference data. The ratio of reference to 

training pixels for N. peltata of this dataset was 7 – 36%. Lower UA values occurred with fewer 

training pixels, which is a result of the herbicide treatment (Table 4).



  

31 
 

 

Figure 7. Sentinel-2 classification accuracy assessment results. The X- axis is the Day of Year for each date, 

a measurement that gives the absolute day of the year. The orange bars indicate the overall accuracy, gold 

bars represent the Producer’s Accuracy, and the User’s Accuracy is marked with gray bars. The Kappa 

Coefficient is the blue line that aligns to the secondary horizontal axis. 

MLC classified N. peltata from Sentinel-2 imagery an average 95% of the time. The ratio of 

reference to training pixel was 7 to 37% on average. The number of pixels available was 

greatly diminished contributing to poorer classification, as the infestation declined over time. 

Table 4. Sentinel-2 N. peltata training and reference data. 

Day of Year Date Training Pixels # 
Reference 

Pixels # 

Ratio 

150 

160 

175 

180 

190 

200 

205 

210 

240 

250 

260 

270 

290 

295 

300 

5/30/2019 

6/9/2019 

6/24/2019 

6/29/2019 

7/9/2019 

7/19/2019 

7/24/2019 

7/29/2019 

8/28/2019 

9/7/2019 

9/17/2019 

9/27/2019 

10/17/2019 

10/22/2019 

10/27/2019 

708 

338 

485 

408 

571 

235 

49 

20 

22 

44 

40 

38 

34 

17 

49 

53 

40 

111 

97 

116 

50 

18 

4 

7 

9 

10 

7 

7 

6 

10 

0.07 

0.12 

0.23 

0.24 

0.20 

0.21 

0.37 

0.20 

0.32 

0.20 

0.25 

0.18 

0.21 

0.35 

0.20 

 

Three classes (Figure 4) were produced from the MLC of the UAV imagery dataset. The 

confusion matrix resulted in OA 88.3 to 97.8% and Kappa coefficients 0.30 – 0.95. The PA of N. 
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peltata ranged from 70.70 to 99.99% and UA was 15.95 – 97.91% and averaged 70.21% (Figure 

8).  

 

Figure 8. Accuracy assessment of UAV images from summer 2019. The Overall Accuracy are represented 

by the blue bars, Producer’s Accuracy are the gold bars, and the User’s Accuracy denoted by the grey bars. 

Kappa Coefficient is the red line and is scaled to the secondary horizontal axis. 

Low UA could be attributed to declining vegetation reflectance as it becomes more stressed. The 

training to reference pixel ratio ranged from 0.18 to 0.56. The average without the outlier is 0.22 

and with it is 0.28 (Table 5). 

Table 5. Accuracy Assessment of N. peltata in 2019 UAV imagery. 

Day of Year Date 
Training 

Pixels # 

Reference 

Pixels # 

Ratio 

163 

192 

198 

200 

205 

206 

210 

212 

219 

226 

6/12/2019 

7/11/2019 

7/17/2019 

7/19/2019 

7/24/2019 

7/25/2019 

7/29/2019 

7/31/2019 

8/7/2019 

8/14/2019 

145,354 

387,562 

93,983 

155,287 

49,014 

67,995 

33,781 

160,539 

33,652 

31,213 

35,120 

217,906 

20,785 

31,045 

9,010 

14,311 

7,235 

35,832 

9,783 

6,671 

0.24 

0.56 

0.22 

0.20 

0.18 

0.21 

0.21 

0.22 

0.29 

0.21 
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240 

254 

8/28/2019 

9/11/2019 

32,336 

12,327 

8,195 

2,618 

0.25 

0.21 

 

Spatial Coverage 

The spatial extent of N. peltata was estimated and compared using Sentinel-2 and UAV 

imagery. The wide area covered by Sentinel-2 made it possible to estimate the infestation lake 

wide. The smallest detectable area of N. peltata with Sentinel-2 was 0.01 acres. Sentinel-2 images 

showed that N. peltata surfaced in April at approximately 6.52 ha and peaked around 22.5 ha in 

July 2019 (Figure 9). There was an approximate 91% reduction in coverage within 15 days after 

treatment on July 9. Nymphoides peltata declined for 56 days to less than 0.85 ha in the final 

image on 10-27-19. 

