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Abstract: Estimation of full state fluid flow from limited observations is central
for many practical applications in physics and engineering science. Fluid flows are
manifestations of nonlinear multiscale partial differential equations (PDE) dynamical
systems with inherent scale separation. Although the Navier-stokes equations can
successfully model fluid flows, there are only limited cases of flows for which it is
feasible to acquire exact analytical or numerical solutions. For many real-life fluid
flow problems, extremely complex boundary conditions limit accurate modeling and
simulations. In such situations, data from experiments or field measurements represents
the absolute truth and very few in numbers thus limiting the potential of in-depth
analysis. Consequently different data-driven techniques have been critical in active
research in recent days. The ability to reconstruct important fluid flows from limited
data is critical in applications extending from active flow control to as diverse as cardiac
blood flow modeling and climate science. In this work, we investigated both (1) linear
estimation method by leveraging data specific proper orthogonal decomposition (POD)
technique, and (2) nonlinear estimation method on the ground of machine learning
using deep neural network (DNN) algorithm. Given that sparse reconstruction is an
inherently ill-posed problem, to generate well-posedness our linear sparse estimation
(LSE) approach encodes the physics into the underlying sparse basis obtained from
POD. On the other hand, for nonlinear sparse estimation (NLSE) we tried to find
an optimal neural network model working over different ranges of hyperparameters
through a systematic implementation. Our NLSE approach learns an end-to-end
mapping between the sensor measurements and the high dimensional fluid flow field.
We demonstrate the performance of both approaches for low and high dimensional
examples in fluid mechanics. We also assess the interplay between sensor quantity and
their placements introducing some greedy-smart sensor placement methods such as
Discrete Empirical Interpolation Method (DEIM), QR-pivoting, etc. The LSE method
needs the knowledge of low dimensional sparse basis to be known a priori, whereas
the NLSE requires no prior knowledge to be available. The estimation algorithm of
NLSE is purely data-driven with a comparable level of performance. To make our
neural network optimization more robust we implemented Latin Hypercube Sampling
(LHS) algorithm to ensure that each hyperparameter sample has all portions of its
distribution in the considered range of analysis instead of sampling them randomly.
Throughout the thesis, we demonstrate a comparison of each approach taken into
consideration to conclude on their performances. A special focus has been placed to
learn high dimensional multiscale system such as the near-wall turbulent channel flow
using the NLSE method to evaluate the advantages and limitations of the nonlinear
approach in comparison to the traditional linear estimation.
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CHAPTER I

INTRODUCTION

1.1 Overview and Motivation

Understanding and modeling multiscale fluid flow phenomena is a central focus in

many scientific, technological, industrial and geophysical applications. Many real life

flows are high-dimensional, nonlinear dynamical system with many degrees of freedom

and multi-scale interactions which are expensive to simulate and accurate modeling

may not be feasible through high fidelity simulation techniques for the limitations

including lack of accurate models, unknown governing equations or extremely complex

boundary conditions. In such situations measurement data represents the absolute

truth and is often acquired from very few probes, which limits the potential for in-depth

analysis. Then it becomes important to reconstruct full flow field, or to some other

high-dimensional state, from limited measurements and limited data. Different data-

driven methods have been subject to active research, which present us with wealth of

techniques to reconstruct coherent flow features from limited observations. Efficient and

accurate estimation is critical for active flow control, crafting fuel-efficient automobiles

as well as high-efficiency turbines (Brunton and Noack, 2015; Callaham et al., 2018;

Manohar et al., 2018; Rowley and Dawson, 2017a; Yu and Hesthaven, 2019). The ability

to reconstruct important fluid flow features from limited observation is also central

in applications including energy (e.g., wind, tidal, and combustion), transportation

(e.g., planes, trains, and automobiles), security (e.g. airborne contamination), and

medicine (e.g., artificial hearts and artificial respiration) (Loiseau et al., 2018; Bolton

and Zanna, 2018).
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In the past few decades with the development of efficient data-driven approach,

many techniques have been evolved for low order modeling which turned out to be of

paramount importance as sparse data recovery tools. Development of efficient linear

algebra libraries has attracted the interest of an increasing number of researchers over

the recent years to come up with advanced reduced-order modeling techniques (Berkooz

et al., 1993; Taira et al., 2017; Jayaraman et al., 2018). As an example, taking into

account the complexity in solving nonlinear PDEs, leveraging the Galerkin (Noack

et al., 2011; Holmes, 2012) projection of the governing equations onto a set of orthogonal

basis such as proper orthogonal decomposition(POD) (Lumley, 2007) provides a way

to convert the set of PDEs to a set of ODEs thus help reduce the computational cost

of predicting model drastically. Despite of it’s wide application (Rapún and Vega,

2010; Akhtar et al., 2012; Kunisch and Volkwein, 2002), this method always require

the knowledge of low dimensional basis as a priori. On the other hand, with the

proliferation of machine learning, data-driven algorithms on the ground of neural

network approach are becoming popular choices within the fluid dynamics community

in different cases including real life fluid flow modeling (Al-Wahaibi and Mjalli, 2014),

solving Navier-Stokes equations (Baymani et al., 2015), inverse problem (Ye et al., 2018;

Adler and Öktem, 2017) and as well as sparse estimation of nonlinear fluid flows (Yu

and Hesthaven, 2019; Milano and Koumoutsakos, 2002; Erichson et al., 2019). The

focus of this dissertation is to build computational framework for sparse estimation

of nonlinear fluid flows from limited observation using both linear and nonlinear

estimation approach along with the investigation of their performance compared to

each other. Implementation of different smart sensor placement techniques has also

been explored in this study.

Advances in compressive sensing (CS) (Candès et al., 2006a; Tropp and Gilbert,

2007; Candès and Wakin, 2008; Needell and Tropp, 2009) have opened the possibility

of direct compressive sampling (Bai et al., 2014) of data in real-time without having
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to collect high resolution information and then sample as necessary. Thus, sparse

data-driven decoding and reconstruction ideas have been gaining popularity in their

various manifestations such as Gappy Proper Orthogonal Decomposition (GPOD) (Bui-

Thanh et al., 2004; Willcox, 2006), Fourier-based Compressive Sensing (CS) (Candès

et al., 2006a; Tropp and Gilbert, 2007; Candès and Wakin, 2008; Needell and Tropp,

2009) and Gaussian kernel-based Kriging (Venturi and Karniadakis, 2004; Gunes

et al., 2006; Gunes and Rist, 2008). As the measurement data from very few probes

limit the potential for in-depth analysis a common recourse is to combine them with

the underlying knowledge of sparse basis to recover detailed information. Sparse

reconstruction is inherently ill-posed and under-determined inverse problem where

the number of constraints (i.e., sensor quantity) are much less than the number of

unknowns (i.e., high resolution field). However, if the underlying system is sparse

in a feature space then the probability of recovering a unique solution increases by

solving the reconstruction problem in a lower-dimensional space. The core theoretical

developments of such ideas and their first practical applications happened in the realm

of image compression and restoration (Romberg, 2008; Candès and Wakin, 2008).

Data reconstruction techniques based on Karhunen-Loeve (K-L) procedure with least

squares (l2) error minimization , also known as Gappy POD or GPOD (Everson and

Sirovich, 1995; Bui-Thanh et al., 2004; Willcox, 2006), was originally developed in

the nineties to recover marred faces (Everson and Sirovich, 1995) in images. The

fundamental idea is to utilize the POD basis computed offline from the data ensemble

to encode the reconstruction problem into a low-dimensional feature space. This way,

the sparse data can be used to recover the sparse unknowns in the feature space (i.e.,

sparse POD coefficients) by minimizing the l2 errors.

Since POD is a linear approach, various efforts in research have been devoted to

incorporate machine learning idea for sparse recovery of fluid flows as a nonlinear exten-

sion. This modern data-driven approach is outperforming (Erichson et al., 2019) the
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traditional modal approximation techniques in various aspects. This powerful learning

paradigm is also increasingly used for super-resolution reconstruction problems (Bode

et al., 2019; Fukami et al., 2019; Deng et al., 2019b,a). The main objective of all these

flow reconstruction problems is to learn a relationship between the limited sensor

information and the full state flow field using machine learning technique. Sensor

measurements are collected via a sampling process from the high-dimensional field

and then the reconstruction of full state field becomes a problem of constructing an

inverse model. The sampling process being highly nonlinear, the main inverse problem

turns out to be ill-posed and direct inversion is not feasible. In machine learning, it is

a widespread practice to perform neural network based inversion. Through training a

given set of samples using the convenient architecture of neural network, a nonlinear

function is tried to be learnt which can map limited number of sensor measurements

to the estimated state. A commonly employed loss function, which is required to be

minimized, is considered in terms of the L2-norm of the deviation between the esti-

mated and the actual data. Different optimization methods such as ADAM (Kingma

and Ba, 2014), SGD with momentum (Sutskever et al., 2013), averaged SGD (Polyak

and Juditsky, 1992), to name a few have been used in machine learning community

to minimize the misfit between reconstructed quantity and the observed quantity

during training procedure. One very usual complication found in training procedure

is overfitting that occurs if a function interpolates a limited set of data too closely.

Although different methods of regularization are employed to avoid overfitting to the

extent possible, characterizing and understanding the overfitting in neural networks

is still of increasing interest in active research (Poggio et al., 2018; Bartlett et al.,

2017). Another important design parameter of neural network architecture is the

format of the layers. Due to exhibiting sparse connectivity of the neurons, use of

convolutional layers is of successful choice particularly in computer vision but use

of deep neural network for fluid flow reconstruction problem is supported by several
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theoretical results (Delalleau and Bengio, 2011; Bianchini and Scarselli, 2014; Mhaskar

and Poggio, 2016; Mhaskar et al., 2017).

This thesis presents the exploration of both linear and nonlinear data-driven

methods of sparse estimation of nonlinear fluid flows. Investigation of the performance

of both methods has been extended to three different class of data to demonstrate the

practical capability of the algorithms developed here. First, as a canonical example of

fluid flow, a periodic flow behind a circular cylinder has been considered. Then, as a

second and more challenging example, the daily mean sea surface temperature (SST).

Finally, the third and very high dimensional near wall turbulent channel flow data.

The novelty of this work is three-fold. First, we extended sparse linear estimation

approach to nonlinear estimation with machine learning ideas using deep neural

network (DNN) decoder. Second, instead of picking any of the workable DNN design,

we have shown a systematic way to chose the appropriate decoder over the range of

different hyperparameter values. Third, we explore the performance characteristics

of such methods for nonlinear fluid flows applying some smart and physics informed

sensor placement techniques (Jayaraman et al., 2019).

1.2 Contribution

In chapter 2, the main contribution is focused on Gappy POD method based sparse

reconstruction of fluid flows. Data recovery techniques based on Karhunen-Loeve

(K-L) procedure with least squares (l2) error minimization , also known as Gappy

POD or GPOD (Bui-Thanh et al., 2004; Willcox, 2006), was originally developed in

the nineties to recover marred faces (Everson and Sirovich, 1995) in images. The idea

is to utilize the POD basis computed offline from data to encode the reconstruction

problem into a low-dimensional feature space. This way, sparse data can be used to

recover the sparse unknowns in the space of POD coefficients by minimizing the l2

errors. If the data-driven POD basis are not known a priori, an iterative formula-
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tion (Bui-Thanh et al., 2004; Everson and Sirovich, 1995) to successively approximate

the POD basis and the coefficients was proposed with limited success (Bui-Thanh

et al., 2004; Venturi and Karniadakis, 2004; Saini et al., 2016), i.e., it is prone to

numerical instabilities and inefficiency. Advancements in the form of a progressive

iterative reconstruction framework (Venturi and Karniadakis, 2004) are effective, but

impractical due to computational cost. In fact, all the aforementioned issues are

related to the POD-basis being data-driven and therefore, can approximate the data

effectively but not generalizable. For generalization they are required to be known a

priori - a stringent requirement in practice as training data is rarely available and

even when it is, it may not effectively span the prediction regime. Such limitations

make data-driven basis hard to use for practical applications. Nevertheless, they

find tremendous value in data-driven modeling such as those based on learning the

Koopman operator (Schmid, 2010; Rowley and Dawson, 2017b) and nonlinear model

order reduction (Taira et al., 2017) of statistically stationary systems where training

data is available.

In chapter 3, the focus is on incorporating machine learning idea, particularly neural

network based methodology to investigate the performance of such nonlinear estimation

approach in fluid flow reconstruction problem. Given a sparse reconstruction problem

an inherently ill-posed problem, the better recourse is to develop robust mathematical

techniques that can solve such inverse model with maximal accuracy. In machine

learning community, it has been an active research and common practise doing neural

network based inversion (McCann et al., 2017; Zhou et al., 1988). Because of it’s

compressing power and and powerful learning capability deep learning has become

and emerging idea and choice of interest among the researcher’s contributing in sparse

estimation of fluid flow. We explore deep neural network based input-to-output

mapping to predict full state field from sparse measurements. The approach is purely
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data-driven without any raw processing on data and no prior knowledge is assumed to

be available. We follow a systematic way for the neural network optimization through

interplay of important hyperparameters over the design space. We experiment the

performance of the best identified model for both low dimensional cylinder wake flow

as well as more challenging near wall turbulent channel flow.

1.3 Physics Case Studies

1.3.1 Low-dimensional Cylinder Wake Flows

Studies of cylinder wakes Roshko (1954); Williamson (1989); Noack et al. (2003);

Rowley and Dawson (2017b) have attracted considerable interest from the model

reduction and dynamical systems communities for its particularly rich flow physics

content, encompassing many of the complexities of nonlinear flow systems, and yet,

easy to simulate accurately. In this study, we explore data-driven sparse reconstruction

for the unsteady cylinder wake flow at Reynolds number Re = 100. To generate

two-dimensional cylinder flow data, we adopt the spectral Galerkin method Cantwell

et al. (2015) with a fourth order spectral expansion within each element to solve the

incompressible Navier-Stokes equations,

∂u

∂x
+
∂u

∂y
= 0, (1.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+ ν∇2u, (1.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+ ν∇2v, (1.1c)

where u, v are horizontal and vertical velocity components, P is the pressure field,

and ν is the fluid viscosity. The rectangular domain used for this flow problem is

−25D < x < 45D and −20D < y < 20D, where D is the diameter of the cylinder.

For the purposes of this study, data from a reduced domain, i.e., −2D < x < 10D and
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−3D < y < 3D consisting of 24, 000 grid points is used. The mesh was designed to

sufficiently resolve the thin shear layers near the surface of the cylinder and transient

wake physics downstream. We collect snapshots of data every ∆t = 0.2 seconds.

1.3.1.1 Cylinder Wake Limit-cycle Dynamics

In this section, we explore sparse reconstruction of unsteady wake flows with well-

developed periodic vortex shedding behavior. The GPOD type algorithm is chosen

over the traditional Compressive sensing-based SR formulations to bypass the need for

maintaining a separate measurement matrix, especially when employing point sensors

to mimic realistic data acquisition. The time-evolution of the cylinder wake is shown

in figure 1.1 where the wake becomes increasingly unstable before it settles into a

limit-cycle. The first three POD modes and coefficients are shown in figure 1.2 for

the limit-cycle regime. The dominant POD modes (mode 1 and mode 2) capture the

symmetric vortex shedding patterns while the temporal evolution of POD coefficients

show periodic evolution. The low dimensionality of this system is evident from the

singular value spectrum for the data matrix shown in figure 1.3. For this study, we

use 300 snapshots collected every 0.2 units corresponding to sixty non-dimensional

times, T = Ut
D

that corresponds to multiple (≈ 10) cycles of the periodic dynamics.

Figure 1.1: Isocontour plots of the stream-wise velocity component for the cylinder
flow at Re = 100 at T = 25, 68, 200 show evolution of the flow field. Here T represents
the time non-dimensionalized by the advection time-scale.
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Figure 1.2: Isocontours of the three most energetic modes (first row from left to right)
and time evolution of the first three POD coefficients (Second row) for the cylinder
wake flow at Re = 100.

Figure 1.3: Singular value spectrum of the data matrix for both the cylinder wake
flow at Re = 100 and the sea surface temperature(SST) data.

1.3.2 Global Sea Surface Temperature (SST) Data

In order to showcase the practical capabilities of the algorithms presented here, we need

problems that mimic real-life complexity. For this reason, we also consider sea surface

temperature (SST) data representing coarse grained version of synoptic scale ocean

turbulence and characterized by rich dynamics of synoptic-scale seasonal fluctuations

interacting with local and day-to-day non-stationary dynamics from turbulent eddy

currents. For this study, we chose a dataset consisting of daily mean quantities from
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high-resolution blended analysis of sea surface temperature from 2018 made available

by the National Oceanic & Atmospheric Administration (NOAA) 1 . For this year long

data we have 365 snapshots of daily mean temperature fields with a spatial resolution

of 720 × 1440 (0.25 degree longitude × 0.25 degree latitude global grid). This results

in a total state dimension of 1036800 observations of which only 691150 correspond to

ocean regions and used in this study.

1.3.2.1 Sea Surface Temperature (SST) Dynamics
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Figure 1.4: Visualization of the first three POD modes (top left to right) and POD
coefficients (bottom) for the sea surface temperature data.

For this data matrix, the singular value spectra is shown in figure 1.3. It is evident

from the above plots that the SST data has a slower decay of singular values and will

require more modes to capture the same energy fraction relative to the cylinder flow.

We note that by using filtered temperature fields (i.e. averaging over any given day),

the scale separation is significantly reduced as compared to what would be observed in

high Reynolds number turbulence. The dominant modes and the temporal evolution

of the POD coefficients is shown in figure 1.4.

1https://www.esrl.noaa.gov/psd/
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1.3.3 Turbulent Channel Flow

To explore a high dimensional challenging case of nonlinear fluid flow for sparse

recovery we consider a turbulent channel flow at a moderate Reynolds number.

Learning the relationship between statistical and structural characteristics (Kim et al.,

1987) studying near-wall boundary layers is of utmost importance for many engineering

applications including drag reduction (Du et al., 2002), oil and gas transportation,

and heat convection, just to name a few. Due to the inherent broad range of length

scales which are correlated with one other (Smits and Marusic, 2013), the physics

of wall-bounded turbulent flows has not been completely fathomed. To assess the

effectiveness of the proposed sparse estimation models, such a fully-developed turbulent

channel flow data from direct numerical simulations has been incorporated in this

thesis.

