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4.8 Robot’s estimated cognitive stress level modestly correlates with physio-

logical metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Coin game task penalties in manual vs. autonomous assistance modes

across 34 test subjects. p < 0.05 in both instances. . . . . . . . . . . . . 52

4.10 Cognitive load of human operators in Coin Game experiments with dif-

fering numbers of robots and steadily increasing task complexity. . . . . 53

4.11 Snapshot of heterogeneous team exploration using Flightgear.Quadrotors

and fixed-wing aircraft coordinate together to explore, and are each cap-

tured in different picture elements. The lower-right element is the joint

belief of B. (a) UAS B is moving towards the CO2 plume. UAS A still

exploring far from the plume. (b) UAS B already passed through the

plume and sent intention for UAS which are interested in exploring area

with high CO2 density. UAS A is such a robot so it moves towards the

plume. B’s joint belief in lower-right sub figure also shows the trail of A’s

path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.12 Snapshot of heterogeneous team exploration using Flightgear.Quadrotors

and fixed-wing aircraft coordinate together to explore, and are each cap-

tured in different picture elements. The lower-right element is the joint

belief of B. (a) UAS B is moving towards the CO2 plume. UAS A still

exploring far from the plume. (b) UAS B already passed through the

plume and sent intention for UAS which are interested in exploring area

with high CO2 density. UAS A is such a robot so it moves towards the

plume. B’s joint belief in lower-right sub figure also shows the trail of A’s

path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



Figure Page

4.13 Snapshot of heterogeneous team exploration using Flightgear.Quadrotors

and fixed-wing aircraft coordinate together to explore, and are each cap-

tured in different picture elements. The lower-right element is the joint

belief of B. (a) UAS B is moving towards the CO2 plume. UAS A still

exploring far from the plume. (b) UAS B already passed through the

plume and sent intention for UAS which are interested in exploring area

with high CO2 density. UAS A is such a robot so it moves towards the

plume. B’s joint belief in lower-right sub figure also shows the trail of A’s

path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.14 Snapshot of heterogeneous team exploration using Flightgear.Quadrotors

and fixed-wing aircraft coordinate together to explore, and are each cap-

tured in different picture elements. The lower-right element is the joint

belief of B. (a) UAS B is moving towards the CO2 plume. UAS A still

exploring far from the plume. (b) UAS B already passed through the

plume and sent intention for UAS which are interested in exploring area

with high CO2 density. UAS A is such a robot so it moves towards the

plume. B’s joint belief in lower-right sub figure also shows the trail of A’s

path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.15 Heterogenous robots avoid each other while exploring the space. Simu-

lated fixed-wing UAV (denoted B) avoiding collision with quadrotor (de-

noted C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.16 Heterogenous robots avoid each other while exploring the space. Joint

belief of fixed-wing UAV B. Red line shows path B followed. B only

calculates local gradient over the joint distribution of belief. . . . . . . . 61

4.17 Snapshot of heterogeneous team exploration. For visibility we have hid-

den joint intention of all the robots except for B (a fixed-wing UAS).

Quadrotors and fixed-wing aircraft coordinate together to explore, and

are each captured in different picture elements. The lower-right element

is the joint belief of B. (a) All UAS begin exploring the space. In lower-

mid window UAS B and C are captured in the same frame. . . . . . . . 63

xi



Figure Page

4.18 Heat map representation of joint belief in heterogeneous team of robots.

Robot A explores along temperature gradient. . . . . . . . . . . . . . . . 65

4.19 Heat map representation of joint belief in heterogeneous team of robots.Robot

B explores the remainder of the environment . . . . . . . . . . . . . . . 66

4.20 (a) Robot B proceeding to interesting area intended by human operator

while avoiding dangerous areas. . . . . . . . . . . . . . . . . . . . . . . . 67

4.21 (b) B explores the interesting area. . . . . . . . . . . . . . . . . . . . . . 68

4.22 (c)Navigating to new interesting area inserted by human operator avoid-

ing dangerous areas. Robot A continues to explore temperature gradi-

ent(not visible to B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.23 T1: In each subfigure, upper left is measured temperature, upper right

is the inferred temperature gradient, lower left is randomly sampled tem-

perature predictions drawn from the inferred gradient, and lower right

is a temperature vs altitude plot. a-b and c-d are temperature profiles

in simulation and the real world respectively. In each case, the first fig-

ure is early in the exploration process, and the second is after additional

exploration and mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.24 T2: In each subfigure, upper left is measured temperature, upper right

is the inferred temperature gradient, lower left is randomly sampled tem-

perature predictions drawn from the inferred gradient, and lower right

is a temperature vs altitude plot. a-b and c-d are temperature profiles

in simulation and the real world respectively. In each case, the first fig-

ure is early in the exploration process, and the second is after additional

exploration and mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii



Figure Page

4.25 T4: In each subfigure, upper left is measured temperature, upper right

is the inferred temperature gradient, lower left is randomly sampled tem-

perature predictions drawn from the inferred gradient, and lower right

is a temperature vs altitude plot. a-b and c-d are temperature profiles

in simulation and the real world respectively. In each case, the first fig-

ure is early in the exploration process, and the second is after additional

exploration and mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.26 T6: In each subfigure, upper left is measured temperature, upper right

is the inferred temperature gradient, lower left is randomly sampled tem-

perature predictions drawn from the inferred gradient, and lower right

is a temperature vs altitude plot. a-b and c-d are temperature profiles

in simulation and the real world respectively. In each case, the first fig-

ure is early in the exploration process, and the second is after additional

exploration and mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.27 Experiment with two UAV robots A and B. (a) Human commands A to

move toward B. (b) B moves to avoid collision with A. (e) A and B flying

at safe distance again. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.28 Plots for a representative autonomous flight are on the left; a preplanned

profile flight is on the right. Measured temperature change over time ( δF
δt

)

is in the bottom row; the top row collects these data into a histogram for

information gain computation. . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



LIST OF TABLES

Table Page

4.1 Accuracy of the classifier in the maze game experiment. . . . . . . . . . . 46

4.2 Confusion matrix of the classification using cross validation method. . . . 46

4.3 Confusion matrix of the classification using leave one out method. . . . . 46

4.4 Task success comparisons between autonomous assistance mood and man-

ual mood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Heterogenous CO2 plume mapping . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Flight Test Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xiv



Chapter I

Introduction

“I visualize a time when we will be to robots what dogs are to humans, and I am

rooting for the machines.”—Claude Shannon

What makes a robot autonomous? It is one of the active fields of research in Robotics and

Artificial Intelligence. By autonomous it implies it can take its own decision automatically

while performing a task. But still one can argue that we are far from reaching truly au-

tonomous robots. Yes, a robot can move from point A to point B very efficiently in an ideal

setting. A plethora of eminent research[1, 2] has conducted on this problem in the field

of robotics. Research on localization[3, 4, 5, 6] and mapping to the environment has been

studied in the literature in-depth as well. Yet robots are still not very good figuring out a

good strategy to accomplish a task instructed by humans unlike a human would do. Even

when it does it is not good at telling its understanding of its human partner in an intuitive

way that human understands. Thus bridges between robots and human understanding of

a problem and coming up with a solution is an important research question in the field of

human-robot interaction (HRI). For many good reasons, these robots should be autonomous

for most of the time and heterogeneous of type. The term heterogeneous implies that there

is more than one robot with different sensors and actuators.

In addition to humans, an autonomous or semi-autonomous robot may also need to

communicate and coordinate with other robots. That is when we come across the problem of

coordination of the multi-robot team. This requires the robots to communicate over and over

again with one another, to make sure they are not being used in the same place or have been
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used in the same place for more than a short period of time and that the robots know how to

avoid collision with each other accomplishing a task. It’s also very important that the robots

know how far apart things have to be so they can coordinate better and avoid each other.

An autonomous or semi-autonomous robot needs to have safety measures in place so that it

will not trip or otherwise damage itself (such as a broken arm or a broken window). When

the robot is being used, it also needs to be ready to move out of its intended area if damage

occurs. When the robot is not being used, it must do everything safely without stopping

and be ready to move away from another robot or obstacle if necessary. One may ask why

do need multiple robots to accomplish tasks in the first place? The answer is because even a

fully autonomous robot may often lack the capability to complete a complex task. We find

in nature intelligent beings that communicate with each opt to coordinate and help each

other to accomplish and objective.

Finally, a coordinated autonomous multi-robot requires human intervention and in-

teraction as well. For example, a team of robots capable of performing a task in a trained

environment may not be able to do the same in a completely new environment. To avoid

such situations an intelligent robot program needs to recognize the requirements of each task

and provide the necessary information and resources. Secondly, and equally important, it is

the responsibility of the human team to recognize and react to those errors and problems

that arise during the mission. Apart from safety, human domain knowledge integration is

another important factor which makes human interaction with multiple robot team is es-

sential. Throughout my studies, for my doctoral degree, I researched the above research

problems in the light of state of the art research in autonomous multi-robot systems. I have

carefully figured out important challenges in solving those problems. I have conducted rig-

orous experiments to validate my understanding of the problems and also provided elegant

solutions to those. In this dissertation thesis, I will describe three of my major studies in

the following chapters. Each of these studies has been published peer-reviewed conferences

and scientific venues. Although all of the studies are done on human-robot interaction and

control of heterogeneous autonomous robot they modularized into individual research works

for their own merits.
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1.1 Assessing Cognitive Stress of Human Operator

In this study I demonstrated a robotic system that learns to recognize the behavioral

indicators that a complex, rapidly-evolving task has exceeded the cognitive capacity of a

human partner. Based on that determination, it can act autonomously to reduce the human

decision burden, significantly improving task performance. We present a robot that learns

to recognize the indications that a complex, rapidly-evolving task has exceeded the cognitive

capacity of a human partner to provide helpful direction. The robot learns to associate

human directions and task quality metrics in the context of a well-understood task, in this

case, the navigation of a maze. The robot is then able to use this learned model to evaluate

the behavior of a human partner in a task which it does not understand and cannot execute

without human instruction. Even though the context of the new task is beyond the robot’s

comprehension, it can accurately assess whether it is being given trustworthy directions from

an increasingly frazzled human partner.

One of the most challenging obstacles facing human-robot teams is the inherent com-

munication barrier between the two. Human operators, at least once they have received

training, have some notion concerning the capacities of their mechanized partners, but the

ability of robots to assess the limitations of humans has not received adequate attention.

Research in this area often focuses on attempting to observe human behavior and predict

what action or actions to perform in the future; this renders such systems incapable of

making instantaneous or reactive decisions. In contrast, systems which are capable of mak-

ing split-second decisions, such as the lane drift detection found in some high-end cars,

make no inference concerning the user’s abilites or frame of mind; they are reacting to a

well-understood world state without consulting their human partners. This is not true inter-

action; the robot is learning to work around the user instead of with them. Human assistance

should enable complex multi-robot tasks where the robots themselves are unable to assess

their environment fully, but this lays a heavy burden on the operator in a dynamic, danger-

ous, rapidly-changing environment with many cognitive demands. Fundamentally, human

operators and robots each have complementary capabilities and limitations, and they must

each be aware of the abilities of the other. Discovering the cognitive capacity of human op-

erators in human-robot teams is essential [7]. Our research allows robots to form models of

3



Figure 1.1: Turtlebots navigate a maze while evaluating human task input.

human behavior during well-understood tasks, and then apply these learned models during

unknown tasks. We show that these models allow the robot to make an effective determi-

nation of the cognitive capacity of a human partner, even when the robot cannot directly

assess the task it is being asked to perform. In this way, a robot team member should be

able to fall back into a safe autonomous mode whenever the task demands begin to exceed

the ability of its human partner to provide effective direction.

Why is teamwork between human and robots so important? Both have advantages

and limitations. It is easy to understand that a robot with flawed sensors and actuators may

not be able to perform a task, owing to failure to perceive information about its environment.

