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Major Field: PHYSICS 

cope and Method of Study: The objective of this work is to explore potential improvements in 
2D OSL dosimetry. These include the introduction of Tikhonov regularization in the pixel 

bleeding algorithm, which was investigated based both on simulated data as well as 
experimental results obtained using a 6 MV linear accelerator (linac) and an Accuray CyberKnife. 
The feasibility of using of Al2O3:C and Al2O3:C,Mg for its application in dosimetry in the presence 
of magnetic fields was tested. Finally, initial results of newly developed MgB4O7:Ce,Li films for 2D 
optically stimulated luminescence dosimetry are presented. 
 

indings and Conclusions: The results show that the implementation of Tikhonov 
regularization improves the image noise and resolves the directional dependence in the OSL 

images when compared to the Least Squares algorithm. The initial measurements of off-
central ray ratios (OCR), output factors (OF’s), and tissue phantom ratios (TPR) in CyberKnife 
shows good agreement with the measurements using the commercial stereotactic diode. The 
initial tests using the Al2O3 OSLD’s in MR linac show that the detectors do not attenuate the 
beam, independent of angle of irradiation within 1.4%. The gamma analysis of IMRT treatment 
plans and the OSL images show a good passing rate for both 3% - 3 mm and 2% - 2 mm gamma 
criteria. The initial studies of MgB4O7:Ce,Li films demonstrate the possibility of 2D dosimetry 
for radiotherapy applications with many advantages over Al2O3:C or Al2O3:C,Mg films. MBO 
films show no pixel bleeding in the OSL images, has a linear dose response up to 10 Gy with 
steep dose gradients, has background equivalent dose of <0.5 mGy. However, it suffers from 
fading and sensitization. In conclusion, this work demonstrates OSL films have huge potential 
for its 2D dosimetry in both small fields and MR guided radiotherapy especially with 
development of new OSL materials to overcome the challenges with the current OSL materials.    
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CHAPTER I 
 

INTRODUCTION 
 

 

The goal of radiotherapy is to treat cancer without health detriment to the patient which 

requires delivery of prescribed dose to the tumor while sparing healthy tissues. These two 

competing goals can be understood by looking at the dose dependence of the tumor control 

probability (TCP) and the normal tissue complication probability (NTCP). Ultimately one must 

maximize the TCP and minimize the NTCP. Therefore, it is important to accurately and precisely 

determine the dose delivered.  

Advances in various radiation therapy modalities, such as intensity modulation 

radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery 

(SRS), are continuously introducing new dosimetric challenges (Das et al., 2000; Haasbeek et al., 

2012; Hall et al., 2013; Nutting et al., 2011; O’Brien et al., 2017). Due to superior dose 

conformity of these techniques, hypo-fractionated treatments are made possible (Thariat et al., 

2013). This implies stricter dose and geometry requirements. According to the International 

Atomic Energy Agency (IAEA), the overall uncertainty of the radiotherapy process must be 

within 5% with dosimetric uncertainty of 2% or less at a confidence level of 95% (Gomez et al., 

1973).  

Small photon fields are increasingly used in IMRT and SRS treatments, which utilizes small 

fields with diameter in the range of 5 mm – 40 mm to deliver large radiation doses in a single 

fraction. Dosimetry of these small fields cannot be accomplished through traditional means due
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 to factors such as loss of charged particle equilibrium, partial occlusion of the source, and 

highdose gradient (Aspradakis et al., 2010). An ideal detector for small field dosimetry should 

have high spatial resolution with a small sensitive volume, have a wide dynamic range, and be 

independent from dose rate, energy, angle of irradiation and (Das et al., 2000; De Wagter, 

2004). There are commercial detectors available for small field dosimetry, but discrepancies in 

the measurements between these detectors exist (Das et al., 2000). Ionization chambers 

response is affected by dose-volume averaging and break down of charged particle equilibrium 

(CPE) in small fields (Laub and Wong, 2003; Low et al., 2003; Wuerfel, 2013). Diodes are not 

water equivalent and therefore, over respond to low energy photons. In addition, most of the 

chambers and diodes are orientation dependent due to their large cavity length and require 

corrections based on Monte-Carlo simulations (Francescon et al., 2012; Francescon et al., 2014). 

Plastic scintillators require corrections for the Cherenkov radiation and are currently not 

available for scanning dose profiles.    

Magnetic resonance guided radiotherapy (MRgRT) has become of great interest for cancer 

treatments, but the effect of magnetic field in detectors introduce additional challenges. MRgRT 

incorporates an MRI scanner with a radiotherapy source such as a linear accelerator or 60Co 

source (Mutic and Dempsey, 2014).  It provides real-time imaging during the patient treatment, 

reducing uncertainties in the patient positioning and target localization, potentially improving 

the precision of the therapy. Nevertheless, the Lorentz force alters the trajectory of the 

secondary electrons, which effects the detector response of ionization chambers (Meijsing et al., 

2009; O’Brien et al., 2017; Reynolds et al., 2013). In addition to ionization chambers, other solid-

state detectors like diamond detectors and plastic scintillation detectors also show variability as 

a function of the magnetic field (Reynolds et al., 2014; Stefanowicz et al., 2013).  As for 
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radiochromic films (Gafchromic EBT3, Ashland Inc.), the magnetic field affects the crystal 

orientation and polymerization during irradiation with a decrease in response of the films by 

~8.7%, 8.0% and 4.3% for the red, blue and green channels respectively (Reynoso et al., 2016). 

Al2O3:C Optically Stimulated Luminescence detectors (OSLD) are of interest for medical 

dosimetry. They have high sensitivity to radiation (Akselrod and Kortov, 1990), linear dose 

response (Jursinic, 2007; Reft, 2009; Viamonte et al., 2008), wide dynamic dose range (Akselrod 

and McKeever, 1999), potential dosimetric precision of < 1% (Yukihara et al., 2005), minimal 

dark fading (Viamonte et al., 2008), low energy dependence of ±1% in MV X-ray beams 

(Viamonte et al., 2008), dose rate independent (Jursinic, 2007), and show small angular 

dependence for MV X-ray beam (Jursinic, 2007).  

Al2O3:C,Mg on the other hand was originally developed for optical data storage and 

fluorescence nuclear track detectors for its radio photoluminescence properties (Akselrod, 

2006; Sykora et al., 2007). There has not been a lot of studies regarding the OSL properties of 

the material compared to Al2O3: C. However, Al2O3:C,Mg has OSL properties similar to Al2O3:C 

with a higher concentration of F+- centers, with luminescence lifetime <7 ns which makes it an 

excellent candidate for 2D OSL dosimetry (Denis et al., 2011a; Evans and Stapelbroek, 1978; 

Rodriguez et al., 2011).  

Nevertheless, Al2O3:C Optically Stimulated Luminescence Detectors (OSLD) were until 

recently limited to point dosimetry. The slow luminescence of the F-center emission, the main 

luminescence center in this material, has prevented its use in 2D dosimetry using laser-scanning 

techniques, the imaging modality used in computed radiography. This situation has changed 

with the development of a correction algorithm for Al2O3 films (Yukihara and Ahmed, 2015), 

which opened the doors to the development of laser-scanning 2D dosimetry based on 
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dosimetric films of Al2O3:C or Al2O3:C,Mg (Ahmed et al., 2014; Ahmed et al., 2017). Initial results 

on 2D dosimetry using Al2O3 films shows that it has low background (~mGy), linear response, 

wide dynamic range (4-5 orders), good spatial resolution (~1mm), and potential dose 

uncertainty within 2% (Ahmed et al., 2014).  

The OSL 2D dose maps obtained using Al2O3, however, suffer from an additional noise 

introduced by the pixel bleeding correction. This is due to the lack of regularization in the 

mathematical deconvolution analysis used to correct for the pixel bleeding (Yukihara and 

Ahmed, 2015). Thus, there is the potential to minimize the noise by implementing regularization 

algorithms such as the Tikhonov (Hansen, 1992b).  

To address the limitations caused by the long luminescence lifetime of Al2O3, a new 

material has been developed for 2D dosimetry: MgB4O7:Ce,Li (MBO) (Gustafson et al., 2019; 

Yukihara et al., 2017). MBO has OSL intensity comparable to Al2O3:C, linear dose response from 

0.1 – 100 Gy (Gustafson et al., 2019). In addition, Ce3+ emission has fast luminescence lifetime in 

order of tens of nanoseconds.  In principle, this eliminates the need for pixel bleeding correction 

algorithm in laser scanning imaging. As opposed to the materials used in image plates such as 

BaFBr:Eu2+ (Zeff = 49.0), MBO has low effective atomic number (Zeff = 8.2). 

The objective of this work is to explore potential improvements in 2D OSL dosimetry. 

These include the introduction of Tikhonov regularization in the pixel bleeding algorithm, which 

will be investigated based both on simulated data as well as experimental results obtained using 

a 6 MV linear accelerator (linac) and an Accuray CyberKnife. The feasibility of using of Al2O3:C 

and Al2O3:C,Mg for its application in dosimetry in the presence of magnetic fields was tested. 

Finally, initial results of newly developed MgB4O7:Ce,Li films for 2D optically stimulated 

luminescence dosimetry are presented. 
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This work is structured as follows. Chapter II discusses the challenges in radiotherapy 

dosimetry and currently available 2D dosimetry techniques along with their advantages and 

disadvantages. In addition, the basic OSL mechanism in Al2O3 and MBO is discussed along with 

current progress and challenges towards 2D dosimetry using OSL. Chapter III discusses the 

general experimental details of this study, including sample properties, irradiation sources, 

readout equipment, and data acquisition methodologies. The next four chapters focus on 

specific investigations. Chapter IV presents the studies regarding feasibility of Tikhonov 

regularization in pixel bleeding algorithm based on simulated data. Chapter V applies the 

algorithm to experimental data obtained in hospital setting using the 6 MV linac and the Accuray 

CyberKnife. It also includes results from initial tests on dosimetric performance of Al2O3:C,Mg 

films in small field dosimetry. Chapter VI demonstrates the application of Al2O3:C and Al2O3:C,Mg 

films for dosimetry in MRgRT and includes  studies on the dose response, angle dependence in 

irradiation using both point detectors and films. In addition, gamma analysis results from IMRT 

treatment plans delivered to films are presented. Chapter VII presents feasibility studies of 2D 

OSL dosimetry using MgB4O7, including dose response, fading, re-usability, development of 

image reconstruction algorithm for MBO using 2D OSL system, and compares its response and 

other properties with Al2O3:C and Al2O3:C,Mg. Finally, conclusions and potential future 

developments are discussed in Chapter VIII.

 

CHAPTER 2  
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CHAPTER II 
 

BACKGROUND 
 

 

In this chapter, the current challenges in dosimetry in radiotherapy are discussed. First, 

the literature is reviewed to summarize the current challenges in radiation therapy dosimetry.  

Then, commercially available 2D dosimetry techniques are discussed along with their 

advantages and disadvantages, as well as different OSL materials used in point dosimetry and in 

2D dosimetry. Finally, context is given regarding the system and material corrections that are 

required for Al2O3 for its applications 2D dosimetry along with Tikhonov regularization technique 

to improve the noise in the OSL signal.   

2.1 Challenges in radiation therapy dosimetry 

2.1.1 Small field dosimetry  

Advanced treatment modalities use small radiation beams in conjunction with real-time 

imaging to shrink the treatment margin around the target while increasing the dose delivered 

for greater biological effect (Kilby et al., 2010; Leksell, 1983). Treatments such as SRS, SBRT, and 

IMRT, which utilizes small fields for treatments, require high levels of precision in quality 

assurance (QA) and dosimetry since higher dose treatments pose greater potential risk for 

patients. Treatment field sizes less than 4 × 4 cm2 are considered to be small fields and are 

inherently challenging for dosimetry (Aspradakis, 2009; Das et al., 2008).
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The dosimetry in traditional radiation fields is accomplished by the application of cavity 

theory (Attix, 2008). The most important assumption of cavity theory is that at the location of 

the detector the number of charged particles entering the volumes is the same as those leaving 

the volume, which is called charged particle equilibrium (CPE). In small fields, the lateral range 

of electrons is larger than the field size which leads to a problem referred to in the literature as 

loss of lateral charged particle equilibrium. This in turn affects the shape of the beam profile and 

the absorbed dose on the central axis. 

In addition, partial occlusion of the radiation source exacerbates the effect. This 

happens when the collimating output beam of the linac is similar or smaller than the source size 

as viewed from the detector. In this condition, only a portion of the source is seen by the 

dosimeter, which causes the detector to measure a lower output compared with larger field 

sizes, when the detector sees the whole source.  

Figure 2-1 demonstrates the effects observed when decreasing the field size. For field 

sizes large enough to yield CPE and no occlusion of sources (Figure 2-1a), the full width half 

maximum (FWHM) of dose profiles are used to determine the field size as the field border will 

be ~50% of the dose level. As the physical collimation increases (i.e. field size decreases), the 

FWHM of the dose profiles decreases at a faster non-linear rate. This causes the field sizes to be 

measured larger than they are. Therefore, it is important to accurately measure and 

characterize the field size using detectors with high spatial resolution.   
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Figure 2-1. Profile widening associated with small fields. Reproduced from Das et al. (2008).  

 

Another problem in small field dosimetry is the volume averaging effect. This occurs 

when the dosimeter dimension is relatively large compared to the radiation field. All detectors 

have a finite detection volume and measure the average signal over its given volume. In high 

gradient dose regions in small fields the dose value changes significantly over the detector’s 

active volume. Thus, the measured signals are artificially lowered.  

Figure 2-2 shows volume averaging effect using the dose profiles measured with 3 

different ionization chambers: a micro chamber (Exradin A14, 0.009 cc), a farmer chamber 

(Exradin A12, 0.62 cc), and a PTW chamber (PTW-N31005, 0.125 cc). As can be seen, the dose 

profiles are artificially flattened with increasing detector volume.  

Another problem associated with volume averaging effect is widening of penumbra, 

which is the width from 80%-20% of the max dose, an important parameter when measuring 

beam profiles (Low et al., 2003). Since accurate beam profiles are parameters required by the 

TPS, it is important to characterize them with high precision. Thus, small size detectors with high 

resolution are desired.   
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Figure 2-2. Volume averaging effect using dose profiles measured from three types of ionization 
chamber with different active detector volume. Reproduced from Low et al. (2003)  

 

These inherent characteristics of small field dosimetry pose dosimetric challenges for 

commercially available dosimeters. Figure 2-3 shows the cone factors (output factors) of an SRS 

unit Clinac-600SR (Varian Medical Systems). As can be seen for cone size <20 mm there are 

discrepancies of >14 % between the detectors. In addition, Parwaie et al. (2018) reviewed 

commercially available dosimeters and concluded that currently no dosimeter has all properties 

required for dosimetry in small fields.       
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Figure 2-3.  Dosimetric variation with different detectors. Reproduced from Das et al. (2000). 

 

2.1.2 MRgRT  

Recent developments towards real-time image guided radiotherapy hybrid devices have 

led to the combination of an MRI scanner with a radiotherapy unit, such as a linear accelerator 

or 60Co source (Fallone et al., 2009; Jaffray et al., 2010; Mutic and Dempsey, 2014). There are 

currently four MRI linac designs with different magnetic field strength and two beam-magnetic-

filed orientations, perpendicular (transverse) and parallel (inline) (Jelen and Begg, 2019).       

Table 2-1 shows the currently available MR-linac system along with their magnetic and radiation 

beam properties. In either configuration, the Lorentz force alters the trajectory of secondary 

electrons. In transverse configuration, the Lorentz force causes the electron paths to become 

curved, also called electron return effect (ERE), changing the direction and reducing the range. 

This causes increased dose deposition at tissue-air interface (Chen et al., 2016; Raaijmakers et 

al., 2005). In in-line configuration the Lorentz force causes electrons to spiral around the 

14 %  
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magnetic field direction causing loss of energy in collisions. These effects change the response of 

radiation detectors as it depends on paths of electrons traversing their active volume.  

Table 2-1. Properties of current MRI-linac systems. Reproduced from Jelen and Begg (2019).  

 

It was found both experimentally and using Monte-Carlo simulations that the response 

of ionization chamber changes by ~1-2% in in-line setting, and up to 10% in transverse magnetic 

fields, depending on the orientation of the magnetic fields (Meijsing et al., 2009; Reynolds et al., 

2013, 2015). Plastic scintillation detectors, even though non-magnetic, were found to show 

unexplained 7% increase in response in presence of magnetic field (Stefanowicz et al., 2013).  As 

for radiochromic films (Gafchromic EBT3, Ashland Inc.), the magnetic field effects the crystal 

orientation and polymerization during irradiation causing a decrease in response of the films by 

~8.7%, 8.0% and 4.3% for the red, blue and green channels respectively (Reynoso et al., 2016).  

Luminescence detectors are considered promising candidate for dosimetry in magnetic 

fields (Jelen and Begg, 2019). TLDs were found to show no field dependence in a 1.5 T 

transverse field. In addition, Spindeldreier et al. (2017) observed relatively small decrease in 

response of Al2O3 detectors  with increasing magnetic field (-1.3%/T) and no angular 

dependence.  
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2.2 2D dosimetry techniques 

To measure dose or relative dose distribution in the entire plane, commercial two-

dimensional (2D) detectors or films are used. They are widely used in radiotherapy as part of the 

beam commissioning and QA requirements of IMRT and virtual wedge profile measurements 

(Ezzell et al., 2009; Klein et al., 2009).   

The most widely used films for IMRT dosimetry are radiochromic films. They have high 

spatial resolution (< 25 µm), which is an advantage for 2D dosimetry. They are self-developing 

and near tissue equivalent, and widely used for commissioning for patient-specific IMRT and 

Stereotactic Body Radiation Therapy (SBRT) treatment verifications (Borca et al., 2013; Palmer et 

al., 2015). Radiochromic films also have some inherent limitations, such as non-linear dose 

response (Borca et al., 2013), high background (Micke et al., 2011), and narrow dynamic range, 

with useful dose range only up to 10 Gy (Devic, 2011). In addition, due to its complicated 

calibration protocol, they are not commonly used for absolute dosimetry.  

Diode arrays and ionization chamber arrays have also been used for pre-treatment 

dosimetry of modulated fields (Létourneau et al., 2004; Poppe et al., 2006). They both have 

excellent linearity, and reproducibility, but suffer from poor spatial resolution due to the larger 

separation between detectors and large individual detector size. Diode arrays have angular 

dependence and field size dependence (Jin et al., 2014). In addition, the ionization chambers 

suffers from volume averaging effects resulting in field size dependence (Das et al., 2008).  

OSL detectors are of interest for 2D dosimetry due to its wide dynamic range, low 

background, and good spatial resolution (Ahmed et al., 2014; Jahn et al., 2010). Al2O3:C and 

Al2O3:C,Mg OSL films have shown the potential to be used in dose verification. They are energy 

independent, have low background (~mGy), linear response, wide dynamic range (4-5 orders), 
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good spatial resolution (~1mm), are field size-independent, and offer potentially an overall dose 

uncertainty within 2% (Ahmed et al., 2014; Ahmed et al., 2017). As mentioned before, 

Spindeldreier et al. (2017) showed that OSLDs exhibit no angular dependence with the magnetic 

field and, with proper calibration, it should be suitable for QA in MR-guided radiotherapy 

devices.    

2.3 Optically Stimulated Luminescence  

Optically Stimulated Luminescence (OSL) is the luminescence emitted from an irradiated 

insulator or semiconductor during exposure to light (Bøtter-Jensen et al., 2003).  

OSL materials contain defects in the crystalline lattice, introduced intentionally during 

crystal growth or unintentionally by contaminants. These defects can be missing ions, ions in 

interstitial position, and extrinsic ions in the lattice points substituting for the original ions of the 

crystal, and so on. The defects can introduce energy levels within the bandgap of the material: 

energy levels close to the conduction bands can trap electrons, whereas energy levels close to 

the valence band can trap holes. Energy levels close to the Fermi level can capture a hole from 

the valence band and an electron from the conduction band, acting as a recombination center

 Figure 2-4 illustrates the OSL process of a crystal with one electron trap and one-hole 

trap. During exposure to ionization radiation, electrons are excited to the conduction band 

leaving behind a hole in the valence band. These electrons and holes are free to move in the 

bands and have a probability to get trapped in the lattice defects (Figure 2-4a). After irradiation, 

in the absence of optical or thermal stimulation, the trapped charges can remain trapped over 

geological times, depending on the depth of the traps, i.e., the difference in energy between the 

trapping level and the delocalized energy bands (Figure 2-4b). Once exposed to stimulation light 

source of proper wavelength, the trapped electrons can be stimulated to the conduction band. 
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In the conduction band, the electron is free to recombine with the trapped holes, leaving the 

luminescence centers in excited state. The excited luminescence center then relaxes to ground 

state by emission of the photon, which is called OSL (Figure 2-4c).            