To generate high fidelity data, the skew symmetric form of the incompressible 3-D

Navier-Stokes equations is solved on a rectangular box that is 0 < x < 12.6, 0 < y < 2,

and 0 < z < 4.18. For simplicity, the 2-D version of the equations is shown as follows.

∂u

∂x
+
∂u

∂y
= 0, (1.2a)

∂u

∂t
+

1

2

[
∂(u2)

∂x
+
∂(uv)

∂y
+ u

∂u

∂x
+ v

∂u

∂y

]
= −1

ρ

∂P

∂x
+ ν

[
∂2(u)

∂x2
+
∂2(u)

∂y2

]
+ fx, (1.2b)
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∂y
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∂x
+ v

∂v

∂y

]
= −1

ρ

∂P

∂x
+ ν

[
∂2(v)

∂x2
+
∂2(v)

∂y2

]
+ fy, (1.2c)

where u, v denote the stream-wise and wall-normal velocity components and fx, fy are

the body forces. Re = 4200 aneme is applied for time integration. First and secondnite

difference scheme. For the inlet and outlet of the channel, periodic boundary conditions

are applied. Simulations are performed with a high resolution case of grid size chosen

to be 256 by 257 by 168.

The grid points are equally spaced in both stream-wise and span-wise direction.
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However, a non-uniform grid system is used in the wall-normal direction where the grid

is stretched from both wall to the middle. For the purpose of analysis, the snapshot

range of the data-set has been chosen carefully to ensure that the flows are fully

developed.
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CHAPTER II

LINEAR SPARSE ESTIMATION OF FLUID FLOWS

2.1 Motivation and Review

Multiscale fluid flow phenomena in engineering and geophysical settings are invariably

data-sparse, i.e. there are more scales to resolve than there are sensors. A major goal

is to recover more information about the dynamical system through reconstruction

of the higher dimensional state. To expand on this view, in many practical fluid

flow applications, accurate simulations may not be feasible for a multitude of reasons

including, lack of accurate models, unknown governing equations or extremely complex

boundary conditions. In such situations, measurement data represents the absolute

truth and is often acquired from very few probes, and therefore offering limited

scope for analysis. A common recourse is to combine such sparse measurements with

underlying knowledge of the flow system, either in the form of idealized simulations or

phenomenology or knowledge of a sparse basis to recover detailed information. The

former approach is termed as data assimilation while we refer to the latter as Sparse

Reconstruction (SR). On the other hand, simulations typically represent a data surplus

setting that offer the best avenue for analysis of realistic flows as one can identify

and visualize coherent structures, perform well converged statistical analysis including

quantification of spatiotemporal coherence and scale content due to the high density

of data probes in the form of computational grid points. With growth in computing

power and generation of big data, there’s an ever growing demand for quick analytics

and machine learning tools (Friedman et al., 2001) to both sparsify, i.e. dimensionality

reduction (Holmes, 2012; Berkooz et al., 1993; Taira et al., 2017; Jayaraman et al.,
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2018) and recover the full state without loss of information. Thus, tools for encoding

information into a low-dimensional feature space (convolution) complement sparse

recovery tools that help decode compressed information (deconvolution). This in

essence provides a significant context for leveraging machine learning in fluid flow

analysis (Bai et al., 2014; Bright et al., 2013).

Recent advances in compressive sensing (CS) (Candès et al., 2006a; Tropp and

Gilbert, 2007; Candès and Wakin, 2008; Needell and Tropp, 2009) have opened the

possibility of direct sparse sampling (Bai et al., 2014) of data in real-time without

having to collect high resolution information and then downsample. Of course, for

direct sampling, one requires a collection of generic basis in which the data has a high

probability of being sparse in whereas when collecting high resolution information

and then down sampling, one can learn optimal basis from data. Thus, reconstruction

from sparse data has been popular in their various manifestations such as Gappy

Proper Orthogonal Decomposition (GPOD) (Bui-Thanh et al., 2004; Willcox, 2006),

Fourier-based Compressive Sensing (CS) (Candès et al., 2006a; Tropp and Gilbert,

2007; Candès and Wakin, 2008; Needell and Tropp, 2009) and Gaussian kernel-

based Kriging (Venturi and Karniadakis, 2004; Gunes et al., 2006; Gunes and Rist,

2008). A parallel application of such ideas is in the acceleration of nonlinear model

order reduction using sparse sampling for hyper-reduction (Everson and Sirovich,

1995; Chaturantabut and Sorensen, 2010; Dimitriu et al., 2017; Zimmermann and

Willcox, 2016). Outside of the basis-driven reconstruction approaches, there also exist

alternative classes of methods based on nonlinear estimation (Erichson et al., 2019)

and pattern recognition ideas such as k-nearest neighbors or kNN (Loiseau et al.,

2018). In the former, mapping from the sparse to fine data is approximated through

a nonlinear map such as a neural network or its variants. In this way, the sensor

placement and the basis learning procedures are combined which can be leveraged for

learning observable dictionaries (Mathelin et al., 2018). In the latter, a library based
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look-up of snapshots is employed to map an appropriate lifted dynamic feature to the

ensemble of flow fields that will be interpolated locally in the feature space.

In this study, we focus primarily on basis enabled sparse linear estimation of the

high dimensional state by converting the inherently ill-posed, under-determined inverse

problem into a well-posed one in the space of basis coefficients. The contribution

from this work is the development of a systematic framework for characterizing the

SR performance in terms of accuracy of data recovery that can inform practical

applications. Secondly, we explore how these SR methods interact and potentially

gain from greedy and smart sensor placement. To this end, we focus on both low-

dimensional laminar wake flow as well as high-dimensional geophysical turbulence

measurements, i.e., sea surface temperature data from global ocean models to mimic

practical use conditions.

2.2 Problem Formulation

Given a high resolution data representing the state of the flow system at any given

instant denoted by x ∈ RN , its corresponding sparse representation given by x̃ ∈ RP

with P � N . Then, the sparse reconstruction problem is to recover x, when given x̃

along with information of the sensor locations in the form the measurement matrix

C ∈ RP×N as shown in equation (2.1). The measurement matrix C carries information

about how the sparse data x̃ is collected from x. Variables P and N are the number

of sparse measurements and the dimension of the high resolution field, respectively.

x̃ = Cx. (2.1)

Naturally, when one loses the information about the system, the recovery of said

information is not absolute as the reconstruction problem is ill-posed, i.e., more

unknowns than constraints in equation (2.1). The most straightforward approach to
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recover x is by computing the inverse of C using a least-squares error minimization

procedure given by

C+x̃ = x, (2.2)

which is often inaccurate due to ill-posedness.

2.2.1 Sparse Reconstruction Theory

The theory underlying sparse reconstruction has strong foundations in the field of

inverse problems (Tarantola, 2005) with applications in diverse fields of study such

as a geophysics (Arridge and Schotland, 2009; Tarantola and Valette, 1982) and

image processing (Neelamani, 2004; Khemka, 2009). In this section, we formulate the

reconstruction problem as presented in CS literature (Candès et al., 2006a; Candès

and Wakin, 2008; Donoho, 2006; Baraniuk, 2007; Baraniuk et al., 2010) that deals

with “compressible” signals, i.e., they are sparse in some basis Φ as shown below:

x =

Nb∑
i=1

φiai or x = Φa, (2.3)

where Φ ∈ RN×Nb and a ∈ RNb with K non-zero elements (or K-sparse). In the

formulation above, Φ ∈ RN×Nb is used instead of Φ ∈ RN×K as the K most relevant

basis vectors for a given data are not usually known a priori. Consequently, a more

exhaustive basis set of dimension Nb ≈ P > K is typically employed. To recover

N -dimensional data, one needs at most N linearly independent basis vectors, i.e.,

Nb ≤ N . In practice, the candidate basis dimension need not be N and can be

represented by Nb � N as only K(≤ Nb) of them are needed to approximate the

signal to a desired quality. This is typically the case when Φ is composed of optimal

data-driven basis vectors such as POD modes. The reconstruction problem is then

recast as identification of these K sparse coefficients. In this article, we focus on such
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vectors x that have a sparse representation in a chosen subspace spanned by Φ.

In many practical situations, Φ, K, Nb and N are user inputs. Standard transform

coding (Mallat, 1999) practice in image compression involves collecting a high resolution

sample, projecting it onto a Fourier or wavelet basis where the data is sparse, retain the

K most relevant coefficients while discarding the rest. The sample and then compress

mechanism still requires acquisition of high resolution samples and processing them

before dimensionality reduction. This is challenging due to demands on processing

power, storage, and time. Compressive sensing (Candès et al., 2006a; Candès and

Wakin, 2008; Donoho, 2006; Baraniuk, 2007; Baraniuk et al., 2010) focuses on direct

sparse sensing based inference of the K-sparse coefficients by essentially combining

the steps in equations (2.1) and (2.3) to yield

x̃ = CΦa = Θa, (2.4)

where Θ ∈ RP×Nb is the map between the basis coefficients a that represent the data

in a feature space and the sparse measurements, x̃ in physical space. The challenge in

solving for x using the under determined equation (2.1) is that C is ill-conditioned

and x in itself is not sparse. However, when x is sparse in Φ, the reconstruction using

Θ in equation (2.4) becomes practically feasible (for P ' K) by solving for a. Thus,

one effectively seeks a K-sparse a with P constraints (given by x̃) using established

methods from linear algebra and constrained optimization.

2.2.1.1 Case 1: For K = Nb

For the over determined system with P > K = Nb, a is estimated using a reg-

ularized least squares solution based on the normal equation as a = (Θ)L+x̃ =(
ΘTΘ + αI

)−1
ΘT x̃ for a chosen α. This is obtained by minimizing the appropriate

cost function given by Jcost = ‖x̃ − Θa‖2
2 + α‖a‖2

2. This regularized least-squares

solution procedure for the overdetermined case is nearly identical to the original GPOD
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algorithm developed by Everson and Sirovich (Everson and Sirovich, 1995) if Φ is

chosen as the POD basis. However, x̃ in GPOD contains zeros as placeholders for all

the missing elements whereas the above formulation retains only the measured data

points.

When P ≤ K = Nb, and the system is under-determined with non-unique solutions,

one looks for a minimum norm reconstruction of a. This is achieved by minimizing the

corresponding s-norm of a, i.e. ‖a‖s (s chosen appropriately) and x is then recovered

from equation (2.3). A minimum l2 norm reconstruction of x that penalizes the larger

elements of a is realized by choosing s as 2 and is a solution to the optimization

problem given by

l2 norm minimization reconstruction : a = argmin ‖a′‖2 such that Θa′ = x̃;

l2 cost function to be minimized : min{α (x̃−Θa) + ‖a‖2
2}.

(2.5)

One can solve for α and a in equation (2.5) using method of Lagrange multipliers to

yield a solution that is a right pseudo-inverse of Θ as

a = (Θ)R+x̃ = ΘT
(
ΘΘT

)−1
x̃, (2.6)

provided Θ has minimum rank P .

2.2.1.2 Case 2: For K < Nb

When K � Nb, one typically looks for a sparse solution of a. The l2 approaches

discussed above do not generate sparse solutions. A natural way to enhance sparsity

of a is to minimize ‖a′‖0, i.e., minimize the number of non-zero elements such that

Θa′ = x̃ is satisfied. It has been shown (Sarvotham et al., 2005) that with P = K + 1

(P > K in general) independent measurements, one can recover the sparse coefficients

with high probability using minimum l0 norm reconstruction. This is heuristically
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interpreted as each measurement needing to excite a different basis vector φi so

that its coefficient ai is uniquely identified. If two or more measurements excite the

same basis φj then additional measurements may be needed to produce acceptable

reconstruction. On the other hand, for P ≤ K independent measurements, the

probability of recovering the sparse solution is highly diminished. Nevertheless, l0-

reconstruction is a computationally complex, np-complete and poorly conditioned

problem with no stability guarantees.

The popularity of compressed sensing arises from guarantees of near-exact recon-

struction of the uncompressed information by solving for the K sparsest coefficients

using l1 norm minimization methods. The l1 reconstruction is a relatively simpler con-

vex optimization problem (as compared to l0) and solvable using linear programming

techniques for basis pursuit (Chen et al., 2001; Candès et al., 2006a; Donoho, 2006)

and shrinkage methods (Tibshirani, 1996).

Theoretically, one can perform the simplistic brute force search to locate the largest

K coefficients of a that satisfy the constrained optimization problem given by

l1 norm minimization reconstruction : a = argmin ‖a′‖1 such that Θa′ = x̃;

l1 cost function to be minimized : min{α‖x̃−Θa‖2
2 + ‖a‖1}.

(2.7)

For these approaches, the computational effort increases nearly exponentially with

dimension. To overcome this burden, a host of greedy algorithms (Tropp and Gilbert,

2007; Needell and Tropp, 2009; Candès et al., 2008) have been developed to solve

the l1 problem in equation (2.7) with complexity O(N3) for Nb ≈ N . However,

this approach requires P > O(Klog(Nb/K)) measurements (Candès et al., 2006a;

Donoho, 2006; Candès et al., 2006b) to reconstruct the K-sparse vectors with high

probability. Both l2 and l1-based formulations are schematically illustrated in figure 2.1.

19



(a) (b)

Figure 2.1: Schematic illustration of l2 (left) and l1 (right) minimization reconstruction
for sparse recovery using a single-pixel measurement matrix. The numerical values in
C are represented by colors: black (1), white (0). The other colors represent numbers
that are neither 0 nor 1. In the above schematics x̃ ∈ RP , C ∈ RP×N , Φ ∈ RN×Nb

and a ∈ RNb , where Nb ≤ N . The number of colored cells in a represents the system
sparsity K.

Solving the l1 minimization problem in equation (2.7) is complicated relative to the

l2 solution described in equation (2.5). This is because, unlike equation (2.5), the cost

function in equation (2.7) is not differentiable at ai = 0 which necessitates an iterative

solution. Further, the minimization of the l1 cost function is also an unconstrained

optimization problem that is commonly converted into a constrained optimization

problem given by

l1 norm constrained minimization : min ‖x̃−Θa‖2
2 such that ‖a‖1 < t, (2.8)

where t is a user defined sparsity knob to ‘shrink’ the coefficients. The above constrained

optimization problem in equation (2.8) is quadratic in a and therefore, a quadratic

programming problem with the feasible region bounded by polyhedron (in the space of

a). There exists two classes of l1 solution methodologies: (i) least absolute selection and

shrinkage operator or LASSO (Tibshirani, 1996) and (ii) basis pursuit denoising (Chen

et al., 2001). LASSO and its variant essentially convert the constrained formulation

into a set of linear constraints. Recently popular approaches include greedy methods
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such as optimal matching pursuit(OMP) (Needell and Tropp, 2009; Brunton et al.,

2014) and interior point methods (Kim et al., 2007). An intuitive iterative sequential

least-squares thresholding framework is used by Brunton et al. (Brunton et al., 2016),

which achieves ‘shrinkage’ by repeatedly zeroing out the coefficients smaller than a

given choice of hyperparameter.

In summary, the reconstruction framework is characterized by three parameters,

Nb, K and P where Nb is the candidate basis dimension,

K is the desired reconstruction dimension and P is the sensor budget. The

interplay of Nb, K, and P determine the choice of algorithm employed, i.e., whether

the reconstruction is based on least squares minimization, l2 norm minimization or

sparsity enabling l1 approaches as summarized in Table 2.1.

These different possibilities are illustrated as follows. In practical situations such

as recovery of coherent structures from sparse field data, the approximation quality of

the basis is not known beforehand thereby requiting a library of candidate basis from

a variety of flow regimes such that Nb > K from which the K best coefficients are

estimated using sparse regression as in case 3. However, when the basis approximation

quality of the data is known a priori, then we need to retain only the K most significant

modes for reconstruction, i.e. K = Nb as in cases 1 & 2. Such situations often come up

in laboratory flows or for improving the speed of computational models, where prior

simulation or PIV data can be used to build the appropriate basis vectors. If there

exists sufficient sparse measurements (P > K) as in coarse-grained computational

models, then we realize case 1. However, in practical laboratory experiments with

limited probes (P < K) we deal with case 2.

Table 2.1: The choice of sparse reconstruction algorithm based on problem design
using parameters P (sensor sparsity), K (targeted reconstruction sparsity) and Nb

(candidate basis dimension).

Case K −Nb Relationship P −K Relationship Algorithm Reconstructed Dimension
1 K = Nb P ≥ K least squares (l2) K
2 K = Nb P < K min. norm recons. (l1) or (l2) P
3 K < Nb P > K min. norm recons. (l1) K
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All of the above sparse recovery estimations are conditional upon the measurements

(rows of C) being incoherent with respect to the sparse basis Φ. This is usually

accomplished by using random sensor placement, especially when Φ is made up of

Fourier functions or wavelets. If the basis functions Φ are orthonormal, such as

wavelet or POD basis (with inherent hierarchy), one can discard the majority of the

small coefficients in a (setting them as zeros) and still achieve reasonably accurate

reconstruction (Candès and Wakin, 2008). However, incoherency is a necessary, but

not sufficient condition for exact reconstruction which requires sensors optimally placed

to minimize reconstruction errors.

2.2.2 Data-driven Basis Computation using POD

For the SR framework, the common basis types to map to a low-dimensional space are

POD modes, Fourier functions, and wavelets (Candès et al., 2006a; Candès and Wakin,

2008). While an exhaustive study on the effect of the different choices on reconstruction

performance is useful, in this study we focus on POD-based SR. A comparison

between discrete cosine transform and POD bases was carried out in (Bai et al.,

2014). Proper orthogonal decomposition (POD), also known as Principal Components

Analysis (PCA) or Singular Value Decomposition (SVD), is a dimensionality reduction

technique that computes low-dimensional basis vectors (POD modes) and coefficients

from snapshots of experimental or numerical data (Holmes, 2012; Taira et al., 2017)

through eigendecomposition of the spatial (or temporal) correlation tensor of the data.