But it is not necessarily the case that improving the sensors and actuators will have a

commensurate effect on the robot’s ability to accomplish a task – a great many tasks require

contextual information far beyond the current ability of any robot to reason about. Thus for

the forseeable future, many tasks will require assistance from human teammates, who are
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able to integrate data, rely on experience to predict the effects of actions on world states,

and produce effective long-term plans far better than any current robot.

Human assistance with multiple robots has been demonstrated in different practical

situations. For example, they have been used as customer assistants in shopping malls [8, 9],

where human operators occasionally assisted robots. Human-robot teams have assisted each

other in museum tour scenarios [10] and in warehouse inventory management [11]. Just as

robots, regardless of their hardware capabilities, do not necessarily perform well without

assistance, humans do not always assist robots as efficiently as they might, despite their

superiority in context sensitivity and general intelligence. Several issues arise in this regard

[12], including obvious problems such as noisy communication between human operators and

robots, accidental damage to robot sensors and so on.

In this paper, we focus on one problem which can cause difficulties in a human-robot

team: the cognitive capacity of the human operator. Humans often find their ability to

function effectively challenged, due to psychological stress, tiredness, or overwhelming task

demands. A robot’s ability to participate constructively in a human-robot team will benefit

immensely from understanding and accommodating this cognitive stress appropriately. For

example, for the pilot of an unmanned aircraft, cognitive stress can be the difference between

life and death [13]. If such a robot can detect the emergence of cognitive stress in its operator,

it can increase its level of autonomy and reduce its demands on the operator’s attention.

Hopefully, such a robot would wait safely for a more opportune moment or decide to engage

in a less cognitively challenging task, rather than continue to follow the direction of a human

who is no longer able to provide appropriate assistance.

In this paper, we have designed robots that learn the correlations between quantifiable

behavior metrics and the cognitive capabilities of human operators. We designed a maze

game (Fig. 1.1) where multiple robots are given directions by a single human operator. At

first, the robots’ objective was simply to complete the maze, a task that they were capable of

executing without human assistance using autonomous path planning. They were therefore

able to determine whether the instructions of their operators were sound or questionable,

and associated these outcomes with measurements of their operator’s behavior. We observed

the output of the learned cognitive stress model in a different task, this time with the robots

engaged in a coin-collecting game inside the maze. Although the robots had no knowledge
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of the rules or objectives of the coin-collecting game, and had no ability to sense the game’s

context, their learned models enabled them to determine the cognitive stress of their human

partner. In this way, they were able to evaluate the trustworthiness of the actions they

were being asked to perform. The cognitive stress discerned by the robot correlates with the

true stress experienced by the human operators, as quantified by their self-reporting and by

expert evaluation.

One of the most challenging obstacles facing human-robot teams is the inherent com-

munication barrier between the two. Human operators, at least once they have received

training, have some notion concerning the capacities of their mechanized partners, but the

ability of robots to assess the limitations of humans has not received adequate attention.

In our system, the robot learns to model the relationship between human direction

and task performance for a well-understood task–in this case, navigating a maze. The robot

then participates in a different, more difficult problem, but it can still use its learned model to

evaluate a human operator’s cognitive load. A robot’s ability to participate constructively

in a human-robot team will benefit immensely from understanding and accommodating

this cognitive stress appropriately [13]. Our work demonstrates robots that can detect the

emergence of cognitive stress in their operators, increasing their level of autonomy and

reducing demands on the operator’s attention.

Human-robot interactions can be evaluated using fundamental metrics [14]. We lever-

age this data to inform our robots’ estimation of a human operator’s cognitive capacity.

Recent work [15, 16] presented a model for assessing a human’s attention level, based on eye

contact and gaze detection towards a robot. In our work, the robot learns a general behavior

model to identify the operator’s cognitive threshold, rather than relying on the specifics of

gaze.

Human- robot interactions can be evaluated using fundamental metrics [14] like task

effectiveness (TE), neglect tolerance (NT), free time (FT), fan out (FO). Physiological met-

rics as objective evaluation along with subjective evaluation for cognitive load estimate has

been also studied in psychology[17].
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1.2 Multi-Modal Multi sensor Interaction between Human and Heterogeneous

Multi-Robot System

I introduce a novel multi-modal multi-sensor interaction method between humans

and heterogeneous multi-robot systems. I have also developed a novel algorithm to control

heterogeneous multi-robot systems. The proposed algorithm allows the human operator to

provide intentional cues and information to a multi-robot system using a multimodal multi-

sensor touchscreen interface. My proposed method can effectively convey complex human

intention to multiple robots as well as represent robots’ intentions over the spatiotemporal

domain. The proposed method is scalable and robust to dynamic change in the deployment

configuration. I describe the implementation of the control algorithm used to control multiple

quad-rotor unmanned aerial vehicles in simulated and real environments. I will also present

my initial work on human interaction with the robots running my algorithm using mobile

phone touch screens and other potential multimodal interactions.

In recent years, robots are becoming more ubiquitous and available to the general

public than ever before, thanks to the rapid development of artificial intelligence and tech-

nologies like 3D printing, open-source autopilots, mission planners, and so on. Small Un-

manned Aerial Systems (UAS) probably are the most common robots that people, in general,

have access to today. However, there is a considerable research gap in human-UAS interac-

tion. UAS may have been become popular for their use in photography. They have other

useful applications as well. UAS have been used effectively for surveying, agriculture, search

and rescue operations and so on. The means of interaction between UAS and humans has

usually been joystick controllers, which can communicate control commands using radio

communication mostly for the navigation intended by the human operator. Observation of

the navigation space from the ground station or the attached camera on the UAS is critical

for flight safety. However, UAS can be equipped with other sensor devices as well, to capture

information such as temperature, humidity, and pressure. Although this sensory information

can be crucial in many applications, it is not available via visual navigation or observation

from the ground station, and cannot be performed in the most effective way using just the

joystick controller.

I propose using a mobile phone touch screen as an interface between UAS (and robots

7



in general) for these kinds of complex interactions. One of the benefits of choosing mobile

phone touch screen is that many people have access to one, and thus it is the most accessible

way for people, in general, to interact with robots today. However, there is an enormous

research gap here as well. Most of the commercial UAS drones usually provide mobile phone

applications to interact with their robots, but these applications are focused on setting up

control parameters and communication channels, basic control commands, and executing

predetermined maneuvers. Multimodal multi-sensory interactions are often overlooked and

thus have tremendous potential for research.

The primary motivation for this work is to collect weather data using multiple UAS

in a low-altitude environment. This type of task requires the use of a heterogeneous team

of robots where different UAS can be equipped with different sensors. For example, flying

fixed-wing UAS, which are fast but neither precise nor maneuverable, can be used to scout

a large area of interest. Small quad-rotors with lower velocity but higher precision and

maneuverability can be used to survey a smaller area of interest more extensively. They may

also need to coordinate with ground robots for efficient deployment. Robots must coordinate

with each other in general, ensuring collision avoidance among robots, a suitable spread of

the UAS throughout the operating area, and deploying UAS equipped with the right sensors

to investigate particular phenomena discovered in particular areas of interest, where the

UAS using the specific sensor can collect essential data. I have developed a distributed

algorithm to control heterogeneous teams of robots using factor graphs and loopy belief

propagation. This algorithm also facilitates arbitrary human input to influence the behavior

of a particular robot which is then propagated to other robots. I propose a user interface

that directly visualizes the robots’ intention in the space and allows the human operator

to interact with it. I have already developed the fundamental functionality of the interface

using a mobile web application.

1.3 Distributed Control of Heterogeneous Team of robots and Humans

In this work, I introduced a novel, scalable, distributed decision-making algorithm

using factor graphs and the sum product algorithm to control the coordination of a hetero-

geneous multi-robot team in exploration tasks. In addition, our algorithm supports seamless

participation of human operators at arbitrary levels of interaction. This dissertation presents
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experimental results performed using both simulated and actual teams of unmanned aerial

systems (UAS). Our experiments demonstrate effective exploration while facilitating human

participation with the team. At the same time, my research shows how robots with dif-

fering capabilities coordinate their behaviors effectively to leverage each other’s individual

strengths, without having to explicitly account for every possible joint behavior during sys-

tem design. My research demonstrate my algorithm’s suitability for tasks such as weather

data collection using a heterogeneous robot team consisting of fixed- and rotary-wing UAS.

In particular, during 60 flight hours of real-world experiments collecting weather data, my

research shows that robots using our algorithm were about seven times more efficient at ex-

ploring their environment than similar systems which flew preplanned flight profiles. One of

our primary contributions is to demonstrate coordinated autonomous control and decision-

making among robots operating in very different flight regimes.

In many applications, it is advantageous to have a heterogeneous group of agents

cooperating in their execution of tasks and their search for solutions. For example, a search

and rescue robot team might incorporate unmanned aerial systems (UAS) to survey and map

the affected area, small ground robots to infiltrate and explore rubble and pipes, large ground

robots with manipulators to clear heavy objects, and friendly-looking social or medical robots

to locate and make contact with the injured. Even similar robots might have very different

kinds of capabilities and sensors, such as mapping sensors, hazardous chemical sensors, or

sonic sensors for voids and places where people could be trapped. A heterogeneous robot

team like the one described above is often difficult and expensive to engineer correctly,

especially if the agents possess very different physical characteristics and abilities. In this

paper, I am motivated primarily by the problem of using UAS to measure various aspects of

weather systems. A large number of different kinds of UAS with different capabilities and

sensors may be employed. For example, the system may incorporate large, fixed-wing UAS

with a variety of sensors, smaller and less expensive rotary-wing UAS, disposable single-use

sensors deployed with parachutes, and many airframe and sensor variations within these

categories. Additionally, as projects like this develop, new varieties of agents may be added

after the system is already in place.

The conventional way to approach this kind of problem would be to individually tailor

the software for each type of agent to produce cooperation and other desired behavior. For
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Figure 1.2: A team of heterogeneous UAS with meteorological sensors share a single factor
graph representation of their shared intentions.
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example, [18] in search and rescue (SAR) tasks, the logic of these two types of robot tasks are

designed separately. This approach is often adequate when the different types of agent are

not intended to change across missions and the desired collaborations are simple. However, as

the number of agent types increases and the problems become more complex, this approach

rapidly becomes unsustainable. The complexity of the entire system grows quadratically with

respect to the number of agent types, potentially resulting in an unmanageable error-riddled

code base and vastly increased cost and development time. Furthermore, such an approach

becomes completely unmanageable when new varieties of agents are added after the system

is deployed, since it requires significant modification to the logic of all other agent types

every time a new variety is introduced. Our approach places these heterogeneous sensor

and actuation modalities within a uniform multidimensional belief manifold represented by

a factor graph shared among all of the agents in the system. The dimensions of the manifold

can (and in many use cases, probably will) represent positions in physical space, but can also

encode agents’ joint intentions over any arbitrary space of action potentials. Actions to take

with respect to other agents, obstacles, unexplored areas and points or gradients of interest

can all be encoded in these intentional beliefs. The agents communicate in decentralized and

asynchronous fashion, using loopy belief propagation to update the team’s joint intentional

state. Consensus beliefs are then acted upon by each agent in the local area of the manifold

using simple gradient descent.

Many other similar tasks like SAR might require coordination of heterogeneous multi-

robot teams with arbitrary human intervention. The task I have particularly investigated

is surveying atmospheric data in the lower altitude (under 1000 feet) boundary layer[19].

Although satellite images, weather towers and balloons are used to collect weather data,

they are not able to provide coverage in this important area of the atmosphere, even though

sudden developments within the boundary layer can significantly contribute to severe weather

formation. UAS have been used by meteorologists to collect data in the boundary layer, but

they are manually controlled by human operators and usually follow a predefined simple

mission plan, such as vertical profiles or circular orbits. Such an approach has drawbacks

in efficiently deploying multiple robots and in fielding sufficient trained human operators.

Proper coverage requires a multi-robot deployment, and spatiotemporal data can change

dynamically, requiring multiple sensors spread out in space to properly sample time-varying
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data. Assigning human operators to each UAS is not practical, as robot participants must

coordinate closely with one another and make data-dependent decisions across the entire

robot team in real time. My research has addressed all of these problems using our factor

graph algorithm. The application of our proposed algorithm is not limited to these particular

tasks, but also can be generalized to many other tasks requiring heterogeneous multi- robot

teams cooperating with human operators.