 

Figure 2-4. Stages in OSL process: (a) Irradiation of OSLD resulting in capture of electrons and holes in 
electron traps and hole traps respectively, (b) latency period of trapped charges in metastable state 
unexposed to heat/light and (c) stimulation using light source resulting in electron-hole recombination, 
emitting OSL. Reproduced from Yukihara and McKeever (2011). 

 

In a simple one trap one, recombination (OTOR) model, the optical transition probability 

𝑝 of an electron escaping from a trapping center is directly proportional to incident photon flux 

 and the photoionization cross section  of the trapping center.     

𝑝 =  𝜎 𝛷 (2-1) 

If there are n trapped electrons, the rate of release of the electrons from the traps is np. 

𝑑𝑛

𝑑𝑡
=  −𝑛𝑝 

(2-2) 

The differential equation can be solved, which shows that the number of trapped electron 

decays with a first order exponential, 
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𝑛(𝑡) =  𝑛0 𝑒
−𝑝𝑡 (2-3) 

where, 𝑛0 is the initial number of trapped charges.  

Assuming the light intensity is proportional to the rate of electrons escaping the 

trapping centers the OSL intensity can be written as: 

𝐼𝑂𝑆𝐿𝛼 |
𝑑𝑛

𝑑𝑡
| =  𝑛0 𝑝𝑒−𝑝𝑡  

(2-4) 

Some of the key benefits of the OSL technique in dosimetry are: (i) OSLDs can be re-

read, as a short stimulation is sufficient for OSL dosimetry (Akselrod and McKeever, 1999; 

Jursinic, 2007); (ii) OSL has no confounding signals, as the OSL is typically monitored at 

wavelengths shorter than the wavelength of stimulation light, which is beneficial for low dose 

measurements (Yukihara and McKeever, 2011); (iii) OSLDs can be read using multiple techniques 

(CW-OSL, POSL, LM-OSL) based on application needs (Akselrod et al., 2006), and it can be read 

out fast, as measurements can be as short as milliseconds.  

 

2.4 2D dosimetry using OSL  

In spite of the excellent properties of Al2O3, its application in radiotherapy was limited to 

point dosimetry until recently. This is because the F-center emission in this material has a long 

luminescence lifetime, preventing its use in 2D dosimetry using laser-scanning techniques. With 

the development of the pixel bleeding correction algorithm, the potential of using Al2O3 OSLDs 

in 2D dosimetry have been studied by Ahmed et al. (2014).  
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Figure 2-5. Schematics of the 2D OSL laser scanning dosimetry system. Reproduced from Ahmed et al. 
(2014). 

 

A 2D laser scanning dosimetry system was developed based on newly developed Al2O3 

films (Figure 2-5). The system incorporates a green laser and a 2D galvo-mirror system that 

reflects the laser to the film. The mirror moves the laser such that the laser scans the film in 

alternating directions. The luminescence signal emitted is collected by the PMT placed at the 

center of the system. The recorded PMT signal is amplified and digitized using a multichannel 

scaler. Then, the data obtained is processed through an algorithm that includes system and 

material corrections. The system corrections include the pixel shift correction due to galvo 

hysteresis, galvo distortion correction due to geometric distortion of the optical system, and 

PMT light collection efficiency correction. The material corrections include the phosphorescence 

correction and the pixel bleeding correction.      

The dosimetric performance of the system and the film were tested using therapeutic 

photon beam and pencil heavy ion beams in clinical settings. The results obtained were also 

compared with commercial radiochromic films (Gafchromic EBT3, Ashland Inc.), analyzed using 
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the triple channel method (Micke et al., 2011). It was found that the OSL films were 

homogenous within experimental uncertainty and the OSL film response do not saturate until 

75 Gy. The OSL signal from an un-irradiated film is equivalent to <0.5 mGy and therefore, no 

background subtraction is needed. This eliminates the need for scanning the same film before 

and after irradiation. The minimum detectable dose (MDD) of the OSL films is <1 mGy with the 

dynamic range spans 5 orders of magnitude. The OSL films were able to perform dosimetry with 

a precision of 1-2% with spatial resolution of 2-line pairs/mm.    

Nevertheless, some issues have been identified with the 2D OSL dosimetry system. There 

is background signal before the laser hits the irradiated film which scales with the maximum film 

signal. This is probably due to OSL from the entire detector, stimulated by scattered laser light 

which increases as the laser approaches the detector. Nevertheless, this signal is less than 1% of 

the maximum OSL signal for any dose and can possibly be minimized using light absorbent 

materials around the galvo mirror.  

In addition, the pixel bleeding correction algorithm introduces additional noise in the x-

axis without perturbing the signal along the sub-scan direction (y-axis) (Figure 2-6). This leads to 

a directional dependence in the dose uncertainty. This additional noise is due to the pixel 

bleeding correction algorithm, which is based on a Least Squares deconvolution algorithm 

without any regularization (Yukihara et al., 2015). This problem, however, can potentially be 

reduced by introducing a regularization procedure in the pixel bleeding algorithm. This can 

remove not only the directional dependence of the image noise, but also improve the overall 

signal-to-noise ratio (SNR) in the image.    
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Figure 2-6. Reconstructed signal profiles (average of four rows spanning 1 mm) for Al2O3:C film 
irradiated with a 430 MeV 12C pencil beam with 3.4 mm FWHM. Reproduced from Ahmed (2016).  

 

2.5 A brief review of OSL materials and their suitability for 2D dosimetry 

2.5.1 BaFBr:Eu2+  

BaFBr:Eu2+ phosphor storage plates widely used in computed radiography have been 

investigated for 2D dosimetry in radiotherapy. One main advantage of image plates as a 2D 

dosimeter is that it can be used for both imaging and dosimetry. In addition, it has some 

important features making it a promising candidate for 2D dosimetry. Crijns et al. (2017) showed 

that it has a linear dose response up to 32 Gy, < 2.6% non-uniformity, and that it can be reused 

and read out immediately. However, it has high effective Zeff of ~49, high signal fading (>50 % in 

36 h), and large energy dependence (over response <100 keV), which makes it difficult to use for 

precise medical dosimetry (Ariga et al., 2007; Rowlands, 2002).   
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2.5.2 Other materials investigated for 2D dosimetry 

There are other additional OSL materials investigated for 2D dosimetry. BeO has been 

investigated for 2D dosimetry due to its effective atomic number (Zeff = 7.14), which is close to 

tissue, and sensitivity comparable to Al2O3:C. It has a linear dose response from 5 mGy – 10 Gy, 

with a spatial resolution of ~1 mm (Jahn et al., 2010). The material also has a fast luminescence 

lifetime of ~27 µs which is advantageous for 2D dosimetry (Yukihara, 2011). However, the 

toxicity of BeO in powder form hinders the production of OSL films and, therefore, not much 

additional work has been done for 2D dosimetry applications, except for the use of BeO ceramic 

plates.  

 KCl:Eu2+ is another potential candidate for 2D dosimetry. It is dose rate-independent 

(< 2%), reusable up to 100 times (2 Gy per use), has low fading of 0.1%/h after the first 12 h, is 

energy independent, and has relatively low effective atomic number (Zeff ~ 18) compared to 

BaFBr:Eu2+. However, it has a superlinear response and significant fading at least up to 12 h post 

irradiation, which may be some reasons for it not being used in 2D dosimetry (Han et al., 2009).    

Other materials investigated for 2D dosimetry include NaMgF3:Eu,Li (Schuyt and 

Williams, 2019),  LiSrS:Ce,Sm (Idri et al., 2004), and MgO:Nd,Li (Oliveira et al., 2013). Table 2-2 

shows some dosimetric characteristics of some additional materials, some of which investigated 

for 2D dosimetry. As can be seen most of these OSL materials have good linear response and 

wide dynamic range, but the main disadvantage with some of these materials is their high Zeff 

and fading.   
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Table 2-2. Some dosimetric characteristics of OSL materials. Reproduced from Pradhan et al. (2008) 
 

 

2.5.3 Al2O3:C 

The crystal structure of α-Al2O3 can be seen in Figure 2-7a. It consists of a hexagonal 

close packed array with O2- sub-lattice with Al3+ ions occupying two out of every three interstitial 

sites in the lattice so that the charge neutrality is satisfied. Figure 2-7b shows F+ center 

containing one electron and formed as charge compensators to C2+ impurities that have 

supplanted Al3+ ions during the crystal growth process.       
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(a)       (b) 

 

Figure 2-7. Lattice structure of α-Al2O3 and a single oxygen vacancy with one electron – F+ center 
Reproduced from Kouwenberg (2018).  

 

Al2O3:C is the most common OSL material and has been used worldwide since the late 

1990s, although the material was originally developed as a thermoluminescence detector 

(Akselrod et al., 1990). Al2O3:C crystals have a high concentrations of oxygen vacancies (Akselrod 

and Kortov, 1990). An oxygen vacancy that captures two electrons form a defect known as F-

centers, and when it captures one electron the defects are known as F+-centers. These two color 

centers are responsible for the production of TL and OSL. 

The F-center’s absorption band is centered at 6.0 eV (205 nm) and the associated 

luminescence band is centered at about 3.0 eV (450 nm). Figure 2-8 shows an energy band 

diagram with the absorption and emission transitions for the F- and F+-centers in Al2O3. The       

F-center absorption band is due to the electron transition from 1S ground state to 1P state with 

absorption of 205 nm (6.1 eV) light. During relaxation, the electrons transitions non-radiatively 

from the 3P to the 1S ground state. The lifetime of this emission was found to be 35 ms (Lee and 

Crawford Jr, 1977). The absorption bands centered at about 4.8 eV (255 nm), 5.4 eV (230 nm), 

and 6.0 eV (205 nm) that overlaps with F-center absorption, are associated with F+-center 
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absorption. These transitions are from 1A ground state to 1B, 2A, and 2B respectively. The main 

emission center is associated with the transition from 1B to 1A ground state with the emission 

of 3.8 eV (326 nm). This emission is associated with a lifetime of < 7 ns (Evans and Stapelbroek, 

1978).  

 

Figure 2-8. Energy level diagram for the absorption and emission processes of F and F+ center. Dotted 
lines indicate non-radiative transition. Reproduced from Lee and Crawford Jr (1977).   

  

Al2O3:C contains higher concentrations of F-centers than of F+-centers (Akselrod et al., 

1990). The concentration of these two centers, however, have a reciprocal relationship. When 

an F-center loses an electron or captures a hole, it converts to an F+-center. Electrons may 

recombine with F+-centers, converting it back into an F-center, with emission of 420 nm, as 

shown in Eq. (2-5) and (2-6).    

𝐹+ + 𝑒− → 𝐹∗ → 𝐹 + ℎ𝜈420 𝑛𝑚 
(2-5) 

𝐹 + ℎ+ → 𝐹+ (2-6) 

Since the two centers have different lifetimes, time resolved techniques are used to 

separate the two components. Figure 2-9a shows the time resolved OSL (TR-OSL) measurements 

of Al2O3:C (Yukihara and McKeever, 2006). It shows that during laser pulses the two emissions 
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are centered at ~335 nm (F+ center) and ~420 nm (F-center). Figure 2-9b shows the OSL decay 

curves in the time resolved OSL measurements measured by Denis et al. (2011b).     

(a)          (b) 

 

Figure 2-9. (a) Emission spectrum of Al2O3:C during and in between laser pulses. (b) TR-OSL decay curves 
of Al2O3:C. Reproduced from Denis et al. (2011) and Yukihara and McKeever (2006).  

 

2.5.4 Al2O3:C,Mg 

Al2O3:C,Mg crystals have much more complex defects created during the crystal growth 

with the introduction of Mg as a dopant. This results in multiple types of color centers with 

different absorption and emission bands. In addition to single oxygen vacancy defects, F and F+ 

centers present in Al2O3:C crystals, new double oxygen vacancies give rise to new F2 type centers 

(F2
2+ and F2

+) associated with Mg-purity ions (Figure 2-10). The green coloration of the 

Al2O3:C,Mg crystals are due to a blue (435 nm) absorption band, which is attributed to the F2
2+  

center (Akselrod et al., 2003). Even though this material was originally developed for optical 

data storage and fluorescence nuclear track detectors, and for its radiophotoluminescence 

properties, it is also useful for OSL, especially for 2D dosimetry. 
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Figure 2-10. Lattice structure of Al2O3:C,Mg with two oxygen vacancies charge compensated by two 
Mg2+ ions. Reproduced from Kouwenberg (2018). 

 

Al2O3:C,Mg has higher concentration of F- and F+-centers than Al2O3:C, which can be 

seen by comparing the optical absorption spectra of Al2O3:C and Al2O3:C,Mg single crystals 

produced (Akselrod et al., 2003). 

 

Figure 2-11. Optical absorption spectra of Al2O3:C and Al2O3:C, Mg single crystals, showing the high 
concentration of F-centers in Al2O3:C and the high concentration of F- and F+-centers in Al2O3:C,Mg. 
Reproduced from Akselrod et al. (2003). 
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The spectral analysis of the OSL emission from Al2O3:C and Al2O3:C,Mg crystals indicated a 

higher F+-center OSL emission, as shown in Figure 2-12a (Denis et al., 2011b). In addition, the 

time resolved OSL measurements showed that the ratio between the F+-center OSL emission 

and the total OSL emission is higher in Al2O3:C,Mg than in Al2O3:C (Section 2.5.3). This is 

important for 2D dosimetry, because the higher the ratio of F+- to F-center emission, the smaller 

the amount of pixel bleeding correction needed, leading to better image SNR.      

(a)        (b) 

 

Figure 2-12. (a) CW-OSL emission spectra and (b) OSL decay curves of Al2O3:C and Al2O3:C,Mg single 
crystals. Reproduced from Denis et al. (2011b).  

 

2.5.5 MgB4O7:Ce,Li 

MgB4O7 (MBO) doped with Dy/Tm has been used as a TL material for nearly 40 years 

(Prokić, 1980).The TL material was found to be suitable for dosimetry as it is about 15 times 

more sensitive than LiF:Mg,Ti, has a low effective atomic number (Zeff = 8.2), and is suitable for 

neutron dosimetry due to its boron content. Nevertheless, OSL dosimetry using MBO doped 

with Ce and Li has only recently been reported (Souza et al., 2017; Souza et al., 2019; Yukihara 

et al., 2017).  
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There have been recent improvements in the OSL properties of MBO (Gustafson et al., 

2019). The new material synthesized with high purity reagents removes the competing 

recombination at Mn2+ emission (~580 nm), resulting in increased emission from Ce3+ centers 

(Gustafson et al., 2019). It has sensitivity comparable to that of Al2O3:C and linear dose response 

from 0.1 – 100 Gy. In addition, Ce3+ emission has fast luminescence lifetime (31.5 ns), making it a 

suitable candidate for 2D dosimetry using laser scanning.   

Ce3+ is the main emission center in MBO and has emission in the UV region, being 

therefore suitable for OSL dosimetry with blue or green stimulation. Figure 2-13 shows the 

photoluminescence emission (PL) and excitation (PLE) spectra of MBO (Gustafson et al., 2019). 

There are three excitation bands observed at ~270 nm, ~ 293 nm and ~ 320 nm and the two 

emission bands are seen at ~ 340 nm and ~ 363 nm.  

 

Figure 2-13. PL and PLE spectra of MBO. Reproduced from Gustafson et al. (2019). 

 

2.6 Image corrections needed in 2D OSL dosimetry 

2D dosimetry using Al2O3 requires series of corrections. The image reconstruction 

algorithm developed for Al2O3 is shown in Figure 2-14. The information required to correct for 
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each step is shown in the chart as well. The steps highlighted in blue are related to 2D OSL 

system and those in orange are related to intrinsic material properties. 

 

Figure 2-14. Flowchart represents the image reconstruction algorithm for Al2O3 films. The main input 
information required for each step of the correction is shown in the left column of the chart. The steps 
indicated in blue are related to system design and those in orange are related to intrinsic material 
properties. Reproduced from Ahmed et al. (2016). 

 

Figure 2-15a shows a raw image from a 10 cm × 10 cm Al2O3:C film irradiated using a 6 

MV linac (Section 3.5.2) with a total dose of ~20 Gy. Figure 2-15b-c shows the signal profiles 

from alternate scans at the center of the raw image in x and y direction along with the image 

corrections required. Individual corrections are briefly explained in the section below, but the 

full correction itself is explained in detail in Ahmed et al. (2016).     
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Figure 2-15. (a) Raw image of a 10 cm × 10 cm Al2O3:C film irradiated using 6 MV linac with a total dose 
of ~10 Gy. (b) Signal profiles from alternate scans at the center of the raw image in x direction showing 
the image corrections required.   

 

Galvo hysteresis  

In order to obtain the image, the OSL reader scans the consecutive rows of the film in 

alternating directions along the x-axis. As a result, at the edge of the detector, a pixel shift is 

observed between adjacent rows. This is due to galvo hysteresis, the mechanical lag in the galvo 

system when the motion is reversed, or desynchronization between the galvo and the photon 

counter. 



29 

 

PMT linearity  

The counting rate affects the PMT counting efficiency. When the count rates are high, 

the signal pulses overlap decreasing the counting efficiency. The counting efficiency at high-

count rate can also be limited by the counting system in discriminating overlapping pulses. If the 

oncoming pulses are not separated by a threshold time difference, known as pulse-pair 

resolution or dead time, the PMT shows nonlinearity. 

Background phosphorescence 

Background phosphorescence is the signal present in the OSL image before the laser hits 

the film. It is originated from the slow phosphorescence of previously scanned rows. This 

contribution can be corrected by analyzing the signal measured at the beginning of each row, 

where there is no film present and subtract it from the total OSL signal.  

Galvo distortion 

The x, y laser positions in the screen are not linearly related to the mirror angles (Xie et 

al., 2005) which leads to images with pillow-shaped geometrical distortion, even if the mirrors 

are perfectly aligned (Cui et al., 2009; Duma et al., 2009; Manakov et al., 2011).  

Position dependence of the light collection efficiency 

The PMT is fixed at center with respect to the film, thus, the light collection efficiency is 

position dependent. The signal at the center of the film is larger than the corners and decreases 

radially between the position in the film and the z-axis. 
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Pixel bleeding algorithm 

The pixel bleeding algorithm relies on a model for the luminescence signal from the OSL 

film with laser scanning. 

As explained by Yukihara and Ahmed (2015) the rate of change of concentration of the 

luminescence centers in the excited state, 𝑚(𝑡) is given by,  

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑝 𝑛(𝑡) −

𝑚(𝑡)

𝜏
 (2-7) 

The term n(t), is the rate of excitation with p the trapping probability and n(t) 

representing the concentration of trapped charge. τ-1m(t) is the rate of de-excitation of the 

luminescence centers, where τ is the lifetime of the excited state. The luminescence intensity is 

directly proportional to the rate of decay of the luminescence centers and thus, proportional to 

τ-1m(t). Assuming the concentration of the trapped charges to be constant 𝑛(𝑡) ≅ 𝑛0 thus, 

𝐼(𝑡) ∝ 𝜏−1𝑚(𝑡) = 𝑝 𝑛0(1 − 𝑒−𝑡/𝜏) 
(2-8) 

After stimulation period t, the OSL signal decays exponentially with a lifetime τ as:  

 𝐼(𝑡) = 𝑝 𝑛0(1 − 𝑒−∆𝑡/𝜏)𝑒−(𝑡−∆𝑡)/𝜏 
(2-9) 

Due to the difference in the lifetime of the two luminescence centers, the fast center 

decays but the slow center keeps contributing to the next pixels. Thus, the light collected by any 

pixel at any given bin i, can be obtained by integrating Eq. (2-8) and (2-9), 

𝑔𝑖 = {

                     0,                     𝑖 < 1

∆𝑡 − 𝜏(1 − 𝑒−∆𝑡 𝜏⁄ ), 𝑖 = 1

𝜏 𝑒−𝑖
∆𝑡
𝜏 (𝑒∆𝑡 𝜏⁄ − 1)

2
, 𝑖 > 1

 
(2-10) 

If the ratio between the contribution of the F and F+-center is considered to be R = 

SF/SF+, Eq. (2-10) can be written as, 
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𝑔𝑖 = {

                        0,                                                𝑖 < 1

(1 − 𝑅) + 𝑅 [∆𝑡 − 𝜏(1 − 𝑒−∆𝑡 𝜏⁄ )], 𝑖 = 1

𝑅 𝜏 𝑒−𝑖∆𝑡 𝜏⁄ (𝑒∆𝑡 𝜏⁄ − 1)2, 𝑖 > 1

 
(2-11) 

For deconvolution, using a Least Squares fitting, the signal can be written as, 

𝑦 = 𝑋. 𝑎 
(2-12) 

where 𝑦 is a column vector containing the final signal profile in adjacent direction, 𝑎 is column 

vector containing the information on the dose in each pixel, and X is the design matrix, each 

column indicating the signal that would be observed the two adjacent scans for a unit dose at 

pixel i, designed using the response function 𝑔𝑖in Eq. (2-11). The signal can then be 

reconstructed as, 

𝑎 = (𝑋𝑡𝑋)−1𝑋𝑡𝑦 
(2-13) 

If the data are considered to have uncertainties 𝜎, then the solution can be written as: 

𝑎 = (𝑋𝑡𝑉−1𝑋)−1𝑋𝑡𝑉−1𝑦 
(2-14) 

where 𝑉 is the diagonal matrix with diagonal elements corresponding to the variances 𝜎2 in the 

data points y. 

