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Abstract: We construct explicit proper morphisms µ ∶Z → Y , where Y is the closure
of a K-orbit in a flag variety. Of particular interest is when µ is a resolution of
singularities and when it is a small resolution. We apply our construction to the
group Sp(2n,R) and construct a resolution uniformly for every K-orbit closure in an
isotropic grassmannian flag variety. This provides a family of small resolutions, and
we change the construction to describe more families of small resolutions. We also
apply our construction to the group U(p, q) and determine that any of our morphisms
which are generically finite, are in fact birational for this group. This enables us to
compute many small resolutions, and a simple family of small resolutions is described
in terms of combinatorics of clans.

The concept of inducing a small resolution to larger dimensions is introduced. This
shows that small resolutions propagate and highlights the importance of determining
small resolutions in low rank groups. We apply this to the groups Sp(2n,R) and
U(p, q) to obtain many small resolutions.

A repeated obstacle in applications is determining information about the fiber of µ.
We provide a fiber dimension formula for a large class of our resolutions, which we call
Barbasch-Evens type. When Z is constructed from a K-orbit closure and a single
Schubert variety, then we describe fibers of µ isomorphically – enabling us to find
more small resolutions and compute Kazhdan-Lusztig-Vogan polynomials of a family
of closures of K-orbits.
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CHAPTER I

INTRODUCTION

1.1 Contributions of thesis

This thesis gives explicit constructions of proper algebraic morphisms

µ ∶Z → Y (1.1)

(q.v. (2.31)), where Y is the closure of a K-orbit in a flag variety. Let G be a connected

reductive algebraic group over an algebraically closed field of characteristic zero and

define

Z = G0 ×R1 G1 ×R2 ⋯×Rm Gm/Rm+1, (1.2)

where for every 0 ≤ i ≤ m, Gi ⊆ G such that G0/R1 is the closure of a K-orbit in a

flag variety and for every 1 ≤ i ≤m, Gi/Ri+1 is a Schubert variety (q.v. (2.30)). When

Z is of the form (1.2), we call (1.1) type µ. A simple formula (2.50), depending on

combinatorics of K-orbits and Schubert varieties, characterizes when µ is generically

finite – an important property for studying local systems.

Describing fibers of µ is a repeated obstacle for applications. Our focus is on

resolutions of singularities, which requires finding smooth Z and birational µ. The

latter condition is equivalent to the fiber of µ over the open K-orbit being a single

point, which is characterized by (5.2). Among these resolutions numerous small

resolutions (q.v. (2.53)) are singled out, where intuitively, small means there are

relatively few large dimensional fibers.

We consider two families of real reductive groups in detail, namely, Sp(2n,R) and

U(p, q). Barbasch-Evens [5] describe K-orbits in type A grassmannian flag varieties
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for the groups U(p, q), GL(n,H), and GL(n,R) and construct resolutions for cor-

responding K-orbit closures. We follow [5] and describe all K-orbits in generalized

grassmannian flag varieties for Sp(2n,R). A uniform construction of a resolution

of singularities is described for all corresponding K-orbit closures. This leads to a

formula for the dimension of such K-orbits, and in certain cases, provides a small

resolution. We describe more families of small resolutions by changing µ (q.v. Theo-

rem 3.3.6). Some of these small resolutions require determining local coordinates on

certain K-orbit closures to show that Z is smooth.

Clans are used by Yamamoto [31] to parameterize K-orbits in the full flag variety

for Sp(2n,R) and U(p, q). A combinatorial description of smooth K-orbit closures

for U(p, q) is given by pattern avoidance in McGovern [20], which we describe simply

as concatenating maximum clans from various U(p′, q′), where p′ ≤ p and q′ ≤ q (q.v.

Remark 4.3.2). Describing all smooth K-orbit closures for Sp(2n,R) is not as simple

and remains an open problem.

Let B be a Borel subgroup of G. Flag varieties XI of G correspond to subsets of

simple reflections I ⊆ S. A special case µ = π is given by restricting the projection

of flag varieties XJ → XI , where J ⊆ I, to a K-orbit closure Z ⊆ XJ . We use π

to describe a family of small resolutions for U(p, q) (q.v. Proposition 5.3.2). For

the groups U(2,2) and U(3,2), we use π to describe small resolutions for every Y

admitting a small resolution of type µ.

If Y is normal, then Zariski’s main theorem can be used to show that when

all fibers of µ are zero dimensional, then a birational µ is an isomorphism. Thus

fiber bundle structures on Y can be viewed as bijective µ; however, we typically

obtain fiber bundles directly from π, where the fibers all have large dimension. A

particularly useful case arises by projecting to a closed K-orbit, in which case π is

always a fiber bundle (q.v. Lemma 3.3.5) and we obtain Y ≅ Z (by a corresponding µ).

For Sp(2n,R) and U(p, q), all such fiber bundles can be described combinatorially
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as concatenating clans from lower rank groups.

The K-equivariance of µ enables us to induce (q.v. Key Lemma 4.1.1) small res-

olutions of type µ to small resolutions of higher dimensional varieties (again of type

µ). Propagation of small resolutions highlights the importance of determining all

small resolutions of type µ in low rank. Moreover, all small resolutions described in

this thesis were discovered by first describing µ in low dimensions and generalizing to

higher dimensions, using either a unique description for µ or by induction.

When the Schubert varieties used to construct Z are particularly nice (q.v. (5.9)),

Z admits a beautiful description as a fibered product of a smooth K-orbit closure with

various flag varieties. This description is similar to the presentation found in Gelfand-

MacPherson [11] for resolutions of Schubert varieties. We call such Z Barbasch-Evens

type, since [5] considers many resolutions that may be described isomorphically in this

form. We obtain a formula (q.v. (5.16)) for the dimension of any fiber of Barbasch-

Evens type.

If the number of Schubert varieties, say m, used to construct Z is one, then

we provide a simple description of fibers of µ as intersections of algebraic varieties

in a flag variety (q.v. (6.2)). The case µ = π is equivalent to studying m = 1 of

Barbasch-Evens type, by pulling back to the full flag variety (q.v. §5.3), so we have

a dimension formula along with an isomorphic description of all fibers. The group

Sp(6,R) admits examples of small resolutions using various techniques introduced

throughout the thesis. These examples are all of the form m = 1, and we conclude

with an example to show that general Schubert varieties are required in the definition

of µ to find certain small resolutions.

1.2 Some history

Demazure [10] and Hansen [13] independently construct resolutions of Schubert vari-

eties using Bott-Samelson spaces [7]. These resolutions are B-equivariant morphisms
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naturally associated to a reduced word of a Weyl group element. The construction

given here is in the same spirit.

Resolutions are often defined to be an isomorphism over the smooth locus, but

fibers of Demazure-Hansen resolutions are typically too large to satisfy this property.

In particular, these resolutions are rarely small. Gelfand-MacPherson [11] generalize

Demazure-Hansen resolutions by considering more general parabolic subgroups. Thus

Gelfand-MacPherson obtain iterated fiber bundles of flag varieties, where Demazure-

Hansen have iterated P1 fiber bundles. Gelfand-MacPherson use these resolutions to

study intersection cohomology of Schubert varieties, leading them to conjecture the

decomposition theorem (cf. [11, §2.10]). Collapsing certain parabolic subgroups from

Demazure-Hansen resolutions enable Gelfand-MacPherson to describe small resolu-

tions of some Schubert varieties (cf. [11, §5.4]).

Zelevinskĭı uses Gelfand-MacPherson resolutions to systematically construct small

resolutions for any Schubert variety in a grassmannian flag variety. A remark from

[32, §6b] indicates that not all Schubert varieties admit small resolutions of this

type. Many authors address small resolutions of Schubert varieties using similar

constructions. Sankaran-Vanchinathan [24, 25] consider symplectic, orthogonal, and

some exceptional types. They provide a fiber dimension formula similar to (5.16)

for all fibers of Gelfand-MacPherson resolutions, compute singular loci of Schubert

varieties of type E6, compute Kazhdan-Lusztig polynomials, and show that some

Schubert varieties do not admit any small resolution. Similar considerations may

be used to show that some K-orbit closures for Sp(2n,R) do not admit any small

resolution, when there exists normal singular Q-smooth locus.

Perrin [22] considers a more general construction than Gelfand-MacPherson in

the same way that Schubert varieties generalize flag varieties. In particular, the

morphisms are not necessarily resolutions of singularities since the domain need not

be smooth. This generalization enables Perrin to classify which Schubert varieties
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admit small resolutions for the case of generalized grassmannian Schubert varieties

of minuscule type. Similar methods show that the Schubert variety mentioned in [32,

§6b] does not admit any small resolution since it is locally factorial.

Barbasch-Evens [5] consider a similar construction for K-orbits. In particular,

they interpret results of Vogan [28] and Chang [9] to conclude that any K-orbit

closure has a natural K-equivariant resolution analogous to Demazure-Hansen for

Schubert varieties (cf. [5, §6.5]). Different resolutions for the real groups U(p, q),

GL(n,H), and GL(n,R) are described in [5], and they conclude, for U(p, q), that

any K-orbit closure in a grassmannian flag variety admits a small resolution. These

resolutions may be described as the form µ = π, or equivalently, Barbasch-Evens type

with m = 1 pulled back to the full flag variety.

1.3 Motivation

Natural resolutions mentioned above have proved useful in studying both coherent and

constructible sheaves on Schubert varieties and K-orbit closures. Demazure-Hansen

resolutions are used to study sections of coherent sheaves and lead to, e.g., Demazure’s

character formula and normality of all Schubert varieties. One cannot use analogous

Chang-Vogan resolutions to show all K-orbit closures are normal, since Barbasch-

Evens provide a counter-example to this statement. However, they are successful in

showing certain K-orbit closures are normal by using their more general resolution.

The fact that these resolutions are K-equivariant allows us to view them as stratified

with respect to the Whitney stratification of K-orbits on a flag variety.

Let H be an algebraic group acting algebraically on a smooth irreducible algebraic

variety X with finitely many orbits

X = ∐
x∈Λ
Sx, (1.3)

where Λ is a set of representative basepoints. For every x, y ∈ Λ, let x ≤ y if Sx ⊆ Xy,
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where Xy is the closure of Sy. Then for every y ∈ Λ, we have

(i) Xy = ∐
x≤y
Sx,

(ii) for every x ≤ y, x′ ∈ Sx, the local rings of Xy at x and x′ are isomorphic.

In particular, (1.3) is a Whitney stratification (as in, e.g., [27]). So we can consider

intersection cohomology, described in terms of combinatorics of Λ, and compatible

with equivariant proper morphisms.

We briefly recall a definition of the intersection cohomology complex IC● (with

respect to the middle perversity) of Xy (cf. [12, §4]). Let L be a local system on Sy

with coefficients in a regular noetherian ring with finite Krull dimension. For every

x ≤ y, let jx ∶ {x} → Xy be inclusion and let dx be the dimension of Sx. Then IC● is

the unique constructible complex in a derived category satisfying:

(a) IC●∣Sy ≅ L[dy].

(b) Hi(IC●) = 0 for all i < −dy.

(c) For every x < y, H i(j∗x(IC●)) = 0 for i ≥ −dx.

(d) For every x < y, H i(j!
x(IC●)) = 0 for i ≤ −dx.

Goresky-MacPherson observe that pushing forward certain constructible complexes

under certain algebraic morphisms results in a constructible complex satisfying ax-

ioms (a)–(d). In particular, small resolutions were defined in [12, §6.2] to ensure that

pushing forward a shifted constant sheaf, by a resolution of singularities, gives in-

tersection cohomology. This enigmatic definition applies naturally to any generically

finite morphism µ ∶Z → Y , where one might consider the small locus of µ with respect

to a local system L on U ⊆ Z, such that µ restricts to a finite morphism on U , giving

the largest Zariski open subset W ⊆ Y such that

µ∗IC
●(L)∣µ−1(W ) = IC●(µ∗L)∣W. (1.4)
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When L is over a field of characteristic zero, it is typical to relax the definition

to a semi-small morphism, where the decomposition theorem is available. So small

resolutions may be considered as examples of morphisms such that the decomposition

theorem applies trivially.

While small resolutions were defined by a condition on fiber dimensions, and

theoretically computes IC●, a repeated theme is that applications require further

analysis of the fibers. The intriguing IC● has many applications to representation

theory (cf. [17]), and we list a few regarding reductive groups. Kazhdan-Lusztig [15]

defined polynomials KLy,w ∈ Z[q], depending on two elements y,w in a Coxeter group,

useful for computing multiplicities in the Jordan-Hölder series of Verma modules. For

a Schubert variety Xw of dimension n, we have

KLy,w(q) = ∑
i≥0

dim(H2i−n(IC●
y))qi, (1.5)

where IC● is intersection cohomology of Xw. Zelevinskĭı [32] used (1.5), along with his

small resolutions, to compute the Kazhdan-Lusztig polynomials for every Schubert

variety in a grassmannian flag variety. This explicit calculation requires determining

singular cohomology of all fibers; namely, if µ ∶Z →Xw is a small resolution, then

H i−n(IC●
y) ≅H i(µ−1(y)), (1.6)

and KLy,w is related to the Poincare polynomial of the fiber of µ over y.

Intersection cohomology gives rise to characteristic cycle multiplicities my,w ∈ Z

(for y ≤ w) important for studying Verma modules (as in, e.g., [6]). Bressler-

Finkelberg-Lunts [8] used Zelevinskĭı’s small resolutions to compute the characteristic

cycle of every Schubert variety in a grassmannian flag variety. This explicit calcula-

tion requires computing codifferentials of a morphism µ ∶Z →X of smooth manifolds,

where Xw ⊆ X is inclusion of a Schubert variety in a flag variety. This leads to the

conclusion that certain multiplicities my,w are zero. In particular, [8] concludes that

in this case all characteristic cycles are trivial.
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Intersection cohomology is also important for studying infinite dimensional rep-

resentations of real reductive groups. However, an added complication compared to

Schubert varieties is keeping track of nontrivial local systems on K-orbits. In partic-

ular, [18, 28] defines Kazhdan-Lusztig-Vogan polynomials KLVγ,δ ∈ Z[q], where γ, δ

are local systems on K-orbits. Similar to the case of KLy,w, the polynomials KLVγ,δ

compute characters of irreducible representations in terms of Langlands’ parameters

(cf. [28]).

1.4 Description of thesis

Chapter 2 gives a careful construction of a family of algebraic varieties via quotients

of actions by algebraic groups. We apply this quotient to K-orbits and Schubert

varieties to obtain our main construction Z. There is a natural morphism µ from Z

to a flag variety, which defines an action of the monoid (W,⋆) on the set of K-orbits

in the full flag variety. The monoid action describes the image of µ. We conclude this

chapter by considering when µ is a resolution of singularities of a K-orbit closure in

a flag variety.

Chapter 3 considers resolutions of type µ for the group Sp(2n,R) corresponding

to generalized grassmannian flag varieties. Some linear algebra is recalled to describe

the required symplectic geometry. We describe all K-orbits and closure relations

in terms of three integers (a, b, c). A resolution is constructed uniformly for all K-

orbit closures, and multiple families of small resolutions of type µ are described. We

conclude with some examples.

Chapter 4 defines inducing a small resolution that is equivariant under a parabolic

subgroup of a reductive group G, to a G-equivariant small resolution of certain G-

spaces. The combinatorics of clans enables a simple description of corresponding

fiber bundle structures, and allows us to induce small resolutions for Sp(2n,R) and

U(p, q).
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Chapter 5 considers the group U(p, q) in detail. We show that generically finite

morphisms of type µ are in fact birational in this case. All resolutions of type µ

for U(p, q) have a simplified description, leading to a fiber dimension formula. Low

rank examples indicate that there are many small resolutions for this group, and we

conclude with a family of small resolutions.