It was adopted in the turbulence community by Lumley (Lumley, 1970) to extract

coherent structures in turbulent flows. The resulting singular vectors or POD modes

represent an orthogonal basis that maximizes the variance capture from flow data. For

this reason, such eigenfunctions are considered energy optimal and other optimality

constraints can also be incorporated. Taking advantage of the orthogonality, one

can project these POD basis onto snapshots of data in a Galerkin sense to deduce
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coefficients that represent evolution over time in the POD feature space. The optimality

of the POD basis also allows one to effectively reconstruct the full field information

with knowledge of very few coefficients, a feature that is attractive for solving sparse

reconstruction problems such as in equation (2.4). However, this is contingent on the

spectrum of the correlation tensor of the data having sufficiently rapid decay of the

eigenvalues, i.e. it supports a low-dimensional representation. This is typically not

true in the case of turbulent flows where the decay of energy across singular values is

gradual. Further, in such dynamical systems, the small scales with low-energy can

still be dynamically important and will need to be recovered, thus requiring significant

sensor budget.

The computational cost of eigendecomposition of the spatial correlation tensor

depends on the full state dimension N which is usually large. Alternative approaches

based on the method of snapshots (Sirovich, 1987) is adopted in this work. Here

the eigen problem is reformulated using a temporal correlation tensor with reduced

dimension (assuming the number of snapshots in time is smaller than the spatial

dimension) and summarized below. Consider X ∈ RN×M (different from x ∈ RN) as

the full state with only the fluctuating part (no mean) where N and M are the state

and snapshot dimensions respectively. The procedure involves eigendecomposition of

the symmetric correlation tensor, C̄M = XTX (C̄M ∈ RM×M) as

C̄MV = V Λ , (2.9)

with V = [v1, v2, ..., vM ] being the matrix of eigenvectors and the diagonal elements

of Λ denoting the eigenvalues [λ1, λ2, ..., λM ]. Typically, both the eigenvalues and

corresponding eigenvectors are sorted in descending order such as λ1 > λ2 > ... > λM .

The POD modes Φ and coefficients a are then computed as

Φ = XV
√

Λ−1. (2.10)
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One can represent the field X as a linear combination (equation (2.3)) of the POD

modes Φ with coefficients a ∈ RM×M given by

a = ΦTX. (2.11)

It is worth mentioning that subtracting the temporal mean from the input data is

not critical to the success of this procedure as retaining it yields an extra mean mode

in the decomposition. Using the snapshot procedure for the POD/SVD computation

fixes the maximum number of POD basis vectors to at most M which is typically much

smaller than the dimension of full state vector, N . Further dimension reduction is

possible through truncation of the low energy modes such that the resulting dimension

K < M .

2.3 Algorithms for Sensor Placement

Identifying Optimal sensor placement for a given data, especially for a flow field that

evolves over time is highly challenging and is an ongoing topic of active research. The

goal of optimal point sensor placement for reconstruction is to identify and activate

only a few rows of the basis matrix Φ that effectively conditions Θ (for P = K = Nb)

or its variants, M = ΘTΘ or ΘΘT (depending on if P > K = Nb or P < K = Nb

respectively). This is schematically illustrated in figure 2.2.

Figure 2.2: Schematic illustration of sparse sensor placement. The pastel colored
rectangles represent rows activated by the sensors denoted in the measurement matrix
through dark squares.
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To design smart sensor placement, one needs an optimization criteria which in this

case is to minimize reconstruction error when using a small number of sensors which,

of course depends on the choice of basis Φ. Since reconstruction from sparse data in

general requires inversion of Θ or M, most smart sensing strategies are designed to

improve the condition number of Θ, M for inversion purposes by optimizing their

spectral content in the form of its determinant, trace, spectral radius or condition

number. A direct method of optimizing such metrics require searching over the

different possible sensor selections resulting in combinatorial complexity. Thankfully,

there exist a variety of greedy algorithms (Willcox, 2006; Chaturantabut and Sorensen,

2010; Yildirim et al., 2009) that have been shown to be successful for fluid flow data.

2.3.1 Random Sensor Placement

The most simple and efficient sensor placement approach is to sample randomly. This

is commonly accomplished using a random permutation of the possible sensor locations.

In this study, we choose the first P values from this random permutation. It may be

equally effective to adopt ideas such as K-means clustering as in (Jayaraman et al.,

2018). To better assess the effectiveness of such random sensor placement methods,

we generate multiple realizations to minimize bias. The outcomes are then quantified

in terms of the mean as well as outliers. This particular approach is designed to serve

as an inexpensive benchmark to compare against more expensive greedy sampling

methods.

2.3.2 Minimization of Matrix Condition Number (MCN)

As shown in Section 2.2.1.1, the success of the reconstruction effort for K = Nb is

tied to the accuracy of the inverse computation of M = ΘTΘ or ΘΘT . Therefore, if

M = ΘTΘ or ΘΘT has full column or row rank respectively along with a reasonable

condition number, then the inverse can be estimated accurately. This approach focuses
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on sensor placement (through the construction of C) that minimizes the condition

number of M or κ(M). The condition number is directly related to the orthogonality

of Θ and the presence of significant diagonal entries in M . Therefore, this algorithm

can be viewed as placing sensors at locations that preserve the orthogonality of

downsampled POD modes. Mathematically, the condition number represents the ratio

of maximum to minimum singular values of Θ or M. Therefore, for large κ(M), the

errors tend to be amplified with respect to the signal. As shown by Willcox (Willcox,

2006), and Yildrim et al. (Yildirim et al., 2009) such a method compares favorably

to more physics-based approaches (Cohen et al., 2003; Hanagud et al., 2002) such as

placing sensors at the extrema of dominant POD modes. The key steps of this MCN

algorithm are:

(i) Starting with the first sensor, consider each possible choice of sensor location

to evaluate M and identify the location with least κ(M) as the chosen sensor

placement.

(ii) With the previous sensor location(s) set, loop over all possible remaining locations

to identify the rest of the budgeted sensors as above.

A slightly more efficient version of this algorithm is presented by Willcox (Willcox,

2006) where the first sensor location is chosen as the one that maximizes the sum of

the difference between the diagonal and off-diagonal entries of M. The rest of the

algorithm is similar as above.

2.3.3 QR Factorization with Column Pivoting

The reduced matrix QR factorization (Trefethen and Bau III, 1997) decomposes any

given real matrix A ∈ RS×T with full column rank into a unitary matrix Q ∈ RS×T

and an upper triangular matrix R ∈ RT×T . Therefore, it follows that | det (A)| =

| det (Q) · det (R) | = | det (R) | =
∣∣∣∣∣∏
i

rii

∣∣∣∣∣ =

∣∣∣∣∣∏
i

λi

∣∣∣∣∣ where rii are the diagonal entries
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of R and λi, the eigenvalues. It is easy to show that minimizing the condition number

of A is related to optimizing the spectral characteristics of the matrix such as the

determinant or spectral radius, i.e., maximize

∣∣∣∣∣∏
i

rii

∣∣∣∣∣. In general, theR from a reduced

matrix QR factorization has diagonal values, rii in no particular sequence. However,

when combined with column pivoting, we have AD = QR, where D ∈ RT×T is a

square column permutation matrix containing ones and zeros. The resulting QR

decomposition outcome can be controlled through the pivoting procedure such that

the diagonal values of R, rii form a decreasing sequence. Therefore, pivoting provides

a smart approach for ‘submatrix volume maximization’ and in turn maximize the

absolute value of the determinant (Manohar et al., 2018) by reordering the columns

of A. This approach can easily be extended to sensor placement by leveraging the

connections between the permutation matrix D and the point sensor measurement

matrix C in figure 2.2 and equation (2.4).

For the case with P = K, the reconstruction problem in equation (2.4) requires

inversion of the square matrix Θ = CΦk. For improved reconstruction, the determi-

nant of Θ needs to be maximized through sensor placement which in turn is expected

to reduce (and maybe minimize) the condition number. One can see that for a square

matrix the following relationship

det (Θ) = det
(
ΘT
)

= det
(
ΦT
kC

T
)
. (2.12)

is true. Therefore, reduced matrix QR factorization of ΦT ∈ RK×N with column

pivoting will yield

ΦT
kD = QR (2.13)

where D ∈ RN×N is a square permutation matrix. The right hand side of equa-

tion (2.12) will be maximized for a given sensor quantity P if C is chosen as the first
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P rows of DT . Note that the index locations of ones in each row of C are denoted

by [%1, %2, %3, . . . , %P ]. with P > K, Θ is a tall and slender matrix with a left (Moore-

Penrose) pseudoinverse requiring computation of M−1 (where M = ΘTΘ ∈ RK×K).

Therefore, the sensor placement that increases the probability of accurate recon-

struction should maximize det
(
ΘTΘ

)
so that condition number of M is bounded.

Specifically, we have the following relationships:

det (M ) = det
(
ΘTΘ

)
=
∏
i

σi
(
ΘTΘ

)
=

K∏
i=1

σi
(
ΘΘT

)
=

K∏
i=1

σi
(
CΦKΦT

KC
T
)
.

(2.14)

Leveraging the above relationships, we see that maximizing the determinant of M =

ΘTΘ can be realized by maximizing det
(
ΦKΦT

KC
T
)

through a reduced matrix QR

factorization,

(ΦkΦk
T )D = QR, (2.15)

and choosing C as the first P rows of DT ∈ RN×N . The index locations of ones

in each row of C are denoted by [%1, %2, %3, . . . , %P ]. The algorithm of greedy sensor

selection for oversampled case using a given tailored basis ΦK and number of sensors

P is summarized in Algorithm 5 below:

Algorithm 1: Greedy Sensor Selection using QR Factorization with Column
Pivoting

input : Data-driven basis, ΦK

Number of sensors, P
output : Measurement Matrix C

1 if (P = K) then
2 [%1, %2, . . . , %P ]← Reduced Matrix QR Column Pivoting of Φk

T ;
3 else if (P > K) then
4 [%1, %2, . . . , %P ]← Reduced Matrix QR Column Pivoting of ΦkΦk

T ;
5 C ← [e%1 , e%2 , ..., e%p ]T where e%i = [0, ..., 0, 1︸︷︷︸

%i

, 0, ..., 0]T
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2.3.4 Discrete Empirical Interpolation Method (DEIM)

All the above smart sensor placement methods focus on minimizing the condition

number directly or indirectly through the determinant of the matrix whose inverse is

sought. The discrete empirical interpolation method or DEIM, a discrete variant of the

Empirical Interpolation Method (EIM) originally presented by Barrault et al. (Barrault

et al., 2004) and subsequently extended to nonlinear model order reduction applications

by Chaturantabut and Sorensen (Chaturantabut and Sorensen, 2012, 2010) recursively

learns the interpolation points (with indices %j) at locations carrying maximum linear

dependence error using previously estimated interpolation points. In this way, the

DEIM sensors can be interpreted as minimizing linear dependence of the downsampled

basis vectors.

The primary idea behind DEIM is to estimate a high-dimensional state using

information at sparsely sampled interpolation points. Such techniques (other examples

being Gappy POD (Everson and Sirovich, 1995) and missing point estimation or

MPE (Zimmermann and Willcox, 2016)) are popular as hyper-reduction tools that

bypass expensive nonlinear term computations in model order reduction. Naturally,

one can adopt these interpolation points for sensor placement in sparse reconstruction

applications. To illustrate this, the POD-based DEIM approximation of order M

(number of interpolation points) for u(t) in the space spanned by the basis Φ ∈ RN×M

is given by

u(t) = Φa(t) (2.16)

where a(t) ∈ RM is coefficient vector. When using POD bases, Φ, one can simply esti-

mate a(t) = ΦTu(t), but this requires dealing with the higher dimensional state vectors

∈ RN that are computationally comparable to high-fidelity models even when using

projection-based approaches for model reduction. Hyper-reduction strategies (Dimitriu

et al., 2017) bypass this issue by estimating the approximate coefficients a(t) using
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carefully chosen set of M interpolation points instead of the full (N -dimensional) state

so that computational cost scales with M . Specifically, one chooses M interpolation

points corresponding to indices [%1....., %M ] , %i ∈ N to form a M -by-M linear system

DTΦa(t) = DTu(t), where the interpolation or measurement matrix is given by

D = [e%1 , ...., e%M ] ∈ RN×M with columns e%i = [0, ..., 0, 1︸︷︷︸
%i

, 0, ..., 0]T ∈ RN . The

DEIM approximation of u(t) then becomes

uDEIM(t) = Φ(DTΦ)−1︸ ︷︷ ︸
N ×M

DTu(t)︸ ︷︷ ︸
M × 1

, (2.17)

where Φ(DTΦ)−1 is typically precomputed once to yield a N×M matrix while DTu(t)

represents M -dimensional representation of the state at the interpolation points. This

way, one avoids repeated computation of the high-dimensional u(t). One can easily see

the connections between DEIM approximation and the sparse recovered state xSR = Φa

with a obtained using equations (2.5)-(2.8) using C = DT . Therefore, estimating the

interpolation points (DT ) is similar to estimating the sparse measurement locations

in C. The indices %1....., %M are estimated sequentially from the input basis {Φj}Mj=1

using Algorithm 2 from (Chaturantabut and Sorensen, 2010). The process starts from

Algorithm 2: Discrete Empirical Interpolation Method
(DEIM)

input : {Φj}Mj=1 ⊂ RN linearly independent
output : ~% = [%1....., %M ]T ∈ RM

1 [|ρ|, %1] = max{|Φ1|}
2 Φ = [Φ1],D = [e%1 ], ~% = [%1]
3 for j = 2, . . . ,M do
4 Solve (DTΦ)a = DTΦj for a
5 r = Φj −Φa
6 [|ρ|, %j] = max {|r|}
7 Φ← [Φ Φj],D ← [D e%j ], ~%←

[
~%
%j

]
8 end

selecting the first interpolation index %1 ∈ {1, 2, ..., N} using the first input POD basis

30



|Φ1|. The remaining interpolation indices {%j, j = 2, 3, ...,M} are selected such that

they correspond to the largest magnitude of |r| where r = Φj −Φa (see line 5 of the

Algorithm 2) is the residual error between current input basis and its interpolation

Φa obtained using {Φ1,Φ2,Φ3 . . .Φj−1} at the indices {%1, %2, %3 . . . %j−1}. In lines 1

and 6, the ‘max’ function is the same as that available in MATLAB and |ρ| = |r%j |.

The residual represents a measure of the linear independence of Φj with respect to the

earlier basis vectors in the sequence and the interpolation point is at the maximum

absolute value of this measure. Naturally, the realized %j depends on the choice of

basis Φj and their sequence whereas the ordering of the input basis is not critical for

QR-pivoting. The linear independence of the input basis ensures the above procedure

is well-defined, i.e. DTΦ is non singular and ρ 6= 0 for all iterations. By using POD

basis as the input, the linear independence and hierarchy (i.e. basis ordered in terms

of decreasing singular values) characteristics are guaranteed which in turn ensures

that the sparse interpolation indices are hierarchical and non repeating.

2.3.5 Coarse Grained (CG) Sensor Placement

To assess the reconstruction performance for the channel flow data with quadrilateral

grid arrangement by placing evenly distributed sensors over the domain, we introduced

coarse grained (CG) sensor placement technique. Locations are estimated by skipping

(s) successive grid points in both vertical and horizontal direction while maintaining

the length factor (f). If the number of grids in horizontal direction is Gx and in

vertical direction Gy, then f = int(Gx

Gy
). With these information we can compute the

sensor locations by following Algorithm 3.

2.4 Sparse Recovery (SR) Framework

The reconstruction algorithm used in this work based on the Gappy POD or GPOD

framework Everson and Sirovich (1995) and is an l2 minimization solution of the sparse
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Algorithm 3: How to write algorithms

input : s, Gx, Gy

output : τ = [τ1, τ2, ...] ∈ RP where τ is the index for
the sensor locations with the rectangular grid
distribution flattened.

1 f = int(Gx

Gy
)

2 sy = s
3 sx = s ∗ f
4 τ = 1 : s : Gx

5 τold = τ
6 R = int((Gy − 1)/(sy + 1) + 1)
7 for i = 1 to R do
8 τ = [τ ; τold + Gx ∗ (sy + 1) ∗ i)]
9 end

recovery problem summarized in equations (2.4)-(2.6) with Φ composed of K ≤ M

basis vectors, i.e. dimension of a is K ≤M . At this point, we remind the reader of

naming conventions adopted in this paper: the instantaneous jth full flow state is

denoted by xj ∈ RN , whereas the entire set consisting of M snapshots is assembled

into a matrix form denoted by X ∈ RN×M . This discussion focuses on single snapshot

reconstruction as the extension to multiple snapshots is trivial, i.e. each snapshot can

be reconstructed sequentially or in some cases be grouped together as a batch. This

allows for such algorithms to be parallelized easily.

The primary difference between the SR framework in equation (2.4) as used in

compressive sensing or DEIM-based approaches and GPOD Everson and Sirovich

(1995); Bui-Thanh et al. (2003, 2004); Willcox (2006) as shown in equation (2.19) is

the construction of the measurement matrix C and the sparse measurement vector x̃j .

In equation (2.4), the down sampled state x̃j ∈ RP is a compressed version containing

only the measured data, whereas in GPOD, x̃j ∈ RN is a masked version of the full

state vector, i.e. values outside of the P measured locations are zeroed out to generate

a filtered version of xj. For high resolution data xj ∈ RN with chosen basis Φj ∈ RN ,
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the low-dimensional features, aj ∈ RK are obtained from the relationship shown below:

xj =
K∑
i=1

Φia
j
i . (2.18)

The masked (incomplete) data x̃j ∈ RN , corresponding measurement matrix C and

mask vector m ∈ RN are related by:

x̃j =< m · xj >= Cxj, (2.19)

where C ∈ RN×N . Therefore, the GPOD algorithm results in a larger measurement

matrix with numerous rows of zeros as shown in figure 2.3 (compare with fig. 2.1).

