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it is among the most difficult portions of the atmosphere to sample. The ABL is 

characterized by the presence of turbulence, which is the primary means by which heat 

and moisture are transported. Traditional monitoring techniques such as satellite 

technology, radar, and weather balloons are unable to sample the ABL at the spatial and 

temporal scales necessary to resolve the thermodynamic characteristics responsible for 

local weather development or monitor its rapidly changing structure. Over the past 

decade, small unmanned aircraft systems (sUAS) have emerged as a sensing 

methodology well suited to fill the spatio-temporal gaps left by the traditional 

atmospheric sensing technologies. While numerous studies have collected temperature 

and humidity data in the ABL, there has been almost no attention given to the 

determination of optimal spatial sampling strategies for capturing these variables. This 

research advances spatial science by applying geostatistical analysis techniques to a 

spatial, continuous random variable to a domain that has seen little attention by spatial 

scientists. The objective of this research is to apply geostatistics, principally, variogram 

analysis, to model the vertical spatial structure of thermodynamic variables (e.g., 

temperature) in the ABL using sUAS. The versatility of the variogram makes it ideally 

suited for modeling a continuous random variable whose spatial variation is influenced 
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CHAPTER I 
 

 

INTRODUCTION 

 

Project Motivation 

This doctoral dissertation research seeks to identify proper spatial sampling scales for 

geostatistical analysis techniques for atmospheric boundary layer (ABL) research using small 

unmanned aircraft systems (sUAS). Using those findings in combination with variogram analysis, 

this research will then identify the size, shape, and uniformity of coherent turbulence structures, 

which will make a fundamental contribution to the current understanding of small-scale 

atmospheric turbulence. Data and results were shared with National Severe Storm Laboratory 

(NSSL) forecasters to improve severe storm detection and warnings. Thus, this doctoral 

dissertation research will contribute geostatistical methods for atmospheric sampling, spatial 

science theory for understanding small-scale turbulence, and contribute novel data streams for 

real-world, severe weather forecasting applications.  

Recent technological advancements in unmanned and autonomous systems have fostered 

the increasing use of sUAS in meteorology and atmospheric sciences. The versatility of sUAS 

make them well suited for filling spatial and temporal sensing gaps in the ABL, which is the 

portion of the atmosphere in direct contact with the surface of the earth and a critical area for 

weather development including severe local storms. However, we currently do not have 

established sampling methodologies or a universal understanding of the scales associated with
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the atmospheric processes operating within this region to guide those sampling schemes. Building on 

small-scale turbulence theories from Kolmogorov (1941) and Obukhov (1949) along with established 

spatial analytical methods from geography and the spatial sciences, this research will develop the 

spatial sampling strategies needed for efficient and effective sampling of scaler variables in the ABL 

and develop analytical methods for uncovering the processes impacting weather development in the 

ABL. 

Current State of Knowledge 

The Atmospheric Boundary Layer 

The lowest portion of the atmosphere, known as the atmospheric boundary layer (ABL) or 

planetary boundary layer for its proximity to the earth’s surface, is of considerable importance to 

weather development at the local scale. Thermodynamic characteristics of this lower portion of the 

atmosphere are very different compared to the rest of the atmosphere (e.g., troposphere, stratosphere, 

etc.). Heavily influenced by its contact with the earth’s surface, ABL conditions can change over time 

spans as short as one hour (Stull 1988). Primarily, diurnal temperature fluctuations caused by 

radiation absorption and emission by the earth’s ground surface provide the source of energy driving 

circulation, which changes the state of the ABL, sometimes over short time intervals. These changes 

in the atmospheric state (e.g., temperature, humidity, etc.) are distributed by transport processes, 

chiefly turbulence.  

Researchers have long known that the ABL is an important region for weather development 

and turbulence, but it is among the most difficult portions of the atmosphere to sample. Traditional 

atmospheric monitoring techniques such as satellite technology and weather balloons suffer 

limitations, particularly at smaller (spatial and temporal) scales. Radar revolutionized weather 

forecasting, particularly with the inception of NEXRAD Doppler radar in 1988 (Doviak and Zrnic 

1993); however, the radar signal can be blocked by terrain and the curvature of the earth, resulting in 

coverage gaps. Additionally, radar is not able to directly sense thermodynamic variables, such as 
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temperature, which are critical for understanding weather development. Satellite based remote 

sensing technologies, such as the Geostationary Operational Environmental Satellite (GOES), have 

been instrumental in weather observation and forecasting for decades, however, the relatively coarse 

spatial resolution (500 m to 2 km depending on the spectral band) of the instruments onboard these 

satellites make them unsuitable for sensing atmospheric phenomena smaller than the mesoscale, while 

cloud cover aloft can obscure phenomena near the ground. Traditional in situ methods also suffer 

limitations. Weather balloons are launched twice daily from a sparse network of locations around the 

world, but the sensors carried by the balloons only capture a handful of measurements within the 

ABL due to the rapid rate of ascent, and the radiosonde transponders are not able to be controlled or 

recovered. Sensors onboard manned aircraft are able to collect data at higher spatial and temporal 

resolutions, but aircraft are expensive and dangerous to operate near the ground in the ABL, and 

manned aircraft are not ideal for situations in which severe weather is developing.  

sUAS in Atmospheric Research  

In the past decade, sUAS have emerged as a supportive sensing technology well suited to fill 

the spatial and temporal gaps left by the alternative traditional atmospheric sensing technologies 

discussed above. The use of sUAS in the geosciences has increased dramatically in recent years, 

particularly for image acquisition, due to their low cost and versatility (Singh and Frazier 2018). This 

rapid adoption prompted the Federal Aviation Administration (FAA) to formalize regulations 

pertaining to the operation of sUAS for research purposes in Part 107 of the Federal Aviation 

Regulations. Similar regulations have been enacted by the European Aviation Safety Agency 

(EASA), which will facilitate the expanded use of the new technology.  

The benefits of sUAS are not limited to remote sensing imagery applications, however. 

Atmospheric scientists have found that they are a powerful tool for in situ sampling of the ABL. 

While there have been numerous studies collecting temperature and humidity data in the ABL (e.g., 

Mayer et al. 2012; Cassano et al. 2014; Higgins et al. 2018) there has been almost no attention given 

to the determination of optimal spatial sampling strategies for capturing these variables. Determining 
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the optimal distance (i.e., scale) at which to collect samples based on the dissipation of 

autocorrelation is necessary to ensure adequate capture of the measured variable. The necessary 

spatial distance between samples collected from a single sUAS vehicle, and correspondingly, the 

necessary distance between multiple vehicles performing coordinated sampling, is currently 

uncertain. A better understanding of coherent turbulent structures, as captured through variation in 

thermodynamic variables such as temperature, will allow for better informed sampling, enhanced 

mission planning, and improved scientific analyses.  

Boundary-Layer Turbulence 

Turbulence is an important process for understanding severe weather formation (e.g., 

tornadoes) because it is responsible for vertical transport in the ABL, whereas wind is the primary 

cause of horizontal transport, known as advection (Stull 1988). Turbulence is prevalent in the ABL 

and is generated from buoyancy due to temperature variations or wind shear. It is characterized by a 

superposition of swirls, called eddies, that scale in size from the approximate ABL thickness (~1 km) 

down to only a few millimeters. Richardson (1922) proposed the concept of an energy cascade, where 

kinetic energy enters the largest turbulent eddies. Unstable and influenced by the current boundary 

layer condition, these eddies break up and their energy is transferred to smaller eddies. This process 

continues until turbulent motions become small, and the energy dissipates through viscous forces, 

typically at the scale of only a few millimeters (Pope 2000). Kolmogorov (1941), for whom these 

smallest scales are named, proposed several hypotheses regarding the structure of the small-scale 

turbulent eddies.  However, these hypotheses remain difficult to validate for the ABL because 

heretofore technologies were not available to test them in the ABL.  

Current Knowledge Gap 

sUAS afford more dynamic sensing capabilities in the ABL, however, the new technology 

has outpaced the development of spatial sampling theory necessary to best capture the complicated 

physical processes in the ABL. Fluctuation in turbulent intensities are known to correspond to 

fluctuations in discernment of scaler variables such as temperature and humidity, or gas 
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concentrations (e.g., pollutants) (Stull 1988). Understanding of the size and shape of turbulent eddies 

is essential to effectively and efficiently sample in the ABL. The spatial scales of these eddies have 

historically been determined by applying Taylor’s (1938) frozen turbulence hypothesis, which 

depends on the assumption that turbulent eddies are “frozen” as they advect past a sensor, thus 

allowing the local change within each eddy to be negligible. Researchers have used this theory to take 

measurements at one point in space for a period of time as the eddies advect past the sensor. The 

mean wind speed is then used to translate the time series into spatial dimensions. However, this 

method is disadvantageous because inferring spatial dimensions relies on the validity of the 

hypothesis. To date scientists have not collected evidence to suggest turbulence eddies remain fixed 

even for short time intervals, and continue to face challenges when trying to capture a spatial snapshot 

of the ABL sufficiently large enough to fully define its spatial structure.  

Research Objectives 

Geostatistics, specifically the variogram, offers a viable means for quantitatively describing 

the spatial structure of variables whose spatial positioning is influenced by turbulent motions. 

Geostatistics is a branch of statistics that is suited for the analysis of spatially autocorrelated (and 

often spatial nonstationary) data. The variogram, a key component of geostatistical theory, is a 

function that describes the degree of spatial autocorrelation. Indeed, the variogram was originally 

developed to study turbulent flows (Kolmogorov 1941) and described as a “structure function” by 

Obukhov (1949).   

Geostatistical theory developed outside of turbulence studies in the decades that followed, 

primarily in geology, but also with contributions from practitioners in forestry and meteorology 

(Cressie 1990). Geostatistical methods have been widely applied in the terrestrial geosciences, but has 

seen limited use outside of the variogram (structure function). This is likely a result of limited spatial 

sampling capabilities. The variogram has been applied to temperature data collected in the ABL from 

aircraft and from balloon measurements, but has not been widely applied in the atmospheric sciences. 
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In situ spatial sampling in the ABL has been challenging leading to the ubiquitous use of 

tower instrumentation and while the structure function has seen use, it has generally been applied to 

temporal data. The dynamic sensing capabilities offered by sUAS provide the ability to spatial sample 

the ABL like never before. With increased spatial sampling capabilities, geostatistical methods can be 

more widely applied. Such methods go beyond the parametric estimation of temperature structure 

through the variogram, but include ways to handle spatial nonstationarity and also predict unknown 

quantities at unsampled points while simultaneously receiving a measure of uncertainty through the 

mean squared prediction error (Cressie and Zimmerman 1992). Given the available toolkit of theory 

and sampling methods, the objective of this research is to apply geostatistics, principally, variogram 

analysis, to model the vertical spatial structure of thermodynamic variable (e.g., temperature) in the 

ABL using sUAS. Three specific objectives, each pursued in the form of an independent research 

article, are outlined below.  

Three Article Dissertation 

The first article identifies minimum sampling scales for temperature and relative humidity 

measurements in the ABL. sUAS provide a dynamic sensing platform to capture thermodynamic 

variables in the ABL, however, research on the vertical sampling scales for collecting atmospheric 

measurements from sUAS and the variabilities of these scales across atmospheric phenomena (e.g., 

temperature and humidity) is needed. The objective of this study is to use variogram analysis, a 

common geostatistical technique, to determine optimal spatial sampling scales for two atmospheric 

variables (temperature and relative humidity) captured from sUAS. Results show that vertical 

sampling scales of approximately 3 m for temperature and 1.5–2 m for relative humidity were 

sufficient to capture the spatial structure of these phenomena under the conditions tested. Future work 

is needed to model these scales across the entire ABL as well as under variable conditions. This 

research was published in Atmosphere (Hemingway et al. 2017).   

The second article contributes to the understanding of the small-scale vertical structure of 

temperature at separation distances inherent to the inertial range of turbulence. Structure functions are 
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estimated from vertical profiles of temperature collected using an ultrasonic anemometer mounted on 

an sUAS. Using geostatistical methodologies specifically developed for spatially nonstationary and 

spatially dependent random variables, temperature structure was estimated from six profiles reaching 

roughly 500 m in altitude. A mean function was specified to account for the variation in temperature 

with altitude and the structure function was estimated from the residuals. A 2/3 scaling exponent was 

fit to the resulting curves commensurate with the inertial range of turbulence. The resulting structure 

functions of residuals were able to resolve the inertial range of turbulence on most profiles at a range 

of separation distances. It was found that geostatistical methods for spatially nonstationary random 

variables were well suited in certain cases to describe the vertical structure of temperature in the 

ABL. The results of this research have been accepted for publication in Boundary-Layer Meteorology 

(Hemingway et al. in press)  

The third article assesses the universality of the temperature structure parameter in the power 

law variogram model that describes the intensity of the spatial variation. Statistical properties of 

turbulent quantities in the ABL are hypothesized to be a universal function of a stability parameter 

and not vary based on the nature of the surface. To test this hypothesis, the second-order statistical 

quantity (the temperature structure parameter) of the power law relationship in the inertial range was 

estimated from numerous profiles of temperature across various ecoregions of Oklahoma. The results 

of this study are to be submitted to Environmental Fluid Mechanics in the summer of 2020. 

Environmental Fluid Mechanics features basic and applied articles about natural fluid systems and 

would be an appropriate outlet for this research.  
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CHAPTER II 
 

 

VERTICAL SAMPLING SCALES FOR ATMOSPHERIC BOUNDARY LAYER 

MEASUREMENTS FROM SMALL UNMANNED AIRCRAFT SYSTEMS 

Introduction 

The atmospheric boundary layer (ABL) is the lowest portion of the earth’s atmosphere 

and plays an important role in the formation of weather phenomena (Stull 1988). The ABL is the 

portion of the troposphere in direct contact with the surface of the earth, approximately 1 km 

thick on average, where there is a considerable exchange of energy between the two systems that 

can impact local weather events on time scales as small as one hour (Stull 1988). Simple 

meteorological measurements collected from within the ABL, including thermodynamic variables 

such as temperature, pressure, and humidity, and kinematic variables such as wind velocity, are 

key to understanding this exchange of energy (Mayer et al. 2012) and the role it plays in the 

formation of severe weather events such as thunderstorms and tornadoes. Low altitude sampling 

would allow for measurement of surface-based convergence and the intersection of airmass 

boundaries (Ladue et al. 2010), both of which would aid in the understanding of tornadogenesis. 

With the possibility of rotation occurring in as few as twenty minutes from the first sign of 

possible tornadic activity (Frew et al. 2012), rapidly-deployable, low altitude platforms that can 

collect measurements at fine spatial and temporal scales can lead to timelier and more precise 

tornado warnings (Ladue et al. 2010; Frew et al. 2102). However, these types of measurements 

are not readily available from the existing suite of meteorological surveillance tools. 
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 Networks of ground weather stations (i.e., mesonets) were first constructed in the U.S. 

during the late-20th century to observe mesoscale meteorological phenomena. Ground stations 

typically consist of a tower, commonly about 10 m high, equipped with various atmospheric 

sensors to capture pressure, temperature, humidity, wind velocity, and other environmental data 

(McPherson et al. 2007). Towers are usually spaced between 2–40 km apart, which allows 

measurements to be interpolated over regional extents, but sampling occurs at very low altitudes 

(lower than 10 m), and thus mesonet towers are not able to capture the full dynamics of the ABL. 

Weather balloons (i.e., sounding balloons) allow for sensing of the full vertical profile of 

variables in the ABL, but their sampling altitude is limited by the length of their tethers, and non-

tethered balloons make uncontrolled ascents limiting the derived conclusions from their sampling. 

Further, the radiosondes that capture the data onboard the balloon are often lost and cannot be 

controlled from the ground (Konrad et al. 1970).  

With the limitations of ground-based weather monitoring technologies, investments in 

remote weather-sensing satellites over the past several decades have led to considerable 

advancements in weather forecasting and monitoring. However, satellite systems remain unable 

to provide the spatial precision, temporal resolution, and/or specific types of data needed for local 

meteorological observations in the ABL (Frew et al. 2012). In particular, the Geostationary 

Operational Environmental Satellite (GOES) system has been a centerpiece of weather 

forecasting in the U.S. (Jensen 2015). Since the first launch in 1975, GOES has been deployed on 

various satellite platforms for weather forecasting, severe storm tracking, and meteorology 

research. However, the coarse spatial resolution of the imager is not sufficient to observe 

phenomena at the micro scale—defined as less than 1 km (Stull 1988)—which is the scale at 

which atmospheric processes contributing to the formation of severe local storms occur (Frew et 

al. 2012). 