Chapter 6 describes a simplified form of µ in the case where there is a single

Schubert variety, which we call m = 1. Then fibers of µ admit a simple description as

an intersection of two subvarieties of a flag variety. This provides enough information

on the fiber to compute all KLVγ,δ for our family of small resolutions in U(p, q). All

small resolutions we found for the group Sp(6,R) can be described by the case m = 1.

An example is provided to show that general Schubert varieties are required in the

definition of µ to find certain small resolutions.

1.5 Real forms and K

We recall without proof two results in the literature (qq.v., Theorem 1.5.1 and The-

orem 1.5.8) to provide background for our results and notation.

Let G be a complex connected reductive algebraic group. A real form of G is

an antiholomorphic Lie group automorphism τ of order 2. We call the fixed point

subgroup GR = Gτ a real reductive algebraic group. A compact real form is a real

form σ such that Gσ is a maximal compact subgroup of G. The following statement

can be found in, e.g., [2, Theorem 3.4].

Theorem 1.5.1 (Cartan)

1. If τ is a real form of G, then there exists a compact real form σ of G such that

σ ○ τ = τ ○σ. The real form σ is unique up to conjugation by GR. The composition

θ = σ ○ τ is an algebraic involution of G, called a Cartan involution for τ .

2. If θ is an algebraic involution of G, then there exists a compact real form σ of G

9



such that σ ○ θ = θ ○ σ. The real form σ is unique up to conjugation by K = Gθ.

The composition τ = σ ○ θ is a real form of G.

3. The group KR = Gθ
R is maximally compact in GR. Its complexification is the

reductive algebraic group K.

The diagram

G

GR K

KR

τ θ

θ τ

shows containment of subgroups.

Example 1.5.2 Let τ be a compact real form. Then τ = σ, θ = id, and G =K.

Example 1.5.3 Let σ1 be a compact real form for G, so

σ(g1, g2) = (σ1(g1), σ1(g2)) (1.7)

is a compact real form of G ×G. Define

τ(g1, g2) = (σ1(g2), σ1(g1)), (1.8)

a real form for G such that σ ○ τ = τ ○ σ. Then

θ(g1, g2) = (g2, g1) (1.9)

is the corresponding Cartan involution of G ×G, GR = {(g, σ1(g)) ∣ g ∈ G} ≅ G, and

K = ∆G is the diagonal copy of G.

Example 1.5.4 Let G = GL(n,C). Let

σ(g) = tḡ−1, (1.10a)

τ(g) = ḡ, (1.10b)

θ(g) = tg−1, (1.10c)

so we have GR = GL(n,R), K = O(n,C), and KR = O(n,R).
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Example 1.5.5 Let G = GL(n,C). Let k, p, q be positive integers such that p+ q = n

and set

Ik =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

⋱

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ip,q =

⎡⎢⎢⎢⎢⎢⎢⎣

Ip

−Iq

⎤⎥⎥⎥⎥⎥⎥⎦

, (1.11)

where Ik is a k × k matrix and Ip,q is an n × n matrix. Let

σ(g) = tḡ−1, (1.12a)

τ(g) = Ip,q tḡ−1 Ip,q, (1.12b)

θ(g) = Ip,q g Ip,q, (1.12c)

so we have GR = U(p, q), K = GL(p,C) ×GL(q,C), and KR = U(p) ×U(q).

Example 1.5.6 Let G = GL(2n,C). Let

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

⋰

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, J =

⎡⎢⎢⎢⎢⎢⎢⎣

S

−S

⎤⎥⎥⎥⎥⎥⎥⎦

, (1.13)

where S is an n×n matrix and J is a 2n×2n matrix. One can replace S with any real

nonsingular symmetric matrix to obtain the same construction up to isomorphism; in

particular, S = I is often used. Let

σ(g) = tḡ−1, (1.14a)

τ(g) = −J ḡ J, (1.14b)

θ(g) = −J tg−1 J, (1.14c)

so we have GR = GL(n,H), K = Sp(2n,C), and KR = Sp(n).

Example 1.5.7 Let G = Sp(2n,C) (q.v. Example 1.5.6). Let

σ(g) = tḡ−1, (1.15a)

τ(g) = In,n tḡ−1 In,n, (1.15b)

θ(g) = In,n g In,n, (1.15c)
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so we have GR = Sp(2n,R), K = GL(n,C), and KR = U(n). Explicitly,

Gθ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a 0

0 S ta−1 S

⎞
⎟⎟
⎠
∣ a ∈ GL(n,C)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. (1.16)

The following fact is well-known and called Matsuki duality.

Theorem 1.5.8 ([29, 19]) GR and K act on the flag variety of G with finitely many

orbits. Orbits of GR correspond bijectively to orbits of K. The correspondence is a

decreasing function on posets defined by closure relations. Furthermore, an orbit of

GR corresponds to an orbit of K precisely when the intersection of orbits is a single

KR-orbit.
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CHAPTER II

THE MAIN CONSTRUCTION

2.1 Quotients

The notion of quotient is prominent throughout topology and geometry, and can be

quite subtle in algebraic geometry. When a group acts on an algebraic variety, we can

quotient the underlying topological space but the natural ringed space structure on

the quotient space is not always again an algebraic variety. When the ringed space is

an algebraic variety, the quotient is said to exist.

Let X be an algebraic variety over k an algebraically closed field of characteristic

zero and let H be a linear algebraic group over k. Suppose that X is a H-variety

with a right action. Let X/H be the quotient space with the quotient topology, let

ρ ∶X →X/H be the quotient map, and for any open subset U ⊆X/H let

OX/H(U) = {f ∶U → k∣f ○ ρ∣ρ−1(U) ∈ OX(ρ−1(U))} . (2.1)

Thus, OX/H(U) may be identified with the ring of invariant functions OX(ρ−1(U))H

on ρ−1(U). Then X/H is a ringed space but may fail to be an algebraic variety.

Example 2.1.1 We provide a typical example of such a quotient, and describe the

topological space as a fiber bundle. If X is a linear algebraic group and H is a closed

subgroup, then X/H is an algebraic variety by, e.g., [26, Theorem 5.5.5]. Let X = G

be a connected reductive algebraic group and let H = R be a parabolic subgroup.

The morphism π ∶G→ G/R is a fiber bundle with fiber R. To see this, let T ⊆ R be

a maximal torus, let R− be the opposite parabolic subgroup, and let U− be the unipotent
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radical. Let U− ×R act on G by

(u, r)g = ugr−1 (2.2)

and let ι ∶U− ×R → G be the orbit map through the identity e ∈ G. The stabilizer of

e ∈ G is given by U− ∩R = 1 so ι is injective. The derivative

dι(e,e)(x, y) = x − y (2.3)

is surjective so ι is dominant by [26, Theorem 4.3.6 (i)]. It follows that ι is an open

embedding by [26, Lemma 2.3.3 (i)] and [26, Theorem 5.3.2]. Identify U− with the

image of π ○ ι in G/R, so U− is open since π is an open map. Define σ ∶U− → G by

σ(u) = ι(u,1). Then σ is a local section of π, and translating σ by elements of G

shows that π has local sections at every point. For g ∈ G, we have π−1(gU−) ≅ gU−×R,

so π is a fiber bundle as claimed.

2.1.2 The definition of OX/H gives a sheaf of functions on X/H.

Proof. For each non-empty open subset U ofX/H, OX/H(U) is a k-algebra of k-valued

functions. So it remains to check that

(A) If Ui and Uj are non-empty open subsets and Ui ⊆ Uj, restriction defines a

k-algebra hom OX/H(Uj) → OX/H(Ui).

(B) Let {Ui}i∈I be an open covering of the open set U . Suppose that for each i ∈ I

we are given fi ∈ OX/H(Ui) such that if Ui ∩Uj is non-empty, fi and fj restrict

to the same element of OX/H(Ui ∩ Uj). Then there is f ∈ OX/H(U) such that

for every i ∈ I, the function f restricts to fi on Ui.

Let Ui ⊆ Uj and let f be in OX/H(Uj). Then f ○ ρ∣ρ−1(Uj) is in OX(ρ−1(Uj)).

Hence f ○ ρ∣ρ−1(Ui) is in OX(ρ−1(Ui)) since OX is a sheaf. It follows that f ∣Ui is in

OX/H(Ui), so (A) is satisfied.
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Let {Ui}i∈I be an open cover of U and let {fi}i∈I satisfy the assumption from (B).

So there is a function f ∶U → k extending {fi}i∈I , and it remains to show that f is in

OX/H(U). By definition of OX/H we have fi ○ ρ∣ρ−1(Ui) in OX(ρ−1(Ui)) such that

fi ○ ρ∣ρ−1(Ui) = fj ○ ρ∣ρ−1(Uj)

since fi∣Ui = fj ∣Uj. Hence there exists F in OX(ρ−1(U)) such that F ∣ρ−1(Ui) = fi ○

ρ∣ρ−1(Ui) since OX is a sheaf. It follows that f ○ ρ∣ρ−1(U) = F is in OX(ρ−1(U)), so f

is in OX/H(U) and hence (B) is satisfied.

2.1.3 If ξ ∶X → Y is a morphism of ringed spaces such that ξ is constant on every

H-orbit, then there exists a unique morphism ζ ∶X/H → Y making the diagram

X Y

X/H

ξ

ρ ζ

commute.

Proof. The map ζ on underlying topological spaces exists and is unique since X/H is

given the quotient topology. To show that ζ is a morphism of ringed spaces, let U be

open in Y and let f be in OY (U). The hom OY (U) → OX(ξ−1(U)) by f ↦ f ○ξ∣ξ−1(U)

satisfies

(f ○ ξ∣ξ−1(U))(xg) = f(ξ(xg)) = f(ξ(x)) (2.4)

by assumption on ξ. Hence there is a hom OY (U) → OX(ξ−1(U))H by (2.4). The

formula

f ○ ξ∣ξ−1(U) = (f ○ ζ ○ ρ)∣ρ−1(ζ−1(U)) = (f ○ ζ ∣ζ−1(U)) ○ ρ∣ρ−1(ζ−1(U)) (2.5)

shows that f ↦ f ○ ζ ∣ζ−1(U) is a hom OY (U) → OX/H(ζ−1(U)) by definition of

OX/H(ζ−1(U)).

2.1.4 If ζ ∶Z → X is a fiber bundle with fiber Y and ξ ∶ X̃ → X is a morphism, then

base change ζ ′ ∶ X̃ ×
X
Z → X̃ of ζ along ξ is a fiber bundle with fiber Y .
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Proof. Let {Ui}i∈I be an open cover of X such that for every i ∈ I, we have

αi ∶ ζ−1(Ui) ≅ Ui × Y (2.6)

such that ζUi
∶ ζ−1(Ui) → Ui commutes with projection prUi

∶Ui × Y → Ui. For every

i ∈ I, let Ũi = ξ−1(Ui) so {Ũi}i∈I is an open cover of X̃. We claim that Ũi are

trivializable for ζ ′.

For every i ∈ I, define βi ∶ (ζ ′)−1(Ũi) → Ũi × Y by

βi(x̃, z) = (x̃,pr2(αi(z))) (2.7)

and define γi ∶ Ũi × Y → (ζ ′)−1(Ũi) by

γi(x̃, y) = (x̃, α−1
i (ξ(x̃), y)). (2.8)

Then βi and γi are well-defined algebraic morphisms which are inverse to each other.

The claim follows.

We provide the following extension of [26, Lemma 5.5.8]. Recall that R is a

parabolic subgroup of a connected reductive group G. Let π ∶G → G/R, X ⊆ G/R a

subvariety, and X̃ = π−1(X) ⊆ G. Suppose that Y is a variety with a left action of R.

Let R act on the right of X̃ × Y by

(g, y)r = (gr, r−1y) (2.9)

and set X̃ ×R Y = (X̃ × Y )/R. Let ρ ∶ X̃ × Y → X̃ ×R Y be the quotient morphism.

If g ∈ X̃ and y ∈ Y then we denote a point in the quotient by [g, y] = ρ(g, y). Let

pr1 ∶ X̃×Y → X̃ and πX ∶ X̃ →X be the obvious projections, and let ξ = πX ○pr1. Then

ξ is constant on R-orbits so ζ ∶ X̃ ×R Y →X is well-defined by §2.1.3.

Lemma 2.1.5 Let R be a parabolic subgroup of a connected reductive group G and

π ∶G→ G/R. Let X ⊆ G/R a subvariety, X̃ = π−1(G), and Z = X̃ ×R Y as above. The

quotient Z exists as an algebraic variety. The morphism ζ ∶Z → Y is a fiber bundle

with fiber Y .
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Proof. Consider an open subset U ⊆ Z, and let W = ρ−1(U) ⊆ X̃ ×Y . Let ξW ∶W → U

by restricting ρ and ρW ∶W →W /R by quotienting the R-action on W , so ζW ∶W /R →

U exists by §2.1.3. We show that ζW is an isomorphism (of ringed spaces) by showing

their sheaves of functions are isomorphic. Let V ⊆ U be an open subset so

OU(V ) ≅ OX̃×RY (V )

≅ OX̃×Y (ρ−1(V ))R

≅ OW (ρ−1(V ))R

≅ OW /R(V )

(2.10)

by the last comment in [26, §1.4.2] and (2.1).

To show Z is a prevariety, we need to find an open cover such that OZ restricts to

an algebraic variety on each open set; we do this by applying (2.10) to trivializable

open subsets. Let {Ui}i∈I be an open cover of X such that Ũi = π−1(Ui) ≅ Ui ×R are

R-equivariant trivializations in G (cf. Example 2.1.1 and §2.1.4). Then {Ũi × Y }
i∈I

is an open cover of X̃ × Y . It follows that {ρ(Ũi × Y )}
i∈I is an open cover of Z since

ρ is an open map. We have

ρ(Ũi × Y ) ≅ Ũi ×R Y ≅ Ui × Y (2.11)

by (2.10) and the R-equivariant trivializations of Ũi. Therefore Z is a prevariety.

The prevariety Z is a variety means the topological space is separated. We show

that the morphism ζ ∶Z → X is separated, and it will follow from [14, Corollary 4.6

(b)] that Z is separated since X is separated. Recall that the fibered product (as a

topological space) is given by

Z ×
X
Z = {(z1, z2) ∣ ζ(z1) = ζ(z2)} (2.12)

and the diagonal morphism δζ ∶Z → Z ×
X
Z is given by δζ(z) = (z, z). It remains to

show that the image of δζ is closed by [14, Corollary 4.2]. Let W1 and W2 be open
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subsets of Z such that Wi ≅ Ui × Y as in (2.11). Then

W1 ×
X
W2 = {(g1R/R,y1, g2R/R,y2) ∣ g1R = g2R}

= {(gR/R,y1, gR/R,y2)}
(2.13)

in U1 × Y ×U2 × Y . Hence

Im(δζ) ∩ (W1 ×
X
W2) = {(gR/R,y, gR/R,y)} (2.14)

is closed in W1×
X
W2 since (U1∩U2)×Y is closed in (U1∩U2)×Y ×Y under the diagonal

closed embedding Y → Y ×Y (recall that Y is a variety so is separated). Thus Im(δζ)

is closed in Z ×
X
Z since Wi cover Z. The claim follows.

2.2 K-orbits and Schubert varieties

Our main construction uses closures of K-orbits and m ≥ 0 many Schubert varieties

to provide quotients as in Lemma 2.1.5. We note that similar ideas have appeared

before, e.g., in Richardson-Springer [23] and it is common to use Bott-Samelson type

varieties (q.v. (2.19)) for resolutions. The resulting varieties will take advantage of

local sections from Example 2.1.1 to obtain iterated fiber bundles, since local sections

gave us a fiber bundle structure in Lemma 2.1.5.

