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Abstract: In surveys of tomato fields during 2018 and 2019, bacterial spot was the most 
frequent foliar disease (72% of fields) followed by Septoria leaf spot (7%), and early 
blight (7%). Isolates of Xanthomonas spp. from 1998-2014 and those from 2018-2019 
were identified to species using sequences of a 420 bp region of the hrp gene cluster 
amplified by the RST65/RST69 primers. The 1998-2014 isolates were X. 
perforans (n=17), X. gardneri (n=1), and X. vesicatoria (n=1); while the 2018-2019 
isolates were also mostly X. perforans (n=42) followed by X. euvesicatoria (n=7) and X. 
gardneri (n=2). Races of X. perforans isolates included race T3 (n=15) and race T4 
(n=6). Applications of bacteriophage, Bacillus amyloliquefaciens, acibenzolar-s-methyl, 
and copper bactericides were evaluated in field trials in 2018 and 2019. All treatments 
except B. amyloliquefaciens reduced disease levels, but none were as effective as copper 
hydroxide alone and a copper-mancozeb tank-mix. Alternatives to copper programs 
generally provided variable control with bacteriophage being the most consistent. 
However, none of the bactericide treatments increased yield compared to the non-treated 
control. In the absence of highly effective bactericide treatments and resistant cultivars, 
other preventive strategies such as sanitation, volunteer management, and crop rotation 
are critical to limit pathogen carryover and prevent early disease development. Race 
structure is diverse within the state. Host plant resistance should combine multiple 
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CHAPTER I 

 

INTRODUCTION 

 

Tomato (Solanum lycopersicum L.) is an important vegetable crop grown 

extensively in the U.S. for both processing and fresh market. Annual production of fresh 

market tomato in the U.S. is valued at over 1 billion dollars (USDA-NAS, 2019). In 

Oklahoma, fresh-market tomato is an important crop for direct market vegetable farmers 

and gardeners (Brandenberger et al., 2014; Hillock & Rebek, 2013). The lengthy growing 

season in central and eastern Oklahoma of between 200 and 230 frost-free days provides 

tomato producers the opportunity for a long harvest season that typically begins in late 

June and continues into September (Brandenberger et al., 2014). This extended harvest 

season comes with the challenge of managing foliar disease. Several common foliar 

diseases of tomato in Oklahoma are Septoria leaf spot (Septoria lycopersici), early blight 

of tomato (Alternaria solani), bacterial speck (Pseudomonas syringe pv. tomato), and 

bacterial spot (Xanthomonas spp.) (Damicone & Brandenberger 2016; Damicone & 

Brandenberger 2017).   

Effective control of foliar disease hinges on an accurate diagnosis of the causal 

agent(s) involved. This is because bacteria that cause foliar disease in tomato are 
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managed differently than those caused by fungi (Jones et al., 1991). In recent years foliar 

disease of tomato in Oklahoma has been diagnosed as early blight in most instances. A 

survey of foliar disease of tomato in Oklahoma is needed to better understand the risk 

that each disease poses to producer’s tomato crops. Bacterial spot of tomato is known to 

occur in Oklahoma but since being reclassified from X. campestris pv. vesicatoria in 

2004, the cause of bacterial spot of tomato in Oklahoma has been unknown (Bender et 

al., 1990; Jones et al., 2004). Identifying causal agents based on their species and race 

should inform breeding efforts to develop genetic resistance to manage bacterial spot of 

tomato in Oklahoma. The objectives of the work described in chapter III are as follows: i) 

determine the incidence of bacterial spot relative to other foliar diseases of tomato in 

Oklahoma; ii) Identify the reclassified species of Xanthomonas causing bacterial spot of 

tomato in Oklahoma; iii) characterize race structure of Xanthomonas causing bacterial 

spot of tomato in Oklahoma. 

The application of copper bactericides in a preventative program has been used 

extensively since the early 1800’s to control bacterial plant pathogens (Obradovic et al., 

2008). Unfortunately, some strains of the xanthomonads causing bacterial spot became 

tolerant to copper in the 1980’s, which reduced bactericidal efficacy and prompted a 

search for alternative control measures (Marco & Stall, 1983; Obradovic et al., 2008). 

Isolates of X. campestris pv. vesicatoria, from North Carolina in 1986-1990 had a high 

frequency of copper and streptomycin resistance (Ritchie & Dittapongpitch, 1991). 

Improved bactericide efficacy through the combination of copper bactericide and 

ethylene-bis-dithiocarbamate fungicide has been demonstrated (Conover & Gerhold, 

1981; Marco & Stall, 1983). However the efficacy of copper-mancozeb applications may 
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be inadequate when conditions favor severe disease caused by copper tolerant strain of X. 

perforans (Strayer-Scherer et al., 2018). In addition to copper bactericides, antibiotics 

have been used for control of bacterial diseases (Sundin & Wang, 2018). Observations of 

antibiotic resistance developing in plant pathogenic bacteria, fears over resistance being 

transferred to human pathogenic bacteria, and the implications of such a transfer to 

human medicine have resulted in the limited usage of antibiotics in U.S. crop production. 

However, the antibiotic streptomycin is registered for use in control of bacterial spot in 

the greenhouse production of tomato and pepper transplants (McManus et al., 2002).  

Novel approaches in the control of bacterial diseases include application of viral 

bacteriophages that kill bacteria and competitive displacement by biocontrol agents 

(Obradovic et al., 2008). The efficacy of biological control agents can be impacted by 

environmental conditions, necessitating climate and region specific evaluation of 

commercially available products. Another alternative management tactic is the use of a 

chemical that induces systemic resistance to disease in the plant. Acibenzolar-s-methyl is 

a widely used systemic acquired resistance inducer that has been shown to be effective at 

preventing diseases caused by bacteria, fungi, and viruses (Oostendorp et al., 2001). 

Copper-resistant strains of X. campestris pv. vesicatoria have been isolated from tomato 

trial plots in eastern Oklahoma (Bender et al., 1990). Both the challenge of controlling 

copper-tolerant Xanthomonas strains, and the need to integrate control measures to 

prevent the selection of tolerant strains, warrant the evaluation of alternative control 

measures. The objective of the research found in Chapter IV was to determine the 

efficacy of bactericides that utilize various modes of action in the management of 

bacterial spot of tomato. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

Taxonomy of tomato  

The cultivated tomato (Solanum lycopersicon L.) is an herbaceous perennial that 

is grown as an annual crop (Peralta & Spooner, 2007). Tomato is a member of the plant 

family, Solanaceae, which is shared by several other plant species of horticultural 

importance including potato (Solanum tuberosum L.), pepper (Capsicum annuum L.), 

eggplant (Solanum melongena L.), tobacco (Nicotiana tabacum L.), and petunia (Petunia 

spp. Juss.). The wild ancestors of the cultivated tomato are native to modern day Ecuador, 

Peru, and northern Chile, and have been adapted to diverse climactic conditions from arid 

coastal climates near sea level to Andean highlands at elevations as great as 3,300 m 

(Peralta & Spooner, 2000). Until recently, a lack of consensus over the taxonomic 

classification of tomato left ambiguity around whether it belonged in the genus Solanum 

or Lycopersicon. Linnaeus originally placed tomato in Solanum on the grounds of 

botanical similarity with other members of the genus, particularly potato. A recent 
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molecular analysis of chloroplast DNA restriction site data has provided support for a 

common phylogeny between tomato and potato and has reinforced Linnaeus original 

assertion that the cultivated tomato belongs in the genus Solanum (Peralta & Spooner, 

2007).  

 

Cultivation of tomato  

 A well-drained soil with a texture of sandy to sandy-loam and a pH of 6.0 to 6.8 is 

ideal for optimum plant health in tomato (Brandenberger et al., 2014). Use of transplants 

in commercial field production of tomato is standard practice. Ideal tomato transplants 

are immature, 6 to 8 inches in height, and preconditioned to the prevalent environmental 

conditions of the production environment at the time of transplanting (Kelley & Boyhan, 

2017). Transplanting rather than direct seeding can help plants reach maturity earlier in 

the spring when temperatures are more favorable for efficient pollination and fruit set. 

Tomato is primarily self-pollinated in nature (Kelley & Boyhan, 2017). Wind currents 

ensure effective pollination in field grown tomato, while tomatoes grown in protected 

culture (greenhouse, unheated tunnel, etc.) benefit from the activity of bumblebees 

(Bombus impatiens Cresson) ensuring optimal pollination and fruit set (Morandin et al., 

2001; Kelley & Boyhan, 2017). Tomato plants growing in environments with day 

temperatures that exceed 34 °C or night temperatures that exceed 21 °C can experience a 

sharp reduction in fruit set due to blossom drop (Brandenberger et al., 2014). Tomato 

varieties exhibit one of the following growth habits, determinate, semideterminate, or 

indeterminate (Elkind et al., 1991). Determinate tomato varieties terminate growth of the 

shoot apical meristem in the production of an inflorescence. Determinate varieties have 
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been described as a plant with five or less inflorescences on the main stem and a height 

that is genetically determined (Elkind et al., 1991; Macarthur, 1932) Semideterminate 

plants also exhibit a height that is genetically predetermined but in contrast to growth of a 

determinate variety, semideterminates produce six or more inflorescences on the main 

stem (Elkind et al., 1991). Indeterminate varieties demonstrate continuous shoot growth 

and have no genetically predetermined height. Indeterminate varieties require staking and 

pruning of shoots, while determinate varieties are staked and pruned at the choice of the 

producer (Brandenberger et al., 2014). In general, pruning is used to balance the 

vegetative and reproductive growth of tomato. Pruning can be an effective method for 

increasing fruit size and can reduce disease by improving air movement through the 

canopy (Brandenberger et al., 2014; Kelley & Boyhan, 2017).  

 

Tomato production 

In 2018, the United States produced a total of 12.5 million tonnes of tomatoes 

(USDA-NAS, 2019). In the United States tomatoes are produced commercially for both 

fresh market and processing uses (USDA-NAS, 2019). According to the Food and 

Agriculture Organization of the United Nations (FAO) between 2000 and 2018 the 

average national production in the top three tomato producing countries of China, the 

United States, and India, was 42.1, 13.3, and 13.0 million tonnes, respectively (FAO-

STAT, 2020). In the United States tomatoes are grown extensively for processing, which 

accounts for over 90% of total production. California produces nearly all of the United 

States processing tomatoes with more than 11.1 million tonnes produced in 2018 (USDA-

NAS, 2019). Florida produced nearly 362,000 tonnes of fresh-market tomatoes in 2017 
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while California produced nearly 332,000 tonnes the same year (USDA-NAS, 2019). In 

Oklahoma, commercial tomato production is primarily for local markets and fruit are 

often marketed directly to consumers (Brandenberger et al., 2014).  

  

Systematics of bacterial spot of tomato 

Doidge (1921) described a ‘canker’ disease of tomato that affected the fruit 

surface with scab-like lesions at a market in Pretoria, South Africa, and named the causal 

agent, Bacterium vesicatorium. At around the same time in Indiana, U.S.A. the tomato 

canning crops of 1918 and 1919 were impacted by what Gardner and Kendrick described 

as a disease causing lesions or ‘spots’ on the foliage as well as scab-like lesions on the 

fruit (Gardner & Kendrick, 1921) Gardner and Kendrick inoculated the yellow bacteria 

isolated from the tomato crop in Indiana to pepper foliage and observed symptoms 

consistent with what had previously been described as ‘bacterial spot of pepper’. They 

attributed the causal organism of ‘bacterial spot of pepper’ to also be the cause of the 

observed disease of tomato, and named the disease ‘bacterial spot of tomato’ (Gardner & 

Kendrick, 1921). The cause of bacterial spot of tomato and pepper was briefly classified 

as Pseudomonas vesicatorium by Stevens (1925), and then reclassified as Phytomonas 

vesicatoria by Bergey et al. (1930).  

When proposing the genus Xanthomonas, Dowson (1939) reclassified the causal 

agent of bacterial spot of tomato and pepper as Xanthomonas vesicatoria, which would 

remain the classification for decades. Dye and Lelliot (1974) reduced the number of 

species in the genus Xanthomonas and in the process reclassified X. vesicatoria to X. 

campestris. Young et al. (1978) proposed that the species Xanthomonas campestris be 
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further classified into pathovars and after subsequent acceptance by Dye et al. (1980) the 

causal agent of bacterial spot of tomato and pepper became classified as Xanthomonas 

campestris pv. vesicatoria (Doidge) Dye. Within X. campestris pv. vesicatoria Stall et al. 

(1994) and Vauterin et al. (1995) described two distinct groups distinguished by the 

strongly amylolytic and pectolytic characteristics of group B, which contrasted with the 

weak capacity of group A to hydrolyze starch and pectin. Group B was reclassified by 

Vauterin et al. (1995) as X. axonopodis pv. vesicatoria.  