Figure 9. Lake wide spatial coverage of N. peltata over the summer of 2019 derived from Sentinel-2 

satellite imagery. The black line represents the first day of herbicide treatment. 

Coverage of N. peltata in Cove D measured with Sentinel-2 exhibited a similar declining 

trend as the lake wide infestation and peak coverage in this area was estimated at 2.98 ha (Figure 

10). UAV imagery yielded similar estimates of N. peltata coverage in Cove D as Sentinel-2. 

There was an increase from 2.09 ha in June to a peak of 2.59 ha in July. UAV data captured a 
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77% decline in the study area 15 days after treatment. The final date of the UAV dataset 

estimated a coverage of 0.03 ha. The exact area of the hydrologic boundary used in the GIS 

analysis was 1313 ha. It is shown that N. peltata grew to almost 2% of the lake’s surface area 

from the lake geometry and the area of the vegetation coverage over time. The efficacy of 

ProcellaCOR reduced that coverage from 1.71% to 0.16% in 20 days. The area remains consistent 

until over wintering. 

 

 

Figure 10. Spatial coverage of N. peltata over the summer of 2019 in the study location Cove D taken with 

Sentinel-2 (black) and UAV (orange). The black line represents the first day of herbicide treatment. 

 

Regression analysis was used to compare coverage estimates between platforms for seven 

temporally corresponding dates (Table 3). Results showed a significantly high positive 

relationship (R2 = 0.94; p < 0.001 ) between datasets from the two sensors to visually delineate 

the infestation (Figure 6). The classified data can be further validated by comparing the spatial 

area tabulated for N. peltata from the MLC with regression analysis. Table 6 summarizes the 

comparison of the hand digitized coverages from UAV (UAVDig) and Sentinel-2 (S-2Dig) to the 
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classified data (UAVclass; S-2class) of its respective sensor. The Sentinel-2 data (n = 16) had a low 

positive relationship (R2 = 0.11) that was not significant at p = 0.23. The multispectral UAV data 

(n =11) had a significant positive relationship (R2 = 0.87; p < 0.001).  

Table 6. Regression analysis results from the comparison of the hand digitized coverages UAV 

(UAVDig) and Sentinel-2 (S-2Dig) to the classified data (UAVclass; S-2class) of its respective sensor.  

 N pairs R
2 

Significant f Standard Error 

UAVDign : S-2Dig 7 0.94 
< 0.001 0.26 

S-2Dig : S-2class 16 0.11 
0.23 24 

UAVDig : UAVclass 11 0.87 < 0.001 0.29 

 

Normalized Difference Vegetation Index 

The lake wide average NDVI of N. peltata was 0.09 in the first available Sentinel-2 

image on April 20, 2019. Maximum average NDVI values were 0.60 in June and the minimum 

average NDVI value was -0.21 in late October. The lake wide average NDVI value gradually 

increased to 0.60 prior to the herbicide treatment (July 9, 2019) after which it declined rapidly 

(Figure 11). 

 

 

Figure 11. Spatial coverage (blue line) and average NDVI (orange line) values for N. peltata over the summer 

of 2019 lake wide, derived from Sentinel-2 imagery. The black line indicates the day of treatment. 
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The average NDVI values from Sentinel-2 imagery for Cove D peaked at 0.62 in July and 

declined to 0.07 (Figure 12). Values derived from UAV imagery for Cove D (Figure 12) peaked 

at an average of 0.42 in July and declined for 9 weeks post-treatment to a low of -0.15. Values 

from both sensors had sharp declines soon after herbicide treatment and reinforces the visual 

estimate of efficacy.  