Simultaneous to developments in weather satellite technology, weather services began 

incorporating weather surveillance radar (WSR) technology into forecasting and storm tracking 
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beginning in the 1950s (Doviak and Zrnic 1993). Weather radars work by sending directional 

pulses of microwave radiation from a radar station and measure the reflectivity, or amount of 

radiation scattered by water droplets or ice particles back to the sensor (Doviak and Zrnic 1993). 

While radar systems such as the current WSR-88D radar network (NEXRAD) are able to 

somewhat fill the measurement gaps between ground-based tower measurements and satellite 

sensors, they are limited in the type of meteorological information they can collect, particularly 

thermodynamic data such as temperature and humidity. Additionally, weather radars have 

difficulty sensing the ABL due to the curvature of the earth and obstructions such as buildings or 

mountainous terrain (LaDue et al. 2010; Bendix et al. 2017). There can also be interference from 

other phenomenon such as birds, insects, and ground clutter (Chowdhury et al. 2016; Farnsworth 

et al. 2016; Golbon-Haghighi et al. 2016).  

Given the limitations of ground-based weather stations, satellite sensors, and ground 

radar for capturing measurements in the ABL, alternative technologies are needed. Small 

unmanned aircraft systems (sUAS) are a rapidly emerging technology that have the potential to 

fill the aforementioned spatio-temporal gaps in atmospheric sampling (Frew et al. 2012; Frazier et 

al. 2017). In the U.S., a sUAS is defined as weighing less than 25 kg (55 lbs.) and may be of 

either fixed-wing or rotor-wing platform. A plethora of sensors and platforms are available (see 

Elston et al. (2015) for a review). While sUAS have been increasingly employed in ABL 

sampling over the last several years their use dates back to at least 1970 when Konrad et al. 

(1970) used a sUAS to capture temperature, humidity, pressure, and aircraft velocity at altitudes 

up to 3,048 m (10,000 ft.). More recently, sUAS have been used to successfully capture 

atmospheric measurements such as temperature profiles in Antarctica during various mixing 

conditions (Cassano 2014), validate fine-scale atmospheric models in Iceland (Mayer et al. 2012) 

and compare temperature and relative humidity measurements to radiosondes in New Zealand 

(Cook et al. 2013). Additionally, they have been utilized in capturing data in supercell storms 

(Roadman et al. 2012) and air masses (Houston et al. 2012). 
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While the use of sUAS for sampling the ABL has increased in recent years, little research 

has been conducted on the optimal vertical spatial scales for collecting measurements and 

whether these scales vary across atmospheric phenomena (e.g., temperature and humidity). Most 

natural phenomena display spatial autocorrelation, that is, samples collected near each other in 

space are more likely to be similar than samples captured at further distances. Knowledge of the 

scales (temporal and/or spatial) over which a given phenomenon is correlated provides insight 

into the coherent structures within the flow, which in turn provides insight into how we can most 

efficiently sample the environment. A “more is always better” approach may not be optimal, as 

there may become a point when no new information is returned with increasing numbers of 

samples (Bolstad 2005). This type of collection efficiency is particularly critical for sUAS 

because there are large variances in communication rates, link reliability, mesh network 

connectivity, and bandwidth (Crick and Pfeffer 2003) with UAS data capture, and storage devices 

must be miniaturized to fit payload requirements.  

The objective of this study is to use common geostatistical techniques to determine 

vertical spatial sampling scales for two atmospheric variables (in this case temperature and 

relative humidity) captured from sUAS. Specifically, variogram modeling, a geostatisitical 

technique that can quantify the spatial autocorrelation of a given signal (Isaaks and Srivastava 

1989), is used to capture the spatial structure of these atmospheric phenomena at different times 

of the day. Analysis of the variogram provides guidance on the distance over which the given 

data become incoherent (i.e., spatial autocorrelation dissipates), providing a measure of the 

optimal spatial separation to allow between measurements collected from sensors onboard sUAS. 

Ultimately, this type of information will aid in mission planning, address data storage limitations, 

and allow for more advanced geostatistical analyses of these atmospheric phenomena. 

Theory and Calculations 

The processes that shape the atmosphere, much like Earth processes, are governed by 

physical laws, and are thus deterministic in nature. However, the many forces influencing the 
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spatial variation of a particular atmospheric property combined with the nonlinearity of the 

governing equations makes the behavior appear random. This makes deterministic mathematical 

models for describing the spatial relationship between two sample points impractical. 

 Consequently, a probabilistic approach is required for modeling the behavior. Such a 

variable is known as a regionalized variable and is best described using a random function. 

Although the spatial variation in the regionalized variable may appear to be the result of a 

stochastic process, there is still an inherent structure to that variable, and the values may have a 

statistical relationship relative to their location in space (Burrough et al. 2015). The random 

function can be modeled by 

𝑍(𝑥) = 𝜇 + 𝜀(𝑥) (2.1)

where Z(x) is the observation, µ is the mean of the process that is assumed spatially uniform, and 

ε(x) is a random quantity with a mean of zero. The expected difference in values between the 

variable at two locations is 

𝐸[𝑍(𝑥) − 𝑍(𝑥 + ℎ)] = 0 (2.2)

where Z(x) is the value of the variable at location x and Z(x+h) is the value at location x+h, and h 

is a spatial separation distance. The variation between the two locations can be assumed to be a 

function of their spatial separation. The variance of the difference can then be used to measure the 

spatial relationship using 

𝐸[{𝑍(𝑥) − 𝑍(𝑥 + ℎ)}2] = 2𝛾(ℎ) (2.3)

where 2γ(h) is the variogram γ is known as the semivariance.  

The equation to compute the experimental variogram from sample data is 

𝛾(ℎ) =
1

2𝑁(h)
∑ {𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)}

2𝑁(h)
𝑖=1 (2.4)

where z(xi) is the observed value of z at location xi separated by distance h, and n is the number 

of sample pairs (Oliver and Webster 2015). From the variogram plot, the distance at which spatial 

dependence of the regionalized variable is no longer present can be determined through analysis 
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of three properties: the range, sill, and nugget (Figure 2.1) The upper bound of variogram values 

is referred to as the sill, which occurs when the measured values between samples are invariant at 

larger lag distances, and the curve of the variogram levels off. The lag distance at which the sill 

occurs is known as the range, so-called because this is the range at which the measured attributes 

have spatial dependency. In certain instances, the variogram model may not pass through the 

origin but instead intersect the ordinate at 𝛾 greater than zero. While it is reasonable to expect that 

the variogram would be zero at a separation distance of zero, there still is uncertainty in the data, 

and this phenomenon is known as the nugget effect.  

 

Figure 2.1. Example of a typical variogram as a function of the lag distance showing the location of the 

nugget, range, and sill. 

 

There are certain considerations to be made prior to modeling the variogram. A large 

enough sample is needed to ensure reliability. Oliver and Webster (2015) suggest a sample size of 

no fewer than 100 observations. Additionally, careful consideration should be used when 

selecting size of the distance of the separation bins. A spacing that is too large will likely result in 

a variogram that is flat or does not capture the true spatial structure of the phenomenon. Distance 

bins that are too small for the given sample size can result in a noisy variogram (Oliver and 

Webster 2015) which can obscure observation of the physical process under investigation. For 
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non-systematic sampling schemes, such as in this study, the average sample spacing can serve as 

a good starting point for the distance bins (Isaaks and Srivastava 1989). 

Study Site and Materials 

Study Site and Data Collection 

Flights took place over two days in June 2016 at two sites in central Oklahoma, USA 

Figure 2.2). On June 29, 2016, data were collected at the Marena Mesonet site located near 

Coyle, OK (36° 3' 51" N, 97° 12' 45" W, at an elevation of 327 m above mean sea level [MSL]). 

Rural grasslands with small patches of forest surround the site. On June 30, 2016, data were 

collected at Oklahoma State University’s Unmanned Aircraft Flight Station (UAFS) near Ripley, 

OK (36° 9' 44” N, 96° 50' 9” W at an elevation of 319 m MSL). The UAFS is also located in a 

rural area surrounded by farmland, grassland, and small forest patches. Central Oklahoma is 

characterized by a humid subtropical climate, and experiences hot, humid summers and cool 

winters. On both flight days, conditions were clear with minimal cloud cover. 

 
Figure 2.2. Location of Marena and Oklahoma State University Unmanned Aircraft Flight Station 

(OSU UAFS). 
Platform  

 The sUAS platform used for data collection was a 3DR Iris+ (3D Robotics, Inc., 

Berkeley, CA) multirotor aircraft (Figure 2.3). The Iris+ weighs 1,282 g and is 550 mm in 
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diameter from rotor tip-to-tip. It has a payload of 400 g, and the lithium polymer battery provides 

up to 22 minutes of flight time under favorable conditions. The Iris+ sUAS is controlled by an 

onboard autopilot and is capable of autonomous flight through control via a ground control 

station through radio frequency communication at 915 MHz.  

Sensors 

The iMet XQ sensor (International Met Systems, Grand Rapids, MI) was used to collect 

atmospheric measurements. It is a self-contained unit with temperature, humidity, and pressure 

sensors as well as a GPS receiver. Weighing 15 g, it has a 120-minute battery life and a 16-

megabyte storage capacity. The sampling rate is 1-3 Hz. The temperature sensor is of the bead 

thermistor type with a response time of 2 seconds. It has an accuracy of ± 0.3 °C and a resolution 

of 0.01 °C. The humidity sensor is the capacitive type with a 5 second response time. It has an 

accuracy of ± 5% relative humidity, and a resolution of 0.07% relative humidity. The sensor was 

mounted underneath the rotor arm of the Iris+ and placed near the body of the aircraft to 

minimize the effects of rotor downwash.  

 
Figure 2.3. Location of iMet sensor placement on Iris+ sUAS platform. 

 

Surface weather observations 

Observations from nearby ground weather stations that are part of the Oklahoma Mesonet 

were used in the analysis to document meteorological conditions at the time of the sUAS flights 

and provide surface weather observations to supplement the sUAS-derived data. The Oklahoma 

Mesonet consists of 121 weather stations distributed across the state, with at least one station in 
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every county. The stations consist of a 10 m-tall tower with various sensors that measure more 

than 20 environmental variables including temperature, relative humidity, pressure, and wind 

speed (McPherson et al. 2007). The two Mesonet sites used in this analysis are the Marena site, 

which is located 11.3 km (7 miles) north of Coyle, OK (36° 3' 51" N, 97° 12' 45" W) and 

corresponds to the location of the June 29 data collection, and the Stillwater site, located 3.2 km 

(2 miles) west of Stillwater, OK (36° 7' 15" N, 97° 5' 42" W), which corresponds to the June 30 

data collection event.  

Methods 

Sample Variograms 

Variogram analysis was completed using the gstat package (Pebesma 2004) for the R 

statistical computing language. Only measurements from the ascent of each profile were used in 

the analysis since averaging data from both ascent and descent would skew variations due to a 

larger time difference, hence variation, from the measurements at lower altitudes. Also, it has 

been shown that the upon descent rotor downwash may introduce updrafts that would impact 

measurements due to the placement of the sensor on the aircraft (Jabob et al. 2017) As boundary-

layer turbulence is inherently highly skewed, no observations were removed prior to analysis. For 

each dataset the initial lag distance was set to the average point spacing following Isaaks and 

Srivastava (1989); however, this resulted in a sparse sample variogram that did not fully represent 

the structure of the data. Lag distances were set to one-half the average point spacing and 

maximum lag distances were capped at one-half of the sampling area (maximum above ground 

altitude). However, these suggested parameterizations are based on terrestrial data, which does 

not exhibit the same scales of variability as atmospheric data.  

The classical view of high Reynolds number (i.e., very turbulent) boundary layers, like 

the ABL, is that the turbulent flow field can be thought of as the superposition of eddies varying 

in size. The largest eddies would scale with the boundary layer thickness (~1 km) while the 

smallest are inversely related to the Reynolds number. Here, turbulent energy is supplied from the 
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largest scale motion, and that energy “cascades” down to smaller and smaller eddies until the 

eddies become sufficiently small that viscosity dissipates the turbulent energy. 

 

  

Figure 2.4. Sample variogram displaying increasing scales of variability (scale domains) with distance. 

 

Variograms carry information about all of these scales. In fact, the autocorrelation is 

commonly used to determine the largest turbulent scales (integral scale) as well as the Taylor 

microscale. The integral scale is determined from integration of the autocorrelation, and the 

Taylor microscale (an intermediate length scale at which turbulent motions are significantly 

impacted by viscosity) is related to the shape of the autocorrelation near zero lag. Since 

variograms are a modified form of an autocorrelation, they carry information about these 

turbulent structures (Pope 2000). Given this information, there is expected to be a certain degree 

of spatial autocorrelation for all atmospheric samples within the ABL (i.e., no plateau is expected 

in the variogram until outside of the ABL, which could be on the order of 1 km). Thus, instead of 

a single plateau indicating the range of spatial autocorrelation as is typical for terrestrial 

measurements, the absolute semivariance will exhibit multiple peaks corresponding to the various 

scales of dominant turbulent structures within the ABL. Since the objective of this research is to 
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identify the finest spatial scale needed to capture the structure of atmospheric measurements in 

vertical profiles, the goal is to identify the separation distance where the semivariance first peaks, 

which is expected to correspond to the finest scale domain, and use this as the maximum lag 

distance for variogram modeling (Figure 2.4). Other studies have noted similar structures in 

vertical samples of geological measurements and refer to this phenomenon as the hole or 

periodicity effect (Isaaks and Srivastava 1989). 

Fitting Model Variograms 

Noise and limited sample size can result in some fluctuations within the semivariance 

estimates, even within each scale domain. Consequently, the data are typically modeled to 

mitigate the influence of scatter in the variogram and accurately identify the range, sill, and 

nugget. There are many commonly used model variograms including Gaussian, spherical, and 

exponential; and proper model selection depends on the spatial continuity of the variable. The 

chosen model variogram is often eventually used to select ideal weights for further geostatistical 

analyses, such as kriging, and selecting an incorrect model at this stage can adversely affect the 

accuracy of subsequent estimates. 

 Most often, visual inspection is performed on the sample variogram to select the most 

appropriate model. The sample variograms most closely matched a Gaussian variogram model, 

and Gaussian models typically work well when there is a small nugget and the curve appears 

smooth (Burrough et al. 2015). Following visual assessment, Gaussian model variograms were fit 

to all sample variograms. The Gaussian model is defined as 

𝛾(ℎ) = 1 − 𝑒𝑥𝑝 (−(
𝑎

ℎ
)
2
) (2.5)

here h is the lag and a is the sill. Models were fit in gstat by minimizing least squares.  

Obukhov Length Scale Calculations 

The Obukhov length scale 
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𝐿 =
−𝜌𝐶𝑝𝑇𝑢𝜏

3

 κ𝑔𝐻
(2.6) 

is widely used within micrometeorology to characterize the ABL. It represents a nominal height 

at which the turbulent production from wind shear is comparable to that from buoyancy. Here, ρ 

is the density of air at temperature T, Cp is the specific heat capacity at constant pressure, uτ is 

the friction velocity, κ is the von Kármán constant, and H is the sensible heat flux. Like most 

ABL measurements, the current study lacks accurate measurements of uτ and H. However, this 

work follows the approach of Dyer (1974) and Essa (1999) to estimate L given nearby 

measurements of the surface gradients of wind speed and temperature. Measurements from either 

the Marena (June 29, 2016) or Stillwater (June 30, 2016) Mesonet sites are used to measure 

temperature (1.5 and 9 m above ground), wind speed (2 and 9 m above ground), and local 

pressure. These measurements are used to determine potential temperatures (θ1 and θ2), potential 

temperature difference (Δθ), and wind speed differences (Δu = u2-u1), which are then used to 

estimate the Richardson number 

𝑅𝑖 =
𝑔∆𝑧∆𝜃

𝜃1∆𝑢
2

(2.7)

where g is gravitational acceleration and Δz is the difference in heights where measurements are 

acquired. Then, following Businger et al. (1971) 

𝜁 =
𝜙𝑚
2

𝜙ℎ
𝑅𝑖 (2.8) 

where ζ=z/L, z is the geometric mean height of the measurements used in Ri, ϕm is an assumed 

universal function for momentum, and ϕh is an assumed universal function for heat exchange. The 

universality of these functions is debated, but for the current work they are estimated using 

constants from Dyer (1974), 

𝜙𝑚 = {  
(1 − 16𝜁)−0.25              𝜁 < 0
(1 + 5𝜁)                         𝜁 > 0

(2.9) 

𝜙ℎ = {  
(1 − 16𝜁)−0.5              𝜁 < 0
(1 + 5𝜁)                        𝜁 > 0
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allowing for an iterative process to solve for ζ, which provides an estimate for L. The functional 

forms of the universal function as well as the constant values are questionable, but even under 

ideal conditions its accuracy within the Obukhov similarity theory is only 10%–20% (Essa 1999).  

