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Abstract 

Plants fix carbon through photosynthesis, sequestering carbon dioxide from the 

atmosphere and substantially mitigating the climate warming effect induced by 

anthropogenic CO2 emissions. Terrestrial gross primary production (GPP) through 

photosynthesis is crucial for understanding the land-atmospheric carbon exchange, which 

is the largest component and one of the most uncertain aspects of the global carbon cycle. 

Thus, accurate estimation of GPP can help better understand the global carbon budget, 

and the ecosystem sensitivity to the global climate change. Data driven models that utilize 

the climate data and remote sensing-based observations can provide reasonable estimates 

of GPP. The emergence of the solar induced chlorophyll fluorescence (SIF) from both in-

situ and satellite observations provides another tool to understand and estimate plant 

photosynthesis. Remote sensing-based observations and models are also widely used in 

crop monitoring. Timely and accurate crop production estimation are needed to sustain 

global food security under the background of climate change. My overall objective is to 

improve the data-driven models to provide better GPP estimates, to combine SIF with 

other data sources to advance our understanding of the photosynthesis process and 

ecosystem sensitivity to droughts, and to investigate the potential of a data-driven model, 

specifically, the vegetation photosynthesis model (VPM), in crop monitoring. 

In Chapter 2, we investigated the seasonal dynamics of eddy flux-derived GPP 

(GPPEC), solar-induced chlorophyll fluorescence (SIF), and four vegetation indices (VIs) 

and their relationships in a tall grassland site. We also examined drought impact on those 

structural and physiological proxies of plant photosynthesis. We found SIF explained 49% 

of the GPP variability at the seasonal scale, and had a stronger consistency with GPP than 



xxiv 

 

the four VIs. Among the four VIs, the soil background corrected VIs, near-infrared 

reflectance of vegetation (NIRv) and enhanced vegetation index (EVI) showed the best 

consistency with both GPP and SIF. In addition, SIF is more sensitive to drought than the 

VIs. This study suggested that the potential of SIF in tracking photosynthesis in grassland 

and drought impact on photosynthesis. 

In Chapter 3, we improved the vegetation photosynthesis model (VPM) by 

considering the difference of the maximum light use efficiency for C3 and C4 croplands. 

Model validation against GPPEC in multiple sites distributed over CONUS suggests better 

accuracy of GPP simulated by VPM (GPPVPM) in tracking the cross-site variability and 

interannual variability (R2 = 0.84 and 0.46, respectively) when compared to MOD17 GPP. 

We also assessed the spatial and temporal (seasonal) consistency of GPPVPM, MOD17 

GPP and other two common-used GPP products with the Global Ozone Monitoring 

Experiment-2 (GOME-2) SIF. We found good consistency of GPPVPM with SIF across 

space and time. Anomaly analyses for those GPP products and GOME-2 SIF showed that 

high  GPP during the 2012 spring compensated for low GPP during the summer, resulting 

in near-neutral changes in annual GPP for the CONUS. This study demonstrates the need 

to improve light use efficiency models by incorporating C3 and C4 plant functional types, 

and the importance of assessing the impacts of different types and timing of climate 

extremes on GPP. 

In Chapter 4, we evaluated the interannual dynamics of maize and soybean cropping 

areas and production over the CONUS during 2008-2018. We found an increase of maize 

and soybean planted areas during this period, mainly driven by markets and international 

trade. We further investigated the relationship between production and the total GPP 
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derived from VPM simulation and the area statistics from cropland data layer (CDL). We 

found strong relationship between them. Additionally, the ratio between grain production 

and GPPVPM, named harvest index derived from GPP (HIGPP), ranged from 0.25 (2012) 

to 0.36 for maize and from 0.13 to 0.15 for soybean. The seasonal linear regression 

models between grain production and cumulative GPPVPM (GPPVPM_acc) over time at 8-

day resolution shows that GPPVPM_acc accounted for ~90% variance of grain production 

by the end of July. Our findings suggest that the potential of VPM and GPPVPM data 

product in monitoring grain production to help farmers, decision makers, stakeholders 

and the public. 

In Chapter 5, we assessed the consistency of winter wheat cropped areas from NASS 

statistics and planted area derived from CDL data. We found strong spatial-temporal 

consistency between the CDL and NASS datasets for the planted acreage. However, there 

is a significant difference (>40%) between the NASS harvested area and planted area 

from NASS statistics or CDL data in the Southern Great Plains, where winter wheat is 

used as both a grain crop and forage crop. We then evaluated the relationship between 

annual GPPVPM and grain production, we found a moderate linear relationship between 

them for winter wheat, with R2 value of 0.68 at county scale over the CONUS. But this 

relationship improved when excluding those counties with large difference between the 

CDL planted area and NASS harvested area. Our findings suggest that the importance of 

providing reliable in-season crop type classification in considering the difference between 

planted and harvested acreage, and the potential of GPPVPM in crop monitoring. 



1 

Chapter 1: Introduction 

1.1 Research background 

Stabilization of atmospheric carbon dioxide (CO2) concentrations is required to reduce 

the increasing impacts of climate changes. Terrestrial ecosystems play a major role in the 

global carbon cycle, offsetting approximately 25-30% of the carbon dioxide (CO2) 

emitted by human activities since 1950s (Le Quéré et al. 2009). However, it is projected 

that there will be an increase of the duration or/and frequency of climate extremes in the 

future, which could potentially affected the composition, structure and functioning of 

terrestrial ecosystems and how they will counteract/offset atmospheric CO2 

concentrations (Frank et al. 2015). It is a grand challenge to understand and project the 

response of terrestrial ecosystems to climate extremes (Reichstein et al. 2013). 

To quantify ecosystem carbon fluxes under current and future climates, particularly 

the role of terrestrial vegetation, scientists have used the eddy-covariance flux towers 

since the early 1990s (Baldocchi et al. 2001) to provide continuous measurements of 

carbon and water fluxes between the terrestrial ecosystems and the atmosphere. At 

present, over 500 flux tower sites are operating on a long-term basis around the globe 

(https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=9). These sites are located across 

different climate zones and biomes (Baldocchi et al. 2001; Baldocchi 2003), and provide 

probably the best estimates of ecosystem-level carbon fluxes. The flux sites measure 

directly the net ecosystem exchange (NEE), which can be separated into two major 

components: GPP and ecosystem respiration (ER) (Lasslop et al. 2010; Reichstein et al. 

2005). However, the flux towers have a limited footprint of 100-2000 m (Schmid et al. 

2000), making it challenging to assess the surface carbon fluxes at regional or global scale.  
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The emergence of solar-induced chlorophyll (SIF) observations provide another way 

to assess plant photosynthesis (GPP) at both regional and global scales. SIF is a small 

amount of light generated during the photosynthetic process. It is well known that 

photosynthesis involves two main sets of reactions: the light reactions and the carbon 

fixation reactions. During the light reactions, the light absorbed by the chlorophyll 

follows one of  three pathways: used for photosynthesis, re-emitted at longer wavelength 

as SIF, and dissipated as heat (Maxwell and Johnson 2000; Porcar-Castell et al. 2014). 

Thus, SIF can provide information about how the photosystem is using the energy 

absorbed by chlorophyll. As this part of energy using by the photosystem is indicative of 

the overall rate of photosynthesis under many conditions, SIF observations has the 

potential to help to infer plant photosynthesis. Previous studies have shown a quasi-linear 

relationship between SIF and GPP from both the satellite-based (Guan et al. 2016; Joiner 

et al. 2013; Sun et al. 2017; Zhang et al. 2016a), and ground-based SIF measurements 

(Miao et al. 2020; Yang et al. 2015). Multiple applications have used this empirical 

relationship to infer GPP from SIF directly or indirectly (Guan et al. 2016; Guanter et al. 

2014). However, the underlying mechanisms behind the SIF and GPP relationship at 

different scales and various environmental limitations still requires elucidation. Miao et 

al. (2018) found the SIF and GPP relationship could change substantially in a day due to 

the light change. Wu et al. (2020) found a stronger linear relationship between GPP and 

SIF at a long time scale (monthly) rather than short time scale (hourly). 

In addition to flux observations, scientists also have developed various models to 

estimate surface fluxes. Two approaches have been widely employed to investigate the 

spatial and temporal variability in GPP using remotely sensed data: (1) process-based 
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models, and (2) data-driven models (Anav et al. 2015). The former is mostly based on the 

mechanistic description of the photosynthetic biochemical processes and scales the 

instantaneous leaf-level biochemical model (Farquhar et al. 1980) to the canopy level 

using multiple scaling approaches. A number of process-based models have been 

successfully applied to simulate GPP at regional and global scales by utilizing remotely-

sensed vegetation parameters, such as leaf area index (LAI), as inputs. However, the 

application of these process-based models is limited by the model complexity and 

uncertainty of their parameterization (Li et al. 2018). In contrast, data driven models, one 

major category is light use efficiency (LUE) models, were developed based on the 

assumption that plant productivity is linearly related to the amount of the absorbed 

photosynthetically active radiation (APAR) (Monteith 1972, 1977). Those models have 

been reported to quantify the spatial and temporal variation of GPP reasonably well in 

both site- and regional- level studies (Potter et al. 1993; Running et al. 2004; Yuan et al. 

2007; Zhang et al. 2017) . The linear relationship works particularly well at a long 

temporal scale (weekly or monthly) rather than at a short time scale (hourly, daily), due 

to the uneven light distribution in the canopy and other environmental limitation at short 

temporal scale (Song et al. 2013; Wu et al. 2015).  

Compared with process-based models, LUE models simplified many complicated 

biochemical processes and just have a few parameters and environmental drivers to 

represent different environmental conditions. One key issue is that parameterization of 

LUE models affects the simulation results a lot. Specifically, the maximum light use 

efficiency (εmax), the most sensitive parameters in the LUE models, requires more careful 
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representation for the LUE models, especially for C4 croplands (Xin et al. 2013; Yuan et 

al. 2007).  

Accurate quantification of crop production at regional to global scales is important 

in supporting policy- and decision-making in agriculture (Guan et al. 2016; Lesk et al. 

2016).  Annual production of one specific crop in a given region is the product of crop’s 

yield and harvested area (Cohn et al. 2016). Thus, to quantify crop production for certain 

crops, it requires both the area and yield information. The area information can be 

obtained through remote-sensing based mapping, though detailed high-resolution crop 

maps are lacking for the entire globe. For yield information, two common approaches 

with satellite inputs have been widely used: (1) empirical relationships between 

vegetation biomass and remote sensing spectral vegetation indices to estimate yields 

(Lobell and Ortiz-Monasterio 2008; Zhao et al. 2015); (2) yield estimated as the product 

of crop gross primary productivity (GPP) and an empirical crop-specific harvest index 

(HI)  (Guan et al. 2016; He et al. 2018b; Lobell et al. 2002). The first approach is 

fundamentally simple but the empirical relationship is specific to the limited areas and 

conditions from which they were developed, and should not be extended to other areas. 

The second approach depends on the accuracy of GPP products and HI. 