 

There are currently four known causal agents of bacterial spot of tomato 

(Xanthomonas euvesicatoria, X. vesicatoria, X. perforans and X. gardneri) (Jones et al., 

2004). Jones et al. (2004) reclassified the strains into four species using a combination of 

phenotypic and DNA homology data. Jones et al. (2004) retained X. vesicatoria, which 

had been previously described by Vauterin et al. (1995) on the basis of its carbon source 

utilization pattern. Jones et al. (2004) proposed X. euvesicatoria to classify the strain 

originally isolated by Doidge in 1921. This organism is described as weakly amylolytic 

and pectolytic, and unlike other bacterial spot pathogens, utilized cis-aconitic acid in all 

strains tested. The strain reclassified by Jones et al. (2000) as X. gardneri was first 

isolated by Šutic (1957) in Yugoslavia and named Pseudomonas gardneri. This organism 

was considered by Dye (1966) to be ‘Xanthomonas vesicatoria’ on the grounds of 

morphological and biochemical tests. Jones et al. (2004) later found X. gardneri to be 

distinguishable from other tomato and pepper pathogenic species by its non-utilization of 

certain carbon sources, especially dextrin, which is utilized by all other bacterial spot 
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pathogens. Phenotypically, X. gardneri is weakly amylolytic and pectolytic, which 

distinguishes this species from X. vesicatoria and X. perforans.  

Jones et al. (2004) describes X. perforans as producing lesions that rapidly 

become necrotic and whose centers fall out leaving a shot hole symptom on infected 

leaves. X. perforans was first identified from tomato fields in Florida in the 1990’s (Jones 

et al., 1995; Jones et al., 2004). Its original classification as a T3 strain of X. campestris 

pv. vesicatoria was based on differential reaction to resistant tomato cultivars and the 

strong amylolytic and pectolytic activity of the strain (Jones et al., 1995). Each of the four 

Xanthomonas spp. causing bacterial spot have been shown to have less than 70 % DNA 

relatedness with one another based on DNA:DNA hybridization (Jones et al., 2004).  

 

Biology of bacterial spot of tomato 

Increase and within field spread of bacterial spot occurs when conducive 

environmental factors are present, such as high humidity, temperatures ranging from 24 

to 30 °C, and wind-driven rain events (Momol et al., 2002). Upon contact with the plant 

surface, the pathogen enters through wounds as well as natural openings, such as stomata 

(Momol et al., 2002).  Xanthomonas species pathogenic to tomato produce symptoms, 

which include circular necrotic lesions or ‘spots’, on the foliage, stem, sepals and fruit  

(Jones et al., 2004; Jones et al., 1991). Leaf lesions can develop to 3 mm in diameter and 

coalesce until the foliage becomes entirely necrotic (Jones et al., 1991). Fruit lesions, 

which may or may not be present, appear as blisters or scabs that are sunken on green 

fruit and slightly raised on ripening fruit (Jones et al., 1991). The bacteria can be readily 
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cultured from lesions on nutrient agar, on which they produce circular, mucoid, yellow 

colonies (Jones et al., 1991).  

Variation in symptoms and aggressiveness among the bacterial spot pathogens has 

been observed (Potnis et al., 2015). In 2010, an outbreak of bacterial spot affecting 

commercial fields of canning tomatoes in Ohio and Michigan was primarily caused by X. 

gardneri, which produced significant fruit spotting symptoms (Ma & Miller, 2011). X. 

gardneri has also been identified as a primary cause of bacterial spot of tomato in 

Pennsylvania in 1995, and has since reoccurred there in 2001, and every year between 

2003 and 2009 (Kim et al., 2010). X. gardneri regularly causes large scab-like lesions on 

tomato fruit as well as causing greater disease severity at lower temperatures (20 °C) 

compared to the other bacterial spot pathogens (Araujo et al., 2010; Ma & Miller, 2011). 

By contrast, X. perforans is most aggressive at warmer temperatures (30 °C) (Araujo et 

al., 2010). A virulent isolate of X. perforans race 4 was recovered from commercial 

tomato fields in southern Louisiana in 2013 and 2014 (Lewis Ivey et al., 2016). Tomato 

race 4 of X. perforans has been reported to be the dominant pathogen causing bacterial 

spot of tomato in Florida and North Carolina (Adhikari et al., 2019; Horvath et al., 2012). 

In 2017, seventeen copper tolerant strains of X. perforans were isolated from commercial 

tomato fields in central Mississippi (Abrahamian et al., 2018). Survey data suggests that 

X. perforans has become a common causal agent of bacterial spot of tomato throughout 

the southern United States (Abrahamian et al., 2018; Adhikari et al., 2019; Horvath et al., 

2012; Lewis Ivey et al., 2016).  
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Management of bacterial spot of tomato 

Chemical control measures 

Control measures have historically depended on streptomycin or copper-based 

bactericidal compounds, both of which have decreased in efficacy with the emergence of 

resistant strains of Xanthomonas spp. (Marco & Stall, 1983; Potnis et al., 2015; Stall & 

Thayer, 1962). The tank-mixing of copper formulations with mancozeb or maneb 

fungicide has been shown to improve the chemical control of bacterial spot and is a 

standard treatment for commercial tomato growers (Conover & Gerhold, 1981). 

However, results of a trial conducted in eastern Oklahoma in 1987 reported that 

mancozeb-cupric hydroxide applications to control a Cu tolerant strain of X. campestris 

pv. vesicatoria were unable to improve yield or reduce disease incidence compared to the 

untreated control (Bender et al., 1990). Chemical protectants may fail to provide a level 

of control that is adequate to prevent losses when environmental conditions are optimal 

for bacterial spot development (Momol et al., 2002). Additionally, the extensive use of 

copper compounds as bactericides can have deleterious effects on the production 

environment because copper ions may build up to phytotoxic levels in the soil (Momol et 

al., 2002).   

 

Biological control agents 

Ji et al. (2006) tested foliar applications of Pseudomonas syringae and P. putida 

strains in various combinations with the plant growth promoting rhizobacteria (PGPR) P. 

fluorescens and Bacilus pumilus for control of Xanthomonas campestris pv. vesicatoria 

(Ji et al., 2006). The biological control agent, P. syringae strain Cit7 was found to 
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significantly decrease bacterial spot severity compared to the non-treated control and 

provided control that was statistically equivalent to a copper and mancozeb spray 

program (Ji et al., 2006). Interestingly, combinations of PGPR and biological control 

agents showed no consistent improvement across locations in controlling the disease 

when compared with biological control agent alone (Ji et al., 2006).  

Bacterial viruses or bacteriophages specifically targeting the bacterial spot 

pathogen have been tested alone and in combination with the systemic acquired 

resistance inducer, acibenzolar-s-methyl for bacterial spot control (Balogh et al., 2003; 

Flaherty et al., 2000; Obradovic et al., 2004). Flaherty et al. reported a 17% reduction in 

disease severity of plants treated with bacteriophage verses an 11% reduction in plants 

treated with copper-mancozeb (Flaherty et al., 2000). Bacterial spot control with 

bacteriophage was improved by formulating them in skim milk, casecrete, or 

pregelatinized corn flour, and by timing applications to occur in the evening, rather than 

during the morning hours (Balogh et al., 2003). 

 

Systemic acquired resistance inducers 

Louws et al. (2001) evaluated the effect of the systemic acquired resistance 

inducer, acibenzolar-s-methyl on fruit yield and disease severity of tomato in field 

experiments carried out in Alabama, Florida, North Carolina, Ohio, and Ontario. In 13 of 

15 experiments, acibenzolar-s-methyl reduced bacterial spot severity on tomato foliage 

compared with the non-treated control. However, the average total fruit yield across all 

15 experiments was not significantly different between the acibenzolar-s-methyl treated 

plots, the standard bactericide program (copper hydroxide + mancozeb or maneb) treated 
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plots, and the non-treated control. The amount of extra large fruit harvested was 

reportedly less in the acibenzolar-s-methyl treated plots, which suggests a potential 

impact to fruit quality from treatment with acibenzolar-s-methyl. Additionally, 

acibenzolar-s-methyl was used in combination with a standard bactericide program to 

determine if an additive effect exists. Acibenzolar-s-methyl applied alone was as 

effective at reducing bacterial spot disease as acibenzolar-s-methyl combined with the 

standard bactericide program.   

 

Host plant resistance 

Host plant resistance to bacterial spot in tomato has been extensively studied but 

has not been developed in commercial tomato varieties (Timilsina et al., 2016). In 

contrast, resistance to bacterial spot has become widely available in improved varieties of 

pepper (Capsicum annuum) (Keinath, 2017). Several sources of monogenic resistance to 

bacterial spot have been identified in tomato, which has provided the ability to 

characterize the bacterial spot pathogen(s) by race (Astua-Monge et al., 2000; Jones, 

Stall, & Bouzar, 1998).  

The pathogens that cause bacterial spot of tomato can be differentiated into one of 

four pathogen races, T1 to T4 (Astua-Monge et al., 2000; Jones, Stall, & Bouzar 1998). 

Race differentiation is dependent on the presence of functional avirulence gene or 

effector in the pathogen, which interacts with a resistance gene found in the plant to 

produce a resistant hypersensitive reaction (Astua-Monge et al., 2000; Jones, Stall & 

Bouzar, 1998).  Jones and Scott (1986) characterized the tomato line, Hawaii 7998, as the 

first cultivar with resistance to bacterial spot of tomato being caused by a hypersensitive 
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response (Jones & Scott 1986; Vanderplank, 1963). Strains of Xanthomonas spp. capable 

of initiating a hypersensitive response on Hawaii 7998 were classified as race T1 (Jones 

et al., 1998). A second source of major gene resistance was identified in the cultivar 

Hawaii 7981 (Jones et al., 1995). Strains capable of initiating a hypersensitive response in 

Hawaii 7981 have been designated as race T3 (Jones et al., 1995; Jones et al., 1998). 

Strains causing a compatible reaction on the cultivars Bonny Best, Hawaii 7998, and 

Hawaii 7981 are designated as race T2.  Most recently, race T4 was identified that 

elicited a hypersensitive response by the resistance gene Xv4 in LA716 a wild relative of 

tomato, Lycopersicon pennellii (Astua-Monge et al., 2000).  

 

Table 2.1 Differential reactions of races of xanthomonads on tomato resistance genes 
Effector      
 Bonny best Hawaii 7998 Florida 216 LA 716 Race 
Gene none (rx1,rx2,rx3) (Xv3) (Xv4)  
AvrRxv + HR + + T1 
None + + + + T2 
AvrXv3, AvrXv4 + + HR HR T3 
AvrXv4 + + + HR T4 

Adapted from tables and data reviewed by Stall, Jones, and Minsavage (2009) 
 

The shifting of races within the pathogen populations to overcome major 

resistance genes has posed a challenge to breeders working to develop host plant 

resistance that is widely adapted and stable (Bhattarei et al., 2017; Jones et al., 1998). 

Bhattarai et al. (2017) identified sources of resistance to X. perforans race T4, the most 

prevalent race in North Carolina, by screening tomato genotypes that included breeding 

lines developed at North Carolina State University and described the common parentage 

of these bacterial spot resistant lines as including Solanum pimpinellifolium L3707 in 
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their pedigrees suggesting that multigenic resistance may be found in this genotype. Stall 

et al. (2009) suggested that future development and deployment of resistance to bacterial 

spot focus on combining multiple major resistance genes into one genotype, combining 

minor or quantitative resistance genes into one genotype, and growing mixtures of tomato 

genotypes with different resistance genes, called multilines, to reduce selection pressure 

on bacterial spot pathogens.  

 

Cultural control practices 

Cultural practices such as disposing of culled fruit, removal or tillage of plant 

debris, rotation to a non-host, and elimination of volunteer tomato seedlings play an 

important role in breaking the disease cycle (Momol et al., 2002). The potential of crop 

residues, weedy hosts, volunteer seedlings, and contaminated seed to act as primary 

inoculum for bacterial spot in Florida has been explored (Jones et al., 1986). It was 

determined that residue from a previous winter crop is unlikely to provide sufficient 

inoculum to cause disease in the following winter production cycle (Jones et al., 1986). 

