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Abstract: Extracting governing equations from data can be viewed as reverse
engineering of Nature - using data to identify the physical laws/models. This approach
is crucial for fields where data is abundant (such as geophysical flows, finance, and
neuroscience) but the physical laws based on the first principles are not available. In
recent years, the use of machine learning (ML) methods complemented the need for
formulating mathematical models through the application of data analysis algorithms
that allow accurate estimation of observed dynamics by learning automatically from
the given observations. The neural networks and symbolic regression (SR) based
approaches are the most popular ML frameworks used to learn the underlying physical
process by only the observing data. While neural network approaches have shown
great promise, its black-box nature makes it difficult to interpret the learned models.
On the other hand, symbolic regression algorithms are capable of learning/finding
an analytically tractable function in symbolic form. Hence to address the functional
expressibility, a key limitation of the black-box machine learning methods, this
study has explored the use of symbolic regression approaches for identifying relations
and operators that accurately represent the underlying physical processes. This
study demonstrates the use of an evolutionary algorithm called gene expression
programming (GEP) and a sparse optimization algorithm called sequential threshold
ridge regression (STRidge) in discovering physical models. The effectiveness of these
algorithms is demonstrated on four different applications: (i) partial differential
equation (PDE) discovery, (ii) truncation error analysis, (iii) hidden physics discovery
and (iv) discovering subgrid-scale closure models. This study shows the GEP and
STRidge algorithms are able to distill various linear/nonlinear PDEs, truncation
error terms and unknown source terms of 1D and 2D PDEs. Furthermore, the
classical Smagorinsky model is identified for subgrid-scale (SGS) closure from an array
of tailored features in solving the 2D Kraichnan turbulence problem. Our results
demonstrate the huge potential of these techniques in distilling complex nonlinear
physics models from only observing the data. Furthermore, this study reveals the
importance of feature selection/feature engineering and embedding the prior knowledge
about the unknown dynamical system in terms of invariances for identifying models.
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CHAPTER I

Introduction

This thesis puts forth a modular approach for distilling hidden flow physics from

discrete and sparse observations. To address functional expressiblity, a key limitation

of the black-box machine learning methods, this study exploits the use of symbolic

regression as a principle for identifying relations and operators that are related to the

underlying processes. This approach combines evolutionary computation with feature

engineering to provide a tool for discovering hidden parameterizations embedded in

the trajectory of fluid flows in the Eulerian frame of reference. The presented approach

in this study mainly involves gene expression programming (GEP) and sequential

threshold ridge regression (STRidge) algorithms. Results have been demonstrated in

three different applications: (i) equation discovery, (ii) truncation error analysis, and

(iii) hidden physics discovery, for which we include both predicting unknown source

terms from a set of sparse observations and discovering subgrid scale closure models. It

is concluded that both GEP and STRidge algorithms are able to distill the Smagorinsky

model from an array of tailored features in solving the Kraichnan turbulence problem.

Presented results demonstrate the huge potential of these techniques in complex physics

problems, and reveal the importance of feature selection and feature engineering in

model discovery approaches1.

1The work presented in this thesis has been published in Vaddireddy et al. (2020).
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1.1 Motivation

Since the dawn of mathematical modelling of complex physical processes, scientists

have been attempting to formulate predictive models to infer current and future

states. These first principle models are generally conceptualized from conservation

laws, sound physical arguments, and empirical heuristics drawn from either conducting

experiments or hypothesis made by an insightful researcher. However, there are many

complex systems (some being climate science, weather forecasting, and disease control

modelling) with their governing equations known partially and their hidden physics

await to be modelled. In the last decade, there have been rapid advances in machine

learning (Jordan and Mitchell, 2015; Marx, 2013) and easy access to rich data, thanks

to the plummeting costs of sensors and high performance computers.

This paradigm shift in data driven techniques can be readily exploited to distill new

or improved physical models for nonlinear dynamical systems. Extracting predictive

models based on observing complex patterns from vast multimodal data can be loosely

termed as reverse engineering nature. This approach is not particularly new, for

example, Kepler used planets’ positional data to approximate their elliptic orbits. The

reverse engineering approach is most appropriate in the modern age as we can leverage

computers to directly infer physical laws from data collected from omnipresent sensors

that otherwise might not be comprehensible to humans. Symbolic regression methods

are a class of data driven algorithms that aim to find a mathematical model that

can describe and predict hidden physics from observed input-response data. Some of

the popular machine learning techniques that are adapted for the task of symbolic

regression are neural networks (Rosenblatt, 1958; LeCun et al., 2015), compressive

sensing/sparse optimization (Candes et al., 2008; Candes and Wakin, 2008), and

evolutionary algorithms (Koza, 1992; Ferreira, 2001).
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1.2 Evolutionary Algorithms

Symbolic regression (SR) approaches based on evolutionary computation (Koza, 1992;

Ferreira, 2006) are a class of frameworks that are capable of finding analytically

tractable functions. Traditional deterministic regression algorithms assume a math-

ematical form and only find parameters that best fit the data. On the other hand,

evolutionary SR approaches aim to simultaneously find parameters and also learn

the best-fit functional form of the model from input-response data. Evolutionary

algorithms search for functional abstractions with a preselected set of mathematical

operators and operands while minimizing the error metrics. Furthermore, the optimal

model is selected from Pareto front analysis with respect to minimizing accuracy

versus model complexity. Genetic programming (GP) (Koza, 1992) is a popular choice

leveraged by most of the SR frameworks. GP is an extended and improved version of a

genetic algorithm (GA) (Mitchell, 1998; Holland, 1992) which is inspired by Darwin’s

theory of natural evolution. Seminal work was done in identifying hidden physical

laws (Schmidt and Lipson, 2009; Bongard and Lipson, 2007) from the input-output

response using the GP approach. GP has been applied in the context of the SR

approach in digital signal processing (Yang et al., 2005), nonlinear system identifica-

tion (Ferariu and Patelli, 2009) and aerodynamic parametric estimation (Luo et al.,

2015). Furthermore, GP as an SR tool was applied to identify complex closed-loop

feedback control laws for turbulent separated flows (Brunton and Noack, 2015; Gautier

et al., 2015; Duriez et al., 2015; Debien et al., 2016). Hidden physical laws of the

evolution of a harmonic oscillator based on sensor measurements and the real world

prediction of solar power production at a site were identified using GP as an SR

approach (Quade et al., 2016).

Improved versions of GP focus on better representation of the chromosome, which

helps in the free evolution of the chromosome with constraints on the complexity of its

growth, and faster searches for the best chromosome. Some of these improved versions

3



of GP are gene expression programming (GEP) (Ferreira, 2001), parse matrix evolution

(PME) (Luo and Zhang, 2012), and linear genetic programming (LGP) (Brameier

and Banzhaf, 2007). GEP takes advantage of the linear coded chromosome approach

from GA and the parse tree evolution of GP to alleviate the disadvantages of both

GA and GP. GEP was applied to diverse applications as an SR tool to recover

nonlinear dynamical systems (Faradonbeh and Monjezi, 2017; Faradonbeh et al., 2017;

Hoseinian et al., 2017; Çanakcı et al., 2009). Recently, GEP was modified for tensor

regression, termed as multi-GEP, and has been applied to recover functional models

approximating the nonlinear behavior of the stress tensor in the Reynolds-averaged

Navier-Stokes (RANS) equations (Weatheritt and Sandberg, 2016). Furthermore, this

novel algorithm was extended to identify closure models in a combustion setting for

large eddy simulations (LES) (Schoepplein et al., 2018). Similarly, a new damping

function has been discovered using the GEP algorithm for the hybrid RANS/LES

methodology (Weatheritt and Sandberg, 2017). Generally, evolutionary based SR

approaches can identify models with complex nonlinear compositions given enough

computational time.

1.3 Sparse Optimization/Compressive Sensing

Compressive sensing (CS) (Candes et al., 2008; Candes and Wakin, 2008) is predom-

inately applied to signal processing in seeking the sparsest solution (i.e., a solution

with the fewest number of features). Basis pursuit algorithms (Rauhut, 2010), also

identified as sparsity promoting optimization techniques (Tibshirani, 1996; James

et al., 2013), play a fundamental role in CS. Ordinary least squares (OLS) optimiza-

tion generally results in identifying models with large complexity which are prone to

overfitting. In sparse optimization, the OLS objective function is regularized by an

additional constraint on the coefficient vector. This regularization helps in taming

and shrinking large coefficients and thereby promoting sparsity in feature selection

4



and avoiding overfitted solutions. The least absolute shrinkage and selection operator

(LASSO) (Tibshirani, 1996; Tibshirani et al., 2015) is one of the most popular regular-

ized least squares (LS) regression methods. In LASSO, an L1 penalty is added to the

LS objective function to recover sparse solutions (Candes et al., 2006). In Bayesian

terms, LASSO is a maximum a posteriori estimate (MAP) of LS with Laplacian priors.

LASSO performs feature selection and simultaneously shrinks large coefficients which

may manifest to overfit the training data. Ridge regression (Murphy, 2012) is another

regularized variant where an L2 penalty is added to the LS objective function. Ridge

regression is also defined as a MAP estimate of LS with a Gaussian prior. The L2

penalty helps in grouping multiple correlated basis functions and increases robustness

and convergence stability for ill-conditioned systems. The elastic net approach (Zou

and Hastie, 2005; Friedman et al., 2010) is a hybrid of the LASSO and ridge approaches

combining the strengths of both algorithms.

Derived from these advances, a seminal work was done in employing sparse re-

gression to identify the physical laws of nonlinear dynamical systems (Brunton et al.,

2016). This work leverages the structure of sparse physical laws, i.e., only a few

terms represent the dynamics. The authors have constructed a large feature library

of potential basis functions that has the expressive power to define the dynamics

and then seek to find a sparse feature set from this overdetermined system. To

achieve this, a sequential threshold least squares (STLS) algorithm (Brunton et al.,

2016) has been introduced in such a way that a hard threshold on OLS coefficients

is performed recursively to obtain sparse solutions. This algorithm was leveraged to

form a framework called sparse identification of nonlinear dynamics (SINDy) (Brunton

et al., 2016) to extract the physical laws of nonlinear dynamical systems represented

by ordinary differential equations (ODEs). This work re-envisioned model discovery

from the perspective of sparse optimization and compressive sensing. The SINDy

framework recovered various benchmark dynamical systems such as the chaotic Lorenz
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system and vortex shedding behind a cylinder. However, STLS regression finds it

challenging to discover physical laws that are represented by spatio-temporal data or

high-dimensional measurements and have highly correlated features in the basis library.

This limitation was addressed using a regularized variant of STLS called the sequential

threshold ridge regression (STRidge) algorithm (Rudy et al., 2017). This algorithm

was intended to discover unknown governing equations that are represented by partial

differential equations (PDEs), hence forming a framework termed as PDE-functional

identification of nonlinear dynamics (PDE-FIND) (Rudy et al., 2017). PDE-FIND

was applied to recover canonical PDEs representing various nonlinear dynamics. This

framework also performs reasonably well under the addition of noise to data and

measurements. These sparse optimization frameworks generally have a free parameter

associated with the regularization term that is tuned by the user to recover models

ranging from highly complex to parsimonious.