This algorithm was the one used to correct all the data in various publications of the 

group (Ahmed et al., 2017; Yukihara and Ahmed, 2015).   

2.7 Tikhonov regularization 

The algebraic problem min ‖𝐴𝑥 − 𝐵‖2 is an ill-conditioned inverse problem and the 

solutions are largely affected by small errors in the input data. Therefore, an arbitrarily small 

error in the input data can lead to and arbitrarily large error in the solution. The pixel bleeding 

algorithm, which utilizes a Least Square estimate, introduces additional noise in the 

reconstructed signal due to the presence of Poisson noise in the input signal. In addition, the 

dose distribution from a realistic radiation field should be smooth and thus, the recovered 
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solution from pixel bleeding is also expected to be smooth. Regularization is a technique in 

which a penalty term in introduced in the equation that solves the problem of overfitting.         

Tikhonov regularization seeks to minimize the argument (Hansen, 1992a),  

‖𝐴𝑥 − 𝐵‖2 + 𝜆2‖𝐿𝑥‖2, 
(2-15) 

where‖𝐴𝑥 − 𝐵‖2is the residual term, ‖𝐿𝑥‖2 is the regularization term, and 𝜆 is the 

regularization parameter or the damping parameter that balances the two terms and weighs the 

effect of the regularization matrix 𝐿 on the minimization problem. If  𝜆 = 0 the solution 

becomes a Least Squares solution.  

By choosing 𝐿 to be the identity matrix I, we give preference to solutions with smaller 

norms, and, theoretically, allow finer resolutions for the kernel to produce distribution behavior. 

The optimal 𝜆 value can be determined by obtaining the location of the corner of the log-log 

plot of solution norm ‖𝐿𝑥‖2 and residual norm ‖𝐴𝑥 − 𝐵‖2 known as the L-Curve, as shown in 

Figure 2-16. The right part of the L-curve corresponds to solutions where regularization error 

dominates, resulting to over filtering due to over damping, whereas the steep part of the L-

curve corresponds to regularized solutions where the errors dominate, resulting in less filtering 

due to less damping. 
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Figure 2-16. A generic plot of the L-curve for Tikhonov regularization on a log-log scale. Reproduced 
from (Hansen, 1992a).   

 

Using Tikhonov based deconvolution, the signal can be written as, 

(𝑋𝑡𝑋 + 𝜆2 𝐿𝑡𝐿) 𝑎 =   𝑋𝑡𝑦 
(2-16) 

where, 𝐿 is the identity matrix with dimensions 𝜇 and 𝜇 is the number of parameters in 𝑔𝑖.  

The solution to Eq. (2-16) can be written as, 

𝑎 = (𝑋𝑡𝑋 + 𝜆2 𝐿𝑡𝐿)−1𝑋𝑡𝑦 
(2-17) 

If the data are considered to have uncertainties 𝜎, then the solution can be written as: 

𝑎 = (𝑋𝑡𝑉−1𝑋 + 𝜆2 𝐿𝑡𝐿)−1𝑋𝑡𝑉−1𝑦 
(2-18) 

The choice of regularization matrix 𝐿 in the Tikhonov regularization significantly affects 

the quality of the computed solution. When 𝐿 ≠ 𝐼, where once again I is the identity matrix, the 

regularization problem is in general form. There are many regularization matrices but the most 

common choices of 𝐿 are,  
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𝐿1 = 

[
 
 
 
 
 
1 −1 0

1 −1
1 −1

⋱ ⋱
⋱ −1

0 1 ]
 
 
 
 
 

 
(2-19) 

𝐿2 = 

[
 
 
 
 
 
1 −2 1 0

1 −2 1
1 −2 1

⋱ ⋱ 1
⋱ −2

0 1 ]
 
 
 
 
 

 
(2-20) 

These matrices L1 and L2 are the finite difference approximation of first derivative and 

second derivatives.  They minimize the difference in the amplitude of the signal without 

affecting the amplitude of the recovered signal and thus resulting in a smooth solution.  

 

 

CHAPTER 3  
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CHAPTER III
 

MATERIALS AND METHODS 
 

 

This chapter discusses the experimental details of the studies presented in this 

dissertation. The details include physical properties of detectors, readout equipment, irradiation 

sources and data acquisition methodologies.  

3.1 Samples 

Films 

The OSLD films Al2O3:C (Lot. # 31218Y2N), also known as Mipox, and Al2O3:C,Mg (Lot. # 

41128Y2N) are made from (47 ± 3) µm thick layer of Al2O3 powder mixed with binder and 

deposited on a 75 µm thick polyester substrate. The powder used in the Al2O3:C films is made of 

the same material used in LuxelTM and InLightTM dosimetry systems, but with smaller grain size. 

MBO powder was prepared using high purity reagents as describe by Gustafson et al. 

(2019) with 0.3 mol% Ce and 10 mol% Li concentration. The films were manufactured by Agfa 

NV, Mortsel, Belgium.  The powder was milled and mixed with a binder (LancoTM Wax TF1780 

,The Lubrizol Co.) and deposited on a 175 µm thick PET substrate with a total film thickness of 

550 µm.    

Point detectors 

Al2O3:C material was used as point detectors. It is the same material from the OSLD films 

Al2O3:C (Lot. # 31218Y2N) cut into small round pieces of diameter ~7 mm. 
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As for MBO, the newly developed MBO films were cut into small round pieces of diameter 

~7 mm.   

3.2 Lifetime equipment 

Figure 3-1 shows a diagram of the setup used to measure the lifetime of the 

phosphorescence signal from the MBO samples. The system uses a green (532 nm) green laser 

as stimulation source. A 38 mm focal length lens is used to focus the laser into the light guide 

and a long pass filter (GG425, Schott Corporation) to filter the laser. The laser light is guided 

towards the sample placed inside the Risø TL/OSL-DA-15 reader using a light guide. A Hoya U-

340 filter (7.5 mm thick, Hoya Corporation) is used to filter the OSL signal from the samples and 

the filtered signal is detected using a PMT (Electron Tube, 9235 QB) which was connected to a 

dual-channel gated photon counter (model SR-445, Stanford Research Systems). A pulse 

generator (model BCN 500, Berkeley Nucleonics Corporation) was used to synchronize the laser 

and photon counter.  

 

 

Figure 3-1. Diagram of setup used for lifetime measurements. 
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3.3 Bleaching  

The OSL bleaching unit consists of two halogen lamps, along with Schott GG-495 long-pass 

filter (3 mm thick, Schott Corporation) for Al2O3 films or Schott GG-400 long-pass filter (3 mm 

thick, Schott Corporation) for MBO films. The average optical power is ~2.4 mW cm-2. The OSL 

films were bleached overnight to eliminate accumulated dose during storage. 

 

3.4 Detector preparation for clinical irradiations 

The Al2O3:C and Al2O3:C,Mg films were cut into 10.0 cm × 10.0 cm pieces for clinical 

studies. One corner of the film was cut for proper alignment of the images. The film stack was 

packaged inside two sheets of light absorbing adhesive flock paper (Stock number 54-586, 

Edmund Optics) to protect from light.  

As for the small detectors, they were packaged in a removable double-sided tape (3M 

Scotch Double Sided Tape, 3M Scotch, MN, USA). An additional paper sheet was used in front of 

the sensitive layer of the detectors to prevent the thin detectors from being damaged when 

removing the tape. Each package contained 5 Mipox detectors.    

3.5 Irradiations 

3.5.1 Laboratory beta and X-ray sources 

Laboratory irradiations were performed using: (i) a 40 mCi 90Sr/90Y beta source in the 

Risø TL/OSL reader (~69 mGy/s), (ii) a 100 mCi 90Sr/90Y beta source (~1 mGy/s), and (iii) a cabinet 

X-ray system (output voltage: 10 – 110 kVp, 3 mA continuous current, Faxitron 43805 N, 

Hewlett-Packard, ~6.7 mGy/s). 
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3.5.2 6 MV photon beam 

The OSL images used in the algorithm test were from films irradiated using a linear 

accelerator model Varian 2100EX at the University of Oklahoma Health Sciences Center 

(OUHSC). The films were irradiated in solid plastic water phantom at 1.5 cm depth with a 

source-to-surface distance (SSD) of 100 cm.  

The OSL films used for small field irradiations were calibrated using a linear accelerator 

model Siemens Oncor (SN: 4135) at St. John Hospital in Tulsa, Oklahoma. The films were 

irradiated in solid plastic water phantom at a depth of 10.0 cm with a field size of 10 cm × 10 cm 

and SSD of 100 cm.    

3.5.3 CyberKnife 

The small field irradiations were carried out using the CyberKnife Robotic Radiosurgery 

system (Accuray, Inc., Sunnyvale, CA) located St. John Hospital. It consists of a linear accelerator 

mounted to a robotic manipulator. The system delivers beams of different field sizes ranging 

from 5 mm to 60 mm. During irradiation, the films were placed in solid plastic water phantom, 

at 1.5 cm or 10 cm depth with source to axis distance (SAD) of 80 cm.    

3.5.4 MR linac 

The magnetic field irradiations using the films were performed using MRidian device 

(ViewRay Inc., OH, USA) at Fondazione Policlinico Universitario Agostino Gemelli in Italy. It is 

equipped with three 60Co heads on a ring gantry combined with a 0.35 T split-magnet MRI 

system. In this system the magnetic field and radiation beam are aligned perpendicular to each 

other. The measurements using the point detectors were made using the upgraded system with 

a linear accelerator which replaced the 60Co as radiation source.     
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3.6 2D laser-scanning system 

Figure 2-5 shows the schematics of the 2D OSL reader, which consists of a 532 nm DPSS 

laser (model GMLN‐532‐100FED, 100 mW output power, Lasermate Group, Inc.) for 

stimulation. A 2D galvanometer mirror system (model GVS002, Thorlabs, Inc.) is used to reflect 

and scan the laser to the OSL film placed on top of a Schott GG-495 long-pass filter (15 cm × 

15 cm × 3.5 mm, Schott Glass Corporation). A Hoya U-340 band-pass filter (15 cm × 15 cm × 

3 mm thick, Hoya Corporation) is placed on top of the film to keep the film flat. An additional 5-

mm thick Hoya U-340 filter is placed in front of the PMT (51 mm diameter, 9235QA, Electron 

Tubes Inc.) to block any laser light reaching the PMT. The signal recorded by the PMT is 

amplified by a pre-amplifier (model SR-445, Stanford Research Systems) and digitized using a 

multichannel scaler (model SR-430, Stanford Research).  

During a scan, consecutive rows of the films are scanned in opposite directions and are 

separated by ~0.17 mm. Each scanned row is divided into 1024 bins with each bin equivalent to 

327.68 μs (bin width). The laser power is constantly monitored with a photodiode during 

scanning (model DET10A, Thorlabs, Inc.). 

3.7 Risø TL/OSL readers 

OSL measurements from point detectors were done using a Risø TL/OSL reader (model 

TL/OSL-DA-15, Risø National Laboratory, Denmark). It is equipped with a 40 mCi 90Sr/90Y beta 

source (~69.5 mGy/s) and the OSL signal is detected using a PMT (model 9235QA, Electron 

Tubes). Blue (broad band centered at 470 nm, 30 mW/cm2) or green LEDs (broad band centered 

at 525 nm, 10 mW/cm2) were used for stimulation. 
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Figure 3-2. Risø TL/OSL reader, DTU Nutech 2014.  

 

Lifetime measurements of MBO and Al2O3 were performed using a Risø TL/OSL-DA-20 

reader (DTU Nutech, Denmark) at the Paul Scherrer Institute. The reader is equipped with a 1.48 

GBq 90Sr/90Sr, but the dose rate is ~35 mGy/s because of larger source-to-sample distance. The 

samples were stimulated with blue LEDs (broad band centered at 470 nm, irradiance of 

81 mW/cm2 at the sample position) and the light was detected using an ET Enterprises 

PMD9107Q-AP-TTL photomultiplier tube (PMT). Hoya U-340 filters (Hoya Corporation, 7.5 mm 

thickness) were used in front of the PMT. The reader is equipped with a software-controlled 

Detection and Stimulation Head (DASH). The reader is also equipped with a Photon Timer 

attachment (Time-Correlated Single Photon Counter board, PicoQuant TimeHarp 260) for 

lifetime and time-resolved measurements. Each photon is time-tagged and the photon arrival 

time can be plotted for various bin widths to analyze the luminescence signal during and after 

the LED pulses. 

The experiments in Section 6.1 were carried out using the same Risø TL/OSL-DA-20 

reader (DTU Nutech, Denmark) at the Paul Scherrer Institute. All samples were readout using 

Green LED for 240 s. Immediately after irradiation, a reference irradiation of 300 s was 

delivered, and the sample was read out again for 240 s. 
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3.8 Gamma Analysis  

Gamma analysis is a technique for quantitative evaluation of dose distributions. The 

commissioning a treatment planning system requires comparison of measured and calculated 

dose distributions. A composite analysis developed by Low et al. (1998), which simultaneously 

incorporates the dose difference and distance criteria. A distance criteria DTA (distance-to-

agreement) is the distance between the measured data point and the nearest point in the same 

pixel of the calculated dose distribution. This analysis evaluates each point to provide a 

numerical index () that serves gives a measure of disagreement of the point. The gamma value 

(𝛤) for a measured point can be calculated by using the equation,   

𝛤(𝑟𝑚, 𝑟𝑐) = √
𝑟2(𝑟𝑚, 𝑟𝑐)

∆𝑑𝑀
2 +

𝛿2(𝑟𝑚, 𝑟𝑐)

∆𝐷𝑀
2  (3-1) 

 

Where, ∆𝑑𝑀
2 is the distance criteria, and ∆𝐷𝑀

2 is the dose difference criteria 𝑟2(𝑟𝑚, 𝑟𝑐)is the 

distance and 𝛿2(𝑟𝑚, 𝑟𝑐)is the dose difference between the measured and calculated point in the 

distribution given by,  

𝑟(𝑟𝑚, 𝑟𝑐) = |𝑟𝑐 − 𝑟𝑚| 
(3-2) 

𝛿𝑟(𝑟𝑚, 𝑟𝑐) = 𝐷𝑐(𝑟𝑐) − 𝐷𝑚(𝑟𝑚) 
(3-3) 

The gamma quality index is then given by,  

𝛾(𝑟𝑚) =  min{ 𝛤(𝑟𝑚, 𝑟𝑐)} − ∀{𝑟𝑐} (3-4) 

The pass-fail criteria then is: 

𝛾(𝑟𝑚, 𝑟𝑐) ≤ 1, measured point passes 

𝛾(𝑟𝑚, 𝑟𝑐) > 1, measured point fails 

As for the analysis, the resolution of the TPS image was ~1.25 mm and was interpolated 

to 1 mm resolution using the List Interpolation function in Mathematica. In the case of OSL 
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images the image was binned into 4 pixels × 4 pixels to convert the pixel size into 

1.0 mm × 1.0 mm.   

3.9 Implementation of the pixel-bleeding algorithm with regularization 

In this work the pixel bleeding algorithm (Section 2.6) was used in various configurations 

and regularizations (Section 2.7). To avoid ambiguity, in Table 3-1. we define the nomenclature 

to be used in this work. For example, by “Tikhonov algorithm” we mean the pixel bleeding 

correction algorithm using Least Squares (LS) deconvolution based on the Tikhonov 

regularization, all points with equal weights and with unitary regularization matrix. 

Table 3-1. Nomenclature for the algorithms used in this work.  

 

Nomenclature in this work Weight in LS 
deconvolution 
 
 
 
deconvolution 

Function minimized 

(unweighted) LS-algorithm  = 1 ‖𝐴𝑥 − 𝐵‖2 

Weighted LS-algorithm  = y ‖𝐴𝑥 − 𝐵‖2 

(unweighted) Tikhonov algorithm  = 1 ‖𝐴𝑥 − 𝐵‖2 + 𝜆2‖𝐼𝑥‖2 

Weighted Tikhonov algorithm  = y ‖𝐴𝑥 − 𝐵‖2 + 𝜆2‖𝐼𝑥‖2 

(unweighted) Tikhonov-L1 algorithm  = 1 ‖𝐴𝑥 − 𝐵‖2 + 𝜆2‖𝐿1𝑥‖2 

(unweighted) Tikhonov-L2 algorithm  = 1 ‖𝐴𝑥 − 𝐵‖2 + 𝜆2‖𝐿2𝑥‖2 

 
 

CHAPTER 4  
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CHAPTER IV 
 

FEASIBILITY STUDY OF TIKHONOV REGULARIZATION APPLIED TO 2D OSL DOSIMETRY 
 

 

In this chapter, the feasibility of applying the Tikhonov regularization to improve the 

directional dependence and the signal-to-noise ratio (SNR) in 2D OSL dosimetry obtained using 

laser-scanning readout was investigated. The Tikhonov regularization was incorporated into the 

pixel bleeding algorithm and applied to OSL data for 1D dose profiles simulated with various 

parameters (luminescence lifetime, ratio of F-center to F+-center, and pixel dwell times), similar 

to what have been done to demonstrate the original pixel bleeding algorithm Yukihara and 

Ahmed (2015). Finally, the algorithm was tested with experimental 1D dose profiles. 

4.1 1D Simulation 

4.1.1 Simulation results 

To test the algorithm outlined in Section 2.7, we applied it to simulated data with various 

parameters including the luminescence lifetime (𝜏), ratio of the slow to fast luminescence 

centers (R), system sensitivity (α). This is similar to what has been previously done by Yukihara 

and Ahmed (2015). A one-dimensional detector with 1000 pixel was simulated and scanned with 

different dwell times (∆𝑡) in two opposite directions. The detector was of a unitary dose from 

pixel 200 and 500 but with different sensitivities of (102 – 106) counts/pixel, lifetimes in the (1-

100) ∆𝑡 range, and background of 0.1 counts/pixel was considered. Once the signals were
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generated using the response function given by Eq. (2-11), random Poisson noise was added 

to the signal. The parameter combinations are used to generate different sets of simulated dose 

profiles as shown in Table 4-1.    

The simulated data were then processed with both the LS- and the Tikhonov algorithms 

(Section 3.9). This was done without weights (𝜎2 = 1) and using the signal as weights (𝜎2 = 𝑦). 

After the corrected signal was recovered, a 2-point moving average was applied to remove some 

noise from the signal.  

In addition to the simulated flat field dose profiles, Gaussian dose profiles were also 

simulated to perform some of the algorithm tests. One-dimensional detector with 1000 pixels 

with unitary peak dose of Gaussian beam with FWHM of 117 pixels was generated with the 

parameters used for the flat field dose profiles.   

Table 4-1. Summary of the comparison between the results from the simulated data obtained using the 

LS-algorithm and the Tikhonov algorithm with weights (𝝈𝟐 = 𝟏) and without weights (𝝈𝟐 = 𝒚) in the 
unitary dose region (201-500 pixels) and in background region (1-200 and 501-1000 pixels). R is ratio of 

F-center (F/F+),  α is system sensitivity and  is the lifetime of the slow luminescence center, expressed 

in multiples of the pixel dwell time t. Std is the standard deviation of the signal in the region of unitary 
dose (Std dose) or in the region of no dose (Std bg). TKV indicates the use of the Tikhonov algorithm 
and LS indicates the use of the Least Squares algorithm.     