Conversely it was demonstrated that overwintering of Xanthomonas vesicatoria in tomato 

residue in Indiana did serve as primary inoculum for infection in the subsequent spring 

crop, which suggests that lower temperatures increase pathogen carryover (Peterson, 

1963). On Florida, weedy host species are likely not a primary contributor to bacterial 

spot epidemics and contamination levels are very low in tomato seed lots (Jones et al., 

1986). Good field sanitation and use of disease free transplants are among the most 

important tools to prevent the introduction of bacterial spot into the production 

environment (Momol et al., 2002).  
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Bacterial spot of tomato in Oklahoma 

Bacterial spot is a common foliar disease of tomato in Oklahoma (Damicone & 

Brandenberger, 2017). Tomatoes are grown in Oklahoma during the warmest summer 

months of July and August when daytime high temperature averages exceed 90 °F (32 

°C). High relative humidity and rainfall often occur during May and June in central 

Oklahoma, which coincides with crop establishment and early harvest. Abundant 

moisture in the early cropping period coupled with consistently high temperatures later in 

the growing season provides a highly conducive environment for the growth and spread 

of bacterial spot (Jones et al., 1991). A study evaluating spray programs for control of 

bacterial spot (Xanthomonas campestris pv. vesicatoria) and bacterial speck 

(Pseudomonas syringae pv. tomato) of tomato in Oklahoma has shown that yield of 

marketable fruit increased with the use of weekly applications of copper or copper + 

mancozeb (Damicone & Trent, 2003). However, results of an earlier trial in Oklahoma 

showed that mancozeb-cupric hydroxide applied to control a copper-tolerant strain of X. 

campestris pv. vesicatoria did not improve yield or reduce disease incidence compared to 

the untreated control (Bender et al., 1990). Xanthomonads that cause bacterial spot are 

genetically diverse and capable of overcoming chemical control and host plant resistance 

(Bender et al., 1990; Stall et al., 2009; Sundin & Bender, 1995). In order to effectively 

address this challenge for Oklahoma tomato producers more needs to be known about the 

biology of the bacterial spot of tomato pathogens found in Oklahoma and the efficacy of 

management tactics employing diverse modes of action against the pathogens.  
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 This research seeks to understand the biology of bacterial spot of tomato, its 

distribution in Oklahoma, and the efficacy of various management strategies.  

The objectives of the research in Chapter III were: i) determine the incidence of bacterial 

spot of tomato relative to other major foliar diseases of tomato in Oklahoma; ii) identify 

the reclassified species of Xanthomonas causing bacterial spot of tomato in Oklahoma; 

iii) characterize the local races of xanthomonads that cause bacterial spot of tomato. The 

objective of the research in Chapter IV was: i) describe the efficacy of bactericides that 

utilize various modes of action in the management of bacterial spot.  
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CHAPTER III 

 

DISTRIBUTION AND BIOLOGY OF BACTERIAL SPOT OF TOMATO 

IN OKLAHOMA 

 

ABSTRACT  

A survey of foliar diseases of tomato was conducted in Oklahoma during 2018 and 2019. 

Bacterial spot (Xanthomomnas spp.) occurred most frequently (72 % of sites) followed 

by early blight (Alternaria solani) and Septoria leaf spot (Septoria lycopersici), which 

both occurred at 7 % of sites. Isolates of Xanthomonas spp. from 1998-2014 and those 

from 2018-2019 were identified to species using sequences of a 420 bp region of 

the hrp gene cluster amplified by the RST65/RST69 primers. Isolates from 2018 were 

also identified as X. euvesicatoria by amplification of a 173 bp DNA fragment by Bs-

XeF/Bs-XeR primers in a PCR-assay. Isolates were infiltrated in resistant cultivars to 

identify race. The 1998-2014 isolates were X. perforans (n=17), X. gardneri (n-1) and X. 

vesicatoria (n=1); while the 2018-2019 isolates were also mostly X. perforans (n=42) 

followed by X. euvesicatoria (n=7) and X. gardneri (n=2). X. perforans isolates were race 

T3 (n=15) and T4 (n=6). Bacterial spot is the most important foliar disease of tomatoes in 

Oklahoma and is primarily caused by X. perforans. Host plant resistance should combine 

multiple resistance genes to be of greatest benefit to producers in the region.  
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INTRODUCTION 

Tomato (Solanum lycopersicum L.) is an important vegetable crop in the United 

States that is worth over 1 billion dollars annually (USDA-NAS, 2019). In Oklahoma, 

tomatoes are produced primarily for local fresh markets and in residential gardens 

(Brandenberger et al., 2014). The sub-tropical climactic conditions in the state include 

warm temperatures, high humidity, and periodic rain events conducive to the 

development of foliar diseases. Foliar diseases caused by both fungal and bacterial plant 

pathogens such as bacterial spot, Septoria leaf spot, and early blight are known to 

commonly affect tomatoes in Oklahoma (Damicone & Brandenberger, 2016; Damicone 

& Brandenberger, 2017). However, disease identification by producers and extension 

professionals is difficult because symptoms of the various foliar diseases appear similar. 

Yield reductions due to foliar diseases of tomato occur indirectly through plant 

defoliation, and with some diseases (e.g. bacterial spot, early blight) occur directly 

through fruit spotting (Jones et al., 1991). Fruit losses due to early blight of between 30 

and 50 % of fruit may occur. 

Septoria leaf spot, caused by the fungus Septoria lycopersici Speg, overwinters in 

plant debris as the source of primary inoculum the following season (Jones et al., 1991). 

Symptoms first appear as yellow areas on leaves that later become small, circular gray 

lesions with a dark border, often surrounded by a yellow halo (Damicone & 

Brandenberger, 2016). Pyncidia develop in the lesions, and produce conidia, which are 

spread by rain splash and re-infect the host (Jones et al., 1991). Infection by S. lycopersici 

occurs most readily at moderate temperatures (20 to 25 °C). Septoria leaf spot 
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development is most prolific during periods of high relative humidity and leaf wetness.  

   

Early blight caused by the fungus Alternaria solani (Ell. & Mart.) is favored by 

warm temperatures (28-30 °C) frequent rainfall, and high relative humidity (Jones et al., 

1991). Primary inoculum is from soilborne and residue borne spores from the previous 

crop (Damicone & Brandenberger, 2016). Airborne conidia from leaf spots serve as 

secondary inoculum (Jones et al., 1991). Lesions on foliage are >6 mm in diameter, dark 

brown with concentric rings, often surrounded by leaf chlorosis. Fruit lesions occur at the 

calyx end, are dark, and may show concentric rings.  

 

Bacterial spot is a damaging foliar disease that typically develops in climates that 

are warm (24-30 °C) and humid, except when caused by Xanthomonas gardneri which 

can develop at 20 °C (Araujo et al., 2010; Momol et al., 2002). The four Xanthomonas 

species known to cause bacterial spot include X. euvesicatoria, X. gardneri, X. perforans, 

and X. vesicatoria (Jones et al., 2004). The causal agents of bacterial spot were long 

classified as X. campestris pv. vesicatoria (Dye et al., 1980). However strains were 

identified that varied in metabolic traits such as amylolytic and pectolytic activity (Stall 

et al., 1994; Vauterin et al., 1995). Strains in Group A display strong amylolytic and 

pectolytic activity, while B strains are less capable of hydrolyzing starch and pectin. 

Primary inoculum may be introduced into the production environment by infected seed or 

seedlings or from infected crop residue (Jones et al., 1991). Secondary inoculum is 

dispersed by wind driven rain, aerosols, and mechanical transmission. 
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The pathogens that cause bacterial spot of tomato can be differentiated into one of 

four races, T1 to T4 (Astua-Monge et al., 2000; Jones, Stall, & Bouzar, 1998). Race 

differentiation is dependent on the presence of an avirulence gene in the pathogen, which 

corresponds with a resistance gene found in one of a differential set of tomato cultivars 

(Astua-Monge et al., 2000; Jones, Stall, & Bouzar, 1998). The cultivar, Hawaii 7998, was 

first found to exhibit a hypersensitive resistant response to inoculation (Jones & Scott, 

1986). Strains of Xanthomonas that elicit hypersensitive resistant response in Hawaii 

7998 have been classified as race T1 (Whalen et al., 1993). Race T2 strains have been 

described as lacking the avrRxv effector, which is responsible for induction of HR in 

Hawaii 7998 by T1 strains. Race T2 causes a compatible or susceptible reaction on 

Hawaii 7998. Race T3 was first reported in 1995 causing a resistant response on the 

differentials Hawaii 7981, PI 126932, and PI 128216; but a susceptible response on 

Hawaii 7998 (Jones et al., 1995; Obradovic et al., 2008). The avirulence gene (avrRxv3) 

in T3 strains of X. campestris pv. vesicatoria induces a resistant response in PI 128216 

(Minsavage et al., 1996). Race T4 induces hypersensitive resistant response on the 

differential cultivar LA716 of Lycopersicon pennellii that carries the Xv4 resistance gene 

(Astua-Monge et al., 2000). Race T4 induces hypersensitive response on Xv4 carrying 

host differential cultigens, but does not induce hypersensitive response on Xv3 carrying 

host plants. X. perforans race T4 is capable of overcoming multiple known sources of 

host plant resistance in tomato (rx1, rx2, rx3, Xv3)  and has become a major impediment 

in the deployment of resistance to manage bacterial spot (Stall, Jones, & Minsavage, 

2009).  
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Table 3.1 Differential reactions of races of xanthomonads on tomato resistance genes 
Effector      
 Bonny best Hawaii 7998 Florida 216 LA 716 Race 
Gene none (rx1,rx2,rx3) (Xv3) (Xv4)  
AvrRxv + HR + + T1 
None + + + + T2 
AvrXv3, AvrXv4 + + HR HR T3 
AvrXv4 + + + HR T4 

Adapted from tables and data reviewed by Stall, Jones and Minsavage (2009) 
 

The distribution of Xanthomonas species causing bacterial spot varies by 

continent possibly influenced by mean annual temperature (Araujo et al., 2010; 

Obradovic et al., 2008). In Taiwan, X. euvesicatoria and X. vesicatoria have been 

displaced by X. perforans in recent years (Burlakoti et al., 2018). X. gardneri was not 

found in Taiwan. In North America all four species occur (Potnis et al., 2015). In Ohio 

and Michigan, X. gardneri was the primary causal agent and caused extensive fruit 

spotting (Ma et al., 2011). Before 2010, the primary causal agent there was X. 

euvesicatoria, which was detected along with X. vesicatoria in 2010. Strains collected in 

eastern Pennsylvania from 1995 to 2009 were identified as X. gardneri (Kim et al., 2010). 

The regular occurrence of X. gardneri in northern states is consistent with experimental 

data showing an increased competitiveness at lower temperatures of 20 °C (Abbasi et al., 

2015; Araujo et al., 2010; Kim et al., 2010; Ma et al., 2011). In North Carolina X. 

perforans was the predominant pathogen and race T4 strains far outnumbered T3 strains 

(Adhikari et al., 2019). In Ontario, X. perforans was the most common pathogen (Abbasi 

et al., 2015). X. gardneri was also found in Ontario, as well as X. euvesicatoria and X. 

vesicatoria which were detected at low levels. In Florida where X. perforans race T3 was 

first discovered, this pathogen together with X. perforans race T4 are the only major 
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causal agents of bacterial spot (Horvath et al., 2012; Jones et al., 1995). X. perforans was 

also found in southern Louisiana in 2013 and 2014 and Mississippi in 2017 (Abrahamian 

et al., 2019; Lewis-Ivey et al., 2016).  

Foliar diseases of tomato are a major challenge for producers in Oklahoma due to 

the regions climate (Damicone & Brandenberger, 2016; Damicone & Brandenberger, 

2017). Effective control of foliar disease hinges on an accurate diagnosis of the causal 

agent(s) involved. A survey of foliar disease of tomato in Oklahoma is needed to better 

understand the risk that each disease poses to producers. Bacterial spot of tomato has 

been previously diagnosed in Oklahoma but since being reclassified from X. campestris 

pv. vesicatoria in 2004 the cause of bacterial spot of tomato in Oklahoma has been 

unknown (Jones et al., 2004). Identifying the causal species and race is important in 

developing management strategies and genetic resistance to manage the disease. The 

objectives of this work are: i) determine the distribution and severity of bacterial spot 

relative to other foliar diseases of tomato in Oklahoma; ii) Identify the reclassified 

species of Xanthomonas causing bacterial spot of tomato in Oklahoma; iii) characterize 

the race structure of the pathogens identified. 

 

 

MATERIALS & METHODS 

Foliar disease survey  

In 2018 and 2019 a survey of 29 field sites was conducted to determine the 

occurrence and severity of foliar diseases of tomato in Oklahoma (Figure 3.1). Sites were 

selected based on reports by growers or extension personnel of unidentified foliar disease 



 

 

 
 

30 

in field-grown tomato. In 2018, 15 sites in 11 counties were surveyed. In 2019, 14 sites in 

seven counties were surveyed. Three of the sites were surveyed both years. Sites visited 

between 15 June and 12 July in 2018 and between 10 June and 16 July in 2019 were 

evaluated for disease incidence and severity. The Logan county site visited on 3 August 

2018 evaluated disease occurrence but not severity because of concerns over the time of 

evaluation biasing results. Disease was visually assessed on 3 typical plants per site. 