1.2 Research objectives 

The objectives of this dissertation are to explore the relationship between SIF and GPP 

using both in-situ measurement and remote sensing data, and to assess how drought affect 

GPP and SIF, and to apply the regional GPP products to estimate crop production.  
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1.3 Organization of the dissertation  

This dissertation consists of one introductory chapter, four main chapters, and one 

summary chapter. Chapters 3 has been published in a peer-reviewed journal. Chapter 4 is 

under the second round of review after major revision in Agricultural and Forest 

Meteorology. Chapter 5 has been circulated to coauthors for internal revision and will 

soon be submitted. Chapter 2 remains in preparation for journal submission. 

Chapter 2. Divergence of seasonal and diurnal variability of plant photosynthesis 

detected by physiological and structural proxies in a tall grass prairie ecosystem. 

Many studies have shown that GPP and SIF have a quasi-linear relationship from both 

satellite- and ground- based SIF measurements, and APAR is the dominant factor of this 

relationship. However, those studies are mainly focused on cropland ecosystems, and a 

few forest sites. Moreover, there are few studies that explore drought impacts with in-situ 

SIF data. In this chapter, I explored seasonal dynamics and relationships of GPP, SIF and 

four vegetation indices at seasonal and diurnal scale. I also assessed the drought impact 

on GPP, SIF and VIs. This study will help us to better understand the GPP-SIF 

relationship and the drought response in a grassland site. 

Chapter 3. Divergent impacts of spring warming and summer drought on gross primary 

production across the Contiguous United States in 2012.  

Wolf et al. (2016) found a compensatory effect of spring warming and summer drought 

on the net ecosystem production. However, the spring warming and summer drought 

effect on the GPP is not well understood. In this study, we improved the VPM model by 

incorporating different LUE for C3 and C4 croplands in CONUS, and compared the 
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simulation result with three common GPP products and SIF to show the consistency 

between these models. 

Chapter 4. Spatial-temporal dynamics of maize and soybean planted area, harvested 

area, gross primary production, and grain production in the Contiguous United States 

during 2008-2018.  

Crop production is not well studied compared with crop yield, one important reason is 

the lack of detailed crop area data. The cropland data layer (CDL) provided by the USDA 

NASS provides us this kind of area information. Evaluating corn and soybean in the 

CONUS as a case study, we estimated their production from CDL area data and VPM 

GPP using the NASS production as a benchmark.   

Chapter 5. Spatial-temporal dynamics of winter wheat croplands in the Contiguous 

United States: Consistency between agricultural statistical and satellite approaches.   

Winter wheat is a major staple crop grown in the US, and the US is the third largest wheat 

exporter globally. Timely and reliable winter wheat production prediction in the US is 

important for regional and global food security. In this study, I utilize the VPM GPP data, 

CDL derived planted area to monitor winter wheat production with NASS crop acreages 

and grain production as a benchmark.   

1.4 List of publications from the Dissertation 

Chapter 2 

Wu, X., Xiao, X., Yang, Z., et al. Diurnal and seasonal dynamics of vegetation indices, 

SIF and GPP in a tallgrass prairie ecosystem. In prep. 

Chapter 3 



7 

Wu, X., Xiao, X., Zhang, Y., He, W., Wolf, S., Chen, J., He, M., Gough, C.M., Qin, Y., 

Zhou, Y. and Doughty, R., 2018. Spatiotemporal consistency of four gross primary 

production products and solar‐induced chlorophyll fluorescence in response to climate 

extremes across CONUS in 2012. Journal of Geophysical Research: 

Biogeosciences, 123(10), pp.3140-3161.  

Chapter 4 

Wu, X., Xiao, X., Yang, Z., et al. Spatio-temporal dynamics of maize and soybean 

croplands in the Contiguous United States: Consistency between agricultural statistical 

and satellite approaches. Agricultural and Forest Meteorology, in review after major 

revision. 

Chapter 5 

Wu, X., Xiao, X., Yang, Z., et al. Spatial-temporal dynamics of winter wheat croplands 

in the Contiguous United States: Consistency between agricultural statistical and 

satellite approaches. To be submitted 
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Chapter 2: Diurnal and seasonal dynamics of vegetation indices, SIF 

and GPP in a tallgrass prairie ecosystem 

 Abstract  

Remote sensing of far-red solar induced chlorophyll fluorescence (SIF) has emerged as 

an important tool for studying gross primary production (GPP) at field scale. However, 

the relationship between SIF and GPP has only been investigated on multiple cropland 

sites and a few forest sites. In addition, it is unknown how SIF responds to drought at 

field scale. In this study, using data from an integrated SIF measurement system together 

with eddy flux and meteorological observations from a tallgrass prairie site in Oklahoma, 

we investigated the seasonal dynamics and relationships of SIF, GPP and four vegetation 

indices. We found that SIF correlated with GPP derived from eddy covariance (GPPEC) 

at seasonal scales (R2 = 0.49). Among the four vegetation indices, the near-infrared 

reflectance of vegetation (NIRv) and enhanced vegetation index (EVI) were most 

significantly correlated with both GPP and SIF than normalized vegetation indices (NDVI) 

and MERIS terrestrial vegetation index (MTCI). During the drought period, the 

physiological-based proxies of photosynthesis, including SIF and GPP, are more sensitive 

than the structural-based vegetation indices. The results of this study highlighted the 

importance of using SIF to track plant photosynthesis and the physiological and structural 

limitation during drought. 

 2.1 Introduction 

Plant chlorophyll absorbs sunlight in the 400-700 nm range of the electromagnetic 

spectrum (photosynthetically active radiation), and emits a small amount of light in the 
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red and far-red (650-850 nm) range known as solar-induced chlorophyll fluorescence 

(SIF) (Porcar-Castell et al. 2014). This phenomenon provides an opportunity to estimate 

gross primary productivity (GPP), the total carbon fixed by plants. The recent advances 

in measuring SIF from both sensors onboard satellites (Guanter et al. 2014; Joiner et al. 

2013; Sun et al. 2017; Zhang et al. 2016a) and in-situ sensors (Miao et al. 2020; Yang et 

al. 2017; Yang et al. 2015) promotes the use of SIF to estimate GPP across different 

spatial and temporal scales. 

Previous studies have explored the empirical relationship between GPP and SIF 

(Guanter et al. 2014; Joiner et al. 2013; Sun et al. 2017; Zhang et al. 2016a) at regional 

scale. Some field studies have explored the mechanistic understanding of this relationship 

at site scale, mostly in cropland sites  (Dechant et al. 2020; Miao et al. 2020; Miao et al. 

2018; Wu et al. 2020) and forest sites (Yang et al. 2015). Based on the light use efficiency 

framework, GPP can be thought as a product of the amount of photosynthetically active 

radiation (PAR), the fraction of PAR absorbed by the canopy (fPAR) and the light use 

efficiency (LUE) (Monteith 1972, 1977), while SIF can be thought of a product of PAR, 

fPAR, fluorescence yield (SIFyield) and escaping ratio (Guanter et al. 2014).  

GPP = APAR × LUE                                     (2.1) 

SIF = PAR × fPAR × SIFyield  ×fesc                                                   (2.2) 

APAR = fPAR × PAR                                  (2.3) 

where SIFyield is the emitted SIF per photon absorbed. fesc is the proportion of observed 

top-of-canopy SIF to the total emitted SIF. 𝑓𝑒𝑠𝑐 is usually affected by the canopy structure 

and the light quality (diffused vs. direct radiation). The relationship between 

instantaneous GPP and SIF, is thus controlled by the relationship between instantaneous 
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LUE and SIFyield × fesc. At a longer time scale, the ratio of GPP: SIF is jointly determined 

by the variations of APAR and the ratio of LUE: SIFyield × fesc. However, as the variations 

of APAR are usually larger than the variations of LUE: SIFyield, previous studies showed 

that APAR is the dominant factor for the linear relationship between GPP and SIF (Miao 

et al. 2018; Yang et al. 2015). However, it is still unknown whether this linear relationship 

is a universal one at regional scale (Xiao et al. 2019). Considering the difference of 

canopy structure over biomes, it is necessary to explore such relationship for different 

biomes.  

Previous studies have shown the drought effects on photosynthesis can be attributed 

to canopy limitation and physiological change (Zhang et al. 2016b). The former is caused 

by the decrease in leaf area or the chlorophyll pigments; the latter is related to stomatal 

(stomatal closure to prevent water loss) or non-stomatal (e.g., the reduction in enzyme 

activity) limitation. Vegetation indices may be able to track the canopy changes, but most 

remotely sensed indicators are not sensitive to physiological limitation. However, SIF 

and GPP are sensitive to such physiological limitation. Therefore, a combination of VIs, 

SIF and GPP can provide a comprehensive understanding about drought effects on 

photosynthesis. 

The Southern Great Plains (SGP), composed of Kansas, Oklahoma, and Texas, 

experiences frequent droughts, which provides the opportunity to investigate the effect of 

drought on plant photosynthesis. In this study, we set up a state-of-the-art SIF observation 

system (FluoSpec), together with an eddy covariance flux tower and climate 

measurements, to investigate the diurnal and seasonal dynamics of vegetation indices, 

SIF and GPP and their responses to drought in a tall grass prairie. Specifically, we 
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addressed three questions: (1) what is the seasonal and diurnal dynamics of VIs (NDVI, 

EVI, MTCI, NIRv), SIF and GPP? (2) what is the relationship between the indicators? 

and (3) how do Vis, SIF, and GPP respond to drought? 

 2.2 Materials and methods 

 2.2.1 Study area 

Our experiment site was Kessler Atmospheric and Ecological Field Station (KAEFS)in 

central Oklahoma, USA, approximately 28 km southwest of the University of Oklahoma 

(https://www.ou.edu/kaefs) (Fig. 2.1). The ecosystem in KAEFS is a mixed tallgrass 

prairie, woodland, riparian areas, and pastures. The grass species includes both C3 and C4 

grasses, and the proportion changes within the growing season, with C3 grasses 

dominating during the early and late growing season (cool months), and C4 grasses 

dominating the mid-growing season (May to July) (Castillioni et al. 2020). The region 

has a sub-humid climate, with the annual precipitation around 850 mm and the mean 

annual air temperature around 16℃. 

 

https://www.ou.edu/kaefs
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Figure 2.1 The location of the study sites, including the FluoSpec solar-induced 

chlorophyll fluorescence measurement site, an eddy covariance flux site and an 

Oklahoma Mesonet site. 