From now on, let G be a connected reductive algebraic group and fix a Borel

subgroup B. Let X = G/B be the flag variety of G, let θ be an involutive algebraic

automorphism of G, and let Gθ be the fixed point subgroup of θ. Let K be any

subgroup of finite index in Gθ. It is well-known that there are finitely many K-orbits

and B-orbits on X, and we denote V =K/G/B and W = B/G/B. Then

X = ∐
v∈V

Kv̇B/B = ∐
w∈W

BẇB/B, (2.15)

where v̇ is a representative of the corresponding (K × B)-orbit in G and similarly

for ẇ. We may identify W with the Weyl group of G by Bruhat’s lemma (cf. [26,

Theorem 8.3.8]).
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Let S be the set of simple reflections of W with respect to B. We identify a

standard parabolic subgroup B ⊆ P ⊆ G with subsets of simple reflections ∅ ⊆ I ⊆ S

such that for every s ∈ I, P contains ṡ in G. In particular, P has semisimple rank #I

and the subgroup WI of W generated by I may be identified with the Weyl group of

a Levi subgroup of P . We write XI = G/P for the flag variety of G corresponding to

I. There are finitely many K-orbits and B-orbits

XI = ∐
v∈V I

Kv̇P /P = ∐
w∈W I

BẇP /P, (2.16)

where V I ⊆ V and W I ⊆ W by letting Kv̇B/B be the unique open orbit in Kv̇P /B

and similarly for BẇB/B. Then W I may be identified with the maximum length

representative of elements of W /WI .

Given v ∈ V and w ∈W , let

Gv =Kv̇B, Gw = BẇB, (2.17a)

Xv =Kv̇B/B, Xw = BẇB/B, (2.17b)

XI
v =Kv̇P /P , XI

w = BẇP /P , (2.17c)

in G, X, and XI . For any v ∈ V observe that B stabilizes Gv by right multiplication,

and for any w ∈W , B stabilizes Gw by both left and right multiplication.

Let v0 ∈ V and w1, . . . ,wm ∈W . Let R1 be a standard parabolic subgroup stabiliz-

ing Gv0 by right multiplication and Gw1 by left multiplication, and for every 2 ≤ i ≤m,

let Ri be a standard parabolic subgroup stabilizing Gwi−1 by right multiplication and

Gwi
by left multiplication. Then R1×⋯×Rm acts on the right of Gv0 ×Gw1 ×⋯×Gwm

by

(g0, g1, . . . , gm)(r1, . . . , rm) = (g0r1, r
−1
1 g1r2, . . . , r

−1
m gm) (2.18)

and we denote the quotient by

Gv0 ×R1 Gw1 ×R2 ⋯×Rm Gwm = (Gv0 ×Gw1 ×⋯ ×Gwm)/(R1 ×⋯ ×Rm). (2.19)

We call this quotient a Bott-Samelson variety.
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Remark 2.2.1 We may replace V by W with no change. The constructions give

quotients, fiber bundles, and resolutions with a left B-action instead of left K-action.

This leads to resolutions of Schubert varieties as in, e.g., [10, 13, 11, 22].

Recall for Z ⊆ G/R, we write Z̃ for π−1(Z) ⊆ G.

Lemma 2.2.2 Let R1 and R2 be any standard parabolic subgroups, X0 ⊆ G/R1, let

X1 ⊆ G/R2 such that R1 stabilizes X̃1 by left multiplication, and let Y be a variety

with a left action of R2. Then

(X̃0 × X̃1 × Y ) /(R1 ×R2) ≅ X̃0 ×R1 (X̃1 ×R2 Y ) . (2.20)

Proof. Define

ρ2 ∶ X̃0 × X̃1 × Y → X̃0 × (X̃1 ×R2 Y ) (2.21)

by quotienting by R2. Then R1 acts on the left of X̃1 ×R2 Y by assumption. Define

ρ1 ∶ X̃0 × (X̃1 ×R2 Y ) → X̃0 ×R1 (X̃1 ×R2 Y ) (2.22)

by quotienting by R1. Let ξ = ρ1 ○ ρ2 be the morphism of varieties constant on

(R1 ×R2)-orbits. By §2.1.3, there is a well-defined morphism of ringed spaces

ζ ∶ (X̃0 × X̃1 × Y ) /(R1 ×R2) → X̃0 ×R1 (X̃1 ×R2 Y ) . (2.23)

The inverse morphism of ζ is constructed by considering the quotient

X̃0 × X̃1 × Y → (X̃0 × X̃1 × Y ) /(R1 ×R2) (2.24)

constant on R2-orbits, and then the quotient

X̃0 × (X̃1 ×R2 Y ) → (X̃0 × X̃1 × Y ) /(R1 ×R2) (2.25)

constant on R1-orbits.

Proposition 2.2.3 Gv0 ×R1 Gw1 ×R2 ⋯ ×Rm Gwm (q.v. (2.19)) exists as an algebraic

variety.
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Proof. Let Z = Gv0 ×R1 Gw1 ×R2 ⋯×Rm Gwm and Y = Gw1 ×R2 ⋯×Rm Gwm as in (2.19).

Then

Y ≅ Gw1 ×R2 (Gw2 ×R3 ⋯×Rm Gwm) (2.26)

and

Z ≅ Gv0 ×R1 Y (2.27)

by Lemma 2.2.2. It follows that Y and Z exist by Lemma 2.1.5.

Corollary 2.2.4 Let v0,w1, . . . ,wm and R1, . . . ,Rm as in (2.19). Let R be a standard

parabolic subgroup stabilizing Gwm by right multiplication. The variety

Z = Gv0 ×R1 Gw1 ×R2 ⋯×Rm Gwm/R (2.28)

is an iterated fiber bundle.

Proof. This follows immediately from Lemma 2.1.5 and Lemma 2.2.2. In particular,

if U0 ⊆ Gv0/R1, and for 1 ≤ i < m if Ui ⊆ Gwi
/Ri+1, if Um ⊆ Gwm/R are trivializable

open subsets, then

U0 ×⋯ ×Um ⊆ Z (2.29)

is an open embedding.

Remark 2.2.5 The variety Z is smooth if and only if Xv0 is smooth and for every

1 ≤ i ≤ m, Xwi
is smooth. This is a direct consequence of (2.29) along with a fiber

bundle structure on Xv →XJ
v , for any v ∈ V such that GvPJ = Gv, with fiber PJ/B.

2.3 A monoid action

Let B ⊆ R ⊆ P ⊆ G be parabolic subgroups corresponding to subsets of simple reflec-

tions ∅ ⊆ J ⊆ I ⊆ S. We define a proper algebraic morphism µ from

ZJ = Gv0 ×R1 Gw1 ×R2 ⋯×Rm Gwm/R (2.30)

to the flag variety XI .
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Definition 2.3.1 Define µ ∶ZJ →XI by

µ[g0, . . . , gmR/R] = g0⋯gmP /P. (2.31)

Proposition 2.3.2 The map µ defined by (2.31) is a proper algebraic morphism with

image XI
v for some v ∈ V .

Proof. Consider the morphism

ϕ̃ ∶G ×⋯ ×G→ G ×⋯ ×G (2.32)

defined by

ϕ̃(g0, . . . , gm) = (g0, g0g1, . . . , g0g1⋯gm). (2.33)

The inverse morphism ψ̃ is defined by

ψ̃(g0, . . . , gm) = (g0, g
−1
0 g1, . . . , g

−1
m−1gm). (2.34)

Let Ỹ ⊆ G ×⋯ ×G be the image of the subvariety

ι̃ ∶Gv0 ×Gw1 ×⋯ ×Gwm ⊆ G ×⋯ ×G (2.35)

under the morphism ϕ̃. The diagram

Gv0 ×Gw1 ×⋯ ×Gwm Ỹ

Gv0 ×R1 Gw1 ×R2 ⋯×Rm Gwm/R Y

ι̃

ρ π

ι

(2.36)

commutes, where Y ⊆ G/R1×⋯×G/Rm×G/R. It follows that ι is an isomorphism since

ρ ○ ι̃−1 factors through π. Therefore ZJ is a projective variety and µ is a morphism

between projective varieties. It follows by [14, Theorem 4.9] that µ is proper since µ

is projective.

The image of µ is a K-stable (since µ is K-equivariant) closed subvariety of XI

(since µ is proper) so is a union of K-orbit closures in XI . If K is connected, then

the image is a single K-orbit closure by standard irreducibility arguments, but if K

is not connected, then we need to argue more carefully.
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It is enough to show that given v0 ∈ V and s ∈ S, Gv0Ps/B = Gv1/B for some

v1 ∈ V . Let π ∶G/B → G/Ps so

Gv0Ps/B = π−1(π(Gv0/B)). (2.37)

Vogan [28, Lemma 5.1] shows that there is a unique open K-orbit v1 ∈ V in (2.37) so

the claim follows. In particular, for v0 ∈ V and w ∈W , we have

Gv0Gw = Gv0Pi1⋯Pi` = Gv1Pi2⋯Pi` = Gu, (2.38)

where w = si1⋯si` is a reduced word for w. Therefore, the image of (2.31) is the

closure of a single K-orbit.

Remark 2.3.3 The element v ∈ V from Proposition 2.3.2 is independent of choice

of parabolics Ri and R, subject to (2.19).

Definition 2.3.4 Given v ∈ V and w ∈W , define v ⋆w = u ∈ V , where the map

µ ∶Gv ×RXw →Xu (2.39)

is surjective.

Proposition 2.3.5 If V = W , then (W,⋆) is a monoid. In general, the monoid

(W,⋆) acts on the right of V .

Proof. This follows directly from the definition since

(GvGw1)Gw2 = Gv(Gw1Gw2) (2.40)

by the associative property of multiplication in G. We also have

BGw = Gw = GwB, (2.41a)

GvB = Gv, (2.41b)

so B ⊆ G gives the identity element in the monoid.
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Definition 2.3.6 Define the function τ from V to subsets of S by

τ(v) = {s ∈ S ∣ v ⋆ s = v} , (2.42)

called the τ -invariant of v.

Remark 2.3.7 Let γ be a Langlands parameter with same infinitesimal character as a

finite dimensional representation, which may be identified as a K-orbit with irreducible

K-equivariant local system (cf. [28]). The weak τ -invariant τw(γ), τ -invariant τ(γ),

and strong τ -invariant τs(γ) are defined in [28], such that

τs(γ) ⊆ τ(γ) ⊆ τw(γ). (2.43)

By definition,

τw(γ) = {s ∈ S ∣ π−1(π(v̇B/B)) ∩Kv̇B/B is infinite} , (2.44)

where v is the underlying K-orbit attached to γ, P is the standard parabolic subgroup

corresponding to the simple reflection s, and π ∶G/B → G/P . We have

π−1(π(v̇B/B)) ∩Kv̇B/B = v̇P /B ∩Kv̇B/B, (2.45)

which is the fiber of

Kv̇B ×B P /B →X (2.46)

over v̇B/B (q.v. (6.1)). It follows by counting dimensions that

τ(v) = τw(γ), (2.47)

so we are defining the τ -invariant of v as the weak τ -invariant of the underlying

K-orbit.

2.4 Resolutions of singularities

For 1 ≤ i ≤m, let Ri be the standard parabolic subgroup corresponding to the subset

of simple reflections Ji, and let R be the standard parabolic subgroup corresponding
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to the subset of simple reflections J . Set

ZJ = Gv0 ×R1 Gw1 ×R2 ⋯×Rm Gwm/R (2.48)

as in (2.19). For a subset of simple reflections I ⊆ S, we let wI = max(WI) the longest

element of the corresponding Weyl group.

Proposition 2.4.1 Let v = v0 ⋆w1 ⋆ ⋯ ⋆wm ⋆wI , where P is the standard parabolic

subgroup corresponding to the subset of simple reflections I. The map

µ ∶ZJ →XI
v (2.49)

is generically finite if and only if

`(v) = `(v0) +
m

∑
i=1

`(wi) −
m

∑
i=1

`(wJi) + `(wI) − `(wJ), (2.50)

where we denote `(u) = dim(Xu) for u ∈ V ∪W .

Proof. The dimension of ZJ is equal to

dim(Gv0/R1) +
m−1

∑
i=1

dim(Gwi
/Ri+1) + dim(Gwm/R) (2.51)

by Corollary 2.2.4. The claim follows immediately since the map

π ∶Gu/B → Gu/R (2.52)

is a fiber bundle whenever R stabilizes Gu by right multiplication.

Remark 2.4.2 If v ∈ V , the length is often defined to be the difference in the dimen-

sion of Xv and the dimension of a closed K-orbit, in which case (2.50) still holds.

Definition 2.4.3 Suppose that µ ∶ZJ → Y as in (2.49) is a resolution of singularities

(i.e., ZJ is smooth and µ is birational). Then µ is a small resolution means for every

r > 0,

codimY (Yr) > 2r, (2.53)
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where

Yr = {y ∈ Y ∣ dim(µ−1(y)) ≥ r} , (2.54)

and codimY (∅) = ∞.

Remark 2.4.4 In our situation, we may describe a small resolution µ via combi-

natorics of v, y ∈ V , where Y = XI
v . Namely, (2.53) is equivalent to the following

statement: for every y ∈ V I such that y ≤ v,

2dy < cy, (2.55)

where dy = dim(µ−1(ẏP /P )) and cy = codimXI
v
(XI

y).

Example 2.4.5 The construction of resolutions in [5] takes on the form of (2.31).

Let G = GL(n,C), GR = U(p, q), and K = GL(p,C) ×GL(q,C). Given 1 ≤ k < n,

Barbasch-Evens [5, §2.1] describes K-orbit closures in XI , where I is the complement

of k in S = {1, . . . , n − 1}, as follows. The set

V I
p,q = {(a, b) ∈ Z2

≥0 ∣ a ≤ p, b ≤ q, a + b ≤ k} , (2.56)

parameterizes K-orbits on XI . We have (a′, b′) ≤ (a, b) if and only if a′ ≥ a and b′ ≥ b.

The K-orbit Qk̂a,b is closed if and only if a + b = k, and open if and only if a = 0 = b.

Given (a, b) ∈ V I
p,q,

XI
a,b = {Ek ∈ Grk(Cn) ∣ dim(Cp ∩E) ≥ a, dim(C−q ∩E) ≥ b} (2.57)

is the corresponding orbit closure. Define J to be the complement of a+b in I and set

ZJ = {(F,E) ∣ F ⊆ E, dim(Cp ∩ F ) = a, dim(Cq ∩ F ) = b} (2.58)

contained in Gra+b(Cn) ×Grk(Cn), as in [5, §2.4]. We have

ZJ = Gv0/R =XJ
v0 , (2.59)
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where v0 = (a, b) ∈ V I0 and I0 is the complement of a+ b in S; i.e., ZJ is the pull-back

of a closed K-orbit in XI0. Define

µ ∶ZJ →XI
a,b, µ(F,E) = E (2.60)

as in (2.49). Then µ is a resolution of singularities (not just generically finite). If

n − k ≥ max(k, p, q) then [5, §5.3] shows that µ is a small resolution.

Similarly, [5, §5.5] shows that every X k̂
a,b has a small resolution of the form µ,

with m = 0.
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CHAPTER III

Sp(2n,R)

“There is little in the papers of Harish-Chandra which is not as important

for the symplectic group as in the general case.” (V.S. Varadarajan)

3.1 Symplectic geometry

In this section, let G′ = GL(2n,C) and let B′ be the upper triangular matrices. Define

θ′ ∶G′ → G′ by (1.14c). Then G = Sp(2n,C) is the fixed point subgroup of θ′ such

that B = G∩B′ is a Borel subgroup since B′ is θ′-stable. Define θ ∶G→ G by (1.15c),

so GR = Sp(2n,R), K = GL(n,C), and KR = U(n).

We sometimes write V = Vn for the K-orbits in X = G/B to emphasize the rank

of G. The involution θ′ is identified with the nondegenerate alternating bilinear form

on C2n by

ω(x, y) = txJ y, (3.1)

where J is given by (1.13). Then Sp(2n,C) is equal to the isometry group of ω. We

recall some well-known basic facts about nondegenerate alternating forms which are

used below.