Disease incidence, the percentage of leaves with symptoms of foliar disease including 

defoliation, and defoliation alone were assessed on each plant. Samples of diseased 

leaves and/or fruit were taken to the lab for diagnosis. Plant disease incidence was 

determined by the number of symptomatic plants per field divided by the total number of 

plants assessed. 
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Figure 3.1 Counties in Oklahoma surveyed for foliar disease of field-grown tomatoes in 2018 and 2019. 
Number of field sites surveyed in each county is shown (n=29 sites). 
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Disease diagnosis  

Lesions characteristic of fungal disease symptoms were selected. Two-sided tape 

was used to capture exterior fungal structures from the surface of the leaf material. Tape 

was mounted to standard microscope slide with the sample facing away from the slide. 

Sterile distilled water was placed on the surface of the sample and a standard cover slip 

was placed over the suspension. Samples were mounted on a compound light microscope 

and viewed at 400X magnification. Early blight was diagnosed by observation of large 

numbers of conidia with cross and longitudinal septa and characteristic beak morphology 

that is diagnostic for Alternaria solani (Barnett & Hunter, 1998; Kemmit, 2002). Septoria 

leaf spot was diagnosed by observation of large numbers of narrowly elongate, hyaline, 

several celled conidia that were diagnostic of Septoria lycopersici (Barnett & Hunter, 

1998). Bacterial spot was diagnosed by culturing of yellow-mucoid colonies typical of 

Xanthomonas spp. from symptomatic leaves on nutrient agar and detection of DNA 

fragment conserved among Xanthomonas by PCR-assay.  

 

Bacterial identification, isolation, and storage 

Bacteria were isolated from lesions with symptoms typical of bacterial spot. 

Lesions (1 per plant, 3 per site in 2018 and 2 per plant, 6 per site in 2019) were excised 

into 2 mm2 sections, and surface sterilized in 0.05 % sodium hypochlorite and 10 % ethyl 

alcohol for 30 s. Sections were rinsed for 60 s in sterile distilled water, cut into smaller 

pieces in a drop of sterile distilled water, incubated for 30 min, and streaked to nutrient 

agar. Cultures were incubated at 28 °C for 48 h and yellow-mucoid colonies typical of 

Xanthomonas spp. were re-streaked twice for purification and stored in 15% glycerol at -
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70 °C. A total of 24 isolates that represented 24 field samples were collected in 2018. A 

total of 42 isolates that represented 24 field samples were collected in 2019. A set of 21 

strains collected from tomato between 1998 and 2014 were also included in this study. 

Reference strains of X. perforans (91-118), X. euvesicatoria (75-3), X. gardneri (444), 

and X. vesicatoria (56) were obtained from Dr. Jeff Jones, University of Florida and were 

used as controls in species identification. 

 

Pathogenicity of bacterial isolates 

Isolates were assessed for pathogenicity to tomato cv. Moskvich, Bonny Best, or 

Red Bounty by spray inoculation with a bacterial suspension adjusted to a concentration 

of 6 x 108 cfu/ml (0.3 Absorbance at 600 nm), and/or by leaf infiltration at 107 to 108 

cfu/ml (0.2 Absorbance at 600 nm). Pathogenicity for leaf infiltrations and spray 

inoculations was assessed at 6 d and 10 – 12 d after inoculation, respectively. Isolates 

were determined to be pathogenic by observation of necrotic lesions with surrounding 

chlorosis.  

  

Identification of bacterial isolates to genus 

A set of 44 isolates collected between 1998 and 2018 were identified to genus 

using primers targeting the chromosomal replication initiation factor (dnaA) gene in a 

PCR-assay (Dhakal et al., 2019). Isolates were grown on nutrient agar for 48 hours at 28 

°C. Bacterial cells were lysed using a dry bath incubation (Boekel Scientific, Boekel 

Industries, PA, USA) set to 97 °C for 10 minutes according to a quick DNA extraction 

method described by Moore et al. (2004). PCR master mixes consisted of 2 uL of DNA, 
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5.5 uL of sterile nuclease free water, 2.5 uL of each of two primers (dnaA-F, dnaA-R), 

and 12.5 uL of EconoTaq Green Master Mix (Lucigen Corporation, Middleton, WI, 

USA). PCR amplification was performed with a DyNAcycler DCR-96 thermocycler, 

(Dynalab Corporation, Rochester, NY) under the conditions of: 1 cycle of 94 °C for 30 

seconds, 35 cycles of 94 °C for 30 seconds, 60 °C for 1 minute, 72 °C for 30 seconds, 

followed by 1 cycle 72 °C for 10 minutes. The PCR products were visualized in a 15% 

agarose gel electrophoresis in 70 mL 1X TAE buffer + 1.05 g + 9.5 uL Ethidium 

Bromide at 136 Volts for 35 m and viewed under ultraviolet light. The expected 928 bp 

amplicon was referenced to a 100 bp ladder (InvitrogenTM Track-ItTM, Thermo-Fisher 

Scientific, Waltham, MA).  

 

Identification of Xanthomonas euvesicatoria by polymerase chain reaction (PCR)-

assay  

Set of 18 isolates collected in 2018 that were identified to genus by PCR-assay 

amplifying a 928 bp dnaA gene fragment as previously described were identified as X. 

euvesicatoria by PCR-assay with the Bs-XeF/Bs-XeR primers that amplify a 173 bp 

DNA fragment (Koenraadt et al., 2007). DNA was extracted from pure cultures as 

described previously. Known isolates for each species were included as reference strains. 

The PCR master mix consisted of 2 uL of DNA, 5.5 uL of sterile nuclease free water, 2.5 

uL of each of two primers (Bs-XeF, Bs-XeR), and 12.5 ul of Taq polymerase PCR 

amplification was conducted in the thermocycler under the conditions of: 1 cycle of 94 

°C for 5 m, 25 cycles of 94 °C for 30 s, 64 °C for 30 s, 72 °C for 30 s, followed by 1 
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cycle 72 °C for 7 m. PCR products were visualized by gel electrophoresis as described 

previously.  

 

Identification of bacterial isolates to genus by polymerase chain reaction (PCR)- 

assay and to species by sequencing of hrp gene  

A set of 74 isolates collected from 1998 – 2019 and 4 reference isolates 

previously identified as pathogenic on tomato were identified to genus using 

RST65/RST69 PCR primers that amplify a 420 bp fragment of the hrp gene conserved 

among Xanthomonas spp. (Obradovic et al., 2004). Isolates were grown on nutrient agar 

for 48 h at 28 °C. DNA was extracted using DNeasy Ultra Clean Microbial Kit 

(QIAGEN, Germantown, MD) and suspended in TE buffer. DNA samples were 

evaluated for quantity (ng/uL) and quality using a ND-1000 Nanodrop spectrophotometer 

(Thermo Scientific, Waltham, MA).  All DNA samples were diluted to a concentration of 

20 ng/uL for use in PCR reactions. The PCR master mix consisted of 2 uL of DNA, 5.5 

uL of sterile nuclease free water, 2.5 uL of each of two primers (RST65, RST69), and 

12.5 uL of Taq polymerase. PCR amplification was conducted in the thermocycler under 

the conditions of: 1 cycle of 95 °C for 5 m, 29 cycles of 95 °C for 30 s, 63 °C for 1 m, 72 

°C for 45 s, followed by 1 cycle 72 °C for 5 m. PCR products were visualized by gel 

electrophoresis using methods described previously. PCR product of isolates identified to 

genus by PCR-assay were purified using illustra GFX PCR DNA and Gel Band 

Purification Kit (GE Life Sciences, Marlborough, MA). Amplicons were Sanger 

sequenced in the Core Facility of the Department of Biochemistry and Molecular Biology 

at Oklahoma State University. Database sequences were compared to sequences tested 
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using BLAST function of the National Center for Biotechnology Information (NCBI). 

Known isolates for each species were sequenced as described above and used as 

comparison for sequence homology and percent identity of survey isolates.  

 

Race determinations 

Seedlings of the differential tomato cultivars Bonny Best, 216, and H7998, 

containing no resistance gene, Xv3, and rx1, rx2, rx3, respectively, were used to 

determine the frequency of corresponding avirulence genes found in the isolates collected 

in Oklahoma (Stall, Jones and Minsavage 2009). Seed of differential cultivars was 

obtained from Dr. Jeff Jones, University of Florida. A fourth differential used in the race 

test was the Solanum pennellii var. pennellii ascension PI 246502 identified as LA 716, 

which contains the resistance gene Xv4 and was obtained from the USDA-ARS 

Germplasm Resource Information Network (GRIN) (Stall, Jones and Minsavage 2009). 

Differential cultivars were grown in SunGro soilless media (Professional Growers Mix, 

SunGro, Agawam, MA) in a greenhouse at 25 °C for between 28 and 64 d before 

inoculation. Isolates were grown on nutrient agar for approximately 48 h at 28 °C. The 

reference strains described above were used as controls. Bacteria were suspended in 

sterile water and adjusted to 6 x 108 cfu/ml at (0.3 absorbance at 600 nm) using a 

spectrophotometer (Spectronic 20+, Milton-Roy, Ivyland, PA). Tomato leaves were 

infiltrated on the abaxial leaf surface with approx. 1 ml of bacterial suspension using a 

needleless syringe. Plants were evaluated for hypersensitive response at 48 h after 

inoculation. A hypersensitive response consisted of collapse and a rapid necrosis as 
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evidenced by a rapid collapse and necrosis at infiltration site. Compatible reactions were 

assessed at 6 d after inoculation necrosis at injection site surrounded by chlorosis.  

 

 

RESULTS 

Foliar disease survey 

In 2018, bacterial spot was diagnosed in 11 of the 15 fields surveyed compared to 

2 with septoria leaf spot (Table 3.2). In 2019, 10 of 14 fields had bacterial spot and two 

had early blight caused by A. solani. Over the 2 years, bacterial spot was found in 72 % 

of fields surveyed. Septoria leaf spot and early blight of tomato each caused disease in 

only 7 % of fields surveyed. Disease incidence, defoliation, and field incidence, of 

bacterial spot were numerically higher in 2019. 

In the 2018 and 2019 site visits, Septoria leaf spot and early blight were 

diagnosed in 2 sites each. Disease severity, as measured by diseases incidence and 

defoliation on plants, and plant incidence, was lower for bacterial spot compared to 

Septoria leaf spot and early blight. Other foliar disease symptoms observed in field sites 

were bacterial canker and bacterial speck. However, isolation from symptomatic leaves 

recovered yellow-mucoid colonies characteristic of Xanthomonas.  

 

Pathogenicity of isolates 

 In the set of isolates collected between 1998 and 2014, 20 of 21 isolates were 

pathogenic on tomato. In the 2018 isolates, 22 of 24 isolates were pathogenic. In the 2019 

isolates, 41 of 42 isolates were pathogenic. 



 

 

 
 

38 

 

 
   

  Figure 3.2 Counties in Oklahoma where field site had confirmed bacterial spot in 2018 (n=11 sites)  
           and 2019 (n=10 sites).
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Table 3.2 Occurrence and severity of foliar diseases of tomato in Oklahoma. 
 