 2.2.2 FluoSpec system 

A continuous canopy-level solar induced chlorophyll fluorescence measurement system 

--- FluoSpec, was deployed at KAEFS. The key components of the system are two high 
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resolution spectrometers. One spectrometer is QE-Pro, targeted for SIF retrieval, with a 

spectral resolution of around ~0.04 nm (full width half maximum, FWHM) between 730 

nm to 788 nm. The other spectrometer is HR2000+, with a spectral resolution of ~0.5 nm 

between 187 nm to 1105 nm. We used the spectral measurement from the HR2000+ to 

calculate several vegetation indices as followings: 

NDVI =
ρ860−ρ655

ρ860+ρ655
                                           (2.4) 

EVI = 2.5
ρ860−ρ655

ρ860+6ρ655−7.5ρ470+1
                       (2.5) 

                                                                MTCI =
ρ750−ρ710

ρ710−ρ680
                                                       (2.6) 

                                                                        NIRv =
ρ860−ρ655

ρ860+ρ655
 ×  ρ860                             (2.7) 

where NDVI is the normalized vegetation index, EVI is the enhanced vegetation index, 

MTCI is the Merris terrestrial chlorophyll index, and NIRv is the near-infrared reflectance 

of vegetation. NDVI is believed to be related to canopy structure and chemical content, 

while EVI and MTCI is sensitive to the variation of chlorophyll content (Zhang et al. 

2018). NIRv introduced the near-infrared band to eliminate the effect of soil background 

and is found to be closely related to the fesc (Zeng et al. 2019). ρ with a numeric subscript 

represents the vegetation canopy reflectance at that wavelength. 

For each spectrometer, there are two optical fibers and one shutter (FOS-2×2-TTL, 

OceanOptics, Inc.) to switch the light path, so the spectrometer can measure the 

downward solar irradiance and upward vegetation radiance in turns. The optical fiber 

facing up to the sky is integrated with a opaline glass cosine corrector (CC-3, 

OceanOptics, Inc.) to get the downwelling irradiance of the sun; the other bare optical 

fiber pointing down to the land surface has a field of view (FOV) of 25° at the height of 
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~3 m. The land surface within the FOV of the bare fiber, about 1.3m × 1.3m, is dominated 

by switchgrass (>80%).  

Both spectrometers are controlled by a small computer called Raspberry Pi 3 (RP3). 

Every 15 minutes, the system completed a measurement cycle. In each 15-minutes 

measurement cycle, two spectrometers operate in turns to get 5 pairs of irradiance and 

radiance measurements.  The system collected data during from March 13 – September 

17, 2017, from 6:00 am – 20:00 pm. Careful radiometric calibration was performed prior 

to and one time during the field campaign using a light source (HL-2000-CAL, 

OceanOptics, Inc). We also used a white board to calibrate the system every two months 

during the growing season. 

 2.2.3 Hyperspectral data processing 

The output data from the FluoSpec are digit number (DN) values, rather than absolute 

radiance or irradiance. To convert DN values to irradiance/radiance, all measurements 

were applied for dark current and a non-linearity correction (Yang et al. 2015). After 

getting the absolute irradiance and radiance, a spectral fitting methods (SFM) is used to 

extract SIF by exploiting the oxygen absorption  band at 760 nm (Meroni et al. 2009).  

 2.2.4 Weather measurements from Mesonet and eddy covariance (EC) flux tower site 

The Mesonet station provided a variety of weather variables, such as air temperature, 

solar radiation, precipitation, vapor pressure deficit, and soil moisture. To identify 

droughts, a water index called the fractional water index (FWI) was applied. FWI is a 

unitless soil water indicator ranging from 0 to 1, with 0.00 representing very dry soil to 

1.00 for soil at field capacity (Schneider et al. 2003). We calculated FWI at 5cm, 25cm, 

and 60cm soil depth based on measurements from three Campbell Scientific 229 - L 
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sensors at 5cm, 25cm, and 60cm depth, so it can cover most of the root zone for the 

grasslands (Illston et al. 2008). We identified two drought events during the 2017 growing 

season (Fig. 2.2, Table 2.1). 

 

Figure 2.2 The seasonal dynamics of weather variables (air temperature: Ta, Vapor 

pressure deficit: VPD, precipitation, solar radiation) and fractional water index 

(FWI) at different depth (5cm, 25cm, 65cm) during the plant growing season. 
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Table 2.1 Summary of the four periods during the peak growing season 

  Pre-drought 

period 1 (P1) 

Dry period 1 

(D1) 

Pre-drought 

period 2 (P2) 

Dry period 2 

(D2) 

Start (DOY) 156 170 188 205 

End (DOY) 165 179 197 214 

Average Tmax 

(℃) 

30.1 32.1 33.6 33.4 

Average VPD 

(hPa) 

10.2 13.2 10.8 12.7 

Average FWI 0.93 0.64 0.87 0.36 

 2.2.5. Carbon flux data processing 

The EC flux data were processed using a standardized protocol: (1) the raw 10 Hz data 

were processed with the EddyPro software from Li-Cor (LI-COR, Inc.). (2) the output 

from the first step underwent an initial data quality check where the upper and lower 1% 

Net Ecosystem Exchange (NEE), and Latent Energy (LE) observations were rejected to 

remove noises. (3) after the data quality check, the 30-min flux values were combined 

with the weather observations and gap-filled and partitioned using the “REddyProc” 

package (https://www.bgc-

jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage) in R. 

 2.3 Results 

 2.3.1 Seasonal dynamics of vegetation indices, SIF, and GPP and their relationships 

Tower-based daily SIF gradually increased in March and peaked to ~0.6 mW m-2 sr-1 nm-

1 during the summer, then declined by the end of the growing season (Fig. 2.3). 

Interestingly, daily GPPEC showed a different pattern than daily SIF. GPPEC showed a 

similar seasonal cycle with SIF from March to early August, but it increased during 

August to September, while SIF decreased, which may be caused by the growth of C3 

grasses during the late growing season. The seasonal variability of VIs had a similar 
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pattern with SIF, increasing from March, peaking in the summer and declining from 

August (~DOY 200).  

 

Figure 2.1 Seasonal dynamics of GPP, SIF and four vegetation indices, including 

NDVI, EVI, NIRv and MTCI. 

The seasonal dynamics (DOY 72 to 260) of SIF agrees reasonably well with that of 

daily GPPEC (R2 = 0.53) (Fig. 2.4). The seasonal pattern of VIs showed a less tightly 

relationship with daily GPPEC (Fig. 2.5), compared with that of GPP and SIF. EVI and 

NIRv showed a more significant relationship than MTCI and NDVI. For the relationship 

of VIs and SIF, the R2 ranges from 0.20 to 53, with the tightest relationship for NIRv 

(0.53) and EVI (0.45), following by NDVI and MTCI. 
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Figure 2.2 Linear regression results between daily SIF and GPP in 2017 (with p-

value < 0.05) 

 

Figure 2.3 Linear regression results between SIF/GPP and the four VIs (NDVI, 

EVI, NIRv and MTCI), with all p-values<0.05 

 2.3.2 Diurnal dynamics of vegetation indices, SIF, and GPP and drought response    

At the diurnal scale, both SIF and GPP showed a cosine variation, with a peak value at 

noon time (Fig. 2.6). During the first drought period, both SIF and GPP were minimally 

affected, with a similar value to the before-drought period. During the second drought 
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period, both GPP and SIF showed significant decreases. the product of SIFyield × fPAR 

and LUE x fPAR showed a “U” shaped pattern, with higher value at early morning and 

late afternoon and lower value in the afternoon. Similarly, both SIFyield × fPAR and 

LUE × fPAR were minimally affected during the first drought, but decreased during the 

second, more severe, drought period. The decrease was stronger in the midday than in the 

morning and late afternoon. 

 

Figure 2.4 Diurnal dynamics (8:00 am-18:00 pm) of SIF, SIF/PAR, GPP, and 

GPP/PAR during the four identified periods.  
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Figure 2.5 Diurnal dynamics (8:00am-18:00 pm) of NDVI, EVI, MTCI and NIRv 

during the four identified periods. 

All the VIs showed a “U” shaped pattern at diurnal scale (Fig. 2.7). Similarly, all the VIs 

were minimally affected by the first drought, indicated by values close to the pre-drought 

values. During the second drought period, all the VIs showed a significant decrease. 

However, compared to the SIF and GPP reduction in the second drought, all the VIs still 

showed a less reduction (Fig. 2.8). 
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Figure 2.6 Comparison between SIF, GPP and VIs reduction during second drought 

period to pre-drought period. 

 2.4 Discussion 

 2.4.1 The relationships between VIs, SIF and GPP 

In this study, we found a moderate nonlinear relationship between GPP and SIF at daily 

scale. The inconsistency of GPP and SIF could be mainly caused by the different 

footprints of the two observations, with the GPP site covering a diverse mixed grasses 

and forbs over hundreds of meters, while the SIF site having less diverse grasses (mainly 

C4 grasses) in a much smaller field of view. As the composition of grass species (C3 and 

C4) within the footprint of the EC tower site, can shift during the entire growing season, 

we found a regrowth period in the late growing season from the GPP data (Fig. 2.3).  

However, the underlying mechanisms associated with the spatiotemporal variability of 

SIF and GPP:SIF relationship are still largely unknown. We do know that chlorophyll 

pigments absorb photons that power photosynthesis, and some of photons are reemitted 
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at a longer wavelength as SIF. Thus, SIF is considered to physiologically link with GPP. 

However, the relationship between SIF and GPP is complicated because the observed SIF 

at the top of canopy is only a fraction of total emitted SIF and this fraction is sensitive to 

the direction of observation and canopy structure, including canopy leaf area index (LAI), 

clumping index, and leaf orientation (Dechant et al. 2020). GPP, unlike SIF, is related to 

canopy-level gas exchange processes, thus the observed GPP at the top of canopy is the 

cumulative GPP of all leaves, which is not affected by the canopy structure and the 

direction of observation. So the observed pattern of SIF should have some difference with 

that of GPP theoretically. Numerous studies showed a linear GPP:SIF relationship mainly 

in croplands (Li et al. 2020; Liu et al. 2020; Miao et al. 2020; Miao et al. 2018) with fewer 

in forest sites (Yang et al. 2015), with a R2 ranging from 0.28 to 0.80. Our study showed 

a moderate relationship between SIF and GPP in the mixed grasses, with a R2 value of 

0.49 for linear regression and 0.53 for nonlinear regression. However, there is still not a 

clear understanding of the relative contributions of physiological and structural 

components of SIF relate to photosynthetic light use efficiency over different biomes. 

Therefore, decoupling the effects of canopy structure and physiological changes on SIF 

is still needed. 

Both NIRv and EVI showed a stronger correlation with SIF (GPP) than NDVI and 

MTCI (Fig. 2.5). EVI reduces the effects of environmental factors such as atmospheric 

conditions and soil background through introducing the blue band and addressing the 

non-linear, differential band transferring process (Huete et al. 1997). Previous studies 

have documented strong EVI-GPP relationships and thus EVI has been widely used 

modelling GPP (Wu et al. 2014; Zhang et al. 2017). Compared to NDVI, NIRv minimized 
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the effects of soil background by introducing the NIR band (Zeng et al. 2019). Previous 

studies reported that NIRv could explain over 90% variability of GPP at monthly, global 

scales (citation). At site scale, the relationship between GPP and NIRv varied from sub-

daily to daily scales, with a R2 ranging from 0.4-0.7, which is similar for the relationship 

between GPP and EVI (Wu et al. 2020). In our results, NIRv did not have a clear 

advantage over EVI in correlation to GPP, but NIRv has a stronger relationship with SIF 

than EVI. NIRv is closely related to the fraction of escaping photons (fesc) through 

scattering and absorbing in the canopy and thus provides an ideal bridge for linking 

observed top-of-canopy SIF and total emitted SIF (Zeng et al. 2019; Dechant et al. 2020). 