 

Set R α t 
(Dt) 

Std dose 
TKV 

(𝞼2 =1) 

Std bg 
(𝞼2=1) 

Std dose 
TKV 

(𝞼2 =y) 

Std 
BG 

(𝞼2=y) 

Std dose 
LST 

(𝞼2 =y) 

Std bg 
(𝞼2 
=y) A-1 1 1E+06 1 2.9% 1.9% 2.9% 1.9% 2.9% 1.9% 

A-2 1 1E+06 10 3.2% 2.1% 2.9% 1.9% 3.1% 1.9% 

A-3 1 1E+06 100 7.5% 4.1% 2.9% 1.9% 7.7% 1.9% 

B-1 1 1E+03 1 4.0% 1.8% 4.3% 1.9% 4.3% 1.9% 

B-2 1 1E+03 10 9.0% 2.9% 9.0% 2.2% 31.0% 2.2% 

B-3 1 1E+03 100 8.9% 5.5% 9.0% 3.8% 267.2% 3.9% 

C-1 0.7 1E+03 1 3.8% 2.0% 3.8% 1.9% 3.8% 1.9% 

C-2 0.7 1E+03 10 5.3% 1.9% 5.2% 1.9% 5.2% 1.9% 

C-3 0.7 1E+03 100 5.5% 2.4% 4.9% 1.8% 4.9% 1.8% 

D-1 0.3 1E+03 1 3.4% 1.9% 3.4% 1.9% 3.4% 1.9% 

D-2 0.3 1E+03 10 3.6% 2.0% 3.7% 1.7% 3.7% 1.7% 

D-3 0.3 1E+03 100 3.5% 1.9% 3.7% 1.9% 3.7% 1.9% 

E-1 0.7 1E+02 1 7.9% 1.8% 8.4% 1.6% 8.4% 1.6% 
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E-2 0.7 1E+02 10 15% 2.4% 15.6% 1.7% 15.6% 1.7% 

E-3 0.7 1E+02 100 13.6% 5.5% 14.5% 2.4% 14.5% 2.4% 

 

4.1.2 Weighted and unweighted Tikhonov algorithms 

The simulated signals from all the sets were processed either without weights in the LS-

algorithm (𝜎2 = 1) or using the signal as weights (𝜎2 = 𝑦). Without weights all data points have 

the same importance in the algorithm, whereas using weights the statistical fluctuation in the 

data is allowed to increase in absolute terms with the square root of the number of counts, as 

expected for Poisson statistics. This means that regions in the background region, where few 

counts are recorded, are not allowed to vary as much as the regions where the signal has higher 

intensity. 

Figure 4-1 compares the results obtained for the simulated signals of set E-3 ( = 100 t,  

R = 0.7, and α =102 counts/pixel), where the graphs on the left side correspond to the results of 

the unweighted Tikhonov and the graphs on the right side correspond to the results of the 

weighted Tikhonov. Figure 4-1a and b show the simulated signal in opposite directions, where 

one can see the effect of pixel bleeding during readout. Figure 4-1c and d show the recovered 

dose profiles using the Tikhonov algorithm, and Figure 4-1e and shows the residuals. 

The results in Figure 4-1 show that using weights in the algorithm reduces the noise in 

the background region (see Figure 4-1d), as expected. In the case of set E-3 the standard 

deviation in the background region decrease from 5.5 % to 2.4 % of the maximum signal. 

Nevertheless, no major difference was observed in the flat dose region (see Figure 4-1c and d). 

That points to an advantage in the use of weights in the deconvolution algorithm. Other sets 

showed some improvements with the use of weights as well; see for example sets A-3, B-2, B-3, 

C-3, E-2 and E-3 in Table 4-1.  
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Nevertheless, weighting the data increases the processing time by a factor 6-8 and, 

therefore, it should be demonstrated that it improves experimental data significantly to justify 

its use.  

 

0

20

40

60

80

100

120

S
ig

n
a
l

C-3

 Scan 1 

 Scan 2

(a) 

0

20

40

60

80

100

120

S
ig

n
a
l

E-3

 Scan 1 

 Scan 2

(b)

 

0.0

0.4

0.8

1.2

D
o
s
e  Tikhonov(2=1)

 Dose

(c)

0.0

0.4

0.8

1.2

D
o
s
e  Tikhonov(2=y)

 Dose

(d)

 



47 

 

0 200 400 600 800 1000
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

R
e
s
id

u
a
l

Pixel

(e)

0 200 400 600 800 1000
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

R
e
s
id

u
a
l

Pixel

(f)

 

Figure 4-1. (a-b) 1-D simuation of OSL signal obtained from scanning in alternate directions from a flat 

field dose profile with lifetime  = 100 t and R = 0.7 with intensity of 102 counts per pixel. Recovered 
dose profiles using the (c) (unweighted) Tihonov algorithm and (d) weighted Tikhonov algorithm. (e-f) 

Residuals dose profiles.   
 

4.1.3 Tikhonov algorithm vs. LS-algorithm 

The results from the simulated signals obtained using the Tikhonov algorithm and the 

LS-algorithm were compared for each simulation set in Table 4-1, in both cases using weights. 

The results can be seen by looking at the “Std” columns in Table 4-1, which shows the standard 

deviation of the corrected dose profiles in the dose and in the no dose (background) region, 

relative to the unitary dose in the flat region. 

The results in Table 4-1 show that the Tikhonov algorithm improved the results for the 

datasets, A-3, B-2, and B-3, because the emission in these cases comes only from slow 

luminescence centers and, consequently, more noise is introduced by the pixel-bleeding 

correction algorithm in comparison to the others datasets. These sets are characterized by slow 

luminescence centers only (R = 1), long luminescence lifetimes ( = 10 t or 100 t) and, in the 

case of set B, low sensitivity ( = 103). 

The results can be better visualized in Figure 4-2, which compares the profiles recovered 

using the Tikhonov and the LS algorithms for sets A-3, B-2, and B-3. The first row of graphs 
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shows the simulated signal resulting from the scan in opposite directions, the second row shows 

the recovered dose profiles, and the third row shows the residuals.  

In these simulation sets, the residuals are considerably smaller using the Tikhonov 

algorithm than using only the LS algorithm. For set B-3, the standard deviation decreased from 

267% to 9% in the dose region. 

Nevertheless, no improvements were observed for sets C-3, D-3 and E-3, which are 

more relevant to the experimental results of Al2O3:C and Al2O3:C,Mg, because the R values are 

more representative of Al2O3:C,Mg (R  0.3) and Al2O3:C (R  0.7).  

Thus, our conclusion is that the Tikhonov algorithm in standard form (with L equal to the 

identity matrix I) does not improve the results in general cases when compared to the LS-

algorithm. Therefore, the other Tikhonov regularization matrices needs to be investigated. 
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Figure 4-2. 1-D simulation of OSL signal obtained from scanning in alternate directions from a flat field 
dose profile, reconstructed dose profiles using the LS-algorithm and the Tikhonov algorithm, and 

residuals with lifetimes: (a)  = 100 t (set A-3) (b)  = 10 t (set B-2) (c)  = 100 t (set B-3).   
 

4.1.4 Smoothing Regularization Matrices  

As the Tikhonov in standard form did not show any improvements for sets C, D and E, 

the Tikhonov algorithm in general form (𝑳 ≠ 𝑰) was tested with the simulated dose profile sets 

(see Section 2.7). We tested the two common choices for the regularization matrices L1 and L2 

(Section 2.7), which reduces the differences in the amplitude of the recovered signal. To 

understand the effects of the two matrices, they were applied to a simulated flat field and 

Gaussian dose profile. The parameters are the same used in set C-3. The unweighted Tikhonov-

L1 and –L2 algorithms were applied to the flat field dose profile (Set E-3) with regularization 

parameter λ = 1 and to Gaussian dose profiles with increasing λ from 1 to 50. 

Figure 4-3 shows the recovered dose profiles from the simulated flat field dose profiles 

(Set E-3) using the LS-algorithm, Tikhonov-L1, Tikhonov-L2 and Tikhonov (L = I) algorithm with 

regularization parameter λ = 1. With regularization matrix as the identity matrix the noise in the 

signal decreases, but the amplitude decreases as well and, therefore, the identity matrix is not a 

good choice for regularization for our application. On the other hand, the Tikhonov-L1 and 

Tikhonov-L2 algorithms show similar performance in noise reduction while maintaining the 

amplitude of the signal. This is due to the presence of the off-diagonal elements.     
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Figure 4-4 shows the recovered dose profiles from the simulated Gaussian dose profiles 

using the (a) Tikhonov-L1 and (b) Tikhonov-L2 algorithm. We can see that both L1 and L2 

regularization matrices reduce the noise in the profiles more and more with increasing λ. With 

the L1 regularization, however, as λ increases the dose profile becomes distorted. The peak 

intensity decreases and the FWHM increases due to the over smoothing. This increases the 

residuals, as seen in Figure 4-4c. 

 The regularization matrix L2, however, improves the signal without distorting the 

profiles and, therefore, is an interesting choice for future implementation of the Tikhonov 

method. 

To compare the noise in the recovered dose profiles using both L1 and L2 

regularizations, we applied the regularization to the simulated dose profile for different λ values 

and measured the standard deviation of the residuals. Figure 4-4e shows the comparison of the 

standard deviation of the residuals of the dose profiles for Tikhnov-L1 and Tikhnov-L2 algorithm. 

We can see that for both algorithm the standard deviation decreases to similar minimum level 

with increasing , increasing for higher  values due to over-smoothing. The acceptable  range, 

however, is much wider for the L2-algorithm than for the L1-algorithm. Thus, for pixel bleeding 

correction of experimental data, Tikhonov-L2 algorithm should be better as it gives a better 

range for smoothing the solution.     
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Figure 4-3. Recovered dose profiles from a simulated dose profiles, of parameters from Set E-3, using 
the LS-algorithm and Tikhonov-L1, Tikhonov-L2 and Tikhonov algorithms (unweighted).  
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Figure 4-4. (a-b) Gaussian dose profiles, simulated with parameters from Set D-3, recovered using 
unweighted Tikhonov-L1 and Tikhonov-L2 algorithm. (c-d) Residual of the recovered dose profiles (e) 
Comparison of standard deviation of the residuals (1-1000 pixel) of the dose profiles obtained for 
different λ values using Tikhonov-L1 and Tikhonov-L2 algorithm.     

 

The Tikhonov-L2 algorithm was also applied to a flat and Gaussian dose profiles using 

the simulation parameter sets C-3, D-3 and E-3, which are more relevant to the experimental 

data. It should be noted that the same  value was used for all the data sets of both flat field 

and Gaussian dose profiles. The results were then compared to the profiles recovered using the 

LS algorithm.  

In Figure 4-5, the top graphs (a-c) show the recovered dose profiles and the bottom 

graphs (d-f) show the residuals of the simulated flat field profiles for sets C-3, D-3 and E-3. The 

noise in set D-3 is the smallest, as it has the smallest R value of 0.3, which means higher 

contribution from the fast luminescence center to the emission. The dose profile for set E-3 has 

the most noise, as the sensitivity α for that set is 102 counts/pixel. Also, the residuals are lower 

for the dose profiles recovered using the Tikhonov-L2 algorithm in comparison to those 

obtained using the LS-algorithm. Calculating the standard deviation in the dose region (200-500 

pixel) shows improvement with the Tikhonov-L2 regularization where the standard deviations 
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are 2.5%, 1.5% and 9% of the mean value. Whereas, the LS-algorithm has standard deviations of 

5%, 3% and 14% of the mean value for sets C-3, D-3 and E-3 respectively. 

Figure 4-5d-f shows the recovered dose profiles for the Gaussian profiles in the top 

graphs and the residuals in the bottom graphs. Like flat field dose profiles, the noise is highest in 

set E-3 and the lowest in set D-3. One can see from the residual graphs that the noise is lower 

using the Tikhonov-L2 algorithm than using the LS-algorithm in all scenarios.        

The results from both the flat field and Gaussian simulated data shows that the 

uncertainties in the dose region are lower in profiles recovered using the unweighted 

Tikhonov-L2 algorithm than those obtained using the LS-algorithm.  
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Figure 4-5. Recovered dose profiles from a simulated dose profiles using the LS-algorithm and Tikhonov-
L2 algorithm (non-weighted), and residuals for sets C-3, D-3, E-3 respectively with (a-c) flat field dose 
profiles and (d-f) Gaussian dose profiles.  

 

4.2 Results using experimental data 

To test the Tikhonov algorithm (Section 3.9), we applied it to experimental data (1D 

profiles) from clinical irradiations described in Section 3.5. The data were first corrected for 

phosphorescence, pixel shift and position dependence. Then the pixel bleeding algorithm was 

applied to the signal profiles. We compared the noise in the image regions with no film in the 

background region of the films using the recovered signals from weighted and unweighted 

Tikhonov to test if weighting is necessary for the analysis at the expense of analysis time. The 

data were corrected using unweighted LS-algorithm and the Tikhonov algorithm. In addition, for 

the flat field irradiations we compared the noise in the signal for different doses and for the 

small field irradiation we compared the noise in the penumbra region.  
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4.2.1 Weighted Tikhonov 

The study using simulated data indicates that the weighted Tikhonov improves the noise 

in the region of zero dose in the films (Section 4.1). However, the necessity for such 

improvement needs to be tested with experimental data, as weighting increase the analysis 

time by 6-8 times. Additionally, the “no-dose” region can be split into two categories: the region 

where no film is present and the un-irradiated region in the film. Thus, weighted and 

unweighted Tikhonov algorithms were tested on films irradiated with small fields and flat fields. 

In the small field irradiation, the film was irradiated with a cone size of 5 mm, whereas in the flat 

field irradiation a film of 5 cm × 5 cm was used using the setup mentioned in Section 3.5.  

Figure 4-6a shows the signal profiles recovered using the weighted and unweighted 

Tikhonov algorithms, and the LS-algorithm. The signal corrected using the LS-algorithm is only 

used for reference. As can be seen the noise level is similar in the no dose region in both dose 

profiles recovered using weighted and unweighted Tikhonov algorithms. This is because the 

choice of regularization λ parameter in the regularization algorithm reduces the noise in the no 

dose region as well, and weights may not be necessary.  

Figure 4-6b shows the signals recovered from a small 5 cm × 5 cm film irradiated with a 

flat field with a total dose of 1 Gy. Again, the signal profile obtained using the LS-algorithm is for 

reference only. In the figure, one can see that the noise in the no film region is less for weighted 

Tikhonov than unweighted Tikhonov. Nevertheless, when the noise in the no film region (30-150 

pixels, 400-550 pixels) is analyzed, one finds that both signal profiles have similar noise. 

Weighted Tikhonov had 5% noise whereas unweighted Tikhonov has 8%, relative to the given 

dose.  
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Thus, in both cases we found that Tikhonov with weights does not provide any significant 

improvements and only increases the analysis time, as opposed to what was shown using the 

simulated data (Section 4.2.1). This is because the regularization matrix used in the simulations 

was the Identity matrix, which did not improve the noise in the signal, whereas the L2 

regularization matrix is used in the current test, which reduces the noise in the signal not only in 

the dose region but also in the background region.   
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Figure 4-6. Signal profiles recovered using weighted and unweighted Tikhonov algorithm, and the LS-
algorithm of a (a) small field of 5 mm cone beam irradiation on a 10 cm × 10 cm film and (b) flat field 
size of 15 cm × 15 cm irradiation on a 5 cm × 5 cm film.       

 

4.2.2 Flat field irradiations 

It was shown using simulated data (Section 4.1.3) that the Tikhonov algorithm improves 

the signal noise in the dose profiles in comparison to the LS-algorithm. Nevertheless, this result 

needs to be tested with experimental data. Thus, line profiles of 10 cm × 10 cm films irradiated 

with total doses of 0.01 Gy, 0.1 Gy, 1 Gy, and 10 Gy were corrected using the unweighted 

Tikhonov-L2 algorithm and the LS-algorithm.  

Figure 4-7 compares the recovered signals using both algorithm for all doses. In all cases 

the noise in the signal was significantly reduced using the Tikhonov-L2 algorithm. In addition, 
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the noise in the no film region is also reduced. The noise in the signal (80 – 450 pixel) for all the 

doses was calculated as shown in Table 4-2. It was found that the signal from the lowest dose 

had the most improvement in noise compared to the others. The noise was reduced by ~3 times 

using the Tikhonov-L2 algorithm.  

Thus, Tikhonov-L2 algorithm can be used to reduce the noise in films irradiated with flat 

field doses. 
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Figure 4-7. Signal profiles from films irradiated with 6 MV linac with (a) 10 Gy, (b) 1 Gy, (c) 0.1 Gy and 
(d) 0.01 Gy recovered using the Tikhonov-L2 algorithm and the LS-algorithm.  

 



58 

 

Table 4-2. Comparison between the standard deviation of the signal of the recovered signal profiles in 
the dose region (pixels 80-450) which was recovered using the Tikhonov-L2 algorithm and the LS-
algorithm.     

 

Dose (Gy) Std dose TKV-L2  Std dose LST  

0.01 15% 47% 

0.1 7% 18% 

1 2.5% 5.8% 

10 1.4% 2.4% 

 

4.2.3 Small field irradiations 

The Tikhonov algorithm was further tested with films irradiated with small fields using 

the Accuray CyberKnife (Section 3.5.3). Raw signal profiles from four different films irradiated 

with cone sizes of 5 mm, 7.5 mm, 10 mm, and 60 mm were corrected using the Tikhonov 

algorithm and the LS-algorithm. Figure 4-8 shows the corrected signal profiles for all the cone 

sizes.  

As can be seen, the noise in the peak signal for all the cone sizes is less for profiles 

corrected with Tikhonov algorithm compared to the LS-algorithm. In addition, the noise in the 

penumbra region of the distribution is also lower when corrected using Tikhonov-L2 algorithm. 

Thus, the Tikhonov-L2 algorithm is better suited then the LS-algorithm for correction in small 

field dosimetry as well. 
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Figure 4-8. Signal profiles from films irradiated with Accuray CyberKnife with cone sizes of (a) 5 mm (b) 
7.5 mm (c) 10 mm and (d) 60 mm recovered using the Tikhonov-L2 algorithm and the LS-algorithm. 
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CHAPTER V 
 

IMPLEMENTATION OF THE TIKHONOV REGULARIZATION TO 2D OSL DOSIMETRY 
 

 

In the previous section, we discussed the feasibility of implementing the Tikhonov 

regularization in the pixel bleeding algorithm. 1D simulation and experimental results show that 

Tikhonov algorithm improves the dose profiles by minimizing the additional noise due to the 

pixel bleeding algorithm in the reconstructed signal. In this Section, we show the application of 

Tikhonov algorithm to the full 2D image and test its effect on the spatial resolution and 

directional dependence in the OSL images. We applied the Tikhonov algorithm to the 

experimental data obtained using the 6 MV linac and the Accuray CyberKnife (Section 3.5.3) and 

compare it to the images filtered using noise filters. Finally, we test the dosimetric performance 

of the Tikhonov algorithm by calculating the output factor in 6 MV X-rays beams and compare 

them to ionization chamber data. In addition, we also evaluated the performance of Al2O3:C,Mg 

films for CyberKnife dosimetry.     

5.1 Influence of regularization parameter () in OSL image 

The choice of regularization parameter  (see Eq. (2-18) affects the level of smoothing in 

the image and directly affects the image noise. In addition, the OSL image reconstruction 

algorithm corrects the pixel bleeding in pairs of rows (x-axis) until the whole image is 

reconstructed. Thus, with the introduction of the Tikhonov algorithm, the noise is also 

minimized only on the x-axis. This may lead to over smoothing of the data in the x-axis
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compared to the y-axis, which is not affected by pixel bleeding. Therefore, it is 

important to characterize the noise level in both x and y direction of the OSL signal profiles for 

different  values.  

Furthermore, like any other noise filters, the Tikhonov algorithm may also influence the 

spatial resolution in the image. Thus, it is important to characterize the influence of  on the 

spatial resolution of OSL images.      

 

5.1.1 Image noise 

First, we investigated the effect of the regularization parameter  in the OSL image 

noise. Raw OSL images from both 10 cm × 10 cm Al2O3:C and Al2O3:C,Mg films irradiated with 

doses of 0.01 Gy, 0.1 Gy, 1 Gy and 10 Gy with 6 MV X-ray were recovered using  Tikhonov-L2 

algorithm and  values 0.1, 1 and 10.  

Figure 5-1 shows OSL images from 10 cm × 10 cm Al2O3:C,Mg films reconstructed using 

the LS-algorithm and the Tikhonov-L2 algorithm with increasing regularization parameter. As can 

be seen, the images get smoother with increasing  parameter. Similar results were observed 

for Al2O3:C films.       