Proposition 3.1.1 [4, Theorem 3.5] Let E be a subspace of C2n and let

E⊥ = {x ∈ C2n ∣ ∀y ∈ E, ω(x, y) = 0} . (3.2)

(i) rad(ω∣E) = E ∩E⊥,

(ii) dim(E⊥) = 2n − dim(E),
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(iii) If ω∣E is nondegenerate, then ω∣E⊥ is nondegenerate and C2n = E ⊕E⊥.

3.1.2

(i) If E ⊆ F , then F ⊥ ⊆ E⊥,

(ii) E⊥ ∩ F ⊥ = (E + F )⊥,

(iii) if E is isotropic (i.e., E ⊆ E⊥), then ω̄(x̄, ȳ) = ω(x, y) defines a nondegenerate

alternating bilinear form on E⊥/E.

We provide another fact often used for computing closures of K-orbits.

3.1.3 Define the function

rank ∶Mm×n(C) → Z (3.3)

by assigning the rank to each matrix. Then rank−1(r) = rank−1([0, r]).

Proof. Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} such that #I = k = #J . Let dkI,J be the

determinant of the I × J minor. The set rank−1([0, r]) is the vanishing locus of all

dkI,J = 0, where k > r, since the rank is the same as the determinantal rank. Therefore,

rank−1(r) ⊆ rank−1([0, r]).

Let f be a regular function on Mm×n(C) vanishing at all matrices of rank r and

let M be a matrix of rank ` ≤ r. Let A be a row reduction matrix giving a matrix

AM with rank(AM) = `. It is clear that for Ei the matrix with entry 1 in position

(i, i) and 0 in position (i, j) (i ≠ j), N = ∑k
i=`+1Ei, and t ≠ 0,

AM + tN (3.4)

has rank r. Thus for every t ≠ 0,

M + tA−1N (3.5)

has rank r. It follows that f vanishes on all matrices of this form – including t = 0 by

continuity. Therefore, rank−1(r) = rank−1([0, r]).
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3.2 Orbits

In this section, we describe K-orbits and closure relations for all maximal parabolic

flag varieties. These orbits are labelled by three integers a, b, c (q.v. Proposition 3.2.4).

Let P be a maximal parabolic subgroup of G containing B. If P corresponds to k̂,

then G/P ≅ Gr0
k(C2n) identifies with ω-isotropic subspaces of C2n of dimension k.

Let C±n be the ±1 eigenspace of In,n.

Lemma 3.2.1 Given an isotropic subspace 0 ⊆ E ⊆ C2n of ω, define ε ∶E ×E →C by

ε(x, y) = ω(Λn(x),Λ−n(y)), (3.6)

where Λ±n ∶C2n →C±n is projection. Then ε is a symmetric bilinear form on E.

Proof. For every x, y in E, we have ω(x, y) = 0 since E is isotropic. Note Cn,C−n are

also isotropic subspaces of ω. Hence

0 = ω(x, y)

= ω(Λn(x) +Λ−n(x),Λn(y) +Λ−n(y))

= ω(Λn(x),Λ−n(y)) + ω(Λ−n(x),Λn(y))

= ω(Λn(x),Λ−n(y)) − ω(Λn(y),Λ−n(x))

= ε(x, y) − ε(y, x)

(3.7)

shows ε is symmetric.

Given an isotropic subspace E of ω, define

a = dim(Cn ∩E), (3.8a)

b = dim(C−n ∩E), (3.8b)

c = dim(rad(ε)) − a − b. (3.8c)

Then a, b, c are nonnegative integers which are invariants of each K-orbit in G/P .
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Lemma 3.2.2 If E and F are transverse lagrangian subspaces of ω, then there exists

a linear isomorphism γ ∶E → F sending a basis (g1, . . . , gn) of E to a basis (f1, . . . , fn)

of F , where fi = γ(gi), such that (g1, . . . , gn, f1, . . . , fn) is a symplectic basis of C2n.

Proof. We proceed by induction on n. Suppose n = 1. For every x ∈ E, there exists

y ∈ F such that ω(x, y) ≠ 0, since F is a maximal isotropic subspace of ω. Fix g1 ∈ E

and let f1 ∈ F such that ω(g1, f1) = 1. Define γ ∶E → F by linearly extending γg1 = f1.

Hence (g1, f1) is a symplectic basis of ω.

Suppose n > 1 and assume the lemma is true for every 1 ≤ k < n. Let E and F

be transverse lagrangian subspaces of ω. Given gn ∈ E, there exists fn ∈ F such that

ω(gn, fn) = 1 as above. In particular, ω restricts to nondegenerate forms on ⟨gn, fn⟩

and ⟨gn, fn⟩⊥ by Proposition 3.1.1. Let E′ = E ∩⟨gn, fn⟩⊥ and F ′ = F ∩⟨gn, fn⟩⊥. Then

dim(E′) = dim(E ∩ ⟨gn, fn⟩⊥)

= dim(E) + dim(⟨gn, fn⟩⊥) − dim(E + ⟨gn, fn⟩⊥)

= n + (2n − 2) − (2n − 1)

= n − 1

(3.9)

where the inequality follows from Proposition 3.1.1 and E+⟨gn, fn⟩⊥ ⊆ ⟨gn⟩⊥. Similarly,

dim(F ′) = n − 1. It follows that E′ and F ′ are lagrangian in ⟨gn, fn⟩⊥ of dimension

n − 1. By induction, there exists a linear isomorphism γ′ ∶E′ → F ′ and a symplectic

basis (g1, . . . , gn−1, f1, . . . , fn−1) of E′ + F ′. By construction, we have an orthogonal

decomposition

C2n = ⟨g1, f1⟩ + ⋯ + ⟨gn−1, fn−1⟩ + ⟨gn, fn⟩ . (3.10)

Define γ ∶E → F by linearly extending γ′ such that γgn = fn. This gives the

symplectic basis (g1, . . . , gn, f1, . . . , fn) of ω.

Lemma 3.2.3 Let Ek be an isotropic subspace of ω of the form E = (Cn∩E)+(C−n∩

E). Let (g1, . . . , ga, ga+1, . . . , ga+b) be a basis of E respecting the direct sum. Then this
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basis can be extended to a symplectic basis of C2n = Cn+C−n also respecting the direct

sum.

Proof. Define Ẽ = (Cn ∩ E⊥) + (C−n ∩ E). Note Ẽ is isotropic since the summands

are isotropic subspaces that are perpendicular to each other. Then

dim(Cn ∩E⊥) = dim((Cn +E)⊥)

= 2n − (n + b)

= n − b

(3.11)

by e.g., Proposition 3.1.1 and §3.1.2. Hence dim(Ẽ) = (n − b) + b = n shows Ẽ is a

lagrangian subspace.

Let F be a complementary subspace of Cn∩Ẽ in Cn and define F̃ = F +(C−n∩F ⊥).

Note F̃ is isotropic by an above argument and is lagrangian. We have

(C−n ∩E) ∩ (C−n ∩ F ⊥) = 0 (3.12)

since C−n ∩E ∩ F ⊥ = (C−n + (E ∩ F ⊥)⊥)⊥ = (C−n +E⊥ + F )⊥ = (C2n)⊥, where the last

equality follows since F is complementary to Cn ∩ Ẽ = Cn ∩E⊥ in Cn. It follows that

Ẽ and F̃ are complementary lagrangian subspaces.

Let U1 = (Cn ∩ Ẽ)+(C−n ∩ F̃ ) and U2 = (Cn ∩ F̃ )+(C−n ∩ Ẽ). Then C2n = U1 +U2

is an orthogonal decomposition so ω restricts to a nondegenerate form on U1 and U2

by Proposition 3.1.1. We apply Lemma 3.2.2 to each summand of the orthogonal

decomposition

C2n = ((Cn ∩ Ẽ) + (C−n ∩ F̃ )) + ((Cn ∩ F̃ ) + (C−n ∩ Ẽ)) (3.13)

giving us our claim since E ⊆ Ẽ.

Proposition 3.2.4 The K-orbits in G/Pk̂ consist of

Qk̂a,b,c = {Ek ∣ dim(Cn ∩E) = a, dim(C−n ∩E) = b, dim(rad(ε)) = a + b + c} , (3.14)
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where a, b, c, ε are defined in Lemma 3.2.1. Moreover,

V k̂
n = {(a, b, c) ∈ Z3

≥0 ∣ a + b + c ≤ k, k + c ≤ n} (3.15)

parameterizes the nonempty K-orbits.

Proof. Let E ∈ Qk̂a,b,c. Then rad(ε) ⊆ E forces a + b + c ≤ k. The subspace E′ =

E +Λ+(rad(ε)) is isotropic since any x, y ∈ E′ gives

ω(x, y) = ω(x1 +Λ+(x2), y1 +Λ+(y2))

= ω(Λ−(x1),Λ+(y2)) + ω(Λ+(x2),Λ−(y1))

= 0,

(3.16)

where x1, y1 ∈ E and x2, y2 ∈ rad(ε). It follows that k + c ≤ n. So V k̂
n partitions the

K-orbits, and we need to show that it parameterizes the K-orbits.

Let a, b, c ∈ Z≥0 such that a + b + c ≤ k and k + c ≤ n. Let (e1, . . . , e2n) be the

standard basis of C2n, and for every 1 ≤ i ≤ 2n, let e−i = e2n+1−i. Define

Ek
a,b,c = ⟨e1, . . . , ea, e−n−1+1, . . . , e−n−1+b, ea+1 + e−n−1+b+1, . . . , ea+c + e−n−1+b+c,

ea+c+1 + e−(a+c+1), . . . , ea+c+d + e−(a+c+d)⟩,
(3.17)

where d = k − a − b − c. It follows from

−n + b + c ≤ −k + b = −(a + c + d) (3.18)

that Ea,b,c is isotropic. This shows that for every (a, b, c) ∈ V k̂
n , the set Qk̂a,b,c defined

by (3.14) is nonempty. It remains to show that Qk̂a,b,c is a single K-orbit.

Let E ∈ Qk̂a,b,c. Then E decomposes into orthogonal one dimensional subspaces for

the symmetric bilinear form ε. Let (g1, . . . , gk) be a basis of E such that for every

1 ≤ i ≤ a+ b+ c and 1 ≤ j ≤ k, we have ε(gi, gj) = 0, and for every a+ b+ c < i, j ≤ k, we

have ε(gi, gj) = δij (the Kronecker delta function). We can assume (g1, . . . , ga+b) is a

basis of (Cn∩E)+(C−n∩E) respecting the direct sum since the radical of ε contains

each summand. For a + b < i ≤ k, we have gi = g+i + g−i , where g±i is nonzero in C±n.
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We claim that

{g1, . . . , ga+b, g
+
a+b+1, . . . , g

+
k , g

−
a+b+1, . . . , g

−
k} (3.19)

is a linearly independent set. Suppose

a+b
∑
i=1

xigi +
k

∑
i=a+b+1

(yig+i + zig−i ) = 0, (3.20)

from which it follows that the vector

a+b
∑
i=1

xigi +
k

∑
i=a+b+1

yi(g+i + g−i ) =
k

∑
i=a+b+1

(yi − zi)g−i (3.21)

is in C−n∩E. The set {ga+b+1, . . . , gk} spans a vector space complement of (Cn∩E)+

(C−n ∩ E) in E so for every a + b + 1 ≤ i ≤ k, we have yi = 0. Similarly, for every

a + b + 1 ≤ i ≤ k, we have zi = 0 and our claim holds true.

We show that (3.19) can be extended to a symplectic basis of Cn+C−n respecting

the direct sum. For 1 ≤ i ≤ a + b + c and a + b < j ≤ k,

ω(gi, g+j ) = ω(Λn(gi) +Λ−n(gi),Λn(g+j ))

= −ω(Λn(g+j + g−j ),Λ−n(gi))

= −ε(gj, gi)

(3.22)

is zero since gi is in the radical of ε; similarly, ω(gi, g−j ) = 0. For a + b < i ≤ a + b + c

and a + b < j ≤ k,

ω(g+i , g−j ) = ω(Λn(g+i + g−i ),Λ−n(g+j + g−j ))

= ε(gi, gj)
(3.23)

is zero since gi in the radical of ε; similarly, ω(g−i , g+j ) = 0. Let F be the span of

{g+a+b+c+1, . . . , g
+
k , g

−
a+b+c+1, . . . , g

−
k} . (3.24)

Then

ω(g+i , g−j ) = ε(gi, gj) = δij (3.25)
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shows

(g+a+b+c+1, . . . , g
+
k , g

−
k , . . . , g

−
a+b+c+1) (3.26)

is a symplectic basis of F . In particular, C2n = F + F ⊥ by Proposition 3.1.1. The set

{g1, . . . , ga+b, g
+
a+b+1, . . . , g

+
a+b+c, g

−
a+b+1, . . . , g

−
a+b+c} (3.27)

spans an isotropic subspace of F ⊥. We have

dim(C±n ∩ F ⊥) = dim((C±n + F )⊥) = n − (k − a − b − c) (3.28)

by Proposition 3.1.1. Hence C±n∩F ⊥ are complementary lagrangian subspaces of F ⊥.

We use Lemma 3.2.3 to extend (3.27) to a symplectic basis of (Cn ∩F ⊥)+(C−n ∩F ⊥)

while preserving the direct sum.

We can apply this construction to the basepoint (3.17) giving a symplectic matrix

γ between bases. Then γ preserves C±n and hence γ ∈K. It is clear that γ takes the

basepoint (3.17) to E so Qk̂a,b,c is a single K-orbit.

Corollary 3.2.5 The closure X k̂
a,b,c of Qk̂a,b,c in G/Pk̂ is given by

{Ek ∣ dim(Cn ∩E) ≥ a, dim(C−n ∩E) ≥ b, dim(rad(ε)) ≥ a + b + c} . (3.29)

Therefore, (V k̂,≤) is given by (a′, b′, c′) ≤ (a, b, c) if and only if a′ ≥ a, b′ ≥ b, and

a′ + b′ + c′ ≥ a + b + c.

Proof. The set

Y = {E ∈ G/P ∣ dim(rad(ε)) ≥ a + b + c} (3.30)

is seen to be closed in G/P as follows. Define

π ∶G→ G/P, π(g) = gP /P (3.31)

and

γ ∶G→ HomC(Ck, (Ck)∨), γ(g)(x)(y) = ε(gx, gy). (3.32)
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We have

π−1(Y ) = {g ∈ G ∣ dim(ker(γ(g))) ≥ a + b + c} (3.33a)

= {g ∈ G ∣ rank(γ(g)) ≤ k − a − b − c} (3.33b)

which is a Zariski closed subset by §3.1.3. Therefore, Y is closed in G/P .

A similar argument applied to the map

η ∶G→ HomC(Ck,C−n), η(g) = Λ−n ○ g ○ ι, (3.34)

where ι ∶Ck →C2n is inclusion, shows

{E ∈ G/P ∣ dim(Cn ∩E) ≥ a} (3.35)

is closed. It follows that Qa,b,c ⊆X k̂
a,b,c.

Let (a′, b′, c′) ∈ V k̂ such that a′ = a, b′ = b, and c′ = c + 1. Define g ∈ G by

ea+c+1 ↦ (ea+c+1 + e−(n+b+c+1))/
√

2 (3.36a)

e−(n+b+c+1) ↦ (ea+c+1 − e−(n+b+c+1))/
√

2 (3.36b)

e−(a+c+1) ↦ (e−(a+c+1) + en+b+c+1)/
√

2 (3.36c)

en+b+c+1 ↦ (e−(a+c+1) − en+b+c+1)/
√

2 (3.36d)

such that g fixes all remaining standard basis vectors. Then g ∈K and

⟨e1, . . . , ea, en+1, . . . , en+b, ea+1 + en+b+1, . . . , ea+c + en+b+c

ea+c+1 + e−(n+b+c+1) + e−(a+c+1) + en+b+c+1,

ea+c+2 + e−(a+c+2), . . . , ea+c+d + e−(a+c+d)⟩

(3.37)

is seen to be gEa,b,c ∈ Qa,b,c. Let λ ∶C× → T be the cocharacter such that coordinates

a+ c+ 1 and −(n+ b+ c+ 1) are t−1, coordinates −(a+ c+ 1) and n+ b+ c+ 1 are t, and

remaining coordinates are trivial. The morphism α ∶C× → Gr0
k(C2n) by

α(t) = λ(t)gEa,b,c (3.38)
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extends to all of C with α(0) = Ea,b,c+1. Therefore, Qa,b,c+1 ⊆ Qa,b,c.