 

 

Figure 12. NDVI of N. peltata over the summer of 2019 in the study location Cove D, derived from Sentinel-

2 (orange) and UAV (blue) imagery. 

Seven dates (Table 3) from Sentinel-2 and UAV were used to compare NDVI data using 

linear regression. Results showed a positive relationship (R2 = 0.40) between the two sensor’s 

spectral measurements, but this relationship was not significant (p > 0.05). They both exhibited a 

sharp decline that would indicate that the vegetation was becoming stressed and eventually being 

replaced by water pixels, which have negative NDVI values. The UAV shows a more dramatic 

decline of NDVI that could be attributed to its greater spatial resolution. 
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Fractional Vegetative Cover 

Emergent coverage of the lake wide FVCSentinel-2 averaged 76.2% on April 20, 2019. Peak 

average FVC was 82.3% July 9, 2019 and dropped to a low of 33.6% about 11 weeks after 

treatment (Figure 13). Sentinel-2 data from the study area Cove D showed a maximum FVC of 

62% in July, which was the day of treatment. It then had a minimum reported average of 38% 20 

days later (July 29, 2019). 

 

 

Figure 13. Fractional cover (orange) and spatial coverage (blue) of N. peltata over the summer of 2019 in 

the study location Cove D, derived from Sentinel-2 and UAV imagery. 

The FVCUAV pixel average peaked at 71% (July 17, 2019) and had a low of 42% in 

September (Figure 14). The standard deviation ranged from 4.3 to 33.3%. The regression analysis 

of the FVC datasets had seven observation pairs (Table 2). The data had a positive relationship 

(R2 = 0.39), but the relationship was not significant (p > 0.05). The low significance is impacted 

by the low sampling size of the dataset and could be improved with more frequent data collection. 

Calculation of the FVC allowed comparison of ground quadrat measurements to UAV and 

Sentinel-2 pixel values. 
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Figure 14. Fractional cover of N. peltata over the summer of 2019 in the study location Cove D, derived 

from Sentinel-2 (orange) and UAV (blue) imagery. 

Field Validation 

Ground measurements collected in 2018 were analyzed along with FVC data derived 

from Sentinel-2 and RGB UAV imagery collected over the summer of 2018. Ground 

measurements were buffered to 10m to correspond with the pixel size of Sentinel-2. Satellite data 

from 10 dates was analyzed to obtain 198 validation pairs. The UAV imagery dataset had only 

two days of imagery appropriate for correlation to ground cover (n = 45 pairs) (Table 7)  

The Sentinel-2 average FVC ranged from 16 to 98% for an overall mean of 47%. The 

field measurements averaged 61% in the corresponding areas. A significantly positive 

relationship was observed between FVCground and FVCSentinel-2 (R
2 = 0.47; p < 0.001). The mean 

FVCUAV ranged from 15 to 62% for an average of 37.15% as well. There was not a significant 

relationship between FVCground and the UAV points (R2 = 0; p > 0.05) likely due to pixel scale 

differences. The field measurements do show there is validation of the presence/absence of 

vegetation at each point. 
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Table 7. Regression analysis results from the comparison of the ground sampling (2018) to UAV (RGB, 

2018) and Sentinel-2 . 

  
N 

Pairs 

Sensor 
FVC 

range 

Mean 

FVC 

SD 
FVC 

Sensor 

Ground 

FVC 

Mean 

FVC 
R2 SE P 

Ground v 

Sentinel-
2 

198 16 - 98% 47% 18% 
0 - 

100% 
61% 0.47 13 < 0.001 

Ground v 

UAV 
45 19 - 52% 47% 15% 

0 - 

100% 
62% 0.01 15.2 > 0.05 

Economic Analysis 

Monitoring costs for this project varied for each sensor. The Sentinel-2 satellite is an 

open-access platform. The imagery and processing software are available for free from ESA. 