In a similar direction of discovering governing equations using sparse regression

techniques, L1 regularized LS minimization was used to recover various nonlinear

PDEs (Schaeffer et al., 2013; Schaeffer, 2017) using both high fidelity and distorted

(noisy) data. Additionally, limited and distorted data samples were used to recover

chaotic and high-dimensional nonlinear dynamical systems (Tran and Ward, 2017;

Schaeffer et al., 2018). To automatically filter models with respect to model complex-

ity (number of terms in the model) versus test accuracy, Bayes information criteria

were used to rank the most informative models (Mangan et al., 2017). Furthermore,

SINDy coupled with model information criteria is used to infer canonical biologi-

cal models (Mangan et al., 2016) and introduce a reduced order modelling (ROM)

framework (Loiseau et al., 2018). STRidge (Rudy et al., 2017) was applied as a

deterministic SR method to derive algebraic Reynolds-stress models for the RANS

equations (Schmelzer et al., 2018). Recently, various sparse regression algorithms like

LASSO (Tibshirani, 1996), STRidge (Rudy et al., 2017), sparse relaxed regularized
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regression (Zheng et al., 2018), and the forward-backward greedy algorithm (Zhang,

2009) were investigated to recover truncation error terms of various modified differ-

ential equations (MDEs) coming from canonical PDEs (Thaler et al., 2019). The

frameworks discussed above assume that the structure of the model to be recovered is

sparse in nature; that is, only a small number of terms govern the dynamics of the

system. This assumption holds for many physical systems in science and engineering.

Fast function extraction (FFX) (McConaghy, 2011) is another deterministic SR

approach based on pathwise regularized learning that is also called the elastic net

algorithm Zou and Hastie (2005). The resulting models of FFX are selected through

non-dominated filtering concerning accuracy and model complexity, similar to evolu-

tionary computations. FFX is influenced by both GP and CS to better distill physical

models from data. FFX has been applied to recover hidden physical laws (Quade

et al., 2016), canonical governing equations (Vaddireddy and San, 2019) and Reynolds

stress models for the RANS equations (Schmelzer et al., 2019). Some other potential

algorithms for deterministic SR are elite bases regression (EBR) (Chen et al., 2017)

and prioritized grammar enumeration (PGE) (Worm and Chiu, 2013). EBR uses

only elite features in the search space selected by measuring correlation coefficients of

features for the target model. PGE is another deterministic approach that aims for

the substantial reduction of the search space where the genetic operators and random

numbers from GP are replaced with grammar production rules and systematic choices.

1.4 Neural Networks

An artificial neural network (ANN), also referred to as deep learning if multiple hidden

layers are used, is a machine learning technique that transforms input features through

nonlinear interactions and maps to output target features (Rosenblatt, 1958; LeCun

et al., 2015). ANNs attracted attention in recent times due to their exemplary perfor-

mance in modelling complex nonlinear interactions across a wide range of applications
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including image processing (Ciregan et al., 2012), video classification (Karpathy and

Fei-Fei, 2015) and autonomous driving (Sallab et al., 2017). ANNs produce black-box

models that are not quite open to physical inference or interpretability. Recently,

physics-informed neural networks (PINNs) (Raissi et al., 2019) were proposed in the

flavor of SR that is capable of identifying scalar parameters for known physical models.

PINNs use a loss function in symbolic form to help ANNs adhere to the physical

structure of the system. Along similar directions, a Gaussian process regression (GPR)

has been also investigated for the discovery of coefficients by recasting unknown

coefficients as GPR kernel hyper-parameters for various time dependent PDEs (Raissi

et al., 2018; Raissi and Karniadakis, 2018). As a nonlinear system identification tool,

the GPR approach provides a powerful framework to model dynamical systems (Ko-

cijan et al., 2005; Gregorčič and Lightbody, 2008). State calibration with the four

dimensional variational data assimilation (4D VAR) (Cordier et al., 2013) and deep

learning techniques such as long short-term memory (LSTM) (Wang et al., 2018) have

been used for model identification in ROM settings. Convolutional neural networks

(CNNs) are constructed to produce hidden physical laws from using the insight of

establishing direct connections between filters and finite difference approximations of

differential operators (Cai et al., 2012; Dong et al., 2017). This approach has been

demonstrated to discover underlying PDEs from learning the filters by minimizing the

loss functions (Long et al., 2018, 2019).

1.5 Scope of the Current Work

In this work, we have exploited the use of SR in three different applications, equation

discovery, truncation error analysis, and hidden physics discovery. We demonstrate

the use of the evolutionary computation algorithm, GEP, and the sparse regression

algorithm, STRidge, in the context of the SR approach to discover various physical

laws represented by linear and nonlinear PDEs from observing input-response data.
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We begin by demonstrating the identification of canonical linear and nonlinear PDEs

that are up to fifth order in space. For identifying one particular PDE, we demonstrate

the natural feature extraction ability of GEP and the limits in the expressive and

predictive power of using a feature library when dealing with STRidge in discovering

physical laws. We then demonstrate the discovery of highly nonlinear truncation error

terms of the Burgers MDE using both GEP and STRidge. We highlight that the

analysis of truncation errors is very important in the implicit large eddy simulation as a

way to determine inherent turbulence models. This analysis is usually very tedious and

elaborate, and our study provides a clear example of how SR tools are suitable in such

research. Following truncation error terms identification, we apply GEP using sparse

data to recover hidden source terms represented by complex function compositions

for a one-dimensional (1D) advection-diffusion process and a two-dimensional (2D)

vortex-merger problem. Furthermore, both GEP and STRidge are used to demonstrate

the identification of the eddy viscosity kernel along with its ad-hoc modelling coefficient

closing LES equations simulating the 2D decaying turbulence problem. An important

result is the ability of the proposed methodology to distill the Smagorinsky model

from an array of tailored features in solving the Kraichnan turbulence problem.

1.6 Organization

The rest of the thesis is organized as follows. Chapter II gives a brief description of

the GEP and STRidge algorithms. In Chapter III, GEP, and STRidge are tested

on identifying different canonical PDEs. Chapter IV deals with the identification of

nonlinear truncation terms of the Burgers MDE using both STRidge and GEP. In

Chapter V we exploit GEP for identification of hidden source terms in a 1D advection-

diffusion process and a 2D vortex-merger problem. In Chapter V we demonstrate

recovery of the eddy viscosity kernel and its modelling coefficient by both GEP

and STRidge for closing the LES equations simulating the 2D decaying turbulence
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problem. Finally, Chapter VI draws our conclusions and highlights some ideas for

future extensions of this work.
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CHAPTER II

Methodology

We recover various physical models from data using two symbolic regression tools

namely, GEP, an evolutionary computing algorithm, and STRidge, which is a de-

terministic algorithm that draws its influences from compressive sensing and sparse

optimization. We take the example of the equation discovery problem that is discussed

in Chapter III to elaborate on the methodology of applying GEP and STRidge for

recovering various physical models. We restrict the PDEs to be recovered to quadratic

nonlinear and up to the fifth order in space. The general nonlinear PDE to be recovered

is in the form of,

ut = F (σ, u, u2, ux, u
2
x, uux, u2x, . . . , u

2
5x), (2.1)

where subscripts denote order of partial differentiation and σ is an arbitrary parameter.

For example, consider the problem of identifying the viscous Burgers equation as

shown below,

ut + uux = νu2x, (2.2)

where u(x, t) ∈ Rm×n is the velocity field and ν is the kinematic viscosity. In our

study, m is the number of time snapshots and n is the number of spatial locations.

The solution field u(x, t) is generally obtained by solving Eq. 2.2 analytically or

numerically. The solution field might also be obtained from sensor measurements that

can be arranged as shown below,
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u =




spatial locations︷ ︸︸ ︷
u1(t1) u2(t1) . . . un(t1)

u1(t2) u2(t2) . . . un(t2)

...
...

. . .
...

u1(tm) u2(tm) . . . un(tm)








time snapshots (2.3)

For recovering PDEs, we need to construct a library of basis functions called as feature

library that contains higher order derivatives of the solution field u(x, t). Higher order

spatial and temporal partial derivative terms can be approximated using any numerical

scheme once the recording of the discrete data set given by Eq. 2.3 is available. In our

current setup, we use the leapfrog scheme for approximating the temporal derivatives

and central difference schemes for spatial derivatives as follows,

ut =
up+1
j − up−1

j

2dt

u2t =
up+1
j − 2upj + up−1

j

dt2

ux =
upj+1 − upj−1

2dx

u2x =
upj+1 − 2upj + upj−1

dx2

u3x =
upj+2 − 2upj+1 + 2upj−1 − upj−2

2dx3

u4x =
upj+2 − 4upj+1 + 6upj +−4upj−1 − upj−2

dx4

u5x =
upj+3 − 4upj+2 + 5upj+1 − 5upj−1 + 4upj−2 − upj−3

2dx5





, (2.4)

where temporal and spatial steps are given by dt and dx, respectively. Within the

expressions presented in Eq. 2.4, the spatial location is denoted using subscript index

j, and the temporal instant using superscript index p.

We note that other approaches such as automatic differentiation or spectral
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differentiation for periodic domains can easily be adopted within our study. Both

GEP and STRidge take the input library consisting of features (basis functions) that

are built using Eq. 2.2 and Eq. 2.3. This core library, used for the equation discovery

problem in Chapter III, is shown below,

V(t) =

[
Ut

]

Θ̃(U) =

[
U Ux U2x U3x U4x U5x

]




. (2.5)

The solution u(x, t) and its spatial and temporal derivatives are arranged with size

m · n× 1 in each column of Eq. 2.5,. For example, the features (basis functions) U

and U2x are arranged as follows,

U =




u(x0, t0)

u(x0, t1)

u(xj, tp)

u(xn, tm)




, U2x =




u2x(x0, t0)

u2x(x0, t1)

u2x(xj, tp)

u2x(xn, tm)




, (2.6)

where subscript j denotes the spatial location and subscript p denotes the time

snapshot. The features (basis functions) in the core library Θ̃(U) is expanded to

include interacting features limited to quadratic nonlinearity and also a constant term.

The final expanded library is given as,

Θ(U) =

[
1 U U2 Ux UUx U2

x . . . U2
5x

]
, (2.7)

where the size of the library is Θ(U) ∈ Rm·n×Nβ and Nβ is number of features (basis

functions) i.e., Nβ = 28 for our setup. For example, if we have 501 spatial points and

101 time snapshots with 28 bases, then Θ(U) (Eq. 2.7) contains 501× 101 rows and
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28 columns.

Note that the core feature library Θ̃(U) in Eq. 2.5 is given as an input to GEP

to recover PDEs and the algorithm extracts higher degree nonlinear interactions of

core features in Θ̃(U) automatically. However, for sparse optimization techniques

such as STRidge, explicit input of all possible combinations of core features in Eq. 2.5

are required. Therefore, Θ(U) in Eq. 2.7 forms the input to STRidge algorithm for

equation identification. This forms the fundamental difference in terms of feature

building for both algorithms. The following Section 2.1 gives a brief introduction

to GEP and its specific hyper-parameters that control the efficacy of the algorithm

in identifying physical models from observing data. Furthermore, the Section 2.2

describes how to form linear system representations in terms of V(t) and Θ(U) and

briefly describe STRidge optimization approach to identifying sparse features and

thereby building parsimonious models using spatio-temporal data.

2.1 Gene Expression Programming

Gene expression programming (GEP) (Ferreira, 2001, 2002) is a genotype-phenotype

evolutionary optimization algorithm which takes advantage of simple chromosome

representation of genetic algorithm (GA) (Mitchell, 1998) and the free expansion

of complex chromosomes of genetic programming (GP) (Koza, 1992). As in most

evolutionary algorithms, this technique also starts with generating initial random

populations, iteratively selecting candidate solutions according to a fitness function,

and improving candidate solutions by modifying through genetic variations using

one or more genetic operators. The main difference between GP and GEP is how

both techniques define the nature of their individuals. In GP, the individuals are

nonlinear entities of different sizes and shapes represented as parse trees and in GEP the

individuals are encoded as linear strings of fixed length called genome and chromosome,

similar to GA representation of individual and later expressed as nonlinear entities of
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different size and shape called phenotype or expression trees (ET). GEP is used for a

very broad range of applications, but here it is introduced as a symbolic regression

tool to extract constraint free solutions from input-response data.

  b    a   b       a      b  a   a   b   a   b   b   a   a   b  b  a× + − � +

  0    1    2    3   4   5    6   7      8   9   0   1   2   3   4   5   6   7   8  9  0

Head Tail

ORF region None-coding region

×

+

−

�

b

a

b

a

Expression tree (ET):

Function set

Terminal set

Equation: b(a+b- )�
‾√

Figure 2.1: ET of a gene/chromosome with its structure in GEP. Q represents the
square root operator.