Figure 5-2 shows the standard deviation calculated at the center of the OSL images of 

(a) Al2O3:C,Mg and (b) Al2O3:C over the region of interest (ROI) 1 cm × 1 cm. Application of the 

Tikhonov-L2 algorithm ( = ) decreases the standard deviation by >3 times in Al2O3:C, and >2 

times in Al2O3:C,Mg.  Al2O3:C films show better improvement with the application of Tikhonov-L2 

algorithm because its images have more noise compared to Al2O3:C,Mg images, due to the 

higher concentration of F+-center in Al2O3:C,Mg.       
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In conclusion, the results show that implementation of Tikhonov-L2 algorithm improves 

the SNR in the images with increasing values of regularization parameter  For both film types, 

films irradiated with low doses have significant improvement in noise compared to films 

irradiated with higher doses with the application of Tikhonov-L2 algorithm. 

 (a)  =     (b)  =   

 

(c)  =   

 

Figure 5-1. OSL images from 10 cm × 10 cm Al2O3:C,Mg films irradiated with a total dose 1 Gy using 6 

MV X-rays and recovered using the LS-algorithm and the Tikhonov-L2 algorithm (a)  = 0.1, (b)  = 1, 

and (c)  = 10.   
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Figure 5-2. Standard deviation per pixel calculated over a 1 cm × 1 cm ROI within the OSL images of (a) 
Al2O3:C,Mg and (b) Al2O3:C films recovered using different regularization parameter values. The error 
bars indicate the standard deviation calculated over 5 different 1 cm × 1 cm regions in the OSL image.   

 

5.1.2 Directional dependence of image noise 

Next, the effect of the regularization parameter  in the directional dependence of the 

OSL image was studied by analyzing the noise in the signal profiles in x and y direction of the OSL 

images of both Al2O3:C and Al2O3:C,Mg from Section 5.1.1.  

Figure 5-3 shows two overlapping signal profiles (average of 1 mm), at the center of OSL 

images in both x and y directions, recovered using  values 0.1,1 and 10 for films irradiated with 

a dose of 0.01 Gy, 0.1 Gy, and 1 Gy. The noise in the signal profiles decreases with the 

application of Tikhonov-L2 algorithm with increasing . With higher values of the regularization 

parameter, however, the directional dependence was reversed, i.e. the noise in the y-axis 

became larger than that in the x-axis. This is due to over smoothing in the x-direction. Thus, we 

need to find the best  parameter that resolves the directional dependence with the similar 

noise level in either axis in the image. 
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Figure 5-4 shows the comparison of the standard deviation of signal profiles in x and 

y-axes of the OSL images of Al2O3:C and Al2O3:C,Mg films shown in Figure 5-3. In both films the 

standard deviation of the signal profiles decreases with increasing 𝜆 parameter for x-axis. In the 

y-axis, however, the standard deviation decreases only up to when 𝜆 = 1. This is because the 

pixel bleeding algorithm is applied only in the scanning direction (x-axis). Thus, the best 

regularization parameter that can be used in Tikhonov-L2 algorithm for the two film types is 𝜆 =

1. 
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Figure 5-3. Signal profiles (average of profiles spanning 1 mm) in both x and y directions of OSL images, 

from Al2O3:C,Mg films, recovered using the Tikhonov-L2 algorithm with (a)  =  0.1 (b)  =  1 and (c)  = 
10 for films irradiated with a total dose of 0.01 Gy, 0.1 Gy, and 1 Gy.  
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Figure 5-4. Standard deviation per pixel, over the dose region, from the signal profiles in x and y 

direction, recovered using the Tikhonov-L2 algorithm with different  parameters from (a) Al2O3:C,Mg, 
and (b) Al2O3:C films irradiated with 0.01 Gy, 0.1 Gy, 1 Gy and 10 Gy. The error bars indicate standard 
deviation of the mean over 5 different signal profiles.  

 

5.1.3 Spatial resolution 

To test the effect of the Tikhonov-L2 algorithm on the resolution of the OSL images, we 

used the image from a piece of Al2O3:C,Mg film exposed to a 30 kVp X-ray beam with one corner 

blocked using a 1.0 cm aluminum block. Figure 5-5 shows the image of the film where one can 

see the blocked region by the block in the image.  

Figure 5-6 shows the signal profiles calculated at the center of the unirradiated region of 

the OSL images recovered using different 𝜆 parameters in both x and y directions. The signal 

profiles were normalized to the mean signal at the irradiated region over ROI 1 cm × 1 cm. As 

can be seen in Figure 5-6a, the spatial resolution decreases with increasing 𝜆 values. The spatial 

resolution of the image was calculated by measuring the spatial width of the edges with 

response decreasing from 90% to 10%. The spatial width increased from (0.93 ± 0.01) mm with 

𝜆 = 1 to (1.38 ± 0.02) mm with 𝜆 = 10. The spatial width in y-direction was unaffected and was 

found to be (0.92 ± 0.01) mm for all 𝜆 values. The values following ± represents the standard 

deviation of the mean width calculated over 50 consecutive signal profiles in the image.         
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The results showed that the application of Tikhonov-L2 algorithm in the pixel bleeding 

algorithm affects the spatial resolution of the OSL images in the x-axis. However, with 

regularization parameter  < 2, the spatial resolution is < 1 mm.    

 

Figure 5-5. OSL image from the 6 cm × 6 cm Al2O3:C,Mg film exposed to 30 kVp X-ray beam with one 
corner blocked using a 3 cm × 3 cm × 1 cm aluminum block recovered using  Tikhonov-L2 algorithm.   
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Figure 5-6. Comparison of spatial resolution in (a) x-axis and (b) y-axis using the edge response method 

from Al2O3:C,Mg image recovered using the LS-algorithm ( = ) and the Tikhonov -L2 algorithm with 

increasing  parameter.  
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5.2 Tikhonov versus LS-algorithm 

5.2.1 Image noise 

This test was done to compare the noise in the OSL images recovered using the LS- and 

the Tikhonov-L2 algorithms without any additional noise filters. For this 10 cm × 10 cm Al2O3:C 

and Al2O3:C,Mg films irradiated with doses 0.01 Gy - 10 Gy using 6 MV X-rays were recovered 

using the LS- and Tikhonov-L2 algorithms ( = 1). To better compare the noise in the images 

recovered using both algorithms, the standard deviation at the center of the images for all doses 

was calculated.   

Figure 5-7 shows the OSL images from 10 cm × 10 cm Al2O3:C films irradiated with 1 Gy 

and reconstructed using the LS- and the Tikhonov-L2 algorithms. As can be seen in the image, 

the noise is significantly reduced with the Tikhonov-L2 algorithm. Al2O3:C,Mg images (not 

shown) also showed improved noise reduction in the signal with the application of Tikhonov-L2 

algorithm.   

Figure 5-8 shows the standard deviation calculated at the center of the OSL images of 

Al2O3:C and Al2O3:C,Mg films irradiated with 0.01 Gy – 10 Gy over the ROI 1 cm × 1 cm. The OSL 

images recovered using the Tikhonov-L2 algorithm have significantly lower noise for all 

investigated doses for both film types compared to the LS-algorithm. The standard deviation 

was found to be lower by ~ 1.5 times in Al2O3:C,Mg films and ~ 1.7 times in Al2O3:C films for 

doses up to 1 Gy with the application of Tikhonov-L2 algorithm. Al2O3:C films are improved more 

by the use of the Tikhonov-L2 algorithm because of the larger noise introduced in the signal by 

the pixel bleeding algorithm compared to the Al2O3:C,Mg films, due to the higher F/F+-center 

ratio in Al2O3:C than in Al2O3:C,Mg. In addition, the noise in the OSL films irradiated with doses 

higher than 1 Gy already has significantly lower noise than in those irradiate with low doses.  
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In conclusion, the Tikhonov-L2 algorithm can reduce the noise introduced in the images 

by the pixel bleeding algorithm.   

(a) LS-algorithm     (b) Tikhonov-L2 algorithm 

 

Figure 5-7. OSL images from 10 cm × 10 cm Al2O3:C films irradiated with a total dose of 1 Gy using 6 MV 
X-rays and recovered using (a) LS- algorithm and (b) Tikhonov-L2 algorithm. 
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Figure 5-8. Standard deviation per pixel calculated over ROI 1 cm × 1 cm of OSL images of (a) Al2O3:C,Mg 
and (b) Al2O3:C films recovered using the LS- and the Tikhonov-L2 algorithms with and without noise 
filters. The error bars indicate the standard deviation calculated over 5 different 1 cm × 1 cm regions in 
the OSL image. 
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5.2.2 Directional dependence of image noise 

This test was done to compare the directional dependence of OSL images recovered 

using the LS- and the Tikhonov-L2 algorithms. For this Al2O3:C,Mg, and Al2O3:C films irradiated 

with flat field (15 cm × 15 cm) doses of 0.01 Gy, 0.1 Gy, and 1 Gy were recovered using the LS- 

and the Tikhonov-L2 algorithms ( = 1). In addition, Al2O3:C,Mg irradiated with small field sizes 

of 5 mm, 7.5 mm and 10 mm with a total dose of 2 Gy were reconstructed using the LS- and the 

Tikhonov-L2 algorithms ( = 1). Then the noise in the signal profiles of the images from both flat 

field and small field irradiations were compared in both directions.   

   Figure 5-9a and b shows two overlapping signal profiles (average of 3 cm), at the 

center of OSL images in both x and y directions for films irradiated with a dose of 0.01 Gy, 0.1 

Gy, and 1 Gy recovered using the LS- and the Tikhonov-L2 algorithms. As can be seen, there is 

more noise in the scanning direction (x-axis) than in the sub-scan direction (y-axis) for images 

recovered using the LS-algorithm for both film types. In fact, this directional dependence is 

larger in Al2O3:C film images. Nevertheless, the noise in the signal profiles recovered using 

Tikhonov-L2 algorithm is similar in both directions. This is obvious as the regularization is applied 

to the fast scan direction.  

Figure 5-10a,b shows the signal profiles (average of 2 mm) in x and y direction, at the 

center of OSL images irradiated with small field sizes of 5 mm, 7.5 mm and 10 mm recovered 

using the LS-and the Tikhonov-L2 algorithms. When the noise in the signal in both x and y 

directions are compared, the directional dependence can be observed in signal profiles of 

images recovered using the LS-algorithm (Figure 5-10a). This effect would have been more 

prominent in Al2O3:C films if they were to be irradiated in similar conditions. This effect, 
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however, is resolved with the application of Tikhonov-L2 algorithm, as shown in Figure 5-10b, 

which shows that noise levels in both x and y directions are comparable.  

Therefore, it can be concluded that the directional dependence of image noise can be 

resolved with the application of Tikhonov-L2 algorithm.  
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Figure 5-9. Signal profiles (average of 120 consecutive profiles spanning 3 cm) in both x and y directions 
of OSL images, of (a) Al2O3:C  and (b) Al2O3:C,Mg films, recovered using the LS-and the Tikhonov-L2 
algorithms for films irradiated with a total dose of 0.01 Gy, 0.1 Gy, and 1 Gy. 
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(a) LS-algorithm    (b) Tikhonov-L2 algorithm 

-4 -2 0 2 4
0.01

0.1

1

10

100
O

S
L
 s

ig
n
a
l(

c
o
u
n
ts

)

Off axis distance (cm)

LST

5 mm

 x

 y

-4 -2 0 2 4
0.01

0.1

1

10

100

O
S

L
 s

ig
n

a
l(
c
o

u
n

ts
)

Off axis distance (cm)

TKV-L2

5 mm

 x

 y

 

-4 -2 0 2 4
0.1

1

10

100

O
S

L
 s

ig
n

a
l(

c
o

u
n

ts
)

Off axis distance (cm)

LST

7.5 mm

 x

 y

-4 -2 0 2 4
0.1

1

10

100

O
S

L
 s

ig
n
a
l(
c
o
u
n
ts

)

Off axis distance (cm)

TKV-L2

7.5 mm

 x

 y

 

-4 -2 0 2 4
0.1

1

10

100

-4 -2 0 2 4
0

1

2

3

4

5

O
S

L
 s

ig
n
a
l(

c
o
u
n
ts

)

Off axis distance (cm)

10 mm

 x

 y

O
S

L
 s

ig
n

a
l(

c
o

u
n

ts
)

Off axis distance (cm)

LST

10 mm

 x

 y

-4 -2 0 2 4
0.1

1

10

100

O
S

L
 s

ig
n
a
l(
c
o
u
n
ts

)

Off axis distance (cm)

TKV-L2

10 mm

 x

 y

 

Figure 5-10. Signal profiles (average of 8 consecutive profiles spanning 2 mm) in both x and y directions 
of OSL images, from Al2O3:C,Mg films, recovered using (a) LS-algorithm and (b) Tikhonov-L2 algorithm 
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for films irradiated with a small field sizes of 5 mm, 7.5 mm, and 10 mm and total delivered dose of 2 
Gy.  
 

5.3 Comparison with noise filters 

5.3.1 Image noise 

This test was done to compare the image noise with the application of noise filter in the 

images recovered using the LS- and the Tikhonov-L2 algorithms. It was shown by Ahmed (2016) 

that a Wiener filter  (Wolfram Research, 2015) with parameter size of 5 pixels × 5 pixels offers 

optimum noise reduction while preserving the modulation transfer function (MTF) in the OSL 

images when compared to other filters: Mean filter, Median filter, and Total Variation filter, all 

of which are built-in function in Mathematica (Wolfram Research, 2015). For this test, the image 

from Al2O3:C,Mg, and Al2O3:C films irradiated with different doses using a 6 MV linac were 

reconstructed using the LS- and the Tikhonov-L2 algorithms ( = 1). The reconstructed images 

were smoothed using a 5 pixels × 5 pixels Wiener filter. The noise in the filtered images was 

analyzed by calculating the standard deviation at the center of the images for all doses. 

Figure 5-11 shows the standard deviation calculated at the center of the OSL images of 

Al2O3:C and Al2O3:C,Mg films irradiated with 0.01 Gy – 10 Gy over the ROI 1 cm × 1 cm. With the 

application of Wiener filter, the image noise is similar within ~1% for both films using both 

algorithms for all doses. The error bars indicate the standard deviation of the mean signal over 

the three ROI’s. This test shows that the image noise is comparable when an additional noise 

filter is applied after the image reconstruction with either the LS- or the Tikhonov-L2 algorithms. 

It is important, however, to note that the Tikhonov-L2 algorithm is not and was never meant to 

replace noise filters, but rather to reduce the additional noise due to the algorithm in the 

scanning direction (x-axis). Nevertheless, image noise is not the only parameter in accessing 
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noise in the image as it does not quantify the directional dependence in the image. This is 

investigated in the next Section.  

0.01 0.1 1 10
0

2

4

6

8

10

12

ROI:1 cm x 1 cm

 LST+Wiener

 TKV-L2+Wiener

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

%
)

Dose (Gy)

(a) Al2O3:C,Mg

0.01 0.1 1 10
0

5

10

15

20

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 (

%
)

Dose (Gy)

ROI:1 cm x 1 cm

LST+Wiener

TKV-L2+Wiener

(b) Al2O3:C

 
Figure 5-11. Standard deviation per pixel calculated over ROI (1 cm × 1 cm) of OSL images of (a) 
Al2O3:C,Mg and (b) Al2O3:C films recovered using the LS- and Tikhonov-L2 algorithms with and without 
noise filters. The error bars indicate the standard deviation calculated over 3 different ROI in the OSL 
image. 

 

5.3.2 Directional dependence of image noise 

This test was done to compare the directional dependence of OSL images recovered 

using the LS- and the Tikhonov-L2 algorithms with the application of noise filter. For this, the 

image from Al2O3:C,Mg films irradiated with small field sizes of 5 mm, 7.5 mm and 10 mm with a 

total dose of 2 Gy were reconstructed using the LS- and the Tikhonov-L2 algorithms ( = 1). The 

recovered images were then smoothed using 5 pixels × 5 pixels Wiener filter.  

Figure 5-12 shows the signal profiles (average of 2 mm) in x and y direction, at the 

center of OSL images irradiated with small field sizes of 5 mm, 7.5 mm and 10 mm recovered 

using the LS- and the Tikhonov-L2 algorithms.  When the noise in the signal in both x and y 

directions are compared, the directional dependence can be observed in signal profiles of 

images recovered using the LS-algorithm (Figure 5-12a). This is because the Wiener filter is 

applied to the whole image and does not account for the directional dependence. This effect, 
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however, is resolved in images recovered using Tikhonov-L2 algorithm, as shown in Figure 

5-12b, which also shows that the noise levels in both x and y directions are comparable. This is 

more prominent for low doses, as shown in the case of small fields, where the tail of the 

penumbra has low dose and more noise, and the advantage of the Tikhonov-L2 algorithms can 

be observed.   

 (a) LS-algorithm    (b) Tikhonov-L2 algorithm 
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Figure 5-12. Signal profiles (average of 8 consecutive profiles spanning 2 mm) in both x and y directions 
of OSL images, from Al2O3:C,Mg films, recovered using (a) LS-algorithm and (b) Tikhonov-L2 algorithm 
for films irradiated with a small field sizes of 5 mm, 7.5 mm, and 10 mm and total delivered dose of 2 
Gy. The images were further filtered using 5 pixels × 5 pixels Wiener filter.  

 

5.3.3 Spatial resolution 

To test the effect of the Wiener filter in the resolution of the OSL images, we used the 

image from a piece of Al2O3:C,Mg film which was exposed 30 KeV X-ray bean with one corner 

blocked using 1.0 cm aluminum block as shown in Figure 5-5. The OSL image recovered using LS- 

and Tikhonov-L2 algorithms and further smoothed using a 5 pixels × 5 pixels Wiener filter. 

Figure 5-13 shows the signal profiles (average of 1 mm) in x and y directions at the 

center of the reconstructed OSL image recovered using the LS- and Tikhonov-L2 algorithms. The 

signal profiles were normalized to the mean signal at the irradiated region over ROI 1 cm × 1 cm. 

The spatial resolution was found to be < 1 mm in both directions after the application of Wiener 

filter in the images recovered using both the LS- and the Tikhonov-L2 algorithms.  

This test further confirms that the application of Tikhonov-L2 algorithm can be used to 

resolve the directional dependence and Wiener filter can be applied to further minimize the 

noise in the OSL images.   
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Figure 5-13. Comparison of spatial resolution in (a) x-axis and (b) y-axis using edge response method 
from Al2O3:C,Mg image recovered using LS- and the Tikhonov-L2 algorithm and smoothed using a 
Wiener filter (5 pixels × 5 pixels).  

 

5.4 6 MV linac irradiations 

This study was done to test the dosimetric implications of Tikhonov-L2 algorithm in the 

image reconstruction algorithm for OSL images. Calibration curves calculated from the OSL 

images, for both films types Al2O3:C and Al2O3:C,Mg, was recovered using the LS- and the 

Tikhonov-L2 algorithms and compared. Then, the calibration curved was used to calculate the 

output factors for different field sizes and compared to the ionization chamber data along with 

the associated uncertainties. 

5.4.1 Dose Response 

We compared the dose response for Al2O3:C and Al2O3:C,Mg films irradiated using 6 MV 

X-rays with 15 cm × 15 cm flat field for doses from 0.01 Gy to 10 Gy. The images from both film 

types were recovered using the LS- and the Tikhonov-L2 algorithms. The images were further 

smoothed using a 5 pixels × 5 pixels Wiener filter.  
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Figure 5-14 shows the calibration curve obtained using the average signal over a central 

ROI 3 cm × 3 cm area (120 pixels × 120 pixels). The difference between the mean values 

calculated from images recovered using the two methods for both film types was <0.5% for all 

doses and thus, the same calibration function was used for fitting. This test shows that the 

application of Tikhonov-L2 algorithm in the image reconstruction does not affect the dose 

response of the OSL films and only minimizes uncertainties. Next, the data was then fitted using 

a saturating exponential similar to what was used by Ahmed (2016), 

𝑦 = 𝑎0𝑥 + 𝑎1(1 − 𝑒−𝑎2𝑥) 
(5-1) 
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Figure 5-14. Dose response from 10.0 cm × 10.0 cm films of Al2O3:C and Al2O3:C,Mg, using 6 MV photon 
beam at dmax with 15 cm × 15 cm flat field at 100 cm SSD. The images were recovered using the LS- and 
Tikhonov-L2 algorithms and filtered using Wiener filter (5 pixels × 5 pixels). Each data point 
3.0 cm × 3.0 cm (~120 pixels × 120 pixels) around the central axis and the error bars represent the 
standard deviation per pixel over the ROI.   