Let (a′, b′, c′) ∈ V k̂ such that a′ = a + 1, b′ = b, and c′ = c − 1. Let λ ∶C× → T be

the cocharacter such that coordinate a + c + 1 is t−1, coordinate −(a + c + 1) is t−1,

and remaining coordinates are trivial. The morphism α ∶C× → Gr0
k(C2n) by (3.38),

such that g = 1, extends to C with α(0) = Ea+1,b,c−1. Therefore, Qa+1,b,c−1 ⊆ Qa,b,c and

similarly for Qa,b+1,c−1. The claim follows.

3.2.6 As a finite poset, if k ≤ n
2

, then for every n′ ≥ n, V k̂
n = V k̂

n′.

Proof. If k ≤ n
2

, then c ≤ a + b + c ≤ k ≤ n
2
≤ n − k always holds. Therefore,

V k̂
n = {(a, b, c) ∈ Z3

≥0 ∣ a + b + c ≤ k} (3.39)

is independent of n. The poset structure agrees by Corollary 3.2.5.

If k > n

2
, then (0,0, n + 1 − k) ∈ V k̂

n+1 ∖ V k̂
n , since n + 1 ≤ 2k. This shows that the

inequality is sharp.

3.3 Resolutions

Lemma 3.3.1 Let (a, b, c) ∈ V k̂; i.e., Qk̂a,b,c is nonempty. Given Ek ∈ Qk̂a,b,c, there

exists a unique F k+c ∈ Gr0
k+c(C2n) such that dim(Cn∩F k+c) ≥ a+c, dim(C−n∩F k+c) ≥

b + c, and Ek ⊆ F k+c.

Proof. The statement of the lemma is K-invariant so assume E is given by (3.17).

For existence, let F = E +Λ+(rad(ε)). Then

F = ⟨e1, . . . , ea+c, e−n, . . . , e−n+b+c, ea+c+1 + e−(a+c+1), . . . , ea+c+d + e−(a+c+d)⟩ (3.40)

of dimension a + b + 2c + d = k + c, so F satisfies the desired properties.

For uniqueness, we show that any F agrees with (3.40). Let F = E+E′ for some E′

of dimension c. The relation dim(Cn∩F ) = dim(Cn∩E)+ c allows us to assume that

E′ ⊆ Cn. Similarly, F = E+E′′ for some E′′ ⊆ C−n. Then dim(E∩(E′+E′′)) = c since
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dim(F ) = dim(E) + c. We have E ∩ (E′ +E′′) ⊆ rad(ε) since it is contained in E and

the radical for F . It follows that F = E +Λ+(rad(ε)) since E′ = Λ+(E ∩ (E′ +E′′)) ⊆

Λ+(rad(ε)) and dim(E +Λ+(rad(ε))) = k + c = dim(F ).

Theorem 3.3.2 Let (a, b, c) ∈ V k̂
n . Set Z k̂

a,b,c ⊆ Gr0
a+b+2c(C2n)×Gr0

k+c(C2n)×Gr0
k(C2n)

by the containment relations

C2n

F k+c

F a+b+2c Ek

0

(3.41)

such that dim(Cn ∩ F a+b+2c) = a + c and dim(C−n ∩ F a+b+2c) = b + c. Then pr ∶Z k̂
a,b,c →

X k̂
a,b,c by (F a+b+2c, F k+c,Ek) ↦ Ek is a resolution of singularities.

Proof. Let I0 = {1, . . . , n}∖{a + b + 2c}, v0 = (a+c, b+c) ∈ V I0 , and Gv0 =Kv̇0B, where

v0 is identified with the maximal length representative in V . Let J1 = I0 ∖ {k + c},

I1 = {1, . . . , n} ∖ {k + c}, J = I1 ∖ {k}, and I = {1, . . . , n} ∖ {k}. Let R1 correspond to

J1, R correspond to J , P correspond to I, and define ϕ ∶Gv0 ×R1 PI1/R → Z k̂
a,b,c by

ϕ[g0, g1R/R] = (g0C
a+b+2c, g0C

k+c, g0g1C
k). (3.42)

The relation Gv0/PI0 = XI0
v0 shows that for every g0 ∈ Gv0 , we have dim(Cn ∩

g0Ca+b+2c) ≥ a + c and dim(C−n ∩ g0Ca+b+2c) ≥ b + c. The pull-back XJ1
v0 ⊆ XJ1 of

XI0
v0 ⊆XI0 by XJ1 →XI0 shows that XJ1

v0 is given by

{F a+b+2c ⊆ F k+c ∣ dim(Cn ∩ F a+b+2c) ≥ a + c, dim(C−n ∩ F a+b+2c) ≥ b + c} . (3.43)

The stabilizer of Ck+c is PI1 , so for every g1 ∈ PI1 , we have g0Ck+c = g0g1Ck+c. Thus

for every g0 ∈ Gv0 and g1 ∈ PI1 , we have g0Ca+b+2c ⊆ g0Ck+c and g0g1Ck ⊆ g0g1Ck+c =

g0Ck+c. It follows that ϕ is a well-defined function, since R stabilizes Ck. The
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morphism ϕ agrees with (2.36), so it is an isomorphism onto Z k̂
a,b,c. Thus Z k̂

a,b,c is a

smooth algebraic variety.

The diagram

Gv0 ×R1 PI1/R Z k̂
a,b,c

X k̂
a,b,c

ϕ

µ pr
(3.44)

commutes, where µ is given by (2.31). Thus pr is a proper algebraic morphism. By

Lemma 3.3.1, pr is birational. Therefore, pr is a resolution of singularities.

Corollary 3.3.3 Let (a, b, c) ∈ V k̂
n . Then

dim(Qk̂a,b,c) = 2kn + d
2
− (a + b)(n − k) − (a2 + b2 + c2 + 3k2)

2
, (3.45)

where d = k − a − b − c. Moreover, if (a′, b′, c′) ≤ (a, b, c) in V k̂
n , then

(n − k + 1 + a′ + a
2

)(a′ − a) + (n − k + 1 + b′ + b
2

)(b′ − b) + (1 + c′ + c
2

)(c′ − c) (3.46)

is the codimension of Qk̂a′,b′,c′ in X k̂
a,b,c.

Proof. The morphism µ ∶Z k̂
a,b,c →X k̂

a,b,c from Theorem 3.3.2 is birational so

dim(Qk̂a,b,c) = dim(X k̂
a,b,c) = dim(Z k̂

a,b,c). (3.47)

By (3.44), we have

dim(Z k̂
a,b,c) = dim(Gv0 ×R1 PI1/R)

=dim(XJ1
v0 ) + dim(PI1/R)

=dim(XI0
a+c,b+c) + dim(PI0/R1) + dim(PI1/R)

=(a + c)(n − a − c) + (b + c)(n − a − c − b − c)

+ 2d(n − k − c) + d(d + 1)
2

+ ck

(3.48)

and hence (3.45) and (3.46) follow.

Lemma 3.3.4 If n ≥ 2, then X 1̂
0,0,1 is smooth.
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Proof. Let k = 1, so k ≤ n
2

and V 1̂ = {(1,0), (0,1), (0,0,1), (0,0)} by (3.39). Then

X 1̂
0,0,1 = {E1 ⊆ C2n ∣ dim(rad(ε)) ≥ 1} . (3.49)

Identifying X 1̂ with P2n−1 gives

X 1̂
0,0,1 = {E1 ∈ P2n−1 ∣ ω(Λn(E),Λ−n(E)) = 0}

= {[x1, . . . , xn, x−n, . . . , x−1] ∈ P2n−1 ∣ x1x−1 +⋯ + xnx−n = 0}
(3.50)

which is a smooth hypersurface by the jacobian criterion.

Any G-equivariant morphism onto a G-orbit is a locally trivial fibration in the

étale topology (cf. [16]), and the following gives an explicit description of a locally

trivial fiber bundle in the Zariski topology when projecting to a closed K-orbit.

Lemma 3.3.5 Let ζ ∶Z → Y be a K-equivariant morphism onto a complete K-orbit

Y ≅K/H. Then

Z ≅K ×H ζ−1(y), (3.51)

where H = StabK(y) for some y ∈ Y .

Proof. Let h ∈H and z ∈ ζ−1(y). Then

ζ(hz) = hζ(z) = hy = y (3.52)

shows H acts on ζ−1(y). Define

ϕ ∶K ×H ζ−1(y) → Z, ϕ[k, z] = kz. (3.53)

We can take U ⊆ K/H such that there exists a local section σ ∶U → K, since H ⊆ K

is a parabolic subgroup by completeness of K/H. Let π ∶K → K/H by π(k) = ky.

Then ϕ is locally

ϕU ∶U × ζ−1(y) → ζ−1(U), ϕU(x, z) = σ(x)z, (3.54)
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where

ζ(σ(ky)z) = σ(ky)ζ(z)

= σ(ky)y

= π(σ(ky))

= ky

(3.55)

shows ϕU is well-defined. Then

ψU ∶ ζ−1(U) → U × ζ−1(y), ψU(z) = (ζ(z), σ(ζ(z))−1z) (3.56)

gives the inverse morphism.

Theorem 3.3.6 The following families of (a, b, c) ∈ V k̂
n admit small resolutions.

(A) k = a + b + c = n − 1, c = 1.

(B) c = 0, 0 < a + b < k, a < n − k + 1, b < n − k + 1.

(C) k = a + b + c,

n <

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2a + b + 2c + 1, if a ≤ b,

a + 2b + 2c + 1, if a ≥ b.
(3.57)

(D) k = a + b + c, c = 1, k +max(a, b) < n.

(E) k = a + b + c,

n <

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2a + 5, if b = 0,

2b + 5, if a = 0.

(3.58)

Proof of (A). Let µ be the resolution given in Theorem 3.3.2. Suppose (a, b, c) ∈ V k̂
n

satisfies k = n− 1, c = 1, and n = a+ b+ 2. It follows that k = n− 1 = a+ b+ 1 = a+ b+ c,

and that any (a′, b′, c′) < (a, b, c) must satisfy a′ + b′ = a + b + 1 with c′ = 0. We have

µ−1(En−1
a+1,b) = {F n ∈ Gr0

n(C2n) ∣ E ⊆ F, dim(C−n ∩ F ) = b + 1} , (3.59)

41



which is a single point since F ⊆ E⊥ and dim(C−n∩E⊥) = n−(a+1) = b+1. Therefore,

µ is bijective.

Proof (B). Let µ be the resolution given in Theorem 3.3.2. Suppose c = 0, 0 < a+b < k,

a < n − k + 1, and b < n − k + 1. For every E ∈Xa,b, we have

µ−1(E) ≅ Gra(Cn ∩E) ×Grb(C−n ∩E) (3.60)

by (3.41). Thus if E ∈ Qa′,b′,c′ , we have

dim(µ−1(E)) = a(a′ − a) + b(b′ − b). (3.61)

By (3.46), if (a′, b′) < (a, b), then ca′,b′ − 2da′,b′ (q.v. (2.55)) equals

(n − k + 1

2
+ a

′

2
+ a

2
)(a′ − a) + (n − k + 1

2
+ b

′

2
+ b

2
)(b′ − b) − 2a(a′ − a) − 2b(b′ − b)

= (n − k + 1

2
+ a

′

2
− 3a

2
)(a′ − a) + (n − k + 1

2
+ b

′

2
− 3a

2
)(b′ − b)

= (n − k + 1

2
+ a

′ − a
2

− a)(a′ − a) + (n − k + 1

2
+ b

′ − b
2

− b)(b′ − b)

(3.62)

which is always positive under conditions (B). It follows from (3.46) and (3.61) that

if (a′, b′, c′) < (a, b), then (2.55) is satisfied and hence µ is small.

In particular, if c = 0 and k ≤ n
2

, then µ is small.

Proof of (C). Let µ be the resolution given in Theorem 3.3.2. Suppose k = a + b + c

so we have E = rad(ε) and k = a + b + 2c. Then µ−1(E) is equal to

{F ∈ Gr0
k+c(C2n) ∣ E ⊆ F, dim(Cn ∩ F ) = a + c, dim(C−n ∩ F ) = b + c} . (3.63)

For E ∈ Gr0
k(C2n), let E+ = E + Λ+(E) so for every F ∈ µ−1(E), we have E+ ⊆ F

by (3.63); in particular, E+ is isotropic. We show that if E ∈ Qa′,b′,c′ , then (3.63) is

isomorphic toXa+c−a′−c′,b+c−b′−c′ in Gr0
c−c′(C2(n−k−c′)) – a smooth variety with dimension

given by (3.45).
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We choose to identify C2(n−k−c′) with E⊥+/E+ and symplectic form given by §3.1.2

(iii). Then Cn−k−c′ ≅ (Cn∩E⊥+)+E+ and C−(n−k−c′) ≅ (C−n∩E⊥+)+E+ provide transverse

lagrangian subspaces since they are isotropic and

E+ = (Cn ∩E+) + (C−n ∩E+), E⊥+ = (Cn ∩E⊥+) + (C−n ∩E⊥+) (3.64)

by definition of E+. Define

η ∶µ−1(E) →Xa+c−a′−c′,b+c−b′−c′ , η(F ) = F +E+, (3.65)

which is well-defined since E+ ⊆ F ⊆ E⊥+ and

dim(Cn ∩E+) = a′ + c′, dim(C−n ∩E+) = b′ + c′ (3.66)

give the correct dimensions. Therefore, for E ∈ Qa′,b′,c′ , it follows from (3.45) that

dim(µ−1(E)) equals

(2(n − k − c′) − (n − k − c) − 3(c − c′)
2

)(c − c′) − (a + c − a′ − c′)2 + (b + c − b′ − c′)2

2

= (n − k − c + c
′

2
)(c − c′) − (a − a′)2

2
− (b − b′)2

2
+ ((a − a′) + (b − b′) + (c − c′))(c − c′)

= (n − k + a − a′ + b − b′ + c − 3c′

2
)(c − c′) − (a′ − a)2

2
− (b′ − b)2

2
.

(3.67)

Then 2(ca′,b′,c′ − 2da′,b′,c′) equals

(2n − 3a − 2b − 2c + 1 + 3a′)(a′ − a) + (2n − 2a − 3b − 2c + 1 + 3b′)(b′ − b)

+ (4n − c − 4a′ − 4b′ − 5c′ + 1)(c′ − c).
(3.68)

If (a′, b′, c′) = (a + 1, b, c − 1), then (3.68) is equal to

−2n + 4a + 2b + 4c + 2 (3.69)

which is positive if and only if

n < 2a + b + 2c + 1. (3.70)

43



Let (a′, b′, c′) < (a, b, c) so there exist i, j ≥ 0 such that a′ = a+ i, b′ = b+ j, c′ = c− i− j,

and i + j > 0. Then (3.68) equals

−2n(i + j) + 4c(i + j) + i2 + j2 + (i − j)2 + 4(a + b)(i + j) − 2bi − 2aj. (3.71)

Assuming (3.70) forces (3.71) to be strictly larger than

2j(b − a) + i(i − 2) + j(j − 2) + (i − j)2 (3.72)

which is nonnegative for a ≤ b (a simple check shows (3.71) is positive for a = b and

i = 1 = j).