In many human-robot team tasks, the human operator cannot inform the robots of

his or her intentions efficiently because of the different facets of the task exposed to the hu-

man operator and the robots. Similarly, it is often challenging to create an interface through

which robots can efficiently convey their knowledge and intentions to their human operators,

especially when the participant robots are heterogeneous in nature. This paper provides a

theoretically neat, practically robust, and generally efficient model for heterogeneous, scal-

able and dynamic human-robot teams.

In the past decade multi-robot teams have been proposed for various use cases, i.e.

weather surveys, rescue missions in natural or accidental disasters, and so on. However,

most of these approaches are very task specific and it is almost always the case that robots

are programmed very specifically to accomplish a certain type of task. While it is true that

given a set of hardware capabilities a robot is capable of performing only a limited number of

tasks, intuitively it is also true that deploying a collection of heterogeneous robots should be

capable of achieving more sophisticated goals. Thus, I have focused on a distributed control

algorithm that allows for such heterogeneity without requiring the constant, delicate design

of functionality for each different robot for each new task. There are many recent works

that focus on swarming and flocking behavior to demonstrate coordinated control of multi-

robot teams, but such approaches are more difficult to apply to specific performance goals

in real deployment scenarios. Our approach improves the ability of humans to participate

seamlessly in the robots’ collaborative goal development and intention formation, without a

great deal of on-the-scene manual tweaking and twisting of parameters, configurations and

task definitions.

Human operators needs to interact with robots seamlessly. The participation and

interaction of human is necessary because because both human and robots have limitations

about the information about real state of the world and take optimal actions to take to
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achieve a goal efficiently. For example, a group of UAVs can be given a task of modeling the

presence of a cloud of a gas of interest in the environment. The sensor for detecting that gas

can be attached to a some of the UAVs (Unmanned Aerial Vehicle). But the actual presence

of the gas may relate to some other sensor as well. For human operator comprehending all

the information and manually and control the team of robot becomes impossible with the

inclusion of more robots with variety of sensors. Similar situation can be imagined for het-

erogeneous robot which has different actuators and having different capabilities participating

the task. The participation and interaction of human is also very important because human

operator might want to dynamically change the control and behavior of the human robot

team. Thus we need a algorithm that controls the robots as well as incorporates human

operator seamlessly. Moreover, cognitive science is proving to be more important in learning

the from any data in general. The information that a robot can collect from the environment

of the task might not too large to run and test algorithms that requires learning from huge

amount of data and perform extensive computation on that data. Thus human cognition

can be an important and often necessary part of learning about the real state of the world.

We have addressed above problems regarding multi-robot team with human operators.

Me and my fellow researchers have proposed a factor graph model for robots and human

operators where they exchange messages among them using loopy belief propagation. To

prove our claim we have used simulated environment for multi robot human team. In my

work we have defined the optimum intentions for a robot. In simulated environment our

experiment showed that robots in the system can come to consensus among themselves

using the algorithm. We have also showed that human can incorporate their intentions

seamlessly using the same notion of intention. By calculating the optimum intention using a

gradient descent algorithm one the consensus of the intention among robots and also human

operator when they participated in the controlling. We have conducted several experiment

in simplistic simulated environment. Our experiment showed that the simulate UAVs can

survey the simulated environment efficiently. We compared the result with the baseline of

simulated environment and we found that it can model the environment fairly. Simulated

environment has proven to be very useful when developing this kind of algorithms for robots.

Because it give the developer an opportunity to fine tune the algorithm before implementing

it in actual hardware. Besides, one of our motivation for this research is to deploy actual
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robots in harsh environment. Running experiment with actual hardware is often expensive

and there are possibilities of damaging the hardware.
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Chapter II

Related Work

2.1 Assessing Cognitive Stress of Human Operator

In this section, we will briefly discuss work related to cognitive capacity assessment

and human operation of multiple robots. Several research projects recently have investigated

human cognitive capacity using different approaches.

Effectively navigating a maze game has been demonstrated in literature [20]. This

research showed that robots learn more effectively from human operators if the learning took

place in the context of features that the robot can easily understand. Counterintuitively,

restricting the information available to a human operator led to better demonstrations and

more effective learning. In this research, we show that similar metrics can be employed by

the robot for the purpose of learning the cognitive threshold of a human operator.

Recent work [15, 16] presented a model for assessing a human’s attention level, based

on eye contact and gaze detection towards a robot. Based on the perceived attention level,

the robot could generate an appropriate signal to obtain the attention of a targeted human.

Attention is an important component of a human agent’s cognitive capacity, but in our work,

the robot learns a general behavior model to identify the operator’s cognitive threshold,

rather than relying on the specifics of gaze.

Human-robot interactions can be evaluated using fundamental metrics [14]. Such

metrics relate to the cognitive capacity of human operators in obvious ways. For example,

task effectiveness (TE) describes how efficiently robots complete a given task under human

15



direction. For example, task effectiveness can be measured using the speed of the robot. In a

navigation experiment, it may be the time taken by the robot to reach the goal. It could be

defined as the difference between the time taken with and without human assistance. Another

important metric is neglect tolerance (NT), which denotes a robot’s level of autonomy. In

static indoor environments, simple robots such as Turtlebots can easily engage in autonomous

navigation. Even in complex environments with dynamic obstacles, clever algorithms [21]

can enable such vehicles to navigate autonomously. Thus although it is a very important

metric, we have focused on mostly TE because we think that that is the metric which can

be exploited more consistently across different problems. Other potentially useful metrics

include robot attention demand (RAD), free time (FT), fan out (FO) and interaction time.

All of these could conceivably be included as inputs into a learned model such as ours.

Other efforts [22, 14] have presented very similar concepts of metrics for improving

the efficiency of human-robot interaction. These principles include implicit mode switch-

ing among user interfaces, using human operators’ natural cues, directly manipulating the

world, manipulating the relationship between the robot and the world, supporting attention

management and so on. Using similar terminology, other work [13] discovered how neglect

time impacts important properties of human robot teams. They have shown a relation be-

tween the neglect time and the maximum number of robot that a single human operator

can handle. We leverage this data to inform our robots’ estimation of a human operator’s

cognitive capacity.

In another social experiment [8], where autonomous humanoid robots have been de-

ployed to investigate their social acceptance, a scheduling algorithm has been used to assist

the human operator. This experiment developed an algorithm that prioritizes the assitance

provided by a human operator for a particular robot within a multi-robot team. The robot’s

task was to make conversation with interested shopping mall customers and to guide them to

particular shelves corresponding to their needs. The shopping mall map was already known.

Within critical areas inside the shopping mall environment, the robot needed assistance from

humans, for example in unsafe locations or areas with glass walls that confused the robots’

sensors. As there were multiple robots, a single operator could not assist them all simultane-

ously. The operator allocator algorithm therefore picked the robot most likely to encounter

a critical region for assistance. In this work, the operator was assumed to be able to assist
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the robot without considering cognitive capacity. In contrast, we developed a model that

enables the robot to make this determination and then perform the task accordingly.

A large amount of work [23, 24] has investigated human operators acting as teachers

when interacting with a robot, for example helping a robot in kitchen environment. The

human’s demonstrations contribute to the robot’s reward functions, using a modified rein-

forcement learning method that is based on the observation that human guidance is able to

consider future reward along with past reward. The rich context that a human operator pro-

vides and that robots are very poor at reasoning about for themselves leads to improvement

in the robot’s learned behaviors. This observation only holds, however, as long as the human

operator possesses the cognitive capacity to provide good, informative demonstrations. Our

work allows robots to make this determination for themselves.

We have mentioned a number of research results that relate to ours in many ways.

However, most current work does not explore the fact that, although humans are much more

intelligent than robots, they nevertheless face significant limitations in their ability to assist

their robot partners. One aspect of these limitations is that a human operator is vulnerable

to task overload and psychological stress. Our work focuses particularly on human behavior

in the face of this cognitive stress. Although engaging human assistance for the purpose of

task learning is valuable, we argue that such a learning task is more effective if the robot

simultaneously has the tools to evaluate the trustworthiness of the human’s direction.

2.2 Multi-Modal Multi sensor Interaction between Human and Heterogeneous

Multi-Robot System

A plethora of work has been done on multi-modal communication between robots and

human operators using different methods. For brevity and specificity, I highlight some of

the work pertaining to UAS, drones and similar robots. Capturing and recognizing gestures

of human operators has been studied in recent works [25, 26]. Limitations and challenges

of this approach have been studied in other work[27]. For example, the interaction might

look rigid to an observer rather than natural, even though the movement as the gesture is

natural. Another major limitation that my approach solves regarding gesture-based control

is that using my method one the can provide more flexible control to the robot. Another

limitation is the accuracy of detection of the gesture, especially for a novice user. Some of
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the above-mentioned work also used multimodal interaction with robots. Recent work [28]

also presented a framework which compasses Natural User Interface (NUI) including voice,

gesture, markers and a Graphical User Interface, i.e., windows, 2D graphics, 2D animations,

and images. My work makes use of all these; however, I add a new perspective. In my

work, robots’ and human operators’ belief about the world and their intentions are encoded

in the GUI presentation, and I propose interaction in belief and intention space. While my

proposed interface currently uses the smartphone touchscreen as the interaction medium,

a NUI can also be incorporated using the accelerometer and gyroscope of the smartphone.

Depth camera has been used for capturing gesture works[29] for indoor navigation.

Smart phone and tablets have been used to control drones in several works. In [30]

a PC tablet was used to recognize and track down visual target for UAS. Other work[31]

presented a framework for visualizing and tracking hostile drone in the airspace as an al-

ternative to RADAR. The smartphones touch screen has been used as drone interaction

interface [32, 33].

Prior work has used belief networks for coordinated control of multi-robot teams in

the context of Markov Random Fields [34, 35, 36]. Gradient-based navigation for multi-robot

navigation using potential field has been proposed by other works[37, 38]. However, these

works do not incorporate human intentions and interaction. My approach not only addresses

this research gap and limitations but also improves the state of the art by extending task

complexity by incorporating human direction and advice.

2.3 Distributed Control of Heterogeneous Team of robots and Humans

A great deal of research has been conducted on multi-robot navigation, exploration

and surveillance in different applications. Several recent works [39, 40] aimed at monitor-

ing lower altitude atmospheric variables and sampling weather data using UAS and ground

robots. However, very little work has been done to effectively coordinate multiple collabo-

rating robots for such tasks, which demand fault tolerance, scalability, autonomous decision-

making and human incorporation together. Our research is motivated by collecting weather

data in the low-altitude (under 1000 feet) atmospheric boundary lay er in coordinated fash-

ion. This requires a heterogeneous team of robots equipped with various sensors. Because

of the large permutation of capabilities and constraints of these robots, human operators
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are subject to intense cognitive load while operating them. Teams of robots must often

make autonomous decisions, even when attempting to satisfy conflicting mission goals. In

this paper, we have proposed a loopy belief propagation [41] algorithm within a shared fac-

tor graph model. In our decentralized approach, no particular node in the factor graph is

essential as long as the network maintains redundant communication pathways, and every

robot continually updates its own intentional model with messages it happens to receive

from robots within communication range. Thus our approach is fault tolerant as well as

scalable. The computation required in loopy belief propagation can be distributed among

different agents and each robot’s computational requirements are much simpler compared

to other methods[? ] based on techniques such as Markov decision processes. Thus there

are no technical barriers to adding arbitrary numbers of additional robots to the team. It

is scalable in the spatial sense as well; our live experiments have been conducted in volumes

as large as several kilometers across.