 

Table 5-1. Fitted parameters of the dose response functions for the OSL films shown in Figure 5-14. 

 

Parameters Al2O3:C Al2O3:C,Mg 

a0 (2.66 ± 0.02) × 10-3 Gy/count (3.48 ± 0.05) × 10-3 Gy/count 

a1 (2.80 ± 0.03) Gy (4.7 ± 0.2) Gy 

a2 (1241 ± 24) count (1340 ± 80) count 
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5.4.2 Response to field size 

To test the dosimetric performance of Tikhonov-L2 algorithm, we calculated the output 

factors for different field sizes and compared them to ionization chamber measurements. For 

these images from 10.0 cm × 10.0 cm Al2O3:C and Al2O3:C,Mg films irradiated using 6 MV photon 

beam at dmax with different field sizes at 100 cm SSD were reconstructed using both LS- and 

Tikhonov-L2 algorithms. The images were further smoothed using 5 pixels × 5 pixels Wiener 

filter. Figure 5-15 shows the calculated dose maps for Al2O3:C for different field sizes.  

       (a) 8 cm × 8 cm     (b) 6 cm × 6 cm 
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(c) 4 cm × 4 cm 

 

Figure 5-15. Dose maps calculated for 10 cm × 10 cm Al2O3:C films irradiated with 6 MV photon flat field 
of field sizes (a) 8 cm × 8 cm, (b) 6 cm × 6 cm, and (c) 4 cm × 4 cm. 

 

Figure 5-16 shows the dose profiles measured by Al2O3:C film by calculating the average 

doses over strips of 1.0 mm (average of 4 profiles) and 1.0 cm ( average of 40 profiles) in x and y 

direction from the images in Figure 5-15. As can be seen, the noise levels in the signal profiles 

recovered using the two methods are similar in both x and y axes irrespective of the 1 mm or 

1 cm averaging of signal profiles.     
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Figure 5-16. Dose profiles of 1.0 mm and 1.0 cm width measured using Al2O3:C films irradiated with 
different field sizes of (a-b) 8 cm × 8 cm, (c-d) 6 cm × 6 cm, and (e-f) 4 cm × 4 cm reconstructed using LS-
algorithm and Tikhonv-L2 algorithm. 

 

For a better assessment of the dose and noise in the image recovered using the two 

methods, the average dose for each film over the central 1.0 mm × 1.0 mm ROI (4 pixels × 4 

pixels) and 1.0 cm × 1.0 cm ROI (40 pixels × 40 pixels) for all field sizes were calculated. Table 5-2 

summarizes the average doses and output factors (dose normalized to dose at 8 cm × 8 cm) for 

each film reconstructed using the two methods. The doses measured in the two ROIs at the 

center of images of Al2O3:C and Al2O3:C,Mg films have an average error of 1% in comparison to 

dose measured from the ionization chamber. The output factor measured by the Al2O3:C film 
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agreed with the IC within 0.3%, but for Al2O3:C,Mg films the agreement was within 1.1%. The 

results are similar to what was shown by Ahmed (2016).     

The dose difference between the LS-algorithm and the Tikhonov-L2 algorithms for the 

two film types is <0.1%. In addition, the associated uncertainties over the ROI for both film types 

are lower in the images recovered using Tikhonov-L2 algorithm than the LS-algorithm. This study 

demonstrates that the dosimetric performance of the OSL films is not affected by the 

application of Tikhonov-L2 algorithm.        

Table 5-2. Measured doses and output factors (relative to 8 cm × 8 cm field size) for the 6 MV photon 
(Siemens Oncor) flat field with different field sizes by ionization chamber (IC), Al2O3:C, Al2O3:C,Mg films 
reconstructed using the LS- and the Tikhonov-L2 algorithms. The dose was calculated over a 
1.0 mm × 1.0 mm (ROI 4 pixels × 4 pixels) at the center of the films. The uncertainty in the measured 
doses indicates the standard deviation per pixel at the ROI. The values were normalized to the value at 
8 cm × 8 cm to calculate output factors and the associated uncertainties indicate the propagated 
uncertainty.  

 

Quantity Field area 
(cm × cm) 

IC LST (1 mm) 
Al2O3:C 

TKV (1 mm) 
Al2O3:C 

LST (1 cm) 
Al2O3:C,Mg 

TKV (1 cm) 
Al2O3:C,Mg 

M (Gy) 8 × 8 1.87 ± 0.01 1.84 ± 0.06 1.84 ± 0.04 1.88 ± 0.03 1.88 ± 0.03 

6 × 6 1.82 ± 0.01 1.80 ± 0.07 1.80 ± 0.05 1.81 ± 0.05 1.81 ± 0.03 

4 × 4 1.76 ± 0.01 1.73 ± 0.09 1.73 ± 0.05 1.78 ± 0.06 1.77 ± 0.04 

ΔD/D (%) 1% 1% 1% 1% 

Output 
Factor 

8 × 8 1 1 1 1 1 

6 × 6 0.97 ± 0.01 0.97 ± 0.09 0.97 ± 0.06 0.96± 0.06 0.96± 0.04 

4 × 4 0.94 ± 0.01 0.94 ± 0.11 0.94 ± 0.06 0.94 ± 0.08 0.94± 0.04 

ΔOF/OF (%) 0.2% 0.3% 1.1% 1.1% 

 

5.5 CyberKnife irradiations 

The beam commissioning for a CyberKnife system requires input data which is specific 

to the dosimetric algorithm used for the treatment planning. Monte Carlo and Ray-Tracing are 

two commonly used algorithms which requires the following core set of data for beam 

characterization,   
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• Tissue Phantom Ratios (TPR) which is defined as the ratio of the dose at a given point in 

phantom to the dose at the same point at a fixes reference depth, usually 5 cm. This is a 

rough measure of the energy spectrum.   

• Off-Central Ray Ratios (OCR), which is the measure of dose distribution as a function of 

off-axis distance, normalized to the central axis. 

• Output Factors (OF’s), which is the measure of radiation output change as a function of 

field size (cone size). All output factors are normalized to the fixed cone of 60 mm.   

To show the application of OSL films in small field dosimetry along with the implementation 

of the Tikhonov-L2 algorithm in the image reconstruction algorithm, all the images in these tests 

were reconstructed using the Tikhonov-L2 algorithm. The images were then further smoothed 

using 5 pixels × 5 pixels Wiener filter.  

5.5.1 Film calibration 

The calibration curve was obtained by irradiating 10.0 cm × 10.0 cm Al2O3:C,Mg films 

using a linac (Section 3.5.2) with 6 MV X-rays at a depth of 10.0 cm with a field size of 10 cm × 

10 cm and SSD of 100 cm. For linearity check, an ionization chamber (Exradin chamber, model 

A19) was placed at 16 cm water equivalent depth during all film irradiations. Three films were 

irradiated individually for each dose.    

Figure 5-17 shows the calibration curve for Al2O3:C,Mg films. Each data point is an 

average of three film measurements calculated over the over 2.0 cm × 2.0 cm 

(~80 pixels × 80 pixels) around the central axis. The error bars represent the standard deviation 

of the mean between the three film measurements. The data were fitted using a saturating 

exponential given by, 
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𝑦 = 𝑎(1 − 𝑒−𝑏𝑥) 
(5-2) 

The fitted parameters for the dose response curves are shown in Table 5-3.  
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Figure 5-17. Calibration curve obtained with irradiation in linac (Section 3.5.2) at a depth of 5.0 cm with 
field size 10 cm × 10 cm and SSD: 100 cm using 10.0 cm × 10.0 cm Al2O3:C,Mg films. Each data point is 
the average of three film measurements calculated over 2.0 cm × 2.0 cm (~80 pixels × 80 pixels) around 
the central axis. The error bars indicate the standard deviation of the mean of the three film 
measurements.  
 
Table 5-3. Fitted parameters of the dose response functions for the OSL films shown in Figure 6-9. 

 

Parameters Al2O3:C,Mg 

a (22.9116 ± 0.368) Gy 

b (3.29 ± 0.05) × 10-4 Gy/count 

5.5.2 Off-Central Ray Ratios (OCR) 

To obtain the OCR values, 10 cm × 10 cm Al2O3:C,Mg films were irradiated using the 

Accuray CyberKnife (Section 3.5.3) at a depth of 1.5 cm in a solid water phantom and source to 

axis distance (SAD) of 800 mm with different cone sizes of 5.0 mm, 7.5 mm, 10 mm with a total 

delivered dose of 5.0 Gy. Three films were irradiated for each cone size and one film was 

irradiated with 60 mm for reference. The measurements were repeated using a stereotactic 

diode (PTW 60017, 0.03 mm3 active volume, 1.2 mm diameter) in a water tank.  

Figure 5-18 shows the 3D representation of the 2D dose measured by the Al2O3:C,Mg 

films. As can be seen, the dose decreases with decreasing cone size. Figure 5-19 shows the 
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lateral dose profiles in x and y direction of the OSL films compared to the profiles measured 

using a diode. The dose was normalized to the average signal over 1.0 mm ROI (4 pixels × 4 

pixels) at the center. Each OSL signal profiles are an average of 1 mm (4 consecutive profiles) at 

the central axis. The signal profiles measured using the OSL films are wider than the one 

measured with the diode. This was observed in the lateral dose profiles measured at a depth of 

10 cm as well (not shown).  

Table 5-4 shows 80% - 20% penumbra distances measured using diode and OSL films. 

The uncertainties in the OSL films are measured from the x and y profiles from the 3 films for 

each cone size. The OSL films agree well with diode within uncertainties for cone size of 5.0 mm 

and 7.5 mm. The discrepancies for the 10 mm cone and 60 mm cone are, however, not clear.  

Therefore, in order to better understand the discrepancies in the measurements 

between the OSL films and diode additional measurements using an additional detector like 

Gafchromic films would be helpful.   

(a) 5 mm      (b) 7.5 mm 
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(c) 10 mm      (b) 60 mm 

 

Figure 5-18. Dose maps of a 6 MV CyberKnife with cone size of (a) 5 mm (b) 7.5 mm (c) 10 mm and (d) 
60 mm measured using 10 cm × 10 cm Al2O3:C,Mg films. 
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Figure 5-19.  The lateral dose profiles measured using Al2O3:C,Mg films compared to those measured 
with a diode for (a) 5.0 mm, (b) 7.5 mm, (c) 10 mm and (d) 60 mm cone sizes. The OSL profiles shown 
are an average of 1 mm (4 consecutive profiles) at the central axis normalized to the mean signal over 
ROI 1 mm × 1 mm at the center.    

 

Table 5-4.  comparison of 80% - 20% penumbra measured with OSL films and diode. The uncertainties 
for the OSL films are the standard deviation between the x and y profiles from 3 films for each cone 
size.   

 

                               
Cone diameter (mm) 

80% - 20% penumbra (mm) 

Diode OSL film 

5 2.09 ± 0.1 2.10 ± 0.04 

7.5 2.21 ± 0.1 2.28 ± 0.08 

10 2.57 ± 0.1 2.74 ± 0.03 

60 3.47 ± 0.1 4.46 ± 0.03 

5.5.3 Output factor 

The output factors were measured using the images from Section 5.5.2. Figure 5-20a 

shows the dose profiles of 1.0 mm in x and y direction measured at the center of the Al2O3:C,Mg 

films for cone sizes of 5.0 mm, 7.5 mm, 10 mm and 60 mm. As can be seen, the dose profiles are 

symmetrical, and the peak dose decreases with increasing field size. Figure 5-20b shows the 

dose profiles for different cone sizes and Figure 5-20b the output factors relative to the 60 mm 

cone size.  
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To calculate the output factors, the peak dose over the ROI 1 mm (4 pixels × 4 pixels) for 

each cone size was normalized to the 60 mm cone. The large difference in the output factor for 

5.0 mm cone compared to other cone sizes which are not known. The output factors for the 

cone sizes >5.0 mm agree relatively well with the diode measurements. The overestimation of 

the output factor by the OSL films is still not clear and requires further investigations.    
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Figure 5-20. (a) Dose profiles of 1.0 mm measured at the center of the Al2O3:C,Mg films for cone sizes of 
5.0 mm, 7.5 mm, 10 mm and 60 mm (b) Output factor relative to the 60 mm cone. The error bars 
represent the standard deviation of mean between the 3 film measurements.   

 

5.5.4 Tissue Phantom Ratios (TPR) 

To measure the TPR, 10 cm × 10 cm Al2O3:C,Mg films were irradiated using Accuray 

CyberKnife (Section 3.5.3) at 800 mm SAD at different depths with a total delivered dose of 2 

Gy. Three films were irradiated at each depth for statistics. The films were placed at the same 

SAD and solid water phantoms were added in the top to increase the depth. The peak dose at 

each depth was then normalized to the depth of maximum dose of 1.5 cm to obtain the TPR.  

Figure 5-21 shows the TPR measured using Al2O3:C,Mg films and compared to diode 

measurements. Each OSL data point is an average of 1.0 mm (4 pixels × 4 pixels) at the center of 

the film. The error bars represent the standard deviation of mean between the 3 film 
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measurements. As can be seen, the OSL measurements agree very well with the diode 

measurements within 1% at depths >10 mm.  

The discrepancies in TPR below 10 mm may be due to position uncertainties of the 

detectors as the dose increases rapidly in that region as CPE does not exist in this region.  
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Figure 5-21. Accuray CyberKnife TPR measurements using Al2O3:C,Mg films and diode. Each OSL data 
point is an average of 1.0 mm (4 pixels × 4 pixels) at the center of the film. The error bars represent the 
standard deviation of mean between the 3 film measurements.   

 

CHAPTER 6  
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CHAPTER VI 
 

TESTS OF 2D OSL DOSIMETRY IN MRI GUIDED RADIOTHERAPY 
 

 

In this chapter, we investigate the application of OSL dosimetry in MRgRT. We 

performed tests using OSL detectors to test the angle dependence of irradiation and 

transmission. In addition to point measurements, we also investigated the application of OSL 

films for 2D dosimetry in MRgRT. We investigated the response of the OSL films in magnetic 

field by obtaining a dose response curve. We irradiated two treatment plans on OSL films and 

compared them to the data from treatment plan software (TPS). For this a custom gamma 

analysis algorithm was written in Mathematica. The algorithm was verified by irradiating a plan 

on a commercial MapCheck detector and comparing the gamma values obtained by its software 

and our algorithm.   

6.1  Point detectors measurements 

6.1.1 Dose response 

The calibration curve of Mipox detectors was obtained in the Risø TL/OSL-DA-20 reader 

(Section 3.7). Al2O3:C (Mipox) samples (7 mm disc) were irradiated in Risø with irradiation times 

of 30 s, 60 s, 110 s, 170 s, 230 s and 300 s (3 samples for each irradiation) and readout. Figure 

6-1 shows the response of the Mipox samples in Risø. The signal was then fitted using Equation 

(5-2). Table 6-1 shows the fitted parameters.  
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Figure 6-1. Calibration curve of Mipox, obtained using the Risø TL/OSL-DA-20 reader. 

 

Table 6-1. Fitted parameters of the dose response functions for the OSL films shown in Figure 6-9. 

 

Parameters Al2O3:C 

a (5.66418 ± 0.267) Gy 

b (56.844 ± 2.8419) × 10-4 Gy/count 

 

The response of Al2O3:C (Mipox) detectors in the magnetic field was determined by 

irradiating 6 sets of Mipox detectors (5 detectors in each set) in the MR linac with a static 

magnetic field of 0.35 T using a field size of 10.5 cm × 10.5 cm at 1.5 cm depth with doses from 

0.5 Gy to 10 Gy as shown in Figure 6-2. Then, the samples were then read out using Risø. The 

responses of the detectors were then used to calibrate the dose rate of the Risø source. Figure 

6-3 shows the dose delivered as a function of time of irradiation calculated using the calibration 

function (see Table 6-1). The data points were fitted with a linear function of which the slope 

was found to be 0.485. Thus, the dose rate of the Risø source is 48.5 mGy/s.  
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Figure 6-2. Dose response setup.  
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Figure 6-3. Calibration of Risø source. Each data point is the average of 5 samples, and the error bars 
represent the standard deviation of the mean of the samples.  

6.1.2 Transmission measurements 

Transmission measurements were conducted to determine the attenuation due to the 

Mipox detectors in magnetic field. For this, a package containing five Mipox detectors were 

placed at a depth of 0.5 cm and an additional package was placed at 1.5 cm depth as shown in 

Figure 6-4. The samples were irradiated with a total delivered dose of 2 Gy.  

The dose measured by the detectors at 1.5 cm depth was (1.99 ± 0.03) Gy. The value 

after ± represents the standard deviation of the mean of the 5 detectors. The results show a 

OSLDs 

1.5 cm 

10 cm Solid water phantom 
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good agreement, within 1%, to the dose delivered and the dose measured by the Mipox 

detectors at 1.5 depth. This shows that the Mipox detectors, even though not water equivalent, 

do not introduce uncertainties to the absorbed dose and according to White et al. (2016) if the 

uncertainties are <1% no additional correction is required. The lower dose of the Mipox detector 

at depth 0.5 cm is due to the detector being at the build up region.     

 

Figure 6-4. Transmission measurements setup. 

 

6.1.3 Angular dependence 

This test was performed to measure the response of Mipox samples at 90° and -90° 

angle of irradiation. For this test two packages of Mipox samples, each package containing 5 

detectors, were irradiated at 1.5 cm depth with a total delivered dose of 2 Gy with samples at 

90° and -90° as shown in Figure 6-5 and Figure 6-6.  

Table 6-2 shows results from the Mipox detectors. The dose measured is the mean dose 

calculated from the 5 detectors from each package.  The dose measured from the Mipox 

detectors for both orientations agrees within 1%, so no influence of magnetic field is observed.    
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Figure 6-5 Angular dependence measurement setup in solid water phantom at +90° irradiation angle. 

 

Figure 6-6. Angular dependence measurement setup in solid water phantom at -90° irradiation angle. 

     

Table 6-3. OSL response at 90° and -90° irradiation angle.  

 
Package Dose delivered (Gy) Angle (deg) Depth (cm) Dose measured (Gy) %Diff 

1 2 90 1.5 2.00 ± 0.03  0.2 

2 2 -90 1.5 2.01 ± 0.03 0.4 

 

To test additional irradiation angles, 5 packages of Mipox detectors were irradiated 

individually in a cylindrical phantom each with different irradiation angles of 0°, 45°, 90°, 270°, 

315° as shown in Figure 6-7.    

10 cm 

OSLDs 

1.5 cm 

1.5 cm 10 cm 

OSLDs 
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Figure 6-8 shows the response of the Mipox detectors to different irradiation angles. 

The dose increases by around 3% for a 90° irradiation and further increases to ~4% at 270°. 

These discrepancies may be due to the setup geometry. Nevertheless, the variation in the 

measured dose for different angle of irradiation was ~1.4%.  

 

Figure 6-7. Angular dependence measurement setup in a cylindrical phantom. 
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Figure 6-8. Angular reponse of Mipox detectors in 0.35 T magnetic field. Each data point is the average 
of five samples and the error bars represent the standard devaiation of the mean of the five samples.  
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6.2 Film measurements 

6.2.1 Dose response  

We determined the dose response for Al2O3:C and Al2O3:C,Mg films using the MR linac with 

static magnetic field of 0.35 T and 60Co as the radiation source. The films were irradiated with 

10.5 cm × 10.5 cm flat field at a depth of 5.0 cm for doses from 0.1 Gy to 10 Gy. After readout 

the images were then reconstructed using the Tikhonov-L2 algorithm.   

To compare the image uniformity for two films at different doses, we calculated the signal 

profiles (average of 1 cm) at the center of the image in both x and y axes. The dose response 

curve was calculated using the average signal over a central region of interest (ROI) 

2.0 cm × 2.0 cm (80 pixels × 80 pixels). Figure 6-9a and b show two overlapping signal profiles for 

each dose calculated in perpendicular directions (x and y directions). As can be seen the x and y-

profiles overlap at any dose level.  

The fitted parameters for the dose response curves of all three films are shown in Table 6-4. 