Proof of (D). Suppose that c = 1 and k = a + b + c. Set

Z = {F a+b ⊆ Ek ∣ dim(Cn ∩ F ) = a, dim(C−n ∩ F ) = b, E = rad(ε)} (3.73)

contained in Gr0
a+b(C2n) ×Gr0

k(C2n). Define µ ∶Z →X k̂
a,b,c by µ(F,E) = E.

Let E ∈ Qa′,b′,c′ so

µ−1(E) = {F ∈ Gr0
a+b(C2n) ∣ F ⊆ E, dim(Cn ∩ F ) = a, dim(C−n ∩ F ) = b}

≅ Gra(Cn ∩E) ×Grb(C−n ∩E)
(3.74)

and we have

dim(µ−1(E)) = a(a′ − a) + b(b′ − b). (3.75)

In particular, the fiber of µ over E ∈ Qa,b,c is a single point; hence µ is birational.

To show Z is smooth, let I ′ = {1, . . . , a + b − 1, a + b + 1, . . . , n} ⊆ S and define

ζ ∶Z →XI′
a,b, ζ(F,E) = F (3.76)

into XI′ = Gr0
a+b(C2n). Then ζ is a fiber bundle by Lemma 3.3.5 since ζ surjects onto

a closed K-orbit equivariantly. For (F,E) ∈ Z, we have

dim(Cn ∩ F ⊥) = n − b, dim(C−n ∩ F ⊥) = n − a (3.77)
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so

F ⊥/F = ((Cn ∩ F ⊥) + F ) + ((C−n ∩ F ⊥) + F ) (3.78)

is a decomposition into transverse lagrangian subspaces under ω̄ (q.v. §3.1.2 (iii)).

Thus we can define a symmetric bilinear form on every Ē ∈ Gr1(F ⊥/F ) by

ε̄(x̄, ȳ) = ω̄(Λ̄+(x̄), Λ̄−(ȳ)) (3.79)

where Λ̄± are projection homs defined by (3.78). For every (F,E) ∈ Z, we have

E = rad(ε) if and only if Ē = rad(ε̄). Then

ζ−1(F ) = {E ∈ Gr0
k(C2n) ∣ F ⊆ E, E = rad(E)}

≅ {E ∈ Gr1(F ⊥/F ) ∣ E = rad(E)}

≅X 1̂
0,0,1,

(3.80)

where (0,0,1) ∈ V 1̂
n−a−b and n − a − b ≥ 2 since c = 1. It follows that Z is smooth by

Lemma 3.3.4.

If (a′, b′, c′) = (a + 1, b,0), then ca′,b′,c′ − 2da′,b′,c′ equals

(n − a − b − 1 + a + 1) + 1 − 2a = n − 2a − b − 1 (3.81)

and similarly

ca′,b′,c′ − 2da′,b′,c′ = n − a − 2b − 1 (3.82)

for (a′, b′, c′) = (a, b + 1,0). The claim follows.

In particular, if c = 1, k = a + b + c, and k ≤ n
2

, then µ is small.

Proof of (E). Suppose that k = a + b + c. If b = 0, then set

Z = {Ek ⊆ F n ∣ dim(Cn ∩ F ) = n − c, dim(C−n ∩ F ) = c} (3.83)

and if a = 0, then set

Z = {Ek ⊆ F n ∣ dim(Cn ∩ F ) = c, dim(C−n ∩ F ) = n − c} (3.84)
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contained in Gr0
k(C2n) ×Gr0

n(C2n).

Without loss of generality, assume that b = 0. Let I0 = {1, . . . , n − 1}. Then

Z = Gn−c,c/R, (3.85)

where Gn−c,c is the preimage of XI0
n−c,c in G and R is the standard parabolic subgroup

corresponding to J = I0 ∩ I. That is, Z is the pull-back of a closed K-orbit in XI0 , so

Z is smooth.

If E ∈ Qa′,b′,c′ , then

µ−1(E) ≅ Gra′−a(C−n ∩E′⊥) (3.86)

of dimension

(a′ − a)(n − 2a′ + a − c). (3.87)

In particular, if E ∈ Qa,b,c, then µ−1(E) is a point so µ is birational.

If E ∈ Qa′,b′,c′ , then ca′,b′,c′ − 2da′,b′,c′ is

(n − a − c + 1 + a′ + a
2

)(a′ − a) + (n − a − c + 1 + b′
2

)(b′) + (1 + c′ + c
2

)(c′ − c)

− 2(a′ − a)(n − 2a′ + a − c)

= (−n − 5a

2
+ c + 9a′

2
+ 1

2
)(a′ − a) + b′(n − a − c + 1 + b′

2
) + (1 + c′ + c

2
)(c′ − c).

(3.88)

The expression (3.88) is positive if

n > −1 + a + 2c (3.89a)

n < 2a + 5. (3.89b)

Indeed, the relations (3.89) are forced by (a′, b′, c′) = (a + 1,0, c − 1) and (a′, b′, c′) =

(a,1, c−1), and the general case follows immediately by substituting (3.89) into (3.88).

Observe that (3.89a) is superfluous since a + 2c = k + c ≤ n always holds true.

Remark 3.3.7 It is worth noting that all small resolutions described in Theorem 3.3.6

have smooth fibers.
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3.4 Examples

The small resolutions from Theorem 3.3.6 were constructed by generalizing all small

resolutions found for n ≤ 5. In turn, we recover all examples from Theorem 3.3.6 and

describe them in this section.

Let n = 1. All Xa,b are smooth since Qa,b is open or closed.

Figure 3.1: n = 1, k = 1

Let n ≥ 2 and k = 1. Then Xa,b,c is always smooth by Lemma 3.3.4.

Figure 3.2: n ≥ 2, k = 1

Let n = 2 and k = 2. The only small resolutions are for open or closed orbits.

Figure 3.3: n = 2, k = 2
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Let n = 3 and k = 2. If a+b = 1 and c = 1, then the morphism defined by Theorem 3.3.6

(A) is small (and bijective). If c = 0, then for any a, b, the morphism defined by

Theorem 3.3.6 (B) is small.

Figure 3.4: n = 3, k = 2

Let n = 3 and k = 3. The only small resolutions are for open or closed orbits.

Figure 3.5: n = 3, k = 3
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Let n = 4 and k = 2 so k ≤ n

2
. If c = 0, then for any a, b, the morphism defined

by Theorem 3.3.6 (B) is small. If (a, b, c) = (0,0,2), then the morphism defined

by Theorem 3.3.6 (C) is small. If a + b = 1 = c, then the morphism defined by

Theorem 3.3.6 (D) is small. Type (B) and (D) are small for every n ≥ 4 but type (C)

fails to be small for n > 4.

Figure 3.6: n ≥ 4, k = 2

Let n = 4 and k = 3. If a+b = 2 and c = 1, then the morphism defined by Theorem 3.3.6

(A) is small (and bijective). If c = 0 and a, b ≤ 1, then the morphism defined by

Theorem 3.3.6 (B) is small.

Figure 3.7: n = 4, k = 3
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Let n = 4 and k = 4. The only small resolutions are for open or closed orbits.

Figure 3.8: n = 4, k = 4

Let n = 5 and k = 3. If c = 0, then the morphism defined by Theorem 3.3.6 (B) is small.

If (a, b, c) ∈ {(1,0,2), (0,1,2), (1,1,1)}, then the morphism defined by Theorem 3.3.6

(C) is small. If (a, b, c) ∈ {(2,0,1), (0,2,1)}, then the morphism by Theorem 3.3.6

(E) is small.

Figure 3.9: n = 5, k = 3
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Let n = 5 and k = 4. If a+b = 3 and c = 1, then the morphism defined by Theorem 3.3.6

(A) is small (and bijective). If (a, b) ∈ {((1,1), (1,0), (0,1)}, then the morphism

defined by Theorem 3.3.6 (B) is small.

Figure 3.10: n = 5, k = 4
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Let n = 5 and k = 5. The only small resolutions are for open or closed orbits.

Figure 3.11: n = 5, k = 5

Table 3.1: Row n and column k gives lower bound ratio of (a, b, c) in V k̂
n with small

resolution.

1
1 .6666
1 .8888 .5000
1 .9000 .6875 .4000
1 .8000 .7894 .5200 .3333
1 .8000 .8000 .6451 .4166 .2857
1 .8000 .6500 .7058 .5217 .3469 .2500
1 .8000 .6500 .6285 .5576 .4218 .2968 .2222
1 .8000 .6500 .5428 .5636 .4729 .3529 .2592 .2000
1 .8000 .6500 .5428 .5178 .5000 .4000 .3027 .2300 .1818
1 .8000 .6500 .5428 .4642 .4698 .4181 .3384 .2647 .2066 .1666
1 .8000 .6500 .5428 .4642 .4404 .4224 .3655 .2926 .2349 .1875 .1538
1 .8000 .6500 .5428 .4642 .4047 .4033 .3677 .3189 .2574 .2110 .1715
1 .8000 .6500 .5428 .4642 .4047 .3833 .3664 .3300 .2782 .2295 .1914
1 .8000 .6500 .5428 .4642 .4047 .3583 .3536 .3238 .2948 .2464 .2068
1 .8000 .6500 .5428 .4642 .4047 .3583 .3393 .3240 .2969 .2629 .2208
1 .8000 .6500 .5428 .4642 .4047 .3583 .3212 .3150 .2898 .2644 .2345
1 .8000 .6500 .5428 .4642 .4047 .3583 .3212 .3045 .2907 .2674 .2456
1 .8000 .6500 .5428 .4642 .4047 .3583 .3212 .2909 .2842 .2627 .2428
1 .8000 .6500 .5428 .4642 .4047 .3583 .3212 .2909 .2762 .2638 .2436
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CHAPTER IV

INDUCING SMALL RESOLUTIONS

We describe a general process for inducing small resolutions from varieties stable un-

der a parabolic subgroup to G-spaces. This construction provides many new small

resolutions of K-orbit closures, and leads us to describe fiber bundle structures. The

combinatorial structure of clans provides a simple description of fiber bundles for

U(p, q) and Sp(2n,R). We view induction as highlighting the importance for de-

scribing small resolutions of K-orbit closures in low rank, since small resolutions

propagate. We conclude with examples for U(p, q) and Sp(2n,R).

4.1 The general case

Key Lemma 4.1.1 Let G be a connected reductive group, P a parabolic subgroup, X

and Y algebraic varieties with algebraic actions of P , and ξ ∶Y → X a P -equivariant

algebraic morphism. If ξ is a small resolution, then

ν ∶G ×P Y → G ×P X, ν[g, y] = [g, ξ(y)] (4.1)

is a small resolution.

Proof. Let π ∶G→ G/P , U ⊆ G/P , Ũ = π−1(U) ⊆ G, and πU = π∣Ũ . Suppose U is such

that πU is trivializable, so Ũ ≅ U × P . Then ν is locally of the form

(id, ξ) ∶U × Y → U ×X (4.2)

by (2.11). If UX ⊆ X and UY ⊆ Y are isomorphic by the birational morphism ξ then

U ×UY ≅ U ×UX shows that ν is birational. It follows from [14, Corollary 4.8 (d),(f)]
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that ν is proper. The space G×P Y is smooth by (4.2). Therefore ν is a resolution of

singularities that is small by (4.2).

Remark 4.1.2 We apply Key Lemma 4.1.1 by constructing isomorphisms from G-

spaces to varieties of the form G×PX. We call this process inducing a small resolution

from P to G.

4.2 Clans

Let W = Sn be the Weyl group of GL(n,C) realized as permutations of {1, . . . , n}. A

clan is an involution in W such that the fixed points are decorated with + or −. For

example, we can write

v = ( 1 2 + − 1 2 ) (4.3)

for the involution 1 ↦ 5, 2 ↦ 6, and fixing 3,4. In this example, v = ( 2 1 + − 2 1)

but does not equal ( 1 2 − + 1 2 ). Let V denote the set of all clans. Given v ∈ V ,

let tv denote the clan that reverses the entries of v and let −v denote the clan that

switches ± with ∓. For example, if v is defined as in (4.3), then

tv = ( 2 1 − + 2 1 ) = ( 1 2 − + 1 2 ) = −v. (4.4)

For any v ∈ V and 1 ≤ k ≤ n, define

v(k,±) = #{1 ≤ i ≤ k ∣ vi = ±} +#{1 ≤ i < j ≤ k ∣ v(i) = j} , (4.5)

where v(i) = j as an involution.

Proposition 4.2.1 ([31]) The set

Vp,q = {v ∈ V ∣ v(n,+) − v(n,−) = p − q} (4.6)

parameterizes K-orbits on G/B for U(p, q). The set

Vn = {v ∈ Vn,n ∣ tv = −v} (4.7)

parameterizes K-orbits on G/B for Sp(2n,R).
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Remark 4.2.2 From now on, we let the pair (G,K) be defined by v ∈ V . In par-

ticular, if v ∈ Vp,q, then (G,K) = (GLn,GLp × GLq), and if v ∈ Vn, then (G,K) =

(Sp2n,GLn). We also let Xv be the K-orbit closure in the flag variety defined by v.

In particular, if v ∈ V and v′ ∈ V ′ then Xv and Xv′ are subvarieties of distinct flag

varieties.

4.3 Fiber bundles

Let C● be the standard flag corresponding to the upper triangular Borel B and let

C−● correspond to the opposite Borel B−.

Proposition 4.3.1 Suppose that v ∈ Vp,q is of the form

v = (v1, v2), (4.8)

where vi ∈ Vpi,qi for some n = n1 + n2 and ni = pi + qi. Then

Xv ≅K ×PK (Xv1 ×Xv2), (4.9)

where (G,K) corresponds to v ∈ Vp,q, P is a parabolic subgroup of G, and PK =K ∩P

is a parabolic subgroup of K.

Proof. By [31, Proposition 2.2.6], if F ● ∈ Qv, then

dim(Cp ∩ F k) = v(k,+), (4.10a)

dim(C−q ∩ F k) = v(k,−). (4.10b)

In particular, for any v ∈ Vp′,q′ , we have

v(n′,+) = p′, v(n′,−) = q′, (4.11)

where n′ = p′ + q′. It follows that for every F ● ∈ Qv, we have

dim(Cp ∩ F n1) = p1, dim(C−q ∩ F n1) = q1. (4.12)
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By Example 2.4.5, Qv (and Xv) maps to the closed K-orbit XI
p1,q1 , where I = n̂1. By

Lemma 3.3.5, we have Xv ≅K ×PK π−1(E), where π ∶Xv →XI
p1,q1 is projection,

E = ⟨e1, . . . , ep1 , ep+1, . . . , ep+q1⟩ (4.13)

is a basepoint, P = StabG(E), and PK =K ∩ P .

Define

η ∶π−1(E) →Xv1 ×Xv2 , η(F ●) = (α(F ●), β(F ●)), (4.14)

where

α(F ●) = (0 ⊆ F 1 ⊆ ⋯ ⊆ F n1−1 ⊆ E) (4.15a)

β(F ●) = (E ⊆ F n1+1 ⊆ ⋯ ⊆ F n−1 ⊆ Cn) (4.15b)

map to flag varieties for GL(E) and GL(Cn/E) respectively. Then η is an algebraic

morphism with inverse given by

η−1(A●,B●) = (0 ⊆ A1 ⊆ ⋯ ⊆ An1−1 ⊆ E ⊆ B1 ⊆ ⋯ ⊆ Bn2−1 ⊆ Cn). (4.15c)

Note the image of η is well-defined by considering direct sum decompositions

E = (Cp ∩E) + (Cq ∩E), Cn/E = (Cp +E) + (Cq +E). (4.16)

with each stabilizer giving the corresponding ‘K’.

Remark 4.3.2 Suppose that v ∈ Vp,q is of the form

v = (v1, . . . , vh), (4.17)

where for every 1 ≤ i ≤ h, we have vi = max(Vpi,qi). It follows immediately from

Proposition 4.3.1 that Xv is smooth, and conversely any smooth Xv is of the form

(4.17) by [20] (providing a pattern avoidance condition for smoothness).