To bypass the complexity of handling this N ×N matrix, a mask vector, m ∈ ZN×1

(representing the diagonal elements of C) with 1s and 0s operates on xj through a

point-wise multiplication operator < · >. To illustrate, the point-wise multiplication

is represented as x̃j =< mj · xj > for each snapshot j = 1, . . . ,M where each element

of xj multiplies with the corresponding element of mj. This is applicable even when

each data snapshot, xj has its own measurement mask mj which is a useful way to

represent the evolution of sparse sensor locations over time. The SR formulation in

equation (2.4) can also support time varying sensor placement, but would require a

compression matrix, Cj ∈ RP×N that changes with each snapshot. The goal of the

Figure 2.3: Schematic of GPOD formulation for sparse recovery. The numerical values
represented by the colored blocks: black (1), white (0), color(other numbers).
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SR procedure is to recover the full data from the masked data,

x̃j ≈ mj

K∑
i=1

ājiΦi, (2.20)

by approximating the coefficients āj (in the l2 sense) with basis, ΦK , learned offline

using training data (snapshots of the full field data).The coefficient vector āj cannot

be computed by direct projection of x̃j onto Φ as these are not designed to optimally

represent the sparse data. Instead, one needs to obtain the “best” approximation of

āj, by minimizing the error Ej in the l2 sense as

Ej =

∣∣∣∣∣
∣∣∣∣∣x̃j −mj

K∑
i=1

ājiΦi

∣∣∣∣∣
∣∣∣∣∣
2

2

=
∣∣∣∣x̃j −mj · Φāj

∣∣∣∣2
2

=
∣∣∣∣x̃j −CΦāj

∣∣∣∣2
2
. (2.21)

In equation (2.21) we see that mj acts on each column of Φ through a point-wise

multiplication operation which is equivalent to masking each basis vector Φj. The

above formulation is valid for a single snapshot reconstruction when the mask vector,

mj changes with each snapshot x̃j for j = 1, . . . ,M and the error Ej represents the

single snapshot reconstruction error to be minimized. It can easily be seen from

below that one will have to minimize the different Ej ’s sequentially to learn the entire

coefficient matrix, ā ∈ RK×M for all the M snapshots. Denoting the masked basis

functions as Φ̃i =< mj · Φi >, equation (2.21) is rewritten as

Ej =

∣∣∣∣∣
∣∣∣∣∣x̃j −

K∑
i=1

āji Φ̃i

∣∣∣∣∣
∣∣∣∣∣
2

2

. (2.22)

In the above, Φ̃ is analogous to Θ = CΦ in equation (2.4). If Φ̃ is snapshot

independent, then all the different snapshots can be recovered simultaneously. To

minimize Ej, one sets the derivative with respect to āj as zero to yield a normal

equation,

Māj = f j, (2.23)
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where Mk1,k2 = 〈Φ̃k1, Φ̃k2〉 or M = Φ̃T Φ̃ and f ji = 〈x̃j, Φ̃i〉 or f j = Φ̃T x̃j. The

reconstructed solution is then given by

x̄j =
K∑
k=1

Φkā
j
k. (2.24)

Algorithm 4 summarizes the above steps assuming the basis functions (Φk) are known.

Algorithm 4: Least Squares (l2) Sparse Reconstruction with Basis Φ.

input : Basis Φ ∈ RN×Nb

Incomplete data vector X̃ ∈ RN×M

the mask vector m ∈ RN

output : Approximated full data vector X̄ ∈ RN×M

1 for each snapshot index j ≤M do
2 Build a least squares problem: Māj = f j (equation (2.23)) as below

Compute masked basis function: Φ̃ = mΦ Compute matrix
M = Φ̃T Φ̃ Compute vector: f j = Φ̃T x̃j Solve āj from the least
squares problem: Māj = f j (equation (2.23)) Reconstruct the
approximated solution x̄j = Φāj (equation (2.24))

3 end

2.5 Results and Discussion

In this section, we explore sparse reconstruction of simple and complex flow fields in

the form of low Reynolds number cylinder wake (Re = 100), synoptic scale turbulent

temperature fields from global weather models, and the most challenging near wall

turbulent channel flow using the above SR infrastructure. Adopting these laminar

wake, geophysical turbulent flows, and the channel turbulent flow allows us to evaluate

the performance of the algorithms for both interpretable low-dimensional as well

as complex high-dimensional systems observed in practice. In this study, we adopt

the GPOD formulation as against the traditional SR formulation. This choice is

purely a matter of convenience and helps bypass the need for maintaining a separate

measurement matrix. In all the cases reported in this section, Tikhonov regularization
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is employed to generate unique solutions.

2.5.1 Sparse Reconstruction (SR) Experiments and Analysis

For this a priori assessment of SR performance we reconstruct sparse data from

simulations where the full field representation is available. The sparse sensor locations

are chosen as single point measurements using the different sensor placement meth-

ods as discussed in previous section and these locations are fixed for the ensemble

of snapshots used for the reconstruction (i.e. we do not consider dynamic sensor

placement). Reconstruction performance is evaluated by comparison of the SR data

with the simulated field at truth across the entire ensemble of numerical experiments.

Of course, using such a data-driven basis requires availability of training data so that

one can compute the basis vectors a priori. In practice, one would have to build a

library of basis vectors from data that can in turn be used for sparse recovery. In this

study, we undertake this a priori approach in order to narrowly focus on the relative

roles of reconstruction dimension (K), sensor budget (P ) and placement (C) for the

POD-based SR. In particular, we aim to accomplish the following through this study:

(i) quantify the extent of oversampling relative to desired system dimension (P > K)

needed for sufficiently accurate POD-based l2 reconstruction of fluid flow data and

(ii) understand how sensor placement impacts reconstruction quality.

To learn the data-driven POD basis we employ the method of snapshots (Sirovich,

1987)over the full data ensemble which gives rise to at most M basis, i.e. a candidate

basis dimension of Nb = M . As shown in Table 2.1, the choice of algorithms depend

on the choice of reconstruction dimension (K), sensor budget (P ) and candidate basis

dimension, Nb. Recalling from before (Section 2.2), we see that P ≥ K is handled

using an l2 method as long as P ≥ Nb. In case of POD-based SR, the basis vectors

optimize the variance capture for the training data and contain built-in ordering for

representation of the system state.
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Therefore, the POD basis need to be generated once and the reconstruction

dimension is chosen as the first K modes to be retained in the given sequence.

For generic basis with no known ordering, one needs to search for the K most

significant basis amongst the maximum possible dimension of Nb = M using sparsity

promoting l1 methods requiring increased computational cost.

2.5.2 Sparsity and Energy Metrics

We aim to explore the conditions for accurate recovery of information in terms of data

availability (P ) and system dimensionality (K), i.e. dimension of the system for a

chosen representational accuracy using a given basis. As long as the measurements

are incoherent with respect to Φ and the system is overdetermined, i.e., P > K, one

should be able to recover the higher dimensional state, X in a manner consistent

with earlier discussions on l0 minimization in Section 2.2. To this end, we summarize

different sparsity and energy metrics so that the sensor requirement and reconstruction

error expectation for a chosen dimension can be characterized. For POD one easily

defines a cumulative energy fraction captured by the K most energetic modes, EK ,

using the singular values (λ) of the data matrix as

EK =
K∑
k=1

λk
(λ1 + λ2 + ...+ λM)

× 100, (2.25)

where M is the total number of possible eigenvalues. We denote the dimension

corresponding to 95% and 99% energy capture as K95 and K99 respectively.

respectively. To quantify SR performance across flow regimes with different

dimensions (K,K95) we define a normalized dimension metric, K∗ = K/K95 and a

normalized sensor budget, P ∗ = P/K95. This allows us to design an ensemble of

numerical experiments in the discretized P ∗ −K∗ space so that the outcomes can be

characterized effectively. In this work, the design space is populated over the range

1 < K∗ < 6 and 1 < P ∗ < 12 for POD-based SR with K ≤M . The lower bound of
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one is chosen such that the minimally accurate reconstruction captures 95% of the

energy. One can chose another dimension norm without loss of generality.

To quantify the l2 reconstruction performance, we define the mean squared error

as shown in equation (2.26) below,

εSRK∗,P ∗ =
1

M

1

N

M∑
j=1

N∑
i=1

(Xi,j − X̄SR
i,j )2, (2.26)

where X is the true data, and X̄SR is the reconstructed field from sparse measurements

as per Algorithm 4. In the above N and M represent the state and snapshot dimensions

corresponding to indices i and j. Similarly, the mean squared errors εFRK∗95 and εFRK∗ for

reconstruction using full data with POD basis are computed as

εFRK∗95 =
1

M

1

N

M∑
j=1

N∑
i=1

(Xi,j − X̄FR,K∗95
i,j )2 and (2.27)

εFRK∗ =
1

M

1

N

M∑
j=1

N∑
i=1

(Xi,j − X̄FR,K∗

i,j )2, (2.28)

where X̄FR = Φa is the full data reconstruction using exact POD coefficients, a =

ΦTX. The normalized dimension for 95% energy capture, K∗95 is trivially seen to be

unity.

Using the above definitions, we can now normalize the absolute (ε1) and relative

(ε2) errors as

ε1 =
εSRK∗,P ∗

εFRK∗95
, ε2 =

εSRK∗,P ∗

εFRK∗
, (2.29)

where ε1 represents the SR error normalized by the corresponding full data recon-

struction error for 95% energy capture and ε2 is the normalized error relative to the

full data reconstruction error up to a desired system dimension, K. These two error

metrics are devised so as to quantify the overall quality of the SR in a normalized

sense (ε1) and the best possible reconstruction accuracy for a chosen problem set-up,
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i.e., P and K. Therefore, if the best possible reconstruction for a given K is realized

then ε2 should achieve the same value across different K∗. This error metric is used to

assess relative dependence of P ∗ on K∗ for a chosen flow and the dependence on flow

physics is expected to be minimal given that we are dealing with normalized metrics.

On the other hand, ε1 provides an absolute estimate of the reconstruction accuracy

for a given flow system so that minimal values of P ∗, K∗ needed to achieve a desired

recovery quality can be estimated. Using these metrics, we will now assess the linear

sparse estimation of fine-scale fields for both low-dimensional cylinder wake as well as

geophysical turbulence.

2.5.3 Sparse Reconstruction of Low-dimensional Wake Flow

To bare the aspects of interplay between the SR design variables, we performed

numerous experiments corresponding to different points in the P ∗ −K∗ design space

and for different sensor placements (fixed in time).

2.5.3.1 Sparse Reconstruction Accuracy

We compute the errors ε1 and ε2 as described in Section 2.5.2 across the K∗ − P ∗

space, the contours of which are shown in figures 2.4 and 2.5 for both random and

greedy sensor placements. As the random sensor placement results in high variability

between realizations, we estimate multiple sets of sensor locations corresponding to

different seeds (as denoted by β in this article). Specifically, we compute the SR errors

from ten different random arrangements and the corresponding reconstruction errors

are presented in terms of the mean, maximum and minimum (based on the average

over the K∗−P ∗ space). For the greedy ‘smart’ sensor placements a single realization

is representative of the method (figure 2.5). For ease of interpretation, the contour

levels in both these figures are made consistent.

The relative error metric ε2 (the right column in figures 2.4 and 2.5), shows that the
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(a) ε1 (Maximum error) (b) ε2 (Maximum error)

(c) ε1 (Minimum error) (d) ε2 (Minimum error)

(e) ε1 (Average error) (f) ε2 (Average error)

Figure 2.4: Isocontours of the normalized mean squared POD-based sparse recon-
struction errors (l2 norm) corresponding to the sensor placement with maximum
and minimum errors from the chosen ensemble of random sensor arrangements. The
average error across the entire ensemble of ten random sensor placements is also shown.
Left: normalized absolute error metric, ε1. Right: normalized relative error metric, ε2.
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(a) ε1 (QR with column pivoting) (b) ε2 (QR with column pivoting)

(c) ε1 (DEIM) (d) ε2 (DEIM)

(e) ε1 (MCN) (f) ε2 (MCN)

Figure 2.5: Isocontours of the normalized mean squared POD-based sparse reconstruc-
tion errors (l2 norm) corresponding to the different greedy sensor placement methods.
Left: normalized absolute error metric, ε1. Right: normalized relative error metric, ε2.
(MCN: Minimum Condition Number)
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smaller errors (predominantly blue regions) are located in the region where P ∗ > K∗

and approximately separated from the rest of the K∗ − P ∗ space with a straight

line given by P = K + 1. This indicates that the oversampled SR problem with

P > K yields good results in terms of ε2 while for small P ∗ (i.e. under-sampled), the

normalized relative error can reach as high as O(101 − 102). Since ε2 is normalized

by the error contained in the exact K-dimensional POD reconstruction, this metric

represents how effectively the sparse data can approximate the K-dimensional solution

using l2 minimization for the given sensor quantity and placement. In principle, the

exact K-sparse POD reconstruction is the best possible outcome to expect irrespective

of how much sensor data is available. We also observe that ε1 contours adhere to a

L-shaped structure indicating that absolute normalized error reduces as both P and

K increase due to oversampling and increased system representation. In practice, ε1

is the more useful metric for planning and designing the sparse recovery framework

for a given flow system.

While qualitatively accurate reconstruction is almost always observed for the higher

values of P ∗ and K∗ for the different sensor placements, there appear to be exceptions

in the form of higher reconstruction errors even with oversampling. This is observed

for both the random as well as smart sensing approaches. In fact for random sensor

placement, marginal oversampling results in ε2 ivalues of O(101) (colored as yellow

in figure 2.4) as against the expected range of O(1) range. This trend is observed

for the greedy sensor placement methods as well, particularly QR-pivoting and MCN.

Overall, the greedy methods show better reconstruction performance for the marginally

oversampled cases, i.e. P ∗ ≈ K∗ as compared to random sensing. These trends are

not surprising given that oversampled (P ∗ � K∗) and under-sampled (P ∗ � K∗)

reconstruction invariably generate low and high errors while the transition regime

is sensitive to sensor placement. Therefore, in the following sections, we dissect the

sparse recovery performance using specific examples of over- and marginal sampling.
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2.5.3.2 Assessment of Sensor Placement

Among the different greedy sensor placement methods experimented in this work,

DEIM provides the most reliable reconstruction (figure 2.5 (c,d)) while closely followed

by QR-pivoting (figure 2.5 (a,b)). MCN which explicitly minimizes the condition

number of M shows good reconstruction accuracy for smaller values of K∗ ∼ 4−5 (see

figure 2.5 (e,f)) that is more than sufficient for many practical estimation problems.

The anomaly observed for reconstruction dimensions beyond K∗ ≈ 5 is due to very

few sensors being generated in the wake downstream of the cylinder.

Table 2.2: Sparse reconstruction performance quantification for different sensor
location selection method for periodic cylinder flows at Re = 100. ε1 is the SR error
normalized by the exact reconstruction error corresponding to a dimension of K95.
ε2 is the SR error normalized by the exact reconstruction error corresponding to a
dimension of K.

Method K P K∗ P ∗ µu µv ε1 ε2

Random(β = 101)
2 20 1.0 10.0 2.548 2.306 1.08E+00 1.08E+00
4 20 2.0 10.0 2.548 3.247 6.71E-01 1.23E+00
6 20 3.0 10.0 2.548 4.186 3.17E-01 1.96E+00

QR-Pivoting
2 20 1.0 10.0 2.520 3.794 1.04E+00 1.04E+00
4 20 2.0 10.0 3.917 3.794 6.05E-01 1.11E+00
6 20 3.0 10.0 3.917 4.506 1.88E-01 1.16E+00

DEIM
2 20 1.0 10.0 2.323 3.720 1.00E+00 1.00E+00
4 20 2.0 10.0 3.685 3.867 5.56E-01 1.02E+00
6 20 3.0 10.0 3.685 4.562 1.69E-01 1.05E+00

MCN
2 20 1.0 10.0 1.090 2.213 1.15E+00 1.15E+00
4 20 2.0 10.0 1.476 3.502 8.70E-01 1.59E+00
6 20 3.0 10.0 1.476 3.725 2.76E-01 1.71E+00

Although the error metrics serve as a useful indicator of performance, we also

compare the instantaneous sparse recovered flow field and the estimated POD weights

in figure 2.6. In particular, we show results for oversampled conditions with P ∗ = 10

and K∗ = 1, 2, 3 for which the error metrics in figures 2.4-2.5 are small. As expected,

the accuracy of the linear estimation improves with K∗. Further, amongst the

different oversampled experiments, DEIM and QR-pivoting provide the most accurate

estimation of the POD coefficients (a), especially at higher K∗. The relative inaccuracy
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Figure 2.6: 1st row (Random β = 101), 3rd row (QR-Pivot), 5th row (DEIM) and
7th (MCN) row: we show the line contour comparison of streamwise velocity between
the actual CFD solution field (blue) and the POD-based SR reconstruction (red)
for Re = 100 at P ∗ = 10 and K∗ = 1, 2, 3. 2nd row (Random β = 101), 4th

row (QR with column pivoting), 6th row (DEIM) and 8th row (MCN) show the
corresponding projected (full reconstruction) and sparse recovered coefficients a from
the SR algorithm.
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of the MCN framework is observable even for these carefully chosen design points

with low error metrics. For such low-dimensional flows, small errors in a amplify

the discrepancy in full field reconstruction. The relevant quantifications including

sensor budget, placement method, reconstruction dimension and error metrics for

these select dissection cases are summarized in Table 2.2. In addition, we also estimate

the coherency parameter for each of these cases which are O(1) indicating that the

rows of the measurement matrix are sufficiently incoherent with respect to the POD

basis. Careful examination shows that coherency parameters for the QR-pivoting and

DEIM are higher than that for random placement as such smart approaches leverage

the underlying physical structure contained in the POD modes.

2.5.3.3 Sparse Reconstruction with Marginally Oversampled Sensors

We observe that sensor placement is especially critical for marginal oversampling i.e.

P ∗ ' K∗. To illustrate this, we dissect the instantaneous snapshot reconstruction

at K∗ = 5 and P ∗ = 6 in figure 2.7. The left column here shows sensor locations,

the middle shows reconstructed fields and the right, POD coefficient estimates. As

expected, the SR estimated coefficients (figures 2.7(c,f,i,l)) show that data- and physics-

aware sensor placements perform better at reconstruction as compared to random

sampling. While not all random sensor placement result in bad reconstruction, we see

strong variability in the error metrics across realizations (figure 2.4).