Using belief networks as coordination tools for multiple robots has been proposed in

the past[? ], usually in the context of Markov random fields [34, 35, 36]. However, our factor

graph representation provides several advantages. First of all, the functions defined within

the factor graph are often very simple to engineer. For example, collision avoidance is one

of the commonly desired behaviors in a multi-robot exploration task. Instead of explicitly

designing collision avoidance mechanisms, such as in [42, 43], we merely design a simple

factor graph function which reacts to obstacle positions. Using our approach, complex team

behaviors can be specified, tested and changed quickly. In addition, our formulation explicitly

allows for seamlessly injecting human directives and advice into the robots’ shared intentional

framework, as well as additional expected behaviors, at arbitrary levels of specificity and

timeliness. Moreover, many variants of MDPs, notably Partial Observable MDPs (POMDPs)

are known to be intractable in larger domains.

In our approach, the robots can make autonomous decisions by following the gradient

in the joint belief over the space. Gradient-based multi-agent navigation has been studied in

other works[37, 38]. However, those studies focused on designing specific goals for a particular

task, facilitating expansion of the behaviors. We have extended the idea by designing joint

beliefs which can be devised to achieve any expected behavior from the robot team: following

human intentions, for example. Additional complex behaviors can easily be introduced by
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designing new functions as factors in the factor graph.

The problems we consider involve heterogeneous communicative robots [44]. Such

robots can be seamlessly incorporated into teams which can then form joint plans and

task allocations around each participant’s capabilities. This resource allocation problem

has been studied extensively [45? , 46] from the underlying network topological perspective.

Distributed robot teams are commonly considered to be nodes in a network, with connec-

tions among the various robots represented as edges. These edges represent communication

links between robots or express other relationships of interest. This work demonstrates the

graph-theoretic properties necessary in task allocation and team configuration of heteroge-

neous multi-robot teams. Our distributed probabilistic graphical model easily incorporates

heterogeneity because a robot only adds sensor data that it is capable of gathering and only

forms intentions over actions it is physically able to take, while continuing to update the

factor graph and propagate the information provided by other agents with different capabil-

ities.

For the simulation of multi-agent systems, ROS- Gazebo[47, 48], an open source sim-

ulation system, has been used by many academic researchers. It can be used for simulating

motion planning in indoor or outdoor environments for teams of ground robots and UAVs

[49]. However, it does not have built-in capability for simulating real-world outdoor envi-

ronments, with varying winds, visibility, air density and turbulence. Moreover, one of our

research focuses is to achieve a distributed control system that can be used even in harsh

environments such as during severe storms. Simulating many of these environmental phe-

nomena requires a huge amount of weather simulation work if it must be developed from

scratch. A few other common problems with other simulators, with respect to our research

interest, are extendability and availability. For example, AgentFly[50] a popular multi-agent

flight simulator, facilitates control and planning in constrained environments. However, its

control system is not customizable and it is not free. Many other commercially available

simulators are expensive and out of reach of research community in general. We have used

Flight Gear, which is an open source, freely available flight simulation platform mostly for

fixed wing aircraft and helicopters. We have extended and customized it with various UAS

flight models. Importantly, it also provides a customizable weather and visibility engine,

which we have used to simulate specific boundary layer atmospheric phenomena, as well as
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3-dimensional gas plumes from methane or carbon dioxide releases – phenomena which we

are also able to generate and test in real-world applications. We report results in this paper

from both our simulated system and a very extensive set of real-world experiments.
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Chapter III

Technical Approaches

3.1 Assessing Cognitive Stress of Human Operator

Our experiments consisted of two games, maze navigation [20] and coin collection.

All the games were played in two configurations, using either one or two robots, and with

an interaction duration of two minutes. In the maze game, the robot collects data needed to

build a model g for evaluating human cognitive load based on input H. In the subsequent

coin game, the robot is placed in a different scenario where it has no access to success

measures or even rules. Even so, with no independent means of measuring task success, it

can still calculate ŝ = g(H), and can therefore evaluate the quality of instruction, and hence

the cognitive capacity, of its human partner.

In the maze game, the vector of environmental measurements E consists of the fol-

lowing components: e0 is the disparity term, the distance between the navigation directions

provided by a human and the route that the robot would have planned for itself, e1 is the col-

lision term, which penalizes collisions with walls, and e2 is the time delay term, the amount

of time taken for the human to guide the robot through the maze, compared with the robot’s

estimate of the time it would have taken under its own power. The computation of s = f(E),

the function for measuring success of the human directions, is a normalized summation of

the elements of E.

By computing this value s, the robot can label its own data in order to train a

supervised learning algorithm which will relate the success of a human-directed task with
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a set of measured behaviors H: h0 is the decision interval term, which measures the time

elapsed between the robot reaching a navigation goal and the human providing a new one,

h1 is the error correction term, which measures the tendency of a human operator to provide

a navigation goal and then subsequently provide another before the task is complete, and

h2 is the franticness term, which characterizes erratic behavior for the control inputs. The

robot’s model incorporates the data learned from all participants.

3.1.1 Experimental design

In keeping with the problem statement, experiments were carried out in two parts:

the Maze Game and the Coin Game experiments. In the first phase, the robot collected

the data needed to build a model g for evaluating the trustworthiness of user input H. The

robot is able to do this for the first phase because in the case of the Maze Game it has

access to f and E and can calculate s. It understands the problem sufficiently to make such

judgements; the robot requires no human aid to solve this problem.

In the subsequent Coin Game, the robot is placed in a different scenario, one in which

it had no access to success measures or even rules; beyond the fact that it was moving in a

similar environment to the Maze Game, it is wholly reliant on human direction to succeed

in the task. Even so, with no independent means of measuring task success, it can still

calculate ŝ = g(H), and can therefore evaluate the quality of instruction, and hence the

cognitive capacity, of its human partner.

Communication between operators and robots was achieved using the Robot Oper-

ating System (ROS)[51]. Users sent navigation goals to the robots by using a web interface

developed for the project, which allowed the experiment to be conducted remotely (Fig 4.2).

3.1.2 Problem statement

Without loss of generality, take H = [h1, h2, · · · , hm] to be a vector of ecologically

valid measurements of human behavior relevant to the problem space. Assume a task for

which a robot participant can independently calculate s, a scalar metric of success, which

is a function of a vector of measurable environmental features E = [e1, e2, · · · , en]. Thus,

s = f(E), where f is a task-specific function known to the robot. Using f and calculating s,

a robot can build its own supervised training set for a learning task, where the human input
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Figure 3.1: Representation of the path through the maze in RViz.
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Figure 3.2: The Rosbridge Web Interface.
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H is associated with s through a learned function g. Thus, the robot learns to associate the

human behavioral metrics H with task success s within a known task, so the output of g is a

learned estimate of the true success (ŝ = g(H)). Now, assign the robot a task which requires

human input for success, i.e., the robot has no access to an analogue to f or s in this new

task. However, it can still measure the components of H, and it has access to its learned

model g. We show that computing ŝ = g(H) in this new environment allows the robot to

estimate not the task success (about which it has no information), but the cognitive load on

its human partner and an estimate of the quality of the human’s direction.

3.2 Multi-Modal Multi sensor Interaction between Human and Heterogeneous

Multi-Robot System

3.2.1 HRI Problem Description

I propose a new interaction method between humans and a heterogeneous multi-robot

team using my algorithm described in Section ??. I wish to project the joint belief space

of the robots (constructed using my distributed algorithm) onto a phone’s touchscreen to

visualize the current beliefs of the robots and let the human interact with them in a mean-

ingful way. This simple idea can produce an elegant solution for human interaction with

a heterogeneous multi-robot team. Although the robots we are dealing with are heteroge-

neous (that is, they have differing sensing and actuation capabilities), we are interacting

with abstract joint beliefs in intention space. This allows interaction with robots without

worrying much about reprogramming the whole system to accommodate heterogeneity. The

algorithm is distributed and theoretically can be scaled up to the maximum number of robots

that the communication configuration can support. As mentioned earlier, research showed

that touchscreen-based interaction performs better than gesture interaction. Nevertheless,

all the positive aspects of gesture-based and many other multimodal sensory interaction

methods can be easily integrated into the smartphone. Moreover, smartphone touchscreens

are extremely accessible to today’s human users.

Here I will lay out my initial work on the human interaction application. The current

belief of the robot is constructed from the robot’s sensory inputs and the propagated messages

received from neighboring robots, and it interprets these messages based on its intention.
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Figure 3.3: (a,b) A toy example where intention over the space is created as a Gaussian
distribution and published as a ROS message. Human touch input directs the quadrotor
away from the fixed wing aircraft. (c) A meterologist can easily determine an important
temperature signature from the vertical profile provided by a quadrotor. She can mark the
area of interest by sketching on intention space.

The current belief is streamed as a ROS[51] topic and served using ROS Bridge[52] to a

platform-independent Progressive Web Appjoint intentional belief is then rendered using

D3 JavaScriptprogrammable customized visualizations and allows our approach to be more

flexible in terms of designing user interactions. A snapshot of the toy demonstration of the

application is shown in Fig. 3.3.

3.2.2 Research Methods

So far I have implemented my belief propagation algorithm’s basic functionality and

experimented on simulated and real robots. Right now I am working on incorporating real

fixed wing aircraft to coordinate with multiple quadrotors in the same airspace, collecting

weather data and avoiding collision. I have started working on multimodal human interaction

using a smart phone web application.

Experiment 1 can be described using Figure 3.4 and 3.5. Simulated UAVs A, B, and

C here have an exploration task while avoiding collision and remaining within a constrained

volumetric boundary – in this case, an 80m cube at 5m resolution, though much larger scales

are algorithmically tractable. The scatter plot shows the distribution of intentions of the

robots over the exploration space. In this experiment three φ factor functions are used for

each robot, i.e. φunexplored, φboundary and φavoid collision. φunexplored is a delta function applied
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Figure 3.4: Joint belief or navigation intention of simulated UAS over 3D space. Heat map
representation of probability distribution of intention. Color bar denotes the probability
mass of navigation intention over the space. A ⇒ B denotes the intention message passed
from robot A to B. Space with higher probability mass value increases likelihood of robot
choosing to visit.
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Figure 3.5: Joint belief or navigation intention of simulated UAS over 2D space. Heat map
representation of probability distribution of intention. Color bar denotes the probability
mass of navigation intention over the space. A ⇒ B denotes the intention message passed
from robot A to B. Space with higher probability mass value increases likelihood of robot
choosing to visit.
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to a space whenever a robot visits, making it less interesting. φboundary is a function which

has a high value at the boundary of the space and zeros everywhere else. φavoid collision is a

Gaussian distribution with mean at a robot’s current pose. A robot takes a normalized sum

of these functions derived from both its own sensors and the messages from its neighbors

to build its intention over the space. The subplot in the bottom left of Figure 3.4 shows

the message received by A from C about C’s intention. For a exploration task C has a 3D

Gaussian distribution with a mean at its current sensor pose estimate. This distribution

has been coded in the factor node φc of the robot. Similarly the message received from B

has a distribution having a mean at B’s estimated current position in subplot in the middle

on the left. The subplots on the right of these two subplots shows that when A sends its

belief incorporating its neighbors’ (B and C) intentions using the functions defined in factor

nodes φab and φac. The subplot on the top left shows A’s joint distribution of intentions

incorporating its neighboring robots’ messages. Figure 3.5 shows a similar process at a fixed

altitude, i.e. in 2D space. It more clearly shows robot A’s intention to avoid collision with

robots B and C. My simulated experiment showed that UAS can explore the space without

colliding with each other. I have also conducted the experiment with real robots using

quadrotor UAVs (see Figure 3.6).