Proposition 4.3.3 Suppose that v ∈ Vn is of the form

v = (v1, v2,−tv1), (4.18)
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where v1 ∈ Vp1,q1 and v2 ∈ Vn2 for some n = n1 + n2 and n1 = p1 + q1. Then

Xv ≅K ×PK (Xv1 ×Xv2), (4.19)

where (G,K) corresponds to v ∈ Vn, P is a parabolic subgroup of G, and PK =K ∩P

is a parabolic subgroup of K.

Proof. The proof follows from the proof of Proposition 4.3.1, the description of closed

K-orbits in Corollary 3.2.5, and the fact that Xv is the intersection of X with the

corresponding K-orbit closure for v ∈ Vn,n. Explicitly, we have Xv1 in the flag variety

for GL(E) (where E is isotropic of dimension n1) and Xv2 in the flag variety for

Sp(E⊥/E).

Theorem 4.3.4 Suppose that v ∈ Vp,q or v ∈ Vn is of the form (4.8) or (4.18) such

that there exists a small resolution of the form (2.31) for Xv1 and Xv2. Then there

exists a small resolution of Xv.

Proof. We provide a proof for the case v ∈ Vp,q since the case v ∈ Vn is similar. To

induce the small resolution of Xv1 ×Xv2 from PK to K (q.v. Key Lemma 4.1.1), we

must show that there is an action of PK which makes the resolution equivariant. Note

the action of PK on Xv1 ×Xv2 is given by

g(x1, x2) = ((g∣E)x1, gx2), (4.20)

which is well-defined since PK ⊆ StabG(E). Moreover, (4.20) gives an action of PK

on each flag variety. We have PK ⊆ K so all direct sums in (4.16) are preserved by

this action. It follows that for any ui ∈ Vpi,qi , PK stabilizes Xu1 ×Xu2 .

Let

Zi = Gvi0
×Ri

1 Gwi
1
×Ri

2 ⋯×R
i
mi Xwi

mi
(4.21)

be the small resolutions given by assumption. Then PK acts on Z1 ×Z2 by

g(z1, z2) = ((g∣E)z1, gz2), (4.22)
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where multiplication occurs in the first factor of Zi. Therefore, the small resolution

of Xv1 ×Xv2 is PK-equivariant.
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CHAPTER V

U(p, q)

5.1 Generically homogeneous fibers

The following lemma gives a method for determining certain v ∈ V have the property

that every morphism µ satisfying (2.50) is birational. This condition is useful for

general V and we apply it below to Vp,q.

Lemma 5.1.1 Let v = v0 ⋆w1 ⋆⋯ ⋆wm,

Z = Gv0 ×R1 Gw1 ×R2 ⋯×Rm Gwm/B, (5.1)

and define µ ∶Z → Xv by multiplication. If µ satisfies (2.50), then for every x ∈ Qv

and for every z ∈ µ−1(x) we have

µ−1(x) ≅Kx/Kz, (5.2)

where, Kz = StabK(z) and Kx = StabK(x). In particular, we have

K0
x ⊆Kz ⊆Kx, (5.3)

where K0
x is the connected component of Kx.

Proof. K-equivariance of the morphism µ forces the generically finite subset of Xv to

contain the open orbit Qv, so for every x ∈ Qv we have a finite set µ−1(x) (of constant

cardinality). If z ∈ µ−1(x), then

dim(Kz) = dim(Kx) (5.4)
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since dim(Kz) ≥ dim(Kx) holds by surjectivity of Kz onto Kx and equality holds by

generic finiteness. Let Y1, . . . , Yk be the (finitely many) orbits mapping to Qv and let

Y be the preimage of Qv. Then Y is an irreducible variety since it is an open subset

of the irreducible Z. We have

Y =
k

⋃
i=1

Yi, (5.5)

where the closure is taken in Y . It follows by irreducibility that for every 1 ≤ i ≤ k,

Y = Yi. Therefore Y1 is open in Y which forces k = 1 by equidimension of Yi.

If µ(z) = x, then base change

µ−1(Qv) = Y ≅K/Kz K/Kx

Z Xv
µ

(5.6)

gives the generic fiber of µ equal to (5.2). Then (5.3) follows directly from the fact

that Kx/Kz is finite.

We often use Lemma 5.1.1 when v ∈ V has a trivial component group; i.e., for

every x ∈ Qv, we have K0
x =Kx. This holds in particular for every v ∈ Vp,q.

We recall a couple of formulas on the combinatorics of clans to help describe small

resolutions for U(p, q). For any v ∈ Vp,q, we have

`(v) = ∑
vi=vj∈N
i<j

(j − i −#{a ∈ N ∣ vs = vt = a for s < i < t < j}) (5.7)

by [31, Definition 2.3.7]. It follows from [21, §2] that for every v ∈ Vp,q and si ∈ S∖τ(v),

we have

v ⋆ si = ( v1 ⋯ vi−1 v
′
i v

′
i+1 vi+2 ⋯ vn ) (5.8)

where (v′i, v′i+1) are matching integers if (vi, vi+1) = (±,∓) and otherwise (v′i, v′i+1) =

(vi+1, vi).

Remark 5.1.2 For every v ∈ Vp,q, one can use [30, Corollary 1.3] to describe Xv

explicitly in terms of flags. To describe small resolutions of the form µ, we need only
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the monoid action described explicitly by (5.8), and an explicit description of smooth

Xv which are described explicitly by Proposition 4.3.1.

5.2 Fiber dimensions for maps of Barbasch-Evens type

We give a formula (5.16a) for fiber dimensions of any resolution of the form (2.31)

such that for every 1 ≤ i ≤m, Gwi
is a parabolic subgroup; i.e.,

µ ∶Gv0 ×R1 PI1 ×R2 ⋯×Rm PIm/B →Xv (5.9)

for subsets of simple reflections I1, . . . , Im. All resolutions we construct for U(p, q) will

be of the form (5.9), and when combined with Lemma 5.1.1 enables us to compute

many examples of small resolutions.

Lemma 5.2.1 Let

Z̃ = Gv0 ×R1 Gw1 ×R2 ⋯×Rm Gwm . (5.10)

The diagram

Z̃ Gv

Z Xv

π′

µ′

π

µ

(5.11)

is the pull-back of the morphism µ to G.

Proof. Let

ξ ∶ Z̃ → Z ×
Xv

Gv (5.12)

be the morphism provided by the universal property of pull-back. Define

η ∶Z ×
Xv

Gv → Z̃ (5.13a)

by

η([g0, . . . , gmB/B], g) = [g0, . . . , gm−1, g
−1
m−1⋯g−1

0 g]. (5.13b)

61



Then η is a well-defined algebraic morphism by considering the universal property of

quotient applied to

Gv0 ×Gw1⋯×Gwm ×
Xv

Gv → Z̃ (5.14)

with the same formula as (5.13b). Notice if g0 ∈ Gv0 , for every 1 ≤ i ≤m, gi ∈ Gwi
, and

g0⋯gmB/B = gB/B ∈Xv, then

gmB = g−1
m−1⋯g−1

0 gB (5.15)

is contained in Gwm , so the image of η indeed lies in Z̃. Then ξ and η are inverse

algebraic morphisms.

In the following proposition, for v ∈ V , let `(v) be the length of v; i.e., the difference

between the dimension of the K-orbit corresponding to v and a closed K-orbit. A

useful fact is that for any v ∈ V such that K ×R acts on Gv, the (K ×R)-orbits on

Gv correspond to the (K ×P )-orbits on Gv ×R P (as in, e.g., [3, Lemma 6.15]), where

R ⊆ P .

Proposition 5.2.2 Let µ be a resolution of Xv of the form (5.9). If y ≤ v, then

dim(µ−1(ẏB/B)) = max{dx ∣ x ≤ u, x ⋆wJ = x, x ⋆wIm = y ⋆wIm} , (5.16a)

where

dx = `(x) + dim(ν−1(ẋB/B)) + `(wIm) − `(wJ) − `(x ⋆wIm), (5.16b)

u = v0 ⋆wI1 ⋆⋯ ⋆wIm−1, ν is the corresponding morphism to Xu given by (2.31), and

J is the subset of simple reflections corresponding to Rm.

In particular, the fiber dimension for every y ≤ v can be computed recursively by

(5.16a).

Proof. We choose to describe the fibers of the pull-back

µ′ ∶Gv0 ×R1 PI1 ×R2 ⋯×Rm PIm → Gv (5.17)
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of µ to G, as in Lemma 5.2.1. Notice that K × PIm acts on Gv = Im(µ′), and µ′ is

equivariant under this action. Consider the morphism

ν′ ∶Gv0 ×R1 PI1 ×R2 ⋯×Rm−1 PIm−1 → Gu. (5.18)

Let Q be a (K ×Rm)-orbit in Gu and

Q̃ = (ν′)−1(Q). (5.19)

Then µ′ restricts to a morphism

µQ ∶ Q̃ ×Rm PIm → QPIm (5.20)

onto a single (K × PIm)-orbit in Gv. Therefore, for every ẏ ∈ Gv, we have

dim((µ′)−1(ẏ)) = max{dim(µ−1
Q (ẏ)) ∣ Q ∈K/Gu/Rm, QPIm =KẏPIm} (5.21)

since the collection of domains of all µQ give a finite partition of the domain of µ′.

For every Q ∈K/Gu/Rm, we have

dim(µ−1
Q (ẏ)) = dim(Q̃ ×Rm PIm) − dim(QPIm) (5.22a)

= dim(Q̃) + dim(PIm/Rm) − dim(QPIm) (5.22b)

since the (K × PIm)-equivariant morphism µQ has equidimensional fibers and Q̃ ×Rm

PIm → PIm/Rm is a fiber bundle by Lemma 2.1.5. For every ẋ ∈ Q, we have

dim(Q̃) = dim(Q) + dim((ν′)−1(ẋ)) (5.23)

since ν′∣Q̃ is (K ×Rm)-equivariant onto the (K ×Rm)-orbit. Therefore (5.16a) follows

immediately by observing that for any u ≤ v in V such that Gv is (K ×PI)-stable for

some standard parabolic subgroup PI , the open K-orbit in Ku̇PI/B corresponds to

u ⋆wI .

63



5.3 A family of small resolutions

We consider small resolutions of the form

µ ∶Gv ×R P /B →Xu, (5.24)

where v ∈ V gives a smooth Xv, P is a parabolic subgroup corresponding to I, and

R is a parabolic subgroup corresponding to J . This is equivalent to considering all

small resolutions of the form

π ∶XJ
v →XI

u, (5.25)

given by projection, but we prefer to pull-back π to X and consider µ instead.

Applying (5.16a) to (5.24) gives, for y ≤ v,

dim(µ−1(ẏB/B)) = dim(KẏR/B) + dim(P /B) − dim(KẏP /B). (5.26)

Then (5.26) provides a formula for all fiber dimensions since every x ≤ u is in the

same (K × P )-orbit for some y ≤ v; i.e., KẋP = KẏP . We can take advantage of the

simple description of smooth v ∈ Vp,q given by Remark 4.3.2, which we will carry out

explicitly for P corresponding to any set of simple reflections that pairwise commute.

We conclude this section by describing all small resolutions of the form (2.31) for

U(2,2) and U(3,2).

Lemma 5.3.1 Let

µ ∶Gv ×B P /B →Xu, (5.27)

where Gv is smooth and P corresponds to the simple reflection s. Then µ is a small

resolution if and only if for every y ≤ v such that `(y) = `(v) − 1, we have

s ∉ τ(y) ∪ τ(v). (5.28)

Proof. It is clear by (2.50) and (5.2) that µ is birational if and only if s ∉ τ(v). It

remains to show that µ is small if and only if s ∉ τ(y), for every y ≤ v such that
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`(y) = `(v) − 1. By (5.26), dim(µ−1(ẏB/B)) is either zero or one. So µ is small if

and only if every codimension two orbit x ≤ u has a zero dimensional fiber. This is

equivalent to every codimension one orbit y ≤ v giving a finite morphism

KẏB ×B P /B ≅KẏP /B, (5.29)

which in turn is equivalent to s ∉ τ(y) as claimed.

We can make Lemma 5.3.1 explicit on the level of clans as follows. Let v ∈ Vp,q

be a clan such that Xv is smooth, so v = (v1, . . . , vh) such that for every 1 ≤ i ≤ h,

we have vi = max(Vpi,qi) by Remark 4.3.2. It suffices to consider the case h = 2, so

v = (v1, v2). If s ∉ τ(v), then v ⋆ s = (u1, u2) can be described in cases. We always

have v1 and u1 agreeing for all but the last entry, and v2 and u2 agree in all but the

first entry. If the last entry of v1 and the first entry of v2 are opposite signs, then the

last entry of u1 is the same integer as the first entry of u2. In any other case, the last

entry of u1 equals the first entry of v2 and the first entry of u2 equals the last entry

of v1.

In the case where the last entry of v1 is the opposite sign as v2, then (5.27) is

an isomorphism since v is necessarily closed and u is necessarily of length one; in

particular, (5.27) is a small resolution. It remains to consider the case where the last

entry of u1 is equal to the first entry of v2 and the first entry of u2 is equal to the last

entry of u1. There are five cases to consider:

(v1, v2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(. . .+,1 . . .), 1,

(. . .−,1 . . .), 2,

(. . .1,+ . . .), 3,

(. . .1,− . . .), 4,

(. . .1,2 . . .), 5.

(5.30)
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In case 1, v1 = (+ ⋯ +), so s satisfies (5.28) if and only if v2 ≠ (1 + ⋯ + 1) (allowing

possibly zero + signs). Similarly for case 2, v1 = (− ⋯ −), so s satisfies (5.28) if and

only if v2 ≠ (1 − ⋯ − 1). Case 3 is determined by switching the roles of v1 and v2

for case 1, and case 4 is determined by considering case 2. Case 5 always forces s to

satisfy (5.28).

Proposition 5.3.2 Let

µ ∶Gv ×B P /B →Xu, (5.31)

where Gv is smooth, and P corresponds to a subset of simple reflections I that pairwise

commute. Then µ is a small resolution if and only if for every s ∈ I and y ≤ v such

that `(y) = `(v) − 1, we have

s ∉ τ(y) ∪ τ(v). (5.32)

Proof. For every y ≤ v, let dy = dim(µ−1(ẏB/B)). Then

dy = #(I ∩ τ(y)) (5.33)

by (5.26). It follows immediately that a small resolution satisfies (5.32). For every

y ≤ v, we can write y = (y1, . . . , yh) and v = (v1, . . . , vh), where for every 1 ≤ j ≤ h, we

have yj ≤ vj. For every 1 ≤ j ≤ h, let cjy = `(vj) − `(yj). Then the codimension of Xy

in Xv is ∑j c
j
y and the codimension of Xy⋆wI

in Xu is

cy = ∑
j

cjy + dy. (5.34)

So µ is a small resolution if and only if for every y < v, we have

∑
j

cjy > dy. (5.35)

Suppose that (5.32) is satisfied. We show µ is small by induction on dy. If dy = 1,

then the codimension of Xy in Xv is at least two by (5.32). Suppose dy = a, and that

(5.35) holds true whenever the dimension is less than a. We can assume that y < v is

maximal such that dy = a, since a smaller x < y with dx = dy gives ∑j c
j
x > ∑j c

j
y.
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Suppose that y < z ≤ v such that `(z) = `(y)+1. Then by the induction hypothesis,

we have ∑j c
j
z > dz. Let z = (. . . , zα−1, zα, zα+1, . . .) such that `(zα) = `(yα) + 1.