Processing and analysis of this imagery requires a trained analyst knowledgeable about the 

infestation, which could be costly. The UAV imagery had a much higher startup cost than 

Sentinel-2 data. Angle (2019) estimated image analysis to be about $100 per image for either 

platform, the UAV equipment and software totaled around $13,500 (Table 8). 

Table 8. Summary of the costs of equipment and analysis for the Sentinel-2 and UAV imagery. 

 UAV Sentinel-2 

Camera/Drone $8,800 $0 

Software $3,500 $0 

Analysis $1,200 $1,800 

Total $13,500 $1,800 

 

Project costs included more than just the monitoring equipment (Table 9). The herbicide 

required to treat all ~20 ha of N. peltata cost $19,000. Equipment and labor for the herbicide 

application in 2019 was over $35,000 and included a third-party applicator as well as costs for an 

airboat operator from the Oklahoma Department of Wildlife Conservation. Costs for a calibrated 

herbicide sprayer were $5,500. Water samples were collected and analyzed in order to determine 

the product was not reaching the water intake of the reservoir. All samples were found to be 

below detection limits. Administrative costs totaled over $37,000. The total project costs were 



  

40 
 

approximately $106,000. Oklahoma State University at this time chose to switch their water 

source from Lake Carl Blackwell to the city supply, however, these costs were not able to be 

factored in for this study. 

The spatial analysis revealed that approximately 91% of the infestation was controlled in 

an 8-week timeframe. This is what SePro predicted would happen post-application. This equates 

to about $5,200 per ha of control. This is in contrast to control efforts exerted in 2018. Glyphosate 

was applied as a treatment in 2018 but only successfully controlled about 1 ha of N. peltata. The 

monitoring costs were less than what was used in 2019 because it used an off-the-shelf camera 

rather than the multispectral MicaSense RedEdge camera that costs around $5,500. The 2018 

project costs were around $66,000. This is approximately 62% less than the 2019 project costs. 

The 2018 glyphosate application yielded almost no control and cost about $66,000 per ha of N. 

peltata eradication. 

Table 9. Summary of the Project costs at Lake Carl Blackwell in 2018 and 2019. 

 ProcellaCOR Glyphosate 

Application Labor/ 

Equipment 

$35,007 $6,200 

Monitoring/Analysis $13,500 $7,960 

Water Tests $800 $6,960 

Administrative $37,347 $43,200 

Product $19,000 $1,950 

Total $105,654 $66,270 

$/ha Control $5,283 $66,270 

 

Lake revenue was accounted for April – October 2019 (Table 10) and includes all income 

from daily use permits, annual permits, cabin leases, camping sites, and store sales. Nymphoides 

peltata was present for at least 214 days in 2019, as visible from Sentinel-2 data. Lake revenue 

totaled just below $744,000. The Monthly Lake Value (MLV) averaged $106,283 in 2019. 

Corresponding MHV averaged about $82. Potential lost value ranged from $82 to $1,745, 

averaging a PLV of $662 per month. 
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Table 10. Summary of monthly revenue from Lake Carl Blackwell from April to October 2019. 

Monthly Revenue is the sum of all income to LCB. MLV is the average of revenue for each month. The 

MLV values are divided by the lake area (1,300 ha) to determine the MHV. The MHV is multiplied by 

the average N. peltata coverage from each month as measured by Sentinel-2 satellite imagery. 

 April May June July August September October 

Monthly 

Revenue 

$69,348 $123,214 $157,377 $133,875 $104,894 $78,902 $76,373 

MLV ($) $106,283 $106,283 $106,283 $106,283 $106,283 $106,283 $106,283 

MHV ($) $82 $82 $82 $82 $82 $82 $82 

N. peltata (ha) 9 16 21 8 1 1 1 

PLV ($) $731  $1,276  $1,745  $619  $94  $84  $82  
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CHAPTER V 
 

 

DISCUSSION 

 The goal of this study was to investigate how data from the Sentinel-2 satellite compared 

to data collected with a UAV equipped with a multispectral camera for the purpose of monitoring 

aquatic plants. Environmental projects are often restrained by budgets and manpower that the 

integration of a remote sensing platform could lessen. Both platforms have positive aspects that 

make them feasible for vegetation monitoring, as well as significant drawbacks.  