2.5.3.4 Sparse Reconstruction with Highly Oversampled Sensors

As seen from figure 2.6, oversampling results in reasonable accuracy for all the different

sensor placement methods including random sensing which has a high probability

of populating the physically significant regions of the flow. However, the exception

to this is the MCN approach in the limit of large P relative to K. To highlight the

severity of this issue, we consider a single design point, K∗ = 6, P ∗ = 10 (figure 2.8)
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Figure 2.7: Dissection of instantaneous snapshot reconstruction for a marginally
oversampled case (K∗ = 5, P ∗ = 6) . The figure shows the different sensor locations
(left column), overlaid true and reconstructed solutions (middle column), and the
reconstructed coefficients a (right column) using POD-based SR for Re = 100. The
different rows correspond to the different sensor placement: random sensor placement
with seed β = 150 (1st row), QR factorization with column pivoting (2nd row),
DEIM (3rd row) and Minimum condition number (MCN) sensor placement (4th row).
The corresponding error quantifications are as follows. 1st row: ε1=2.46E-01 and
ε2=8.18E+00. 2nd row: ε1=5.20E-02 and ε2=2.37E+00. 3rd row: ε1=4.44E-02 and
ε2=1.47E+00. 4th row: ε1=8.04E-02 and ε2=2.67E+00.
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Figure 2.8: Dissection of instantaneous snapshot reconstruction for a highly over-
sampled case (K∗ = 6, P ∗ = 10) .The figure shows the different sensor locations
(left column), overlaid true and reconstructed solutions (middle column), and the
reconstructed coefficients a (right column) using POD-based SR for Re = 100. The
different rows correspond to the different sensor placement: random sensor place-
ment with seed β = 150 (1st row), QR factorization with column pivoting (2nd row),
DEIM (3rd row) and minimum condition number (MCN) sensor placement (4th row).
The corresponding error quantifications are as follows. 1st row: ε1=5.73E-02 and
ε2=3.43E+00. 2nd row: ε1=3.01E-02 and ε2=1.80E+00. 3rd row: ε1=1.98E-02 and
ε2=1.19E+00. 4th row: ε1=9.77E-01 and ε2=58.60E+00.
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where P ∗/K∗ is smaller than in figure 2.6 and for which the sparse recovery should be

highly accurate purely from theoretical considerations. Figure 2.8 shows the sensor

locations for each of the different algorithms in the left column, reconstructed fields

in the middle and the predicted POD coefficients in the right. We see that the

placements using random, DEIM and QR-pivoting produce identically accurate results

while MCN sensors generate highly erroneous outcomes due to having only a few

(six) sensors in the cylinder wake as compared to a reconstruction dimension (K) of

twelve. While very few sensors are sufficient to generate a good reconstruction for

this low-dimensional flow, this study highlights the need for designing the SR problem

with awareness of the effective sensor locations and not just their quantity.

The low-dimensional dynamics of the cylinder wake is well understood and conse-

quently an ideal test case for validation and performance characterization. Loiseau et

al. (Loiseau et al., 2018) observe that the temporal dynamics of the cylinder wake is

accurately characterized by amplitude and phase of the POD coefficient time history

which in turn is accurately estimated by a feature set of lift and its time-derivative.

Using such domain knowledge, it is straight forward to design appropriate sensor

placement. However, to truly demonstrate the effectiveness of the methods described

in this work, we consider a more complex system in the form of synoptic scale ocean

turbulent flows.

2.5.4 Sparse Reconstruction of Sea Surface Temperature Data

As before, we perform an ensemble of nearly hundred SR experiments pertaining to

different design choices as was done for the cylinder wake. The resulting error estimates

ε1 and ε2 (as described in Section 2.5.2) across the K∗ − P ∗ space are generated for

both random as well as greedy sensor placements and shown in figure 2.9. For this

study, we did not include the explicit condition number minimization (MCN) approach

due to its computational complexity for high-dimensional systems. Additionally, for
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the random sensor placement, we only consider a single realization in this analysis.

Overall, the topology of error metrics across the P ∗ − K∗ design space for the

SST data (figure 2.9) is similar to that observed for the low-dimensional cylinder

wake (figure 2.5). In particular, the smaller relative errors (ε2) are located in the

oversampled region with P ∗ > K∗. To remind the reader, ε2 is normalized by the

error contained in the exact K-dimensional POD reconstruction and represents how

effectively the sparse data can approximate the K-dimensional representation of the

flow field for the given budget and placement. As expected ε1 contours adhere to a

L-shaped structure indicating that absolute normalized error reduces as both P and

K increase due to oversampling and increased system representation.

To assess the extent of similarity in the relative errors (ε2) across the different

systems, we compare the variation of ε2 with P ∗ for different reconstruction dimensions

K∗ in figure 2.10. The image to the left corresponds to DEIM sensor placement while

the image to the right represents data using QR-pivoting. From these, we note the

qualitative and quantitative similarity between the low-dimensional cylinder wake flow

(dashed lines) and the more complex SST data errors (solid lines) across the different

values of K∗. In all these different curves, the ideal reconstruction error corresponds

to ε2 = 100 which is achieved only in the asymptotic limit of P ∗. However, all the

different curves across the different flow systems as well as varying values of K∗ begin

to asymptote at around P ∗ ∼ 8− 10 for both the sensor placement methods. However,

at smaller values of P ∗ in the marginally oversampled regime (P ∗ ≈ K∗), there exists

a strong flow dependence in the error decay.

Amongst the different sensor placement methods, the best performance is realized

for the DEIM which shows a smooth variation as one moves from under-sampled to

oversampled regions (figures 2.9 and 2.10). On the other hand, both the random

and QR-pivot sensors display peaks corresponding to strong inaccuracy (O(101)) in

regions of marginal oversampling (P ∗ ≈ K∗). This is clearly illustrated in figure 2.11
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(a) ε1 (Random β = 101) (b) ε2 (Random β = 101)

(c) ε1 (QR) (d) ε2 (QR)

(e) ε1 (DEIM) (f) ε2 (DEIM)

Figure 2.9: Isocontours of the normalized mean squared POD-based sparse reconstruc-
tion errors (l2 norm) of sea surface temperature data corresponding to the Random,
QR and DEIM sensor placement methods. Left: normalized absolute error metric, ε1.
Right: normalized relative error metric, ε2.
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Figure 2.10: Comparison of relative error (ε2) decrease with increasing sensor budget
for both wake and SST data. The figure shows three curves for different values of
K∗ = 1, 2, 3 for both DEIM (a) and QR-pivoting (b) based sensor placement.

which shows the reconstructed field (left) and the estimated coefficients (right) for

the different sensor arrangements in the marginally sampled arrangement. We see

that estimated coefficients are inaccurate for both the random and QR-pivoting

based placements whereas the DEIM offers improved accuracy. The red dots in the

reconstructed field denote the chosen sensor locations and DEIM places a small fraction

of them off the pacific coast (top right region in figure 2.11e) unlike the QR-pivoting

(figure 2.11c) and random (figure 2.11a) sampling methods. Such shortcomings in the

sensor placement is easily overcome by all the different methods in the oversampled

regime as expected and is shown in figure 2.12. The differences in sparse recovery

across the three sensor placement methods are mostly unnoticeable with oversampling

although DEIM again provides the best estimates for the coefficients.

2.5.5 Sparse Reconstruction of Near Wall Turbulent Channel Flow

Previous case was a low dimensional case which is predicted very well with very fewer

POD modes and a small amount of sensors. To demonstrate the practical capability

of LSE algorithm for a more challenging case we consider a small localized region of

a channel turbulent flow near the bottom wall. The number of modes required to
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Figure 2.11: Comparison of the sparse reconstruction using Random, QR and DEIM
sensor placement method on instantaneous snapshot for a marginally oversampled
case (K∗ = 3, P ∗ = 4). The figure shows the reconstructed solutions (left column) and
reconstructed coefficients using POD-based SR (right column). Red dots represent
sensor locations on the contour plots.

capture 95% of energy content is approximately 40, i.e., K95% = 40. Hence the system

can be considered as high dimensional. The energy capture with a different number of

modes retained is shown in Fig. 2.13.
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Figure 2.12: Comparison of the sparse reconstruction using Random, QR and DEIM
sensor placement method on instantaneous snapshot for a highly oversampled case
(K∗ = 3, P ∗ = 12). The figure shows the reconstructed solutions (left column) and
reconstructed coefficients using POD-based SR (right column). Red dots represent
sensor locations on the contour plots.

2.5.5.1 Error Quantification

To explore the condition of accurate recovery in terms of data availability and system

dimension along with quantify the reconstruction performance we define the following

errors specially for near wall turbulent channel flow data as only the SR error is not a
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Figure 2.13: Cumulative energy fraction (CEF) and normalized singular value (σn)
of near wall turbulent channel flow data. Where σn(k) = σk

σ1+σ2+...+σM
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good scale to quantify SR performance. Hence, we defined errors in terms of statistics

reconstruction as follows:

ESR
f =

√∑
Nx,Ny

(XSR −XE)2

Nx ∗Ny ∗M
(2.30a)

ESR
U =

∑
Ny
|〈USR〉 − 〈UE〉|

Ny

(2.30b)

ESR
V =

∑
Ny
|〈VSR〉 − 〈VE〉|

Ny

(2.30c)

ESR
u′u′ =

∑
Ny
|〈u′2SR〉 − 〈u′2E〉|

Ny

(2.30d)

ESR
v′v′ =

∑
Ny
|〈v′2SR〉 − 〈v′2E〉|

Ny

(2.30e)

ESR
u′v′ =

∑
Ny
|〈u′SRv′SR〉 − 〈u′Ev′E〉|

Ny

(2.30f)
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EFR
f =

√∑
Nx,Ny

(XFR −XE)2

Nx ∗Ny ∗M
(2.31a)

EFR
U =

∑
Ny
|〈UFR〉 − 〈UE〉|

Ny

(2.31b)

EFR
V =

∑
Ny
|〈VFR〉 − 〈VE〉|

Ny

(2.31c)

EFR
u′u′ =

∑
Ny
|〈u′2FR〉 − 〈u′2E〉|

Ny

(2.31d)

EFR
v′v′ =

∑
Ny
|〈v′2FR〉 − 〈v′2E〉|

Ny

(2.31e)

EFR
u′v′ =

∑
Ny
|〈u′FRv′FR〉 − 〈u′Ev′E〉|

Ny

(2.31f)

Where XE is the true data, XSR is the reconstructed field from sparse measurement,

and XFR is full data reconstruction using exact POD coefficients. In the above Nx

and Ny represents grid numbers in corresponding direction, whereas M is the number

of snapshots. Also U and V are ensemble mean of the stream-wise and wall-normal

velocity respectively, 〈u′2〉 and 〈v′2〉 are the variance of associated velocities, and 〈u′v′〉

is the covariance of them. Using above definitions, we can now normalize the errors as

follows:

εf1 =
ESR
f

EFRK80

f

(2.32a)

εU1 =
ESR
U

EFRK80

U

(2.32b)

εV1 =
ESR
V

EFRK80

V

(2.32c)

εu
′u′

1 =
ESR
u′u′

EFRK80

u′u′

(2.32d)

εv
′v′

1 =
ESR
v′v′

EFRK80

v′v′

(2.32e)

εu
′v′

1 =
ESR
u′v′

EFRK80

u′v′

(2.32f)
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εf2 =
ESR
f

EFRK

f

(2.33a)

εU2 =
ESR
U

EFRK

U

(2.33b)

εV2 =
ESR
V

EFRK

V

(2.33c)

εu
′u′

2 =
ESR
u′u′

EFRK

u′u′

(2.33d)

εv
′v′

2 =
ESR
v′v′

EFRK

v′v′

(2.33e)

εu
′v′

2 =
ESR
u′v′

EFRK

u′v′

(2.33f)

where ε1 represents the normalized corresponding error by the full reconstruction error

of the same for 80% energy capture. Whereas, ε2 is the normalized corresponding

error relative to the full reconstruction error up to a desired system dimension, K.

These two error metrics are devised so as to quantify the overall quality of the SR

in a normalized sense (ε1) and the best possible reconstruction accuracy for a chosen

problem set-up, i.e., P and K. To assess SR performance across different flow regimes

(that have different K80 ) with different values of K we define a normalized system

sparsity metric, K∗ = K/K80 and a normalized sensor sparsity metric, P ∗ = P/K80

. This allows us to design an ensemble of numerical experiments in the discretized

K∗ − P ∗ space and the outcomes can be generalized.

2.5.5.2 Sparse Reconstruction Accuracy

We compute full state reconstruction error εf1 and εf2 as described in subsection 2.5.5.1

for different sensor placement methods adopted in this study across the K∗−P ∗ space

, the contour of which are shown in Fig. 2.14. As for the number of sensors for CG

methods is fixed by the algorithm so the value of P ∗ is different from the plots of

other three methods. For all the plots, the contour levels are made consistent for
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better realization and comparison. The predominantly blue regions in the relative

error metric εf2 (right column in Fig. 2.14) indicates that smaller errors are located in

the region where P ∗ > K∗. This shows that the oversampled SR problem yeilds good

results with P > K in terms of normalized relative error εf2 . Comparing all the plots

in Fig. 2.14 for different sensor placement methods experimented in this work it is

observed that DEIM provides most reliable reconstruction while closely followed by the

random placement. CG which placed the sensors in an evenly spaced manner requires

greater number of sensors for good reconstruction and it’s performance improves

consistently with the increase of P . QR-pivoting shows better recovery if the P >> K

while having poor reconstruction for marginally oversampled case. This unexpected

behavior shown by QR methods of sensor placement is due to clustering the sensors

only at the top regions of the field (Fig. 2.16). To demonstrate the extent of in

relative errors (εf2) across the systems, we try to show the variation of εf2 with P ∗

for different reconstruction dimensions K∗ in separate plots for all the four sensor

placement methods in Fig. 2.15. In all the curves for different K∗ values the ideal

reconstruction error corresponds to εf2 = 100 which is only achieved in the asymptotic

limit of P ∗. Amongst the different sensor placement methods, the best performance

is realized for the DEIM which shows a smooth variation as one moves from under-

sampled to oversampled regions and all the different curves for varying values of K∗

begin to asymptote at around P ∗ = 8. Random and QR sensors display some flow

dependency in the error decay at smaller values of P ∗. On the other hand, CG shows

very consistent but slow decay of error. The contourline plots for illustrating the

comparison between the approximated solution and the true data have been added

in Fig. 2.16 for all the different sensor placement methods. The black dots on those

plots (Fig. 2.16, right column) represents the corresponding sensor locations. These

plots also indicates that best performance of prediction is experienced by the DEIM

methods among all of them.
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(a) εf1 (Random) (b) εf2 (Random)

(c) εf1 (DEIM) (d) εf2 (DEIM)

(e) εf1 (QR) (f) εf2 (QR)

(g) εf1 (CG) (h) εf2 (CG)

Figure 2.14: Isocontours of the normalized mean squared POD-based sparse recon-
struction errors (l2 norm) corresponding to the different sensor placement methods.
Left: normalized absolute error metric, εf1 . Right: normalized relative error metric, εf2 .
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Figure 2.15: Comparison of relative error εf2 decrease with increasing sensor budget
for different sensor placement methods. The figure shows different curves for different
values of K∗.
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(a) Random (K∗ = 3, P ∗ = 6) (b) Random (K∗ = 3, P ∗ = 6)

(c) DEIM (K∗ = 3, P ∗ = 6) (d) DEIM (K∗ = 3, P ∗ = 6)

(e) QR(K∗ = 3, P ∗ = 6) (f) QR (K∗ = 3, P ∗ = 6)

(g) CG (K∗ = 3, P = 72) (h) CG (K∗ = 3, P = 72)

Figure 2.16: Reconstructed contour (left) and the contourline comparison (right)
between actual and recovered u for near wall channel data using different sensor
placement method and specific number of sensors.

Comparing only the line contour for one snapshot cannot establish the accuracy trends.

Hence, different turbulent statistics such as ensemble mean, variance, and co-variance

are computed for comparison between the actual and the predicted ones. The ensemble

mean of the stream-wise and wall-normal velocity are computed as follows:

〈u〉x,t =
1

M

1

N

M∑
t=1

N∑
x=1

u(x, y, t) (2.34a)

〈v〉x,t =
1

M

1

N

M∑
t=1

N∑
x=1

v(x, y, t) (2.34b)

and the associated varianve are computed as:

〈
u′2
〉
x,t

=
1

M

1

N

M∑
t=1

N∑
x=1

{u(x, y, t)− 〈u〉x,t}2 (2.35a)

〈
v′2
〉
x,t

=
1

M

1

N

M∑
t=1

N∑
x=1

{v(x, y, t)− 〈v〉x,t}2 (2.35b)

60



The covariance is computed as:

〈u′v′〉x,t =
1

M

1

N

M∑
t=1

N∑
x=1

{u(x, y, t)− 〈u〉x,t}{v(x, y, t)− 〈v〉x,t} (2.36a)

All these statistics for four different sensor placement methods have been computed

and plotted along with the statistics from true data and the FR using associated

K80 modes in Fig. 2.17 for better comparison in terms of statistical recovery. The

reconstruction was done using K∗ = 1 and P ∗ = 2 except for the CG method where

P = 36 has been used for the algorithm limitation of having flexible number of sensors.

All the methods reconstruct the mean for both velocities (〈u〉 and 〈v〉) pretty well

as observed from the plots (Fig. 2.17 (a),(b)). For variance and covariance (〈u′2〉,

〈u′2〉, and 〈u′v′〉) prediction associated with the velocities different sensor placement

methods show different accuracy. DEIM is the best realized one for reconstructing

these statistics. Random and CG shows very close accuracy while QR turns out to be

a bad choice for statistics prediction.
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Figure 2.17: Stat error plot along y-axis for near wall channel data using different
sensor placement methods.
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CHAPTER III

NONLINEAR SPARSE ESTIMATION OF FLUID FLOWS

3.1 Motivation and Review

Driven by unprecedented volumes of data from experiments, field measurements, and

large scale simulations at multiple spatio-temporal scales, the field of fluid mechanics

is experiencing a paradigm shift. The emergence of machine learning presents us with

a wealth of techniques to extract information from data that can be translated into

knowledge about the underlying fluid mechanics (Brunton et al., 2020). To augment

the traditional lines of fluid mechanics research machine learning provides a powerful

information processing framework. Many techniques were developed to handle data of

fluid flows, ranging from advanced algorithms for data processing and compression, to

databases of turbulent flow fields (Perlman et al., 2007; Wu and Moin, 2008). However,

the analysis of fluid mechanics data has relied to a large extent on domain expertise,

statistical analysis, and heuristic algorithms.