Results 

Flight Summaries 

 Summary statistics for the 12 flights show similar flight conditions within and between 

the two flight dates (Table 2.1). Flights occurred during early morning (pre-sunrise) and late 

morning/mid-afternoon to capture temperature inversions from radiative heating during the early 

part of the day. Each flight lasted between 3 and 5 minutes and reached maximum above ground 

level (AGL) altitudes between 100 and 120 m. On average, 240 measurements were collected for 

each variable during each flight. Ascents averaged speeds of 1.96 m/s resulting in an average 

point spacing of 0.55 per m. Mean temperatures ranged from 21.0°C to 30.6°C and mean relative 

humidity (RH) measurements ranged from 54.7% to 64.3%.   

Flight 

ID 
Date 

Start 

Time 

End 

Time 

Max Alt. 

AGL (m) 

No. 

Obs. 

Min 

Temp  

Mean 

Temp 

Max 

Temp 

Min 

RH 

Mean 

RH 

Max 

RH 

A1 29-Jun 5:47:30 5:52:06 107.87 277 18.11 21.02 24.94 46.6 62.98 76.1 

A2 29-Jun 6:26:06 6:29:41 110.95 216 19.06 22.13 26.47 41.0 58.8 70.6 

A3 29-Jun 9:23:45 9:27:23 111.21 219 23.77 24.58 26.33 51.3 57.85 67.1 

A4 29-Jun 12:05:23 12:09:55 111.39 273 27.51 28.92 33.39 47.6 55.28 59.9 

A5 29-Jun 13:30:48 13:37:42 111.97 415 29.35 30.6 36.09 47.7 54.71 60.5 

B1 30-Jun 6:02:10 6:05:56 130.06 227 21.09 23.46 25.07 54.9 64.26 76.3 

B2 30-Jun 6:18:54 6:22:22 130.48 210 21.27 23.71 25.17 54.5 62.74 74.5 

B3 30-Jun 6:34:31 6:37:59 133.30 213 21.75 23.6 24.84 56 63.01 72.6 

B4 30-Jun 6:52:45 6:56:05 135.40 202 22.13 23.55 24.63 56.6 62.32 69 

B5 30-Jun 7:33:31 7:38:06 132.44 278 22.64 23.52 24.55 58 63.98 68.9 

B6 30-Jun 8:41:57 8:44:32 137.10 156 25.02 25.61 26.19 55.2 57.15 59.4 

B7 30-Jun 9:06:49 9:10:00 141.99 193 25.39 26.05 28.17 49.6 55.08 57.3 

Table 2.1. Flight information and summary statistics. Temperature (Temp) is reported in degrees Celsius 

and relative humidity (RH) is reported in percent. Start times are at the beginning of each ascent and end 

times are the time at which the flight reached maximum altitude. All times are local (UTC-5). 

 

 Plots of potential temperature and RH for each flight show the profile inversions over the 

course of each day (Figure 2.5). Data have been grouped into bins for display purposes, with bin 
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sizes determined by dividing the range of altitude measurements for each flight into deciles. 

Mean temperature and RH values for each bin were differenced from the overall mean and 

plotted against the mean altitude of each bin. Standard deviations for each bin are plotted as error 

bars. 

 

Figure 2.5. Profile plots for (a) June 29 potential temperature, (b) June 29 relative humidity, (c) June 30 

potential temperature, and (d) June 30 relative humidity. Flight start times are in Central Daylight Time 

(UTC-5). 

 

 The two earliest flights on June 29 (A1 and A2) show gradually increasing potential 

temperature and decreasing RH as altitude increases (blue plots in Figure 2.5a and 2.5b). For the 

later flights (red plots), potential temperature and RH are more homogenous across altitude with 

slight inversions occurring for RH between the surface and 40 m. For the later flights, both 
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variables exhibit relative stability above 40 m, indicative of a classic stable boundary layer (Stull 

1988). The homogeneity in temperature and RH above 40 m results from the atmospheric mixing 

that occurs as the sun warms the earth and heat begins to radiate upward. The same general trends 

were observed the following day with flights occurring prior to 08:00 showing an increasing 

(Temp) or decreasing (RH) relationship with altitude, while flights occurring after 08:00 show 

less variability and do not show any inversions (Figures 2.4c and 2.4d). Overall, there was greater 

variability in the observations captured on June 29 compared to June 30 both in terms of the 

overall spread of measurements in the profile as well as the standard deviations for each bin. 

Variogram modeling 

 Semivariances were computed for each pair of samples satisfying the maximum 

separation distance, and Gaussian models were fit to the sample points. Two examples (Figure 

2.6) illustrate how the Gaussian model plateaus at the range distance where the sample 

measurements are no longer spatially autocorrelated within the first scale domain (as determined 

by the maximum separation distance). The temperature data (Figure 2.7a) show the nugget being 

located at approximately 0.015 on the semivariance (y) axis, the sill being located at 

approximately 0.09, and the range being located at approximately 6 m on the distance (x) axis. 

The RH data for the same flight show a similar structure, but the semivariance values for the 

nugget and sill are much higher while the lag distance for the range is only about 3 m. Despite 

their differences, it is clear from these plots where the semivariance plateaus or levels off, 

indicating the range distance at which the spatially autocorrelated structure of the data can be 

captured: within distances of 3.4 m and 1.8 m for temperature and RH, respectively. 

The variogram models for the remaining flights exhibited similar spatial structures to those in 

Figure 2.6 but with varying values for nuggets, sills, and ranges. In general, nugget values did not 

vary much between the two days for either temperature or RH. Nugget values ranged from 0.002 

to 0.101 for temperature and were slightly higher for RH, ranging from 0.111 to 1.402. Small 

nugget values indicate that at very small sampling lag distances (0.5 m), there is not much 
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variation between measurements. Large nugget values are common for terrestrial, geographic 

phenomena (e.g., geology), where there can be large differences in a measured variable such as 

mineral content at small distances (e.g., gold nuggets). Large nuggets (> ½ the sill) are not 

expected when capturing atmospheric data and were not observed during this sampling campaign.   

 

Figure 2.6. Sample variograms with Gaussian variogram models fit to (a) temperature and (b) relative 

humidity data from flight A3 on June 29. 

 

Sill values for temperature also showed little variability across both days, ranging between 0.095 

and 1.214 on June 29 and between 0.020 and 0.518 on June 30. Sill values for RH were more 

variable, ranging from 3.627 to 12.594 on June 29 and from 0.248 to 3.920 on June 30. For both 

temperature and RH, there was greater variation in sill position for the June 29 flights compared 

to the June 30 flights. The sill value quantifies the maximum semivariance at the range distance 

identified by the variogram model (see Figure 2.4). Larger sill values indicate larger variances 

between samples at the distance where spatial autocorrelation begins to plateau. In general, sills 

were larger for both variables on both days for the early morning flights compared to the later 

flights because the atmosphere had not mixed at that point, so there is greater variance in 

measurements between lag distances. 
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Flight 

ID 

Temp 

Sill 

Temp 

Range 

Temp 

Nugget 

Temp 

RMSE 

RH 

Sill 

RH 

Range 

RH 

Nugget 

RH 

RMSE 
L(m) 

A1 1.123 5.741 0.093 0.227 9.930 4.825 1.153 1.339 69 

A2 0.685 10.234 0.023 0.034 12.502 8.357 0.510 2.071 1189 

A3 0.094 3.356 0.015 0.019 3.170 1.482 0.571 1.026 -3719 

A4 1.872 3.457 0.104 1.230 9.648 1.913 1.464 5.526 -4271 

A5 - - - - 1.607 0.403 1.277 0.790 -4472 

B1 0.497 5.317 0.003 0.054 4.634 5.058 0.180 0.463 4477 

B2 0.225 6.474 0.012 0.063 3.996 6.388 0.427 0.853 5585 

B3 0.192 14.863 0.003 0.015 1.292 4.898 0.110 0.192 4123 

B4 0.047 8.433 0.003 0.006 0.489 2.919 0.173 0.130 10944 

B5 0.157 12.356 0.010 0.011 0.588 2.756 0.183 0.069 -25565 

B6 0.031 24.425 0.002 0.001 0.502 14.177 0.207 0.043 -7928 

B7 0.066 7.655 0.002 0.019 0.556 2.169 0.118 0.072 -5409 

*Variogram model could not be fit to temperature measurements from flight A5. 

Table 2.2. Variogram results and fit diagnostics (RMSE) for all flights showing sill, range, and nugget 

values for temperature (Temp) and relative humidity (RH). 

 

 
Figure 2.7. Fitted Gaussian variogram models for (a) June 29 temperature, (b) June 29 relative humidity, 

(c) June 30 temperature, and (d) June 30 relative humidity. 

 It should be noted that the sills for RH on June 29 were several times larger than those 

captured on June 30. These differences may be due to the more variable weather conditions on 

June 30 as observed from the Mesonet towers (Figure 2.8). In particular, wind speeds were 
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greater on the morning of June 30 indicating increased frictional mixing within the lower portion 

of the boundary layer (100–150 m). As seen in the profile plots (Figure 2.5), on June 29 the range 

of RH values is much greater compared to June 30, and the maximum altitude of the June 29 

flights is about 20–30 m less than those on June 30 (Table 2.1). Together, these results indicate 

the atmosphere was likely less mixed, and therefore more variable, during the morning flights on 

June 29 compared to June 30. As a result, the RH measurements at each distance lag were more 

dissimilar on June 29 than they were on June 30, manifesting in greater sill values. 

 
Figure 2.8. Weather conditions at corresponding Mesonet stations for (a) temperature, (b) relative 

humidity, (c) pressure, and (d) wind speed. Dots indicate start time of each ascent. 

 

 Range values show several interesting trends. On June 29, the ranges for temperature and 

RH are quite similar across each flight, with larger ranges computed for the early morning flights 

and comparably smaller ranges for the later flights. For the June 30 flights, with the exception of 

Flight B6, and an outlying value for temperature during Flight B3, range values were relatively 
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stable, ranging from about 2–5 m. These results indicate that during the early morning when the 

lower atmosphere is not yet mixed, samples can be collected at larger lag distances while still 

capturing the spatial structure of the profile. Meanwhile, when the atmosphere is mixed, 

particularly during latter times of the day, more frequent sampling is needed to capture changes in 

the vertical profile. These findings are consistent with the expectation that the ABL is at a lower 

Reynolds number in the morning when it is forming, which results in the finest scales being 

larger (i.e., smallest turbulent length scales are inversely related to Reynolds number). Thus, 

fewer measurements spaced further apart are needed to capture the structure of the atmosphere 

before the earth’s surface warms and mixing occurs. 

 Standardized variograms allow for comparison of range values irrespective of the varying 

sill values, which can aid in interpretation. Variograms were standardized to a semivariance of 1 

by plotting the semivariance minus the nugget divided by the partial sill (sill-nugget) against the 

separation distance (Figure 2.9). For the June 29 flights, there is a clear distinction between the 

early morning (red lines) and late morning/early afternoon flights (blue lines). Range values in 

the late morning are smaller than those in the early morning, again suggesting that more frequent 

sampling is needed to capture the atmospheric profile prior to mixing. On June 30, where there 

was less change in the atmosphere between the early morning and late morning/early afternoon 

flights, there is less distinction in range values. Values were relatively stable across all flights, 

although range values decreased slightly as the morning progressed. Flights B3 and B6 also 

appear as outliers, particularly in the temperature plot (Figure 2.9c). 
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Figure 2.9. Standardized variogram models for (a) June 29 temperature, (b) June 29 relative humidity, (c) 

June 30 temperature, and (d) June 30 relative humidity. 

 

Discussion 

 While turbulent flow fields such as an ABL obey governing equations, their signals are 

not repeatable, which forces the results to be reported as statistics for comparison. 

Autocorrelations provide fundamental insights about the size and distribution of coherent 

structures within a turbulent flow (e.g., Yeung et al. 2002, Elbing et al. 2010, Horn et al. 2015). 

Variograms generated for atmospheric measurements in the ABL capture the distribution of 

scales via multiple peaks or plateaus at which autocorrelation dissipates over a range of length 

scales, with the smallest structures having the highest correlation (i.e., smallest semivariance). 

Thus, the largest sample separation distance that can still capture the smallest scale structures 

should be related to the range observed for the first peak/plateau from the semivariance plot (see 

Figure 2.4). Following this assumption, it was found that optimal sampling scales for vertical 

measurements of temperature taken from sUAS were about 5 m for early morning flights prior to 
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atmospheric mixing. Once mixing had occurred, more frequent sampling was needed (~3 m) to 

capture the data structure. The optimal sampling scales for RH were slightly smaller than those 

for temperature with range values of approximately 1.5–2 m after mixing had occurred. Again, 

these scales were found to be sufficient for capturing the first scale domain for temperature and 

RH within the lower portion of the ABL for this study, but further research is needed to identify 

the periodicity of additional scale domains within the ABL. Additionally, researchers looking to 

capture micro fluctuations may require smaller sampling scales. 

 

Figure 2.10. Sample variograms of (a) Flight A5 on June 29 and (b) B6 on June 30. 

 Flight A5 could not be modeled with a semivariogram, and therefore results were not 

reported or included in our analysis. The likely reason that A5 could not be modeled is because as 

the process of boundary-layer mixing unfolds, the portion of the atmosphere in direct contact with 

the earth becomes homogenized (Figure 2.10a). With homogenization, the first scale domain 

becomes smaller and smaller and eventually is undetectable in the sample variogram. This 

phenomenon is known as the pure nugget effect and makes model fitting difficult because there is 

no identifiable plateau within the maximum lag distance. While the absence of plateau within the 

maximum lag distance signals that the first scale domain is located at a larger scale, it does not 

change the minimum sampling scales that should be used when knowledge about the structure of 
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the atmosphere is unknown. For Flight B6, which exhibited a similar pattern (Figure 2.10b), even 

though a variogram could be fit to the data, the associated range distances for temperature 

(19.934 m) and RH (13.597 m) are likely more representative of the second scale domain.  

 

Conclusion 

 This study used variogram modeling, a common geostatistical technique in the 

geographical sciences, to determine the optimal vertical sampling scales for two atmospheric 

variables (temperature and relative humidity) captured from a small, unmanned aircraft system 

(sUAS). The key findings from our analysis show that variogram modeling can serve as a useful 

methodology for identifying the finest scale domain of atmospheric vertical profiles. Future work 

will focus on capturing the entire extent of the ABL as well as integrating optimal spatial 

sampling scales in the horizontal direction with those in the vertical dimension as a basis for 

collecting measurements from sUAS. 
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CHAPTER III 
 

 

HIGH RESOLUTION ESTIMATION AND SPATIAL INTERPOLATION OF 

TEMPERATURE STRUCTURE IN THE ATMOSPHERIC BOUNDARY LAYER USING A 

SMALL UNMANNED AIRCRAFT SYSTEM 

Introduction 

 Small-scale fluctuations in temperature are of considerable importance in meteorology. 

Practically, their effects on sound and light propagation in the atmosphere allow for their use in 

calibration of remote sensing instruments (Wainwright et al. 2015). Theoretically, the small-scale 

turbulent motions that cause these fluctuations are most likely to be universal, leading to a better 

understanding of turbulence at all scales (Sreenivasan and Antonia 1997). Small-scale fluctuations 

of temperature have been theorized to be analogous to fluctuations of velocity, which led Obukhov 

(1949) to characterize small-scale temperature fluctuations in the context of Kolmogorov similarity 

theory. Kolmogorov (1941a) proposed that in the inertial range, where the statistics of the flow are 

dependent only on the energy dissipation rate, eddies contained therein are homogenous (spatially 

stationary), isotropic, and independent of the larger, energy-containing eddies. 

 In accordance with Kolmogorov’s theory, in the inertial range, temperature increments 

represented by 𝑇(𝑥 + ℎ)–  𝑇(𝑥) = Δ𝑇, where T is the temperature measured at location x, and h is 

a spatial separation distance, should scale as 

〈Δ𝑇(ℎ)𝑝〉 = 𝐶𝑝ℎ
𝑝
3, (3.1)

 

where p is the moment of temperature increments, and Cp is a proportionality factor. When p = 2, 
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the square of the temperature increments, ΔT(h)2, is the second-order structure function, and C2 is 

known in micrometeorology as the temperature structure function parameter or more commonly 

the temperature structure parameter, CT
2. The value of p in Equation 3.1 need not be an integer 

(Mathieu and Scott 2000), and evidence suggests that flows in the atmospheric boundary layer 

(ABL) deviate from this scaling relationship, a phenomenon known as intermittency (Monin and 

Yaglom 1975). Kolmogorov (1941a) proposed that the energy dissipation rate remains constant, 

leading to a linear similarity relationship between the scaling exponent p/3 and the structure 

function of order p. However, the large energy-containing eddies, which provide the statistical 

input to the small-scale energy cascade, are thought to vary in intensity, causing random 

fluctuations in temperature and velocity increments to propagate down through the energy 

cascade (Mathieu and Scott 2000). This propagation leads to a breakdown of the theorized 

similarity relationship, particularly at higher-order moments. It has been suggested that the 

structure function of temperature is more sensitive to intermittency than the structure function of 

velocity (Antonia et al. 1984), although Gawedski and Kupainien (1995) demonstrated that the 

scaling relationships in Equation 3.1 hold when p = 2 for temperature measurements.  