The arrangement of a typical gene/chromosome in GEP is shown in Fig. 2.1. The

GEP gene is composed of head and tail regions as illustrated in Fig. 2.1. The head

of a gene consists of both symbolic terms from functions (elements from a function

set F ) and terminals (elements from a terminal set T ) whereas the tail consists of

only terminals. The function set F may contain arithmetic mathematical operators

(e.g., +,×,−, /), nonlinear functions (e.g., sin, cos, tan, arctan, sqrt, exp), or Boolean

operators (e.g., Not , Nor , Or , And) and the terminal set contains the symbolic

variables. The gene always starts with a randomly generated mathematical operator
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from the function set F . The head length is one of the important hyper-parameters

of GEP, and it is determined using trial and error as there is no definite method to

assign it. Once the head length is determined, the size of the tail is computed as a

function of the head length and the maximum arity of a mathematical operator in the

function set F (Ferreira, 2006). It can be calculated by the following equation,

tail length = head length× (amax − 1) + 1, (2.8)

where amax is the maximum argument of a function in F . The single gene can be

extended to multigenic chromosomes where individual genes are linked using a linking

function (eg., +,×, /,−). The general rule of thumb is to have a larger head and

higher number of genes when dealing with complex problems (Ferreira, 2006).

The structural organization of the GEP gene is arranged in terms of open reading

frames (ORFs) inspired from biology where the coding sequence of a gene equivalent

to an ORF begins with a start codon, continue with an amino acid codon and ends

with a termination codon. In contrast to a gene in biology, the start site is always the

first position of a gene in GEP, but the termination point does not always coincide

with the last position of a gene. These regions of the gene are termed non coding

regions downstream of the termination point. Only the ORF region is expressed in

the ET and can be clearly seen in Fig. 2.1.

Even though the none-coding regions in GEP genes do not participate in final

solution, the power of GEP evolvability lies in this region. The syntactically correct

genes in GEP evolve after modification through diverse genetic operators due to

this region chromosome. This is the paramount difference between GEP and GP

implementations where in latter, many syntactically invalid individuals are produced

and need to be discarded while evolving the solutions and additional special constraint

are imposed on the depth/complexity of candidate solution to be evolved to avoid

bloating problem (Duriez et al., 2015).
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Fig. 2.2 displays the typical flowchart of the GEP algorithm. The process is

described briefly below,

1. The optimization procedure starts with a random generation of chromosomes

built upon combinations of functions and terminals. The size of the random

population is a hyper-parameter and the larger the population size, better the

probability of finding the best candidate solution.

2. After the population is generated, the chromosomes are expressed as ETs, which

is converted to a numerical expression. This expression is then evaluated using

a fitness function. In our setup, we employ the mean squared error between the

best predicted model f ∗ and the true model f as the fitness function given by,

MSE =
1

N

N∑

l=1

(
f ∗
(lk) − f(l)

)2
, (2.9)

where f ∗
lk is the value predicted by the chromosome k for the fitness case l (out

of N samples cases) and fl is the true or measurement value for the lth fitness

case.

3. The termination criteria is checked after all fitness evaluations, to continue

evolving or to save the best fitness chromosome as our final predicted model. In

our current setup, we terminate after a specified number of generations.

4. The evolvability/reproduction of chromosome through genetic operators which is

the core part of the GEP evolutionary algorithm executes if termination criteria

is not met. Before the genetic operations on chromosome begins, the best

chromosome according to fitness function is cloned to the next generations using

a selection method. Popular selection methods include tournament selection

with elitism and roulette-wheel selection with elitism. In our current setup, we

use tournament selection with elitism.
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Figure 2.2: Flowchart of the gene expression programming.

5. The four genetic operators that introduce variation in populations are mutation,

inversion, transposition, and recombination. The GEP transposition operator is

applied to the elements of the chromosome in three ways: insertion sequence

(IS), root insertion sequence (RIS) and gene insertion sequence and similarly

three kinds of recombination are applied namely one point, two point, and gene

recombination.

6. The process is continued up to termination criteria is met, which is the number

of generations in our current setup.

Numerical constants occur in most mathematical models and, therefore, it is

important to any symbolic regression tools to effectively integrate floating point

constants in their optimization search. GP (Koza, 1992) handles numerical constants
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Table 2.1: GEP hyper-parameters for various genetic operators selected for all the
test cases in this study.

Hyper-parameters Value

Selection Tournament selection

Mutation rate 0.05

Inversion 0.1

IS transposition rate 0.1

RIS transposition rate 0.1

Gene transposition rate 0.1

One point recombination 0.3

Two point recombination 0.2

Gene recombination 0.1

Dc specific mutation rate 0.05

Dc specific inversion rate 0.1

Dc specific transposition rate 0.1

Random constant mutation rate 0.02
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by introducing random numerical constants in a specified range to its parse trees.

The random constants are moved around the parse trees using the crossover operator.

GEP handles the creation of random numerical constants (RNCs) by using an extra

terminal ‘?’ and a separate domain Dc composed of symbols chosen to represent

random numerical constants (Ferreira, 2006). This Dc specific domain starts from the

end of the tail of the gene.

For each gene, RNCs are generated during the creation of a random initial popula-

tion and kept in an array. To maintain the genetic variations in the pool of RNCs,

additional genetic operators are introduced to take effect on Dc specific regions. Hence

in addition to the usual genetic operators such as mutation, inversion, transposition

and recombination, the GEP-RNC algorithm has Dc specific inversion, transposition,

and random constant mutation operators. Hence, with these modifications to the

algorithm, an appropriate diversity of random constants can be generated and evolved

through operations of genetic operators. The values for each genetic operator selected

for this study are listed in Table 2.1. These values are selected from various examples

given by Ferreira (Ferreira, 2006) combined with the trial and error approach. Addi-

tionally, to simplify our study, we use the same parameters for all the test cases even

though they may not be the best values for the test case under investigation.

Once decent values of genetic operators that can explore the search space are

selected, the size of the head length, population, and the number of genes form

the most important hyper-parameters for GEP. Generally, larger head length and

a greater number of genes are selected for identifying complex expressions. Larger

population size helps in a diverse set of initial candidates which may help GEP in

finding the best chromosome in less number of generations. However, computational

overhead increases with an increase in the size of the population. Furthermore,

the best chromosome can be identified in fewer generations with the right selection

of the linking function between genes. GEP algorithm inherently performs poor

20



in predicting the numerical constants that are ubiquitous in physical laws. Hence,

the GEP-RNC algorithm is used where a range of random constants are predefined

to help GEP to find numerical constants. This also becomes important in GEP

identifying the underlying expression in fewer generations. Finally, we note that

due to the heuristic nature of evolutionary algorithms, any other combinations of

hyper-parameters might work perfectly in identifying the symbolic expressions. In this

study, we use geppy (Shuhua, 2019), an open source library for symbolic regression

using GEP, which is built as an extension to distributed evolutionary algorithms in

Python (DEAP) package (Fortin et al., 2012). All codes used in this study are made

available on Github (https://github.com/sayin/SR).

2.2 Sequential Threshold Ridge Regression

Compressive sensing/sparse optimization (Baraniuk, 2007; Candes and Wakin, 2008)

has been exploited for sparse feature selection from a large library of potential candidate

features and recovering dynamical systems represented by ODEs and PDEs (Brunton

et al., 2016; Rudy et al., 2017; Mangan et al., 2017) in a highly efficient computational

manner. In our setup, we use this STRidge (Rudy et al., 2017) algorithm to recover

various hidden physical models from observed data. In continuation with the Chapter II

where we define feature library Θ(U) and target/output data V(t), this section briefly

explains the formation of an overdetermined linear system for STRidge optimization

to identify various physical models from data.

The Burgers PDE given in Eq. 2.2 or any other PDE under consideration can be

written in the form of linear system representation in terms of Θ(U) and V(t),

V(t) = Θ(U) · β, (2.10)

where β = [β1, β2, . . . , βNβ
] is coefficient vector of size RNβ where Nβ is number of

features (basis functions) in library Θ(U). Note that Θ(U) is an over-complete library
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(the number of measurements is greater than the number of features) and having rich

feature (column) space to represent the dynamics under consideration. Thus, we form

an overdetermined linear system in Eq. 2.10. The goal of STRidge is to find a sparse

coefficient vector β that only consists of active features, which best represent the

dynamics. The rest of the features are hard thresholded to zero. For example, in the

Burgers equation given by Eq. 2.2, STRidge ideally has to find the coefficient vector

β that corresponds to the features uux and u2x and simultaneously it should set all

other feature coefficients to zero.

= ×

� (�) Θ(�) �

 
nonzero 
entries

�

.   � � × ��measurements
�. � × 1 × 1��

Figure 2.3: Structure of compressive matrices with sparse non zero entries in coefficient
vector β. Red boxes in β vector correspond to active feature coefficients and all other
coefficients being set to zero.

The linear system defined in Eq. 2.10 can be solved for β using the ordinary least

squares (OLS) problem. But OLS minimization tries to form a functional relationship

with all the features in Θ(U) resulting in all non zero values in the coefficient vector

β. Thus solving Eq. 2.10 using OLS infers radically complex functional form to

represent the underlying PDE and generally results in overfitted models. Regularized

least square minimization can be applied to constraint the coefficients and avoid
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overfitting. Hence regularized LS optimization is preferred to identify the sparse

features (basis functions) along with their coefficient estimation. Typical estimation

of sparse coefficient vector with P non zero entries in β is shown in Fig. 2.3. General

sparse regression objective function to approximate the solution of the coefficient

vector β is given by,

β∗ = arg minβ ||Θ · β −V(t)||22 + λ||β||0, (2.11)

where λ is regularizing weight and ||β||0 corresponds to L0 penalty which makes the

problem np-hard. Hence to arrive at convex optimization problem of Eq. 2.12, L1 and

L2 penalty is generally used to approximate the solution of the coefficient vector β.

The addition of L1 penalty to LS objective function which corresponds to maximum

a posteriori estimate (MAP) of Laplacian prior and termed as least absolute shrinkage

and selection operator (LASSO) in compressive sensing. It is defined by,

β∗ = arg minβ ||Θ · β −V(t)||22 + λ||β||1. (2.12)

However, the performance of LASSO deteriorates when the feature space is corre-

lated (Rudy et al., 2017). The sequential threshold least squares (STLS) algorithm

was proposed to identify dynamical systems represented by ODEs (Brunton et al.,

2016). In STLS, a hard threshold is performed on least square estimates of regression

coefficients and hard threshold is recursively performed on remaining non zero coeffi-

cients. However, the efficacy of STLS reduces when dealing with the identification

of systems containing multiple correlated columns in Θ. Hence L2 regularized least

squares termed as ridge regression (Murphy, 2012), which corresponds to the maximum

a posteriori estimate using a Gaussian prior, is proposed to handle the identification
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of PDEs. Ridge regression is defined by,

β∗ = arg minβ ||Θ · β −V(t)||22 + λ||β||2,

= (ΘTΘ + λT I)−1ΘTV(t). (2.13)

Ridge regression is substituted for ordinary least squares in STLS and the resulting

algorithm as sequential threshold ridge regression (STRidge) (Rudy et al., 2017).

The STRidge framework (Rudy et al., 2017) is illustrated in Algorithm 1 for the

sake of completeness. Note that, if λ = 0, STRidge becomes STLS procedure. For

more elaborate details on updating tolerance (tol) to perform hard thresholding in

Algorithm 1, readers are encouraged to refer supplementary document of Rudy et al.

(2017).