Renewed interest and progress have been fueled in the field of machine learning

with the confluence of 1) increasing volumes of data 2) advances in computational

power and resources, and 3) sophisticated algorithms. Due to these advances machine

learning is rapidly making inroads in fluid mechanics providing a modular and agile

modeling framework that can be tailored to address many challenges in fluid mechanics,

such as reduced order modeling, experimental data processing, shape optimization,

turbulence closure modeling, and control.
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A long and surprising history of interface has been shared by machine learning

and fluid dynamics. In the early 1940s, Kolmogorov, a founder of statistical learning

theory, considered turbulence as one of its prime application domains (Kolmogorov,

1941). In the context of trajectory analysis and classification for the particle tracking

velocimetry (PTV) and particle image velocimetry (PIV) a number of applications of

neural networks in such flow-related problems were developed in the early 1990’s (Teo

et al., 1991; Grant and Pan, 1995). Some applications are found to identify phase

configurations in multi-phase flows as well (Bishop and James, 1993). For the purpose

of reconstruction of turbulence flow fields and the flow in the near wall region of a

channel flow using wall only information (Milano and Koumoutsakos, 2002) the link

between POD and linear neural networks (Baldi and Hornik, 1989) was leveraged.

3.2 Objective and Contribution

The objective of this study is to incorporate machine learning idea, particularly neural

network (NN) based learning methodology for the purpose of fluid flow reconstruction.

Sparse reconstruction is inherently ill-posed inverse problem. So, the task of flow recon-

struction requires finding better methods to solve such inverse model that can produce

the full state flow field in response to the limited observations. In machine learning,

neural network based inversion (McCann et al., 2017) is common practise, even found

in the late 80’s (Zhou et al., 1988). Because of it’s promising performance, this powerful

learning paradigm has increasingly drawn researcher’s interest for flow reconstruction,

prediction, and simulations (Ling et al., 2016; Tompson et al., 2017; Kim et al., 2019;

Carlberg et al., 2019; Fukami et al., 2019). Consequently, deep learning has become an

emerging idea (Baraniuk and Mousavi, 2019; Jin et al., 2017; Adler and Öktem, 2017;

Ye et al., 2018), which has been found to outperform traditional methods in different

applications including denoising, deconvolution, and super-resolution. Here, we have

explored neural network based methods to learn the input-to-output mapping between

64



the sensor measurements and the high resolution flow field. This approach is purely

data-driven assuming no physics-based prior knowledge to be available. While POD

based approach requires a large number of samples to obtain those POD modes which

are required to be known a priori for linear estimation, we propose neural network

learning based model that can bypass this limitation while enhancing algorithms which

can outperform estimation for low dimensional system as well as provide favorable

outcome for challenging high dimensional problem such as near wall turbulent channel

flow. The method will be explained in detail in the subsequent sections.

The content of this chapter is organized as follows. In subsection 3.3.1, we present

the sparse reconstruction problem formulation followed by the methodology of neural

network-based sparse recovery in subsection 3.3.2. In subsection 3.3.3 we demonstrate

the process of learning the deep neural network architecture for the given datasets.

Finally in section 3.4 we report the outcomes of our numerical experiments.

3.3 A Deep Neural Network-based Decoder for Sparse Estimation

3.3.1 Problem Formulation

Our objective is to estimate the full state flow field x ∈ RN from sensor information

s ∈ RP . That requires to learn the relationship s→ x with the restriction of limited

sensors p� N . The reconstruction performance is strongly tied with the adequate

sensor placement. In this study, we have chosen random sampling for the sensor

measurement by collecting the first P values from a random permutation of the entire

data of dimension N . We can describe this process as

s = H(x),
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where H : RN → RP denotes a measurement operator. Then, the inverse model can

be constructed as

x = G(s),

where G : RP → RN that produces x in response to the observations s. Finally, the

task of flow reconstruction requires solving the inverse problem to obtain the forward

operator G that produces the field x. However, the measurement operator H being

highly nonlinear in practice the problem turns out to be ill-posed, and inverting H

directly is not feasible. As a recourse, given a set of training examples {xi, si} may

help to learn a function τ to approximate the forward operator G. More precisely,

our goal is to learn a function τ : s→ x̂ that can map the limited sensor information

to the estimated state as

x̂ = τ(s),

while minimizing the misfit in a Euclidean sense over all sensor measurements

‖τ(s)−G(s)‖2
2 < ε,

where ε is small positive number.

3.3.2 Neural Network Design and Methodology

The learning approach we have set up for this study is supervised learning which implies

the accessibility of corrective information to the learning machine. Neural networks

are arguably the most prominent methods in supervised learning and essential tool for

nonlinear function approximation. The learning problem can be devised as a process

of estimating associations between inputs, outputs and parameters of the system. The
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structure of neural network is constituted of two fundamental components, namely,

processing elements and the connection between them. The processing elements are

called neurons which are ordained in different layers and interconnected through links.

The layer of neurons that receive data from outside of the network is called input

layer and the layer that produces prediction is called output layer. The layers reside

between input layer and output layer are called hidden layers that receive information

from previous layer and process that to provide the inputs to the following. Having no

inter-neuron connections in neural network model, all the neurons in a given layer can

operate at the same time. The nonlinear neural network implemented in this work is

defined as a nested function of k layers of neurons, which can be expressed as

<(s;W ) := f(W kf(W k−1 . . . f(W 1s))),

where W denotes a set of weight matrices matching the dimension of the layers and

f(·) : R→ R denotes an activation function that relates the neuron’s input and output

and serve as a way to introduce non-linearity in the neural network. We assume a

decent number of training examples {xi, si}Mi=1 are available with M examples xi and

corresponding sensor information si. Our goal is to learn a function < : s→ x̂ (here

x̂ denotes estimate of x) which minimizes the misfit in an Euclidean sense, over all

the sensor measurements

< ∈ arg min
<̃∈Υ

M∑
i=1

∥∥∥xi − <̃(si)
∥∥∥2

2

where Υ denotes neural network class and <̃ is a dummy presentation upon which

one optimizes.
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3.3.3 Neural Network Architecture

The nonlinear neural network we have considered for this study is a multilayered feed

forward neural net (Haykin, 1994). The layer representation of the neural network

structure has been illustrated in Fig.3.1. Though use of convolutional layers has been

showing favorable performance for recent deep learning architectures in computer

vision, we have adopted fully connected layer framework for two reasons: (i) no spatial

ordering is present in our sensor measurements; (ii) a small number of examples are

assumed to be available for training while convolutional layers require a large number

of examples for training depending on the number of filters (Erichson et al., 2019).

The input layer receives the sensor information and then passes them to the hidden

layers through following forward processing and finally the estimated state is found at

the output layer.

h1 = f(W 1s+ b1)

h2 = f(W 2h1 + b2)

. . . . . . . . .

hi = f(W ihi−1 + bi)

. . . . . . . . .

x̂ = f(W k+1hk + bk+1)

where W denotes a dense weight matrix with matching dimensions and b is a bias

term. The function f(·) is an activation function to serve as a way to introduce

nonlinearity into the model.

Activation Function

For the neural network model of this study, we have employed the rectified linear

unit (ReLu) activation function due to it’s favorable properties in computer vision
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Figure 3.1: Illustration of DNN structure which maps a few sensor measurements
s ∈ RP to the estimated field x̂ ∈ RN where η denotes the neuron growth rate (NGR).

applications (Glorot et al., 2011). This activation function is a piecewise linear function

that will output the input directly if is positive, otherwise, it will output zero. It can

be described as follows,

f(h) := max(h,0)

Due to not having any complicated math in the function, ReLU is cheap to compute

and the model therefore takes less time to train or run. Some other desirable properties

are that ReLU is sparsely activated, and converges faster. The simplicity of the function

has been illustrated in Fig.3.2
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Figure 3.2: Plot of the ReLU function.

Regularization

To avoid overfitting is one of the major aspects while interpolating a limited set

of data points too closely. Overfitting is one of the reasons for low accuracy of a

neural network model. When a model starts learning from the data points that don’t

really represent the true properties of the data then the model becomes more flexible

therefore they can really build unrealistic model. As a good machine learning model

needs top have the criteria of generalizing the data from the problem domain in a

way so that it can predict any data that the model has never seen, understanding

and characterizing overfitting in neural network is drawing increasing research interest

(Poggio et al., 2018; Bartlett et al., 2017). Weight penalties (L2 regularization) is

one of the standard strategies to reduce overfitting risk, which has been implemented

inside the optimization process using the parameter weight decay in our model. In

addition to this standard method we have also applied batch normalization (BN) (Ioffe

and Szegedy, 2015) to address the complication of the change in the distribution of

network activations due to the change in network parameters during training, which is

referred as internal covariate shift, and thus improve the convervence and robustness

of the decoder model. BN is activated in our network using following formula:

y =
x− E [x]√
Var[x] + ε

∗ γ + β
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where the mean and standard-deviation are calculated according to the dimension over

the splitted training data-set known as mini-batches that are used to calculate model

error and update model coefficients. The γ and β are learnable parameter vectors of

size of the input. For simplicity, the elements of γ are set to 1 and the elements of β

are set to 0 for our experiments.

Optimization

Optimization is the algorithm or method used to change the attributes such as weights

of the neural network model in order to reduce the misfit between the estimated and

observed data. In neural network optimization, algorithm deals with function having

multiple optima, only one of which is the global optima. Thus it turns out to be very

difficult to locate the global optima depending on the loss surface. Finding this global

minimum on the loss surface is the aim of neural network training. For a training set

with M targets xi and corresponding sensor measurements si, our loss function that

has to be minimized is defined as the difference between the actual data x and the

reconstructed quantity x̂ = <(s) in terms of the squared L2-norm

< ∈ arg min
<̃

M∑
i=1

∥∥∥xi − <̃(si)
∥∥∥2

2

In this study we have adopted the ADAM optimization algorithm (Kingma and Ba,

2014) to train the DNN decoder. Two important hyperparameters for this optimization

are the learning rate and the weight decay (also known as L2 regularization). Learning

is the hyperparameter that dictates the adjustment of the weights with respect to the

the loss gradient in a neural network. It is also known as step size, lower the value the

slower it goes along the downward slope and longer it takes to converge. On the other

side, weight decay is another important hyperparameter as it helps to regularize the

complexity of the network model. For our experiment, we have used the weight decay

value of 10−4 and kept the learning rate as one of the tuning parameter we wanted to
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explore. In each step the weights are updated using following equation.

W (i+1) = W (i) − αG(i)

G(i) =
d<(i)

dW (i)
+ λ

∥∥W (i)
∥∥2

2

Where W denotes the weight matrix of matching dimensions, α is the learning rate

which is multiplied with the gradient G and then subtracted from the previous step

weights to get the updated weights. The gradient G is computed taking the derivative

of the loss function < and then added with the L2 regularization, which is controlled via

the parameter weight decay λ. In practice, to improve performance of the optimization

we have used a dynamic shceme of changing both learning rate by a factor of 0.9

and the weight decay by a factor of 0.8 after 100 epochs. In this work, we have

primarily chosen three hyperparameters to analyse the DNN performance with their

interplay. Firstly, the number of hidden layers and we have kept the range between

2 to 4 to keep it conducive to the computational power of our resource. The other

two hyperparameter we are interested to tune are the number of neurons used in each

hidden layer and the learning rate. To set the number of neurons in each hidden layer

we have introduced a parameter named neuron growth rate which in multiplication

with the number of neurons in previous layer increase the number of neuron in each

hidden layer successively and that is demonstrated in Fig.3.1. We have set the range

of neuron growth rate from 1.1 to 1.9 and 1e−5 to 1e−2 for learning rate. We have

selected total of 40 sample of neuron growth rate and learning rate pair from that

range using Latin Hypercube Sampling method described in the following section

instead of choosing randomly to cover the distribution in a stratified manner.
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Latin Hypercube Sampling for DNN design

In order to identify the best DNN design and minimize uncertainty from bad DNN

architectures, we perform hyperparameter optimization over a parameter space. Ex-

ploring the fully discretized parameter space is extremely computationally intensive.

Therefore, we use Latin Hypercube Sampling (LHS), a technique first described by

Michael McKay in late ’70s, as a statistical way to generate near-random sequences

of parameter values from multidimensional distribution (McKay et al., 1979). Latin

square design is basic sampling method which has a single sample in each row and

column. A “hypercube” is a cube with more than three dimensions so as an extension

of Latin square design for multiple dimensions and to obtain sample from multivariate

distributions LHS has been introduced. If the variables Xi has i = 1, . . . , p components

then to ensure that each of the variables has all portions of its distribution, Xi can be

divided into n strata of equal marginal probability 1/n, and sample once from each

stratum afterward. If we consider this sample be Xir, r = 1, . . . , n then the components

of the various Xi’s are matched at random to obtain sample point coordinates on the

hyperplane. This is an efficient way of sampling random variables and can be viewed

as a P -dimensional extension of Latin square sampling. This method helps to present

each of the components in a fully stratified manner, no matter which components

might turn out to be important. The n intervals on the range of each component of

X combine to form np cells which cover the sample space of X. A requirement for

LHS is that each region of the strata can only be sampled once for each parameter.

This is best visualized in Fig.3.3 with a 2D space.

Algorithm 5 summarizes the steps for obtaining sample points from their multi-

variate distributions using LHS.
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Figure 3.3: Illustration of 2D LHS example where the variable has two components
X and Y. Range of each component is from 0 to 1, which is divided into 5 strata for
both and then sampled.

Algorithm 5: Sample points generation using LHS method.

input : Variables Xi, i = 1, . . . , p
Range of Xi as ui = [ai bi]
Number of equiprobable strata, n

output : Coordinate matrix of sample points X.
1 for i = 1, . . . , p do
2 Divide the range ui into n equiprobable intervals so that they satisfy

ui1 ∪ ui2, . . . ,∪uin = ui, uij ∩ uik = ∅, and P (x ∈ uij) = 1/n, where
j, k = 1, 2, . . . , n.

3 for r = 1, . . . , n do
4 Randomly select a data point Xir from each interval.
5 end

6 end
7 n values of each variable are paired randomly with the n values of the other

variables and obtain X ′ir.
8 Then the sample matrix is X = X ′ir, where each column provides the

coordinate for a single sample in the hyperplane.

3.4 Results and Discussion

For the design analysis of the DNN we chose three important parameters to tune and

tried to find the best fit combination in terms of their learning and prediction. Those

three parameters are 1) Number of hidden layers, 2) Number of neurons in the hidden
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layers, and 3) Learning rate (α). We worked over a range of those parameters to keep

the number of cases to analyse in a good limit. Instead of choosing the number of

neurons in hidden layer randomly, we set a parameter named Neuron Growth Rate (η)

which is multiplied by the number of neurons in the previous layer to get the number

of neurons in the next layer. Our cases were constrained by the range of these three

parameters as given in Table 3.1.

Table 3.1: Parameter range for DNN design analysis

Parameter Lower range Upper range
Number of hidden layer 2 4
Neuron Growth Rate (η) 1.1 1.9
Learning Rate (α) 1e-05 1e-02

We chose forty different combinations of α and η using the Latin Hypercube

sampling as described in subsec. 3.3.3 for each of the three hidden layer dimensions,

thus totalling to 120 cases for DNN design analysis. This is substantially smaller than

the O(1000) cases one may need using uniform sampling. To minimize computational

cost, data from single realizations of the DNN training were used in this optimization

step.

3.4.1 Cylinder Wake Flow

For the cylinder wake flow we performed NLSE over the 120 cases previously described.

The DNN reconstruction performance is quantified using the error metric, ESR
f . Tho

estimate the error, we considered reconstruction of 480 snapshots of data among

which 420 snapshots were used for training and the remaining 60 snapshots for testing

purposes (i.e., every 8th sample was used for testing). The total reconstruction error,

ESR
f is estimated for both the training and testing stages for each DNN architecture

as shown in the scatter plot (Fig. 3.4) with colors ranging with the ESR
f value. Same

optimization has been made for three sensor number cases. For P = 2 the DNN design

analysis plot is shown in Fig. 3.4. These scatter plots only show outcomes for 40 of
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the total 120 cases explored. To explain this, we note that each combination of α and

η corresponds to three choices of hidden layer depth (2,3 and 4) and therefore, three

different ESR
f . In the plot we show only the best of the three cases. It is possible that

the best DNN design in terms of hidden layer depth for a given combination of α and

η may not be the same for both training and testing. Therefore, the data points with

a black square in Fig. 3.4 is used to denote DNN designs having similar architecture

between training and testing phases of the analysis. The data points circled in red

are downsampled from the ones above (i.e., black square points) as belonging to the

lowest error band for ESR
f (as indicated by the blue segment of the colorbar).

In order to dissect the reconstruction performance at these different design configu-

rations, we select two cases, named C1 and C2 as notated in Fig. 3.4. We then compare

the corresponding reconstructed solutions with the ground truth using isocontours in

Fig. 3.5. In the above example, just two sensors were used for sparse recovery. We see

that both these cases show reasonably accurate reconstruction with C2 performing

slightly better than C1 for this snapshot. We also perform similar analysis with higher

sensor budgets, that is, for P = 5 and P = 10 as illustrated in Figs. 3.6, 3.7 and

Figs. 3.8, 3.9 respectively.

The low-dimensional cylinder wake flow does not need many sensors based on

our prior experience from linear sparse estimation approaches using POD basis that

parsimoniously span the manifold represented by the data. However, what is surprising

is that DNN tools are able to pick up on this low-dimensionality as evidenced from

the reconstruction performance. In fact, all the different DNN architectures explored

show reasonable error metrics over most of the hyperparameter search space. The best

DNN models from our analysis based on the lowest values of the error metric, ESR
f

are summarized in Table. 3.2. We note for clarity that the chosen dissection cases C1

and C2 are not necessarily the most optimal in terms of reconstruction error, but still

show good recovery performance.
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(a) Train

(b) Test

Figure 3.4: DNN design analysis for Cylinder flow case using random sensor placement
(P = 2).
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(a) C1 (b) C1

(c) C2 (d) C2

Figure 3.5: Reconstructed Contour plot (left) and contourline comparison between
exact and recovered u (Right) for the two cases chosen from the DNN design analysis
using P = 2.