 The structure functions and inertial range scaling relationships of temperature have been 

studied empirically in both the laboratory environment (Cioni et al. 1995) as well as in the ABL 

(Vindel et al. 2008). However, most data collection occurs in the time domain, and measurements 

are converted to the spatial dimension through the application of Taylor’s (1938) frozen 

turbulence hypothesis, which is a key assumption in assessing the validity of the scaling 

relationships (Grossman and Lohse 1994). Capturing a spatial snapshot of conditions in the ABL 

has remained challenging. Recent technological advancements have led to the adoption of small 

unmanned aircraft systems (sUAS) in the atmospheric sciences, as they provide the capability for 

collecting data to compute inherently spatial, two-point correlation statistics (Jacob et al. 2018).  

 The use of sUAS for atmospheric sampling is not entirely new, however, and goes back 

to at least the 1960s (Smith 2011). Konrad et al. (1970) proposed using small, remotely controlled 
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aircraft for collecting temperature and humidity data near the ground. More recent advancements 

in sUAS technology have led to their use in a variety of meteorological sensing applications, such 

as high-resolution distributed temperature sensing of the morning ABL transition (Higgins et al. 

2018) and pre-convective environments (Koch et al. 2018), obtaining profiles of vertical wind 

velocity for cloud-aerosol interactions (Calmer et al. 2018), and estimating sensible heat flux (Lee 

et al. 2017). A handful of studies have estimated the temperature structure function (and 

correspondingly C2) using sUAS in the ABL (van den Kroonenberg et al. 2012; Bonin et al. 2015; 

Wainwright et al. 2015; Braam et al. 2016; Platis et al. 2017) and were able to resolve the inertial 

range through the theorized scaling relationship (Equation 3.1). However, these studies compiled 

estimates of C2
 collected at discrete altitudes using horizontal transects across heterogeneous 

terrain (van den Kroonenberg et al. 2012) or spiral ascents, estimating C2
 horizontally at discrete 

attitudes and constructing a C2
 profile (e.g., Bonin et al. 2015; Wainwright et al. 2015). 

Horizontal estimates of temperature structure may be subject to influences of surface 

heterogeneity, making it difficult to distinguish the surface influences on the statistics of the 

turbulence (van den Kroonenberg et al. 2012; Platis et al. 2017). C2 has been estimated from 

continuous vertical sUAS profiles by Platis et al. (2016). 

 The question becomes whether estimation of C2 from continuous profiles is necessary and 

appropriate. Isotropic turbulence, within which C2
 estimates are valid, is inherently three-

dimensional. For example, it has been suggested that coherent structures in the ABL are oriented 

obliquely at angles up to 45 degrees from the surface (Marusic and Heuer 2007). Additionally, 

the impacts of shear and buoyancy on the transport of heat and momentum in the ABL are 

predominately observed in the vertical direction. Practically speaking, the structure function is the 

key component to the spatial interpolation methodology known as kriging (or Gaussian process 

regression). Most natural phenomena, such as temperature, exhibit some degree of spatial 

autocorrelation, that is, measured values nearer to each other are more similar to each other than 

those measured at greater distances. The structure function (or variogram) is a measure of spatial 
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autocorrelation. For these reasons, estimating C2 from continuous vertical profiles has value not 

only for understanding the physical process, but also for representing it statistically. 

 Given the need for investigating temperature structure using vertical profiles, there are 

challenges to overcome. First-order differences may be stationary at short separation distances; 

however, the structure function estimated data spanning greater vertical separation distances are, 

by nature, spatially nonstationary, and thus a modified form of the structure function must be 

used to account for the non-constant mean across the vertical spatial domain. Geostatistics is a 

branch of spatial statistics focusing on predicting probability distributions of spatial and 

spatiotemporal datasets. Geostatistics is widely used in the earth sciences, including geography 

and geology, to predict values of parameters between sampled data points. Geostatistical 

approaches are well suited for random variables due to the ability to accommodate the spatial 

nonstationarity and spatial dependence inherent to such data. Kolmogorov (1941b) proposed the 

structure function to assign weights for optimal prediction of turbulent quantities. Conceptually 

similar techniques were simultaneously developed by others in a variety of disciplines (see 

Cressie 1990 for a thorough history), but the theory of geostatistics was coalesced by Matheron 

(1963). This theoretical foundation serves as the basis for using geostatistical analysis for 

atmospheric research, which underpins this study. 

 The objective of this research is to characterize the spatial structure of vertical 

temperature observations through profiles captured via sUAS using geostatistical tools. To this 

end, three sub-objectives were pursued: 

1. Capture the structure of the temperature field in the vertical dimension using the variogram 

to identify sample separation distances that are inherent to the inertial subrange of 

turbulence by assessing ranges of separation distances that follow a 2/3 power law model. 
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2. Assess the degree of deviation from the theorized second-order scaling relationships 

through cross validation of universal kriging, a distance-weighted method of interpolation 

that will use the 2/3 power law model for assignment of weights.   

3. Determine specific portions of the continuous, vertical profile for which the 2/3 power law 

model best fits the data through assessment of prediction residuals at each estimated point.  

 

Theory  

 For a continuous variable such as temperature, at any given point, x, there is not a single 

value, but one of any number of potential temperature values. The realization of a single value is 

a random variable Z(x), having a mean, standard deviation, and probability density function. A 

random variable for all locations in x = (x1, x2…xn) becomes the random function used to describe 

the random variable. An actual realization of the random process is known as a regionalized 

variable (Webster and Oliver 2007). The regionalized variable is made up of three parts: (1) a 

structural component (with a constant mean or a trend), and a random component made up of (2) 

spatially correlated variation, and (3) uncorrelated noise. The random model can be written as 

𝑍(𝑥) =  𝜇 +  𝜀′(𝑥) +  𝜀′′, (3.2) 

where Z(x) is the random variable, µ is the mean, εʹ(x) is a spatially autocorrelated error 

component, and 𝜀′′ is a random component with a mean of zero (Burrough et al. 2015). Here, 

𝜀′(𝑥) has a covariance 𝐶(ℎ)  =  𝐸[𝜀′(𝑥) 𝜀′(𝑥 + ℎ)]) that depends only on ℎ, the spatial 

separation distance between sample points (Webster and Oliver 2007). Note that the covariance 

exists and depends only on ℎ, an assumption known as second-order stationarity. A random 

function, however, may not meet this assumption, in which case the mean and covariance are 

undefined (Myers 1989). An alternative and less restrictive form of stationarity can then be used, 

known as the intrinsic hypothesis, 

𝐸[𝑍(𝑥) − 𝑍(𝑥 + ℎ)] = 0, (3.3) 
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where the expected first difference between 𝑍(𝑥) and itself at separation distance ℎ is zero. The 

variance of the difference is used instead of the covariance: 

𝑣𝑎𝑟[𝑍(𝑥) − 𝑍(𝑥 + ℎ)] = 2𝛾(ℎ), (3.4) 

where γ is the variance (also called the semivariance), and 2𝛾(ℎ) is the variogram (Cressie 1993). 

 If the expectation of Z(x) does not only depend on separation distance h, but also on 

position x, the random variable is not spatially stationary. In this case, the deterministic structural 

component must be separated from the random component (the spatially autocorrelated variation 

and white noise). This is accomplished through specification of a mean function in the random 

model: 

𝑍(𝑥) = 𝜇(𝑥) + 𝜀′(𝑥) + 𝜀′′, (3.5) 

where 𝜇(𝑥) is a deterministic mean function. The typical approach for specifying a mean function 

is a simple linear regression of variable 𝑍 and the spatial coordinate(s). The variogram is then 

calculated from the residuals: 

2𝛾(ℎ) =  𝐸[{𝜀′(𝑥) − 𝜀′(𝑥 + ℎ)}2]. (3.6) 

 The variogram, in addition to describing the spatial continuity of a random variable, is 

also used during interpolation to assign spatial weights in order to achieve the best linear 

unbiased predictor (BLUP) for a random variable 𝑍 at an unsampled point 𝑥0. Computing the 

variogram allows for the weighting of sampled observations based on their distance from the 

unsampled point. The variogram exploits the spatial autocorrelation inherent to the data; points 

nearer the origin are weighted greater than more distant points. Since temperature differences are 

theorized to obey a power law relation to their separation distance, weighted interpolation 

provides a means of assessing the portions of the profile that most likely obey the theorized 

scaling relationship. 

 Finding the value of Z at x0 (i.e., interpolation) is accomplished through a procedure 

known as universal kriging. BLUP is achieved through a weighted linear sum,  
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�̂�𝑥(0) = ∑λ𝑖𝑓𝑘(𝑥𝑖)

𝑁

𝑖=1

, (3.7) 

where 𝜆 𝑖 are spatial weights, and 𝑓𝑘 are functions of the spatial coordinates. For a one-

dimensional dataset, such as the vertical profiles in this study, there are 𝑘 = 2 covariates where 

𝑓1 = 1 and 𝑓2 = 𝑥1. As a condition of the unbiasedness, the weights sum to 1, ∑ λ1 =
𝑁
𝑖=1

1. Weights are solved, in matrix notation, as  

𝐴λ = b, (3.8)  

where 𝐴 is a symmetrical (𝑁 +  𝑘) × (𝑁 +  𝑘) matrix of the 𝛾 values of the residuals between 

all sampled points and the spatial coordinate covariates, b is a vector of 𝛾 values of the residuals 

between all sampled points and the unsampled point and the corresponding spatial covariates, and 

𝜆 is a vector of weights and Lagrange multipliers used for optimization, which expands to 

[
 
 
 
 
 
𝛾11 … 𝛾1𝑛 𝑓11 … 𝑓1𝑘
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝛾𝑛1 … 𝛾𝑛𝑛 𝑓𝑛1 … 𝑓𝑛𝑘
𝑓11 … 𝑓1𝑛 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ 0
𝑓𝑘1 … 𝑓𝑘𝑛 0 ⋯ 0 ]

 
 
 
 
 

×

[
 
 
 
 
 
λ1
⋮
λ𝑛
ψ1
⋮
ψ𝑘]
 
 
 
 
 

=

[
 
 
 
 
 
𝛾10
⋮
𝛾𝑛0
𝑓10
⋮
𝑓𝑘0]
 
 
 
 
 

, (3.9) 

where the Lagrange multipliers are denoted by ψ (Webster and Oliver 2007). The BLUP is found 

through minimization of the kriging variance 

𝜎𝑘
2 = 2∑λ𝑖𝛾(

𝑁

𝑖=1

𝑥0 − 𝑥𝑖) − ∑∑λ𝑖λ𝑗𝛾(𝑥𝑖 − 𝑥𝑗).

𝑁

𝑗=1

𝑁

𝑖=1

(3.10) 

Materials and Methods 

Study Area 

 The data for this study were collected on 18 July 2018 in the San Luis Valley of Colorado 

during the Lower Atmospheric Process Studies at Elevation - a Remotely-piloted Aircraft Team 

Experiment (LAPSE-RATE) field campaign as part of the International Society of Atmospheric 

Research using Remotely-piloted Aircraft (ISARRA) annual meeting. LAPSE-RATE was a 

coordinated effort that included more than 100 participants from 13 institutions and 
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organizations. During the six-day campaign, more than 35 unmanned aircraft were deployed and 

completed 1,287 flights, accumulating more than 260 flight hours to capture data for a variety of 

scientific objectives, including observations of the morning boundary-layer transition, the diurnal 

cycle of valley flows, convective initiation, and aerosol properties, among others (Barbieri et al. 

2019).  

 Geographically, the San Luis Valley is a high-desert valley located in south-central 

Colorado, with an average elevation of approximately 2,300 m above mean sea level (MSL). The 

valley is flanked by mountain peaks exceeding 4,300 m MSL and frequently experiences 

convective storms during late afternoons in the summer. While flight activities for the 

comprehensive LAPSE-RATE campaign spanned six days and occurred at multiple locations 

across the valley, the data used in this study were captured at one location, Moffat, a rural area 30 

km north-east of Alamosa, Colorado, at an elevation of 2,310 m MSL. While flights occurred on 

the grounds of a school, the vegetation immediately adjacent was dominated by deciduous shrubs. 

 

Figure 3.1. Map of the Moffat flight location in the San Luis Valley (Base map: Esri) 
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 Flights consisted of six vertical profiles captured during the early morning and continuing 

through the mid-day boundary-layer transition (Table 3.1). All flights were conducted under a 

Certificate of Authorization (COA) issued by the Federal Aviation Administration (FAA), which 

allowed maximum altitude to exceed the federally mandated maximum of 123 m (400 ft.). 

Maximum altitudes on 18 July ranged from 490.0 – 499.7 m above ground level (AGL). Ascent 

speeds averaged 3.3 m s -1. 

Flight # Start Time End Time 
Max Alt  

AGL [m] 

1 07:08:02 07:10:48 490.9 

2 07:59:41 08:02:42 499.2 

3 08:59:43 09:02:45 499.2 

4 10:59:56 11:01:48 499.7 

5 11:46:50 11:49:47 498.2 

6 12:29:02 13:01:02 499.1 
 

Table 3.1. Flight times and maximum altitudes for the 12 profiles. All times are local (UTC – 6 h). 

 
Figure 3.2. Surface weather conditions at the Moffatt flight location, measured approximately 3 m AGL 
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Surface Weather Conditions at the Study Location 

 Surface weather conditions at the Moffat site were recorded by a meteorological tower 

approximately 3 m in height (Figure 3.2). Temperature, relative humidity, pressure, and wind 

speed and direction (not shown) were recorded throughout the duration of flight activities. The 

temperature at the surface ranged from approximately 10 C at 0700 local time (LT, UTC -6 h) to 

nearly 30 C by 1300 LT. Relative humidity decreased from 80% at 0700 LT to roughly 10% by 

1300 LT. Winds were calm in the morning at roughly 1 m s-1, increasing to speeds of up to 5 m s-1 

by the early afternoon.  

Radiosonde Measurements 

 In addition to the surface weather observations, radiosondes were deployed several times 

throughout the day. Profiles of potential temperature and wind speed captured at three different 

times throughout the flight activities show a slight inversion during the 0830 LT radiosonde 

above approximately 200 m AGL. The 1001 LT radiosonde profile shows a slight inversion at 

around 500 m, and the 1131 LT profile indicates a mixed boundary layer. 

 

Figure 3.3. Radiosonde potential temperature [ϴ] and wind speed profiles 
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Aircraft and Instrumentation 

 The aircraft platform was a DJI Matrice 600 (DJI Shenzhen, Guangdong, China). The 

Matrice 600 is a hexacopter measuring 1.13 m in diameter and weighing 9.1 kg. The platform has 

a 7 kg payload capacity and is therefore capable of accommodating larger meteorological 

instruments. The Matrice 600 was outfitted with a Young Model 81000 (R. M. Young Company, 

Traverse City, MI) ultrasonic anemometer weighing 1.2 kg, which was affixed to the aircraft 

using custom designed mounts (Figure 3.4). Vehicle telemetry and atmospheric observations 

were synchronized and logged at 32 Hz onto a Stabilis flight control module developed at 

Oklahoma State University (Donnell et al. 2018). The resulting aggregate is referred to as a 

WxUAS. 

 

Figure 3.4. DJI Matrice 600 hexacopter outfitted with a Young Model 81000 ultrasonic anemometer on top 

(Photo: Jamey Jacob). 

 The placement of the anemometer centrally on the aircraft and above the propellers 

(Figure 3.4) minimizes effects of rotor downwash, although contamination may occur during high 

descent rates due to rotor downwash and separation over the WxUAS fuselage (Avery et al. 

2019), which limits data collection to during hover and ascent flight modes. Consequently, only 

data collected during the ascent were analysed in an effort to ensure temporal stationarity and 

limit interference from the aircraft. The anemometer was validated, while flying on the platform, 
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against the Mobile UAS Research Collaboratory (MURC), which is a ground-based system 

operated by the University of Colorado-Boulder’s Integrated Remote and In-Situ Sensing (IRISS) 

program that provides instrumentation for reference comparisons. The MURC has a 15 m 

extendable mast hosting a suite of meteorological sensors. The Young 81000 mounted on the 

WxUAS compared well against the MURC measurements while flying at 15 m for a sustained 

period of 8 minutes (Barbieri et al. 2019). 