Algorithm 1: STRidge(Θ, V(t), λ, tol, iters) (Rudy et al., 2017)

Input: Θ,V(t), λ, tol, iters
Output: β∗

β∗ = arg minβ ||Θ · β −V(t)||22 + λ||β||22
large = {p : |β∗

p | ≥ tol}
β∗[ large] = 0
β∗[large] = STRidge(Θ[:, large],V(t), λ, tol, iters− 1)
return β∗

We use the framework provided by Rudy et al. (2017) in our current study. The

hyper-parameters in STRidge include the regularization weight λ and tolerance level

tol which are to be tuned to identify appropriate physical models. In the present

study, the sensitivity of feature coefficients for various values of λ and the final value

of λ where the best model is identified is showed. The following sections deal with

various numerical experiments to test the GEP and STRidge frameworks.
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CHAPTER III

PDE Discovery

Table 3.1: Summary of canonical PDEs selected for recovery.

PDE Exact solution
Constant

parameters

Discretization
n (spatial)

m (temporal)

Wave eq.
ut = −aux u(t, x) = sin(2π(x− at)) a = 1.0

x ∈ [0, 1] (n = 101),
t ∈ [0, 1] (m = 101)

Heat eq.
ut = αu2x

u(t, x) = sin(x)exp(−αt) α = 1.0
x ∈ [−π, π] (n = 201),
t ∈ [0, 1]] (m = 101)

Burgers eq. (i)
ut = −uux + νu2x

u(t, x) =
x

(t+ 1)
(
1 + (

√
t+ 1)exp( 1

16ν
4x2−t−1
t+1

)
) ν = 0.01

x ∈ [0, 1] (n = 101),
t ∈ [0, 1] (m = 101)

Burgers eq. (ii)
ut = −uux + νu2x

u(t, x) =
2νπexp(−π2νt)sin(πx)

a+ exp(−π2νt)cos(πx)

ν = 0.01,
a = 5/4

x ∈ [0, 1] (n = 101),
t ∈ [0, 100] (m = 101)

Korteweg-de Vries eq.
ut = −αuux − βu3x u(t, x) = 12

(
4cosh(2x− 8t) + cosh(4x− 64t) + 3

(3cosh(x− 28t) + cosh(3x− 36t))2

)
α = 6.0,
β = 1.0

x ∈ [−10, 10] (n = 501),
t ∈ [0, 1] (m = 201)

Kawahara eq.
ut = −uux − αu3x − βu5x u(t, x) =

105

169
sech

(
1

2
√

13
(x− at)

)4 α = 1.0,
β = 1.0,

a = 36/169

x ∈ [−20, 20] (n = 401),
t ∈ [0, 1] (m = 101)

Newell-Whitehead-Segel eq.
ut = κu2x + αu− βuq u(t, x) =

1
(

1 + exp(
x√
6
− 5t

6
)

)2

κ = 1.0,
α = 1.0,
β = 1.0,
q = 2

x ∈ [−40, 40] (n = 401),
t ∈ [0, 2] (m = 201)

Sine-Gordon eq.
u2t = κu2x − αsin(u)

u(t, x) = 4tan−1(sech(x)t)
κ = 1.0,
α = 1.0

x ∈ [−2, 2] (n = 401),
t ∈ [0, 1] (m = 101)

Partial differential equations (PDEs) play a prominent role in all branches of science

and engineering. They are generally derived from conservation laws, sound physical

arguments, and empirical heuristic from an insightful researcher. The recent explosion

of machine learning algorithms provides new ways to identify hidden physical laws

represented by PDEs using only data. In this section, we demonstrate the identification

of various linear and nonlinear canonical PDEs using the GEP and STRidge algorithms

from using data alone. Analytical solutions of PDEs are used to form the data.
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Table 3.2: GEP hyper-parameters selected for identification of various PDEs.

Hyper-parameters Wave eq. Heat eq. Burgers eq. (i) Burgers eq. (ii)

Head length 2 2 4 2

Number of genes 1 2 1 2

Population size 25 25 20 50

Generations 100 100 500 500

Length of RNC array 10 10 30 5

Random constant minimum −10 −1 −1 −1

Random constant maximum 10 1 1 1

Table 3.3: GEP hyper-parameters selected for identification of various PDEs.

Hyper-parameters KdV eq. Kawahara eq. NWS eq. Sine-Gordon eq.

Head length 6 2 5 3

Number of genes 5 1 3 2

Population size 20 20 30 100

Generations 500 100 100 500

Length of RNC array 30 5 25 20

Random constant minimum 1 −1 −10 −10

Random constant maximum 10 1 10 10
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Table 3.1 summarizes various PDEs along with their analytical solutions u(t, x) and

domain discretization. Building a feature library and corresponding response data to

identify PDEs is discussed in detail in Chapter II.

Table 3.4: GEP functional and terminal set used for equation discovery. ‘?’ is a
random constant.

Parameter Value

Function set +,−,×, /, sin, cos

Terminal set Θ̃(U), ?

Linking function +

We reiterate the methodology for PDE identification in Chapter II. The analytical

solution u(t, x) is solved at discrete spatial and temporal locations resulting from the

discretization of space and time domains as given in Table 3.1. The discrete analytical

solution is used as input data for calculating higher order spatial and temporal data

using the finite difference approximations listed in Eq. 2.4. Furthermore, the feature

library is built using discrete solution u(t, x) and higher order derivative which is

discussed in Chapter II. As GEP is a natural feature extractor, core feature library

Θ̃(U) given in Eq. 2.5 is enough to form input data, i.e., GEP terminal set. Table 3.4

shows the function set and terminal set used for equation identification and Table 2.1

lists the hyper-parameter values for various genetic operators. However, extended

core feature library Θ(U) which contains a higher degree interactions of features is

used as input for STRidge as the expressive power of STRidge depends on exhaustive

combinations of features in the input library. The temporal derivative of u(t, x) is

target or response data V(t) given in Eq. 2.5 for both GEP and STRidge.

3.1 Wave Equation

Our first test case is the wave equation which is a first order linear PDE. The PDE

and its analytical solution are listed in Table 3.1. We choose the constant wave speed

27



a = 1.0 for propagation of the solution u(t, x). Fig. 3.1 shows the analytical solution

u(t, x) of the wave equation. The GEP hyper-parameters used for identification of

the wave equation are listed in Table 3.2. We use a smaller head length and a single

gene for simple cases like a linear wave PDE. We note that any other combinations of

hyper-parameters may identify the underlying PDE. Fig. 3.2 illustrates the identified

PDE in the ET form. When the ET form is simplified, we can show that the resulting

equation is the correct wave PDE, identified with its wave propagation speed parameter

a.
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Figure 3.1: Analytical solution of the wave equation.

The regularization weight (λ) in STRidge is swept across various values as shown

in Fig. 3.3. The yellow line in Fig. 3.3 represents the value of λ at which the best

identified PDE is selected. Note that in this simple case STRidge was able to find the

wave equation for almost all the values of λ’s that are selected. Table 3.5 shows the

wave PDE recovered by both GEP and STRidge.
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Table 3.5: Wave equation identified by GEP and STRidge.

Recovered Test error

True ut = −1.00 ux

GEP ut = −1.00 ux 1.72× 10−28

STRidge ut = −1.00 ux 9.01× 10−29

+

×

−1 −

ux −6

6

Figure 3.2: Wave equation in terms of ET identified by GEP.
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Figure 3.3: STRidge coefficients as a function of regularization parameter λ for the
wave equation.
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3.2 Heat Equation

We use the heat equation which is a second order linear PDE to test both SR

approaches. The PDE and its analytical solution is listed in Table 3.1. The physical

parameter α = 1.0 may represent thermal conductivity. Fig. 3.4 displays the analytical

solution u(t, x) of the heat equation. Table 3.2 lists the GEP hyper-parameters used

for identification of the heat equation. Fig. 3.5 shows the identified PDE in the form

of an ET. When the ET form is simplified, we can show that the resulting model is

the heat equation identified with its coefficient α.
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Figure 3.4: Analytical solution of the heat equation.

The regularization weight (λ) in STRidge is swept across various values as shown

Fig. 3.6. The yellow line in Fig. 3.6 represents the value of λ selected at which STRidge

finds the heat equation accurately. Note that STRidge was able to find the heat

equation for low values of the regularization weight λ as shown in Fig. 3.6. Table 3.6

shows the heat equation recovered by both GEP and STRidge. STRidge was able to

find a more accurate coefficient (α) value than GEP. Furthermore, a small constant

value is also identified along with the heat equation by GEP.
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Table 3.6: Heat equation identified by GEP and STRidge.

Recovered Test error

True ut = 1.00 u2x

GEP ut = 0.99 u2x − 5.33× 10−15 5.55× 10−24

STRidge ut = 1.00 u2x 4.09× 10−30

+

×

−0.99 −

u2x −9

8.99

Figure 3.5: Heat equation in terms of ET identified by GEP.
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Figure 3.6: STRidge coefficients as a function of regularization parameter λ for the
heat equation.
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3.3 Burgers Equation (i)

Burgers equation is a fundamental nonlinear PDE occurring in various areas such as

fluid mechanics, nonlinear acoustics, gas dynamics and traffic flow Bateman (1915);

Whitham (2011). The interest in the Burgers equation arises due to the non linear

term uux and presents a challenge to both GEP and STRidge in the identification of its

PDE using data. The form of the Burgers PDE and its analytical solutionMaleewong

and Sirisup (2011) is listed in Table 3.1. The physical parameter ν = 0.01 can be

considered as the kinematic viscosity in fluid flows. Fig. 3.7 shows the analytical

solution u(t, x) of the Burgers equation. Table 3.2 shows the GEP hyper-parameters

used for identification of the Burgers equation. Fig. 3.8 shows the identified PDE in

the form of the ET. When ET form is simplified, we can show that the resulting model

is the Burgers equation identified along with the coefficient of the nonlinear term and

the kinematic viscosity. GEP uses more generations for identifying the Burgers PDE

due to its nonlinear behavior along with the identification of feature interaction term

uux.
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Figure 3.7: Analytical solution of the Burgers equation (i).
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The regularization weight (λ) in STRidge is swept across various values as shown

in Fig. 3.9. The yellow line in Fig. 3.9 represents the value of λ at which the best

identified PDE is selected. Note that the STRidge algorithm was able to find the

Burgers equation at multiple values of regularization weights λ. Table 3.7 shows the

Burgers PDE recovered by both GEP and STRidge. There is an additional constant

coefficient term recovered by GEP. Furthermore, the recovery of the nonlinear term

using a limited set of input features shows the usefulness of GEP.

Table 3.7: Burgers equation (i) identified by GEP and STRidge.

Recovered Test error

True ut = −uux + 0.01 u2x

GEP ut = −uux + 0.01 u2x − 1.23× 10−5 6.10× 10−08

STRidge ut = −uux + 0.01 u2x 5.19× 10−08

+

×

−1 −

×

ux u

×

u2x 0.01

1.23× 10−5

Figure 3.8: Burgers equation (i) in terms of ET identified by GEP.

3.4 Burgers Equation (ii)

Burgers PDE with a different analytical solution is used to test the effectiveness

of GEP and STRidge as the input data is changed but represented by the same
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Figure 3.9: STRidge coefficients as a function of regularization parameter λ for the
Burgers equation (i).

physical law. The analytical solution of the Burgers equation (ii) is listed in Table 3.1.

The physical parameter ν = 0.01 is used to generate the data. Fig. 3.10 shows the

alternate analytical solution u(t, x) of the Burgers equation. Table 3.2 shows the GEP

hyper-parameters used for identification of the Burgers equation (ii). Fig. 3.11 shows

the identified PDE in the form of ET. When ET form is simplified, we can show that

the resulting model is the Burgers equation identified along with the coefficient of

nonlinear term and kinematic viscosity. With an alternate solution, GEP uses a larger

head length, more genes, and a larger population for identifying the same Burgers

PDE.