  

Countya 

 

Disease 

 

Year 

 
Disease (%) 

dDI leaves eDEF leaves fDI leaves 
Payne (n=2) Bacterial spotb 2018 31.7 6.7 85 
Oklahoma (n=1) Bacterial spot  2018 26.7 10 60 
Rogers (n=1) Bacterial spot  2018 3.3 0.0 10 
Canadian (n=3) Bacterial spot  2018 46.7 15.6 63.3 
Pottawatomie (n=1) Bacterial spot  2018 13.3 6.7 10 
Atoka (n=1) Bacterial spot  2018 10 0 10 
Hughes (n=1) Bacterial spot 2018 46.7 13.3 90 
Logan (n=1)  Bacterial spot 2018 - - - 
Mean   25.5 7.5 46.9 
Payne (n=2) Bacterial spot 2019 20.8 3.3 22 
Rogers (n=2) Bacterial spot 2019 56.7 29.2 100 
Hughes (n=1) Bacterial spot 2019 40 3.3 100 
Atoka (n=2) Bacterial spot 2019 81.7 36.7 90.5 
Bryan (n=2) Bacterial spot 2019 43.3 28.3 54 
Pontotoc (n=1) Bacterial spot 2019 63.3 6.7 90 
Mean    51 17.9 76.1 
Rogers Septoria leafspotc 2018 86.7 73.3 90 
Cherokee Septoria leafspot 2018 16.7 6.7 15 
Mean    51.7 40 52.5 
Bryan (n=2) Early blightc 2019 33.3 22.5 13 
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Mean    33.3 22.5 13 
a County where foliar disease was diagnosed.                   
b Disease diagnosed by culturing of yellow-mucoid colonies typical of Xanthomonas spp. from symptomatic leaves on nutrient 
agar and detection of DNA fragment conserved among Xanthomonas by PCR-assay. 
c Disease diagnosed by microscopy.  
d Disease Incidence (DI), defined as the percentage of leaves with symptoms of bacterial spot including defoliated leaves, 
visually assessed on three plants / site. 
e Defoliation (DEF) was visually assessed on three plants / site. 
f Plant Incidence (DI), percentage of plants in the field showing symptoms of specified foliar disease. 
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Bacterial spot of tomato identification of Xanthomonas to species 

Between 1998 and 2014, 90 % of the isolates were X. perforans and only 5 % 

were X. vesicatoria and X. gardneri (Table 3.3). In 2018, X. perforans (53 %), X. 

euvesicatoria (41 %), and X. gardneri (6 %) were identified (Table 3.4). In 2019, 97% of 

the isolates were X. perforans and 3 % were X. gardneri (Table 3.5). From 1998 to 2019 

the majority (84 %) of isolates were Xanthomonas perforans followed by X. 

euvesicatoria at 10%, X. gardneri at 4 % and X. vesicatoria at 1%. Reference strains for 

each of the four known species causing bacterial spot were identified correctly based on 

sequences of 420 bp hrp gene fragment (Table 3.6).  
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Table 3.3 Identification of Xanthomonas isolates from tomatoes in Oklahoma collected between 1998 and 2014  
Isolate Countya Year  Species identificationb BLASTn Resultsc 

Total Score Query 
Coverage 

E value Percent 
Identity 

XCVT1 Tulsa 1998 X. gardneri 569 96 3e-158 93.49 
XCVT2 Tulsa 2001 X. perforans 701 96 0.0 99.74 
XCVT3 Oklahoma 2001 X. perforans 702 96 0.0 99.74 
XCVT4 Oklahoma 2002 X. perforans 702 96 0.0 99.74 
XCVT5 Oklahoma 2002 X. perforans 701 96 0.0 99.74 
XCVT6 Oklahoma 2002 X. perforans 701 96 0.0 99.74 
XCVT7 Payne 2002 X. perforans 701 96 0.0 99.74 
XCVT8 Payne 2002 X. perforans 702 97 0.0 99.74 
XCVT9 Tulsa 2002 X. perforans 702 97 0.0 99.74 
XCVT11 Canadian 2002 X. perforans 702 96 0.0 99.74 
XCVT14 Tulsa 2002 X. vesicatoria 564 96 1e-156 99.68 
XCVT15 Tulsa 2002 X. perforans 701 96 0.0 99.74 
XCVT17 Tulsa 2002 X. perforans 701 96 0.0 99.74 
XCVT18 Oklahoma 2004 X. perforans 701 96 0.0 99.74 
XCVT19 Oklahoma 2004 X. perforans 702 97 0.0 99.74 
XCVT20 Oklahoma 2004 X. perforans 701 97 0.0 99.74 
XCV14-T1 Payne 2014 X. perforans 701 96 0.0 99.74 
XCV14-T3 Payne 2014 X. perforans 701 96 0.0 99.74 
XCV14-T4 Payne 2014 X. perforans 695 96 0.0 99.48 

a County in Oklahoma where Xanthomonas was isolated from tomato.  
b Causal agent of disease as determined by Sanger sequencing of RST65/RST69 amplified fragment of hrp gene region 
(Obradovic et al., 2004). 
c BLASTn result of hrp fragment sequence comparison of known bacterial spot of tomato causal agent in National Center for 
Biotechnology Information (NCBI) database. 
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Table 3.4 Identification of Xanthomonas isolates from tomatoes in Oklahoma collected in 2018 
Isolate Countya Species Identificationc BLASTn Resultsd 

Total Score Query 
Coverage 

E value Percent 

Identity 
XCVT18-1 Payne X. euvesicatoria 689 80 0.0 99.22 
XCVT18-2 Payne X. euvesicatoria 689 79 0.0 99.22 
XCVT18-6 Oklahoma X. perforans 691 61 0.0 99.22 
XCVT18-7 Rogers X. perforans 686 61 0.0 98.96 
XCVT18-8 Rogers X. perforans 682 97 0.0 99.47 
XCVT18-9 Rogers X. perforans 688 97 0.0 99.22 
XCVT18-10 Payne X. perforans 682 97 0.0 98.70 
XCVT18-11 Logan X. euvesicatoriab - - - - 
XCVT18-12 Canadian X. euvesicatoria 693 98 0.0 98.72 
XCVT18-13 Canadian X. perforans 699 96 0.0 99.48 
XCVT18-14 Canadian X. perforans 691 97 0.0 99.22 
XCVT18-15 Canadian X. perforans 686 96 0.0 98.96 
XCVT18-16 Pottawatomie X. perforans 691 97 0.0 99.22 
XCVT18-18 Atoka X. euvesicatoria 691 97 0.0 99.22 
XCVT18-21 Hughes X. euvesicatoriab - - - - 
XCVT18-23 Logan X. gardneri 532 96 3e-147 91.88 
XCVT18-24 Logan X. euvesicatoria 691 97 0.0 99.22 

a County in Oklahoma where Xanthomonas was isolated from tomato.  
b Causal agent of disease identified as X. euvesicatoria by PCR-assay using BS-XeF/BS-XeR amplified fragment (Koenraadt et 
al., 2007).   
c Causal agent of disease identified by Sanger sequencing of RST65/RST69 amplified fragment of hrp gene region (Obradovic 
et al., 2004). 
d BLASTn result of hrp fragment sequence comparison of known bacterial spot of tomato causal agent in National Center for 
Biotechnology Information (NCBI) database. 
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Table 3.5 Identification of Xanthomonas isolates from tomatoes in Oklahoma collected in 2019 
Isolate Countya Species Identificationb BLASTn Resultsc 

Total Score Query 
Coverage 

E value Percent 

Identity 
XCVT19-1 Payne X. gardneri 529 94 5e-146 92.04 
XCVT19-5  Payne X. perforans 702 96 0.0 99.74 
XCVT19-6 Payne X. perforans 702 96 0.0 99.74 
XCVT19-7 Payne X. perforans 701 96 0.0 99.74 
XCVT19-8 Payne X. perforans 702 96 0.0 99.74 
XCVT19-9 Payne X. perforans 702 96 0.0 99.74 
XCVT19-10 Payne X. perforans 702 97 0.0 99.74 
XCVT19-11 Rogers X. perforans 658 96 0.0 97.66 
XCVT19-12 Rogers X. perforans 658 96 0.0 97.66 
XCVT19-13 Rogers X. perforans 658 96 0.0 97.66 
XCVT19-14 Rogers X. perforans 647 95 0.0 97.38 
XCVT19-15 Rogers X. perforans 656 96 0.0 97.65 
XCVT19-16 Rogers X. perforans 656 97 0.0 97.18 
XCVT19-18 Rogers X. perforans 702 96 0.0 99.74 
XCVT19-19 Rogers X. perforans 704 96 0.0 99.74 
XCVT19-20 Rogers X. perforans 701 96 0.0 99.74 
XCVT19-21 Rogers X. perforans 702 96 0.0 99.74 
XCVT19-23 Hughes X. perforans 697 97 0.0 99.48 
XCVT19-24 Atoka X. perforans 702 96 0.0 99.74 
XCVT19-26  Atoka X. perforans 702 96 0.0 99.74 
XCVT19-27 Atoka X. perforans 701 96 0.0 99.74 
XCVT19-28 Atoka X. perforans 702 96 0.0 99.74 
XCVT19-29 Atoka X. perforans 702 96 0.0 99.74 
XCVT19-30 Atoka X. perforans  701 96 0.0 99.74 
XCVT19-31 Atoka X. perforans 701 96 0.0 99.74 
XCVT19-34 Bryan X. perforans 702 96 0.0 99.74 
XCVT19-35 Bryan X. perforans 697 97 0.0 99.48 
XCVT19-36 Bryan X. perforans 704 96 0.0 99.74 
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XCVT19-37 Bryan X. perforans 702 96 0.0 99.74 
XCVT19-38 Pontotoc X. perforans 701 96 0.0 99.74 
XCVT19-39 Pontotoc X. perforans 702 96 0.0 99.74 
XCVT19-40 Pontotoc X. perforans 702 96 0.0 99.74 
XCVT19-41 Pontotoc X. perforans 697 97 0.0 99.48 
XCVT19-42 Pontotoc X. perforans 702 96 0.0 99.74 

a County in Oklahoma where Xanthomonas was isolated from tomato.  
b Causal agent of disease as determined by Sanger sequencing of RST65/RST69 amplified fragment of hrp gene region 
(Obradovic et al., 2004). 
c BLASTn result of hrp fragment sequence comparison of known bacterial spot of tomato causal agent in National Center for 
Biotechnology Information (NCBI) database. 
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Table 3.6 Xanthomonas spp. reference strains. 
Isolate Species 

Identificationa 
BLASTn Resultsb 

Total  
Score 

Query 
Coverage 

E value Percent 

Identity 

Xp (91-118) X. perforans 701 96 0.0 99.74 
Xv (56) X. vesicatoria 695 96 0.0 99.48 
Xe (75-3) X. euvesicatoria 702 97 0.0 99.74 
Xg (444) X. gardneri 704 96 0.0 99.74 

a Causal agent of disease as determined by Sanger sequencing of RST65/RST69 
amplified fragment of hrp gene region (Obradovic et al., 2004). 
b BLASTn result of hrp fragment sequence comparison of known bacterial spot of tomato 
causal agent in National Center for Biotechnology Information (NCBI) database. 
 
 

Avirulence genes and races of Xanthomonas spp. 

X. perforans race T3 and T4 were identified as 15 and 6 of the isolates, 

respectively (Table 3.7). The most common race of X. euvesicatoria was T1 (n=3). The 

single X. vesicatoria isolate was identified as race T4, which differed from the X. 

vesicatoria reference isolate, Xv56, that was identified as race T2. The X. gardneri 

reference isolate, Xg444, identified as race T2. Xg444 differed from the two survey 

isolates identified as X. gardneri, which both caused hypersensitive reaction on all 

resistant cultivars tested (Table 3.7, Table 3.8). The X. perforans reference isolate Xp91-

118 did not group with race T3 or T4 isolates producing a compatible reaction on LA716. 

Forty reactions by differential resistant cultivars to Xanthomonas spp. were atypical and 

did not group with one of the four previously described pathogenic races (T1,T2,T3,T4) 

of bacterial spot of tomato (Table 3.8). Reactions included all possible combinations of 

hypersensitive response to the three resistant cultivars except the race T2 response.  
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Table 3.7 Identification of races of Xanthomonas isolates from tomatoes in Oklahoma 
 
Isolate Species (hrp 

region) 
Bonny 
Best 

FL 
216 

HI 
7998 

LA 
716 

Race 
score 

XCVT11, XCVT17, 
XCVT18-7, XCVT18-14, 
XCVT18-15, XCVT19-7, 
XCVT19-21, XCVT19-27, 
XCVT19-30, XCVT19-31, 
XCVT19-35, XCVT19-36, 
XCVT19-38, XCVT19-39, 
XCVT19-40,  

X. perforans  +b  HRa + HR T3 
 

XCVT19-5, XCVT19-6, 
XCVT19-26, XCVT19-28, 
XCVT19-29, XCVT19-41,  
 

X. perforans + + + HR T4 

XCVT18-2, XCVT18-11, 
XCVT18-24, Xe75-3  
 

X. 
euvesicatoria 

+ + HR + 
 

T1 

Xg444 X. gardneri + + + + T2 

XCVT14 X. vesicatoria + + + HR T4 

Xv56 
 

X. vesicatoria + + + + T2 

a HR = hypersensitive reaction, presence of avirulence (avr) gene in pathogen eliciting the 
response. 
b + = compatible or susceptible reaction 
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Table 3.8 Identification of novel reactions of Xanthomonas isolated from tomatoes in 
Oklahoma to differentially resistant tomato cultivars 
Isolate Species (hrp 

region) 
Bonny 
Best 

FL 
216 

HI 
7998 

LA 
716 

XCVT2, XCVT5, XCV14-T1, 
XCVT18-6, XCVT19-8, XCVT19-
11, XCVT19-12, XCVT19-13, 
XCVT19-14, XCVT19-15, 
XCVT19-16, XCVT19-20, 
XCVT19-34  
 

X. perforans   +b  HRa HR HR 

XCVT18-23, XCVT19-1 
 

X. gardneri     

XCVT18-21 
 

X. euvesicatoria     

XCVT9, XCVT15, XCVT19, 
XCVT18-9, XCVT19-18, 
XCVT19-19, XCVT19-42,  
Xp91-118 
 

X. perforans + HR + + 

XCVT3, XCVT4, XCVT6, 
XCVT7, XCVT8, XCVT18, 
XCVT20 
 

X. perforans + HR HR + 

XCVT18-1, XCVT18-12 
 

X. euvesicatoria     

XCVT18-10, XCVT18-16, 
XCVT19-9, XCVT19-10, 
XCVT19-23, XCVT19-24, 
XCVT19-37  
 

X. perforans + + HR HR 

XCVT18-18 
 

X. euvesicatoria     

a HR = hypersensitive reaction, presence of avirulence (avr) gene in pathogen eliciting the 
response. 
b + = compatible or susceptible reaction 
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DISCUSSION 

A majority (72 %) of fields surveyed were infected with bacterial spot of tomato, 

which was an incidence above that of other foliar diseases detected during the survey. By 

comparison, symptoms of foliar diseases caused by fungal pathogens were observed less 

frequently in the fields surveyed but they caused more defoliation. This survey is the only 

systematic account of the distribution and severity of foliar diseases of tomato in 

Oklahoma. Preston reported previously that these diseases occurred in several counties in 

Oklahoma although the bacterial spot bacterium was named Xanthomonas vesicatoria  

(Preston, 1945). This survey increases the reported range by county of bacterial spot of 

tomato, as well as, early blight of tomato and Septoria leaf spot.  