Calculation of Sonic Temperature 

 This study utilized sonic temperature measurements captured with the Young Model 

81000 ultrasonic anemometer. Sonic temperature can be determined through the calculation of 

the speed of sound, which is done through the transit time method (Brock and Richardson 2001). 

An acoustic pulse is emitted in opposing directions between two transducers, and the speed of 

sound can be determined through the equation 

𝑐 =  
𝑑

2
(
1

𝑡1
−
1

𝑡2
) , (3.11) 

where c is the speed of sound, t1 and t2 are the transit times of the acoustic pulse between 

opposing transducers, respectively, and d is the distance between the transducers. Sonic 

temperature can then be computed directly using the speed of sound 

𝑇 = 𝑐2𝑘𝑅, (3.12) 

where T is sonic temperature, k is the ratio of specific heat of air, and R is the specific gas 

constant. When water vapor pressure is low compared to the atmospheric pressure, sonic 

temperature becomes a good approximation to the actual air temperature. In typical conditions, 

error can be less than 1% (Harrison 2015). 

 On a three-axis sonic anemometer, such as the Young 81000, sonic temperature is 

computed using the vertical, w, velocity component. The speed of sound calculation is 

independent of wind speed in the direction parallel to the acoustic pulse. Consequently, the 
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vertical motion of the aircraft should have negligible effects on the calculation of the speed of 

sound and, thus, sonic temperature.  

 In previous studies, good agreement has been obtained between temperature 

measurements from sonic anemometers and fast-response hot-wires, demonstrating the 

applicability of this technique (Schotanus et al. 1983). In addition, observed values of C2
 from an 

sUAS compared well with other measurements (in this case, sodar), but differed from numerical 

predictions, potentially due to site-specific characteristics such as topography (Wainwright et al. 

2015). In previous studies (van den Kroonenberg et al. 2012; Braam et al. 2016) the horizontal 

profiles of temperature obtained from the sUAS were treated as a time series and converted to the 

spatial domain through the application of Taylor’s hypothesis and the mean ground speed or the 

true air speed. Profiles in the present study were treated as a true spatial series. 

 Estimates of C2 are sensitive to the time constant of the temperature sensor, that is, the 

time it takes the sensor to respond to a new temperature value. A sensor time constant smooths 

the data and can result in lowering C2 estimates by as much as 5% (Platis et al. 2016). 

Wainwright et al. (2015) applied a correction to account for the sensor time constant. In contrast, 

sonic temperature used in this study has no appreciable time delay in adjusting to the speed of 

sound and thus sonic temperature. The time constant is effectively the sampling rate, which was 

32 Hz.  

Estimating Sample Variograms 

 Sample variograms 2𝛾(ℎ) were estimated from the temperature profiles using the 

method-of-moments estimator: 

2𝛾(ℎ) =
1

𝑁(ℎ)
∑{𝑍(𝒙𝒊) − 𝑍(𝒙𝒊 + ℎ)}

2

𝑁(ℎ)

𝑖=1

, (3.13) 

where 𝑍(𝒙𝒊)is the observed value at location 𝑥𝑖 and 𝑍(𝑥𝑖  +  ℎ) is the observed value at location 

𝑥𝑖 separated by distance ℎ. 𝑁 is the number of sample pairs at each separation distance (Cressie 
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1993). The variogram estimator (Equation 3.13) was applied to the residuals of the mean function 

as specified in Section 2. Residuals were discretized into bins based on their spatial separation 

distance from one another. A bin width of 1 m was selected as a compromise between variogram 

clarity and the ability to capture the variable structure. Bins were set every 1 m up to 100 m 

separation distances.  

Fitting Model Variograms 

 Sample variogram data are typically modelled to mitigate the influence of noise and 

scatter (Webster and Oliver 2007). The power model variogram is defined as  

2𝛾(ℎ) = 𝐶0 + 𝐶2ℎ
𝛼, (3.14) 

where α is a scaling exponent, and C0 is an error component known as the nugget effect. In many 

cases, the variogram may intersect the y axis at a point greater than zero. This is attributed to 

micro-structure of the data smaller than that of the sampling distance, measurement error, or 

spatial positioning errors (Chiles and Delfiner 2012). The power model variogram is only valid 

when 0 >  𝛼 >  2 (Webster and Oliver 2007). A value of 𝛼 = 1 would result in a linear 

variogram. Power model variograms were fit to the sample variograms using weighted non-linear 

least squares with α fixed to 2/3 following the theory of Kolmogorov (1941a). The weights are 

given by 𝑁(ℎ) 2𝛾(ℎ)2⁄ , where 𝑁 is the number of point-pairs in the sample variogram estimate, 

which allows greater weight to be given to sample variogram point-pairs nearer the origin.  

Universal Kriging and Quantitative Assessment of Model Fit 

 While comparisons between the sample and modelled variograms can indicate the 

separation distances at which the inertial range can be resolved using the theorized scaling 

relationship, they do not allow for a localized determination of how the modelled variogram fits 

the data. To quantitatively assess model fit, universal kriging was used to estimate values across 

the profile and then cross-validated those estimates against the modelled values. Due to the very 

high density of the data points (32 Hz), a stratified random sample of observations was selected 
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such that there was at least one observation selected per meter in altitude across the entirety of the 

profiles. Universal kriging was then performed using the fitted 2/3 power law model variogram 

for weight assignment as described in Section 3.2.  

 Model fit was assessed through the cross-validation of the universal kriging estimates. A 

leave-one-out, cross-validation procedure was implemented such that each observation was 

iteratively excluded from the sample, and its temperature value was predicted using the remaining 

observations. This process was repeated until temperature estimates for all observations were 

obtained. The statistic used to measure the goodness of the model variograms was the mean 

square deviation ratio  

𝑀𝑆𝐷𝑅 = 
1

𝑁
∑

{𝑍(𝒙𝑖) − �̂�(𝒙0)}
2

𝜎2(𝒙𝑖)

𝑁

𝑖=1

, (3.15) 

where 𝑍(𝒙𝑖) is the measured temperature value, �̂�𝒙(0) is the temperature estimate, and �̂�2(𝒙𝑖) is 

the estimated kriging variance. If the model variogram fits the data well, the kriging variance and 

the squared residual of the estimate will be close in value, resulting in an MSDR near 1 (Webster 

and Oliver 2007). A profile of the SDR value at every prediction location provides a localized 

assessment of model fit. Analysis was completed using the gstat package (Pebesma 2004) in the 

R statistical computing language.  

Results 

Profiles 

 Temperature profiles (Figure 3.5) show the progression of the ABL throughout the 

morning transition. The first two profiles exhibit an increase in temperature with altitude 

suggesting the remnants of a stable nocturnal boundary layer. The four subsequent profiles, 

occurring from 0859–1259 LT, are indicative of the boundary-layer transition to a mixed state as 

the morning progressed into the early afternoon. The two middle WxUAS profiles, 0859 LT and 

1059 LT, display very little variability about their mean compared to the others. The penultimate 
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WxUAS profile displays a slight increase in temperature between 10 and 40 m AGL as well as a 

relative increase in temperature between 100 m and 200 m AGL. This increase in temperature 

begins sharply and may be an artefact of the sensor. Similarly, the final WxUAS profile depicts a 

similar segment with an increase in temperature between approximately 30 and 80 m AGL.  

 

Figure 3.5. Temperature profiles captured by sUAS (colored lines) and radiosondes (black lines). 

Radiosonde profiles are not displayed as ϴ, but in temperature for comparison to the sonic temperature 

profiles captured by the WxUAS. All times are local (UTC -6 h). 

 The radiosonde profiles of temperature (Figure 3.5, black lines) display relative 

agreement with the sonic temperature profiles captured with the WxUAS. The profile of the 0830 

LT radiosonde depicts the same increase in temperature with altitude at roughly 200 m AGL as 

the 0708 LT and 0759 LT WxUAS profiles. The 1001 LT radiosonde profile shows a smooth 

decrease in temperature with altitude, similar to the 0859 LT and 1059 LT WxUAS profiles. The 

1131 LT profile also shows a smooth decrease in temperature with altitude, unlike the nearly 
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contemporaneous 1146 LT WxUAS profile, which shows greater variability about the mean. This 

difference is likely a result of the low resolution of the radiosonde data having a smoothing effect.  

Variograms 

 Variograms estimated from data from the six WxUAS profiles (Figure 3.6) reveal a 

variety of structural characteristics. Recall that in the inertial range, the sample variogram should 

closely follow the 2/3 power law model variogram (Equation 3.14). The model variogram, which 

has been forced to follow 2/3 power, is represented with the solid red line; sample variograms are 

represented by the black circles (Figure 3.6).   

 

Figure 3.6. Sample variograms (circles) and fitted 2/3 power law model variograms (red lines) for all full profiles (h is 

vertical separation distance between sample pairs, and 2𝛾 is the variogram) 

 To identify the sample separation distances that are inherent to the inertial subrange of 

turbulence and assess the degree of deviation from the theoretical 2/3 power law scaling 

relationship, sample variogram fits were assessed visually and also quantitatively measured fit via 

the MSDR between the sample and modelled variograms.  The 2/3 power law model variograms 
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do not fit the first three profiles well (Figs. 6a–c). The sample variograms increase as a function 

of distance at a greater rate than that of the model variogram for Flights 1–3.  C2 and C0 estimates 

are reported in Table 3.2 but are not meaningful considering the data do not fit the model. The 

MSDR is therefore not reported for these three flights.  The 2/3 power law model variograms fit 

profiles from Flights 4–5 well, as the sample variogram follows the model variogram closely 

throughout the 100 m range of separation distances (Figure 3.6d, e). A nugget effect, C0, was 

estimated on these two models, with values of 0.014 °C2 for both. C2 estimates for Flights 4–5 

were 0.001 °C2 m -2/3 and 0.010 °C2 m -2/3, respectively. Flight 4 had an MSDR of 0.993, meaning 

the 2/3 power law model fit the data quite well, whereas Flight 5 had an MSDR of 0.53, 

indicating a moderate fit. The model variogram fit the final profile, Flight 6, well up to roughly 

the 50 m separation distance, but then the sample variogram began to decrease with distance until 

the maximum separation distance of 100 m was reached (Figure 3.6f). The C2 estimate for Flight 

6 decreased from the previous flight to 0.006 °C2 m -2/3. A C0 value of 0.022 °C2 was estimated for 

Flight 6, and the MSDR was 0.677 (Table 4.2).  

Flight # C2 C0  α MSDR 

1 0.034 0.000 2/3 - 

2 0.021 0.000 2/3 - 

3 0.003 0.027 2/3 - 

4 0.001 0.014 2/3 0.993 

5 0.010 0.014 2/3 0.539 

6 0.006 0.022 2/3 0.677 

     
Table 3.2. Variogram parameter estimates and fit diagnostic for Flights 1–6. 

 Computing the structure function across the full extent of Flights 1–3 is likely not 

appropriate given the slight inversion in the profiles at roughly 250 m AGL. To account for this 

inversion, the variogram and its parameters were estimated for Flights 1–3 from the data below 

250 m AGL and above 250 m AGL separately, and the results are presented in Figure 3.7 and 

Table 3.3.   
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Figure 3.7. Sample variograms (points) and fitted 2/3 power law model variograms (lines) for 0708, 0759, 

and 0859 profiles for altitudes above and below 250 m AGL. (h is vertical separation distance between 

sample pairs, and 2𝛾 is the variogram) 

 Variograms estimated from the lowest 250 m AGL from the first three profiles display 

very different structural behavior than the variograms estimated from 250 m AGL and above. The 

variogram estimated from Flight 1a roughly follows the 2/3 power law model variogram with a 

slight deviation between 40 and 80 m separation distances (Fig 7a). C2 was estimated to be 0.027 

°C2 m -2/3, and a C0 value was not fit. The MSDR was estimated to be 0.309. The variogram for 

Flight 2a increases at a rate greater than the 2/3 power law model variogram (Figure 3.7c). The 

variogram peaked at a separation distance of about 60 m, and then the variogram began to 

decrease. The variogram of Flight 3a roughly follows the 2/3 power law model (Figure 3.7e), but 

the C2 value was estimated to be 0.002 °C2 m -2/3, nearly one-tenth the value of C2 estimated from 

Flights 1a and 2a. A C0 was estimated to be 0.038 °C2, and the MSDR was estimated to be 0.286, 

suggesting the model was poorly fit. The variograms for Flights 1b, 2b, and 3b all appear 
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similarly flat (Figures 3.7b, 3.7d, 3.7f) and had similar estimates of C0. Flight 1b had a C2 

estimate near zero, while flights 2b and 3b had C2 estimates of 0.001 °C2 m -2/3and 0.002 °C2 m -

2/3, respectively. 

Flight # C2 C0 α MSDR 

1a 0.027 0.000 2/3 0.309 

1b 0.000 0.004 2/3 1.067 

2a 0.025 0.007 2/3 1.086 

2b 0.001 0.003 2/3 1.086 

3a 0.002 0.038 2/3 0.286 

3b 0.000 0.004 2/3 0.858 

     
Table 3.3. Variogram parameter estimates and fit diagnostic for Flights 1–3 (a) below 250 m AGL and (b) 

above 250 m AGL.  

Cross-Validation of Kriging Estimates 

 To distinguish specific altitudes for which the scaling relationship is valid, universal 

kriging estimates of the temperature profiles using weights assigned by the 2/3 power model 

variogram were assessed. As a localized measure of how well the 2/3 power law variogram fit the 

data, the SDR was estimated at every meter along the profiles using the method described in 

Section 3.8. As with the MSDR statistic, local SDR estimates near 1 indicate the model 

variogram fit the data well, meaning that the inertial range at that location was well resolved 

through theorized scaling.  Flights 1–3 were analyzed in the sections above and below 250 m 

AGL separately, using the variogram parameters listed in Table 3.3. SDR estimates from Flights 

1a, 2a, and 3a are less than 1 throughout the extent of the 250 m subset of the profile (Figure 3.8). 

SDR estimated from Flight 1b oscillates, crossing 1 several times along the extent of the profile 

subset.  Flight 2b SDR estimates hover near 1 between 300 and 400 m AGL and then remain 

below 1 throughout the extent of the profile.  Flight 3b SDR estimates display a similar pattern to 

those of 2b, having values near 1 in the portion of the profile near 300 m AGL and dropping 

below 1 as the profile approaches its maximum extent near 500 m AGL.  
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 Recall that Flight 4 had the best MSDR value of 0.993. This fit is similarly reflected in 

the local SDR estimates along the profile. The smoothing spline closely follows a value of 1, with 

slight deviations near 150 m and 350 m AGL Flight 5, with an MSDR of 0.539, displays local 

SDR estimates of less than 1 throughout the extent of the profile, with the exception of the lowest 

50 m AGL Flight 6, with an MSDR of 0.677, is slightly more representative of the 2/3 power law 

model variogram than Flight 5. Local SDR estimates roughly follow a value of 1 until 300 m 

AGL, where they dip below 1 for the remainder of the profile.  

 

Figure 3.8. SDR profiles of kriging estimates (gray lines) and smoothing splines (red lines). Dashed lines 

are the ideal ratio of 1. 

 In summary, the 2/3 power model variogram fit Flights 4–5 well across the entire range 

of separation distances. The model fit Flight 6 well for a large portion of the separation distances, 

up to 50 m (Figure 3.6). For Flights 1–3, the presence of an inversion forced the need to separate 
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the measurements into two groups: below 250 m AGL and above 250 m AGL After this was 

done, the 2/3 power law model variogram visually appeared to fit the sample variogram well in 

Flight 1a and 3a (Figs. 7a, e), but when fit was measured quantitatively through SDR, the result 

indicated these flights were poorly fit, resulting in poor estimates. The variogram of Flight 2a 

appeared to have a wave-like nature (Fig 7c), indicative of periodicity in the data.  Results from 

this portion of the analysis suggest that the 2/3 model variogram fit to the residual process of a 

temperature profile can be used to identify sample separation distances inherent to the inertial 

subrange in well-mixed conditions. However, the model was less successful in resolving the 

inertial subrange in the early morning flights, particularly below the slight temperature inversion. 

 The degree of deviation from the theorized second-order scaling relationship inherent to 

the inertial subrange of turbulence was assessed through cross-validation of universal kriging. It 

was determined that during stable, early morning ABL conditions (with altitudes < 250 m AGL), 

the process is less variable (i.e., less random) than the 2/3 power law model, which led to the 

SDR values to be less than 1 along the extent of these profiles. The subsequent three flights 

occurring later in the morning exhibited temperature scaling that was more consistent with the 

theorized 2/3 power law model. The theorized scaling was present along most of the profile from 

Flight 4 and on Fights 5–6 at altitudes from roughly 50–200 m AGL. 