The regularization weight (λ) in STRidge is swept across various values as shown

Fig. 3.12. The yellow line in Fig. 3.12 represents the value of λ at which the best

identified PDE is selected. Note that STRidge was able to find the Burgers equation at

various values of regularization weight λ. Table 3.8 shows the Burgers PDE recovered

by both GEP and STRidge.
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Figure 3.10: Analytical solution of the Burgers equation (ii).

Table 3.8: Burgers equation (ii) identified by GEP and STRidge.

Recovered Test error

True ut = −1.00 uux + 0.01 u2x

GEP ut = −1.01 uux + 0.01 u2x − 3.33× 10−6 1.94× 10−09

STRidge ut = −0.99 uux + 0.01 u2x 1.85× 10−08
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Figure 3.11: Burgers equation (ii) in terms of ET identified by GEP.
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Figure 3.12: STRidge coefficients as a function of regularization parameter λ for the
Burgers equation (ii).
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3.5 Korteweg-de Vries (KdV) Equation

Korteweg and de Vries derived the KdV equation to model Russell’s phenomenon

of solitons Korteweg and de Vries (1895); Wazzan (2009). The KdV equation also

appears when modelling the behavior of magneto-hydrodynamic waves in warm

plasma’s, acoustic waves in an inharmonic crystal and ion-acoustic waves Ozis and

Ozer (2006). Many different forms of the KdV equation available in the literature but

we use the form given in Table 3.1. Fig. 3.13 shows the analytical solution u(t, x) of

the KdV equationLamb Jr (1980). It can be seen that this analytical solution refers

to two solutions colliding together which forms good test case for SR techniques like

GEP and STRidge. Table 3.3 shows the GEP hyper-parameters used for identification

of the KdV equation. Due to the higher nonlinear dynamics represented by higher

order PDE, GEP requires large head length and genes compared to other test cases in

equation discovery. Fig. 3.14 shows the identified PDE in the form of the ET. When

ET form is simplified, we can observe that the resulting model is the KdV equation

identified along with its coefficients.
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Figure 3.13: Analytical solution of the KdV equation.
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The regularization weight (λ) in STRidge is swept across various values as shown

Fig. 3.15. The yellow line in Fig. 3.15 represents the value of λ at which the best

identified PDE is selected. Note that STRidge was able to find the KdV equation at

various values of the regularization weights (λ). Table 3.9 shows the KdV equation

recovered by both GEP and STRidge. The physical model identified by STRidge is

more accurate to the true PDE than the model identified by GEP.

Table 3.9: KdV equation identified by GEP and STRidge.

Recovered Test error

True ut = −6.00 uux + 1.00 u3x

GEP ut = −5.96 uux + 0.99 u3x − 5.84× 10−4 0.29

STRidge ut = −6.04 uux + 1.02 u3x 0.02

×

−5.96 +

6 −

×

ux u

ux

−

−1 ×

6 6

×

1 ux

/

u3x 6

Figure 3.14: KdV equation in terms of ET identified by GEP.

3.6 Kawahara Equation

We consider the Kawahara equation, which is a fifth-order nonlinear PDE Kawahara

(1972) shown in Table 3.1. This equation is sometimes also referred to as a fifth-order

KdV equation or singularly perturbed KdV equation. The fifth-order KdV equation is

one of the most well known nonlinear evolution equation which is used in the theory

of magneto-acoustic waves in a plasma Kawahara (1972), capillary-gravity waves

38



10 1010 810 610 410 2

6

5

4

3

2

1

0

Co
ef

fic
ie

nt
s

u3x

uux

Figure 3.15: STRidge coefficients as a function of regularization parameter λ for the
KdV equation.

Kawahara et al. (1975) and the theory of shallow water waves Hunter and Scheurle

(1988). This test case is intended to test GEP and STRidge for identifying higher

order derivatives from observing data. We use an analytical solutionSirendaoreji (2004)

which is a traveling wave solution given in Table 3.1. This analytical solution also

satisfies the linear wave equation and hence both GEP and STRidge may recover a

wave PDE (not shown here) as this is the sparsest model represented by observed

data (Fig. 3.16). For simplifying the analysis, we remove the potential basis ux from

the feature library Schaeffer (2017) (Θ(U)) for STRidge and additionally include uux

basis in core feature library (Θ̃(U)) for GEP.

Table 3.3 shows the GEP hyper-parameters used for the identification of the

Kawahara equation. Due to simplifying the feature library, GEP requires smaller head

length and single gene. Fig. 3.17 shows the identified PDE in the form of ET. When

ET form is simplified, we can show that the resulting model is the Kawahara equation

identified correctly along with its coefficients. For STRidge, the regularization weight

(λ) is swept across various values as shown in Fig. 3.18. The yellow line in Fig. 3.18
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Figure 3.16: Analytical solution of the Kawahara equation.

represents the value of λ at which the best identified PDE is selected. Note that

STRidge was able to find the Kawahara equation at various values of regularization

weights (λ). Table 3.10 shows the Kawahara equation identified by both GEP and

STRidge.

Table 3.10: Kawahara equation identified by GEP and STRidge.

Recovered Test error

True ut = −1.0 uux − 1.00 u3x − 1.0 u5x

GEP ut = −1.0 uux − 1.00 u3x − 1.0 u5x − 8.27× 10−8 5.29× 10−11

STRidge ut = −1.0 uux − 0.99 u3x − 1.0 u5x 1.35× 10−12

3.7 Newell-Whitehead-Segel Equation

Newell-Whitehead-Segel (NWS) equation is a special case of the Nagumo equation

Zhi-Xiong and Ben-Yu (1992). Nagumo equation is a nonlinear reaction-diffusion

equation that models pulse transmission line simulating a nerve axon Nagumo et al.

(1962), population genetics Aronson and Weinberger (1978), and circuit theory Scott
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Figure 3.17: Kawahara equation in terms of ET identified by GEP.
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Figure 3.18: STRidge coefficients as a function of regularization parameter λ for the
Kawahara equation.
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(1963). The NWS equation and its analytical solution are shown in Table 3.1. We use

a traveling wave solution Dehghan and Fakhar-Izadi (2011) that satisfies both wave

and NWS equations (Fig. 3.19). We carry similar changes to the feature library that

was applied to discovering the Kawahara equation.
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Figure 3.19: Analytical solution of the NWS equation.

Table 3.3 shows the GEP hyper-parameters used for identification of the NWS

equation. However contrast to identifying the Kawahara equation with smaller head

length and single gene from simplifying the feature library, for NWS case GEP requires

larger head length and more genes for identifying PDE as shown in Table 3.3. This

is due to the identification of nonlinear interaction feature u2 that appears in the

NWS equation. Fig. 3.20 shows the identified PDE in the form of ET. When ET form

is simplified, we can show that the resulting model is the NWS equation identified

along with its coefficients. For STRidge, the regularization weight (λ) is swept across

various values as shown Fig. 3.21. The yellow line in Fig. 3.21 represents the value of

λ at which the best identified PDE is selected. Note that STRidge was able to find

the NWS equation at various values of regularization weights (λ). Table 3.11 shows
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the NWS equation identified by both GEP and STRidge.

Table 3.11: NWS equation identified by GEP and STRidge.

Recovered Test error

True ut = 1.00 u2x + 1.00 u− 1.00 u2

GEP ut = 0.99 u2x + 0.99 u− 0.99 u2 − 8.27× 10−8 3.02× 10−11

STRidge ut = 1.00 u2x + 0.99 u− 0.99 u2 1.36× 10−11

+

×
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u ×
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u2x u
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+

u ×

−3 3
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u u4x

−

u4x u

−8.99

Figure 3.20: NWS equation in terms of ET identified by GEP.

3.8 Sine-Gordon Equation

Sine-Gordon equation is a nonlinear PDE that appears in propagating of fluxions in

Josephson junctions Barone et al. (1971), dislocation in crystals Perring and Skyrme

(1962) and nonlinear optics Whitham (2011). Sine-Gordon equation has a sine term

that needs to be identified by GEP and STRidge by observing data (Fig. 3.22).

This test case is straight forward for GEP as the function set includes trigonometric

operators that help to identify the equation. However, the application of STRidge is

suitable if features library is limited to basic interactions and does not contain a basis

with trigonometric dependencies. STRidge may recover infinite series approximations
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Figure 3.21: STRidge coefficients as a function of regularization parameter λ for the
NWS equation.

if higher degree basic feature interactions are included in the feature library Brunton

et al. (2016). Note that the output or target data for the Sine-Gordon equation

consists of second order temporal derivative of velocity field u(t, x). Hence, V(t)

consists of u2t measurements instead of ut.

Table 3.3 shows the GEP hyper-parameters used for identifying the Sine-Gordon

equation. For our analysis, GEP found the best model when the larger population

size used. Fig. 3.23 shows the identified PDE in the form of ET. When ET form is

simplified, we can show that the resulting model is the Sine-Gordon equation identified

along with its coefficients. Table 3.12 shows the identified equation by GEP. This

test case demonstrates the usefulness of GEP in identifying models with complex

function composition and limitation of the expressive and predictive power of the

feature library in STRidge.
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Figure 3.22: Analytical solution of the Sine-Gordon equation.

Table 3.12: Sine-Gordon equation identified by GEP.

Recovered Test error

True u2t = 1.00 u2x − 1.00 sin(u)

GEP u2t = 0.99 u2x − 0.99 sin(u)− 1.82× 10−5 1.57× 10−4
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Figure 3.23: Sine-Gordon equation in terms of ET identified by GEP.
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CHAPTER IV

Truncation Error Analysis

This section deals with constructing a modified differential equation (MDE) for the

Burgers equation. We aim at demonstrating both GEP and STRidge techniques

as SR tools in the identification of truncation errors resulting from an MDE of the

Burgers nonlinear PDE. MDEs provide valuable insights into discretization schemes

along with their temporal and spatial truncation errors. Initially, MDE analysis was

developed to connect the stability of nonlinear difference equations with the form of

the truncation errorsHirt (1968). In continuation, the symbolic form of MDEs were

developed and a key insight was proposed that only the first few terms of the MDE

dominate the properties of the numerical discretizationRitchmyer and Norton (1967).

These developments of MDE analysis lead to increasing accuracy by eliminating

leading order truncation error termsKlopfer and McRae (1983), improving stability

of schemes by adding artificial viscosity terms Majda and Osher (1978), preserving

symmetriesOzbenli and Vedula (2017b,a), and ultimately sparse identification of

truncation errorsThaler et al. (2019). Therefore, MDE analysis plays a prominent role

in implicit large eddy simulations (ILES) Adams et al. (2004) as truncation errors are

shown to have inherent turbulence modelling capabilitiesMargolin and Rider (2002).

Discretization schemes are tuned in the ILES approach as to model the subgrid scale

tensor using truncation errors. As the construction of MDEs becomes cumbersome

and intractable for complex flow configurations, data driven SR tools such as GEP

and STRidge can be exploited for the identification of MDEs by observing the data.

For demonstration purposes, we begin by constructing an MDE of the Burgers
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Table 4.1: GEP hyper-parameters selected for identification of truncation error terms
of MDEs.

Hyper-parameters Burgers eq. (i) Burgers eq. (ii)

Head length 8 8

Number of genes 5 4

Population size 70 70

Generations 1000 1000

Length of RNC array 20 20

Random constant minimum 1.0× 10−6 1.0× 10−5

Random constant maximum 0.01 0.01

equation,

ut + uux = νu2x, (4.1)

and discretizing Eq. (4.1) using first order schemes (i.e., forward in time and backward

in space approximations for the spatial and temporal derivatives, respectively) and a

second order accurate central difference approximation for the second order spatial

derivatives. The resulting discretized Burgers PDE is shown below,

up+1
j − upj
dt

+ upj
upj − upj−1

dx
= ν

upj+1 − 2upj + upj−1

dx2
, (4.2)

where temporal and spatial steps are given by dt and dx, respectively. In Eq. 4.2, the

spatial location is denoted using subscript index j and the temporal snapshot using

superscript index p.