 2.4.2 Response of physiological and structural proxies to drought 

Drought impacts plant photosynthesis from both physiological control and canopy control 

(Zhang et al. 2016b). Physiological control includes a reduction of enzyme activity and 

stomatal conductance (Reichstein et al. 2002), which is often related to the variation of 

air temperature, and vapor pressure deficit and soil water deficit. Canopy control is more 

visible, indicated by the changes of canopy such as the decrease of leaf area index, wilting, 

leaf curling, and loss of chlorophyll indicated by leaves turning yellow. Previous studies 

reported that SIF is sensitive to physiological variations during drought at a regional scale 

(Chen et al. 2019; Sun et al. 2015). The SIF and hyperspectral observations in this tall 

grass site and the drought events in 2017 provides an unique opportunity to investigate 

the drought impact on plant photosynthesis at site scale. 

Physiological and canopy controls of GPP take place across differing temporal 

scales. Physiological control can occur rapidly, from minutes to days. In our study, the 
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first drought had limited affect on photosynthesis from either physiological and canopy 

control. Figure 2.2 indicated that only the shallowest soil layer had dried during the first 

drought period. During the second drought period, both the surface and deep soil water 

declined, which may lead to both the physiological and canopy response indicated by 

GPP, SIF, and VIs. However, the VIs only showed a slightly decrease in response to 

drought compared with the strong decrease of GPP and SIF. As the canopy change is 

reflected by the change of pigment or the change of total leaf area index and the VIs 

indicate small change of the LAI, we suspected that the canopy change is mainly driven 

by the change of pigment rather than the leaf quantity. It is interesting to see a strong 

decrease of SIF/PAR (fPAR×SIFyield) in the second drought, indicating that the drought 

response was mostly physiologically since the SIF/PAR sustained a pretty high level in 

the early morning but dropped dramatically in the afternoon when the strongest 

environmental stress occurred.  

 2.5 Conclusion 

SIF has proved to be a good proxy of photosynthesis at both regional and site scales. In 

this study, by comparing the SIF and vegetation indices derived from the FluoSpec 

system with GPPEC, we found that SIF can track the seasonal dynamic of GPP tbetter han 

the structural-based VIs. Among the four VIs, the soil background adjusted VIs, NIRv 

and EVI, were more consistent with GPP and SIF than NDVI and MTCI. Canopy SIF 

also showed higher sensitivity to drought stress than those structural based VIs by 

including both physiological and structural limitation information on photosynthesis. The 

study indicates the potential of using SIF to  track photosynthesis in grassland and monitor 

drought impact on photosynthesis. 
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Chapter 3: Spatiotemporal consistency of four gross primary 

production products and solar-induced chlorophyll fluorescence in 

response to climate extremes across CONUS in 2012 

 Abstract  

Large spatial-scale effects of climate extremes on gross primary production (GPP), the 

largest terrestrial carbon flux, are highly uncertain even as these extremes increase in 

frequency and extent. Here we report the impacts of spring warming and summer drought 

in 2012 on GPP across the contiguous US (CONUS) using estimates from four GPP 

models: Vegetation Photosynthesis Model (VPM), MOD17A2H V006, Carnegie-Ames-

Stanford Approach (CASA), and Simple Biosphere/Carnegie-Ames-Stanford Approach 

(SiBCASA). VPM simulations are driven by Moderate Resolution Imaging 

Spectroradiometer (MODIS), North American Regional Reanalysis (NARR) climate data, 

and C3 and C4 cropland maps from the United States Department of Agriculture (USDA) 

Cropland Data Layer (CDL) dataset. Across 25 eddy covariance flux tower sites, GPP 

estimates from VPM (GPPVPM) showed better accuracy in terms of cross-site variability 

and interannual variability (R2 = 0.84 and 0.46, respectively) when compared to MOD17 

GPP. We further assessed the spatial and temporal (seasonal) consistency between GPP 

products and the Global Ozone Monitoring Experiment-2 (GOME-2) solar-induced 

chlorophyll fluorescence (SIF) over CONUS during 2008-2014. The results suggested 

that GPPVPM agrees best with SIF across space and time, capturing seasonal dynamics 

and interannual variations. Anomaly analyses showed that increased GPP during the 

spring compensated for the reduced GPP during the summer, resulting in near-neutral 

changes in annual GPP for the CONUS. This study demonstrates the importance of 
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assessing the impacts of different types and timing of climate extremes on GPP, and the 

need to improve light use efficiency models by incorporating C3 and C4 plant functional 

types. 

 3.1 Introduction 

Terrestrial ecosystems play a major role in the global carbon cycle, offsetting 

approximately 25-30% of the CO2 emitted by human activities since the 1950s (Le Quéré 

et al. 2009). Gross primary production (GPP), the amount of CO2 sequestered by 

vegetation through photosynthetic assimilation before accounting for respiratory losses, 

is the largest component of the global terrestrial carbon flux (Beer et al. 2010). Therefore, 

a small fluctuation in GPP could have significant impact on atmospheric CO2 

concentrations. However, the composition, structure, and functioning of terrestrial 

ecosystems are expected to be substantially altered by increases in the duration or/and 

frequency of climate extremes such as droughts, heatwaves, or intense precipitation 

events (Frank et al. 2015). It is a major challenge to understand and project the response 

of terrestrial ecosystems to climate extremes (Reichstein et al. 2013). In particular, 

droughts, together with the frequently co-occurring heatwaves, are among the most 

widespread natural disasters, and could have large impacts on annual GPP, ecosystem 

respiration, and net carbon balance (Frank et al. 2015; van der Molen et al. 2011). 

The impacts of climate extremes, especially heatwaves and droughts, on GPP have 

been thoroughly investigated for selected events (Ciais et al. 2005; Parazoo et al. 2015; 

Wolf et al. 2016; Yuan et al. 2016a). However, how climate extremes affect the carbon 

cycle is still poorly known at the landscape, regional, and global scales (Pan and Schimel 
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2016). To investigate the impacts of climate extremes on GPP at ecosystem and landscape 

scales, three approaches have been separately or jointly applied: eddy covariance (EC) 

flux tower measurements (von Buttlar et al. 2017; Welp et al. 2007), remote-sensing data 

(Hilker et al. 2014), and biogeochemical models (Zscheischler et al. 2014). Since the 

1990s, the EC flux tower method has provided directly observed evidence for the seasonal 

changes of terrestrial carbon fluxes, which increases our understanding of the underlying 

mechanisms of terrestrial ecosystem responses and their feedbacks to climate extremes at 

the site scale (Reichstein et al. 2007). However, in-situ EC sites are limited by their 

relatively moderate-size footprints of observation and the number and distribution of 

FLUXNET sites are limited, making it difficult to assess the impacts of climate extremes 

on the carbon cycle at regional, continental, and global scales. The GPP data derived from 

eddy covariance flux towers (GPPEC), though limited in their spatial coverage, are 

currently the best available data to validate GPP estimates from process-based and data-

driven GPP models. In contrast, optical and microwave remote-sensing data provide 

larger scale insights into the vegetation structure, including leaf area index, and light 

absorption by canopy (Chen 1996; Disney et al. 2006; Ollinger 2011). Recently, solar-

induced chlorophyll fluorescence (SIF) data have been derived from satellite-based 

observations to estimate GPP, as it is tightly linked with photosynthesis (Frankenberg et 

al. 2011; Porcar-Castell et al. 2014). However, SIF has a very weak signal and accounts 

for about 2% of the total light absorbed by vegetation. Satellite retrieved SIF 

measurements have comparatively large amounts of noise, and the recent SIF data 

products are often aggregated in temporal and spatial domains resulting in a coarse spatial 

and temporal resolution (monthly, 0.5°× 0.5° for Global Ozone Monitoring Instrument 2, 
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GOME-2) (Joiner et al. 2013). The coarse spatial resolution of SIF data products limits 

its application because 0.5o gridcells (~50 km at Equator) are often highly heterogeneous. 

A final approach uses terrestrial biosphere models to estimate GPP and ecosystem 

respiration for a variety of ecosystems at multiple scales. However, the reliability of these 

models is constrained by input datasets, model parameters, and model structures 

(Schaefer et al. 2012; Schwalm et al. 2010). Hence, a synthesis and comparison of the 

different approaches can reveal the shortcomings of  individual approaches, and help to 

reach a more reliable assessment of the multiple-scale responses of ecosystems to climate 

extremes (Pan and Schimel 2016).  

In 2012, the Contiguous United States (CONUS) experienced an abnormally warm 

spring and dry summer (Hoerling et al. 2014; Knutson et al. 2013). Record-breaking 

temperatures were observed across 34 states during spring and a severe summer drought 

followed, especially across the Great Plains and the Midwest Corn Belt. The 2012 US 

drought was reported as one of the worst droughts since 1988 and had a comparable 

magnitude and spatial extent of those during the 1930s and 1950s (Hoerling et al. 2014; 

Rippey 2015). Impacts of this spring warming and summer droughts on terrestrial carbon 

fluxes in CONUS have been investigated, using the data from eddy covariance flux tower 

sites, GPP from the MOD17 data product, and net ecosystem production (NEP) from 

CarbonTracker (CTE2014 and CTE2015) (Wolf et al. 2016). They found that the losses 

of NEP in the summer were offset by an unusually large increase of NEP in spring, 

resulting in a small gain of annual NEP over CONUS (0.11 Pg C). They also reported 

that the decrease in GPP during summer was much larger than the increase of spring GPP, 

resulting in a moderate loss of annual GPP (-0.38 Pg C) over CONUS in 2012. However, 
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there are large uncertainties among the various GPP products (Schaefer et al. 2012); for 

example, the MOD17 GPP product has large uncertainties in croplands (Turner et al. 2006; 

Xin et al. 2015). Therefore, there is a need to evaluate various GPP models and their GPP 

data products, which will help us to better understand and assess GPP responses to spring 

warming and summer drought in 2012. 