Discussion 

 While turbulence in the inertial subrange is considered to be isotropic and spatially 

stationary (i.e., homogenous), the vertical profiles of temperature from which turbulent 

fluctuations can be inferred are not spatially stationary. Thus, they require a modified form of the 

structure function to account for the non-constant mean across the spatial domain. Geostatistical 

approaches are well-suited for modeling random variables experiencing nonstationarity. In this 

study, the aim was to characterize the vertical structure of temperature profiles captured via 

WxUAS using geostatistical tools and more specifically: (1) use the variogram to identify sample 

separation distances that are inherent to the inertial subrange of turbulence, (2) assess the degree 
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of deviation from the theoretical 2/3 power law scaling relationship, and (3) distinguish specific 

altitudes for which the scaling relationship can be resolved through universal kriging estimates of 

the temperature profiles using weights assigned by the 2/3 power model variogram. 

Resolution of Theorized Scaling and Model Fit 

 In pursuit of these objectives, it was found that after detrending the data to account for 

the nonstationary mean, the fitted 2/3 power law model variograms were generally successful in 

modeling the spatially autocorrelated error components of the random variable (temperature), 

particularly in well-mixed conditions, thereby allowing us to identify sample separation distances 

that were inherent to the inertial subrange of turbulence. An analysis of the behavior of the spatial 

autocorrelation can lead to a better understanding of the relationship between the power law 

scaling parameter and the process being modelled. 

 Power law model variograms (Equation 3.14) are valid when the scaling exponent is 0 >

 𝛼 >  2. When 𝛼 = 1, the variogram is linear, and successive increments are stationary and 

independent. The limits of 𝛼, 0 and 2, represent a constant variance for all h and differentiable, 

non-random variation, respectively. As 𝛼 approaches 2, the variogram becomes increasingly 

parabolic, whereas an α near zero is indicative of a white-noise process (Webster and Oliver 

2007). A more thorough understanding of the autocorrelation may be achieved through what 

Mandelbrot and Van Ness (1968) describe as fractional Brownian motions (fBm). In an fBm, 

successive increments are autocorrelated. When 𝛼 > 1, the increments are positively correlated, 

meaning they tend to move in the same direction. Conversely, when 𝛼 < 1, the error increments 

are negatively correlated, meaning they tend to move in opposite directions (Webster and Oliver 

2007). Few processes in nature are represented by a power law with 𝛼 < 1 , but turbulence is a 

notable exception. The negative spatial autocorrelation inherent to inertial range turbulence 

makes its spatial prediction challenging. 
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Flight 1a, below 250 m AGL, displays temperature scaling that follows the 2/3 power law 

model. The variogram of the subsequent Flight 2a estimated from data below 250 m AGL is more 

parabolic in nature, and beyond 60 m separation distances, measured temperature values become 

increasingly similar. Such behavior in measured autocorrelation is indicative of a periodic or 

oscillatory process. Indeed, parabolic behavior of the variogram is often seen in physical 

processes influenced by gravity (Chiles and Delfiner 2012). Gravity waves are often present in a 

weakly turbulent stable boundary layer (Stull 1988), and high wind shear is known to induce 

Kelvin–Helmholtz waves. This phenomenon was observed by Higgins et al. (2018) using 

distributed temperature sensing to profile the stable boundary layer using an sUAS. The precise 

cause of the periodic behavior in the vertical variogram cannot be fully characterized in this study 

and is thus an opportunity for further research.  

Periodicity was not observed in the subsequent variogram of Flight 3 at 0859 LT, and C2 was 

estimated to be roughly an order of magnitude less than the previous flight.  C2 estimated from 

Flight 4 was similarly low. The 1001 LT radiosonde wind speed profile captured in the time 

between Flights 3–4 suggests the presence of geostrophic winds with speeds in excess of 15 m s-1 

at approximately 900 m AGL (Figure 3.3). Van den Kroonenberg et al. (2012) attributed higher 

C2 estimates aloft to the presence of a low-level jet (LLJ). In contrast, lower C2 estimates from the 

two WxUAS profiles bounding the LLJ were observed. 

The 2/3 power law model fit the variograms estimated from the data of Flights 4–6, 

indicating fully developed isotropic turbulence in the ABL. The C2 estimate increased by roughly 

an order of magnitude between Flights 4–5, then decreased slightly by Flight 6 at 1259 LT. 

Typically C2 increases until approximately midday and then begins to decrease (van den 

Kroonenberg et al. 2012). C2 estimates from the final three flights behaved in accordance with 

this assumption. A nugget variance, C0, was fit to the final three flights as well. The more 

turbulent nature of the profile, as indicted by the variogram closely following the α value of 2/3, 

likely leads to greater discontinuity at the variogram’s origin. Recall that α values less than 1 are 
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representative of a process whose successive increments are negatively autocorrelated (i.e., more 

dissimilar). This roughness of the data likely contributed to the presence of the nugget variance.   

Profile Estimation Using Universal Kriging 

 An SDR estimate of less than 1 indicates that the squared residual is less than the 

estimated kriging variance. This is an indication that the process being modelled is less variable 

than predicted. Kriging has the effect of smoothing the data, thus SDR estimates (and MSDR 

estimates) are expected to be below 1 even if the model is well fit to the data. Nevertheless, the 

SDR estimates are below 1 for nearly the full extent of profiles from Flights 1a, 2a, and 3a, 

meaning that the process is less variable (i.e., less random) than the 2/3 power law model. SDR 

estimates from Flights 1b, 2b, and 3b are more variable than the model (values greater than 1). 

This suggests that estimation of the variogram from vertical profiles is sensitive to both the 

maximum separation distances for which it is estimated, as well as the vertical domain. The upper 

limit of the boundary layer is not well defined under stable conditions (Stull 1988), and 

entrainment processes have influence on the spatial autocorrelation of the temperature 

measurements therein. SDR estimates from the final three flights were more successful in 

identifying portions of the profile when theorized temperature scaling was valid due to the 

turbulence being more well developed.  

Conclusions 

Variograms were estimated from vertical profiles of temperature collected throughout the 

morning boundary-layer transition across two days in the San Luis Valley, CO. To account for 

the variation in temperature with altitude, a mean function was specified and the variogram was 

estimated from the residuals. Power law model variograms with a 2/3 scaling exponent were fit to 

the sample variograms to assess the separation distances commensurate with the inertial range of 

turbulence and correspondingly, estimate the temperature structure parameter, C2. Geostatistical 

methods for spatially nonstationary random variables were well suited to describe the vertical 

structure of temperature in the ABL. The variogram estimated from the residuals allowed for the 
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resolution of the inertial subrange of turbulence. Local variance estimates obtained through cross-

validation of universal kriging estimates allowed for identification of portions of the temperature 

profiles that conform to the theorized inertial subrange temperature scaling relationship. It was 

found that this relationship was not well resolved under stable conditions. Results are likely 

sensitive to maximum separation distances and the extent for which the variogram is estimated.  
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CHAPTER IV 
 

 

ASSESSING THE UNIVERSALITY OF THE TEMPERATURE STRUCTURE PARAMETER 

IN THE ATMOSPHERIC BOUNDARY LAYER 

Introduction 

 Understanding of the mechanisms by which heat and momentum are transported in the 

atmosphere is of critical importance for development of accurate climate models and weather 

forecasting. The atmospheric boundary layer (ABL) is characterized by the presence of 

turbulence. Responsible for the distribution of heat and moisture in the ABL, turbulence is 

generated through shear as the mean wind contacts the rough surface, and through buoyancy as 

warm air rises as a consequence of radiative surface heating during the day (Stull 1988). The 

seemingly random swirls, called eddies, that comprise a turbulent flow scale from a few 

millimeters to the approximate depth of the ABL (~ 1 km). Richardson (1992) purported that 

energy entered the system through the largest turbulent motions and cascaded down to the 

smallest eddies through inertia where it is dissipated as heat through viscosity at the smallest 

scales (Pope 2000).  

The random nature of turbulence lends it to be better described through statistics than 

through its exact details. Turbulence statistics include the mean, variance (or flux), skewness, and 

higher order moments. A common statistic employed in the ABL to describe the spatial structure 

of turbulence is the second order structure function 

ΔTℎ
2 = [𝑇(𝑥 + ℎ) − 𝑇(𝑥)]2, (4.1) 
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where T is the temperature measured at location x and h is a separation distance. Through 

dimensional analysis, Kolmogorov (1941) determined that within the inertial range, where 

turbulence is assumed to be homogenous (spatially stationary) and isotropic (independent of 

coordinate axis rotation), the mean square of velocity differences (extended by Obukhov (1949) 

to include temperature differences, Δ𝑇ℎ
2) at separation distance h should scale as 

〈𝛥𝑇(ℎ)𝑝〉 = 𝐶𝑝ℎ
𝑝
3 , (4.2) 

where p is the order of the moment, and Cp are universal constants. In micrometeorology, when p 

= 2, C2 is known as the temperature structure parameter, which acts as a proportionality factor in 

the power law relationship that describes the intensity of the variation (Wyngaard et al. 1971).  

  Estimation of C2 in the boundary layer is used to determine turbulent fluxes through the 

relationship between C2 and the dimensionless stability parameter ζ = z/L, where z is the height 

above the surface and L is the Obukhov length (to be defined later) (Hartogenisis and de Bruin 

2005). C2 is also used to quantify the intensity of these fluxes (Bonin et al. 2015). Calculation of 

C2 in the ABL has historically been approached through tower instrumentation (Wyngaard et al. 

1971), but these measurements are not without limitations. A time series from a single instrument 

can be used to quantify the spatial structure of temperature fluctuation by invoking Taylor’s 

(1938) frozen turbulence hypothesis but relies on an often non-validated assumption, and this 

approach does not allow for the vertical spatial structure to be characterized. Furthermore, towers 

are limited in their spatial extent and resolution. In situ measurements can also be obtained from 

manned aircraft (Thompson et al. 1978; Kunkel et al. 1980). However, manned aircraft are 

expensive to operate and cannot fly safely at altitudes near the ground where understanding 

energy exchange is critical. 

 The effect of temperature fluctuations on light and sound propagation in the atmosphere 

(Sreenivasan and Antonia 1997) has allowed for the use of remote sensing technologies to 

measure temperature and C2 in the ABL. Scintillometers have been used over the last two decades 
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to measure temperature fluctuations and derive C2 (Beyrich et al. 2012). These measurements are, 

however, path averaged over distances ranging from 100 m to 10 km (van den Kroonenberg et al. 

2012, Wainwright et al. 2015). Furthermore, they are usually captured at a single altitude, making 

scintillometry not useful for vertical profiles of temperature fluctuation (Bonin et al. 2015). 

Quantifying C2 through sodar measurements is a complicated procedure, often resulting in the 

presentation of uncalibrated data (Danilov et al. 2004; Bonin et al. 2015).  

 Recent technological advancements in small unmanned aircraft systems (sUAS) have 

allowed for the capture of spatial data in the ABL that can improve our understanding of the 

physical processes present (Jacob et al. 2018). A handful of studies have utilized sUAS for 

calculation of C2 (and correspondingly, the scales where the exponent 2/3 is valid) in the ABL 

(van den Kroonenberg et al. 2012, Bonin et al. 2015, Wainwright et al. 2015, Braam et al. 2016, 

Platis et al. 2016, Platis et al. 2017). Most of these studies, however, estimated C2 from data 

collected horizontally, either by utilizing a spiral ascent in a localized area (Bonin et al. 2015, 

Wainwright et al. 2015) or by long horizontal transects across heterogeneous terrain (van den 

Kroonenberg et al. 2012, Platis et al. 2017). In the case of the former, the authors note anomalous 

estimates of C2 and attribute these anomalies to changes in surface roughness or surface thermal 

properties (van den Kroonenberg et al. 2012), although Platis et al. (2017) note the challenge of 

separating landscape effects from the natural variation inherent to turbulence.  

 Vertical profiles allow for isolating the effects of a varying landscape on estimated 

turbulence statistics while capturing data in the principal direction of heat and momentum transfer 

in the ABL. This makes vertical profiles a key sampling methodology for understanding the 

exchange of energy between the atmosphere and the earth’s surface (Mayer 2012, Jacob et al. 

2018). C2, as an ABL statistic, should be a universal function of a stability parameter (Pahlow et 

al. 2001), and should not depend on surface conditions or time of day (Wyngaard et al. 1971). 

The above power law relationship (Equation 4.2) assumes that the energy dissipation rate in the 

turbulent cascade remains constant and the statistics of the flow are solely dependent on the 
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energy dissipation rate, a key assumption in the universality of C2. However, random fluctuations 

to the energy inputs at the largest scales lead to an energy dissipation rate that is not constant and 

a value of C2 that changes from flow to flow (Mathieu and Scott 2000). 

Assessment of small-scale turbulence statistics such as C2 are important as they speak to 

its universality (Streenivasan et al. 1997). Theoretically, this type of assessment can inform on 

not only temperature variation in the ABL, but may lead to insights on the velocity field 

(Shraiman and Siggia 2000) or other stochastic processes outside the realm of boundary-layer 

turbulence (Vassilicos 1995). Practically, universality of the small scale simplifies the statistics 

needed to better parameterize weather and climate models. Such models will be improved with 

higher resolution spatio-temporal data provided through collection via sUAS. In order to best 

deploy sUAS for weather observation, knowledge of the spatial variation of the measured 

quantity is paramount. For this purpose, the structure function (or variogram) is ideal for 

measuring the spatial variation of turbulent structures in the ABL. To that end, the objective of 

this study is to estimate C2 from numerous temperature profiles at multiple locations and during 

various stability conditions to assess its universality. It is hypothesized that estimates of C2 

plotted as a function of the stability parameter z/L will follow a common curve, indicating a 

possible universal function. Given the chaotic nature of ABL turbulence, it is expected that there 

will be some scatter. Nevertheless, any anomalous estimates of C2 will be discussed in the context 

of observed surface conditions during the time of the flights. 

Theory 

Regionalized Variables 

 A stochastic spatial model that can be used to represent a turbulent quantity in the ABL is  

𝑍(𝑥) =  µ + 𝜀′(𝑥) +  𝜀′′, (4.3) 

where µ is a structural component (stationary mean), 𝜀′(𝑥), is spatially correlated variation and 

𝜀′′ is an uncorrelated error component (Burrough et al. 2015). A spatial stochastic model exhibits 
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two key qualities: spatial autocorrelation and spatial stationarity. Most continuous phenomena in 

nature exhibit some degree of spatial autocorrelation. That is, measured values closer to one 

another are likely to be more similar than values measured at a distance, h, further apart. 

Stationarity, the second key attribute of the random function, implies that the mean of the random 

process is constant (i.e., does not depend on h) and the covariance, cov[Z(x + h), Z(x)], exists and 

depends only on h. 

 In some circumstances, the assumption of stationarity may not be met, such as the case of 

the power law relationship described by Equation 4.2, in which the variation with distance is 

unbounded. Instead, the first-order difference Z(x + h) –Z(x) may be substituted for the 

covariance. Then, the expected value of the first-order difference is 0 

𝐸[𝑍(𝑥) − 𝑍(𝑥 + ℎ)] = 0. (4.4) 

and any variation resulting from h, 

𝑣𝑎𝑟[𝑍(𝑥) − 𝑍(𝑥 + ℎ)] = 2𝛾ℎ, 

is known as the variogram 2𝛾(ℎ) (Chiles and Delfiner 2012). The variogram is analogous to the 

structure function described by Obukhov (1949). At short distances, the variogram is able to filter 

the mean, but if Z(x + h) – Z(x) ≠ ε (x + h) – ε (x), where ε (x) is the residual process, the 

stochastic function becomes 

𝑍(𝑥) = 𝜇(𝑥) + 𝜀(𝑥), (4.5) 

where µ(x) is a linear function of one or more trend parameters (Chiles and Delfiner 2012). 

Obukhov Length  

The Obukhov length is a length scale frequently used in micrometeorology to characterize the 

relative influences of buoyancy and shear in the production of turbulent kinetic energy (Stull 

1988). L is defined as 

𝐿 =
−𝜌𝑐𝑝𝑇𝑢𝜏

3

 κ𝑔𝐻
, (4.6) 
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where ρ is the density of air at temperature T, cp is specific heat capacity, uτ is the friction 

velocity, g is gravitational acceleration, and H is the sensible heat flux. The von Kármán constant 

κ is also typically included (Dyer 1974). Obukhov (1946) assumed that the aforementioned 

parameters were comprehensive in describing turbulence in the ABL. Combining them through 

dimensional analysis resulted in only one parameter with the dimension of length, L (Foken 

2005).  