Table 3.2: Best case DNN design for cylinder data in terms of lowest testing ESR
f

value.

Sensor Case Hidden Layers α η ESR
f

P=2 4 2.58e-03 1.89 1.46e-03
P=5 2 5.54e-03 1.85 3.67e-04
P=10 4 8.08e-03 1.38 9.00e-04
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(a) Train

(b) Test

Figure 3.6: DNN design analysis for Cylinder flow case using random sensor placement
(P = 5).
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(a) C1 (b) C1

(c) C2 (d) C2

Figure 3.7: Reconstructed Contour plot (left) and contourline comparison between
exact and recovered u (Right) for the two cases chosen from the DNN design analysis
using P = 5.

Considering the ESR
f values for the different sensor budgets shown in Table. 3.2, the

model having the lowest error was selected for further performance comparison with

LSE method and using different sensor placement algorithms. Although, one may argue

that a custom DNN design may be in order for each sensor placement configuration,

this is not feasible in practice. Therefore, we leverage the prior experience from our

past analysis for future exploration as is often pursued in engineering practice. To

illustrate the sparse estimation performance sensitivity to sensor budget and placement,

we compare NLSE using DNN with LSE using POD-basis for cylinder data over the

range P ∗ = 1− 6 and using random, DEIM, and QR-pivoting-based sensor placement.

The resulting error metrics are shown in Fig. 3.10. LSE has been computed for K∗ = 1.

The NLSE shows more reliable reconstruction for all the different sensor placement

methods, which is clearly observed from Fig. 3.10 and the performance only improves

with increase in sensor budget. This in our view is one of the advantages of NLSE

methods that do not depend on the nature of the basis space like LSE and therefore,

quite robust to sensor placement choices.
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(a) Train

(b) Test

Figure 3.8: DNN design analysis for Cylinder flow case using random sensor placement
(P = 10).
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(a) C1 (b) C1

(c) C2 (d) C2

Figure 3.9: Reconstructed Contour plot (left) and contourline comparison between
exact and recovered u (Right) for the two cases chosen from the DNN design analysis
using P = 10.

1 2 3 4 5 6

P ∗

10−5

10−4

E
S
R

f

Rand− LSE
DEIM − LSE
QR− LSE

Rand− Tr
DEIM − Tr
QR− Tr

Rand− Te
DEIM − Te
QR− Te

Figure 3.10: ESR
f vs P ∗ plot for cylinder flow data using both LSE and NLSE methods.

(Tr-Train, Te-Test)
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3.4.2 Near Wall Turbulent Channel Flow

For the low dimensional cylinder wake flow, we saw that NLSE outperformed POD-

based LSE by a significant margin while offering little sensitivity to sensor placement.

In this section we investigate the capability of NLSE using DNN for sparse recovery

of a higher-dimensional instability-driven dynamical system in the form of a near-wall

turbulent channel flow (0 < y < 0.1δ). Although one could use full three-dimensional

turbulent fields for such analysis, the computational cost associated with handling

a state vector of dimension of O(106) is not feasible. In this work, we explore two-

dimensional data contained in a plane encompassing streamwise and vertical directions.

This way, one can consider the complex turbulent dynamics at a more manageable

cost. In addition to cost considerations, we also have application driven justification

for such a problem design. Sparse recovery is naturally amenable to spatially bounded

phenomena while the turbulent channel flow is statistically homogeneous and periodic

in the streamwise (x) and spanwise (z) directions, i.e. the domain is infinitiely wide in

the horizontal. Therefore, the boundedness of the flow arises from the inhomogeneous

vertical direction (y) which is also the region that possesses large gradients. To this

end, we build a reduced dynamical system that is still high-dimensional even in the

POD-basis space, but focuses only on the lower 10% of the turbulent boundary layer.

A related motivation is that such sparse recovery models can be leveraged in the future

for surrogate modeling of near wall phenomena in turbulent boundary layers where

the resolution requirement is high. The number of POD modes required to capture

95% of energy (variance) content for this reduced 2D channel flow is approximately

40, i.e., K95% = 40. The POD singular value spectrum and energy fraction for this

dataset is shown in Fig. 2.13.

For this study we chose 560 snapshots of data, with 490 of them being used to learn

the model. Specifically, we retained every 8th snapshot for testing purpose to quantify

the model performance. Both components of the velocity, u and v are predicted
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separately as they represent different scales of the flow in the near-wall region of the

turbulent boundary layer. Consequently, their dimension in a POD-basis space is also

different as verified by the singular value spectrum shown in Fig. 3.11. Once the flow

0 200 400
K

10−16

10−12

10−8

10−4

100

σ
n

UV

U

V

Figure 3.11: Normalized Singular value (σn) spectrum of u, v, and uv together. Where
σn(k) = σk

σ1+σ2+...+σM

field is reconstructed, the different statistics and errors for both u and v are combined

to quantify errors. Although the DNN models for u and v are separate, they share the

same architecture. To assess the NLSE performance for sparse recovery, we formulate

three types of problem design, namely, (i) full (streamwise) domain recovery with

random sensor placement, 2) full (streamwise) domain recovery with coarse grained

(CG) sensor placement, and 3) split (streamwise) domain recovery with random sensor

placement. All the three approaches are discussed in the following paragraphs and

sections.

DNN Design: As before, we look to identify a DNN design that produces the least

errors for this reconstruction problem. Therefore we perform a rigorous search in a

bounded space of hyperparameters to obtain a reasonable DNN architecture. Although

effective, such DNN design should not be considered as necessarily optimal for this
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problem for obvious reasons. The goal of this exercise is primarily to avoid bad DNN

designs rather than identifying the best one.

As an illustration of the procedure, we set out to identify a good DNN design similar

to the method described in Subsec 3.4.1 for full (streamwise) domain reconstruction

with random sensor placement of budget P = 500 (Fig. 3.12(a)). We also consider

two other designs almost comaparable sensor budget, namely, (i) coarse grained

sensor placement with full streamwise reconstruction (Fig. 3.12(b)) and (ii) random

sensor placement with split streamwise reconstruction (Fig. 3.12(c)). As noted earlier,

(a) Full domain, Random sensors (P = 500)

(b) Full domain, CG sensors (P = 576)

(c) Split domain, Random sensors (P = 8× 60 = 480)

Figure 3.12: Sensor locations (orange dots) for the three approaches of DNN optimiza-
tion.

this budget is comparable to the POD-basis dimension needed for nearly exact

reconstruction and therefore represents a minimum performance baseline for the DNN.

The primary difference in the near-wall turbulent flow reconstruction from the cylinder
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flow problem is that instead of using the reconstruction error ESR
f as the sole error

metric, we define a cumulative error metric Ecum as

Ecum =
ESR
f

max(40
i=1E

SR
f )

+
ESR
U

max(40
i=1E

SR
U )

+
ESR
V

max(40
i=1E

SR
V )

+
ESR
u′u′

max(40
i=1E

SR
u′u′)

+
ESR
v′v′

max(40
i=1E

SR
v′v′)

+
ESR
u′v′

max(40
i=1E

SR
u′v′)

(3.1)

The cumulative error metric above not only combines the error contributions from

both the velocity components, u and v, but also includes the errors in the different

single-point statistical metrics, namely the mean, variances and covariances. In

Fig. 3.13 Ecum is used to color the scatter plot for both training and testing over the

40 different sets of α-η as obtained from the LHS while showing only the best of the

three different HL depths. The black squares indicate samples that share similar HL

depth (and architecture) across the training and testing phases of the analysis. The

red circles represent further down-sampling by retaining only those cases with Ecum

values belonging to the lowest error band (blue) as shown in the colorbar. To interpret

the physics contained within the different error metrics, we dissect four cases denoted

by C1, C2, C3, and C4 as shown in Fig. 3.13(a)) and representing each of the four

error bands (from lowest to highest). In Fig. 3.14, we compare the different error

constituents, i.e., the statistical and field reconstruction errors across these four models

for both the training and testing phases. While we observe that model C1 outperforms

its counterparts across the different metrics in the training phase (Fig. 3.14a), it shows

mixed performance in the testing phase (Fig. 3.14b). We note that all these different

errors are normalized by the highest error of the 40 different α-η combinations shown

in Fig. 3.13. The biggest takeaway from this analysis is that the C1 model generates

the lowest reconstruction error and also recovers the single-point statistics accurately

in both training and testing phases.

The DNN convergence plots for these different cases during the training and testing
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Figure 3.13: DNN design analysis for full domain reconstruction using random sensor
placement.
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Figure 3.14: Normalized statistical error comparison of the selected four cases for full
domain reconstruction using random sensor placement.
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phases is shown in Figs. 3.15a and 3.15b for both the velocity components, u and v.

These two plots correspond to the two different DNN models are learnt separately for

u and v. The convergence error is computed as

Econv =

√∑
Nx,Ny

(XSR −XE)2√∑
Nx,Ny

(XE)2
. (3.2)

The reconstructed flow field using these different models are compared with the

ground truth for a single snapshot of u and v in Figs. 3.16 and 3.17 respectively. From

fig. 3.16, we note that model C3 offers the best reconstruction of u-velocity followed

by C1 during training while all the different models perform adequately during the

testing phase. The v-velocity reconstruction is more challenging with only C1 and

C2 performing well during training while all the different models struggle during

the testing phase. One may argue, on the basis of a single snapshot reconstruction

that C1 and C2 perform a trifle better than the other models for the v-velocity

reconstruction (fig. 3.17). However, the convergence plot in fig.3.15b suggests that the

different models perform inadequately on average for v-velocity reconstruction when

recovering unseen data, a sign of model overfitting. However, when exploring the

reconstruction of turbulent flow fields, it is not sufficient to look at averaged flow field

reconstruction errors. One also needs to evaluate how well the models capture the

well-known ensemble statistical trends in the mean, variances and covariances. The

ensemble mean statistics of the stream-wise and wall-normal velocities are computed

as defined in Eqs. 2.34, 2.35, and 2.36. All these statistical measures computed from

the different models are compared with the corresponding estimates obtained from the

true high resolution data and plotted as a function of y in fig. 3.18. We observe that

reasonable predictions are generated by all the different models for 〈u〉 and 〈u′2〉 while

no model appears to correctly estimate 〈v〉, 〈v′2〉 and 〈u′v′〉, especially in the testing

phase. However, in the training phase, models C1 and C2 appear to generate relatively
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Figure 3.15: DNN convergence plot of the selected four cases for full domain recon-
struction using random sensor placement.
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Figure 3.16: Comparison between exact and recovered u for the four selected cases
from different cumulative error band of full domain random sensor placement analysis.
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Figure 3.17: Comparison between exact and recovered v for the four selected cases
from different cumulative error band of full domain random sensor placement analysis.
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accurate estimates of 〈v′2〉 and 〈v′w′〉 thus, betraying a semblance of reconstruction

performance hierarchy.

Table 3.3: Best DNN design for full domain reconstruction using random sensor
placement.

Hidden Layers α η
3 5.196e-03 1.593
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Figure 3.18: The comparison of turbulence statistics of the four selected DNN models
with that of true data for full domain reconstruction using random sensor placement.
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Figure 3.18: (continued) The comparison of turbulence statistics of the four selected
DNN models with that of true data for full domain reconstruction using random sensor
placement.
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In Fig. 3.13 we note the existence of five cases (circled in red) that are similar to

C1 in performance and matching architecture across the training and testing phases

of the model learning. Analyzing these cases in detail as above, we arrive at a best

case DNN architecture for this dataset and summarised in Table 3.3. This particulr

design has the lowest cumulative error among those five for the testing phase.

We follow a similar of DNN design analysis for the sparse recovery problem

with coarse grained sensors with budget P = 576 (Fig. 3.12(b)). While coarse

graining as a sensor placement method may have little practical value, it is relevant

to numerical simulations of fluid flows where coarsened cartesian grids are often

employed for modeling high-dimensional systems thereby, requiring closure models.

This particular exploration is inspired by this need and the corresponding DNN design

analysis is presented in Fig. 3.19. As before, we select four cases for detailed analysis

corresponding to different levels of cumulative error obtained during the training phase.

The breakdown of the different components of the cumulative error for the training and

testing phases for this data set is provided in Fig. 3.20. Analysis of the different DNN

architecture performance requires studying the contribution of the various errors in

Ecum along with the cost function decay during the training and testing phases shown

in Fig. 3.21. In addition, we also look at the individual turbulent statistical profiles as

presented in Fig. 3.22. Taken together, the analysis shows that for all the four cases,

the errors in the estimation of the vertical variance, 〈v′2〉 and the covariance, 〈u′v′〉 are

consistently large while the rest of the errors are mostly small. Therefore, the design

choices primarily distinguish the performance in the field reconstruction error and

the errors in 〈u′2〉, 〈u〉 and 〈v〉. Closer look at the statistical profiles in fig. 3.22 show

that the coarse graining approach offers better qualitative reconstruction the vertical

velocity profile, 〈v〉 and significantly better reconstruction of the vertical variance,

〈v′2〉 and the covariance, 〈u′v′〉 as compared to that observed for the random sensor

placement. In addition, there is little sensitivity to DNN design for these results which
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is also confirmed by the instantaneous field reconstruction shown in Figs. 3.23 and 3.24.

The reconstructed and true isocontours agree well even for unseen data of the u field

while the v isocontours from sparse recovery show noisy output except for cases C2

and C4. The practical difficulty with predicting the vertical velocity field in turbulent

boundary layers is their small scale due to wall blockage. Consequently, such flow fields

with dominant local structure and very little by way of large-scale trends are harder

to estimate from sparse sensors due to severe under resolution. Given this limitation,

the qualitatively meaningful estimates of 〈v〉, variance, 〈v′2〉 and the covariance, 〈u′v′〉

generated using coarse grained cartesian grid sensors clearly indicates their advantage

over random sensing. In view of the above analysis and relatively little qualitative

impact of the DNN design on the reconstruction outcome, we choose the design with

the lowest test error amongst the downsampled designs (with red circles in Fig. 3.19).

The relevant design parameters are summarized in Table 3.3.

Table 3.4: Best DNN design identified for full domain reconstruction using CG sensor
placement.

Hidden Layers α η
3 4.446e-04 1.179

Split Domain Reconstruction of High-dimensional Systems: The studies so

far have indicated that NLSE performs well for low-dimensional cylinder wake along

with mixed outcomes for the higher dimensional turbulent boundary layer. The latter

issue is partly a consequence of the vertical velocity having very different scale and

structural content than the streamwise velocity and therefore, not amenable for sparse

recovery using the same sensor locations. However, a major issue is numerical, i.e.,

nonlinear regression algorithms such as back-propagation that are at the heart of

DNNs often tend to overfit to the data. This intuitively motivated us to explore the

effect of the dimension of the dataset on DNN-based models. To verify this hypothesis,

we artificially controlled the data dimension by generating low-order representations
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Figure 3.19: DNN design analysis for full domain reconstruction using CG sensor
placement.
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Figure 3.20: Normalized statistical error comparison of the selected four cases for full
domain reconstruction using CG sensor placement.
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Figure 3.21: DNN convergence plot of the selected four cases for full domain recon-
struction using CG sensor placement.
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Figure 3.22: The statistical comparison of the four selected cases four cases for full
domain reconstruction using CG sensor placement.
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Figure 3.22: (continued) The statistical comparison of the four selected cases four
cases for full domain reconstruction using CG sensor placement.
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Figure 3.23: Comparison between exact and recovered u for the four selected cases
from different cumulative error band of full domain CG sensor placement analysis.
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Figure 3.24: Comparison between exact and recovered v for the four selected cases
from different cumulative error band of full domain CG sensor placement analysis.
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using only the first few POD modes. It is well known that POD modes are ordered

in terms of their ability to capture variance in the data and therefore, increasing the

number of modes pushes the reconstruction closer to truth. In Fig. 3.25, we show DNN

convergence for datasets varying from 100% of the true variance, i.e. ground truth to

50% variance capture. The results clearly show that the training convergence changes

little, the convergence of the DNN to unseen testing data increasingly converges to the

training curve. This represents that the DNN model is showing reduced overfitting at

lower dimensions. We also not that one may explore different types of regularization

to minimize overfitting, but is left aside for the future.

Obviously, in practice the dimension of the data cannot be altered. However, for

homogeneous turbulence such as the horizontal plane in a turbulent channel flow, one

can deal with a reduced domain with losing significant information as long as the most

energy containing and largest scale turbulent flow motions are captured accurately.

To this end, we estimate the streamwise integral length scale in the boundary layer at

each vertical (y) location for both u and v velocities. The streamwise decorrelation

Ruu and Rvv and the corresponding integral length scale estimates, Luu,x and Lvv,x

are presented in fig. 3.26. Based on this, we chose to divide the turbulent channel flow

snapshots into eight subdomains of width π/2. As seen from fig. 3.26c, this subdomain

width (in red) is ≈ 25% larger than the largest integral length scale motions in the

turbulent channel at each vertical location. The singular value spectrum for this split

dataset is shown in fig. 3.27b and shows a much faster decay as compared to that

of the unsplit data as shown in fig. 3.27a. A downside of splitting is that the very

large-scale motions , i.e. those larger than Luu,x and Lvv,x which are only average

estimates are lost. The impact of this is not clear at this time although it is expected

to modulate the structure of velocity PDF within this subdomain. The other potential

impact is that the sensors are placed individually in the same configuration within

each subdomain, which of course lends a subtle pattern when looked over the entire
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domain. In order to remain consistent with the full-streamwise-domain reconstruction,

we deal with 8 ∗ 560 snapshots of data in total of which 8 ∗ 490 is used for training the

rest for testing.

As before, we perform a DNN design analysis for reconstruction by exploring a

hyperparameter space, downsampled using LHS and explored further using statistical

analysis of turbulent flow quantities. The results from this extensive investigation is

summarized in the scatter plots shown in fig. 3.28. As in this case of the cylinder flow

(figs. 3.4,3.6 and 3.8) we see that the split domain analysis of the turbulent channel

flow yields quite a few candidate designs identified by red-circles (fig. 3.28). As a

reminder to the reader, we note that red circles represent cases where the cumulative

reconstruction error metric belongs to lower value tier and corresponds to designs

that are best in both the training and testing phases of the model building. In view

of this analysis and relatively little qualitative impact of the DNN design on the

reconstruction outcome, we choose the design with the lowest test error amongst the

downsampled designs (with red circles in Fig. 3.28). The relevant design parameters

are summarized in Table 3.5.