3.3 Distributed Control of Heterogeneous Team of robots and Humans

3.3.1 Problem Formulation

Consider robots A, B, C in an autonomous multi-robot team. Figure ?? shows an

example of a factor graph. In this graph A, B, C and H represent four variable nodes of the

factor graph. Among the variable nodes A, B, C represent the intentions of the respective

robots, while H represents intentions provided by a human operator. A robot builds its own

belief from its sets of sensors. For example, robot A builds its belief about the world using

its set of sensors µa and actuators αa and so on. These sets are not necessarily the same for

all the robots in team, and thus the model naturally includes heterogeneous robots. Using

µa, µb, µc robots A, B, C can build their own beliefs about the state of the world and can form

their own intentions. This can be done using factor functions, i.e. φa, φb, φc respectively. In

Figure ??, all the robots are connected to each other in the sense that they can communicate
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Figure 3.6: Experiment with two UAV robots A and B. (a) A started moving towards B.
(b) B started moving away from A’s path. (c) B is avoiding collision with A.
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φa φb
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Robot A Robot B

Robot C

Figure 3.7: A factor graph model of our proposed algorithm with three robots and one
human operator. Robots A, B and C compute intentional representations (in circle nodes),
maintain sensor and actuator observations (µ and α), and apply φ functions to messages
passed around the network. A human participant is labeled H. (a) A factor graph where
all the robots are connected to each other. No human intentions currently being provided.
(b) A is connected to B and C. No connection between B and C. The human operator can
communicate additional intentions to B, which are shared throughout the robot team via
loopy propagation.
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Figure 3.8: A factor graph model of our proposed algorithm with three robots and one
human operator. Robots A, B and C compute intentional representations (in circle nodes),
maintain sensor and actuator observations (µ and α), and apply φ functions to messages
passed around the network. A human participant is labeled H. (a) A factor graph where
all the robots are connected to each other. No human intentions currently being provided.
(b) A is connected to B and C. No connection between B and C. The human operator can
communicate additional intentions to B, which are shared throughout the robot team via
loopy propagation.
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with each other and incorporate each others’ intention representation in calculating a joint

distribution of belief.

For example, the intention of of robot B is incorporated into A’s belief using factor

function node φab. In a joint exploration task for robots A, B and C, the collective objective

might be to explore the entire space as quickly as possible while maintaining a collision-

avoidance distance from each other. In such a scenario φab, φbc, φca can be designed as

functions that make a space which has been visited by a particular robot less interesting

for the other robots. For example, such a function could compute a time-decaying penalty

associated with the robots’ various reported location observations, while collision avoidance

could be represented as a much stronger penalty function computed from a robot’s current

position and velocity. Similarly, other types of goals can be achieved using differently-devised

φ functions. We will demonstrate this in our experiments. Robots can communicate their

intention by passing messages to other neighboring robots, and they, in turn, pass that

information along to other robots in the team.

In general, the joint belief g can be calculated using Equation III.1,

g(x1, . . . , xn) =
∏
j∈J

fj(Xj)

=
1

Z

∏
ij

φij(xi, xj)
∏
ij

φi(xi)
(III.1)

where f is a generic function of the set of all the variables x ∈ X. By definition, a factor

graph[53] is a bipartite graph of variables and factor functions. The computation of Eq. III.1

can be performed using a loopy belief propagation (LBP)[54] message passing algorithm on

a factor graph. Here φi(xi) denotes robot i’s belief about variable xi in the world from its

sensory information. φij(xi, xj) is the belief robot i forms from information received from

robot j. All the φ functions are the factor functions in the factor graph. The loopy belief

propagation algorithm on a factor graph is shown as Algorithm 1.

µai→aj(xj) =
1

Z

∑
x′i:x

′
v=xv

φ(x′i)
∏

V ∈Ni\av

µav→ai(x′v) (III.2)

Equation III.2 defines the message µ passed from a variable to a factor, which consists

of the normalized product of all of the messages received from the variable’s neighboring
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Algorithm 1: Loopy Belief Propagation LBP

Function Main(i):
/* at ithrobot */

repeat
AsynchronousUpdate()
πti = ∇g(x1, . . . , xn) /* t signifies time */

ExecutePolicy(π)
until

Function AsynchronousUpdate(i, j):
Update belief using Eq.III.2;
Update intention using Eq.III.3 and broadcast

return

factors, except for the recipient factor. Set Nv denotes the neighboring participating robots

in the team for a robot av.

µai(xi) =
1

Z
φi(xi)

∏
k∈Ni

µk→ai(xi) (III.3)

Equation III.3 shows the message µ passed from a factor to a variable, which is the

factor function applied to the messages from all other connected variable nodes, marginalized

over all of the variables except the recipient’s. These messages are passed asynchronously

through links that are formed and dropped as the topology of the robot deployment changes,

using loopy belief propagation. At a certain time t a particular robot ai can run an opti-

mization algorithm locally on the joint distribution of intention using its policy πi.

πti = ∇g(x1, . . . , xn) (III.4)

Low-level controllers such as PIDs can achieve the goal produced by Eq. III.4. We

used a gradient descent algorithm to calculate πti . Other methods can be used as well.

A human operator can be imagined as another factor variable node in the overall

graph, although they are not responsible for performing any computation (note that the

φha function applied to the human input in Figure ?? rests within the computational re-

sponsibilities of Robot B). Incorporation of human operators in the distributed factor graph

coordination is one of the major contributions of this paper. Our approach allows a human
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Figure 3.9: (a) Two robots’ observations regarding the same obstacle are represented as
Gaussian distributions over navigation space

Figure 3.10: (b) After integrating the beliefs according to its φ function, one robot (blue
star) executes a policy which leads to a goal (red star).

operator to exert an arbitrary amount of control over all of the agents that are indirectly

or directly connected to the operator. If no human input is available (for example, if the

human operator is task-saturated or does not have a connection to the agent), then the agent

and the entire system function autonomously according to the robots’ own sensor data and

communicated beliefs.

When more guidance is available, the system will continue to propagate messages

in identical fashion, but human input will be seamlessly integrated into that process in
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the form of one or more additional intentions mediated by an additional factor function.

Furthermore, if the operator only has an indirect connection to an agent through other agents,

these imposed beliefs will still reach the appropriate agent through loopy belief propagation

within the whole network. The fusion of the distributed communications architecture, the

belief-based information processing, and the optional human interaction allows us to create

a general purpose heterogeneous architecture that accommodates smooth changes in robots,

hardware, and human input.

One of the known limitations of loopy propagation within factor graphs is that the

beliefs occasionally fail to converge in certain cases. This problem is rare, and we went to

considerable effort to evaluate its effect on our particular application. We simulated twenty

autonomous UAS systems communicating their beliefs about their and each others’ observed

positions, with many different belief parameterizations. Each robot communicated with all

the others, forming the loopiest possible clique. Even so, in hundreds of trials, we were never

able to induce the graph to fail to converge. Convergence was always achieved within eighty

message iterations.

In our real-world experiments, we have so far involved only as many as five robots,

which makes the problem even less likely. In addition, the robots are functioning in real time,

with changing conditions, positions and measurements, so if they were to find themselves in

a rare non-convergent state, they would quickly emerge from it before it had a chance to

produce a substantial performance or safety impact. We can calculate a theoretical upper

bound for the probability that the propagation algorithm produces a problematic result. If

we assume that nonconvergence induces the absolute worst possible policy selection (itself

hugely unlikely), then a collision could happen with probability p(NC)n, where p(NC) is

the probability of the network entering a non-convergent state and n is the number of time

steps it takes to steer straight for an obstacle (as opposed to away, as the actual computed

policy would indicate). Likewise, for a survey problem, the worst policy choice would mean

moving in the least interesting direction instead of the most, which could increase the time

taken by 2np(NC), where in this case n is the number of time steps to conduct the survey.

Since our simulations indicate that p(NC) is a number extremely close to 0, these negative

effects are negligible.
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Chapter IV

Experiments and Results

4.1 Assessing Cognitive Stress of Human Operator

In keeping with the problem statement, experiments were carried out in two parts:

the Maze Game and the Coin Game experiments. In the first phase, the robot collected

the data needed to build a model g for evaluating the trustworthiness of user input H. The

robot is able to do this for the first phase because in the case of the Maze Game it has

access to f and E and can calculate s. It understands the problem sufficiently to make such

judgements; the robot requires no human aid to solve this problem.

In the subsequent Coin Game, the robot is placed in a different scenario, one in which

it had no access to success measures or even rules; beyond the fact that it was moving in a

similar environment to the Maze Game, it is wholly reliant on human direction to succeed

in the task. Even so, with no independent means of measuring task success, it can still

calculate ŝ = g(H), and can therefore evaluate the quality of instruction, and hence the

cognitive capacity, of its human partner.

Communication between operators and robots was achieved using the Robot Oper-

ating System (ROS)[51]. Users sent navigation goals to the robots by using a web interface

developed for the project, which allowed the experiment to be conducted remotely (Fig 4.2).
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Figure 4.1: Representation of the path through the maze in RViz.
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Figure 4.2: The Rosbridge Web Interface.
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Figure 4.3: Map of the maze. Arrow indicates path direction.
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Figure 4.4: The final map laid out on the lab floor.
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4.1.1 Maze Game and Training

As previously mentioned, the first step of our experimental design was to identify a

task simple enough for the robot to complete unaided, yet complex enough to potentially

benefit from human input. The problem also need to be readily scalable to include additional

robots. This led us to select autonomous navigation through a maze using Adaptive Monte

Carlo Localization (AMCL). The maze consisted of a single path with multiple 90◦ turns.

The final design, seen in Fig 4.4, consists of 32 waypoints and measures 4.63m by 3.2m. It

is important to note that the maze traced out on the floor serves only as a convenience for

human operators and does not serve as a navigation guide for the robot. In fact, the robot

does not treat the walls of the maze as physical obstacles, and will happily pass through

them if instructed to do so.

In the Maze Game, the robot is able to evaluate the success of the directions it is

given by its human operator. This is a function of a vector of environmental measurements

E = [e0, e1, e2], which in this particular context have been defined as follows:

• e0 is the disparity term, the distance between the navigation directions provided by a

human and the route that the robot would have planned for itself,

• e1 is the collision term, which penalizes collisions with walls, and

• e2 is the time delay term, the amount of time taken for the human to guide the robot

through the maze, compared with the robot’s estimate of the time it would have taken

under its own power.

The computation of s = f(E) to obtain a success metric is straightforward:

s =
1

Z

|E|∑
i=0

ei (IV.1)

where Z is a normalization constant.

We then define a decision function δ based on s. This is intended to indicate whether

the provided human assistance is qualitatively above or below that person’s useful cognitive

threshold θ:
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δ(i) =

True, if s ≤ θ

False, Otherwise

By computing this value s, the robot can label its own data in order to train a

supervised learning algorithm which will relate the success of a human-directed task (and,

presumably, the cognitive capacity of the human partner) with a set of measured behaviors

H.

H = [h0, h1, h2] is a set of human behavioral metrics which are ecologically valid for

a navigation direction task. For this particular experiment, these are the following:

• h0 is the decision interval term, which measures the time elapsed between the robot

reaching a navigation goal and the human providing a new one,

• h1 is the error correction term, which measures the tendency of a human operator to

provide a navigation goal and then subsequently provide another before the task is

complete, and

• h2 is the franticness term, which measures the pace of control inputs generally.

These features were chosen because they seem reasonable and ecologically valid in

a navigation context, but there is no reason to assume that they are uniquely suitable as

components of H. Appropriate features for inclusion in H should be easy to identify in a

wide variety of tasks.

4.1.2 Maze Game and Training Results

Now we will show that the robot is able to learn the model ŝ = g(H), and that it

reflects the cognitive capacity of humans correctly, based on the described metrics. Fifteen

test subjects performed runs of the maze game, resulting in approximately 1000 data points

used for training.

Fig. 4.5 shows a four-dimensional scatter plot that shows the robot’s judgment of

human cognitive capacity respect to the humans’ behavioral metrics. Because the robot

understands the maze game and the details of the performance metrics, it is able to generate

the training data labels for a supervised model learning task. We have used the Orange
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Figure 4.5: Disparity, Collision, Time Delay vs. Task Success. The robot has adjudicated
red dots as indicating human behavior at or beyond a useful cognitive threshold, and blue
dots as trustworthy.

data mining API1 for running the regression. The human behavioral metrics H and the

robot’s self-generated task success metric s are used to train a Support Vector Machine

(SVM) regression. SVMs are able to capture regressions and classifications even in high-

dimensional spaces. SVMs have been used to learn enormous classifiers in very complex

feature spaces including cancer cell detection and spam email classification [55, 56]. The

maze game regression operates only in a low-dimensional feature space, so an SVM is able

to learn from our experimental data effortlessly, and the approach should scale to much

more complex feature spaces. The classifier is trained on H and s. The SVM generates an

optimized g(H) by performing a regression on the relationship between s and H. identifies

a regression on the test data by minimizing the following function:

1
2
wTw + C

∑N
i=1 ξi

with the following constraints,

yi = (wTxi + b) ≥ 1− ξi and ξi ≥ 0, i = 1, ..., N

1http://orange.biolab.si
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Table 4.1: Accuracy of the classifier in the maze game experiment.