In this study, we analyzed GPP data products from four GPP models: (1) the 

Vegetation Photosynthesis Model (VPM) (Xiao et al. 2004a; Xiao et al. 2004b), which 

has been well validated at both site (Dong et al. 2015; Doughty et al. 2018; Jin et al. 2013; 

Wagle et al. 2015) and regional scales (Zhang et al. 2016a; Zhang et al. 2017) in previous 

studies. In this study, we modified the model for cropland by separating C3 and C4 crops 

with detailed Cropland Data Layer data; (2) MOD17 (Running et al. 2004), which is also 

used to evaluate the 2012 spring warming and summer drought impact on GPP in Wolf 

et al. (2016); (3) SiBCASA-GFED4 (van der Velde et al. 2014), and (4) CASA-GFED3 

(van der Werf et al. 2006; van der Werf et al. 2010). SiBCASA-GFED4 and CASA-

GFED3 models are biosphere models used in CarbonTracker Europe (CTE2014) (van der 

Laan-Luijkx et al. 2017) and CarbonTracker (CT2014) (Peters et al. 2007), respectively, 

which provided the prior biosphere carbon fluxes (NEP, GPP - Respiration) in the two 

carbon tracker systems. We evaluated the GPP estimations from the four datasets with 

in-situ GPP data from eddy covariance flux tower sites and SIF data from GOME-2. The 

objectives of this study are threefold: (1) to demonstrate the potential of differentiating 

C3 and C4 croplands for improving GPP estimates (using VPM as an example) and 

validate the GPP estimates against FLUXNET data; (2) to quantify and understand the 

spatial-temporal consistency of GOME-2 SIF data and GPP estimates from various 
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models; and (3) to assess the impacts of spring warming and summer drought on GPP at 

the pixel, biome, and continental scales.  

 3.2 Materials and methods 

 3.2.1 Study area 

We used the VPM model (Xiao et al. 2004a; Xiao et al. 2004b) to estimate GPP from 

2008 to 2014 over CONUS. We followed the original model framework but further 

differentiated between C3 and C4 croplands, since C3 and C4 crops have different 

maximum light use efficiencies (εmax). The National Agricultural Statistics Service 

(NASS) Cropland Data Layers (CDL) from the United States Department of Agriculture 

(USDA) were used to calculate the area percentages of C3 and C4 croplands within each 

500 m pixel over individual years (Boryan et al. 2011). According to the USDA report, 

the major C4 crop-types included corn, sorghum, sugarcane, and millet, and other crop-

types were considered as C3 croplands. The GPP of each pixel was estimated by area-

weighted averaged GPP (Equation 1), which was derived from area fraction maps of C3 

and C4 croplands and MCD12Q1 land use datasets: 

 GPP = [(fC3 × εmax-C3 + fC4 × εmax-C4) × Tscalar × Wscalar] × APARchl                  (3.1) 

where fC3 and fC4 were the area fraction of C3 and C4 crops inside each cropland pixel, 

respectively. APARchl is photosynthetic active radiation (PAR) absorbed by chlorophyll 

in the canopy and is estimated from enhanced vegetation index (EVI) (Huete et al. 1997) 

as following: 

                                 APAR_chl = 1.25 × (EVI – 0.1)                                        (3.2) 
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This equation was modified from the previous model version (Xiao et al. 2004a; 

Xiao et al. 2004b), and has been applied in generating a global GPP product (Zhang et al. 

2017). The coefficients 0.1 and 1.25 were used to adjust for sparsely vegetated or barren 

land and have been evaluated using the solar-induced chlorophyll fluorescence data. 

The maximum light used efficiency values for C3 croplands (εmax-C3) and C4 

croplands (εmax-C4) were specified as 0.035 mol CO2 mol-1 PAR (~1.8 g C m-2 day-1 MJ-1 

PAR), and 0.053 mol CO2 mol-1 (PAR) (~ 2.7 g C m-2 day-1 MJ-1 (PAR)) (1.5 times larger 

than C3 types), respectively (Li et al. 2013). Tscalar and Wscalar are the temperature and 

water regulation factor and calculated as: 

Tscalar=
(T-Tmin)(T-Tmax)

[(T-Tmin)(T-Tmax)]-(T-Topt)
2                                           (3.3) 

Wscalar=
1+LSWI

1+LSWImax
                                                               (3.4) 

where T is the air temperature, derived from the NCEP/NARR climate data. Tmin, Tmax, 

and Topt represent the minimum, maximum, and optimum temperatures for photosynthesis, 

respectively, which are biome-specific and assigned values as in Zhang et al. (2016a). 

LSWImax is the maximum land surface water index within the plant growing season, and 

we applied a temporal smoothing method using nearby four years (two years before and 

two years after) to eliminate potential bias (Zhang et al. 2017). 

 3.2.2 Input datasets for VPM simulations in CONUS during 2008–2014 

Regional simulations of VPM model require climate, vegetation indices, and land cover 

data. Here we briefly describe the input datasets used: (1) NCEP/NARR reanalysis 
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meteorological data, (2) MODIS surface reflectance and land cover data, and (3) NASS 

CDL data.  

The NCEP/NARR data was downloaded from (http://www.esrl.noaa.gov/psd). It 

contains meteorological variables such as air temperature, precipitation, and downward 

shortwave radiation from 1979 to present at a spatial resolution of 32 km and a temporal 

resolution of 3 hours. The original 3-hourly NARR data were aggregated into daily data 

by calculating the maximum, mean, and minimum air temperature in a day (oC), and the 

cumulative sum of downward shortwave radiation in a day. The resulting daily data were 

further aggregated to 8-day intervals (following the MODIS 8-day temporal resolution) 

by calculating the maximum, mean, and minimum temperature (oC), and the cumulative 

sum of downward shortwave radiation within an 8-day period. We also interpolated these 

climate variables (32-km spatial resolution) to 500-m using the same algorithm reported 

in a previous publication  (Zhang et al. 2016a). As previous studies have shown, the 

NARR downward shortwave radiation is systematically overestimated, so we adjusted it 

by applying a correction factor of 0.8 as proposed in a previous study (Jin et al. 2015). 

The latest version of MODIS surface reflectance product, MOD09A1 V006, was 

used to calculate EVI (Huete et al. 1997) and Land Surface Water Index (LSWI) (Xiao et 

al. 2004b). A temporal algorithm was applied to EVI to gap-fill the missing data or bad-

quality data (Zhang et al. 2016a).  

The MODIS land cover product (MCD12Q1 V005) provides annual global maps of 

land cover at 500-m spatial resolution during 2001-2013 (Friedl et al. 2010). We used the 

MCD12Q1 data at 2013 to represent year 2014. The IGBP land cover classification 

scheme in the MCD12Q1 is used in this study (see Fig. 1a). The IGBP land cover map 

http://www.esrl.noaa.gov/psd
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was then used to derive biome-specific model parameter information for VPM 

simulations.  

Annual national CDL datasets with a spatial resolution of 30-m were available for 

our study period (2008–2014) 

(https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). The CDL 

datasets contain over 100 cropland types, and have very high classification accuracies for 

most crops (over 90% accuracy for major crop types such as soybean and corn) (Boryan 

et al. 2011). For the VPM simulations, annual CDL datasets in 2008–2014 were 

aggregated to generate data layers at 500-m spatial resolution that represent the ratio of 

C3 and C4 vegetation within individual 500-m gridcells for each year (Fig. 1b). The C4 

cropland layer included corn, sorghum, sugarcane, and millet, and all other crops were 

C3. 

 3.2.3 Evaluation of GPP estimates during 2010–2014 from VPM 

Eddy covariance data from the FLUXNET2015 dataset were used to assess GPPVPM. We 

used 25 FLUXNET sites across CONUS according to their data availability during 2008–

2014, for which a summary about these sites is shown in Table 3.1 and Fig. 3.1a. The 

FLUXNET2015 dataset used a standard workflow to process the data from the eddy 

covariance flux tower sites (http://fluxnet.fluxdata.org/data/). The net ecosystem 

exchange (NEE) of CO2 between ecosystems and the atmosphere was gap-filled and then 

partitioned into GPP and ecosystem respiration (ER) using two methods, the nighttime 

based and the daytime based approaches (Lasslop et al. 2010; Reichstein et al. 2005). We 

calculated average daily GPPEC as the average of daily GPP estimated by the two methods. 

Then, we calculated 8-day average GPPEC by aggregating the average daily GPPs. For 

https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
http://fluxnet.fluxdata.org/data/
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each 8-day interval, only the shortwave radiation and net ecosystem exchange (NEE) 

observations with more than 75% of good quality, gap-filled data were kept. 

 

Figure 3.7 (a) Land cover map of CONUS derived from MCD12Q1 in 2011 and (b) 

the C4 crop percentage within a 500-m MODIS pixel derived from 30-m cropland 

data layer. Abbreviations denote the IGBP land-use classes. WAT: Water, ENF: 

Evergreen Needleleaf Forest, EBF: Evergreen Broadleaf Forest, DNF: Deciduous 

Needleleaf Forest, DBF: Deciduous Broadleaf Forest, MF: Mixed Forest, CS: Closed 

Shrublands, OS: Open Shrublands, WS: Woody Shrublands, SAV: Savannas, GRA: 

Grasslands, PW: permanent wetlands, CRO: Croplands, UB: Urban and Built-up, 

MOS: Cropland/Natural vegetation mosaic; SNO: Snow and Ice; BAR: Barren or 

sparsely vegetated. In Fig. 1a, we also labeled the locations of the eddy covariance 

flux tower sites used in this study. 
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Table 3.2 Name, location, vegetation type, and available years (within 2010–2014 study period) of 25 eddy covariance flux 

tower sites in this study. RMSE, R2, and slope are the root mean square error, coefficient of determination, and regression 

slope of the regression analysis, respectively, between tower-derived GPP and simulated GPP from VPM and MOD17. 

Site ID Latitude Longitude IGBP Time slope R
2 RMSE (g C m-2 d-1)   

References 
 

DOI 
VPM MOD17 VPM MOD17 VPM MOD17 

US-AR1 36.4267 -99.4200 GRA 2009–2012 1.07 0.59 0.55 0.06 1.35 1.35 - http://dx.doi.org/10.17190/AMF/1246137 

US-AR2 36.6358 -99.5975 GRA 2009–2012 1.08 0.62 0.43 -0.12 1.14 1.20 - http://dx.doi.org/10.17190/AMF/1246138 

US-IB2 41.8406 -88.2410 GRA 2009–2011 1.21 0.84 0.87 0.86 2.14 1.52 (Matamala et al. 2008) http://dx.doi.org/10.17190/AMF/1246066 

US-SRG 31.7894 -110.8277 GRA 2009–2014 0.78 0.51 0.69 -0.35 0.75 1.16 (Scott et al. 2015) http://dx.doi.org/10.17190/AMF/1246154 

US-Var 38.4133 -120.9507 GRA 2009–2014 0.66 0.88 0.66 0.42 1.71 1.65 (Ma et al. 2007) http://dx.doi.org/10.17190/AMF/1245984 

US-Wkg 31.7365 -109.9419 GRA 2009–2014 0.76 0.63 0.82 0.39 0.54 0.69 (Scott et al. 2010) http://dx.doi.org/10.17190/AMF/1246112 

US-ARM 36.6058 -97.4888 CRO 2009–2012 0.79 0.64 0.57 0.47 1.46 1.56 (Fischer et al. 2007) http://dx.doi.org/10.17190/AMF/1246027 

US-CRT 41.6285 -83.3471 CRO 2011–2013 0.68 0.45 0.78 0.64 3.00 4.23 (Chu et al. 2014) http://dx.doi.org/10.17190/AMF/1246156 