For the sake of completeness, we dissect this ensemble of different DNN designs

using four cases, namely, C1, C2, C3 and C4. Fig. 3.28a tells us that of these four

cases, C1, C2 and C3 all generate errors belonging to lowest cumulative error band

in both the testing and training phases. Bar charts (fig. 3.29) of the different error

contributions to this cumulative error for these four cases and the corresponding cost

function decay plots (fig. 3.30) confirm this trend where cases C1-C3 are quite similar

while C4 represents the outlier. However, the recovery of the turbulent statistics,

while qualitatively accurate, show perceptible quantitative errors even for cases C1-C3

while case C4 shows highly noisy reconstruction. The latter observation regarding

case C4 is validated by the isocontour comparisons of the flow field in figs. 3.32 and

3.33. These trends clearly suggest that in spite of the reduced overfitting when solving
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a reduced dimensional problem, the reconstruction quality appears to plateau at a

level that is higher in error than desired. This requires further exploration into this

issue and a potential direction would be to verify the existence of a discontinuity in

reconstruction at the domain boundaries arising form the splitting procedure.
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Figure 3.25: Convergence plot for different percentages of reduced dimensionality
using POD.
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Figure 3.26: Subdomain size justification using turbulence decorrelation analysis and
integral length scale estimates.
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Figure 3.27: The change of dimensionality of data over a reduced sub-domain. Here
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Figure 3.28: DNN design analysis for split domain reconstruction using random sensor
placement.
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Table 3.5: Best DNN design for split domain reconstruction using random sensor
placement.

Hidden Layers α η
4 9.193e-03 1.27
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Figure 3.29: Normalized statistical error comparison of the selected four cases for split
domain reconstruction using random sensor placement.
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Figure 3.30: DNN convergence plot of the selected four cases for split domain recon-
struction using random sensor placement.
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(c) 〈u′2〉x,t Train (Left), Test (Right)

Figure 3.31: Comparison of the realized turbulent flow statistics of the four selected
cases for split domain reconstruction using random sensor placement.
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Figure 3.31: (continued) Comparison of the realized turbulent flow statistics for the
four selected cases four cases for split domain reconstruction using random sensor
placement.
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Figure 3.32: Comparison between exact and recovered u for the four selected cases
from different cumulative error band of split domain random sensor placement analysis.
Vertical grey lines denote the subdomain interfaces.
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Figure 3.33: Comparison between exact and recovered v for the four selected cases
from different cumulative error band of split domain reconstruction using random
sensor placement.Vertical grey lines denote the subdomain interfaces.

Effect of Sensor Placement and Budget on NLSE: Having learnt the best

DNN designs in a rather systematic way, we now focus on leveraging these models to

(i) assess how sensor placement and budget impact NLSE performance and (ii) ass how

NLSE compares with the corresponding LSE case. To facilitate such an analysis, we

consider four different sensor placement strategies, namely, random, discrete empirical

interpolation method (DEIM), QR with column pivoting, and coarse graining. These

choices are complemented by four different sensor budgets of P = 36, 48, 72, 108 which

is at least a factor of four smaller than the value used in the DNN design. For NLSE

we chose the best model (Table 3.3) from the DNN design analysis for full domain
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reconstruction using random sensor placement. These sensor locations for all the four

placement methods and the different number of sensors are visualized with orange dots

in fig. 3.34. We compare the different reconstruction quality using errors in the overall

field recovery, ESR
f succintly represented in fig. 3.35. Investigation of the presented

data points ot the following conclusions:

• Both the training and testing errors display the expected trends where ESR
f

decreases with sensor budget P for NLSE (and LSE).

• For both LSE and NLSE, DEIM offers the least recovery error while coarse

graining (CG) generates the most error. This contrasts with the earlier outcome

in the DNN design analysis where CG generated the most accurate turbulent

flow statistics.

• Both random and QR-pivoting sensors show mixed performance. In particular,

the reconstruction errors using QR-pivoting sensors saturate at higher levels

for LSE, but continue to decrease with P for NLSE. This suggests that NLSE

methods are more robust to purportedly less than ideal sensor locations such

as QR-pivoting which tends to prioritize sensors closer to the boundaries for

smaller P as shown in fig. 3.34.

Comparison of Split-domain NLSE with full-domain NLSE and LSE: Here

we assess how split-domain NLSE compares with NLSE and LSE for full domain

reconstruction. For this use case, we adopted DEIM sensor placement on account

of its low reconstruction errors throughout this work while considering two sensor

budgets, P = 72 and 480 to cover the entire domain. These sensor budgets were chosen

such that they can easily be split across the individual domains. The corresponding

reconstruction was performed using LSE with K = K95 ≈ 40. The different sensor

locations for these problem designs are visualized in fig. 3.36. The rest of the training
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(a) Rand (P = 36) (b) DEIM (P = 36)

(c) QR (P = 36) (d) CG (P = 36)

(e) Rand (P = 48) (f) DEIM (P = 48)

(g) QR (P = 48) (h) CG (P = 48)

(i) Rand (P = 72) (j) DEIM (P = 72)

(k) QR (P = 72) (l) CG (P = 72)

Figure 3.34: Sensor locations for near wall channel data using different sensor placement
methods with budgets P = 36, 48, 72, 108.
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(m) Rand (P = 108) (n) DEIM (P = 108)

(o) QR (P = 108) (p) CG (P = 108)

Figure 3.34: (continued) Sensor locations for near wall channel data using different
sensor placement methods with budgets P = 36, 48, 72, 108.

(a) NLSE (b) LSE

Figure 3.35: SR error using different sensor placement method from LSE and a single
selected good model from NLSE.
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procedure is similar to other use cases reported earlier, i.e. we reconstruct over 560

full domain snapshots with 490 used for training and the remaining 70 for testing.

The DNN architecture was the same as that arrived at in tables 3.3 and 3.5. To assess

performance, we present instantaneous isocontour comparisons of the reconstructed

fields with the exact flow field in fig. 3.37. All the models generate qualitatively

accurate results. The NLSE for full-domain recovery shows good accuracy at both

sensor budgets while LSE shows perceptible improvement for higher P . For the

split-domain reconstruction using NLSE, the higher sensor budget shows improved

performance while the low P clearly shows discontinuities at the domain boundaries.

The NLSE models, especially for the split domain case show performance deterioration

in the testing phase for unseen data. These results show that one can realize reasonable

reconstruction performance even in cases where the sensor budget and placement may

be different from that used for the DNN design analysis. The reconstruction error

metrics for the different problem designs are summarized in table 3.6 which shows

NLSE with full-domain recovery as the best model. Addressing the discontinuity at

the domain interfaces may render NLSE with split domain recovery as a competitive

alternative. For completeness, we also compare the recovered turbulent flow single-

point statistics generated using NLSE with full- and split-domain reconstruction for

the lower sensor budget (P = 72) in fig. 3.39. Both the NLSE models qualitatively

capture the correct statistical trends except for the mean vertical velocity. We observe

that the split-domain recovery which generates higher errors in the second order

statistics due to errors at the domain interface and also form dealing with truncated

scales.
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(a) P=72(Full) (b) P=72(Split)

(c) P=480(Full) (d) P=480(Split)

Figure 3.36: Full and split domain DEIM sensor placement.
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(a) LSE (P=72) (b) LSE (P=480)

(c) NLSE-Train (Full, P=72) (d) NLSE-Train (Full, P=480)

(e) NLSE-Test (Full, P=72) (f) NLSE-Test (Full, P=480)

(g) NLSE-Train (Split, P=72) (h) NLSE-Train (Split, P=480)

(i) NLSE-Test (Split, P=72) (j) NLSE-Test (Split, P=480)

Figure 3.37: Comparison between exact and recovered u for LSE (full), NLSE (full,
split) prediction using P = 72 and 480.
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(a) LSE (P=72) (b) LSE (P=480)

(c) NLSE-Train (Full, P=72) (d) NLSE-Train (Full, P=480)

(e) NLSE-Test (Full, P=72) (f) NLSE-Test (Full, P=480)

(g) NLSE-Train (Split, P=72) (h) NLSE-Train (Split, P=480)

(i) NLSE-Test (Split, P=72) (j) NLSE-Test (Split, P=480)

Figure 3.38: Comparison between exact and recovered v for LSE (full), NLSE (full,
split) prediction using P = 72 and 480.
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Table 3.6: ESR
f comparison of LSE (full domain), NLSE (full and split domain)

methods.

Case
ESR
f

P=72 P=480
LSE-Full 4.16e-04 1.85e-05

NLSE-Full (Train) 2.65e-06 1.81e-05
NLSE-Full (Test) 4.64e-05 5.72e-05

NLSE-Split (Train) 7.25e-04 7.46e-04
NLSE-Split (Test) 8.39e-04 8.58e-04

Reconstruction of Data Beyond the Training Set (Extrapolation): Until

this point, we have focused primarily on interpolation aspect of data-driven sparse

recovery. Now we assess how the different NLSE models perform in extrapolation.

Given that the turbulent flow dynamics is stationary, we expect that the reconstruction

‘horizon’ is quite broad. For this analysis, we consider 490 snapshots for training

and nearly the same quantity of snapshots for extrapolation. The DNN design from

table 3.3 was adopted for this purpose and the sensor budget was set to P = 480 and

60 for the full- and split-domain recovery. The comparison of the predicted and exact

flow fields for the full- and split-domain recovery is shown in Fig. 3.40. The result form

this instantaneous field suggests that both the split- and full-domain NLSE perform

well in the extraplation problem. This trend is confirmed by the recovered statistical

profiles show in fig. 3.41.
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(i) NLSE (Train) (j) NLSE (Test)

Figure 3.39: Comparison of recovered turbulent statistics between NLSE full-domain
recovery and split-domain sparse recovery for P = 72.
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(a) Train (full) (b) Test (full)

(c) Train (Split) (d) Test (Split)

Figure 3.40: Comparison between exact and recovered u for NLSE (full, split) extrap-
olation.

(a) 〈u〉x,t Train (Left), Test (Right)

(b) 〈v〉x,t Train (Left), Test (Right)

Figure 3.41: The statistical comparison of NLSE extrapolation case for both full and
split domain reconstruction using random sensor placement.
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(c) 〈u′2〉x,t Train (Left), Test (Right)

(d) 〈v′2〉x,t Train (Left), Test (Right)

(e) 〈u′v′〉x,t Train (Left), Test (Right)

Figure 3.41: (continued) The statistical comparison of NLSE extrapolation case for
both full and split domain reconstruction using random sensor placement.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

4.1 Key Conclusion

In this dissertation, we investigate both linear and nonlinear approaches for sparse

reconstruction of fluid flows. We label these approaches as Linear Sparse Esimtation

or LSE and Nonlienar Sparse Estimation or NLSE. In particular we set out to asses

the advantages and limitations of nonlinear estimation over the linear approaches in a

broad sense using systematically designed numerical experiments. We report outcomes

of linear estimation on POD-based sparse recovery whereas, for nonlinear estimation

we adopted end-to-end mapping leveraging deep neural network frameworks. For LSE

problem design one can choose the reconstruction dimension for the given data. In this

work, we use multiple classes of fluid flows to explore the interplay between system

dimension and sensor budget. The emergence of sensor networks in different real life

flow prediction problem requires advanced and robust mathematical techniques to

exploit limited observations for full state estimation. To check the sensitivity of sensor

placement on the reconstruction accuracy, along with the random placement, we

also consider multiple smart-greedy sensor placement algorithms for classes of sparse

estimation methods, namely, LSE and NLSE. LSE approaches tend to be sensitive

to sensor placement. As a way to enhance the capabilities for sparse recovery many

machine learning algorithms have been integrated with traditional approaches. This

in spite of data-driven methods such as neural networks being limited by constraints

such as the training data should belong to the same statistical distribution as the flow

to be predicted. This is pertinently true for sparse reconstruction problem. We show
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this through a major portion of the dissertation by actively focusing on a statistically

stationary turbulent channel flow. To come up with the best neural network design

is often challenging in many applications. To this end, we perform hyperparameter

exploration to identify trends over a range of parameters so that good DNN designs

can be extracted. Latin Hypercube Sampling is used for such DNN design analysis in

order to work with a reduced search space.

In chapter 2, we systematically assess sparse reconstruction of fluid flows based on

linear estimation principles with a chosen set of basis vectors. We adopt the GPOD

formulation as against the traditional SR formulation and Tikhonov regularization is

employed for unique solution. To evaluate reconstruction accuracy, the SR data is

compared with the simulated field at truth across the entire ensemble of numerical

experiments. We devise two error metrics to quantify the overall SR quality in a

normalized sense and to assess relative dependence on sensor quantity along with

the system dimension. We demonstrate the outcomes for a low dimensional wake

flows, moderately high dimensional sea surface temperature data generated from

global ocean models, and for high dimensional near wall turbulent channel flow data.

The general outcome of LSE from systematic analysis of error metrics over a care-

fully designed parameter (P ∗ −K∗) space shows for a reliable reconstruction even a

marginal oversampling, i.e. P ' K is sufficient using l2 SR with a very few otherwise

cases observed. We further expand the P −K design space to include the effect of

data-driven sensor placement with the following candidates: random sensing and

greedy-smart sensing algorithms such as DEIM, QR with column pivoting, explicit

condition number minimization or MCN, and coarse grained (CG) approach of putting

sensors for channel flow data only. We observe that while random sampling shows

highly variable errors for marginal oversampling, greedy-smart sensor placement show

improved recovery under these conditions. However, the best performance is realized
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for the DEIM-based sensor placement for which the error convergence to asymptotic

behavior is rapid and systematic as against QR-pivoting which displays error hot spots

in regions of marginal oversampling. Due to having quadrilateral grid distribution in

channel flow data we introduce coarse grained sensors to evaluate the performance and

results show that, although the accuracy is less than other methods but improves very

consistently with the increase of sensor density. In the limit of heavy oversampling, the

computationally intensive MCN method produces diminishing returns as seen for the

low-dimensional wake flow due to its inability to place sufficient sensors in dynamically

relevant regions of the flow. More research is necessary to delineate the causes for this

behavior. Considering the computational complexity of data-driven sensor placement

and the accuracy of sparse reconstruction, DEIM and QR factorization with column

pivoting (in that order) turn out to be the best alternatives to random sampling for

linear estimation approach.

In chapter 3, we present a nonlinear estimation approach based on neural network

decoder design for the sparse recovery of nonlinear fluid flows. The DNN-based

nonlinear estimation method is a good alternative to LSE when there is no prior

knowledge of data basis and sensor placement is arbitrary. Without any substantial

preprocessing of the raw data our proposed NLSE approach learns an end-to-end

mapping between limited observations and full state field. To identify the best DNN

deisgn, we perform exploration over a three-dimensional parameter space (number

of hidden layers, number of neurons in each layer, and learning rate) and use Latin

Hypercube Sampling to downsample the possible candidate configurations. Once the

best model(s) is identified within the design space, we perform comparison between

linear and nonlinear estimation approaches to identify the relative strengths and

weaknesses. We report results from both low dimensional cylinder wake flow and

turbulent channel flow data. For cylinder wake flow, the NLSE model outperforms
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POD-based LSE for all the sensor placement methods applied. This suggests that

NSLE methods can offer robust performance for sparse reconstruction applications,

especially for low dimensional flows. As a higher-dimensional flow use case, we explore

the performance of NLSE relative to LSE approaches for two-dimensional snapshots of

a turbulent channel flow. The data from these 2D snapshots is extracted closer to the

wall in order to reduce the system dimension further into a manageable range. The

performance of NLSE for this relatively high dimensional flows compares favorably

to LSE although the DNN designs tend to overfit to the data. Building on our

experience using NLSE with lower-dimensional cylinder wake flow, we attempt to

bypass the high-dimensionality of the turbulent flow by splitting the data into multiple

sub-domains without losing our ability to resolve the most energy containing turbulent

scales. Such an approach helps with faster convergence, reduction of system dimension

and reduced overfitting of model to data, but introduces errors, especially at the sub-

domain interfaces. From the assessment of data-driven sensor placement algorithms,

the physics informed DEIM method offers the best recovery performance, but is harder

to implement in the field when dealing with unseen data. Therefore, placing sensors

at random locations may offer a good path forward. Our analysis shows that random

sensing provides comparable performance to the more physics-informed approaches for

the different flow patterns explored in this dissertation. Finally, we note that NSLE

methods with full- and split-domain recovery provide reasonable performance for

extrapolation reconstruction and accuracy in line with that obtained for interpolation.

4.2 Future Work and Recommendation

Emergence of many engineered systems and other diverse real-life applications with

plenty of sensor data require real-time monitoring of complex nonlinear systems for

the on spot analysis, decision making and control. Such situations require advanced

and robust mathematical techniques to maximally exploit sensor information for state
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estimation. A list of follow up research that can be pursued taking into account the

outcome of this study are outlined.

• Exploiting the underlying physics of the system and condition the estimation

approach by informing it while learning to enhance the estimation performance.

• Interplay with the other hyperparameters which have been kept fixed for this

study and investigate more on regularization techniques for further improvement

of the model.

• Interpolation was the main concern in this work and extrapolation was experi-

mented to a very short extent, so further research can be made as a continuation

of this work to find the capability of the NN model for extrapolation tasks.

• By leveraging the compression capability of neural network model we can envision

to develop useful NN based algorithm that might add benefits to the traditional

flow solvers such as RANS or LES in the construction of turbulent models.

• As the NN model is found to perform well for low dimensional case and reduced

sub-domain produces faster decrease of energy and low dimensional system, future

efforts building on this work may solve a Riemann problem at the interface to

minimize the impact of this discontinuity.

• Particularly in deep neural network the choice of nonlinearity has great impact

on the dynamics of learning as well as expressive power of the network. Use

of fixed nonlinear activation function for each neuron is a common practise

but adaptive technique can be applied to learn piecewise activation function to

achieve further improvement. Further study can be devised on developing and

integrating such algorithm.
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