To derive the modified differential equation (MDE) of the Burgers PDE, we
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substitute the Taylor approximations for each term,

up+1
j = upj + dt(ut)

p
j +

dt2

2
(u2t)

p
j +

dt3

6
(u3t)

p
j + . . .

upj+1 = upj + dx((ux))
p
j +

dx2

2
(u2x)

p
j +

dx3

6
(u3x)

p
j + . . .

upj−1 = upj − dx(ux)
p
j +

dx2

2
(u2x)

p
j −

dx3

6
(u3x)

p
j + . . .





(4.3)

When we substitute these approximations into Eq. 4.2, we obtain the Burgers MDE

as follows,

(ut + uux − νu2x)pj = −R, (4.4)

where R represents truncation error terms of the Burgers MDE given as,

R =
dt

2
(u2t)

p
j +

dx

2
(uux)

p
j −

νdx2

12
(u4x)

p
j +O(dt2, dx4). (4.5)

Furthermore, temporal derivative in Eq. 4.5 is substituted with spatial derivatives

resulting in,

R = dtuu2x − dtνuxu2x − dtνuu3x −
dx

2
uu2x +

dt

2
u2u2x −

νdx2

12
u4x

+O(dt2, dx4). (4.6)

The truncation error or residual of discretized equation considering u(t, x) as exact

solution to the Burgers PDE is equal to the difference between the numerical scheme

(Eq. 4.2) and differential equation (Eq. 4.1)Hirsch (2007). This results in discretized

equation with residual as shown below,

up+1
j − upj + upjdt

upj − upj−1

dx
− νdt

upj+1 − 2upj + upj−1

dx2
= Rdt. (4.7)

We follow the same methodology for constructing the output data and feature library

as discussed in Chapter II for the equation discovery. However, the output or target
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data V(t) is stored with the left hand side of Eq. 4.7 denoted from now as Uer. The

resulting output and core feature library are shown below,

V(t) =

[
Uer

]

Θ̃(U) =

[
U Ux U2x U3x U4x

]




. (4.8)

The computation of the output data V(t) in Eq. 4.8 can be obtained using the

analytical solution of the Burgers PDE. Furthermore, the derivatives in core feature

library Θ̃(U) are calculated using the finite difference approximations given by Eq. 2.4.

We use both analytical solutions listed in Table 3.1 for the Burgers equation (i) and

the Burgers equation (ii) to test GEP and STRidge for recovering truncation error

terms.

We use the same extended feature library Θ̃(U) as input to STRidge given in

Eq. 2.7, but without the fifth order derivative. However, we add additional third

degree interaction of features to Θ̃(U) to recover the truncation error terms containing

third degree nonlinearities. The extra nonlinear features that are added to Θ̃(U) are

given below,

[U2Ux U2U2x U2U3x U2U4x

UU2
x UUxU2x UUxU3x UUxU4x].

In contrast, GEP uses the core feature Θ̃(U) as input as it identifies the higher order

nonlinear feature interactions automatically. This test case shows the natural feature

extraction capability of GEP and need to modify the feature library to increase the

expressive power of STRidge. The functional and terminal sets used for truncation

error identification are listed in Table 4.2.
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Table 4.2: GEP functional and terminal sets used for truncation error term recovery.
‘?’ is a random constant.

Parameter Value

Function set +,−,×
Terminal set Θ̃(U), ?

Linking function +

+

×

0.1 +

×

−1.323× 10−4 ×

u2x u

×

−

×

2 ux ux

×

u u3x

×

u 1.133× 10−4

×

−5.092× 10−6 ×

u2x ux

×

−3.423× 10−6 ×

u3x u

×

−1.383× 10−6 u4x

−8.57× 10−17

Figure 4.1: Truncation error of the Burgers MDE using analytical solution of the
Burgers equation (i) in terms of ET identified by GEP.
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Figure 4.2: STRidge coefficients as a function of regularization parameter λ for
truncation error of the Burgers MDE (i).
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4.1 Burger Equation (i)

First, we test the recovery of truncation errors using the analytical solution of the

Burgers equation (i) with the same spatial and temporal domain listed in Table 3.1.

However, we set spatial discretization to be dx = 0.005 and temporal discretization

to dt = 0.005 for storing the analytical solution u(t, x). This test case needs a

large population size, bigger head length, more genes and more iterations as given

in Table 4.1, as the truncation error terms consist of nonlinear combinations of

features and the coefficients of error terms that are generally difficult for GEP to

identify. Fig. 4.1 shows the ET form of the identified truncation error terms. The

regularization weight λ for STRidge is swept across a range of values as shown in

Fig. 4.2. The vertical yellow line in Fig. 4.2 is the value of λ where STRidge identifies

the best truncation error model. Table 4.3 shows the recovered error terms by GEP

and STRidge along with their coefficients. Both GEP and STRidge perform well

in identifying the nonlinear spatial error terms with STRidge predicting the error

coefficient better than GEP.

4.2 Burger Equation (ii)

In the second case, we test the recovery of truncation errors using an analytical solution

of the Burgers eq. (ii) with the same spatial and temporal domain listed in Table 3.1.

We select the spatial discretization dx = 0.005 and the temporal discretization dt = 0.1

for propagating the analytical solution u(t, x). This test case also follows the previous

case where a large population size, bigger head length, more genes, and more iterations

are needed as shown in Table 4.1. Fig. 4.3 shows the ET form of identified truncation

error terms. The regularization weight λ for STRidge is swept across a range of values

as shown in Fig. 4.4. In this test case, the coefficients change rapidly in respect to λ,

and the best model is recovered only at the value of λ shown by the vertical yellow

line in Fig. 4.4. Table 4.4 shows the recovered error terms by GEP and STRidge
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along with their coefficients. Similar to the previous test case, STRidge predicts the

truncation error coefficients better than GEP.

Table 4.3: Identified truncation error terms along with coefficients for the Burgers
MDE (i) by GEP and STRidge.

True GEP Relative error (%) STRidge Relative error (%)

uu2x 2.5× 10−5 2.26× 10−5 9.6 2.48× 10−5 0.8

uxu2x −5.0× 10−7 −5.09× 10−7 1.8 −5.02× 10−7 0.4

uu3x −2.5× 10−7 −3.42× 10−7 36.8 −2.29× 10−7 8.4

u2u2x 1.25× 10−5 1.13× 10−5 9.6 1.22× 10−5 2.4

u4x 1.25× 10−9 1.38× 10−9 10.4 1.16× 10−9 7.2

uu2x −1.25× 10−5 −1.33× 10−5 6.4 −1.24× 10−5 0.8

+

×

5.25× 10−2 +

×

−0.00504 ×

u2x ux

×

+

×

ux ×

1.950 ux

×

u u2x

×

u 0.0801

×

+

u2x ×

u3x 2.819× 10−3

×

u −0.00558

×

1.1344× 10−5 u4x

−2.71× 10−09

Figure 4.3: Truncation error term of the Burgers MDE using analytical solution of
the Burgers equation (ii) in terms of ET identified by GEP.

Table 4.4: Identified truncation error terms along with coefficients for the Burgers
MDE (ii) by GEP and STRidge.

True GEP Relative error (%) STRidge Relative error (%)

uu2x 1.0× 10−2 8.19× 10−3 18.1 9.92× 10−3 0.8

uxu2x −2.0× 10−4 −2.64× 10−4 32.0 −1.99× 10−4 0.5

uu3x −1.0× 10−4 −1.55× 10−4 55.0 −9.91× 10−5 0.9

u2u2x 5.0× 10−3 4.21× 10−3 15.8 5.08× 10−3 1.6

u4x 5.0× 10−7 5.65× 10−7 13.0 4.94× 10−7 1.2

uu2x −2.5× 10−4 −2.75× 10−4 10 −2.54× 10−4 1.6
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Figure 4.4: STRidge coefficients as a function of regularization parameter λ for
truncation error of the Burgers MDE (ii).
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CHAPTER V

Hidden Physics Discovery

In this section, we demonstrate the identification of hidden physical laws from sparse

data mimicking sensor measurements using GEP and STRidge. Furthermore, we

demonstrate the usefulness of GEP as a natural feature extractor that is capable of

identifying complex functional compositions. However, STRidge in its current form

is limited by its expressive power which depends on its input feature library. Many

governing equations of complex systems in the modern world are only partially known

or in some cases still awaiting first principle equations. For example, atmospheric

radiation models or chemical reaction models might be not fully known in governing

equations of environmental systemsKrasnopolsky and Fox-Rabinovitz (2006a,b). These

unknown models are generally manifested in the right hand side of the known governing

equations (i.e., dynamical core) behaving as a source or forcing term. The recent

explosion of rapid data gathering using smart sensorsDhingra et al. (2019) has enabled

researchers to collect data that the true physics of complex systems but their governing

equations are only known partially. To this end, SR approaches might be able to

recover these unknown physical models when exposed to data representing full physics.

To demonstrate the proof of concept for identification of unknown physics, we

formulate a 1D advection-diffusion PDE and a 2D vortex-merger problem. These

problems include a source term that represents the hidden physical law. We generate

synthetic data that contains true physics and substitute this data set in to the known

governing equations. This results in an unknown physical model left as a residual that

must be recovered by GEP when exposed to a target or output containing the known
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part of the underlying processes. Furthermore, both GEP and STRidge are tested

to recover eddy viscosity kernels for the 2D Kraichnan turbulence problem. These

eddy viscosity kernels are manifested as source terms in the LES equations that model

unresolved small scales. Additionally, the value of the ad-hoc free modelling parameter

that controls the dissipation in eddy viscosity models is also recovered using GEP and

STRidge.

Table 5.1: GEP hyper-parameters selected for identifying source terms for the 1D
advection-diffusion and the 2D vortex-merger problem.

Hyper-parameters 1D advection-diffusion eq. 2D vortex-merger problem

Head length 6 5

Number of genes 2 3

Population size 50 50

Generations 1000 500

Length of RNC array 5 8

Random constant minimum
π

4
−π

Random constant maximum π π

5.1 1D Advection-Diffusion PDE

In the first test case, we consider a 1D non-homogeneous advection-diffusion PDE

which appears in many areas such as fluid dynamics Kumar (1983), heat transfer

Isenberg and Gutfinger (1973), and mass transfer Guvanasen and Volker (1983). The

non-homogeneous PDE takes the form,

ut + cux = αu2x + S(t, x), (5.1)

where c =
1

3π
, α =

1

4
and S(t, x) is the source term.

We use an analytical solution u(t, x) for solving Eq. 5.1. The exact solution for
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this non-homogeneous PDE is as follows,

u(t, x) = exp

(
π2t

4

)
sin(πx), (5.2)

where the spatial domain x ∈ [0, 1] and the temporal domain t ∈ [0, 1]. We discretize

the space and time domains with n = 501 and m = 1001, respectively. Fig. 5.1 shows

the corresponding analytical solution u(t, x).

The source term S(t, x), which satisfies Eq. 5.1 for the analytical solution provided

by Eq. 5.2, is given as,

S(t, x) =
π2

2
exp

(
π2t

4

)
sin(πx) +

1

3
exp

(
π2t

4

)
cos(πx). (5.3)

Our goal is to recover this hidden source term once the solution u(t, x) is available

either by solving the analytical equation given by Eq. 5.2 or by sensor measurements

in real world applications. Furthermore, we select 64 random sparse spatial locations

to mimic experimental data collection. After the solution u(t, x) is stored at selected

sparse spatial locations, we follow the same procedure for constructing output data

and feature building as discussed in Chapter II. The corresponding output data V

and feature library for recovering source term using GEP are given as,

V =

[
Ut + cUx − αU2x

]

Θ̃ =

[
x t

]




. (5.4)

The derivatives in the output data V are calculated using Eq. 2.4. Hence, to calculate

spatial derivatives, we also store additional stencil data u(t, x) around the randomly

selected sparse locations (u)pj i.e, (u)pj+1 ,(u)pj−1. Table 5.2 gives the functional and

terminal sets used by GEP to recover the source term S(t, x) given in Eq. 5.3.