During the day under unstable conditions, when warm air near the surface rises, H is 

positive, resulting in negative L values. When H is negative, typically at night during stable 

conditions, L values are positive. Accurate measurements of uτ and H are difficult to obtain, so L 

is often estimated from surface gradients of wind speed and temperature such as through the 

Richardson number 

𝑅𝑖 =
𝑔∆𝑧∆𝜃

𝜃1∆𝑢
2
, (4.7) 

where ∆𝜃 is potential temperature difference at two levels, ∆𝑢 is wind speed difference at two 

levels and ∆𝑧 is the difference in height from which the measurements were collected (Essa 

1999). Businger et al. (1971) defined the relationship between L and Ri as 

𝜁 =
𝜙𝑚
2

𝜙ℎ
𝑅𝑖 (4.8) 

where ϕh is a universal function for heat exchange, ϕm is a universal function of momentum, and 𝜁 

= z/L where z is the mean height of the measurements used in Equation 4.7. The universal 

functions have been estimated using constants from Högström (1988), 

𝜙ℎ =

{
 

 
  
0.95 (1 −

16𝑧

𝐿
)
−0.5

    z/L < 0

(0.95 +
8𝑧

𝐿
)                 z/L > 0

(4.9) 
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𝜙𝑚 =

{
 

 
  
(1 −

19.3𝑧

𝐿
)
−0.25

  𝑧/𝐿 < 0

(1 +
6𝑧

𝐿
)                  𝑧/𝐿 > 0,

 

requiring an iterative process to solve for 𝜁, which is considered a dimensionless stability 

parameter. Positive values of  𝜁  indicate stable conditions and negative values indicate unstable 

conditions.  

Experimental Design 

Study Locations 

 Sampling was performed at six different Oklahoma Mesonet sites, each located in one of 

six ecoregions present in the State of Oklahoma (Figure 4.1). The Oklahoma Mesonet (hereafter, 

Mesonet) is a network of 120 automated weather monitoring stations across the state of 

Oklahoma. Measurements for a variety of meteorological variables are captured at various points 

along a 10-meter tower and averaged and recorded every 5 minutes. Measured variables include 

temperature (at 1.5 m and 9 m), relative humidity, pressure, wind speed (at 2 m and 10 m), and 

wind direction, among others (McPherson et al. 2007). Conducting flights near a Mesonet station 

is necessary for completing the study objectives as the towers are outfitted with the 

instrumentation to simultaneously record temperature and wind at two levels. This allows for the 

estimation of the Richardson number (Equation 4.7).  

 Mesonet sites are located such that they represent the physical characteristics of the 

largest area as possible (Brock et al. 1995). Sites are generally located away from irrigated sites 

and bodies of water. Additionally, sites are situated in areas that are relatively flat (slope < 5º) 

and are free from obstructions that would interfere with wind measurements such as forests 

(Brock et al. 1995), but in the southeastern portion of the state this could not be avoided at all 

locations.  

 



69 
 

 

Figure 4.1. Oklahoma Mesonet sites and ecoregions visited. 

 The sites were selected in different ecoregions to capture a variety of environmental 

conditions. Ecoregions are biologically and geographically similar regions as designated by the 

United States Environmental Protection Agency (EPA) (Omernik 1987). Spatial patterns of land 

use, climate, soils, geology, and vegetation, among other characteristics, are compiled to delineate 

areas that are deemed similar. There are twelve Level III ecoregions in the State of Oklahoma. 

The names and general descriptions of the Mesonet sites visited are outlined below, and a brief 

description of the corresponding ecoregion is provided (Woods et al. 2005). Aerial photographs 

of the six Mesonet sites visited are presented in Figure 4.2. 

 Arnett (36.072040°, -99.903080°) Elevation 719 m MSL. The Arnett site, located in the 

Southwestern Tablelands, is situated in an area of low hills with grassland and patchy, 

low trees. The Southwestern Tablelands are found in the Oklahoma panhandle. 

Vegetation consists of shortgrass prairie and sagebrush. The area is of high elevation 
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similar to the high plains and also experiences high winds and dramatic temperature 

changes.  

 Bixby (35.963050°, -95.866210°) Elevation 184 m MSL. The Bixby site is located at 

Ringo Valley Agricultural Research Station. Located in a suburban area just north of the 

Arkansas River, the research station produces small grains, such as alfalfa and soybean. 

Extending into northwest Oklahoma, the Central Irregular Plains ecoregion is more 

topographically diverse than the Central Great Plains found further to the west. The 

central irregular plains separate the Cross Timbers region from the more heavily forested 

areas to the east, and as such are comprised of a forest/grassland mosaic.  

 Fairview (36.263530°, -98.497660°) Elevation 405 m MSL. The Fairview site is located 

just off a two-lane road and near to a school grounds. Surrounding vegetation includes 

grasses, with few trees or other obstructions present. Located in the central great plains, 

the region is characterized by a semi-arid grassland prairie that makes up much of 

western Oklahoma. Tall grass and short grass prairie are present, but sand dunes, low 

mountains and salt flats are also found in the region. Winter wheat is a main crop in the 

farmland areas and rangeland can be found in areas of more rugged terrain. 

 Goodwell (36.601830°, -101.601300°) Elevation 997 m MSL. The Goodwell site is 

located near a highway in a rural area consisting of low vegetation. Located in the high 

plains ecoregion, it is characterized by shortgrass prairie. High winds are frequent, as are 

dramatic shifts in temperature. The High Plains region of Oklahoma is also among the 

regions of the highest elevation in the state, exceeding 1000 m MSL.  

 Lane (34.308760°, -95.997160°) Elevation 181 m MSL. The Lane site is located at the 

Lane Agricultural Center. Various vegetable crops are grown at the site. Rolling hills are 

present at the site, as are small stands of trees and a small pond. Located in the South 

Central Plains, the region is largely characterized by scrub oak woodland, as well as 
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coniferous forests. The climate is temperate and experiences more rainfall compared to 

other regions of the state.  

 Marena (36.064340°, -97.212710°) Elevation 327 m MSL.  The Marena site is located in 

an area of low, rolling hills with vegetation consisting of grasses and small stands of 

trees. The Cross Timbers ecoregion in central Oklahoma is comprised of both savannah 

and woodlands and act as a transition zone between the plains to the west and forests to 

the east. Various species of oak are present, as is red cedar. Fire suppression has largely 

contributed to the expansion of the latter. 

 

Figure 4.2. 1:50,000 aerial photos of the six Oklahoma Mesonet sites: (a) Arnett, (b) Bixby, (c) Fairview, 

(d) Goodwell, (e) Lane, and (f) Marena. Flag indicates location of Mesonet tower. (Imagery: ESRI) 
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Materials and Methods 

Aircraft and Instrumentation 

 The sUAS used for data collections was a DJI Matrice 600 (DJI Shenzhen, Guandong, 

China). The hexacopter weighs 9.1 kg and is 1.13 m in diameter. Its 7 kg payload capacity was 

able to accommodate the placement of a R.M. Young Model 81000 (R.M. Young Company, 

Traverse City, MI) ultrasonic anemometer. Sonic temperature was collected at 32 Hz and 

synchronized to aerial telemetry and logged. The anemometer was mounted on the aircraft 

centrally above the rotors to minimize the effects of rotor downwash (Figure 4.3).  

It is expected that some amount of measurement perturbation will occur with a rotor-

wing platform. However, use of sonic temperature may be advantageous is this regard. Sonic 

temperature measured on an anemometer such as the one in this study is calculated using the 

transit time method (Brock and Richardson 2001). Sonic temperature is estimated through the 

calculation of the speed of sound, using the equation:  

𝑐 =  
𝑑

2
(
1

𝑡1
−
1

𝑡2
) , (4.10) 

where t1 and t2 are the transit times of an acoustic pulse between opposing transducers, 

respectively, d is the distance between the transducers, and c is the speed of sound. Sonic 

temperature, T, is then computed using the equation: 

𝑇 = 𝑐2𝑘𝑅, (4.11) 

where k is the ratio of specific heat of air, and R is the specific gas constant. Since the speed of 

sound is independent of wind speed in the direction of the acoustic pulse, the vertical motion of 

the aircraft should have a negligible, if any, effect on the sonic temperature calculation.  
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Figure 4.3. R.M. Young Model 81000 ultrasonic anemometer with Oklahoma Mesonet tower in 

background. (Photo: Jamey Jacob).  

Data Collection 

 Vertical profiles were flown in the immediate vicinity of the Mesonet tower. Between 

four and eight profiles were flown at each of the Mesonet sites visited and varied in time of day. 

All flights were conducted under the Federal Aviation Administration (FAA) Part 107 

regulations, limiting the maximum altitude to ~122 m (400 ft.) above ground level (AGL) and 

also limiting flights to daylight hours. At some locations, flights were conducted throughout the 

morning ABL transition, whereas at other locations flights occurred in the afternoon. Flight times 

and summary statistics can be found in Table 4.1. Ascent speeds were roughly 3 m s-1. Only data 

from the ascent was used in analysis to limit rotor wash interference and ensure greater temporal 

stationarity. Upon landing, logged data was downloaded from the flight control module and 

loaded onto a laptop for analysis. Surface measurements, including temperature at 1.5 m and 9 m, 

wind speed at 2 m and 10 m, and pressure, were downloaded from the Mesonet past data archive 

available online at mesonet.org.  
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Data Analysis Methods 

 Temperature residuals were separated from the mean profile through an ordinary least 

squares regression between temperature and height AGL. Residuals were then separated into bins 

based on their spatial separation distance from one another and sample variograms were 

estimated using the classic estimator:  

2𝛾(ℎ) =
1

𝑁(ℎ)
∑{𝑍(𝑥𝒊) − 𝑍(𝑥𝑖 + ℎ)}

2

𝑁(ℎ)

𝑖=1

, (4.12) 

where Z(xi) is the observed temperature residual at location xi, Z(xi + h) is the observed 

temperature residual at location xi separated by distance h, and N is the number of point pairs in 

each separation distance bin (Cressie 1993). Bin widths were set at 2 m, and the maximum 

separation distance at which point pairs were binned was set to 100 m. This was done to exclude 

the greatest separation distances where variogram estimates may be less reliable (Isaaks and 

Srivastava 1989).  

 Parameter estimation, including C2 from Equation 4.2, was completed through fitting a 

model variogram to the estimated sample variogram. The power model variogram takes the form  

2𝛾(ℎ) = 𝐶0 + 𝐶2ℎ
𝛼, (4.13) 

where C0 is an additive component allowing for a positive y-intercept (known as the nugget 

effect), and α is a scaling parameter. Following theory (Kolmogorov 1941; Obukhov 1949), α 

was fixed to 2/3, and C0 and C2 model parameters were estimated using non-linear least-squares. 

Variogram analysis was completed in the gstat package (Pebesma 2004) for the R statistical 

computing language.  

 The stability parameter z/L length was then estimated from Mesonet data of temperature 

and wind speed gradients. The Mesonet reports recorded measurements at 5-minute averages at 5-

minute intervals. Mesonet records were selected such that the time span of the 5-minute average 

encompassed the majority of the flight time of the profile. For example, for Arnett Flight 1 (Table 
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4.1), the 7:40 record was obtained. The stability parameter z/L was then estimated using the 

equations outlined in Section 4.2. Estimates of C2 were then plotted as a function of z/L to 

determine the universality of the relationship. 

Site Date Flight # Start Time End Time Mean Temp [°C] 

Arnett 8-Apr 1 7:35:09 7:36:15 16.09 

  2 8:15:20 8:16:26 16.39 

  3 8:58:34 8:59:35 16.72 

  4 9:59:42 10:00:46 20.60 

  5 11:04:59 11:06:03 23.78 

   6 12:28:39 12:29:51 25.73 

Bixby 11-Apr 1 7:36:28 7:37:32 11.58 

  2 8:14:30 8:15:37 10.83 

  3 8:56:47 8:57:51 10.38 

  4 9:42:18 9:43:26 10.71 

  5 10:25:21 10:26:26 10.24 

  6 11:14:29 11:15:30 11.14 

  7 12:01:05 12:02:12 10.97 

   8 12:56:08 12:57:11 12.59 

Fairview 7-Apr 1 16:01:19 16:02:21 26.31 

  2 16:45:11 16:46:16 26.60 

  3 17:30:14 17:31:18 26.74 

  4 18:15:35 18:16:38 26.65 

Goodwell 9-Apr 1 7:36:21 7:37:35 15.24 

  2 8:07:17 8:08:27 15.32 

  3 8:42:54 8:44:00 15.91 

  4 9:29:56 9:31:10 17.49 

  5 10:46:07 10:47:16 22.05 

   6 12:01:34 12:02:41 26.58 

Lane 12-Apr 1 8:31:35 8:32:38 8.70 

  2 9:08:48 9:09:52 10.03 

  3 9:55:30 9:56:33 11.04 

  4 10:58:50 10:59:57 12.97 

  5 12:01:01 12:02:06 14.30 

   6 13:01:43 13:02:52 16.47 

Marena 4-Apr 1 8:19:21 8:20:30 17.18 

  2 9:26:18 9:27:34 18.81 

  3 10:40:33 10:41:38 19.45 

  4 11:28:13 11:29:18 20.36 

Table 4.1. Flight start and end times. All times local (UTC -5). Maximum altitude of all flights was 122 m 

AGL. 
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Results and Discussion 

Variograms of Temperature Profiles 

 Thirty-four total profiles were conducted across the six Mesonet sites/ecoregions. Seven 

of the profiles were conducted in stable conditions, according to the corresponding z/L estimate 

being greater than zero and 27 profiles were conducted in unstable conditions. The periodic shape 

of the variograms estimated from most of the profiles collected during stable conditions suggests 

that squared temperature differences become increasingly dissimilar with distance until ~ 50 m, 

where the squared temperature differences begin to become increasingly similar until the 

maximum separation distance is reached (Figure 4.4a). This behavior indicates periodicity or an 

oscillatory process present in the spatial autocorrelation. Gravity waves are often observed in a 

stable boundary layer (Stull 1988), as are inertial oscillations and nocturnal low-level jets, all of 

which are possible explanations for the shape of the variogram estimated from most of the stable 

profiles. As these variograms did not depict a power law relationship with separation distance, no 

estimate of C2 could be obtained, thus these data were excluded from further analysis. Sample 

variograms estimated from most profiles conducted in unstable conditions depicted a power law 

increase with distance (Figure 4.4b), allowing for C2 to be estimated through the fitting of a power 

law model variogram (Equation 4.13).  
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Figure 4.4. Sample variograms (points) from (a) Arnett Flight 1 during stable condition and (b) Goodwell 

Flight 3. Power law model variogram with α fixed to 2/3 fit to sample variogram.  

 

The relationship between C2 and z/L 

 Estimates of C2 were plotted as a function of z/L (Figure 4.5) to determine if a universal 

relationship between the two parameters was present. A subset of points follow along a common 

curve, with C2 estimates generally increasing as z/L increases towards neutral stability, with the 

highest C2 estimates near z/L = 0. Points along the curve vary in both time of day and locations, 

suggesting that the relationship was not localized to a particular location or flow. There are 

several noticeable outlying observations that also vary in time of day and location. Flights 5 and 6 

from Goodwell and Flights 2 and 5 from Lane have comparatively higher estimates of C2 relative 

to their z/L estimate compared to observations along the common curve. There is also a cluster of 

several observations from different locations and times that have both a low C2 estimate and a z/L 

estimate near zero.  
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Figure 4.5. C2 as a function of z/L. 

 Recall that positive values of z/L indicate stable conditions, and negative values indicate 

unstable conditions. Since height above ground, z, is always positive, the sign of z/L is 

determined by the sign of the Obukhov Length, L. When L is positive, turbulence is suppressed 

through static stability and results in a positive z/L value. When L is negative, the Obukhov length 

describes the relative contributions of mechanical forces (shear) and buoyancy in the production 

of turbulence. When L is negative and small, buoyancy dominates, and in turn, z/L is large and 

negative. When L is negative and large, shear is a greater contributor than buoyancy in turbulence 

production and z/L is negative and small. The results presented in Figure 4.5 suggest that the 

degree of temperature variation with vertical distance, as measured through C2, increases as 

mechanical forces begin to dominate over buoyancy in the production of turbulence.  

 To situate the results in the context of the meteorological conditions present during the 

time of the profiles, meteograms of the conditions at all six Mesonet locations were created 
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(Figures 4.6—4.11). The cluster of potential outlier observations with C2 and z/L estimates near 

zero (Figure 4.5) consists of Bixby Flights 1, 2, 3; Fairview Flight 4; Lane Flight 1; and Marena 

Flight 4. The meteograms (Figs. 4.7, 4.8, 4.9, 4.10, 4.11) depict the temperatures measured at 1.5 

m and 9 m converge to a similar value at the time of these flights. This finding supports the low 

vertical temperature variation as assessed through the corresponding C2 estimates. It is more 

challenging to draw any conclusions from the wind data about these particular six flights. During 

Bixby flights 1, 2, and 3 (Figure 4.8), the mean wind speed and maximum wind gust remained 

steady, while there was little change in wind direction. The meteogram for Fairview (Figure 4.9) 

depicts a slight drop in mean wind and wind gust during Flight 4. Conversely, wind speed 

increased slightly during Lane Flight 1 (Figure 4.10) and Marena Fight 4 (Figure 4.11). Wind 

direction during Lane Flight 1 shifted from NE to NW during the time of the flight (Figure 4.10).  