The widespread occurrence of bacterial spot in tomato poses a major challenge to 

producers in Oklahoma. Once fields become infested intensive management is often 

required. Rotation of tomato and/or pepper producing fields into a non-host crop, 

incorporation of crop residues, and strict field sanitation to eliminate weedy reservoirs 

and volunteer tomato seedlings, are all strategies used to reduce inoculum (Damicone & 

Brandenberger, 2017; Jones et al., 1986). Preventative weekly applications of 

bactericides such as copper tank mixed with the fungicide, mancozeb, or bacteriophage 

formulations have been used successfully to reduce disease severity and increase yield 

(Damicone & Trent, 2003; Flaherty et al., 2000). However, this study showed only 

marginal control by bacteriophage with no yield effect, and better control by copper-

mancozeb but also with no yield effect.  

The frequency of X. perforans in the 1998 to 2014 collection of bacterial spot of 

tomato isolates (89 %) provides evidence suggesting that X. perforans has been the 
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dominant causal agent of bacterial spot of tomato in Oklahoma for decades. In 2018, X. 

euvesicatoria was an important cause of bacterial spot in Oklahoma but was less frequent 

than X. perforans. In 2019, X. perforans caused 97 % of cases of bacterial spot surveyed, 

which suggests that X. perforans is at a competitive advantage over other species 

infecting tomato in the climate of central and eastern Oklahoma. X. euvesicatoria has 

been reported as a common causal agent of bacterial spot of pepper in Oklahoma 

(Cevallos, et al. 2015). The increased incidence of X. euvesicatoria in 2018 surveys could 

be the result of local transmission from intercropped pepper plantings at trial locations. 

However, the importance of pepper in field transmission of bacterial spot to tomato in 

Oklahoma is unknown at this time. Xanthomonas gardneri is known to be less 

competitive than X. perforans at warmer temperatures (Araujo et al., 2010), which likely 

reduces its ability to thrive in Oklahoma’s climate. X. vesicatoria was not isolated in 

2018 or 2019 in Oklahoma. X. gardneri and X. vesicatoria are unlikely to be major causal 

agents of bacterial spot of tomato in Oklahoma, and their presence could be the result of 

infrequent introductions through contaminated seed or seedlings.  

All four Xanthomas spp. that cause bacterial spot have been reported in the United 

States (Potnis et al., 2015). However, in Florida and Georgia all of the strains isolated in 

2006 were Xanthomonas perforans (Horvath et al., 2012). Our results indicate a similar 

species composition in Oklahoma, consistent with the wide distribution of X. perforans in 

the southern United States.  

Of the X. perforans isolates from this survey tested on differential cultivars the 

majority were race T3 (Table 3.7, Table 3.8).  These results suggest that race T3 strains 

have some competitive advantage over T1 and T4 strains in Oklahoma. In Indiana, the 
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majority of isolates were identified as X. perforans race T4 (Egel et al., 2018). In the 

Indiana survey X. gardneri race T2 and X. perforans race T3 were also isolated from 

tomato, but at lower frequencies than X. perforans race T4 (Egel et al., 2018). X. gardneri 

was isolated largely from field locations in the northern half of Indiana, which is further 

evidence of the pathogens competitiveness at lower temperatures (20 °C) (Araujo et al., 

2010; Egel et al., 2018). In North Carolina, X. perforans race T4 strains now far 

outnumber X. perforans T3 strains (Adhikari et al., 2019). In the southern U.S bacterial 

spot of tomato is mostly being caused by X. perforans race T4 (Adhikari et al., 2019; 

Horvath et al., 2012; Lewis Ivey et al., 2016). Race structure in Oklahoma is diverse. 

Development of host plant resistance should combine multiple resistance genes (rx1, rx2, 

rx3, Xv3, Xv4) to be of greatest benefit to producers in the region. Knowing which races 

of Xanthomonas predominate in our region will inform plant breeders and producers 

about the expected durability of different combinations of genetic resistance when 

resistant cultivars are deployed for control.      

In summary, bacterial spot is a common challenge facing tomato producers in 

Oklahoma. It is important that bacterial spot be distinguished from early blight or 

Septoria leaf spot because the use of specific fungicides as a control tactic is ineffective 

for bacterial disease. Integrated strategies that combine use of disease-free seed and 

seedlings, with crop rotation, and field sanitation should be emphasized until 

commercially available cultivars with resistance to bacterial spot are developed 

(Damicone & Brandenberger, 2017; Damicone & Trent, 2003; Flaherty et al., 2000).  
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CHAPTER IV 

 

BIOLOGICAL CONTROL AGENTS AND CHEMICAL BACTERICIDES 

FOR MANAGEMENT OF BACTERIAL SPOT OF TOMATO IN 

OKLAHOMA 

 

ABSTRACT 

Bacterial spot is an important disease of tomato in Oklahoma and other warm, humid, and 

rain-fed climates. The bacterial spot pathogen Xanthomonas perforans poses a particular 

challenge to commercial producers of field-grown tomato who crop tomatoes 

continuously in the same field. Chemical controls, such as copper formulations and the 

antibiotic streptomycin, have been heavily relied upon for management of bacterial spot. 

Development of tolerance to copper and resistance to antibiotics has necessitated the need 

for development and evaluation of control measures based on novel modes-of-action. The 

efficacy of bacteriophage, a bacteriocin producing bacterial antagonist, a systemic 

acquired resistance inducer, and copper formulations were evaluated in a two-year field 

study. Disease incidence, defined as the percentage of symptomatic leaves including 

defoliated leaves, and defoliation alone, were assessed at approximately 30 and 60-d after 

inoculation. In both years, the resistance inducer acibenzolar-s-methyl in rotation with 
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bacteriophage or copper hydroxide reduced disease at 30 d post-inoculation. In 2019, a 

reduction in disease at 30 and 60 d after inoculation was observed for acibenzolar-s-

methyl in rotation with copper hydroxide, bacteriophage applied alone, copper hydroxide 

applied alone, and copper hydroxide plus mancozeb. The bacteriocin producing 

antagonist Bacillus amyloliquefaciens strain D747 did not reduce disease during either 

year. Copper hydroxide alone or applied with mancozeb resulted in greater disease 

control compared to bacteriophage and B. amyloliquefaciens. None of the treatments 

significantly increased yield compared to the non-treated control in 2018 or 2019. 

Copper-mancozeb was the most effective treatment for tomato growers in Oklahoma. 

However bacteriophage may be beneficial where copper tolerant strains develop.  

 

 

INTRODUCTION 

Bacterial spot is a damaging disease of tomato that has been reported to cause up 

to 50% yield reduction in field-grown tomato (Solanum lycopersicum L.) (Pohronezny & 

Volin, 1983). Yield reductions caused by bacterial spot occur through plant defoliation 

and, in certain cases, through lesion development on tomato fruit (Potnis et al., 2015). 

Bacterial spot is caused by four species in the genus Xanthomonas, which include: X. 

perforans, X. gardneri, X. euvesicatoria, and X. vesicatoria (Potnis et al., 2015). Pepper 

(Capsicum spp.) is also an important host of X. gardneri, X. euvesicatoria, and X. 

vesicatoria (Ritchie, 2000). The four species causing bacterial spot of tomato and pepper 

were previously classified as X. campestris pv. vesicatoria (Dye et al., 1980). 
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Xanthomonas perforans is now the dominant causal agent of bacterial spot on tomato in 

Florida and North Carolina (Adhikari et al., 2019; Horvath et al., 2012).  

Environmental conditions that favor the development of bacterial spot include, 

warm temperatures of 24 - 30° C, high humidity, and consistent moisture (Momol et al., 

2002). Bacterial spot can be introduced into production systems through the use of 

contaminated seed or infected transplants (Jones et al., 1986). Once established in the 

field, the pathogens survive on living plants or infested crop debris. Tillage and/or crop 

rotation with a non-host crop have both been used successfully to reduce inoculum during 

subsequent tomato crops (Jones et al., 1986; Moura et al., 2020). Survival of the pathogen 

on plant debris in the field is likely influenced by climate with cooler climates favoring 

longer durations of survival (Jones et al., 1986; Peterson, 1963). In Indiana, X. 

vesicatoria was capable of survival from one season to the next by overwintering in 

tomato crop residues (Peterson, 1963). Volunteer tomato seedlings are an important 

source of primary inoculum (Jones et al., 1986). In commercial fields where tomatoes or 

peppers are produced continuously or in short rotations of less than 2 years, bacterial spot 

can be a yearly problem and must be managed by preventative applications of chemical 

bactericides, biological control agents, or plant resistance inducers (Momol et al., 2002).  

The application of copper bactericides in a preventative program has been used 

extensively since the early 1800’s to control bacterial plant pathogens (Obradovic et al., 

2008). Unfortunately, some strains of the xanthomonads causing bacterial spot became 

tolerant to copper in the 1980’s, which reduced bactericidal efficacy and prompted a 

search for alternative control measures (Obradovic et al., 2008). Isolates of X. campestris 

pv. vesicatoria, from North Carolina in 1986-1990 had a high frequency of copper and 
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streptomycin resistance (Ritchie & Dittapongpitch, 1991). Improved bactericide efficacy 

through the combination of copper bactericide and ethylene-bis-dithiocarbamate 

fungicide has been demonstrated (Conover & Gerhold, 1981). However the efficacy of 

copper-mancozeb applications may be inadequate when conditions favor severe disease 

caused by copper-tolerant strains of X. perforans (Strayer-Scherer et al., 2018). In 

addition to copper bactericides, antibiotics have been used for control of bacterial 

diseases (Sundin & Wang, 2018). Observations of antibiotic resistance developing in 

plant pathogenic bacteria, fears over resistance being transferred to human pathogenic 

bacteria, and the implications of such a transfer to human medicine have resulted in the 

limited usage of antibiotics in U.S. crop production (Sundin & Wang, 2018). However, 

the antibiotic streptomycin is registered for use to control of bacterial spot in the 

greenhouse production of tomato and pepper transplants (McManus et al., 2002).  

Novel approaches in the control of bacterial diseases include application of viral 

bacteriophages that kill bacteria and competitive displacement by biocontrol agents. The 

efficacy of biological control agents can be impacted by environmental conditions, 

necessitating climate and region specific evaluation of commercially available products 

(Obradovic et al., 2008). An alternative management tactic is the use of a chemical that 

induces localized or systemic resistance to disease in the plant. Acibenzolar-s-methyl is a 

widely used systemic acquired resistance inducer that has been shown to be effective at 

preventing diseases caused by bacteria, fungi, and viruses (Oostendorp et al., 2001). 

Acibenzolar-s-methyl is a functional analog of salicylic acid, which acts as a signal 

molecule in the pathway and initiates gene expression of proteins related to pathogenesis 

(Oostendorp et al., 2001). β-1,3-glucanase (PR-2), is a protein shown to be associated 
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with decreased bacterial disease through cleavage of β-1,3-glucosidic bonds in β-1,3-

glucan, a molecule known to function in plant defense suppression by Xanthomonas 

campestris pv. campestris (Itako et al., 2015; Jain & Khurana, 2018; Rigano et al., 2007). 

Acibenzolar-s-methyl and bacteriophage in North Florida had good efficacy in 

controlling bacterial spot caused by a copper-sensitive isolate of X. campestris pv. 

vesicatoria which was comparable to the standard copper-mancozeb program (Obradovic 

et al., 2004). 

 Spray programs containing combinations of copper, mancozeb, and acibenzolar-

s-methyl evaluating control of bacterial spot and bacterial speck of tomato (Pseudomonas 

syringae pv. tomato) in 2002 in Oklahoma found yield of marketable fruit was increased 

by spray programs that included weekly applications of copper or copper + mancozeb 

(Damicone & Trent, 2003). However, copper-resistant strains of X. campestris pv. 

vesicatoria have been isolated from tomatoes in eastern Oklahoma (Bender et al., 1990). 