Training Size Accuracy of classification
45% 95%
50% 95%
55% 95%

Table 4.2: Confusion matrix of the classification using cross validation method.

Prediction
True False

Actual
True 72 10
False 10 72

Here C and b are constants. ξ denotes the non-separability of the input data.

The classifier was trained using two different methods; cross-validation and leave-

one-out. Both of the data sampling methods provided good classification accuracy. In the

cross-validation method we sampled 70% of the data from the maze game to use as training

data, which resulted in a 95% accuracy in the classification on the test data sample. In the

leave-one-out method, all instances except one are selected for training the classifier. After

that, the test data set is classified using the learned model. All of the instances are selected

at least once as test data. The total accuracy of the classification is calculated by counting

the percentage of data that has been selected and classified correctly against the total data

set. This method also resulted in 95% of the data being correctly classified. The result of

the classifier on the test data using different sampling size using cross validation method in

the first experiment is shown in Table ??

4.1.3 Coin Game Experiment

The second phase of the project involves a variation on the first experiment dubbed

the Coin Game. It uses many of the same principles introduced in the Maze Game, such as

the same map, so that the human behavior metric H remains ecologically valid. However,

Table 4.3: Confusion matrix of the classification using leave one out method.

Prediction
True False

Actual
True 72 10
False 10 72
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Figure 4.6: Maze map of the Coin Game experiment with coin goals.

in this task, only the human operator has access to the sensory data required to successfully

perform the task. Goals appear appear randomly in the maze, and we call these random

goals “coins”, with the understanding that the point of the game is to send the robot to the

coin locations in order to collect them. Unlike in the previous experiment, where the robot

navigated the maze in linear fashion from start to finish, the goals or coins may pop up in any

location in the maze, either ahead of or behind the robot. The goal is not represented in the

real world; rather the goals are shown on the control interface’s computer screen as colored

circles denoting the coins. Coins can pop up between any two key points. The interface for

this experiment is shown in Fig.4.6.

The coin game is a very simple game. The human operator points the mouse to a

location the map. As the goal is random, the human operator must now switch between

robots frequently, in order to marshal the various robots toward their coin goals. Research

[14] has shown that this switching time can affect the effectiveness of a task performed by

a human-robot team. Thus the second experiment is more challenging in terms of cognitive

stress. The task sets a two-minute timer for the human operator and also sets a maximum

5 coin collection limitation. Either condition satisfies the end of the game. Every time the

robot collects a coin the timer is shortened by 12 seconds to put more cognitive stress on

human operator.

In this instance, the robot has access only to what it can measure about human

behavior, in the form of the vector H. It knows nothing about what constitutes success in

the Coin Game, as it is not even able to sense the existence of coins. However, it can still
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compute ŝ = g(H), and it can thus calculate an estimate of human cognitive capacity and

reliability.

In order to compare the robot’s estimate of cognitive capacity with reality, test sub-

jects were asked during the experiment to rate their own cognitive stress levels at 12-second

intervals using a Likert scale.

We have set two scenarios in this experiment. The first scenario, is the single human

operator one or more robots team. In this scenario only one human operator was allowed

to assist the human-robot team. We have set a timer for the human operator as 2 minutes

and also set maximum 5 coin collection limit. Either condition satisfies the end of the

game. Every time the robot collects a coin the timer is shortened by 12 seconds to put more

cognitive stress on human operator. In the second scenario, multiple one or more robots

were teamed up with two human operators. The initial timer was set to 1 minute and a

maximum of ten coins were allowed to collect. Either condition satisfied he end of the game.

4.1.4 Coin Game Results

Analysis of the results from the coin game experiment are in agreement with the orig-

inal hypothesis. In general, the robot correctly predicts the cognitive load that its operator

was under in every scenario. These findings can be seen in Fig 4.7. Here, the x axis denotes

an increase in task complexity over time; the user must issue an increasing number of com-

mands and collect coins in an increasingly short duration. It is critical for interpreting the

information in 4.7 to note that while the robot’s cognitive load evaluation and the scoring

technique for quantifying self-reported user stress both produce a result between zero and

one their magnitudes are not directly comparable. The points at which stress was identified,

and the shape of the curves, however, are appropriate to compare. Whenever cognitive stress

occurs or changes, the robot is able to recognize this increase for most cases in the tested

scenarios, and the robot’s evaluation agrees with self-reported user stress. In the context of

this paper, it also supports the original hypothesis: robots can are able to reliably assess

the cognitive strain their human partners are under, even in contexts where the actual tasks

they are being asked to perform are opaque to the robot.

Six people who participated in first experiment also participated in the second ex-

periment. We have found that the learned model of classifier was able to understand good
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Figure 4.7: Cognitive load of human operators in Coin Game experiments with differing
numbers of robots and steadily increasing task complexity. Blue represents subject self-
reporting, orange the robot’s estimate of ŝ.

and bad assistance very efficiently. We did not allow the robot to change its behavior based

on the trustworthiness; it is just keeping a log of which of the assistance came from the hu-

man operator were trustworthy and which were not. While running the second experiment

we manually kept a log to indicate which particular human assistance were seemed to be

trustworthy in the naked eye. After the experiment we collected the log from the robot and

then compared with our human judged interpretation of trustworthiness. We have found

that the 95% and 97% of robots prediction matches with the two human interpretations.

This is a very promising result to support our hypothesis in Eq. ??. The result also showed

decrease in trustworthiness as the complexity of the task increases. The result on matching

classification on different level of complexities are shown in the following Fig4.7:
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4.1.5 Cognitive load assessment

In general, the robot correctly predicts an operator’s cognitive load. Figure 4.8 shows

modest correlation between physiological evidence (breathing rate measured with a Bio-

harness) of an operator and the robot’s estimation of stress. This is suggestive but not

conclusive; it may be that physiological stress measures are not precisely indicative of the

cognitive load which our robots attempt to predict.

Much more convincing is the learned model’s contribution to task success. The coin

game requires the operator to navigate the maze collecting coins (visible to the human

operator but not to the robot). Delays and errors in successfully collecting coins increase

an operator’s task penalty score; as time pressure and the number of robots participating

in the game grows, the operator’s cognitive load is likewise expected to increase. In the

manual test condition, the robots continue to act according to human instruction regardless

of their model’s estimate of cognitive load, while in the autonomous assistance mode, the

robots revert to maze navigation behaviors whenever their learned human behavior models

detect high cognitive stress. As shown in Figure 4.9, this behavior significantly enhances the

overall performance in the game. Robots are able to reliably assess the cognitive load their

human partners are under, even in contexts where the actual tasks they are being asked to

perform are opaque to the robot.

Fig 4.10. From our experiments we have found that the cognitive load estimate

from the robots using our model correlates with the coder evaluated stress level by a factor

ρ = .205 and ρ = .25 for coin game played with one and two robots respectively. Our

experiment also captures that posture and breathing rate of human operator as objective

metric for estimating cognitive stress level.We could not find any interesting pattern in

other physiological objective metrics i.e. heart rate, ECG amplitude using our model and

experimental setup.The benefits of this can be seen in Fig 4.9. It is critical for interpreting

the information in Fig. 4.10 or 4.8 to note that while the robot’s cognitive load evaluation and

the scoring technique for quantifying self-reported user stress both produce a result between

zero and one their magnitudes are not directly comparable.Whenever cognitive stress occurs

or changes, the robot is able to recognize this increase for most cases in the tested scenarios,

and the robot’s evaluation agrees with self-reported user stress.
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Figure 4.8: Robot’s estimated cognitive stress level modestly correlates with physiological
metrics.
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Figure 4.9: Coin game task penalties in manual vs. autonomous assistance modes across
34 test subjects. p < 0.05 in both instances.
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Figure 4.10: Cognitive load of human operators in Coin Game experiments with differing
numbers of robots and steadily increasing task complexity.
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Table 4.4: Task success comparisons between autonomous assistance mood and manual
mood.

Game Mode Manual
Autonomous

Assistance on high
Stress level

Number of
Robots

Participated
one two one two

Number of Failure/
Total Number

of Game Played
3/7 3/7 0/10 1/10

Task Success Score
per game

318 355 170 258.2

4.2 Multi-Modal Multi sensor Interaction between Human and Heterogeneous

Multi-Robot System

4.3 Distributed Control of Heterogeneous Team of robots and Humans

4.3.1 Flightgear Simulation

We have conducted several experiments using simulated and real robots. In this

section we describe three tasks involving exploration of the spatial environment, starting

with simple intentions such as exploration and collision avoidance, and demonstrate how

additional complex intentions can be introduced easily using our approach.

4.3.2 Exploration Within Boundary Avoiding Collision

In the first experiment we implement the basic functionality of our proposed algo-

rithm for a team of simulated heterogeneous UAVs, conceived as a collection of ROS[51]

nodes which pass factor graph messages between each other over ROS topics. It has been

implemented in a space discretized system. The messages passed from one robot to other

include the UAV’s current position, a history of positions it has already visited, and sensory

information such as temperature, humidity and air pressure. For this first experiment, the

robots do not make decisions based on the sensory information, but they will do so later

in the paper. The messages passed by each robot were also timestamped, which can be
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Figure 4.11: Snapshot of heterogeneous team exploration using Flightgear.Quadrotors and
fixed-wing aircraft coordinate together to explore, and are each captured in different picture
elements. The lower-right element is the joint belief of B. (a) UAS B is moving towards the
CO2 plume. UAS A still exploring far from the plume. (b) UAS B already passed through
the plume and sent intention for UAS which are interested in exploring area with high CO2

density. UAS A is such a robot so it moves towards the plume. B’s joint belief in lower-right
sub figure also shows the trail of A’s path.
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Figure 4.12: Snapshot of heterogeneous team exploration using Flightgear.Quadrotors and
fixed-wing aircraft coordinate together to explore, and are each captured in different picture
elements. The lower-right element is the joint belief of B. (a) UAS B is moving towards the
CO2 plume. UAS A still exploring far from the plume. (b) UAS B already passed through
the plume and sent intention for UAS which are interested in exploring area with high CO2

density. UAS A is such a robot so it moves towards the plume. B’s joint belief in lower-right
sub figure also shows the trail of A’s path.
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Figure 4.13: Snapshot of heterogeneous team exploration using Flightgear.Quadrotors and
fixed-wing aircraft coordinate together to explore, and are each captured in different picture
elements. The lower-right element is the joint belief of B. (a) UAS B is moving towards the
CO2 plume. UAS A still exploring far from the plume. (b) UAS B already passed through
the plume and sent intention for UAS which are interested in exploring area with high CO2

density. UAS A is such a robot so it moves towards the plume. B’s joint belief in lower-right
sub figure also shows the trail of A’s path.
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Figure 4.14: Snapshot of heterogeneous team exploration using Flightgear.Quadrotors and
fixed-wing aircraft coordinate together to explore, and are each captured in different picture
elements. The lower-right element is the joint belief of B. (a) UAS B is moving towards the
CO2 plume. UAS A still exploring far from the plume. (b) UAS B already passed through
the plume and sent intention for UAS which are interested in exploring area with high CO2

density. UAS A is such a robot so it moves towards the plume. B’s joint belief in lower-right
sub figure also shows the trail of A’s path.
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used by φ functions which weight information by recency. The messages passed were lists of

parameters packed in ROS’s message format. For all the experiments, the messages included

at least the robots’ position, orientation, the identities of neighbors and a limited history of

previously broadcast parameters. We have also run experiments using non-parametric meth-

ods where the intentions over the whole navigation space were shared as a probability mass

function. However, we have not used non-parametric methods in the experiments discussed

in this paper. In the experiments discussed later in this paper, the messages also included

sensor readings like temperature, humidity, CO2 density and so on. For fixed-wing aircraft,

roll, pitch, and yaw angles along with GPS position and other aerodynamic parameters were

passed, which were incorporated into an agent’s belief calculations.