Decreasing the length of zα by one affects the first and last entries of z in a

controlled manner: a sign ± must remain fixed and if both endpoints are integers,

then at most one integer becomes a sign, except for the case where zα = (11). This

claim follows directly from (5.7). It is clear from (5.8) that dy depends only on the

first and last entry of each yj being a +, −, or integer. It suffices to assume that

zα = (11) since any other case satisfies dy = dz + 1, in which case

∑
j

cjy = ∑
j

cjz + 1 > dz + 1 = dy. (5.36)

Then yα = (+−) or yα = (−+); assume that yα = (+−).

We need only consider the case that yα−1 = zα−1 exists and ends with a +, and

yα+1 = zα+1 exists and starts with a −, since any other condition satisfies dy = dz + 1

and thus (5.36) holds true.

Suppose v contains a consecutive string of vj = (11), e.g., v = (. . . ,11,22,33, . . .).

Then we can instead consider v′ = (. . . ,11, . . .), since y = (. . . ,+−,−+,+−, . . .) has the

same difference ∑j c
j
y − dy as does ∑j c

j
y′ − dy′ , where y′ = (. . . ,+−, . . .). So we can

assume that zα−1 ≠ (11) and also zα+1 ≠ (11).

By our previous assumption, we can assume that zj = vj for j ≠ α − 1, α,α + 1,

the first entry of zα−1 is the first entry of vα−1, and the last entry of zα+1 is the

last entry of vα+1. This is equivalent to assuming h = 3, in which case dy ≤ 2. The

fact that zα = (11) forces the last entry of vα−1 and the first entry of vα+1 to be an

integer by (5.32). If dy = 2, then c1
y and c3

y are at least one since this is required for

dy = #(I ∩ τ(y)) = 2. We have

dy = 2 < 3 = ∑
j

cjy (5.37)

and the claim follows.
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Example 5.3.3 Suppose v = (1+1,22,3−3), z = (11+,22,−33), and y = (11+,+−,−22).

Then dz = 0, ∑j c
j
z = 2, dy = 2, and ∑j c

j
y = 3. In particular, dy can jump by two in

large codimension.

Example 5.3.4 To show that Proposition 5.3.2 is a bit delicate, we provide a counter-

example if Gv is not assumed to be smooth. This example was found using Atlas soft-

ware [1]. The first example arises for the group U(4,4) with v = ( 1 2 2 3 3 4 4 1 ) and

I = {3,5}. Then for every y ≤ v such that `(y) = `(v) − 1, we have s3, s5 ∉ τ(y) ∪ τ(v)

(as checked with Atlas); i.e., for each i = 3,5, Gv ×B Pi/B → Xui is small. However,

Gv ×B P{3,5}/B →Xu is not small, where u = ( 1 2 3 2 4 3 4 1 ).

5.4 Examples

Let n = 4 and p = 2 = q. We can use Lemma 5.3.1 to construct small resolutions for

every singular Xu. There are three clans corresponding to singular varieties, and the

corresponding v giving a small resolution is listed in the table below.

Table 5.1: Small resolutions for U(2,2)

u v

( 1 + - 1 ) ( 1 + 1 - )

( 1 - + 1 ) ( 1 - 1 + )

( 1 2 1 2 ) ( 1 1 2 2 )

Let n = 5, p = 3, and q = 2. We use Proposition 5.3.2 along with two ad-hoc

examples to compute small resolutions of the form (5.24) for U(3,2). In fact this gives

all clans u in V3,2 such that a singular Xu has a small resolution of the form (2.31).

The only clan in V3,2 without a small resolution of the form (2.31) is u = ( 1 2 + 1 2 ).

Explicitly, for u ∈ V , let P be the largest parabolic subgroup stabilizing Gu by

right multiplication, let R be the intersection of P with the largest parabolic subgroup
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stabilizing Gv by right multiplication, and let Z = Gv×RP /B. Then µ given by (2.31)

is a small resolution of Xu.

Table 5.2: Small resolutions for U(3,2)

u v

( + 1 2 1 2 ) ( + 1 1 2 2 )

( 1 2 1 2 + ) ( 1 1 2 2 + )

( + 1 − + 1 ) ( + − 1 + 1 )

( + 1 + − 1 ) ( + + 1 − 1 )

( 1 + − 1 + ) ( + 1 − 1 + )

( 1 − + 1 + ) ( − 1 + 1 + )

( 1 2 1 + 2 ) ( 1 1 2 + 2 )

( 1 + 2 1 2 ) ( 1 + 1 2 2 )

( 1 + − + 1 ) ( + 1 − 1 + )

( 1 − + + 1 ) ( − 1 + + 1 )

( 1 + + − 1 ) ( 1 + + 1 − )

( 1 + 2 2 1 ) ( 1 + + 1 − )

( 1 2 2 + 1 ) ( − 1 + + 1 )

The first six rows of Table 5.2 can be induced from small resolutions for U(2,2).

The first eleven rows of Table 5.2 can be computed directly from Proposition 5.3.2.

The last two rows of Table 5.2 are computed in the following example.

Example 5.4.1 We compute the last row of Table 5.2, since the second to last row is

similar. Let u = ( 1 2 2 + 1 ), v = ( − 1 + + 1 ), P the parabolic subgroup corresponding

to {1,2}, and R the parabolic subgroup corresponding to {2}. Let Z = Gv ×RP /B and

recall the isomorphism

ϕ ∶Z →X
{2}
v ×

X{1,2}
X (5.38)
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by (2.36). We have

Xv = {F ● ∈X ∣ F 1 ⊆ C−2} (5.39)

so Z is isomorphic to

C5

F 4

F 3

C−2 E2

F 1 E1

0

(5.40)

where a line between subspaces indicates containment. Define µ ∶Z →Xv as usual, so

we have

µ−1(E●) ≅ pr−1(E●), (5.41)

where pr ∶ϕ(Z) →Xv projects to the rightmost flag. So

µ−1(E●) = Gr1(C−2 ∩ F 3) (5.42)

which is P1 if C−2 ⊆ F 3 and is a point otherwise. It follows that

Y = {E● ∈X ∣ C−2 ⊆ F 3} (5.43)

contains the set of points in Xu with positive dimensional fiber; in fact the containment

is equality since any point of Y can be placed as a rightmost flag in (5.40). Therefore

µ is small since dim(Xu) = 9 and dim(Y ) = dim(X( 1 − 1, + + )) = 6.
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CHAPTER VI

FIBERS OF µ

6.1 A single Schubert variety

Let u, v ∈ V and w ∈W such that v ⋆w = u. We consider morphisms of the form

µ ∶Gv ×RXw →Xu, (6.1)

where R is a parabolic subgroup corresponding to a subset of simple reflections J .

Proposition 6.1.1 If µ is of the form (6.1), then for every y ≤ u, we have

µ−1(ẏB/B) ≅XJ
v ∩ ẏXJ

w−1 . (6.2)

Proof. Define

ϕ ∶Gv ×RXw →XJ
v ×Xu (6.3)

by (2.36). Define

pr ∶XJ
v ×Xu →Xu (6.4)

by projection. We have

µ−1(ẏB/B) ≅ pr−1(ẏB/B) (6.5a)

= {gR/R ∈XJ
v ∣ g−1ẏ ∈ Gw} (6.5b)

= {gR/R ∈XJ
v ∣ g ∈ ẏGw−1} (6.5c)

= {gR/R ∈XJ
v ∣ g ∈ ẏXJ

w−1} (6.5d)

=XJ
v ∩ ẏXJ

w−1 (6.5e)

as claimed.
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6.2 Barbasch-Evens type again

If w = wI in (6.1) for some subset of simple reflections I, then µ is of Barbasch-Evens

type. We obtain the following Corollary immediately from (5.26) and (6.2).

Corollary 6.2.1 Let u, v ∈ V , I ⊆ S such that v ⋆wI = v, and

µ ∶Gv ×R PI/B →Xu. (6.6)

Then for every y ≤ v, we have

dim(XJ
v ∩ ẏPI/R) = dim(KẏR/B) + dim(PI/B) − dim(KẏPI/B). (6.7)

Proposition 6.2.2 Let u, v ∈ Vp,q and I ⊆ S satisfy §5.3.2. Then for every y ≤ v, we

have

KLVy,u(t) = (1 + t)dy , (6.8)

where dy = #(I ∩τ(y)). By (K ×PI)-equivariance, this describes all KLV polynomials

for the clan u.

Proof. Recall that µ ∶Gv ×B PI/B →Xu is of the form (6.1). For every y ≤ u, we have

µ−1(ẏB/B) ≅Xv ∩ ẏPI/B (6.9)

by (6.2). We have

PI/B =∏
s∈I
Ps/B (6.10)

since I consists of pairwise commuting simple reflections. It follows that

µ−1(ẏB/B) ≅∏
s∈I
Xv ∩ ẏPs/B. (6.11)

By Zariski’s main theorem, (6.11) is a connected variety contained in ẏPs/B ≅ P1. It

follows that

µ−1(ẏB/B) ≅∏
s∈I

P1 (6.12)

which has Poincare polynomial given by (6.8).
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6.3 Sp(6,R)

We describe small resolutions of the form (6.1) for Sp(6,R). Some of these resolutions

are constructed by pulling back a small resolution from §III and others were found

by ad-hoc methods. We provide a diagram for the Bruhat order of V3 in Figure 6.1

which was generated by Atlas software [1] and checked using the following description

of the monoid action.

If v ∈ Vn, then by [31, §3.4.1], we have

`(v) = 1

2
(`′(v) +#{t ∈ N ∣ cs = ct ∈ N, s ≤ n < t ≤ 2n + 1 − s}) , (6.13)

where `′(v) is the length of the clan v ∈ Vn,n. It follows from [31, §3.3.1] that for every

v ∈ Vn and si ∈ S ∖ τ(v), we have one of the following two relations:

v ⋆ si =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v ⋆ s′i, s′i ∈ S′ ∖ τ ′(v),

v ⋆ s′i ⋆ s′2n−i, s′i, s
′
2n−i ∈ S′ ∖ τ ′(v),

(6.14)

where v ∈ Vn,n, S′ is the set of simple reflections for G′ = GL(2n,C), and τ ′(v) ⊆ S′.

We also describe a formula for projecting Xv ⊆ X to X k̂. Given v ∈ Vn, let π(v) =

(a, b, c) be defined by

a = #{1 ≤ i ≤ k ∣ vi = +} +#{1 ≤ i < j ≤ k ∣ vi = vj ∈ N} , (6.15a)

b = #{1 ≤ i ≤ k ∣ vi = −} +#{1 ≤ i < j ≤ k ∣ vi = vj ∈ N} , (6.15b)

c = #{1 ≤ i ≤ k ∣ vi = vj ∈ N, k < j, i ≠ 2n + 1 − j} . (6.15c)

The relation π(Xv) = X k̂
π(v) follows from [31, 3.2.11], where π is projection of flag

varieties. We recall [31, 3.2.11] to work with basepoints. For any v ∈ Vn, let g ∈ Gv
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such that column i is given by

gi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei, vi = −, i ≤ n,

e2n+1−i, vi = −, i > n,

ei, vi = +, i ≤ n,

−e2n+1−i, vi = +, i > n,

1√
2
(ei + e2n+1−j), v(i) = j, i < j ≤ n,

1√
2
(ei + ej), v(i) = j, i ≤ n < j,

− 1√
2
(e2n+1−i + ej), v(i) = j, n < i < j,

1√
2
(e2n+1−i − ej), v(i) = j, j < i ≤ n,

1√
2
(ei − ej), v(i) = j, j ≤ n < i,

1√
2
(ei − e2n+1−j), v(i) = j, n < j < i,

(6.16)

where v(i) = j as an involution.

Pull-back small resolutions

We list all small resolutions for Sp(6,R) obtained by pulling back small resolutions

from §III. We recall the following result of Sankaran-Vanchinathan [24, Theorem 2.4].

Proposition 6.3.1 ([24]) Let ζ ∶ Ỹ → Y be a fiber bundle with smooth fibers between

irreducible varieties. If µ ∶Z → Y is a small resolution, then µ′ ∶Z ×
Y
Ỹ → Ỹ is a small

resolution.

Let u = ( 1 + 2 1 − 2 ) so τ(u) = {1,3} by (6.14). Define π ∶Xu → X 2̂
1,0,1, so

Xu = π−1(π(Xu)). Define Z = X 3̂
2,1 and µ ∶Z → X 2̂

1,0,1. Then µ is the small resolution

given in Theorem 3.3.6 (A). The diagram

G2,1 ×P{1} P{1,3}/B Xu

Z X 2̂
1,0,1

µ′

π′ π

µ

(6.17)
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displays µ′ as a base change of µ with respect to π. It follows that µ′ is a small

resolution since π is a fiber bundle. Similarly,

G1,2 ×P{1} P{1,3}/B →Xv (6.18)

is a small resolution, where v = ( 1 − 2 1 + 2 ).

Let u = ( 1 + 2 2 − 1 ) so τ(u) = {1,3} by (6.14). Define π ∶Xu → X
{1,3}
1,0 , so

Xu = π−1(π(Xu)). Define Z = X{2,3}1,0 and µ ∶Z → X
{1,3}
1,0 . Then µ is a small resolution

given in Theorem 3.3.6 (B). The diagram

G1,0 ×P3 P{1,3}/B Xu

Z X
{1,3}
1,0

µ′

π′ π′

µ

(6.19)

displays µ′ as a base change of µ with respect to π. So µ is a small resolution of Xu

and

G0,1 ×P3 P{1,3}/B →Xv (6.20)

is a small resolution, where v = ( 1 − 2 2 + 1 ).

More small resolutions

Let u = ( 1 2 1 3 2 3 ) and v = ( 1 1 2 2 3 3 ). Then v ⋆ s2 = u by (6.14). Define

µ ∶Gv ×B P2/B →Xv (6.21)

which is generically finite by (2.50). One can show that µ is birational using root types

(q.v. [28]), and we will show this directly. Let F ● ∈ Qu be the basepoint corresponding

to the basis

(e1 + e5, e3 + e4, e1, e2 + e6, e3, e2) . (6.22)

Then

µ−1(F ●) ≅ {E2 ⊆ C6 ∣ F 1 ⊆ E2 ⊆ F 3, dim(C±3 ∩E2) = 1} (6.23)

75



is a point, since E2 = ⟨e1, e5⟩. It follows that µ is birational. Then Lemma 5.3.1 shows

that µ is a small resolution.

Let u = ( 1 2 3 1 2 3 ), v = ( 1 1 2 2 3 3 ), and w = s3s2s3. Then v ⋆ w = u by

(6.14). Define

µ ∶Gv ×P3 Xw →Xu. (6.24)

For every y ≤ u, we have

µ−1(ẏB/B) ≅X{3}v ∩ ẏX{3}
w−1 (6.25)

by (6.2), where

X
{3}
v = {F ● ∣ dim(C±3 ∩ F 2) = 1} , (6.26a)

ẏX
{3}
w = {F ● ∣ ẏ−1C1 = F 1, F 2 ⊆ ẏ−1C4} , (6.26b)

where a direct calculation computes Xw as the image of P3 ×B P2 ×B P3/B. If y = u,

then

µ−1(ẏB/B) ≅ {F ● ∣ dim(C±3 ∩ F 2) = 1, ⟨e1 + e4⟩ = F 1, F 2 ⊆ ẏ−1C4} (6.27a)

= {⟨e1, e4⟩} (6.27b)

shows that µ is birational. If ẏ ∈ NG(T ), then

µ−1(ẏB/B) ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1, C3 ⊆ ẏ−1C4, ẏ−1C1 ⊆ C−3,

P1, C−3 ⊆ ẏ−1C4, ẏ−1C1 ⊆ C3,

pt, else.

(6.28)

Considering basepoints of closed K-orbits shows that

dy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, y = ( + + − + − − ),

1, y = ( − − + − + + ),

0, else,

(6.29)

where upper-semicontinuity forces dy = 0 for all remaining y ≤ u (q.v. Figure 6.1).
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Figure 6.1: Bruhat order for Sp(6,R)
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