 Goodwell Flights 5 and 6 had higher C2 estimates relative to their estimate of z/L (Figure 

4.5). The mean temperature difference was ~1–2 º C cooler at 9 m than 1.5 m, indicating 

convective conditions (Figure 4.9). Wind gust and mean wind speed were increasing throughout 

the time period of Flights 5 and 6, but there was no measured spike in either. Fairview Flights 1 

and 2, collected during the afternoon, should have been affected by convective turbulence, given 

their z/L estimates. However, the meteogram only depicts a slight decrease in temperature with 

height (< 1 º C), and mean wind and wind gust measurements display no anomalous spikes 

(Figure 4.8). Turning attention to the other end of the curve, Bixby Flights 6 and 8, Arnett Flight 

6, and Goodwell Flight 4 (Figure 4.5) all had higher estimated C2 relative to the other flights. 

Meteograms of Bixby Flights 6 and 8 (Figure 4.7) and Arnett Flight 6 (Figure 4.6) all depict a 

slight decrease in temperature (~1 º C) at 9 m compared to 1.5 m, indicating convective 

conditions. The corresponding z/L estimates for these flights is slightly greater than the estimates 

from flights with small negative z/L estimates along the common curve. These may be better 

described as outlier observations. Their higher C2 estimates may be driven by convective, 

buoyant forces and not mechanical forces.  
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Figure 4.6. Meteogram of conditions at the Arnett site. Vertical dashed lines indicate flight times. 

 

Figure 4.7. Meteogram of conditions at the Bixby site. Vertical dashed lines indicate flight times. 



81 
 

 

Figure 4.8. Meteogram of conditions at the Fairview site. Vertical dashed lines indicate flight times. 

 

Figure 3.9. Meteogram of conditions at the Goodwell site. Vertical dashed lines indicate flight times. 
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Figure 4.10. Meteogram of conditions at the Lane site. Vertical dashed lines indicate flight times. 

 

Figure 4.11. Meteogram of conditions at the Marena site. Vertical dashed lines indicate flight times. 
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 Drawing definite conclusions from the data may be challenging, given the chaotic nature 

of ABL flows compared to those produced in a laboratory environment (Sreenvisan and Antonia 

1997; Vindell et al. 2008). The results generally depict increasing vertical variation of 

temperature as shear increases. The exact cause of the anomalous C2 estimates may not be able to 

be found with the data available. C2 in Equation 4.2 is determined by the energy dissipation rate 

in the turbulent cascade. The dimensional analysis that led to the formulation of Equation 4.2 

assumed that the mean energy dissipation rate remains constant and the statistical properties of 

the inertial range are independent of those of the larger, energy producing eddies (Sreenivasan 

and Antonia 1997), a key assumption of Kolmogorov’s (1941) hypothesis. The lack of 

universality implies that the properties of the small scale are not independent. The inertial range is 

thus influenced by an energy dissipation rate that is not constant and/or the turbulent cascade is 

affected by other parameters.  Thus, the lack of universality of the small scale is a result of 

intermittency of the large scale (Mathieu and Scott 2000).  

 Kolmogorov (1962) subsequently reformulated his theory at the suggestion of Obukhov 

(1962) to account for a spatially-varying energy dissipation rate. Though there is intermittency in 

the universality of C2, it continues to be an important parameter in the calibration of remote 

sensing instruments (Wainwright et al. 2015) and estimation of surface fluxes used in 

parametrization of climate models and numerical weather prediction (Li et al. 2012). There was 

great scatter in the relationship between C2 and z/L, and relatively high estimates of C2 were 

observed at both ends of the observed z/L scale, suggesting an increase in C2 as a result of both 

increased convection and mechanical shear. The cluster of C2 estimates near the origin in Figure 

4.5 may be the result of the spatial distance for which the structure function was calculated. Large 

scale intermittency in shear flows, such as a boundary layer, increases near the boundary of 

laminar/turbulent flow, leading to a decrease in Cp (Mathieu and Scott 2000). The particular 

profiles associated with the aforementioned anomalous C2 estimates may have crossed such a 

boundary resulting in the intermittent intensity of C2.  
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Conclusion 

 Multiple temperature profiles spanning varied stability conditions across six distinct 

ecoregions of Oklahoma were conducted to assess the universality of the second-order 

temperature structure parameter, C2. Variograms from most profiles conducted in stable 

conditions did not exhibit the power law form necessary to estimate C2. Most profiles conducted 

in unstable conditions had variograms that displayed the theorized power law relationship with 

distance. C2 was estimated from these data through fitting a power law model variogram using 

non-linear least squares. Resulting estimates of C2, were plotted as a function of the stability 

parameter z/L and were found to be scattered, though a subset of observations were found to 

follow a common curve. Outlying observations, varying in both location and time of day, were 

noted and hypothesized to be the result of large-scale intermittency in the turbulent cascade. Such 

intermittent variation in the temperature profiles was found to be well characterized by surface 

conditions and may change rapidly in time such that sUAS “snapshots” of temperature profiles 

and short-term averages of surface conditions may not fully capture the causes of the observed 

variation.  
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CHAPTER V 
 

 

CONCLUSION 

Summary 

 This doctoral dissertation research has used geostatistical tools, principally, variogram 

analysis, to describe the spatial structure of thermodynamic variables in the atmospheric 

boundary layer (ABL) using instrumentation deployed onboard small unmanned aircraft systems 

(sUAS). sUAS have emerged as a versatile platform from which to capture atmospheric 

measurements that have the unique ability to be deployed in such a manner that fills spatio-

temporal gaps left by traditional sensing methodologies. While the technology to allow for the 

development of such platforms has advanced immensely in the last decade, the foundational 

knowledge on how to best sample physical processes in the ABL that are inherently spatial has 

received little attention. Historically, in situ sensing of the ABL and turbulent structures therein 

has been accomplished through tower instrumentation and the application of Taylor’s (1938) 

frozen turbulence hypothesis. Sampling a domain in space is accompanied by its own set of 

challenges.  

 The variogram was originally conceived for such a purpose and the geostatistical theory 

developed in subsequent years in various other disciplines provides a framework that is well-

suited to accommodate the non (spatially) stationary and seemingly chaotic nature of 

thermodynamic and other scaler variables in the ABL influenced by turbulent flows. This 

research has sought to combine small-scale turbulence theory and practical geostatistical 
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methodology with the dynamic data collection capabilities that are provided by sUAS.  The 

preceding chapters have applied the aforementioned theory and methodology to provide insight 

into the spatial behavior of atmospheric variables that can inform deployment strategies for sUAS 

in the ABL.  

 In Chapter 2, variogram analysis was used to identify a methodology for identifying the 

smallest sampling scales necessary for capturing temperature and relative humidity measurements 

from an sUAS. Variograms displayed multiple peaks or plateaus of autocorrelation, suggesting 

that autocorrelation of the variable dissipates over a range of length scales. The range distance of 

the first plateau would thus correspond to the maximum distance one should sample in order to 

capture the smallest scale structures. It was found that optimal vertical sampling scales for the 

profiles analyzed were roughly 5 m for early morning flights. After the ABL became mixed, and 

conditions became unstable, a finer sampling scale of roughly 2 m would be necessary to capture 

the smallest autocorrelated structures. As the ABL became more turbulent (i.e., chaotic), 

autocorrelation decreased and the spatial positioning of a sample was influenced by a closer 

group of neighboring samples.  

 Similar autocorrelation behavior was observed in Chapter 3. Variograms were estimated 

from de-trended temperature profiles to account for the vertical nonstationarity of temperature 

with respect to height in the ABL. It was observed that the power law behavior of squared 

temperature residuals increased at a rate steeper than theorized in the variograms estimated from 

early-morning profiles. A power law variogram displaying such behavior is indicative of a more 

deterministic process than a power law variogram that appears flatter. As a result, temperature 

profiles predicted using the theorized 2/3 power law model variogram were under predicted in the 

early morning, whereas late morning/early afternoon profiles conformed more closely to the 

theorized scaling relationship. Consequently, the inertial range of turbulence scale was able to be 

resolved at various separation distances and heights AGL for the three profiles conducted under 
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well mixed conditions. Chapter 3 was also successful in demonstrating the ability of geostatistics 

to accommodate nonstationary random variables.  

 In Chapter 4, the universality of the temperature structure parameter, a proportionality 

factor in the 2/3 power law relationship, was assessed through multiple flights across a variety of 

Oklahoma ecoregions and times of day.  The 2/3 power law scaling investigated in Chapter 3 is a 

result of dimensional analysis and its validity relies on a number of assumptions. Particularly, it is 

assumed that the energy dissipation rate is the only variable influencing the eddies as energy 

cascades from the largest scales to the smallest scales, and that the energy dissipation rate remains 

constant. A result of these assumptions is that the temperature structure parameter, C2, should be 

a universal function of a stability parameter. A general relationship between C2 and the stability 

parameter z/L was observed, with deviations observed from multiple locations and flight times. 

While there was a general relationship, the exact cause for the anomalies could not be identified 

with the data available.  

 This research has demonstrated that once the ABL becomes unstable and experiences 

vertical mixing, the spatial discontinuity of random thermodynamic random variables increases 

resulting in the need for increased spatial sampling frequency. The results have also demonstrated 

that at medium separation distances, the theorized scaling is valid as the ABL becomes more 

turbulent and was validated at altitudes up to 500 m AGL. The statistics of the flow in turbulent 

conditions are generally a universal function of a stability parameter, though variability was 

demonstrated to be at times intermittent. This intermittency was observed during periods of 

increased turbulence contributions of both convection and shear and varied in time on scales of 

less than 1 hour. This suggests that to capture thermodynamic variation, increased temporal 

frequency of profiles would likely be beneficial.  

Limitations and Future Considerations 

 There remains much to be understood about how to best sample the ABL with sUAS. A 

chief point of concern is not only the minimum sampling distance as discussed in Chapter 2, but 
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the maximum sampling distance, or more precisely, the size of the sampling domain. The 

maximum separation distance for which the variogram is estimated will have an effect of the 

variogram estimates therein.  The spatial measurements captured by sUAS are taken on finite 

profiles (or transects), which limit the effective variation that can be detected. At medium 

distances, temperature variation displays a power law relationship with separation distance, as 

demonstrated in Chapters 3 and 4. The power law model variogram is unbounded, meaning it 

does not reach a sill or a limit to its variation. Hence, variation may increase beyond the finite 

region of our sampling profile. Statistics computed from a 122 m profile (the current legal AGL 

limit in the U.S.) may not be fully representative of the full boundary layer.  

 At greater maximum separation distances, the variogram ma reach a sill, as was observed 

by Hemingway and Frazier (2018), albeit with horizontal transects. When technology and the law 

allow for sUAS profiles of the full depth of the ABL, a variogram such as the stable model might 

be appropriate for parameterizing temperature structure. The stable modal has a scaling exponent, 

like the power model, but has the advantage of reaching a sill (Chiles and Delfiner 2012). Until 

the time when full profiles of the ABL can be routinely captured, the knowledge of how statistics 

from 100 m profiles scale to what would be captured with a greater spatial sampling domain 

would be beneficial.  

 While spatial stationarity is a key condition to geostatistical and turbulence, a related 

concept called ergodicity is likewise important. A random process is said to be ergodic if the 

statistical moments of a spatial subset of a single realization of the random function are equal to 

that of the ensemble average (Cressie 1993; Webster and Oliver 2007).  The theory is mostly 

relevant to time series and is considered to be of only theoretical importance in geostatistics 

(Webster and Oliver 2007).  It becomes an important concept, however, when thinking about how 

we may best sample the atmosphere. Much of the theory of physical processes in the atmosphere 

is based on ensemble averages; after all, the ABL has been predominately sampled in the 

temporal domain. Since eddies in the ABL scale roughly to the ABL thickness and the largest 
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structures are influenced by the mean wind, the largest structures (i.e., the full extent of the 

variability of that particular realization) can be determined, and is done so routinely through the 

calculation of the integral scale of turbulence. Short term averages, spatial or temporal, are not 

likely to be representative of the ensemble averages (Wyngaard et al. 1971), resulting in observed 

variability that is intermittent.  

 Intermittency is a phenomenon that has received considerable attention in turbulence 

literature (Monin and Yaglom 1975). Not only is there intermittency in the large scales, as 

discussed in Chapter 4, but there is also intermittency in the small scales (i.e., the inertial range) 

(Mathieu and Scott 2000).  Small-scale intermittency is predominately studied through analysis of 

the inertial range scaling exponents and their deviation from the theorized relationship (Equation 

3.1).  However, it is noted that the scatter present in ABL data makes precise quantification of 

intermittency challenging in the temporal domain (Vindel et al. 2008).  Applying the same theory 

to quantify intermittency spatially will likely be correspondingly difficult. Separating intermittent 

variability from variability present as a result of a finite spatial average will be an important 

avenue of future research.   

Concluding Remarks 

 sUAS are increasingly becoming a valuable sensing tool in the ABL. As more data is 

collected in the spatial domain, consideration should be given as to how to best collect and 

analyze the data. Statistics are well suited for description of ABL processes given their chaotic, 

seemingly random behavior. Geostatistics, thus, is a viable toolkit for estimating nonstationary 

means, fitting models to describe the structure of the errors, and estimating values at unsampled 

locations. Geostatistics is rooted in the theory of turbulence. Combined with the sampling 

capabilities of sUAS, geostatistics can be applied to better understand the ABL and the physical 

processes within it that affect so much of our daily lives on Earth.  

References 

Chiles, J-P, & Delfiner, P. (2012) Geostatistics: modeling spatial uncertainty. New York: Wiley.  



93 
 

 

Cressie, N. (1993). Statistics for spatial data. Hoboken, NJ: Wiley. 

 

Hemingway, B.L. and Frazier, A.E. (2018) Geostatistical detection of thermodynamic anisotropy  

in an atmospheric boundary layer using small unmanned aircraft systems. Proceedings of the 21st  

Association of Geographic Information Laboratories of Europe Conference. Lund, Sweden. 

 

Mathieu, J, & Scott, J. (2000). An introduction to turbulent flow. Cambridge: Cambridge  

 

Monin, A.S. & Yaglom, A.M.  (1975). Statistical fluid mechanics. Cambridge: MIT Press.  

 

Taylor, G.I. (1938) The spectrum of turbulence. Proc R Soc London Ser A 164: 476–490. 

 

Vindel, J.M., Yagüe, C., & Redondo, J.M. (2008). Structure function analysis and intermittency 

in the atmospheric boundary layer. Nonlinear Processes in Geophysics, 15(6). 

 

Webster R. & Oliver M.A. (2007). Geostatistics for environmental scientists. New York: Wiley. 

 

Wyngaard, J.C., Izumi, Y., & Collins, S.A. (1971). Behavior of the refractive-index-structure 

parameter near the ground. JOSA, 61(12), 1646–1650. 



 

VITA 

 

Benjamin Lynn Hemingway 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

Thesis:    GEOSTATISTICAL ANALYSIS OF TEMPERATURE STRUCTURE IN THE 

ATMOSPHERIC BOUNDARY LAYER 

 

 

Major Field:  Geography 

 

Biographical: 

 

Education: 

 

Completed the requirements for the Doctor of Philosophy in Geography at 

Oklahoma State University, Stillwater, Oklahoma in May, 2020. 

 

Completed the requirements for the Master of Science in Geography at 

Oklahoma State University, Stillwater, Oklahoma in 2016. 

  

Completed the requirements for the Bachelor of Arts in Geography at 

University of Arizona, Tucson, Arizona in 2010. 

 

Experience:   

 

Research Technician, Lunar Reconnaissance Orbiter Camera, Arizona State 

University, Tempe, Arizona, 2019–Present 

 

Graduate Research Associate, Department of Geography, Oklahoma State 

University, Stillwater, Oklahoma, 2016–2019 

 

GIS Intern, Chesapeake Energy Corporation, Oklahoma City, Oklahoma, 2015 

 

Graduate Teaching Assistant, Department of Geography, Oklahoma State 

University, Stillwater, Oklahoma, 2014–2015 

 

 

Professional Memberships:   

 

American Geophysical Union 

 

International Society for Atmospheric Research using Remotely-piloted Aircraft 
 