Sentinel-2 is limited by weather and poor atmospheric conditions. Imagery may not be 

available as it is needed for this reason. It is an open-source platform with good resolution and is 

relatively simple to work with by an analyst. UAV are useful for on-demand data collection with 

high spatial resolution and access to hard to reach areas. They are limited by their flight range, 

high startup costs, and technical requirements. Direct comparison of the classification results, 

spatial coverage, NDVI, and FVC between these two platforms have not been carried out to date. 

Making direct comparisons between these two platforms was intended to demonstrate if these 

instruments were suited for aquatic plant monitoring and its response to chemical treatment. 

 The overall accuracy of the 16 Sentinel-2 images was 96.1% and a Kappa Coefficient 

average of 0.88. Maximum Likelihood Classification of three spectral classes and four spectral 

channels yielded PA of N. peltata in this study from 50 to 100%. All imagery dates had a PA 

greater than 90% except the final image which had a value of 50% and one other date had PA of 

75% . This is comparable to Villa et al (2015) who achieved an OA of 90.41% on four 
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macrophyte community images with medium resolution satellites (10 – 30 m; 400 – 900 nm). 

Faidi, Hasan, and Shamasuddin (2018) also used Sentinel-2 to identify Nelumbo nucifera using 

Maximum Likelihood with accuracy results of 89%. 

The UA values were fairly consistent, but there was a notable decline of values after 

treatment with the lowest value of 22.7%. This would indicate low probability that the classified 

pixel would actually be found on the ground. Imagery was selected for adequate atmospheric 

conditions, but there were days that exhibited darker atmospheres, possibly because of the timing 

of image acquisition by Sentinel-2. This could have inhibited the spectral resolution to make the 

classification. It could have been due to reduced coverage of N. peltata for fewer training and 

validation pixels, as well as the increased stress of the plant after treatment.  

The overall accuracy of the 12 UAV images was 94.3% with an average Kappa 

coefficient of 0.79. The UAV dataset in this study showed PA range from 50 – 100% and UA 

from 16 – 100%. Every date produced UA greater than 54%, except the final date. This is likely 

due to the very low vegetation coverage and high stress caused by the herbicide treatment. These 

results are similar to Husson, Hagner, and Ecke (2014) who classified vegetation in a lake 

environment with a UAV (OA = 95.1%).  

The classification results between the two sensors were comparable, even though the 

UAV imagery has much higher spatial resolution and was classified using five bands that 

included the NIR and the Red Edge. The Sentinel-2 imagery has 10m resolution and utilized only 

the Red, Green, Blue, and NIR bands. Processing of UAV data took on average 2.5 to 3 hours for 

each image. Processing Sentinel-2 data took about 1.5 to 2 hours to classify and assess for 

accuracy. The high spatial resolution and relatively small classification area make the UAV 

dataset slightly more accurate for classification than Sentinel-2. 
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Regression analysis of the visual coverage estimates of N. peltata from the two datasets 

revealed a significant relationship (R2 = 0.94; p < 0.001). This suggests that the Sentinel-2 MSI 

has meaningful ability to detect vegetation features at low levels. A trained analyst would be able 

to visually estimate the extent of the vegetation at a level that is comparable to a high-resolution 

UAV. This means the declining trend of lake wide N. peltata (Figure 8) is reliable and can be 

used to monitor vegetation change. This measurement estimated that the lake coverage of this 

plant declined from almost 2% to less 0.2% due to the application of ProcellaCOR.  