US-Ne1 41.1651 -96.4766 CRO 2009–2012 0.96 0.31 0.95 0.51 1.80 7.62 (Suyker et al. 2005) http://dx.doi.org/10.17190/AMF/1246084 

US-Ne2 41.1649 -96.4701 CRO 2009–2012 0.89 0.29 0.96 0.41 1.90 8.19 (Suyker et al. 2005) http://dx.doi.org/10.17190/AMF/1246085 

US-Twt 38.1087 -121.6530 CRO 2009–2014 0.87 0.53 0.43 -0.93 3.17 4.24 (Hatala et al. 2012) http://dx.doi.org/10.17190/AMF/1246140 

US-Ha1 42.5378 -72.1715 DBF 2009–2012 0.93 0.66 0.93 0.74 1.32 2.89 (Urbanski et al. 2007) http://dx.doi.org/10.17190/AMF/1246059 

US-MMS 39.3232 -86.4131 DBF 2009–2014 1.07 0.85 0.91 0.71 1.58 2.33 (Schmid et al. 2000) http://dx.doi.org/10.17190/AMF/1246080 

US-Oho 41.5545 -83.8438 DBF 2009–2013 0.87 0.77 0.92 0.83 1.63 2.37 (van Gorsel et al. 2009) http://dx.doi.org/10.17190/AMF/1246089 

US-UMB 45.5598 -84.7138 DBF 2009–2014 1.09 1.20 0.96 0.93 1.15 1.87 (Gough et al. 2008) http://dx.doi.org/10.17190/AMF/1246107 

US-Umd 45.5625 -84.6975 DBF 2009–2014 0.91 0.90 0.88 0.84 1.64 1.70 (Gough et al. 2013) http://dx.doi.org/10.17190/AMF/1246134 

US-WCr 45.8059 -90.0799 DBF 2011–2014 1.25 0.84 0.90 0.80 2.46 2.03 (Cook et al. 2004) http://dx.doi.org/10.17190/AMF/1246111 

US-Me2 44.4523 -121.5574 ENF 2009–2014 0.58 0.72 0.74 0.79 2.81 2.08 (Law et al. 2004) http://dx.doi.org/10.17190/AMF/1246076 

US-Me6 44.3233 -121.6078 ENF 2010–2014 0.56 0.95 0.51 0.56 1.53 1.26 (Law et al. 2000) http://dx.doi.org/10.17190/AMF/1246128 

US-NR1 40.0329 -105.5464 ENF 2009–2014 0.84 0.91 0.86 0.84 1.04 1.03 (Monson et al. 2002) http://dx.doi.org/10.17190/AMF/1246088 

US-Myb 38.0498 -121.7651 WET 2011–2014 1.27 0.92 0.36 -0.31 3.49 2.85 (Sturtevant et al. 2016) http://dx.doi.org/10.17190/AMF/1246139 

US-SRC 31.9083 -110.8395 OSH 2009–2014 0.97 0.99 0.32 -1.31 0.39 0.42 (Cavanaugh et al. 2011) http://dx.doi.org/10.17190/AMF/1246127 

US-Whs 31.7438 -110.0522 OSH 2009–2014 0.70 0.71 0.72 -0.28 0.45 0.56 (Scott et al. 2015) http://dx.doi.org/10.17190/AMF/1246113 

US-SRM 31.8214 -110.8661 WSA 2009–2014 0.90 0.61 0.74 -1.18 0.49 0.81 (Scott et al. 2009) http://dx.doi.org/10.17190/AMF/1246104 

US-Ton 38.4316 -120.9660 WSA 2009–2014 0.68 1.01 0.61 0.73 1.28 0.91 (Baldocchi et al. 2004) http://dx.doi.org/10.17190/AMF/1245971 
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We evaluated the seasonal and cross-site performance of GPPVPM across biomes at 

8-day and interannual scales. We classified the land cover maps into four major types: 

forest (FOR), grassland (GRA), cropland (CRO), and others (OTH) based on the 

MCD12Q1 landcover data. The evergreen needleleaf forest, evergreen broadleaf forest, 

deciduous broadleaf forest, decidous needleaf forest, and mixed forest were lumped 

together as forest. Grassland and cropland were the same classification scheme as 

MCD12Q1, while all the other land cover types, such as savannas, shrublands, wetlands, 

and sparsed vegetated area, were considered as OTH. To examine the ability of the model 

to capture the interannual variability of GPP, we compared the anomaly of annual GPP 

for GPPEC and GPPVPM. Specifically, we compared GPPVPM  and GPPMOD17 to the 

anomaly between GPPEC in each site year and average GPPEC over all the site years for 

each site. The slope, root mean square error (RMSE), and R2 of the regression models 

were used to evaluate the difference between modeled and eddy-covariance derived GPP. 

SIF is a very small amount of energy emitted by plants and has been demonstrated 

to be highly correlated with GPP (Guanter et al. 2014; Wagle et al. 2016; Zhang et al. 

2016a). In this study, we used the monthly GOME-2 SIF data (V26) during 2008–2014 

(Joiner et al. 2013). GOME-2 measurements are in the ultraviolet and visible part of the 

spectrum (240 - 790 nm) with a high spectral resolution between 0.2 and 0.5 nm and with 

the footprint size of 80×40 km2. SIF is retrieved using a principle component analysis 

method in the 734 to 758 nm spectral window which overlaps the second peak of the SIF 

emission. The retrievals are quality-filtered and aggregated into 0.5˚ grids and a monthly 

interval (Joiner et al. 2013). 
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We compared GPPVPM with the latest version of MOD17 GPP product (Running et 

al. 2004), MOD17A2H V006 (GPPMOD17) at both site and regional scales. GPPMOD17 is 

estimated at a spatial resolution of 500-m and a temporal resolution of 8-day, which 

matches the spatial and temporal resolutions of GPPVPM. MOD17 is also a LUE model 

and simulates GPP as the product of APARcanopy and light use efficiency (εg). εg is 

determined by εmax and scalars that capture environmental limitations such as vapor 

pressure deficit and air temperature. εmax values are specific for different biome types (e.g., 

forest, shrub, grass, crop) (Running et al. 2004), but the product does not account for the 

differences of εmax between C3 and C4 croplands, and εmax for croplands is substantially 

too low (Turner et al. 2006; Xin et al. 2015). 

We also compared GPPVPM with GPP simulated by CASA-GFED3 (GPPCASA). 

CASA estimates Net Primary Productivity (NPP) based on the light use efficiency 

method (Monteith 1972, 1977) and further estimates GPP with an assumption GPP = 2 * 

NPP. εmax for predicting NPP in CASA is set uniformly (0.55 g C MJ-1 PAR) for different 

biomes (Potter et al. 2012; Potter et al. 1993; Randerson et al. 1996). The CASA-GFED3 

GPP product used a calibrated εmax for the Midwestern region, which was derived from 

crop yield observations, meteorological data, and remotely sensed FPAR (Lobell et al. 

2002), and thus corresponds with much higher GPP values (roughly 45%) over the 

Midwestern US (Hilton et al. 2015). GPPCASA is used to generate prior biogenic CO2 

fluxes for the CarbonTracker system  (Peters et al. 2007) at a spatial resolution of 1°×1.25° 

every 3 hour. We resampled the data into 1°×1° and aggregated them into monthly values 

in this study. 
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The GPP estimates by the SiBCASA-GFED4 model (GPPSiBCASA) (van der Velde et 

al. 2014) were also compared with regional GPPVPM. GPPSiBCASA is used to generate prior 

biogenic CO2 fluxes in the Carbon Tracker Europe system (van der Laan-Luijkx et al. 

2017). SiBCASA combines the biophysical and GPP components from the Simple 

Biosphere model (version 2.5) with the heterotrophic respiration (RH) from CASA model, 

and calculates the exchange of carbon, energy, and water at a temporal resolution of 10-

min and at a spatial resolution of 1°×1° (Schaefer et al. 2008; van der Velde et al. 2014). 

GPP is calculated for both C3 and C4 plants by implementing a modified version of the 

C3 enzyme kinetic model (Farquhar et al. 1980) and the C4 photosynthesis model (Collatz 

et al. 1992). The C4 distribution map used in SiBCASA is a static map with the mean C4 

fraction in global 1°×1° grids (Still et al. 2003). The aggregated monthly GPPSiBCASA data 

is used for the comparison. 

The impact of climate extremes on the GPP and SIF over the CONUS was evaluated 

using the four GPP datasets and GOME-2 SIF data. The seasonal cycle and anomaly of 

GPPVPM, GPPMOD17, GPPSiBCASA, GPPCASA and SIF in the year 2012 were compared to 

that in the baseline year (the average of the year 2008, 2009, 2010, 2013 and 2014). The 

uncertainty range of the anomaly was calculated as the standard deviation (SD) of the 

anomaly between 2012 and selected different baselines. We randomly chose at least three 

years from the year 2008, 2009, 2010, 2013 and 2014 to calculate the baseline, so there 

are 16 options (𝐶5
3 +  𝐶5

4 + 𝐶5
5). As GPPSiBCASA, GPPCASA and SIF datasets have a spatial 

resolution of 1.0°×1.0°, both GPPVPM and GPPMOD17 datasets (500-m spatial resolution) 

were aggregated to 1.0°×1.0°. The SIF data (0.5°×0.5°) was also aggregated to 1.0°×1.0°. 
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We then used the area-weighted method to calculate annual total GPP (Pg C year-1) and 

average SIF over CONUS. 

 3.3 Results 

 3.3.1 Seasonal dynamics and interannual variation of GPP at flux tower sites 

GPPVPM agreed reasonably well with the seasonal dynamics and peak values of GPPEC at 

most sites (Fig. 3.2). The coefficients of determination (R2) varied from 0.32 (US-SRC) 

site to 0.96 (US-Ne2 and US-UMB). GPPVPM showed very high accuracy for the cropland 

sites relative to GPPMOD17 (see Fig. 3.2 and Table 3.1). At the US-Ne1 and US-Ne2 maize 

sites, the regression between GPPVPM and GPPEC show a high R2 value (> 0.95) and a low 

RMSE value (< 2.0 g C m-2 day-1), while the regression between GPPMOD17 and GPPEC 

show a moderate R2 value (~0.50) and a large RMSE value (7.0 g C m-2 day-1) (Table 

3.1).  

At the 8-day scale, GPPVPM agrees better with GPPEC than does GPPMOD17, and 

GPPVPM effectively captures the seasonal dynamics of GPP for all the four biomes (Fig. 

3.3a, b). For croplands, GPPMOD17 shows significant underestimation with a slope of 0.37 

while GPPVPM presents only slight underestimation with a slope of 0.97. The 

improvement in GPPVPM is most prominent in these C4 cropland sites, such as US-Ne1 

and US-Ne2 (Fig. 3.2 and Table 3.1), with peak value of GPPVPM and GPPEC in the 

growing season that are larger than 20 g C m-2 day-1, while that of GPPMOD17 is less than 

10 g C m-2 day-1. Across all 25 sites, GPPVPM explains about 84% of the seasonal 

dynamics of GPPEC with RMSE of 1.7 g C m2 day-1, while GPPMOD17 only explains only 

about 55% with a RMSE value of 2.6 g C m-2 day-1.   