We have extended the open source flight simulator Flightgear2 in order to develop

a robotic simulation software suite which supports atmospheric physics phenomena such as

turbulence, visibility, temperature, humidity, and the behavior of water vapor and gas plumes

such as clouds, smoke, methane, and carbon dioxide. Figure 4.16 shows simulated UAVs

which have an exploration task while avoiding collision and remaining within a constrained

volumetric boundary – in this case, 500m2, between altitudes of 50 and 450 feet. Much

larger scales are algorithmically tractable. The whole space was discretized into 50×50×50

voxels.

In this experiment, three basic φ factor functions are used for each robot, i.e. φu

(unexplored), φb (boundary) and φac (avoid collision). φu is a local weight function applied

to a space whenever a robot visits, making it less interesting. φb is a function which has

high value near the boundary of the space and zeros everywhere else. φac is a Gaussian

distribution with mean at a robot’s current position and a standard deviation of 3.33 and

5 voxel units for quadrotor and fixed wing UAV respectively. The negligible probability

mass beyond 3σ is ignored. The parameters were chosen based on the various platforms’

maximum airspeed and the size of the voxels, sufficient for belief updating at 10 Hz to allow

the robots to take autonomous actions before a collision happens. A robot takes a normalized

weighted sum of these functions derived from both its own sensors and the messages from

its neighbors to build a joint intention over the space local to its current position. The

weight wφ ∈ (0, 1) of each intention φ depends on the priority of the task. For example,

2http://home.flightgear.org/
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Figure 4.15: Heterogenous robots avoid each other while exploring the space. Simulated
fixed-wing UAV (denoted B) avoiding collision with quadrotor (denoted C)

the unexplored function will have less probability mass in unvisited areas, attracting the

robot to navigate there. However, if it is close to another robot’s current position then

then the probability mass from collision avoidance will outweigh the attraction because the

φ functions associated with avoiding collisions and avoiding boundaries are accorded much

higher weight than other behaviors not concerned with safety of flight. These weights also

help humans to control the behavior of the the autonomous system. The robot descends the

gradient of its joint belief. For all of our applications, boundary weight was set to 1. Weights

for direct and indirect collision avoidance were set to 0.85 and .8 respectively. The direct

collision avoidance parameter is used for a robot which is directly communicating its position

to another robot, whereas the indirect parameter is used to weight the collision avoidance

intention from other robots that are propagating their position through an intermediary

node or robot.

In this experiment φboundary and φavoid collision were set to 1 to prioritize these intention

over φunexplored which was set to .5. Intuitively, in this context the intention has been set

to prefer avoiding collision with other robots and being within the defined boundary over

exploration essentially telling it to explore unexplored area without collision and without

leaving the boundary.

60



Figure 4.16: Heterogenous robots avoid each other while exploring the space. Joint belief
of fixed-wing UAV B. Red line shows path B followed. B only calculates local gradient over
the joint distribution of belief.
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Fig. 4.16 shows the fixed-wing UAV, denoted as B, avoiding collision with the quadro-

tor, C, despite the quadrotor being placed directly in the path of the fixed-wing UAV. It also

depicts the joint intention that B builds using messages it received from its neighbor C. The

scatter plot shows the distribution of intentions of the robots over the exploration space. The

color-coded voxels signify the probability of a voxel being less interesting or worth visiting.

The φ functions and weights described for this experiment have very similar implications for

the experiments we will discuss later.

Existing prior work tends to represent the intention plot using 3D surfaces to intuition

of the distribution of belief over planar space which is easier to visualize. However, actually

for navigation over 3D a scatter plot or point cloud practically useful representation where

the color representing the probability mass in 3D space. Moreover, as we are not using any

range sensor our sensory information is much coarse over the space thus a we are representing

the joint distribution over the space using scatter plots.

4.3.3 Exploiting Heterogeneity

Using our factor graph distributed algorithm, we can exploit the heterogeneous con-

figuration of our robot team. Teams of such robots can accomplish more complex tasks

more quickly, and in distributed fashion. In this experiment, we demonstrate this using

our simulator. The task is to locate, survey and map a CO2 plume within a given area.

Our heterogeneous team consists of two similar fixed wing UAVs and three quadrotors with

slightly different sensory capabilities. All of these simulated UAVs are equipped with GPS,

temperature and humidity sensors, but only the fixed-wing aircraft and one quadrotor are

equipped with CO2 sensors.

A fixed-wing aircraft is much faster than a quadrotor, but also far less maneuverable.

A team of fixed-wing aircraft will quickly locate traces of CO2, but they will not be able to

carefully map its contours. On the other hand, while a maneuverable quadrotor is better

equipped to perform the detailed survey, its slow speed makes the location of the plume

difficult to find in the first place.

We have run the simulation in homogenous (all quadrotors) and heterogenous configu-

rations several times with the CO2 plume situated in different locations. Table 4.5 compares

the time taken to find and map the plume.
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Figure 4.17: Snapshot of heterogeneous team exploration. For visibility we have hidden
joint intention of all the robots except for B (a fixed-wing UAS). Quadrotors and fixed-wing
aircraft coordinate together to explore, and are each captured in different picture elements.
The lower-right element is the joint belief of B. (a) All UAS begin exploring the space. In
lower-mid window UAS B and C are captured in the same frame.

Table 4.5: Heterogenous CO2 plume mapping

Location of
Plume

Number
of

UAVs

Mapping Time (approx)

X Y Z
Homogeneous

Team
Heterogeneous

Team

40 30 18 5 >20 min 20 sec.
7 28 8 5 3 min 120 sec.
26 34 34 5 >20 min 75 sec
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4.3.4 Heterogeneous Team of Robots

In this experiment we simulate robots with different sensor capabilities to demon-

strate autonomous coordination of heterogeneous teams of robots. In the weather forecast-

ing application, understanding temperature inversion layers, where the temperature changes

drastically, is very important. We simulate temperature sensor data by assigning values

throughout the experiment volume, derived from actual measurements taken with (non-

autonomous) UAVs. The simulation environment is similar to the previous experiment, but

in addition, robot A possesses a thermometer while B does not. Robot A therefore incor-

porates another φtemperature when building its joint belief. Figure ?? shows that robot A

remains in the vicinity of the sharp temperature gradient in order to map the meteorological

phenomenon, while B explores the rest of the space ignorant of the temperature gradient

but appropriately ceding that task to the appropriately-equipped robot. This cooperative,

coordinated behavior was not coded explicitly. It is also worth mentioning that by modifying

the φ function we can modify this particular behavior as well. Moreover, a human operator

can also exert arbitrary intentions on the robot, as we will see in our next experiment.

4.3.5 Human Intentions and Heterogeneity

This experiment is conducted in similar fashion to the previous ones. However, we

allow a human to exert arbitrary intentions during the exploration task. Robot A still

possesses its temperature sensor. Robot B, on the other hand, possesses a communication

channel to a human operator. The human could send two types of intentions to the robots,

telling them to either to explore or avoid some particular area. Two functions φinteresting and

φdangerous have been designed as Gaussian distributions centered on particular coordinates.

The φinteresting intention operates at the same time as the previously-specified φunexplored

function, and gradually exerts less significance as the area of interest is thoroughly explored.

In this experiment, the human operator simply sends intentions by publishing coordinates

on the command line, but in real world scenarios this would be accomplished by such in-

terfaces as a remote controller, joystick or touchscreen map. Indeed, in our real-world UAV

experiments, we use exactly these devices, but so far in these cases, we have not designed

explicit human-coordination φ functions.

Figure ?? shows how the simulated robots build joint beliefs incorporating dynamic
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Figure 4.18: Heat map representation of joint belief in heterogeneous team of robots. Robot
A explores along temperature gradient.
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Figure 4.19: Heat map representation of joint belief in heterogeneous team of robots.Robot
B explores the remainder of the environment
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Figure 4.20: (a) Robot B proceeding to interesting area intended by human operator while
avoiding dangerous areas.

human intentions. The robots begin their exploration tasks with the φ functions described as

in the previous experiment. After a while, the human operator sends the intention to avoid

two areas within the space, as shown in Figure 4.20, and also inserts an area of interest.

Figure 4.21 shows how robot B reached the interesting area, avoiding the specified danger

zones and additionally avoiding colliding with robot A. At the same time, the human’s desires

are promulgated to robot A through loopy propagation from B, but because B is already

on the way, and in any case, A has the additional temperature-related exploratory goal, the

two robots quickly reach an equilibrium which sends robot B to the new goal and leaves A

to map the temperature gradient. After robot B explores the area of interest, the human

marks another area of interest, and robot B heads in that direction safely and surely (Figure

4.22).
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Figure 4.21: (b) B explores the interesting area.

4.3.6 Experiment With Real Robots

We have used two 3DR Solo quadrotors3 for conducting this experiment. Each is

equipped with a DHT224 temperature and humidity sensor. To introduce heterogeneity, one

of the sensors only reported temperature, while the other sensed humidity. The choice of

these particular sensors were motivated by our interest in collecting data for atmospheric

physics using UAS. However, other kinds of sensors could be supported using the same

approach; our algorithm is software-based and is useful for many different hardware choices.

Our experiment was conducted within a 64 m3 cube of airspace, with a base altitude 5 meters

above the ground for safety.

The φ functions in place for this experiment were similar to those used on the simula-

tor. A boundary φb function places a very high value (meaning a strong avoidance intention)

at the boundary of the cubic space. The boundary intention and the collision avoidance

intention φac are both weighted very strongly. The collision avoidance intention has been

3https://3dr.com/solo-drone/
4https://www.adafruit.com/product/385
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Figure 4.22: (c)Navigating to new interesting area inserted by human operator avoiding
dangerous areas. Robot A continues to explore temperature gradient(not visible to B)
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Table 4.6: Flight Test Summary

Date Starting Time Ending Time
Explored
%

Avg Temp
◦F

Avg Rel
Hum(%)

Temp Inversion
Point (alt m)

Hum Inversion
Point (alt m.)

Nov 14, 2017 10:16:59 10:16:59 30 70 70 45 45

Nov 14, 2017 10:16:59 15 15 70 70 45 45

Nov 10, 2017 16:06:19 15 15 70 70 45 45

designed again as a Gaussian probability mass function having the mean at the current

location of a particular robot and a variance depending on relative robot speeds. The un-

explored intention φu assigns higher values to locations that have been visited and are thus

less interesting. The above φ functions are very similar to the functions we have used in

simulation. As this experiment incorporates temperature and humidity sensors, we provide

two more intentions, namely, φt and φh, much as we did previously. However, we do not

know the temperature and humidity over the whole space. We only have the measurements

at the current location of the robots and the places they have been before, and those values

may change over time. However, we can infer the temperature and humidity gradients over

unvisited space using the data we have already collected. The robots will attempt to locate

and explore areas of rapid change, as these inversion and boundary layer phenomena are

most informative to a meteorologist.

We simulate these sharp temperature and humidity changes in our weather-aware

simulation environment. Fig. ??(a-b) demonstrates that the robots are able to detect and

map such sudden changes. Then, in Fig. ??(c-d), we show the same behavior in a real world

experiment. The robots are able to locate a temperature inversion at 45 meters above the

ground.

We are also able to demonstrate seamless human intervention using our algorithm. In

this particular instance, a human operator takes active control of one of the UAS, overriding

the intentions developed by that robot. The robot, however, continues to communicate with

the other team members, using the same loopy propagation framework. The other systems

modify their intentions accordingly. Fig. 4.27 shows a human intentionally steering robot

A toward its neighbor B. This induces robot B to evade, because of the influence of φac.