The UAV imagery over Cove D allowed for precise measurements of the infestation and 

let the digitizer take into account open-water patches or to exclude vegetation and other features 

that were not N. peltata. The primary difference between these spatial estimates are the time 

requirements to digitize an image (Sentinel-2 ~ 30 minutes; UAV ~ 3 hours). Nymphoides peltata 

was identifiable at a spatial extent of about 40 m2 and so for a vegetation stand less than this the 

UAV would be able to provide more reliable coverage than what is gathered from the UAV. 

Results of this analysis also provide support for the herbicide manufacturer’s claim to 

reduce weed species in 6 – 8 weeks. The satellite imagery documented a 91% reduction in just 15 

days. A similar trend was observed by the UAV in Cove D with a 77% reduction in 15 days. 

Willey & Langeland (2018) achieved partial control of Nymphoides cristata with glyphosate and 

imazapyr with some success, but the plant regenerated in just four weeks. The Oregon 

Department of Agriculture achieved 95% reduction of an N. peltata population at Umpqua 

National Forest using Imazapyr (ODA, 2018). This suggests ProcellaCOR may be more 

successful than similar herbicides like glyphosate or imazapyr. The extreme reproductive 

potential of N. peltata to reproduce from fragments and propagules make physical removal 

impractical and ProcellaCOR would be a better alternative. 
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The spatial extent of N. peltata produced from the MLC were as much as three times 

greater than the area manually digitized for Sentinel-2. The regression analysis showed a weak 

relationship that was not significant (R2 = 0.11; p > 0.05). Classification to detect and delineate 

infestations would need to be greatly improved for this sensor in order to be reliable. Sentinel-2 

tended to overestimate the spatial extent of N. peltata. The hand digitized spatial extent from 

Sentinel-2 had a significantly close relationship to the values that were derived with the UAV. It 

could be used to reliably estimate N. peltata over a large area by an analyst familiar with the plant 

and the study area if it covered a sufficient spatial extent. 

The area derived from the classification of UAV imagery had a closer relationship to the 

digitized area than was seen with the 10 m satellite imagery. Regressions of the classified area 

from UAV imagery had a high relationship (R2 = 0.87; p > 0.05), but the results were not 

significant. The low significance is likely due to the small sample size of the dataset and would 

require a higher frequency of data collection. Maximum Likelihood Classification of UAV 

imagery would be useful for analyzing data collected over a new area where it was unclear if the 

vegetation present was N. peltata. 

The NDVI values for both sensors dropped significantly after 25 days even though total 

eradication was not achieved. No regrowth was observed. The relationship between the seven 

chosen dates was positive though the regression indicates low significance (R2 = 0.40; p > 0.05). 

This would also be due to the low sample size of the dataset. The dates that have significantly 

different outcomes have low light atmospheric conditions and lower levels of N. peltata to 

measure. The extracted pixel values corroborate the visual assessment that treatment resulted in a 

significant decline of vegetative health quickly reducing spatial coverage. Sentinel-2 was able to 

capture this lake wide and was supported by the targeted UAV data collection. This supports the 

claim of short residency time by the herbicide, even though total eradication was not achieved.  
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It should be noted that some areas of the infestation were inaccessible for spray 

application due to dense willow stands or lack of terrestrial access. The FVC was directly derived 

from NDVI values and therefore exhibited similar trends. FVCSentinel-2 measured an average peak 

of 82% that declined to 34% after treatment. The FVCUAV imagery over Cove D peaked at 71% 

and declined to 42% post-treatment. The correlation between the Sentinel-2 and UAV imagery 

was about the same (R2 = 0.39; p > 0.05) as the NDVI relationship. The lower relationships 

between sensors is likely due to differences of pixel size and sample size. 