5 

 

 

Figure 3.8 Seasonal dynamics and interannual variations of the tower-based GPP 

(GPPEC), GPP simulated by VPM (GPPVPM), and GPP simulated by MOD17 

(GPPMOD17) at 25 flux sites at 8-day intervals (please note the different y-axis scales). 

The interannual variation of GPPVPM was best for croplands, followed by forest, 

grasslands, and other biomes (Fig. 3.3c). In addition, the anomaly of annual GPPVPM in 

croplands, grasslands, and forest biomes has much higher consistency with GPPEC than 

does GPPMOD17 (Fig. 3.3c, d). In other biomes (5 sites), both GPPVPM and GPPMOD17 had 

relatively low accuracy.   
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Figure 3.9 Comparison of GPPEC, GPPVPM, and GPPMOD17 across eddy covariance 

flux tower sites (forest, grassland, cropland, and others) during 2010 to 2014: (a) 8-

day GPPEC and GPPVPM, (b) 8-day GPPEC and GPPMOD17, (c) anomaly of annual 

GPPEC and GPPVPM, and (d) anomaly of annual GPPEC and GPPMOD17. FOR: forests, 

CRO: croplands, GRA: grasslands, OTH: other types. When all the sites were 

combined, the relationship between GPPVPM and GPPEC was y = 0.92 x (R2 = 0.84, 

RMSE = 1.7 g C m-2 d-1) at the 8-day time scale, while the relationship between 

GPPMOD17 and GPPEC was y = 0.68 x (R2 = 0.55, RMSE = 2.6 g C m-2 day-1 at the 8-

day time scale. At the inter-annual scale, the relationship between the annual 

anomaly of GPPVPM and GPPEC is y = 0.73 x (R2 = 0.48) while the relationship 

between the annual anomaly of GPPMOD17 and GPPEC was y = 0.45 x (R2 = 0.37). 
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 3.3.2 Spatial-temporal consistency between model-based GPP and SIF over CONUS in 

the baseline years and drought year 2012 

We compared the spatial distribution of maximum monthly mean GPP (g C m-2 day-1) 

from the four GPP products and annual maximum monthly mean SIF in the baseline year 

and drought year 2012 at 1°×1° resolution (Fig.3.4a–j). The maximum monthly mean 

GPP in 2008, 2009, 2010, 2013, and 2014 were used as baseline year. The three GPP 

products (GPPVPM, GPPCASA and GPPSiBCASA) and SIF show the peak photosynthesis in 

the Mid-western corn-belt region (Fig. 3.4a-j), which was consistent with the results 

reported by Hilton et al. (2017). GPPMOD17 did not have such a spatial pattern for 

maximum monthly GPP because it did not include higher photosynthetic capacity for C4 

vegetation as did the other three models (VPM, CASA and SiBCASA). Compared to the 

baseline years, most of gridcells had lower GPP and SIF values during the drought in 

2012. The correlation analysis (Fig. 3.5a–d; Fig. 3.5e–h) showed that the maximum 

monthly GPPVPM and SIF have the strongest linear relationship, followed by 

SIF/GPPSiBCASA, SIF/GPPCASA, and SIF/GPPMOD17. 
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Figure 3.10 Spatial distribution of maximum monthly mean GPP (a–d; f–i) from 

GPP models (VPM, MOD17, SiB-CASA and CASA) and maximum monthly mean 

SIF (e, j) from GOME-2 (e, j) in the baseline years (the average of 2010, 2011, 2013, 

2014) and drought year 2012,  and spatial distributions of annual GPP (k–n; p–s) 

from GPP models and annual mean SIF from GOME-2 (o, t) in the baseline years 

and drought year 2012. 

For annual total GPP, all four GPP products showed very similar spatial patterns 

with SIF, with relatively high annual GPP (> 1500 g C m-2 year-1) in the forested 

Southeastern US and low annual GPP in the western regions where grasslands and deserts 

are dominant (Fig. 3.4k–t). In 2012, GPPVPM had a decrease in the Midwestern corn-belt 

region and Great Plains, and an increase in the eastern temperate forest region, which is 

consistent with the spatial patterns of SIF. Annual GPPMOD17 had an obvious decrease in 

the Midwestern corn-belt area but a slight increase in the eastern forest area in 2012. 

Annual GPPSiBCASA had no significant differences between the baseline and drought year 
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2012. Annual GPPCASA had large increases in both the Midwestern corn-belt region and 

temperate forest area. The correlation analysis (Fig. 3.5i–l) showed that annual GPPVPM 

had a stronger linear relationship with SIF (R2 = 0.94) in the baseline years than 

SIF/GPPSiBCASA (R2 = 0.76), SIF/GPPCASA (R2 = 0.75), and SIF/GPPMOD17 (R
2 = 0.70). 

We found similar results for the drought year 2012 (Fig. 3.5m–p), which suggested that 

the models performed similarly during baseline and drought years. 

 

Figure 3.11 Relationships between the maximum monthly mean GPP (a–d; e–h) 

from GPP models (VPM, MOD17, SiBCASA and CASA) and monthly mean SIF 

from GOME-2 for each pixel across CONUS during the baseline years (the average 
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of 2008, 2009, 2010, 2013 and 2014) and drought year 2012, and relationship between 

total annual GPP (i–l; m–p) from GPP models (VPM, MOD17, SiBCASA, and 

CASA) and mean annual SIF from GOME-2 in the baseline year (the average of 

2008, 2009, 2010,  2013 and 2014) and drought year 2012 (all of the relationships are 

significant with p<0.001). 

GPP estimates from all models had a high correlation with SIF (>0.9) in the wetter 

eastern region but a low correlation in the dry western region, partly due to the very low 

SIF signal and relatively large signal-to-noise ratio (Fig. 3.6a–h). The percentages of the 

total number of gridcells with a Pearson correlation coefficient larger than 0.9 in the 

baseline year was ~65% for SIF/GPPVPM, ~55% for SIF/GPPCASA, ~50% for 

SIF/GPPMOD17, and ~47% for SIF/GPPSiBCASA  (Fig. 3.6i–l). The four GPP models had no 

obvious differences in simulating the seasonal dynamics of GPP between the baseline 

year and drought year 2012 (Fig. 3.6).  

 

Figure 3.12 Spatial distribution of Pearson correlation coefficient between monthly 

SIF and GPP products from VPM, MOD17, SiBCASA, and CASA for baseline year 

(the average of 2008, 2009, 2010, 2013, and 2014) and drought year 2012, and the 

corresponding frequency distribution (black and red bars) and accumulative 
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frequency (black and red dashed lines) of the Pearson correlation coefficient for the 

four models in the baseline years and 2012. 

The histograms of the slope values (GPP = a × SIF + b) among these four GPP 

models differed substantially. The slope values for the SIF/GPPVPM were concentrated 

between 4 and 7 g C mW-1 nm-1 sr-1 (~53% of all gridcells), while that for SIF/GPPMOD17 

were between 2 to 5 g C mW-1 nm-1 sr-1 (~60% of all gridcells). The slope values for the 

SIF/GPPCASA and SIF/GPPSiBCASA were more evenly distributed than that of SIF/GPPVPM. 

Sun et al. (2017) found the GPP-SIF relationship is consistent across different vegetation 

types when comparing SIF with GPPEC, but it is more divergent when comparing SIF 

with modelled GPP because of the systematic GPP biases. The GPP-SIF slope for the 

four GPP products in this study is also divergent over CONUS, but the VPM GPP-SIF 

slope is more convergent than the other three models (Fig. 3.7). 

 

Figure 3.13 Spatial distribution of the regression slope between monthly SIF and 

GPP products from VPM, MOD17, SiBCASA, and CASA for the baseline year (the 

average of 2008, 2009, 2010,  2013, and 2014) and drought year 2012, and the 
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corresponding frequency distribution (black and red bars) and accumulative 

frequency (black and red dashed lines) of the Pearson correlation coefficient for the 

four models in the baseline years and 2012. 

 3.3.3 Spatial-temporal consistency of GPP and SIF anomalies over CONUS in 2012 

To evaluate the impacts of spring warming and summer drought on GPP in 2012, we 

compared the anomalies of GPP from GPPVPM, GPPMOD17, GPPSiBCASA, and GPPCASA to 

the anomalies of SIF in the spring, summer, and the entire year at 1°×1° (latitude and 

longitude) resolution (Fig. 3.8). The anomalies of GPP and SIF were calculated as the 

differences between year 2012 and the baseline year. The baseline year was calculated as 

the average of 2008, 2009, 2010, 2013, and 2014. Geographically, the anomaly of all the 

four GPP products and SIF showed very interesting spatial patterns at the seasonal and 

annual scales (Fig. 3.8).  
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Figure 3.14 Spatial-temporal anomalies of GPPVPM , GPPMOD17, GPPSiBCASA, 

GPPCASA, and SIF during spring, summer, and annually across CONUS in 2012 

relative to the baseline (2008, 2009, 2010, 2013 and 2014). Seasonal cycle and 

anomaly of total monthly GPPVPM, GPPMOD17, GPPSiBCASA, GPPCASA and SIF in 2012 

relative to the baseline. Numbers shown in the last row of graphs are the anomaly 

of total GPP in spring (March–May), summer (June–August), fall (September–

November) and the whole year (January to December). 

In the spring season, the middle and eastern CONUS experienced an increase in GPP 

anomaly while western CONUS experienced a decrease, which was consistent with the 

spatial pattern of SIF anomaly (Fig. 3.8a–e). The magnitudes and spatial extent of GPP 

anomaly vary among the four GPP models. For GPPVPM and GPPMOD17, the large 

increases in GPP (larger than 100 g C m-2 season-1) occurred mostly in the Southern Great 

Plains and part of the Midwestern corn-belt region. For GPPCASA, large increases in GPP 

occurred mostly in the Midwestern and Southeast regions. The correlation analyses 
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between GPP products and SIF (Fig. 3.9a–d) showed that GPPVPM and SIF had the 

strongest linear relationship (R2 = 0.67), followed by SIF/GPPMOD17 (R2 = 0.58). 

SIF/GPPCASA (R2 = 0.56), and SIF/GPPSiBCASA (R
2 = 0.48).  

Table 3.3 The anomaly of total GPP and the uncertainty range of the anomaly 

between 2012 and the baseline (the average of 2008, 2009, 2010, 2013 and 2014) in 

spring (March–May), summer (June–August), fall (September–November) and the 

whole year. The uncertainty range was calculated as the standard deviation (SD) 

of the anomaly between 2012 and different baselines. We randomly chose at least 

three years from the year 2008, 2009, 2010, 2013 and 2014 to calculate the baseline. 