Al2O3:C film has about 40% higher response than the Al2O3:C,Mg film. In addition, Al2O3:C,Mg 

films has ~50% better signal-to-noise ratio (SNR = S/3) than Al2O3:C films. The SNR for both the 

films irradiated with 2 Gy, the SNR for Al2O3:C film was 9 and for Al2O3:C,Mg film was 18. This is 

due to less correction required for pixel bleeding correction for Al2O3:C,Mg film than Al2O3:C.  
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Figure 6-9. Dose response using MR lianc with static magnetic field of 0.35 T (depth: 5.0 cm, field size: 
10.5 cm × 10.5 cm, SSD: 100 cm) for 5.0 cm × 5.0 cm films of Al2O3:C and Al2O3:C,Mg. (a-b) Signal profiles 
(average of 40 rows spanning 1.0 cm) in both x and y-directions for all doses; (c) dose response curve 
obtained using the OSL films where each data point is the average of two films signal calculated over 
2.0 cm × 2.0 cm (~80 pixels × 80 pixels) around the central axis. 

 

Table 6-4. Fitted parameters of the dose response functions for the OSL films shown in Figure 6-9.  

 

Parameters Al2O3:C Al2O3:C,Mg 

a (23.53 ± 1.09) Gy (42.63 ± 5.44) Gy 

b (2.18 ± 0.12) × 10-4 Gy/count (1.77 ± 0.25) × 10-4 Gy/count 

6.2.2 Gamma analysis of treatment plans 

For this test 10.0 cm × 10.0 cm films of Al2O3:C and Al2O3:C,Mg films were irradiated 

with two different treatment plans using the MR linac with a static magnetic field of 0.35 T at a 

depth of 5.0 cm. 

Figure 6-10 and Figure 6-12 shows the dose maps of the IMRT plans from the TPS and 

the Al2O3:C and Al2O3:C,Mg films. As can be seen, the OSL images look identical to the IMRT 

treatment plans. The gamma analysis algorithm was applied to both the treatment plans and 

the results are shown in Figure 6-11 and Figure 6-13.  

 Figure 6-11a and Figure 6-13a show the OSL images from Al2O3:C and Al2O3:C,Mg films 

irradiated with the two treatment plans along with the regions that fail the gamma analysis 
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criteria of 3% and 3 mm. As can be seen, the regions with high dose pass the gamma analysis, 

whereas the region that fails the criteria are low dose regions with gradient. We believe that at 

low dose regions, the noise is higher, which causes the points to fail. Figure 6-11b and Figure 

6-13b shows the dose profiles at the center of the Al2O3:C and Al2O3:C,Mg films and IMRT plans. 

The OSL dose profiles from both materials agree very well to the IMRT plan.      

Table 6-5 shows the summary of the gamma analysis of the two treatment plans using 

OSL films. The results show that using a gamma criteria of 3% - 3 mm and 2% - 2 mm passing 

rate of 98% and 95% respectively for both film types irradiated with IMRT plan I. However, for 

IMRT plan II the gamma criteria of 3% - 3 mm show a passing rate of ~ 96% and gamma criteria 

of 2% - 2 mm show a passing rate of only ~ 88%. This difference in the passing rate of two plans 

with tighter gamma criteria is probably due to the noise in the images. The IMRT plan II is 

irradiated with a lower dose and with a larger dose gradient. As the gamma criteria are 

increased the lower dose regions in the images, which is around the edges, begins to fail as 

these are low dose regions with higher uncertainties. In addition, these uncertainties can be 

attributed to calibration uncertainties and image noise. This noise in the image, however, can be 

lowered with scanning the films multiple times at the expense of readout times and with a 

better calibration function using multiple films calibration uncertainties can be reduced.  

Nevertheless, the gamma analysis studies show that OSL films show good agreement 

with the TPS data. Thus, OSL films show no response to magnetic field and can be potentially 

used as a 2D dosimeter in MRgRT.           
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(a) IMRT plan 

 

(b) Al2O3:C      (c) Al2O3:C,Mg 

  

 
Figure 6-10. (a) Images of the IMRT plan. OSL images from (b) Al2O3:C and (b) Al2O3:C,Mg films 
irradiated with the IMRT treatment plan. 
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(a) Al2O3:C     (b) Al2O3:C,Mg 
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Figure 6-11. Gamma analysis results of the IMRT treatment plan irradiated on (a) Al2O3:C and (b) 
Al2O3:C,Mg films obtained using 3% - 3 mm criteria. Red pixel indicates pixel with points failing the 
gamma criteria. Comparison of central dose profiles of images of IMRT plan with Al2O3:C and 
Al2O3:C,Mg films (a) x-axis and (b) y-axis. 
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(a) IMRT plan 

 

(b) Al2O3:C     (c) Al2O3:C,Mg 

  

 Figure 6-12. (a) Images of the IMRT plan. OSL images from (b) Al2O3:C and (c) Al2O3:C,Mg films 
irradiated with the IMRT treatment plan. 
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(a) Al2O3:C     (b) Al2O3:C,Mg 
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Figure 6-13. Gamma analysis results of the IMRT treatment plan irradiated on (a) Al2O3:C and (b) 
Al2O3:C,Mg films obtained using 3% - 3 mm criteria. Red pixel indicates pixel with points failing the 
gamma criteria. Comparison of central dose profiles of images of IMRT plan with Al2O3:C and 
Al2O3:C,Mg films in (a) x-axis and (b) y-axis. 

 

Table 6-5. Summary of gamma anlysis of the two treatment plans using Al2O3:C and Al2O3:C,Mg  

films.  

 

 Plan I Plan II 

Material 3% - 3 mm 2% - 2 mm 3% - 3 mm 2% - 2 mm 

Al2O3:C 98% 95% 96% 88% 

Al2O3:C,Mg 98% 95% 93% 80% 
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CHAPTER 7             CHAPTER VII 

FEASIBILITY STUDIES OF 2D OSL DOSIMETRY USING MgB4O7 

 

This chapter demonstrates the feasibility of 2D dosimetry using films prepared using 

MgB4O7:Ce,Li and identify current limitations. We investigated the performance of the films in 

2D dosimetry using the 2D OSL system and compare them to the results from Al2O3:C and 

Al2O3:C,Mg films including dose response, sensitization and dark fading. In addition to 

dosimetric performance, we investigated the basic luminescence properties of MBO including 

luminescence lifetimes, phosphorescence, bleaching and readout parameters.        

7.1 Comparison of raw images of MgB4O7:Ce,Li and Al2O3 films 

10 cm × 10 cm MBO, Al2O3:C and Al2O3:C,Mg films were irradiated in air using the 90 kVp 

X-ray source with a total delivered dose of ~0.76 Gy. All the films were read out using the 2D 

OSL system (see Section 3.6) with the same readout conditions and with scanning speed of 327 

µs bin-1. 

Figure 7-1 shows the raw (uncorrected) images from MBO, Al2O3:C and Al2O3:C,Mg films. 

In the images, the effect of PMT light collection efficiency can be observed. In addition, pixel 

bleeding is observed in both Al2O3:C (Figure 7-1b) and Al2O3:C,Mg (Figure 7-1b) films due to the 

slow luminescence lifetime of F-center (~ 35 ms). The pixel bleeding is less in Al2O3:C,Mg film 

due to larger relative concentration of 𝐹+ centers compared to Al2O3:C.  In contrast to Al2O3 

films, the MBO image essentially shows no pixel bleeding (Figure 7-1a).   
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Figure 7-2a show the signal profiles (average of 10 rows) in the scan direction (x-axis) 

normalized to the average signal at center calculated over ROI (5 mm × 5 mm). The Al2O3 films 

show slow rise at the beginning (~pixel 110) and a decay end of the film (~pixel 900). The 

relative contribution of pixel bleeding can be observed at the end of the film. MBO however, 

shows both a fast rise at the beginning of the film and a sharp drop at the end of the film, which 

demonstrates the improved imaging performance due to the fast luminescence center of Ce3+.     

Figure 7-2b shows the signal profiles (average of 10 columns) in the sub-scan direction 

(y-axis) normalized to the average signal at center calculated over ROI (5 mm × 5 mm). There is 

no pixel bleeding present, but there is signal is present at the end of the film (~pixel 900), which 

is probably due to phosphorescence associated with shallow traps. This can possibly be 

corrected using the image reconstruction algorithm. Ahmed (2016) have already showed that 

both Al2O3 films have slow luminescence life time components of ~60 s.       

(a) MBO      (b) Al2O3:C 
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Figure 7-1. Raw OSL images from 10 cm × 10 cm OSL films (a) MBO (b) Al2O3:C (c) Al2O3:C,Mg irradiated 
using 90 kVp x-ray source in air with ~0.76 Gy total dose.   
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Figure 7-2. (a-b) OSL signal profiles (average of 10 even rows spanning ~2 mm) in both x and y-directions  
normalized to the mean signal calculated over ROI (5 mm × 5 mm) at the center of the image.    

 

7.2 Basic luminescence properties of MBO 

To understand the performance of the MgB4O7:Ce,Li films, some of its luminescence 

properties such as OSL signal depletion, luminescence lifetime components and 

phosphorescence signals, were investigated.  

 (c) Al2O3:C,Mg 
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7.2.1 OSL signal depletion 

This test was done to characterize the OSL signal depletion of the MBO films after each 

readout. This test gives an idea about the remaining signal which can be either used to re-read 

the film or scan it multiple times to improve the image SNR. For this test, MBO, Al2O3:C and 

Al2O3:C,Mg films were irradiated in air using the 90 kVp x-ray source with a with total exposure 

of ~ 0.76 Gy and readout nine times in sequence, without irradiation, using the 2D OSL system. 

The images were reconstructed using the Least Squares image reconstruction algorithm (see 

Section 7.4 for MBO correction).  

Figure 7-3 shows the comparison of OSL signal (ROI 1 cm × 1 cm) as a function of 

number of readout for MBO, Al2O3:C and Al2O3:C,Mg films. The signal depletion for all the three 

film types was found to be ~25 – 30% per scan. Thus, there is plenty of additional signal 

remaining in the film after the first read out which can be either read out again in the future or 

accumulated with multiple readouts to improve the image SNR. In addition, the results show 

that MBO is bleached more slowly than the Al2O3 films using the green laser. This can be 

improved by using shorter wavelengths or higher stimulation intensities.    
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Figure 7-3. Signal depletion (ROI 1 cm × 1 cm) with 9 consecutive scans of MBO, Al2O3:C and Al2O3:C, Mg 
films with 100% laser power normalized to first scan. Each data point is average of measurements of 3 
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films of each type. The error bars represent the standard deviation between the 3 measurements. The 
depletion was then fitted with a double exponential.   
    

To compare signal depletion with shorter wavelengths, two sets each set with 3 MBO 

samples (7mm discs) were irradiated with ~2.1 Gy in Risø. The first set was readout using blue 

LED and the second set was readout using green LED. 

Figure 7-4 shows the OSL signal, normalized to its initial signal, measured with both blue 

and green LEDs. As can be seen the rate of signal depletion is much faster with blue stimulation. 

This means that with fewer readouts we can collect more signal improving the signal-to-noise 

ratio in the image.     
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Figure 7-4. OSL signal from MgB4O7:Ce,Li samples (7 mm discs) irradiated with 2.1 Gy and read out 
immediately after irradiation using blue and green LED. 

7.2.2 Reusability 

To test the reusability of the MBO film a 7 cm × 7 cm MgB4O7:Ce,Li film previously 

irradiated with dose of ~ 10 Gy was bleached overnight in the bleaching unit (Section 3.2) and 

read using the 2D OSL system.  

Figure 7-5a show the raw image of the bleached MBO film. The film in the central part 

of the scan area is clearly visible. A better assessment of the background signal can be made by 

analyzing the signal profiles. Figure 7-5b shows the dose profiles (average of 300 rows spanning 
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5 cm) in both x and y direction from the MBO image which was calculated using the calibration 

curve presented later in Section 7.5.1. The average film background was found to be only 0.02 

counts bin-1, which is equivalent to less than 0.5 mGy. 

To more precisely demonstrate the possibility of bleaching the MBO films, MBO samples 

(7 mm discs) were irradiated with doses between 0.69 Gy, 2.07 Gy, 6.9 Gy and 20.7 Gy (three 

samples for each dose) in the Risø reader. The samples were then readout and bleached 

overnight in the bleaching unit. This sequence was repeated five times for reproducibility.  

Figure 7-6 shows the OSL signal from bleached MgB4O7:Ce,Li samples after the fifth 

irradiation compared to the OSL response of 3 samples irradiated with 0.69 Gy (beta). As can be 

seen, all MBO samples with previous dose history can be bleached. The background equivalent 

dose is <0.5 mGy, if we consider the initial intensity of the OSL curve. 

In either case, using MBO for 2D dosimetry or point measurements, the background 

equivalent dose is less than 0.5 mGy, which is negligible compared to the typical doses used in 

radiation therapy.    
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  (a) Bleached image   (b) Signal profiles  
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Figure 7-5. (a) Raw OSL image from a bleached 7 cm × 7 cm MBO film previously irradiated with dose of 
~ 10 Gy. The image was processed using 5 pixels × 5 pixels Wiener filter to reduce noise.(b) Signal 
profiles (average of 300 rows spanning 5 cm) in both x and y direction from the MBO image in (a). 
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Figure 7-6. OSL signal from bleached samples previously irradiated with doses from 0.69 Gy, 2.07 Gy, 
6.9 Gy and 20.7 Gy (beta) compared to the response of 3 samples irradiated with 0.69 Gy (beta). The 
samples were repeatedly irradiated and bleached 5 times and the bleached signal shown here is after 
the last run.  

 

7.2.3 Luminescence lifetime components 

The luminescence lifetime components of MBO was characterized using Time-

Correlated Single Photon Counting (TCSPC) (Section 3.7). For this test MBO, Al2O3:C and 
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Al2O3:C,Mg samples were irradiated with ~0.35 Gy. The luminescence was measured using 

various long and short stimulation pulses. For short stimulation, the luminescence was 

measured for 200 s using 1 s and 10 s blue LED pulses every 50 s and 500 s. For long 

stimulation, the luminescence was measured for 200 s using 0.1 ms and 1 ms blue LED pulses 

every 5 ms and 100 ms. The data were analyzed using the PTanalyse software (DTU Nutech, Risø 

Campus, Denmark) with 0.512 s, 1.024 s, 8.192 s and 1310 s bin widths.   

Figure 7-7 shows the OSL response of the samples at same stimulation time scale. The 

LED response is also included, as the LED also had a slow decay which affects the luminescence 

lifetime of the samples. In all cases, all the materials show fast response due to presence of fast 

luminescence centers, Ce3+ in the case of MBO and F+-centers in the case of Al2O3. Figure 7-7 

shows that after the LED pulse Al2O3:C has a 35 ms decay component associated with the F-

centers, and Al2O3:C,Mg has an additional (2.4 ms) component due to shallow traps below room 

temperature. The additional high offset is due to shallow traps above room temperature (Denis 

et al., 2011a). In the case of MBO, the short lifetime components immediately after LED is off is 

due to shallow traps below room temperature and luminescence components in ~0.5 – 100 ms 

and the offset due to shallow traps above room temperature.  

The results demonstrate that MBO is a better candidate for 2D dosimetry using laser 

scanning in terms of luminescence lifetimes. The contribution from shallow traps can possibly be 

corrected by the pixel bleeding algorithm. The lifetimes calculated for different acquisition 

parameter varied and thus, the lifetime components of MBO films could not be determined.  

This indicates that the shallow traps exhibit distribution of activation energies.   
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Figure 7-7.  OSL response of Al2O3 and MgB4O7 films to (a) 1 s, (b) 10 s, (c) 100 s, and (d) 1 ms LED 
pulse as a function of photo arrival time measured using Time-Correlated Single Photon Counting 
(TCSPC). 

 

In addition to the Risø measurements, the phosphorescence lifetimes were measured at 

room temperature using the lifetime setup (see Section 3.2) which uses a green laser. This test 

was done to obtain relevant luminescence lifetimes of MBO films that can be used in the 

phosphorescence bleeding algorithm. Three film samples of each film type (7 mm diameter) 

were irradiated with ~ 20 Gy beta dose. The data acquisition was performed in time scale of 

327.68 µs integration time to measure the phosphorescence signal from 0 – 1.7 s, and 

accumulating 2000 scans (2000 laser pulses). 
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The phosphorescence signal was found to have two components with lifetimes of ~ 

4.5 ms and ~93 ms, plus a constant background probably due to a component with longer 

lifetime (Figure 7-8). The signals were fitted with a double exponential function of type:  

 𝐼 = 𝑦0 + ∑𝐴𝑖exp (−
𝑡

𝜏𝑖
)

2

𝑖=1

 
(7-1) 

where 𝜏𝑖’s are the measured lifetimes.  
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Figure 7-8. Phosphorescence lifetime measurement from three MgB4O7:Ce,Li samples (7 mm discs). The 
measurements were performed using the lifetime setup. Three samples, irradiated with ~10 Gy beta 
dose, were used for each measurement. The signal was measured with 327.68 µs integration time and 
~2000 scans were accumulated.  

 

7.2.4 Phosphorescence signal 

In addition to the photo transferred phosphorescence signal, there is also a 

phosphorescence signal immediately after irradiation emitted at room temperature. To 

characterize it, five sets each with three 7 mm MBO samples were irradiated with different 

doses in the Risø reader and read out (LED off) immediately after irradiation. The 

phosphorescence signal was measured for an hour post irradiation for each sample. Three 

samples were irradiated with same dose for statistics.  
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Figure 7-9a show the phosphorescence signal from the MBO samples irradiated with 

different doses. It was found that MBO samples have shallow traps emissions at room 

temperature and is proportional to the dose delivered. This signal decrease exponentially with 

time.  

Figure 7-9b shows the relative phosphorescence intensity after irradiation, normalized to 

the initial OSL intensity during readout. The error bars indicate the standard deviation between 

the three samples used for each dose. The phosphorescence signal from the MBO samples 

decreases to <1% in within 15 minutes post irradiation for all the doses delivered. The 

phosphorescence signal is ~10%, for the samples irradiated with 500 s beta dose, compared to 

the initial intensity of the OSL signal following readout.  

The results indicate that the phosphorescence signal post irradiation depletes to <1% of the 

initial OSL signal after readout within 15 minutes. Thus, MBO samples can be read out 15 

minutes after irradiation. 
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Figure 7-9. (a) Phosphorescence signal from MBO samples immediately after irradiation with beta doses 
of 0.069 Gy – 34.5 Gy. (b) Phosphorescence signal, measured at different times post-irradiation, relative 
to the initial OSL intensity. Each data point is average of the 3 samples and the error bars represent the 
standard deviation between the 3 samples.  
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7.3 Influence of scan speed 

The 2D OSL system was built and optimized for Al2O3:C and Al2O3:C,Mg with the scan 

speed or pixel dwell time of 327 s bin-1. However, the scan speed can be increased in the case 

of MBO. In addition, with faster scanning speeds the contribution pf phosphorescence single 

from the shallow traps in MBO can be minimized or eliminated, and thus no additional image 

correction would be needed.  

For this test, five 3 cm × 3 cm MBO films pieces were irradiated with a total dose of ~ 55 

Gy in the 90 kVp x-ray source and read individually in the 2D OSL system with scanning speeds of 

20 s, 40 s, 81 s, 163 s, and 327 s. Figure 7-10a shows the signal profiles (average of 2 mm 

at center) from the images obtained with different scanning speeds. As can be seen the OSL 

signal from the film decreases with decreasing scanning speed, but so does the 

phosphorescence signal. This loss of signal can be compensated by accumulating signal from 

multiples scans of same film without increasing readout time. Therefore, to test this method, 

the same films were also scanned multiple times with same scanning speeds for speeds below 

327 s.   

Figure 7-10b shows signal profiles from the MBO films scanned with different speeds 

multiple times added to obtain same integration time per pixel as with scanning speed of 327 

s. When the signal from multiple scans were summed the background phosphorescence signal 

decreases by ~80% and the pixel bleeding decreases by 60% when scanned with 20 s scanning 

speed compared to 327 s. As can be seen the signal with lower scanning speeds is comparable 

to that of 327 s but, with less relative contribution from the phosphorescence signal.  
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Figure 7-10. (a) OSL signal profiles from 5 pieces of 3 cm × 3 cm MBO film irradiated with a total dose of 

~ 55 Gy scanned with scanning speeds of 20 s, 40 s, 81 s, 163 s, and 327 s. Each signal profile is an 
average of 2 mm. The signal profiles are from raw images before any correction. (b) OSL signal profiles 

after accumulating signals from multiple scans of the same films scanned with scanning speeds of 20 s, 

40 s, 81 s, 163 s, and 327 s. 

 

7.4 Image corrections  

In addition to the system corrections, which are the same used in the image 

reconstruction algorithm of Al2O3 films, MBO also requires pixel bleeding correction because of 

the contribution from the two phosphorescence components 5 ms and 80 ms.    