These measurements were validated by the ground measurements from the 2018 UAV 

and satellite datasets. The buffer size around the ground points could have been too large to 

adequately estimate the FVCUAV. There was not a significant relationship between coverage 

measurements from the field to the FVC calculated for the RGB UAV imagery. This could be due 

to the spectral characteristics of the VARI equation and to the small pixel size. These 

measurements support a presence/absence correlation of vegetation at the time. Differences can 

be attributed to scale differences to the quadrat measurements. Results indicate the 

presence/absence of N. peltata can be confidently ascertained from Sentinel-2 imagery. 

The potential lost value caused by the N. peltata infestation was based on assumptions 

that lake value could be estimated by net revenue generated by lake users in the summer months 

of 2019. It extends this assumption so that the physical area of the lake has a monetary value 

based on its availability of use. The entire lake would be accessible to patrons without the 

infestation. Nymphoides peltata grows at high densities and large spatial extent as to render some 

areas unusable. Multiplying the monthly ha value by the monthly average spatial extent gives the 

cost of the area occupied by the infestation. An estimated $4,631 of value was lost from the lake 

in the summer of 2019. This is not actual money lost, but it is value of the lake that has been 

diminished. The N. peltata infestation could potentially spread around the perimeter of the lake 

and cause a much more significant loss of value if nothing were to be done.  
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CHAPTER VI 
 

 

CONCLUSION 

 New and innovative technologies are improving our ability to monitor vegetation. 

Remote sensing will be a primary tool for invasive plant detection and monitoring moving 

forward. This requires that N. peltata be accurately classified from the selected platforms. 

Sentinel-2 has a scale that required it to classify an image far larger than the extent captured by 

the UAV. Sentinel-2 demonstrated a tendency to over-estimate N. peltata than what was 

estimated visually. This could be overcome with more training of classifying algorithms. The 

UAV showed very high potential to classify N. peltata that was confirmed by the relation of 

classified area to the manually digitized area. The accuracy of results was impacted by the effects 

of the herbicide. The resulting user’s accuracy declined after treatment in response to the limited 

area of N. peltata as what was left was highly stressed and produced varying spectral responses. 

UAV classification would be useful in instances where it is uncertain if an area has an N. peltata 

population. The flight flexibility and very high spatial resolution of a UAV makes it easy to target 

new areas with unconfirmed potential infestations. The average lake monitoring plan would likely 

survey areas of known vegetation and so it is unlikely they would need to enact such a 

complicated measure as image classification. 

Sentinel-2 demonstrated high potential for manual detection of N. peltata in this study. It 

was able to quantify the seasonal trend and its decline over the entire lake. This was validated by 

the statistically significant positive relationship between the Sentinel-2 and the UAV derived 
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spatial extent. The high spatial resolution of the UAV can reliably image N. peltata and allowed 

for precise measurement. Sentinel-2 provides similar coverage estimates even though it captured 

data at coarser spatial scale. The Sentinel-2 images are free compared to the UAV which has 

expensive startup and use costs which is something for project managers to consider.  

These sensors seemed to similarly demonstrate that the average NDVI values dropped 

suddenly after treatment. They were able to document the negative effect of ProcellaCOR on 

plant growth and productivity. This would suggest that both sensors provide meaningful spectral 

measurements and can be used to monitor herbicide treatments. The UAV should be flown over 

the entire infestation for better comparison to address this question. The difference of outcomes 

between the sensors could be attributed to the coarser spatial resolution of Sentinel-2. Few studies 

exist that compare the outcomes of spectral indices based on spatial resolution without re-scaling 

the data, so the true relationship is difficult to estimate. The importance of the outcomes of this 

study lie in the similarity of the trends. 

Both platforms have positive aspects and limitations that may dictate how they are used 

in environmental projects. UAVs are generally well-suited for short-term monitoring over 

relatively small areas that allow for on-demand data collection. This was useful for documenting 

the short-term changes in the days immediately before and after herbicide treatment. A drawback 

of UAVs are the high costs for equipment and processing software and the substantial time 

needed for data collection and processing. The UAV also requires substantially greater technical 

knowledge to composite and use multispectral data than Sentinel-2. The hiring of a third-party for 

analysis could increase costs substantially and is something that should be considered by lake 

managers. Sentinel-2 is ideal for imaging large areas for wide scale detection and mapping.  