Table 5.1 lists the hyper-parameters used by GEP for recovering source term of the
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Figure 5.1: Solution to the 1D advection-diffusion PDE with source term.

Table 5.2: GEP functional and terminal sets used for source term identification. ‘?’ is
a random constant.

Parameter Value

Function set +,−,×, /, exp, sin, cos

Terminal set Θ̃, ?

Linking function +
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1D advection-diffusion equation. As the hidden physical law given in Eq. 5.3 consists

of complex functional compositions, GEP requires a larger head length, and more

generations are required by GEP for identification. The ET form of the source term

S(t, x) found by GEP is shown in Fig. 5.2. The identified source term after simplifying

the ET form found by GEP is listed in Table 5.3. GEP was able to identify the source

term S(t, x) given in Eq. 5.3 from sparse data.

+

+

×

×

4.932 sin

×

x 3.141

exp

×

t 2.466

×

×

0.333 cos

×

x 3.141

exp

×

t 2.466

−3.122× 10−5

Figure 5.2: Hidden source term of the 1D advection-diffusion PDE in terms of ET
identified by GEP.

Table 5.3: Hidden source term (S) of the 1D advection-diffusion PDE identified by
GEP.

Recovered Test error

True S = 4.93 exp(2.47 t) sin(3.14 x) + 0.33 exp(2.47 t) cos(3.14 x)

GEP S = 4.93 exp(2.46 t) sin(3.14 x) + 0.33 exp(2.46 t) cos(3.14 x)− 3.12× 10−5 3.34× 10−7

5.2 2D Vortex-Merger Problem

In this section, we demonstrate the recovery of hidden physical law from the data

generated by solving the vortex-merger problem with source terms. The initial two
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vortices merge to form a single vortex when they are located within a certain critical

distance from each other. This two-dimensional process is one of the fundamental

processes of fluid motion and it plays a key role in a variety of simulations, such as

decaying two-dimensional turbulenceMeunier et al. (2005); San and Staples (2012)

and mixing layersSan and Staples (2013). This phenomenon also occurs in other fields

such as astrophysics, meteorology, and geophysicsReinaud and Dritschel (2005). The

Vortex-merger problem is simulated by using the 2D incompressible Navier-Stokes

equations in the domain with periodic boundary conditions.

We specifically solve the system of PDEs called vorticity-streamfunction formu-

lation. This system of PDEs contains the vorticity transport equation derived from

taking the curl of the 2D incompressible Navier-Stokes equations and the Poisson

equation representing the kinematic relationship between the streamfunction (ψ) and

vorticity (ω). The resulting vorticity-streamfunction formulation with source term is

given as,

ωt + J(ω, ψ) =
1

Re
∇2ω + S(t, x, y)

∇2ψ = −ω





(5.5)

where the Reynolds number is set to Re = 2000. In Eq. 5.5, S(t, x, y) is the source term

and J(ω, ψ) is the Jacobian term given as ψyωx−ψxωy. We use the Cartesian domain

(x, y) ∈ [0, 2π] × [0, 2π] with a spatial resolution of 128 × 128. The initial vorticity

field consisting of a co-rotating vortex pair is generated using the superposition of two

Gaussian-distributed vortices given by,

ω(0, x, y) = Γ1exp
(
−ρ
[
(x− x1)2 + (y − y1)2

])

+ Γ2exp
(
−ρ
[
(x− x2)2 + (y − y2)2

])
, (5.6)

where the circulation Γ1 = Γ2 = 1, the interacting constant ρ = π and the intial

vortex centers are located near each other with coordinates (x1, y1) = (3π
4
, π) and
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(x2, y2) = (5π
4
, π). We choose the source term S(t, x) as,

S(t, x, y) = Γ0sin(x)cos(y)exp

(−4π2

Re
t

)
, (5.7)

where the magnitude of the source term is set to Γ0 = 0.01.

The vorticity field ω and streamfunction fieldψ are obtained by solving the Eq. 5.5

numerically. We use a third-order Runge-Kutta scheme for the time integration, and

a second order Arakawa scheme Arakawa (1966) for the discretization of the Jacobian

term J(ω, ψ). As we have a periodic domain, we use a fast Fourier transform (FFT)

for solving the Poisson equation in Eq. 5.5 to obtain the streamfunction at every time

step. Numerical details for solving the vortex-merger problem can be found in San et

alSan and Staples (2013); Pawar and San (2019). We integrate the solution from time

t = 0 to t = 20 with a temporal step dt = 0.01.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

t = 0.0
0 1 2 3 4 5 6

t = 20.0

0.08 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64

Figure 5.3: The 2D vortex-merger problem with source term at time t = 0.0 and
t = 20.0. The red markers shows 64 random sensor locations used to collect vorticity
(ω) and streamfunction (ψ) data for recovering source term S(t, x, y).
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Fig. 5.3 shows the merging process of two vortices at the initial and final times.

The red markers in Fig. 5.3 are 64 randomly selected sparse locations to collect both

streamfunction ψ and vorticity ω data. Once the streamfunction and vorticity data at

sparse locations are available, we can construct the target data V and feature library

Θ̃ as discussed in Chapter II. The resulting input-response data is given as,

V =

[
ωt + J(ω, ψ)− 1

Re
∇2ω

]

Θ̃ =

[
x y t

]




. (5.8)

The derivatives in the output data V(t) are calculated using finite difference

approximations similar to Eq. 2.4. As streamfunction (ψ)pi,j and vorticity (ω)pi,j data

are selected only at sparse spatial locations, we also store the surrounding stencil, i.e.,

(ψ)pi+1,j, (ψ)pi−1,j, (ψ)pi,j+1, (ψ)pi,j−1, and (ω)pi+1,j, (ω)pi−1,j, (ω)pi,j+1, (ω)pi,j−1 in order to

calculate the derivatives. The index i represents spatial location in x direction, and j

represents spatial location in y direction.

In this test case, we demonstrate the identification of hidden physics which is

the source term S(t, x, y) given by Eq. 5.7 from the data obtained at sparse spatial

locations using GEP. Table 5.1 lists the hyper-parameters used by GEP to recover

the hidden physical law. We use the same function and terminal sets as shown in

Table 5.2 but × is used as a linking function. Fig. 5.4 shows the ET form of hidden

physical law (source term) obtained by GEP. Simplification of the ET form shows the

identified source term which is close to true source term as shown in Table 5.4.

Table 5.4: Hidden source term (S) of the 2D vortex-merger problem identified by
GEP.

Recovered Test error

True S = 0.0100 sin(x) cos(y) exp(−0.078 t)

GEP S = 0.0099 sin(x) cos(y) exp(−0.078 t)− 1.47× 10−6 1.35× 10−8

The 1D advection-diffusion and 2D vortex-merger problem demonstrate the use-
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−1

−1.47× 10−6

Figure 5.4: Hidden source term of the 2D vortex-merger problem in terms of ET
identified by GEP.
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fulness of GEP in recovering hidden physics, i.e., a source term that composed of

complex functions using randomly selected sparse data. The expressive power of the

feature library limits the applications of STRidge for identifying complex composition

models. However, STRidge might be able to identify the infinite series approximations

of these nonlinear functions Brunton et al. (2016). In the next test case, we use both

STRdige and GEP to identify eddy viscosity kernels along with their free modelling

coefficient that controls the dissipation of these kernels.
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CHAPTER VI

Subgrid Scale Modelling

6.1 2D Kraichnan Turbulence

The concept of two-dimensional turbulence helps in understanding many complex phys-

ical phenomenon such as geophysical and astrophysical flowsBoffetta and Musacchio

(2010); Boffetta and Ecke (2012). The equations of two-dimensional turbulence can

model idealized flow configurations restricted to two-dimensions such as flows in rapidly

rotating systems and in thin films over rigid bodies. The physical mechanism associated

with the two-dimensional turbulence is explained by the Kraichnan-Batchelor-Leith

(KBL) theoryKraichnan (1967); Batchelor (1969); Leith (1971). Generally, large eddy

simulation (LES) is performed for both two and three dimensional flows to avoid the

fine resolution and thereby computational requirements of direct numerical simula-

tion (DNS) Piomelli (1999); Meneveau and Katz (2000). In LES, the flow variables

are decomposed into resolved low wavenumber (or large scale) and unresolved high

wavenumber (or small scale). This is achieved by the application of a low pass spatial

filter to the flow variables. By arresting high wavenumber content (small scales),

we can reduce the high resolution requirement of DNS, and hence faster simulations

and reduced storage requirements. However, the procedure of introducing a low pass

filtering results in an unclosed term for the LES governing equations representing the

finer scale effects in the form of a source term.

Thus the quality of LES depends on the modeling approach used to close the

spatial filtered governing equations to capture the effects of the unresolved finer

scalesSagaut (2006). This model also called the subgrid scale model is a critical part
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of LES computations. A functional or eddy viscosity approach is one of the popular

approaches to model this closure term. These approaches propose an artificial viscosity

to mimic the dissipative effect of the fine scales. Some of the popular functional models

are the Smagorinsky Smagorinsky (1963), Leith Leith (1968), Balwin-LomaxBaldwin

and Lomax (1978) and Cebeci-smith modelsSmith and Cebeci (1967). All these models

require the specification of a model constant that controls the quantity of dissipation

in the simulation, and its value is often set based on the nature of the particular flow

being simulated. In this section, we demonstrate the identification of an eddy viscosity

kernel (model) along with its ad-hoc model constant from observing the source term of

the LES equation using both GEP and STRidge as robust SR tools. To this end, we

use the vorticity-streamfunction formulation for two-dimensional fluid flows given in

Eq. 5.5. We derive the LES equations for the two dimensional Kraichnan turbulence

by applying a low pass spatial filter to the vorticity-streamfunction PDE given in

Eq. 5.5. The resulting filtered equation is given as,

ωt + J(ψ, ω) =
1

Re
∇2ω, (6.1)

where Re is the Reynolds number of the flow and J(ω, ψ) is the Jacobian term given

as ψyωx − ψxωy. Furthermore the Eq. 6.1 is rearranged as,

ωt + J(ψ, ω),=
1

Re
∇2ω + Π, (6.2)

where the LES source term Π is given as,

Π = J(ψ, ω)− J(ψ, ω). (6.3)

The source term Π in Eq. 6.3 represents the influence of the subgrid scales on

larger resolved scales. The term J(ψ, ω) is not available, which necessitates the use of
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a closure modelling approach. In functional or eddy viscosity models, the source term

of LES equations is represented as,

Π = νe∇2ω. (6.4)

where eddy viscosity νe is given by, but not limited to, the Smagorinsky, Leith,

Baldwin-Lomax, and Cebeci-Smith kernels. The choice of these eddy viscosity kernels

essentially implies the choice of a certain function of local field variables such as the

strain rate or gradient of vorticity as a control parameter for the magnitude of νe.

Table 6.1: GEP functional and terminal sets used for identifying eddy viscosity kernel.
‘?’ is a random constant.

Parameter Value

Function set +,−,×, /
Terminal set Θ̃, ?