7.4.1 Background phosphorescence  

The background phosphorescence, observed in the MBO images (see Section 7.1), is the 

signal present in the OSL image before the laser hits the film. It is originated from the slow 

phosphorescence of previously scanned rows. This contribution can be corrected by analyzing 

the signal measured at the beginning of each row, where no film present. Its intensity depends 

on the scanning speed, but in the current conditions it is characterized at scanning speed of 327 

s. For this test 3 pieces of MBO films with same width of 2 cm but increasing lengths of 3 cm, 
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6 cm and 9 cm were irradiated with 90 kVp x-ray source in air with ~0.67 Gy total dose. The films 

were then read out individually in the 2D OSL system.   

Figure 7-11a shows a series of images of MBO film with lengths 3, 6 and 9 cm.  Figure 

7-11b shows signal profiles (average of 50 rows in one direction only, spanning 100 rows) at the 

center of each of the images. The signal at the beginning of the film is the phosphorescence 

signal which increase with increasing film size which is due to the lifetime of phosphorescence 

signal being longer than the time spent in one row. The signal at the end of the film is 

phosphorescence bleeding due to slow luminescecne lifetimes components of the film (see 

Section 7.2.3).   

To understand the nature of the background phosphorescence signal, the signal was 

normalized to the mean signal at the beginning of each film as shown in Figure 7-11c.  As can be 

seen the background phosphorescence stays constant with time. 

Thus, for image correction of MBO film we can use Eq.(7-2), where si,j and s’I,j  refer to 

signal at (i,j) pixel after and before correction, respectively, Δt refers to dwell time and 𝜏 is 

lifetime which in case of MBO is ~infinity for Δt = 327.68 µs. This is equation is similar to the one 

used in image construction algorithm for Al2O3 films but with different lifetimes.  

𝑠𝑖,𝑗 = 𝑠𝑖,𝑗
′ − (

∑ 𝑠𝑖,𝑗
′𝑁

𝑗=1

∑ 𝑒−𝑗∆𝑡 𝜏⁄𝑁
𝑗=1

)𝑒−𝑗∆𝑡 𝜏⁄  
(7-2) 

(a) 

 



116 

 

0 200 400 600 800 1000
100

101

102

O
S

L
 s

ig
n
a
l 
(c

ts
)

Bins

 3 cm

 6 cm

 9 cm

(b)

0 200 400 600 800 1000

100

101

102

O
S

L
 s

ig
n
a
l 
(c

ts
)

Bins

Constant

(c)

 

Figure 7-11. Background phosphorescence as a function of the irradiated area for MBO films irradiated 
with 90 kVp x-ray source in air with ~0.67 Gy total dose. (a) Series of raw images of MBO films, of 
lengths 3, 6, and 9 cm, respectively, with the same ~1 cm width. (b) Signal profiles (average of 50 rows 
in one direction only, spanning 100 rows) at the center of each of the images. (c) Estimation of 
phosphorescence decay time using background phosphorescence. 

 

7.4.2 Phosphorescence bleeding correction 

As demonstrated in Section 7.2.3 and Section 7.1, MBO does not require correction for 

pixel bleeding but some phosphorescence signal is observed at the end of the film after the laser 

leaves the film. This contribution is probably due to re-trapping of the charges at shallow traps 

unstable at temperatures below room temperature. These can be corrected using the pixel-

bleeding algorithm described by Yukihara and Ahmed (2015), but using the phosphorescence 

lifetimes from MBO (~4.5 ms and ~ 93 ms). This correction, however, is much lower compared 

to Al2O3, as the phosphorescence contribution in MBO the image is much lower than the slow 

luminescence contribution due to the F-centers in Al2O3.  

Figure 7-12 shows the raw image of MBO from Section 7.1 (a) before and (b) after pixel-

bleeding, light collection efficiency and geometrical distortion correction is applied. The image 

reconstruction algorithm was able to correct for the contribution due to phosphorescence signal 

in the raw image of the MBO film. This data is, of course, just a demonstration, since the MBO 
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films uniformity is not yet optimum and the irradiation is not necessarily flat. Nevertheless, the 

objective is to show that the same correction algorithm developed for Al2O3:C and Al2O3:C,Mg 

(Yukihara and Ahmed, 2015) applies to MBO provided that the material characteristics are 

adapted. The amount of correction for the phosphorescence signal of MBO is much lower than 

the pixel bleeding correction required for MBO, as one can see even in the raw MBO images that 

little pixel bleeding is present. As a result, less noise is introduced in the case of the MBO 

correction. The parameter R (Yukihara and Ahmed, 2015), the ratio between the slow 

components (phosphorescence and F-center emission in Al2O3) and the fast component, was 

found to be R ~ 0.01 – 0.05 for MgB4O7:Ce,Li in comparison with R ~ 0.5 and 0.35 for Al2O3:C and 

Al2O3:C,Mg films, respectively.  

Figure 7-12c shows the signal profiles (average of 2 mm) in x-direction at the center of 

raw and corrected MBO images. As can be seen the pixel bleeding, background 

phosphorescence, and the position dependence in the images are corrected. The fluctuations in 

the signal after correction are due to non-uniformity of this first film samples. Figure 7-12d 

shows the signal profiles (average of 2 mm) in y-direction at the center of raw and corrected 

MBO images. There is no pixel bleeding in y-direction except for the, the background 

phosphorescence signal present at the end of the row which is corrected by the reconstruction 

algorithm.  
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(a) Raw image     (b) Corrected image 
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Figure 7-12. (a) Raw image from the 10 cm × 10 cm MBO film irradiated using 90 kVp x-ray source in air 
with ~0.78 Gy total dose. (b) Image after applying pixel bleeding correction. (c)-(d) Comparion of signal 
profiles before and after image correction in both directions. Each line profile is an average of 2 mm at 
the center. 

 

7.5 Dosimetric properties  

Even though the MBO films are not yet optimized for final application, preliminary tests 

using the current samples were performed to evaluate their dosimetric properties and identify 

potential problems. 
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7.5.1 Dose response 

The goal of this study was to compare the response and sensitivity of the newly 

developed MBO films to that of Al2O3:C and Al2O3:C,Mg films in the same experimental 

conditions. In addition, determine the response of MBO films in steep dose gradient between 

the region of the film with and without samples. The study was performed using 21 samples of 

MBO, Al2O3:C and Al2O3:C,Mg films each, of approximately 1 cm × 1 cm. The detectors were 

irradiated with doses ranging from 0.1 Gy to 10 Gy (100 mCi 90Sr/90Y beta source) using three 

detectors for each dose. The samples were read simultaneously two days after irradiation using 

the 2D reader. The images from all material types were then reconstructed using the image 

reconstruction algorithm. 

Figure 7-13a shows the reconstructed image of MBO detectors after all corrections. 

Each column represents the detectors irradiated with same dose with increasing dose in the x 

direction. As can be seen, the detectors are well separated demonstrating absence of pixel 

bleeding. The background signal around the samples with high doses is probably due to 

stimulation of the film by laser light scattered in the optical filters.  

 Figure 7-13b shows the signal profiles (average of 2 mm) from the center row of each 

detector set (Al2O3:C and Al2O3:C,Mg images not shown). The signal profiles show good 

repeatability of detectors for all material types.  

Figure 7-13c shows that that the dose response for MBO, Al2O3:C, and Al2O3:C,Mg 

detectors. The signal was calculated at the center of scan ROI 5 mm × 5 mm of each detectors in 

the image and the data represent the mean signal for each dose. The error bars represent he 

standard deviation of the mean signal of 3 detectors irradiated with same dose. MBO shows 

linear response over range investigated, but in the Al2O3 films supralinearity starts to be 
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observed for doses greater than ~2 Gy. The linear response behavior of MBO and the 

supralinearity behavior of the Al2O3 films has already been reported by in previous work (Ahmed 

et al., 2017; Yukihara et al., 2017) and these results confirm these findings. The response of this 

MBO films was found to be ~4 times and ~2.5 times lower than Al2O3:C and Al2O3:C,Mg 

respectively. The lower sensitivity of MBO largely depends on the film thickness and scanning 

parameters, which can be improved by increasing film thickness, or by increasing stimulation 

intensity or decreasing the stimulation wavelength, or both. Nevertheless, the sensitivity even in 

the current settings seems to be sufficient for 2D dosimetry in radiotherapy.  

(a) MBO 
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Figure 7-13. (a) Image obtained from readout of 3 sets of smal pieces of MBO, Al2O3:C and Al2O3:C,Mg 
detectors (~ 1 cm × 1 cm). Each set contains 9 pieces of detectors irradiated with dose (~0.1 Gy – 10 Gy). 
(b) Signal profiles from the 3 sets of detectors in x-direction of the image. Each signal profile is averaged 
over a width of ~ 2mm form the center of the image. (c) Dose response curve of the MBO, Al2O3:C and 
Al2O3:C,Mg detectors. Each data point is an average signal over 5 mm × 5 mm (~20 pixels × 20 pixels) 
around the central axis. The error bars in the dose response curves represent the standard deviation of 
the mean signal of 3 detectors. 

 

7.5.2 Sensitization and fading 

Even though MBO has very attractive properties for 2D dosimetry, sensitization and 

fading limits the dosimetric performance of MBO. The mechanism behind these two 

phenomena is complex and still not understood (Gustafson et al., 2019; Yukihara et al., 2017). 

Thus, the goal of this study is the document the degree of sensitization and fading of current 

MBO films.  

To test sensitization of the samples, 4 sets (3 samples in each set) of MBO (7 mm discs) 

were irradiated with dose of 0.69 Gy, 2.07 Gy, 6.9 Gy and 20.7 Gy using the beta source of the 

Risø reader. After irradiation, the samples were then read for 600 s using green LEDs at 90% 

intensity and bleached overnight in the bleaching unit (Section 3.2). This sequence was repeated 

five times.  
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Figure 7-14 shows the initial OSL intensity (average of first 3 seconds) and OSL area 

(600s of stimulation) normalized to the first run from the sample irradiated with all doses. As 

can be seen the degree sensitization increases with increases dose and can be conclude that its 

dose dependent. Gustafson et al. (2019) have proposed that the sensitization in MBO is due to 

incomplete bleaching of the films, which still needs to be investigated in detail. If it is the case, 

the current beaching procedure is insufficient to bleach the films and needs further investigation 

to determine the best bleaching procedure.    
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Figure 7-14. OSL initial intensity and OSL area for repeated irradiation and bleaching normalized to run 
1 for different doses. The error bars indicate the standard deviation of the 3 samples. After each run, 
the samples were bleached overnight using the bleaching unit (Section 3.2). 

 

In this study the dark fading of the OSL signal for various durations of time following 

irradiation was measured. The test was performed irradiating 27 MBO samples (7 mm disc) with 

30 s (beta) and allowed to sit in dark for periods up to 72 h. Three samples were used for each 

fading time. The samples were then read using the Risø reader and green LEDs at 90% intensity. 

Following the readout, the samples were irradiated with a reference dose of 30 s (beta) and 

readout immediately post irradiation. The OSL signal from the reference dose (SR) were used to 

normalize the faded OSL signal (S) to account for any sample variations. The ratio was then 

normalized to the signal at 30 min post irradiation.  
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Figure 7-15 shows OSL dark fading for MBO samples for various periods 72 h post 

irradiation. The initial OSL intensity (average of first 3 seconds) and total OSL area were 

normalized to reference dose and renormalize to signal at 30 min. MBO has substantial fading 

over 72 h post irradiation. The initial OSL intensity fades to ~55% from 30 min to 72 h post 

irradiation and the total OSL are fades to ~80% from 30 min to 72 h post irradiation. 

The fading seems to be mainly immediately after irradiation, as is the case with many 

new OSL materials. This shows that this may be a result of shallow traps depleting at room 

temperature. This can possibly be minimized with preheating the samples before readout. 

However, further investigation is required.  
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Figure 7-15. OSL dark fading of MgB4O7:Ce,Li samples irradiated with 2.07 Gy. The signal is normalized 
to the OSL signal at 30 min after irradiation.
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CHAPTER VIII 

CONCLUSIONS 

 

The goal of this work was advance OSL-based 2D dosimetry in radiotherapy by 

improving the image reconstruction algorithm required for Al2O3 films, demonstrate the 

application of the Al2O3 films in small field dosimetry and MRgRT, and finally, investigate the 

possibility of 2D dosimetry using MgB4O7:Ce,Li films.      

The initial tests for improving the noise in OSL images were done by implementing 

various approaches to the Tikhonov algorithm in the pixel bleeding algorithm and applying it to 

1D simulated OSL data varying materials luminescence lifetime, the ratio of F-center to F+-

center, and dwell times. The simulation results of 1D flat field profiles and Gaussian profiles 

showed that the Tikhonov-L2 algorithm (see 0) improves the noise in the signal compared to the 

LS-algorithm. We further applied the Tikhonov-L2 algorithm to experimental results on flat field 

irradiations using a 6 MV linac (Siemens Oncor) and small fields using an Accuray CyberKnife. 

The application of Tikhonov-L2 algorithm on the 1D profiles of the experimental results showed 

significant improvement in noise, in the case of flat field irradiations by at least 2 times in the 

flat field signal profiles for doses ranging from 0.01 Gy – 10 Gy.        

The results based on implementation of Tikhonov -L2 algorithm in the 2D OSL images 

showed improvements in image noise. We characterized and evaluated the effect of the  
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regularization parameter () in the image noise and spatial resolution of the OSL films. 

The image noise decreases significantly with increasing  parameters but the spatial resolution 

gets worse. In addition, we found that it affects the directional dependence in the images where 

the noise in the scanning direction decreases more than in the sub-scan direction with 

increasing  parameter. Therefore, we found that the  parameter that best reduces the image 

noise, maintains the spatial resolution and solves the directional dependence in the image for 

current settings. When compared to a noise filter (Wiener filter), however, we did not find 

significant improvement to the image noise of the OSL images. Nevertheless, Tikhonov -L2 

algorithm solves the directional dependence in the image. We showed that the application of 

Tikhonov -L2 algorithm does not affect the dosimetric properties of the OSL films. Thus, 

Tikhonov -L2 algorithm should be implemented in the image reconstruction algorithm and 

additional noise filter (Wiener filter) can be used to remove additional image noise.    

We demonstrated the possibility of application of OSL films in small field dosimetry. We 

performed initial tests by measuring the Tissue Phantom Ratios (TPR), Off-Central Ray Ratios 

(OCR), and Output Factors (OF’s) in CyberKnife. The OSL films overestimate the output factors 

compared to diode measurements for the cone sizes studied. The OCR measurements show 

good agreement with the diode for cone size of 5.0 mm and 7.5 mm, but the discrepancies were 

larger for larger cone sizes. The TPR measurements agree well with the diode measurements 

within 1% at depths >10 mm; for depths below 10 mm (buildup region) the differences may be 

due to difference in the energy dependence of the two detectors. Nevertheless, these 

measurements are our first attempt at small field dosimetry using OSL films which shows good 

agreement with diode detectors. Further measurements with additional reference detectors like 
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radiochromic films combined with Monte-Carlo simulations would be helpful to have a complete 

study in order to determine the feasibility of using OSL films for small field dosimetry.        

We performed initial tests using OSL detectors to test the effect angle of irradiation in 

presence of magnetic field, and its transmission. The dose measured using the Al2O3:C (Mipox) 

detectors for +90° and – 90° irradiation orientations agrees within 1%. Further tests with 

additional irradiation angles of 0°, 45°, 90°, 270° and 315° showed a variation of within ~1.4% 

with the mean dose. The transmission measurements show that the Mipox detectors do not 

affect the transmission of the beam. The tests with irradiation angle dependence show an 

increase in the dose measured by the Mipox detectors. It is unclear if the setup geometry causes 

the increase in dose and therefore, more studies need to be done. A gamma analysis algorithm 

was written and used to compare the IMRT plan irradiations on OSL images to the TPS data. The 

gamma analysis of the treatment plan shows good agreement with the TPS. Gamma criteria of 

3 % and 3 mm show a passing rate of > 90 % for both film types and IMRT plans. However, with 

tighter gamma criteria and low dose irradiations, the passing rate decreases due to increased 

uncertainties for low dose measurements using OSL.   

The initial studies of MgB4O7:Ce,Li films demonstrate the possibility of 2D dosimetry for 

radiotherapy applications. Even though the current setup of 2D reader are not fully optimized 

for these films, we were able to demonstrate the advantage of MBO over Al2O3:C or Al2O3:C,Mg 

films. The fast luminescence lifetime of ~ 32.2 ns associated with Ce3+ emission offers an 

advantage for laser-scanning readout, minimizing the need for pixel-bleeding correction 

required for Al2O3:C or Al2O3:C,Mg film dosimetry. We characterized the luminescence 

components in the material which showed short and long-term phosphorescence components. 

This contribution, however, is relatively low compared to the main emission and can be reduced 
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or eliminated with faster scanning speeds. However, in the current conditions, the same pixel 

bleeding algorithm that was used for Al2O3 films was successfully applied to MBO images to 

correct for the pixel bleeding due to the phosphorescence signal. A dose response curve was 

obtained with MBO film pieces, which shows a linear dose response up to 10 Gy with steep dose 

gradients. The OSL signal in the MBO films could be satisfactorily bleached using the bleaching 

unit with the background equivalent dose of <0.5 mGy, which is acceptable for radiotherapy 

applications. The main disadvantage of MBO is fading, sensitization and the lack of 

understanding of the processes causing it. The sensitivity of the material increases with the 

previous dose and has significant dark fading, which makes it difficult to be used for precise 

dosimetry.       

 In the future studies, Gafchromic film measurements in CyberKnife needs to be included 

to better understand the differences between the OSL films and diode detectors. Furthermore, 

Monte carlo simulations of the irradiation plan may provide additional information to compare 

the detectors measurements. The tests should include repeating output factor measurements, 

as current measurements show a large deviation from the diode measurements. The OCR 

measurements need to be redone alongside gafchromic films in the same irradiation setup for 

comparison. SRS treatment plans can be irradiated on OSL films and gamma analysis can be 

done to test the overall performance of the films.      

 Additional tests using the Mipox detectors regarding the influence of the magnetic field 

need to be done. In addition, other clinical applications would be to test the detectors in in-vivo 

dose measurements for Total Body Irradiation treatments in the presence of magnetic field. 

Even though we are limited to the OSL reader scanning area of 15 cm × 15 cm IMRT treatment 
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plan irradiations with larger field sizes on larger films can be done and gamma analysis can be 

performed to compare the OSL film results with the TPS data.  

 The two main drawbacks of MBO (sensitization and dark fading) needs further 

investigation. Therefore, future research should focus on identifying the causes for these 

effects, so that these problems can be minimized by the use of appropriate bleaching or pre-

readout procedures, or by further material developments to reduce the trapping centers 

associated with these processes. The possibility of eliminating the phosphorescence bleeding in 

the image by scanning the MBO films with faster scanning speeds needs to be investigated. If 

the pixel bleeding still persists we need to further investigate the application of pixel bleeding 

algorithm for MBO films.  

 In conclusion, there is huge potential for 2D OSL dosimetry in small field dosimetry and 

MRgRT. Currently, there is no single detector that can be used independently for small field 

dose measurements. In addition, challenges faced by many dosimeters in MRgRT due to the 

presence of magnetic field indicate a need for new dosimetry techniques. Radiochromic films 

are the only film dosimetry commercially used in radiotherapy. However, due to the difficulties 

in measuring absolute dose it has been limited to relative dose measurements only and other 

detectors are used for absolute dose measurements. In addition, it is not reusable, which 

increases the cost to the clinic and therefore, use of films in radiotherapy have been fading. 2D 

dosimetry using OSL is a new technique in film dosimetry that overcomes most of the 

weaknesses of radiochromic films. In our tests, we showed initial tests in both small field 

dosimetry and MRgRT. The results using Al2O3 films are promising and shows the potential of 2D 

OSL dosimetry in both areas. In addition to Al2O3, the development of new OSL materials can 
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pave the way to overcome some challenges faced by Al2O3. The results from newly developed 

MBO films show no need for pixel bleeding algorithm but suffers from fading and sensitization.        

Currently, Al2O3 films are suitable to make further progress in 2D OSL dosimetry. 

However, more studies need to done to understand the luminescence mechanism in MBO and 

further develop the material (or identify new materials). The current goal for OSL film dosimetry 

is to have a material with all the necessary dosimetric properties and can be read out 

immediately post-irradiation with minimal fading, is reusable and uses a compact reader for 

readout.
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