The human’s intention is incorporated smoothly into the overall team behavior, without any

explicit commands from the human to any other robot participant beyond the first.
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Figure 4.23: T1: In each subfigure, upper left is measured temperature, upper right is
the inferred temperature gradient, lower left is randomly sampled temperature predictions
drawn from the inferred gradient, and lower right is a temperature vs altitude plot. a-b and
c-d are temperature profiles in simulation and the real world respectively. In each case, the
first figure is early in the exploration process, and the second is after additional exploration
and mapping.
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Figure 4.24: T2: In each subfigure, upper left is measured temperature, upper right is
the inferred temperature gradient, lower left is randomly sampled temperature predictions
drawn from the inferred gradient, and lower right is a temperature vs altitude plot. a-b and
c-d are temperature profiles in simulation and the real world respectively. In each case, the
first figure is early in the exploration process, and the second is after additional exploration
and mapping.

72



Figure 4.25: T4: In each subfigure, upper left is measured temperature, upper right is
the inferred temperature gradient, lower left is randomly sampled temperature predictions
drawn from the inferred gradient, and lower right is a temperature vs altitude plot. a-b and
c-d are temperature profiles in simulation and the real world respectively. In each case, the
first figure is early in the exploration process, and the second is after additional exploration
and mapping.
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Figure 4.26: T6: In each subfigure, upper left is measured temperature, upper right is
the inferred temperature gradient, lower left is randomly sampled temperature predictions
drawn from the inferred gradient, and lower right is a temperature vs altitude plot. a-b and
c-d are temperature profiles in simulation and the real world respectively. In each case, the
first figure is early in the exploration process, and the second is after additional exploration
and mapping.
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(a) (b) (c)

Figure 4.27: Experiment with two UAV robots A and B. (a) Human commands A to move
toward B. (b) B moves to avoid collision with A. (e) A and B flying at safe distance again.

4.3.7 Experiment With LOTS of Real Robots

Our work contributed to the ISARRA Lower Atmospheric Process Studies at Elevation–

a Remotely-piloted Aircraft Team Experiment5 (LAPSE-RATE). Up to now, meteorologists

and weather experts have used radar, balloon soundings and satellite data to model weather.

However, as mentioned in the introduction, such sensor modalities cannot collect data in

lower altitude environments effectively, and the atmospheric physics community does not

have a good understanding of the boundary layer above the height of weather towers but

below the safe operating envelopes of manned aircraft or the line of sight constraints of

radar. We, along with more than 50 of our fellow researchers and colleagues from diverse

research backgrounds and origins, participated in ISARRA LAPSE-RATE and collabora-

tively collected weather data using UAS. The experiment was conducted during a flight

week campaign in the San Luis Valley in Alamosa, Colorado at several interesting sites from

the perspective of atmospheric research. Collectively, 1200 flights were flown in this week by

the participants, and our team contributed 215 flights and acquired 2.9 GB of sensor data.

5https://isarra.colorado.edu/flight-week
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(a) Information Gain 2.257021, Duration 0:15:14, In-
formation/Second=0.002469

(b) Information Gain 2.255881, Duration 0:28:09, In-
formation/Second=0.001336

Figure 4.28: Plots for a representative autonomous flight are on the left; a preplanned
profile flight is on the right. Measured temperature change over time ( δF

δt
) is in the bottom

row; the top row collects these data into a histogram for information gain computation.

This is both the largest amount of data collected by UAS for weather measurement in a spe-

cific time period and geographic location, and involved more heterogenous UAS platforms

in the data collection than ever before.

One of our research focuses for this period revolved around testing the performance

of our coordination algorithm and comparing its performance with the current approach,

where meteorologists and roboticists collaborate to devise planned waypoint-based missions

to map the weather environment, usually taking the form of fixed vertical profiles or transects

between two geographic points at various altitudes. For this experiment, we performed 13

autonomous flights and 64 fixed, planned flights using several different quadrotor and fixed-

wing UAS.
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Table 4.7: Comparison Between Autonomous and Profile Flight

Measure Temperature Humidity

Entropy
Autonomous 3.340759 2.997618

Profile 3.424795 3.193233

Duration
Autonomous 05:17:11 05:06:03

Profile 39:02:39 10:41:48

Info.
Gain/sec

Autonomous 0.0001755 0.0001632

Profile 0.0000244 0.0000256

All of these autonomous, profile, transect and other flights were conducted in the

San Luis Valley, west of Great Sand Dunes National Park, Colorado. The experiments

were conducted following FAA guidelines, with special permission to fly missions involving

swarms, night flight and high altitudes. All the flights were required to have a human

FAA-licensed UAS pilot in charge of the flight. The autonomous flights were conducted in

multiple locations over half-hectare areas of open farm fields or rangeland. The transect

flights followed flight paths of approximately 1 KM in length. Although we have access to

the data from all 1200 flights, these experiments were performed across sixty flight hours, a

small fraction of the total.

The overarching goal of the LAPSE-RATE campaign participants, roboticists and

meteorologists alike, was to discover interesting phenomena in weather data, such as sudden

changes to temperature or humidity. This information allows atmospheric physicists to

understand and model convective activity and other atmospheric behavior. We hypothesized

that our algorithm, which is specifically intended to coordinate multi-robot teams in real

time in response to heterogenous sensor data, would be much more efficient at detecting

and mapping these atmospheric phenomena, compared to UAS following fixed, preplanned

profiles. We quantify the quality of the data collected by computing the entropy of the data

distribution, and turn that into information gain per unit time. For this experiment we have

used factor functions φt (temperature), φac (collision avoidance), φb (boundary), as well as φh

(humidity), which behaves just like the temperature function but is tied to a different sensor.

We collected the sensory data into a normalized histogram, which essentially captures the

probability density function of the changes of sensory data in the weather over time.
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Table 4.8: Comparison Between Autonomous and Profile Flight

Entropy Duration Info. Gain/sec
Autonomous Profile Autonomous Profile Autonomous Profile

3.340759 3.424795 05:17:11 39:02:39 0.0001755 2.436553e-05

Table 4.9: Autonomous Flights: July 19 2018

Entropy Duration Info. Gain/sec

Autonomous Profile Autonomous Profile Autonomous Profile

Mean 1.935458 1.511861 00:21:50 00:13:14 0.003546 0.002759

Median 1.861298 1.476238 00:10:17 00:13:32 0.003322 0.001778

IQR 0.726217 0.664193 00:14:55 00:11:51 0.002566 0.001628

Figure 4.28 shows histograms computed for two representative flights. The overall

information gain per flight is almost identical, and this is reflected in the similar shapes

of the two histograms. However, as can be observed on the lower figure, the profile flight

spent most of the second half of its trajectory in a very low information regime, where

nothing particularly interesting was happening to the temperature. Thus the autonomously

coordinated flight took half the flight time to obtain the same information.

Even a very poor deployment strategy for a meteorological sensor will continually

produce information as it measures its environment over time. A better strategy will pro-

duce higher information gain over a specific amount of time. Thus we calculated the the

information gain density simply by dividing the entropy by the duration of the flight by

seconds. This quantity tells us how well a particular flight worked in gathering interest-

ing information about the weather quantitatively. Table 4.7 shows a comparison between

our autonomous flight tests and pre-planned waypoint based profile flights. Autonomous

flights following our algorithm have higher information gain and spend lower flight times to

collect that information. Thus, they have a higher information acquisition rate on average

than fixed profile flights. On average our autonomous approach collected data around seven

times more effectively for both temperature and humidity data. Because of the huge number

of samples collected using both methods, our results are extremely statistically significant

(p < 10−7).
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Chapter V

Conclusion

5.1 Assessing Cognitive Stress of Human Operator

Robots that are capable of understanding the cognitive load their operator is experi-

encing are vital to safe and efficient teamwork in complex scenarios where the proper level

of autonomy and interaction is fluid. Vital communication cues are embedded in the way we

behave in particular circumstances, and these implicit indicators do not have to be lost on

our robots. My work’s contribution is to demonstrate a quantitative, learnable, generalizable

model that allows a robot to determine that a user has succumbed to cognitive stress, even

when it cannot independently assess the instructions it is being given.

5.2 Multi-Modal Multi sensor Interaction between Human and Heterogeneous

Multi-Robot System

I have presented a novel model for multimodal interaction among heterogeneous

multi-robot systems. I have developed the algorithm for controlling such a system and

demonstrated its effectiveness using experiments with real robots and in simulation. I have

presented a toy example of how this new interaction method may work and also discussed

its potential. In future, I intend to implement a fully functional version of this interaction.

I will add more multimodal functionality like gyroscopes, accelerometers. I plan to build a

multimodal interface framework based on a smartphone touch screen that will allow users

to interact seamlessly with robot teams in many possible applications.
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5.3 Distributed Control of Heterogeneous Team of robots and Humans

In this work, I have proposed a scheme for heterogeneous multi-agent control that uses

factor graphs and loopy belief propagation to abstract intention away from the specifics of

hardware capability and sensors, allowing a diverse collection of systems to be controlled with

the same software and to interact effectively with each other. Additionally, human operators

may insert themselves into the decision-making process to varying extents as desired. Our

method enormously simplifies the logic and programming required to solve these kinds of

problems. We have demonstrated the effectiveness of the approach in simple real-world

scenarios and more complex simulated ones. At present, we have equipped actual UAV robots

with real meteorological sensors and have demonstrated the efficacy of this approach in large

real-world deployments, improving our understanding of near-surface weather phenomena

and our ability to monitor and predict severe weather.

The contribution of this work is the novel algorithm for distributed heterogeneous

control of robots with humans in the loop, and a very large-scale experiment which confirms

its applicability, performance and robustness. We also illustrate theoretical evidence of its

performance and developed a simulated environment which makes it possible accurately to

generate real-world weather phenomena for multi-robot UAS testing. Our work facilitates

human interaction with heterogeneous multi-robot teams. I have run an enormous and ex-

tensive investigation of lower altitude weather using heterogeneous UAS. The immense scale,

duration and millions of data points collected demonstrate the capacity of our algorithm to

deploy heterogenous robots over hundreds of square kilometers, investigating and mapping

meteorological data with a speed and resolution unmatched by UAS whose autonomy is

limited to flying pre-planned profiles and transects. This represents a large advance in the

state of the art.

5.4 Limitations & Future Research Direction

My research has contributed algorithms and methodologies to coordinate task of

heterogenous cooperative multi-robots and enable human robot interaction in efficient way.

My research contributed in quantifying humans cognitive load in operating multiple robots.

We are still far away from a general purpose algorithm for cooperative autonomous robot
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and human robot interaction but my work have shown promising result towards the right

direction. Our experiments and data proved this consistently. There are few limitations of my

research which can be addressed in new research. This brings me to future research direction

for anyone who is interested in similar research problem. (1) How can we represent arbitrarily

complex intentions of heterogeneous multi-robot teams in the factor graph representation

that I have developed? (2) How can the intentions and beliefs of robots be represented to

humans and vice versa?

My research results to this point have been obtained from known graph structures,

factor functions and weights. The factor functions was carefully engineered to achieve cer-

tain objectives, for example, collision avoidance, exploration and efficient data sampling.

Although the proposed algorithm and setting is theoretically applicable to any complex

multi-robot task, these parameters and factor functions may not be easy to design. For most

multi-robot tasks, the easier part in my approach is representing the robots in a graph with

nodes representing the intention of each robot and edges representing their communication

links. More challenging is to factorize the graph by designing appropriate factor functions

and assigning optimal weights to interpret intention. For many expected behaviors, colli-

sion avoidance for example, we can engineer a function that explicitly makes a robot avoid

intentions which have high probability of collision. However, how this collision avoidance

intention should trade off with other expected intentions (for example, exploration) requires

learning how to weight the factor functions. I wish to explore how we can initializing a

factor function based on intuitive human knowledge, and the learn appropriate weights and

parameters using reinforcement learning.
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Appendix A

An Appendix Explained

There is no appendix for this dissertation.
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