The choice of sensor is highly dependent on project goals and data needs. The satellite 

platform should be a sufficient tool for monitoring trends in aquatic plant vegetation in most 
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cases. The UAV can be a good substitute for ground surveys but would probably be used under 

limited circumstances. The UAV can provide data in targeted areas on short notice. The UAV 

may also be advantageous if the lake manager wants to study the immediate effects of treatment 

that cannot be documented in the 5-day overpass schedule of Sentinel-2. The UAV is still limited 

by weather conditions but can still collect meaningful data in overcast conditions that would 

occlude the ground from the satellite platform.  

The success of ProcellaCOR to reduce the extent and health of N. peltata was easily 

captured to the full extent using the satellite imagery. It would be most practical and cost-

effective to use the Sentinel-2 MSI imagery to delineate biological vegetation parameters prior to 

and over the course of treatment over a large scale. This would indicate the general response and 

the short temporal resolution make it ideal for seasonal monitoring. The UAV provides more data 

in specific areas that the Sentinel-2 MSI cannot capture. The Sentinel-2 platform should be used 

until the vegetation reaches such low densities and area as to not be identifiable at this scale. The 

UAV would be more appropriate in this case. The high costs and technical knowledge make the 

UAV less usable in an average vegetation monitoring project. The costs would need to be 

considered along with how often the manager thinks it would be used before the investment is 

made. The UAV platform may be best suited for scouting new areas that are unreachable or if 

there is a presence of overhanging canopy. It is also well suited for monitoring where the 

vegetation covers such a small area that the satellite does not indicate the presence of vegetation.  

 The SePRO corporation that produces and sells the herbicide ProcellaCOR claims full 

eradication of invasive weeds within 6 – 8 weeks. It has only been on the market for about two 

years at the time of publication and primarily used to treat small ponds. Its use at Lake Carl 

Blackwell is one of the first applications at a large scale and in an open waterbody. The satellite 

data indicate that the infestation was reduced by 91% in this 8-week time frame. Full eradication 
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was not achieved, but the results indicate that this herbicide is extremely effective at least 

seasonally.  

Areas that were not affected did not have the herbicide directly applied due to lack of 

access. This is consistent with the other claim SePRO makes about the herbicide having low-

residence time in water and does not travel. This is corroborated by the water testing that showed 

no detectable limits of ProcellaCOR at the water intake. It is presently unclear what the effects 

will be in the long term and how much regrowth can be expected in an environment such as Lake 

Carl Blackwell.  

 The product costs of ProcellaCOR were considerably higher than the glyphosate the lake 

had used in the past. Project costs for 2019 were estimated to be approximately $106,000. This is 

about 60% higher than project costs in 2018 when glyphosate and hand removal were the 

treatment methods. ProcellaCOR exerted considerably better vegetation control than glyphosate 

despite the difference in overall project costs. ProcellaCOR demonstrated a cost of about 

$5,300/ha whereas glyphosate cost about $66,000/ha of control. 

 A lake manager would be prudent to use a combination of these sensors to maximize 

their data collection. The Sentinel-2 satellite would be a cost-effective method to monitor 

seasonal change when vegetation is of a high enough spatial extent. It has the added advantage of 

imaging a very large area providing large amounts of data for analysis. The UAV does not have 

the capacity to image as large an area as the satellite and would require the coordination of 

multiple drones. This would magnify the costs associated with UAV use and would not be an 

ideal solution. Sentinel-2 is limited to a best-case temporal resolution of 5 days and so the UAV 

would be invaluable for capturing short term changes in target areas. The UAV is also excellent 

for monitoring vegetation post-treatment when it is greatly reduced as to not be visible by the 

Sentinel-2 MSI.
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