Linking function +

In Smagorisnky model, the eddy viscosity kernel is given by,

νe = (csδ)
2|S|, (6.5)

where cs is a free modelling constant that controls the magnitude of the dissipation

and δ is a characteristic grid length scale given by the square root of the product of

the cell sizes in each direction. The |S| is based on the second invariant of the filtered

field deformation, and given by,

|S| =
√

4ψ2
xy + (ψ2x − ψ2y)2, (6.6)

The Leith model proposes that eddy viscosity kernel is a function of vorticity and
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given as,

νe = (csδ)
3|∇ω|, (6.7)

where |∇ω| controls the dissipative character of the eddy viscosity as against the

resolved strain rate used in the Smagorinsky model. The magnitude of the gradient of

vorticity is defined as,

|∇ω| =
√
ω2
x + ω2

y. (6.8)

Table 6.2: GEP hyper-parameters selected for identification of the eddy viscosity
kernel for the Kraichnan turbulence.

Hyper-parameters Kraichnan turbulence

Head length 2

Number of genes 2

Population size 20

Generations 500

Length of RNC array 3

Random constant minimum −1

Random constant maximum 1

The Baldwin-Lomax is an alternative approach that models the eddy viscosity

kernel as,

νe = (csδ)
2|ω|, (6.9)

where |ω| is the absolute value of the vorticity considered as a measure of the local

energy content of the flow at a grid point and also a measure of the dissipation required

at that location.

The Cebeci-Smith model was devised for the Reynolds Averaged Navier-Stokes

(RANS) applications. The model is modified for LES setting, and is given as,

νe = (csδ)
2|Ω|, (6.10)

68



+

×

−0.0001276 +

×

∣∣S
∣∣ wyy

×

∣∣S
∣∣ wxx

−0.3627

Figure 6.1: Samgorisnsky kernel in terms of ET identified for the two-dimensional
Kraichnan turbulence problem by GEP.

where |Ω| is given as,

|Ω| =
√
ψ2

2x + ψ2
2y. (6.11)

Table 6.3: LES source term (Π) for two-dimensional Kraichnan turbulence problem
identified by GEP and STRidge.

Recovered

GEP Π = 0.000128 |S| w2x + 0.000128 |S| w2y − 0.362

STRidge Π = 0.000132 |S| w2x + 0.000129 |S| w2y

High fidelity DNS simulations are performed for Eq. 6.1. We use a square domain

of length 2π with periodic boundary conditions in both directions. We simulate

homogeneous isotropic decaying turbulence which may be specified by an initial energy

spectrum that decays through time. High fidelity DNS simulations are carried out

for Re = 4000 with 1024× 1024 resolution from time t = 0 to t = 4.0 with time step
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0.001. The filtered flow quantities and LES source term Π in Eq. 6.3 are obtained

from coarsening the DNS quantities to obtain quantities with a 64 × 64 resolution.

The further details of solver and coarsening can be found in San and StaplesSan and

Staples (2012). Once the LES source term Π in Eq. 6.3 and filtered flow quantities

are obtained, we build the feature library and output data similar to the discussion in

Chapter II. The resulting input-response data is given as,

V =

[
Π

]

Θ̃ =

[
ω2x ω2y |S| |∇ω| |ω| |Ω|

]




. (6.12)

GEP uses the output and feature library given in Eq. 6.12 to automatically extract

the best eddy viscosity kernel for decaying turbulence problems along with the model’s

ad-hoc coefficient.
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Figure 6.2: STRidge coefficients as a function of regularization parameter λ for the
two-dimensional Kraichnan turbulence problem.

The extended feature library is constructed to include nonlinear interactions up to

the quadratic degree to expand the expressive power for the STRidge algorithm. The
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Figure 6.3: Controur plots for the two-dimensional Kraichnan turbulence problem at
t = 4. SR refers to the identified model of the Smagorinsky kernel with cs = 0.12.
UDNS and FDNS refer to the no-model and filtered DNS simulations, respectively.
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resulting extended feature library is given as,

Θ =

[
1 ω2x ω2x

2 ω2y ω2xω2y ω2y
2 . . . |Ω|2

]
. (6.13)

The function and terminal sets used for identification of eddy viscosity kernel

by GEP are listed in Table 6.1. Furthermore, the hyper-parameters of GEP are

listed in Table 6.2. Both GEP and STRidge identify the Smagorinsky kernel with

approximately the same coefficients as shown in Table 6.3. The ET form of the

Smagorinsky kernel found by GEP is shown in Fig. 6.1. The regularization weight

λ is varied to recover multiple models of different complexity as shown in Fig. 6.2.

The yellow line in Fig. 6.2 corresponds to the value of λ where STRidge identifies

the Smagorinsky kernel. We can take the average coefficient from both SR tools and

derive the value of the free modelling constant identified by SR approaches. The

average model of both approaches is given by,

Π = 0.000129 (|S| w2x + |S| w2y). (6.14)

By comparing with Eq. 6.4 and Eq. 6.5 and using the spatial cell size δ = 2π
64

, the

value of the free modelling constant is retrieved as cs = 0.12.

The SR identified Smagorinsky kernel with cs = 0.12 is plugged into the LES

source term Π in Eq. 6.2 and a forward LES simulation is run for the 2D decaying

turbulence problem. Fig. 6.3 shows the vorticity fields at time t = 4.0 for the DNS,

under-resolved no-model simulation (UDNS), filtered DNS (FDNS), and LES with SR

retrieved Smagorinsky kernel. Energy spectra at time t = 4.0 are showed in Fig. 6.4.

We can observe that SR approaches satisfactorily identify the value of the modelling

constant cs, which controls reasonably well the right amount of dissipation needed to

account for the unresolved small scales. We also highlight that several deep learning

frameworks such as ANNs have been exploited for subgrid scale modelling for 2D
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UDNS and FDNS refer to the no-model and filtered DNS simulations, respectively.
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Kraichnan turbulenceMaulik et al. (2019b, 2018, 2019a). The importance of feature

selection can be seen in these works where different invariant kernels, like those listed

in the feature library given in Eq. 6.12, are used as inputs to improve the ANN’s

predictive performance. The authors compared a posteriori results with different free

modelling coefficients of the Smagorinsky and Leith models. Furthermore, it is evident

from the energy spectrum comparisons in their studies that the appropriate addition

of dissipation with the right tuning of the free modelling coefficient can lead to better

predictions of the energy spectrum. To this end, SR approaches automatically distill

traditional models along with the right values for the ad-hoc free modelling coefficients.

Although the present study establishes a modular regression approach for discovering

the relevant free parameters in LES models, we highlight that it can be extended easily

to a dynamic closure modelling framework reconstructed automatically by sparse data

on the fly based on the flow evolution, a topic we would like to address in future.
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CHAPTER VII

Conclusion and Future Work

7.1 Conclusion

Data driven symbolic regression tools can be extremely useful for researchers for

inferring complex models from sensor data when the underlying physics is partially or

completely unknown. Sparse optimization techniques are envisioned as an SR tool

that is capable of recovering hidden physical laws in a highly efficient computational

manner. Popular sparse optimization techniques such as LASSO, ridge, and elastic-net

are also known as feature selection methods in machine learning. These techniques

are regularized variants of least squares regression adapted to reduce overfitting

and promote sparsity. The model prediction ability of sparse regression methods is

primarily dependent on the expressive power of its feature library which contains

exhaustive combinations of nonlinear basis functions that might represent the unknown

physical law. This limits the identification of physical models that are represented

by complex functional compositions. GEP is an evolutionary optimization algorithm

widely adapted for the SR approach. This genotype-phenotype algorithm takes

advantage of the simple chromosome representations of GA and the free expansion of

complex chromosomes of GP. GEP is a natural feature extractor that may not need

a priori information of nonlinear bases other than the basic features as a terminal

set. Generally, with enough computational time, GEP may recover unknown physical

models that are represented by complex functional compositions by observing the

input-response data.

In this work, we demonstrate that the sparse regression technique STRidge and the
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evolutionary optimization algorithm GEP are effective SR tools for identifying hidden

physical laws from observed data. We first identify various canonical PDEs using both

STRidge and GEP. We demonstrate that STRidge is limited by its feature library

for identifying the Sine-Gordon PDE. Following equation discovery, we demonstrate

the power of both algorithms in identifying the leading truncation error terms for

the Burgers MDE. While both algorithms find the truncation terms, coefficients

found by STRidge were more accurate than coefficients found by GEP. We note

that, when the feature library is capable of expressing the underlying physical model,

the application of STRidge is suitable due to its fewer hyper-parameters and lower

computational overhead. Next, we illustrate the recovery of hidden physics that is

supplied as the source or forcing term of a PDE. We use randomly selected sparse

measurements that mimic real world data collection. STRdige is not applied in this

setting as the feature library was limited to represent the unknown physical model

that consists of complex functional compositions. GEP was able to identify the source

term for both 1D advection-diffusion PDE and 2D vortex-merger problem using sparse

measurements. Finally, both STRdige and GEP were applied to discover the eddy

viscosity kernel along with its ad-hoc modelling coefficient as a subgrid scale model for

the LES equations simulating the 2D Kraichnan turbulence problem. This particular

example demonstrates the capability of inverse modelling or parametric estimation for

turbulence closure models using SR approaches.

7.2 Future Work

Major follow up research can be conducted taking into account the outcome of the

current study. Some of them are as follows:

• Commonly used RANS/LES turbulence modelling is based on linear stress-strain

relationship i.e, Boussinesq approximation which relates anisotropy aij of the
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Reynolds stress τij to mean strain rates.

τij =
2

3
ρkδij − aij,

aij = 2µtSij,

(7.1)

Where ρ denotes density, k is turbulent kinetic energy and µt represents turbulent

viscosity. The linear relation in Eq. 7.1 is known to questionable prediction for

flows with separation, boundary layers over curved surfaces and flow over complex

topologies. Pope (1975) proposed nonlinear eddy viscosity based on stress tensor

decomposition where anisotropic stress tensor aij is linear combination of basis

tensors and scalar invariants.

aij(Sij,Ωij) =
10∑

n=1

T
(n)
ij αn(I1, . . . , I5), (7.2)

in which the coefficients αn are function of five invariants I1, . . . , I5 and ten

tensor basis T 1
ij, T

2
ij, . . . , T

10
ij . The first four base tensors T nij and two invariants

Im in Eq. 7.2 read,

T 1
ij = Sij, T

2
ij = SijΩkj,

T 3
ij = SikSkj −

1

3
δijSmnSnm,

T 4
ij = ΩikΩkj −

1

3
δijΩmnΩnm,

I1 = SmnSnm, I2 = ΩmnΩnm.

(7.3)

where Sij and Ωij in Eq. 7.3 are mean strain rate and mean rotation rate

respectively. SR tools can be successfully used to find the anisotropic tensor

given in Eq. 7.2 .

• Various SR tools can be exploited for the identification of nonlinear truncation

error terms of MDEs for implicit LES approaches that can be exploited for

modelling turbulent flows without the need for explicit subgrid scale models.
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Duriez, T., Parezanović, V., von Krbek, K., Bonnet, J.-P., Cordier, L., Noack, B. R.,

Segond, M., Abel, M., Gautier, N., Aider, J.-L., et al. (2015). Feedback control of

turbulent shear flows by genetic programming. arXiv preprint arXiv:1505.01022.

Faradonbeh, R. S. and Monjezi, M. (2017). Prediction and minimization of blast-

induced ground vibration using two robust meta-heuristic algorithms. Engineering

with Computers, 33(4):835–851.

Faradonbeh, R. S., Salimi, A., Monjezi, M., Ebrahimabadi, A., and Moormann, C.

(2017). Roadheader performance prediction using genetic programming (GP) and

gene expression programming (GEP) techniques. Environmental Earth Sciences,

76(16):584.

Ferariu, L. and Patelli, A. (2009). Elite based multiobjective genetic programming

for nonlinear system identification. In International Conference on Adaptive and

Natural Computing Algorithms, pages 233–242. Springer.

Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for

solving problems. arXiv preprint cs/0102027.

Ferreira, C. (2002). Gene expression programming in problem solving. In Soft

Computing and Industry, pages 635–653. Springer.

Ferreira, C. (2006). Gene expression programming: mathematical modeling by an

artificial intelligence, volume 21. Springer.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné, C.
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