Should copper-tolerant strains of Xanthomonas spp. become widespread it is important to 

evaluate alternative treatments. The objective of this trial was to evaluate the efficacy of 

commercially available biocontrol products, acibenzolar-s-methyl, and two different 

copper bactericide formulations for control of bacterial spot of tomato in Oklahoma.  
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MATERIALS & METHODS  

Pathogen identification and inoculum preparation 

An isolate of Xanthomonas perforans, XCVT11, from tomato in 2002 in 

Canadian County, Oklahoma, was used to inoculate field plots. The isolate was found to 

be pathogenic by leaf infiltration or spray inoculation of tomato plants using a bacterial 

suspension at 108 CFU / mL (0.3 Absorbance at 600 nm). The isolate was identified to 

genus using the Xanthomonas-specific dnaA primer set in a polymerase chain reaction 

(PCR) and as Xanthomonas perforans by Sanger sequencing of a 420 bp region of the 

hrp gene amplified using the RST65/RST69 primer set (Arif, personal communication; 

Obradovic et al., 2004). Suspensions of XCVT11 in sterile tap water were adjusted to a 

concentration 6 x 108 CFU per mL and used to inoculate plots. 

 

Transplant production and cultural practices 

Transplants of the cultivar Red Mountain were grown in a greenhouse for 6 weeks 

at 21-28° C in soil-less potting mix (SunGro Professional Mix, Sun Gro Horticulture, 

Agawam, MA). Transplants were fertilized twice weekly with 26 g per liter of a soluble 

fertilizer 24-8-16 N-P-K. In 2018 and 2019, tomato plants were transplanted into formed 

beds covered with black plastic on 15 May and 17 May, respectively. Plants were drip 

irrigated and trellised by the stake-and-weave method. In 2018, the trial was conducted in 

a field of Easpur Loam that was previously fallowed. Prior to transplanting the herbicides 

trifluralin (Treflan, Corteva Agrisciences) and S-metolachlor (Dual II Magnum, 

Syngenta) were applied at rates of 305 and 585 g a.i./ha, respectively, and incorporated 

into the soil. Granular fertilizer at 52-0-0 kg/ha N-P-K was incorporated into the soil 
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prior to bed forming and transplanting. Additional fertilizer at 25-25-25 kg/ha N-P-K was 

delivered by irrigation on 1 June and 29 June. Chlorantraniliprole (Prevathon, Corteva 

Agrisciences) was applied at a rate of 74 g a.i./ha on 30 June to control insect pests. In 

2019, the trial was conducted in a field of Norge loam that has been previously fallowed. 

Granular fertilizer at 87-156-0 kg/ha N-P-K and trifluralin at 305 g a.i./ha were 

incorporated into the soil prior to bed forming and transplanting. The insecticide 

chlorantraniliprole was applied as described above on 19 June. 

 

Treatments and experimental design 

Treatments consisted of acibenzolar-s-methyl (Actigard 50WG, Syngenta Inc, 

Greensboro, NC), bacteriophage (Agriphage, Omnilytics, Sandy, UT), copper hydroxide 

(Kocide 3000DF, Certis LLC, Columbia MD), Bacillus amyloliquefaciens strain D747 

(Double Nickel LC, Certis LLC), copper octanoate (Cueva FL, Certis LLC), and 

mancozeb (Dithane 75 DF, Corteva Agriscience, Wilmington, DE). In 2018, acibenzolar-

s-methyl was applied at 26 g a.i./ha in alternation with copper hydroxide at 0.65 kg a.i./ha 

on 7-d intervals. Bacillus amyloliquefaciens was applied alone at 6.9 kg a.i./ha on 7-d 

intervals. Copper octanoate at 0.47 kg a.i./ha was alternated every 7-d with two 

applications of bacteriophage applied at 0.12 g a.i./ha within a 7-d period. Acibenzolar-s-

methyl was applied at 26 g a.i./ha in alternation with two applications of bacteriophage 

applied at 0.12 g a.i./ha within a 7-d period.  In 2019, all treatments tested in 2018 were 

repeated with the addition of copper hydroxide at 0.91 kg a.i./ha applied on 7-d intervals, 

bacteriophage at a rate of 0.12 g a.i./ha applied twice per week, and copper hydroxide at 

0.91 kg a.i./ha plus mancozeb at 1.70 kg a.i./ha applied on 7-d intervals. 
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The experimental design was a randomized complete block with four repetitions. 

Each plot consisted of 6 plants spaced 2-ft-apart with an 8-ft row spacing. 58-ft long 

border rows were placed along the periphery of trial plots and 4-ft borders with a single 

plant were placed between plots within the row. Isolate suspension was applied at a rate 

of 50 mL per plant in border rows. In 2018, plants were inoculated with X. perforans 

after the third bactericide application on 27 June. In 2019, tomato plants in the border 

rows were inoculated with X. perforans on 11 July. In 2019, a second inoculation at 90 

ml / plant was made to border plants within rows on 22 July due to unfavorable 

environmental conditions and low disease pressure throughout July.  

In 2018, treatments were applied as directed sprays through two 8005vs flat-fan 

nozzles per row using a CO2-pressurized wheelbarrow sprayer calibrated to deliver 284 

l/ha at 276 kPa. In 2018, treatments were applied beginning on 12 June. In 2019, 

treatments were applied as described above but at 265 l/ha at 276 kPa using two nozzles 

per row when plants were small and 512 l/ha at 276 kPa using four nozzles per row when 

plants were large. In 2019, treatments were applied beginning on 19 June.  

 

Data collection & analysis 

Disease incidence, defined as the percentage of leaves with symptoms of bacterial 

spot including defoliated leaves, and defoliation alone, were visually assessed on three 

plants per plot approximately 30 and 60 d after inoculation. In 2018 fruit was harvested, 

weighed, and graded as marketable or unmarketable, eight times over a 41-d period. In 

2019 fruit was harvested, weighed, and graded as marketable or unmarketable ten times 

over a 66 d period. In both years, unmarketable yield was further divided into two 
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categories, unmarketable as a direct result of disease symptoms or unmarketable for any 

other reason. The effect of treatment on disease and yield was tested using the GLM 

procedure of the software SAS 9.4 (SAS Institute Inc.). Means were separated by Fisher’s 

least significant difference test at P=0.05.  

 

 

RESULTS 

In 2018, average monthly temperatures in Stillwater were 24° C for May, 26.6° C 

for June, 27.8° C for July, and 26.2° C for August within the range conducive (24 - 30° 

C) for bacterial spot development (Momol et al., 2002). Monthly rainfall totals in 2018 

during the trial period months were 98.55 mm for May, 151.64 mm for June, 79.25 mm 

for July, and 141.99 mm for August. Major rain events (>25.4 mm in a 24 hr period) 

occurred four times during the cropping period. In 2018 acibenzolar-s-methyl applied in 

rotation with bacteriophage provided a 16% reduction in disease incidence compared 

with non-treated control at 30 d after inoculation (Table 4.1). Acibenzolar-s-methyl 

applied in rotation with copper hydroxide provided a 15% reduction in disease incidence 

compared with the non-treated control at 30 d after inoculation. Defoliation was reduced 

by 18% by treatment with acibenzolar-s-methyl in rotation with bacteriophage at 30 d 

after inoculation. In 2018 disease incidence and defoliation levels did not differ between 

treatments at 60 d after inoculation. In 2018, marketable yield averages by treatment 

ranged from 4.4 to 5.6 t/ha (Table 4.1). Yield averages by treatment ranged from 5.7 to 

7.4 t/ha. Fruit spotting and sunscald of fruit caused by bacterial spot occurred in all 
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treatments. Unmarketable fruit as a result of fruit spotting and sunscald by treatment 

ranged from 0.8 to 1.0 t/ha. Yield did not differ among treatments in 2018.  

 

In 2019, average monthly temperatures were 19.6° C for May, 24.3° C for June, 

27.4° C for July, 27.2° C for August, and 26.2° C for September. Average temperatures 

were 0.3° C below normal in May and June, 0.1° C below normal in July, near normal in 

August, and 3.8° C above normal in September. Average monthly temperatures from 

June to September were conducive for bacterial spot. Monthly rainfall totals were 439.42 

mm for May, 106.93 mm for June, 19.30 mm for July, 209.80 mm for August, and 

165.35 mm for September. Rainfall in May was 304 mm above average followed by 

rainfall totals in June and July that were 25 and 59 mm below average, respectively.  

 

In 2019, the disease incidence was reduced at 30 d after inoculation by all 

treatments, except the biological control agent, B. amyloliquefaciens strain D747 (Table 

4.2). At 60 d after inoculation the disease incidence was reduced by acibenzolar-s-methyl 

rotated with copper hydroxide, bacteriophage alone, copper hydroxide alone, and copper 

hydroxide applied together with mancozeb. The greatest reduction (54%) in disease 

incidence at 60 d post-inoculation was observed in plots treated with copper hydroxide 

applied together with mancozeb. Defoliation at 30 d post-inoculation was low (<10%) in 

all treatments including the non-treated control and was not significantly reduced by any 

treatment. Defoliation was reduced at 60 d by acibenzolar-s-methyl in rotation with 

copper hydroxide, bacteriophage alone, copper hydroxide alone, and copper hydroxide 

tank-mixed with mancozeb. The greatest reduction (36.7%) in defoliation at 60 d post-
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inoculation was observed in plots treated with copper hydroxide tank-mixed with 

mancozeb. In 2019, yield, marketable yield, and diseased yield, were not significantly 

different among treatments (Table 4.2). Marketable yield averages by treatment ranged 

from 9.4 to 12.6 t/ha. Fruit spotting and sunscald of fruit caused by bacterial spot 

occurred in all treatments. Unmarketable fruit as a result of fruit spotting and sunscald 

was between 1.3 to 3.6 t/ha.  

 The combined analysis of treatments that were the same in 2018 and 2019 both 

showed that disease incidence at 30 d post-inoculation was significantly reduced by 

acibenzolar-s-methyl in rotation with either copper hydroxide or bacteriophage, and 

copper octanoate in rotation with bacteriophage formulation (Table 4.3). Defoliation at 

30 d was decreased only by acibenzolar-s-methyl in rotation with bacteriophage 

formulation. However, disease incidence at 60 d was not significantly different between 

treatments. Defoliation at 60 d was decreased by acibenzolar-s-methyl in rotation with 

copper hydroxide.  
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Table 4.1 Evaluation of chemical bactericides and biological control agents for control of bacterial spot on ‘Red Mountain’ 
tomato in 2018. 

z Timings 1 to 15 correspond to the spray dates of 1=12 Jun, 2=19 Jun, 3=25 Jun, 4=26 Jun, 5=3 Jul, 6=6 Jul, 7=10 Jul, 8=17 
Jul, 9=20 Jul, 10=24 Jul, 11=31 Jul, 12=3 Aug, 13=7 Aug, 14=14 Aug, and 15=17 Aug. 
y Values in a column followed by the same letter are not different at P=0.05 by Fisher’s least significant difference test 
x Probability of a significant treatment effect. 
w NS=Treatment effect not significant at P=0.05. 
v DI=disease incidence, the percentage of leaves with symptoms of bacterial spot including defoliated leaves. 

Treatment 
rate a.i./ha  
(timing)z 

       Days after inoculation    Yield (t/ha) 
  26 d               58 d                 Total 

 
Marketable Diseasedt 

 DIv DEFu DIv DEFu 

 
Non-treated check 
 

 
87.5 aby 

 
41.7 a 

 
96.7 a 

 
75.9 a 

 
7.1 a 

 
5.6 a 

 
1.0 a 

Acibenzolar-s-methyl 26 g 
(1,4,7,10,13)         
Bacteriophage 0.12 g  
(2,3,5,6,8,9,11,12,14,15) 

 
71.2 c 

 
23.3 b 

 
91.7 a 

 
68.3 a 

 
5.7 a 

 
4.4 a 

 
0.8 a 

Acibenzolar-s-methyl 26 g 
(1,4,7,10,13)                 
Copper hydroxide 0.65 kg  
(2,5,8,11,14) 

 
72.9 c 

 
 30.9 ab 

 
93.3 a 

 
74.5 a 

 
6.3 a 

 

 
5.0 a 

 
0.8 a 

Bacillus amyloliquefaciens 
strain D747 6.9 kg 
(1,2,4,5,7,8,10,11,13,14) 

 
89.2 a 

 

 
45.0 a 

 
89.2 a 

 
70.8 a 

 
6.7 a 

 

 
5.0 a 

 

 
1.0 a 

Copper octanoate 0.47 kg 
(1,4,7,10,13)             
Bacteriophage 0.12 g 
(2,3,5,6,8,9,11,12,14,15) 

 
79.2 bc 

 

 
30.4 ab 

 
91.7 a 

 
72.5 a 

 
7.4 a 

 
5.5 a 

 
0.9 a 

P>Fx <0.01 0.05 0.23 0.60 0.86 0.90 0.92 
LSD (P=0.05) 9.0 15.3 NSw NS NS NS NS 
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u DEF=percentage of leaves defoliated. 
t Disease=Unmarketable fruit caused by fruit spotting and sunscald of fruit as a result of defoliation.  
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Table 4.2 Evaluation of chemical bactericides and biological control agents for control of bacterial spot on ‘Red Mountain’ 
tomato in 2019. 
 
Treatment  
rate a.i./ha  
(timing)z 

Days after inoculation Yield (t/ha) 
30 d             60 d              Total Marketable Diseasedt 

DIv DEFu DIv DEFu 
 
Non-treated check 

 
24.2 ay 

 
6.7 b 

 
81.3 a 

 
44.2 bc 

 
27.1 a 

 
12.6 a 

 
3.6 a 

Acibenzolar-s-methyl 26 g 
(1,5,9,13,17)         
Bacteriophage 0.12 g 
(3,4,7,8,11,12,15,16,19,20) 

 
16.3 b 

 
7.5 ab 

 
75.4 ab 

 
49.2 ab 

 
22.2 a 

 
11.1 a 

 
2.2 a 

Acibenzolar-s-methyl 26 g 
(1,5,9,13,17)                 
Copper hydroxide 0.65 kg 
(3,7,11,15,19) 

 
8.8 c 

 
5.0 b 

 
55.8 c 

 
19.6 ef 

 
24.8 a 

 
13.3 a 

 
3.0 a 

 

Bacillus amyloliquefaciens 
strain D747 6.9 kg       
(1,3,5,7,9,11,13,15,17,19) 

 
25.8 a 

 
10.0 a 

 
82.1 a 

 
59.6 a 

 
23.5 a 

 
10.7 a 

 
3.0 a 

 
Copper octanoate 0.47 kg 
(1,5,9,13,17)   
Bacteriophage 0.12 g                            
(3,4,7,8,11,12,15,16,19,20) 

 
12.1 bc 

 
5.4 b 

 
78.8 ab 

 
36.3 cd 

 
25.2 a 

 
11.8 a 

 
2.8 a 

 
Bacteriophage 0.12 g  
(1-20) 
 

 
12.5 bcy 

 
6.3 b 

 
68.8 b 

 
25.4 de 

 
21.9 a 

 
9.4 a 

 
2.9 a 

Copper hydroxide 0.91 kg 
(1,3,5,7,9,11,13,15,17,19) 
 

 
5.8 c 

 
5.0 b 

 
39.2 d 

 
10.8 fg 

 
18.4 a 

 
11.3 a 

 
1.4 a 
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Copper hydroxide 0.91 kg + 
Mancozeb 1.7 kg   
(1,3,5,7,9,11,13,15,17,19) 
 

 
5.8 c 

 
5.4 b 

 
27.1 e 

 
7.5 g 

 
21.9 a 

 
11.8 a 

 
1.3 a 

P>Fx <0.01 <0.01 <0.01 <0.01 0.12 0.93 0.34 
LSD (P=0.05) 7.2 2.5 11.8 11.6 NSw NS NS 

z Timings 1 to 20 correspond to the spray dates of 1=19 Jun, 2=21 Jun, 3=26 Jun, 4=28 Jun, 5=2 Jul, 6=5 Jul, 7=10 Jul, 8=12 
Jul, 9=17 Jul, 10=19 Jul, 11=24 Jul, 12=26 Jul, 13=31 Jul, 14=2 Aug, 15=7 Aug, 16=9 Aug, 17=14 Aug, 18=16 Aug, 19=21 
Aug, 20=23 Aug  
y Values in a column followed by the same letter are not different at P=0.05 by Fisher’s least significant difference test  

x Probability of a significant treatment effect. 
w NS=Treatment effect not significant at P=0.05. 
v DI=disease Incidence, the percentage of leaves with symptoms of bacterial spot including defoliated leaves. 
u  DEF=defoliation. 
t Disease=Unmarketable fruit caused by fruit spotting and sunscald of fruit as a result of defoliation.  
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Table 4.3 Evaluation of chemical bactericides and biological control agents for control of bacterial spot on ‘Red Mountain’ 
tomato averaged over 2018 and 2019.  
 
Treatment  
rate a.i./ha  

Days after inoculation Yield (t/ha) 
30 d 60 d Total Market-able Diseases 

DIu DEFt DIu DEFt 
 
Non-treated check 
 

 
 55.8 a y 

 
  24.6 b 

 
89.0 a 

 
60.0 a 

 
17.1 a 

 
9.0 a 

 
2.3 a 

Acibenzolar-s-methyl 26 g       
Bacteriophage 0.12 g  

 
43.7 b 

 
15.4 c 

 
83.5 a 

 
58.8 a 

 
13.9 a 

 

 
7.7 a 

 
1.5 a 

Acibenzolar-s-methyl 26 g 
Copper hydroxide 0.65 kg  
 

 
40.8 b 

 
 17.9 bc 

 
74.6 a 

 
47.1 b 

 
15.5 a 

 
9.1 a 

 
1.9 a 

 
Bacillus amyloliquefaciens 
strain D747 6.9 kg   

 
57.5 a 

  
 27.5 a 

 
85.7 a 

 
65.2 a 

 
15.1 a 

 
7.8 a 

 
2.0 a 

 
Copper octanoate 0.47 kg 
Bacteriophage 0.12 g 

 
45.6 b 

   
17.9 bc 

 
81.9 a 

  
54.4 ab 

 
16.3 a 

 

 
8.9 a 

 
1.8 a 

P>Fx <0.01 <0.01 0.06 0.03 0.76 0.92 0.67 
LSD (P=0.05) 9.75  4.39 NSv 3.25 NS NS NS 
P>Fw 0.48 0.07 0.05 0.01 0.98 0.97 0.85 
LSD (P=0.05) 0.89 NS 2.67 3.97 NS NS NS 
y Values in a column followed by the same letter are not different at P=0.05 by Fisher’s least significant difference test 
x Probability of a significant treatment effect. 
w Probability of a significant year by treatment effect. 
v NS=Treatment effect not significant at P=0.05. 
u DI=disease Incidence, the percentage of leaves with symptoms of bacterial spot including defoliated leaves. 
t DEF=defoliation.                    
s Disease=Unmarketable fruit caused by fruit spotting and sunscald of fruit as a result of defoliation.  
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DISCUSSION 

Bacteriophage applied twice-weekly resulted in a season-long reduction in disease 

incidence and late season reduction in defoliation compared with the non-treated control. 

In Florida reported better control was achieved by treatment with acibenzolar-s-methyl in 

combination with bacteriophage compared to bacteriophage alone (Obradovic et al., 

2004). However in this study, bacteriophage was applied in rotation with acibenzolar-s-

methyl, which differs from the Florida experiment where bacteriophage was applied 

twice per week with the addition of acibenzolar-s-methyl every 14 d (Obradovic et al., 

2004). Results suggest that the application of bacteriophage could be a more important 

contributor to disease control than acibenzolar-s-methyl, but it is also possible that effects 

of combining bacteriophage application with intermittent applications of acibenzolar-s-

methyl are additive (Obradovic et al., 2004). In 2019, bacteriophage applied in rotation 

with either copper octanoate or acibenzolar-s-methyl was less effective than weekly 

applications of copper hydroxide alone or in combination with mancozeb. In 2019 when 

bacteriophage was applied twice per week efficacy was improved but was still less 

effective than weekly copper hydroxide application. In Florida, disease control from 

bacteriophage applied twice per week was comparable to superior to a standard copper-

mancozeb program (Flaherty et al., 2000). Bacteriophage applied twice per week may be 

a viable alternative to copper for control of bacterial spot, especially when confronted 

with copper-tolerant pathogens.   

While only tested in 2019, the most effective control of bacterial spot resulted 

from treatment with copper hydroxide in combination with mancozeb. This result 

suggests a lack of tolerance to copper in the local Xanthomonas perforans isolate, 
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XCVT11, and demonstrated the continued efficacy of a widely utilized bactericide 

treatment (copper hydroxide-mancozeb) for control of bacterial spot of tomato in 

Oklahoma. Treatment with copper hydroxide alone was also highly effective, but had 

12% greater disease incidence at 60 d after inoculation than copper hydroxide-mancozeb. 

Results are consistent with early studies evaluating the use of the ethylene 

bisdithiocarbamate (EBDC) fungicides mancozeb and maneb in combination with copper 

hydroxide for improved bacterial spot control in Florida tomato fields (Conover & 

Gerhold, 1981). In Oklahoma, the evaluation of spray programs for control of bacterial 

spot (X. campestris pv. vesicatoria) and bacterial speck (Pseudomonas syringae pv. 

tomato) of tomato resulted in increased yield of marketable fruit with weekly applications 

of copper or copper + mancozeb (Damicone & Trent, 2003). However, an earlier trial in 

Oklahoma showed that applications of copper hydroxide + mancozeb to control a copper-

tolerant strain of X. campestris pv. vesicatoria did not improve yield or reduce disease 

incidence (Bender et al., 1990).  

In 2018 environmental conditions conducive for disease development throughout 

cropping period contributed to inadequate control and reduced yield. Overall, yield was 

well below the 25.5 t/ha that can be expected for field-grown, fresh-market tomato 

production in Oklahoma (Brandenberger et al., 2017). In 2019, environmental conditions 

were less favorable for the rapid development of bacterial spot. Although disease was less 

severe in 2019 and control was much improved this did not result in improved yield. The 

lack of a yield effect was probably due to the delayed development of the disease in the 

month of July while weekly harvests had commenced. Yield of combined trial treatments 

ranged from between 13.9 t/ha to 17.1 t/ha. Differences in the yield of combined trial 
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treatment means were not statistically significant (Table 4.3). The lack of a yield 

response to copper hydroxide with or without mancozeb may have been affected by the 

duration and time of harvest. In 2019 July harvests were made in the absence of disease 

symptoms. In the previous study in Oklahoma, yield was taken within a more narrow 

time frame of approximately 30 d, compared to the present study where yield was taken 

over approximately 60 d (Damicone & Trent, 2003). In the present study plots were 

inoculated late in the season allowing the plants to become established before infection, 

which may have had an equalizing effect on yield among trial plots.  

The only treatment that was not effective in managing bacterial spot was the 

biological control agent Bacillus amyloliquefaciens strain D747. B. amyloliquefaciens 

strain D747 is one of several species in the genera Bacillus known to produce 

antagonistic compounds, such as antibiotics, that have suppressive effects on the growth 

of some fungal and bacterial plant pathogens (Wulff et al., 2002). One such case of 

fungicidal activity by B. amyloliquefaciens strain D747 was reported in the control of 

Cercospora leaf spot (Cercospora beticola) of table beet (Beta vulgaris ssp. vulgaris) in 

upstate New York (Pethybridge et al., 2017). The effectiveness of B. amyloliquefaciens 

strain D747 in combination with copper octanoate for control of Xanthomonas 

cucurbitae, the causal agent of bacterial spot of pumpkin, was evaluated in field trials in 

Illinois (Thapa & Babadoost, 2016). The authors observed a reduction in disease severity 

comparable to plots treated with copper hydroxide-mancozeb, but concluded that no 

single treatment evaluated was highly effective in controlling X. cucurbitae. Field trials 

conducted in Florida evaluated the effectiveness of B. amyloliquefaciens strain D747 in 

combination with copper octanoate to manage bacterial spot on tomato and found that the 



 

 

 
 

74 

reduction in disease severity was statistically equivalent to the reduction observed in plots 

treated with copper octanoate alone (Abrahamian et al., 2019). The present results 

corroborate those of the Florida study and suggest that the effect of copper octanoate 

might be necessary to reduce disease severity. B. amyloliquefaciens strain D747 appears 

to be poorly suited to control bacterial pathogens in the genus Xanthomonas.  

 Tomato growers in Oklahoma face a challenge in controlling bacterial spot given 

the regions climate and environmental conditions, which often favor disease. In lieu of a 

superior alternative to copper formulations the use of copper-mancozeb is still the most 

effective chemical control measure for tomato growers in Oklahoma. In the event that 

growers see a precipitous decline in the efficacy of copper-mancozeb due to copper-

tolerant strains of Xanthomonas that cause bacterial spot the use of bacteriophage applied 

twice per week is recommended. However, the most successful control strategy will 

integrate chemical or biological protectants with cultural measures such as the use of 

disease-free seed and transplants, crop rotation to a non-host, use of genetic resistance 

when available, and removal or tillage of crop residues at crop termination. 
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