Anomaly 

of GPP 

(Pg C) 

VPM MODIS CASA SiBCASA 

Anomaly of 

SIF (mW m-2 

nm-1 sr-1) 

Spring 0.41 ± 0.04 0.30 ± 0.03 0.48 ± 0.05 0.25 ± 0.03 0.31 ± 0.05 

Summer -0.27 ± 0.05 -0.42 ± 0.02 -0.26 ± 0.06 -0.21 ± 0.04 -0.28 ± 0.05 

Annual 0.11 ± 0.08 -0.12 ± 0.02 0.18 ± 0.10 0.01 ± 0.08 -0.12 ± 0.10 

In the summer season, most regions in CONUS experienced decreased GPP and SIF 

associated with drought (Fig. 3.8f–j). The Great Plains and Midwestern corn-belt regions 

experienced the largest reductions in GPP (larger than 150 g C m-2 season-1). The spatial 

extents of decreased GPP in GPPVPM and GPPMOD17 were greater than those in GPPSiBCASA 

and GPPCASA. GPPVPM, GPPCASA, and GPPSiBCASA displayed strong increases in the 

southeast regions, which was consistent with the spatial pattern of SIF anomaly. Overall, 

GPPVPM agreed best with SIF (R2 = 0.71), followed by SIF/GPPCASA (R2 = 0.50), 

SIF/GPPMOD17 and R2 of 0.45), and SIF/GPPSiBCASA (R2 = 0.19) (Fig. 3.9e–h).  
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Figure 3.15 Correlation between the anomaly of seasonal/annual GPP from GPP 

models (VPM, MOD17, SiBCASA, and CASA) and the anomaly of seasonal/annual 

mean SIF from GOME-2 across CONUS during the baseline years (the average of 

2008, 2009, 2010, 2013 and 2014) and drought year 2012 (all of the correlations are 

significant with p<0.001) 

For the entire year, annual GPPVPM, GPPMOD17, and GPPSiBCASA mainly decreased in 

the western US and corn-belt regions, and annual GPP increased mainly in the eastern 

and southern forest area, which was consistent with the spatial pattern of SIF (Fig. 3.8k–

o). Only GPPCASA reported strong increases in GPP in the corn-belt region. The 

correlation analysis showed that none of the four GPP products agreed well with the 

spatial pattern of annual mean SIF anomaly at the annual scale, with R2 values varying 

from 0.14 to 0.27 (Fig. 3.9i–l). 

When aggregated over the entire CONUS by season, the four GPP products and SIF 

clearly showed an increase in GPP in the spring and a reduction in the summer, indicating 
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the warm spring and droughty summer had opposite effects on GPP (Fig. 3.8 and Table 

3.2). The spring warming led to an increase in GPP by 0.25-0.48 Pg C season-1, where 

GPPCASA showed the largest increase and GPPSiBCASA showed the least. During the 

summer, the four GPP products showed a decrease in GPP by 0.21-0.42 Pg C season-1, 

where GPPCASA decreased the most and GPPSiBCASA decreased the least. The annual total 

GPPVPM and GPPCASA had an increase of 0.11 and 0.18 Pg C year-1, while the annual total 

GPPMOD17 and mean SIF had a decrease of 0.12 Pg C year-1 and 0.12 mW m-2 nm-1 sr-

1. The annual total GPPSiBCASA remained neutral in 2012. 

 3.3.4 Impacts of spring warming and summer drought on GPP by biomes in 2012 

To quantify the impact of spring warming and summer drought on GPP across biomes, 

we calculated total GPP from the four models for the four main biomes. In the spring of 

2012, all four models showed increased GPP for the four biomes (Fig. 3.10 and Table 

3.3), and the non-forest experienced a stronger increase in GPP than forest. In the four 

models, CASA showed a larger increase in GPP in the spring than other three models in 

the four biomes, while SiBCASA showed the lowest increase in GPP over most biomes. 

For the drought summer, all four models showed strong decreases in GPP, and the 

grassland and cropland experienced the strongest decrease, followed by other biomes. 

Among the four models, MOD17 showed the largest decrease in GPP in the summer, 

while SiBCASA showed the least decrease. For the entire year, grassland and cropland 

experienced a decrease in GPP, while forest and other biomes experienced an increase or 

no change. 
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Figure 3.16 Seasonal cycle and anomaly of total monthly GPPVPM and GPPMOD17 in 

(a) forest, (b) grassland, (c) cropland and (d) others. Numbers shown in the bottom 

panel in each row are the anomalies of total GPP for each biome in spring (March–

May), summer (June–August), fall (September–November) and the whole year.  

 

Table 4.3 The anomaly of total GPP estimates from VPM/MOD17 for different 

biomes between 2012 and the baseline (the average of 2008, 2009, 2010, 2013 and 

2014) in spring (March–May), summer (June–August), fall (September–

November) and the whole year. 
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Anomaly of GPP (Pg C) Spring Summer Fall Annual 

VPM 

Forest 0.07 -0.01 0.00 0.07 

Grassland 0.10 -0.15 -0.04 -0.07 

Cropland 0.09 -0.07 -0.05 -0.02 

Others 0.13 -0.04 0.00 0.11 

MOD17 

Forest 0.04 -0.05 -0.01 0.00 

Grassland 0.07 -0.14 -0.04 -0.10 

Cropland 0.08 -0.15 -0.04 -0.10 

Others 0.08 -0.11 -0.01 0.00 

SiBCASA 

Forest 0.04 -0.01 -0.01 0.03 

Grassland 0.06 -0.06 -0.04 -0.03 

Cropland 0.08 -0.10 -0.04 -0.05 

Others 0.07 -0.04 -0.02 0.05 

CASA 

Forest 0.07 0.00 -0.01 0.08 

Grassland 0.11 -0.15 -0.04 -0.07 

Cropland 0.13 -0.06 -0.04 0.03 

Others 0.15 -0.04 -0.01 0.13 

 

 3.4 Discussion 

 3.4.1 Improving GPP estimates of C3 and C4 croplands 

Accurate estimation of cropland GPP is important for food production and security. The 

MOD17 GPP data products have been widely used for crop studies (Guan et al. 2016; 

Xin et al. 2015). However, several studies have reported that the MOD17 data product 

substantially underestimates GPP in croplands. One reason is that εmax for croplands in 

the MOD17 model is too low (~1.04 g C MJ-1) (Turner et al. 2006; Wagle et al. 2016; 

Xin et al. 2015). Site-level studies have indicated that the typical εmax for C3 crops range 

from 1.43 to 1.96 g C MJ-1 (Chen et al. 2011; Kalfas et al. 2011; Yuan et al. 2015), and 

εmax for C4 crops range from 2.25 to 4.06 g C MJ-1 (Xin et al. 2015; Yuan et al. 2015). 

Several model comparison studies have also showed that both process-based GPP models 
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and LUE models have poor performance when estimating GPP in croplands (Schaefer et 

al. 2012; Verma et al. 2014). Recently, Guanter et al. (2014) used GOME-2 SIF to 

estimate GPP in croplands using the linear relationship between SIF and tower-based 

GPP at flux tower sites, and they found these SIF-based GPP estimates in croplands were 

50-60% higher than GPP estimates from the ecosystem models over the US Corn Belt. In 

this study, our εmax values for C3 croplands (1.80 g C MJ-1) and C4 croplands (2.7 g C MJ-

1) were based on previous site-level studies (Li et al. 2013; Xin et al. 2015). The improved 

ability of VPM to capture the seasonal dynamics and interannual variability of croplands 

was partly attributed to more appropriate choices of εmax values.  

Another reason for the large error in estimating cropland GPP by the MOD17 and 

other  models can be attributed to the fact that we have very limited knowledge on the 

spatial distribution of the C3 and C4 croplands within individual 500-m MODIS pixels 

and their temporal dynamics over years (Reeves et al. 2005; Still et al. 2003; Wang et al. 

2013). However, in this study we used the fine-resolution, annual CDL cropland maps. 

The results demonstrated the potential of annual C3/C4 cropland maps at high spatial 

resolution to improve cropland GPP estimates from the individual pixel to country-wide 

scales. Although there are several existing global C3/C4 maps, they are relatively coarse 

in spatial resolution and produced only for a specific year. An early study developed a 

static C3/C4 fraction map with a spatial resolution of 1°×1° by defining the favorable 

climate zones for C3/C4 and combing the global spatial distribution of crop fractions and 

national harvest area data for major crop types (Still et al. 2003). Another study developed 

a global distribution map of croplands and pastures at a 5 min by 5 min (~10 km) spatial 

resolution in 2000 by combining agricultural inventory data and satellite-derived land 
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cover data (Ramankutty et al. 2008). Recently, several studies made very limited progress 

in mapping C3 and C4 plants (both croplands and grasses) when using remote sensing data 

and simple algorithms (Foody and Dash 2007; Wang et al. 2013). The development of 

CDL datasets include the use of satellite-based imagery, supervised image classification 

methodology, and numerous high-quality ground truth data collected to help determine 

the multi-spectral rules from time-series imagery that best predicted the land cover 

category. For grasslands, it was reported that there was a strong linear relationship 

between the percentage of C3 grass and the season-long cumulative vegetation index 

(Foody and Dash 2007). These phenological features and time-series MODIS data were 

used to classify C3 and C4 grasslands in the Great Plains (Wang et al. 2013). Given the 

importance of C3 and C4 plant function types in estimating GPP, it is important for the 

remote sensing community to increase its effort in mapping C3 and C4 croplands and 

grasslands at site, regional, and global scales. 

 3.4.2 The timing and location of climate extremes and their impacts on terrestrial 

ecosystems 

Climate extremes such as heatwaves and droughts can reduce vegetative growth, trigger 

large-scale tree mortality, and turn terrestrial ecosystems from carbon sinks into sources 

(Ciais et al. 2005; Yuan et al. 2016a). The warm spring and hot and dry summer in 2012 

over CONUS offered a unique opportunity to investigate several major questions on the 

impacts of climate extremes on terrestrial carbon cycle at the regional and continental 

scales (He et al. 2018c; Sippel et al. 2016; Wolf et al. 2016). Many studies have reported 

that terrestrial ecosystems in CONUS have served as carbon sinks in recent decades 

(Hurtt et al. 2002; Pacala et al. 2001), ranging from 0.30 to 0.58 Pg C per year during the 
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1980s and 1990s, which accounts for 30% of fossil-fuel emissions from the USA. Wolf 

et al. (2016) analyzed MOD17 GPP data and NEP data from CTE2014 during 2001–2012 

and reported that the increase of NEP in the spring compensated for the loss of NEP in 

the summer, which resulted in a small carbon sink (0.11 Pg C year-1 in 2012) for CONUS. 

This result suggests the importance of assessing the impacts of climate extremes, which 

depend on timing, duration, and location, on terrestrial carbon budgets at the annual and 

continental scales (Sippel et al. 2017; von Buttlar et al. 2017).  

Wolf et al. (2016) analyzed MOD17 GPP data in 2001-2012 and reported that GPP 

loss in summer in 2012 over CONUS was twice as large as the increase in GPP in the 

spring of 2012, resulting in a large annual loss of GPP (-0.38 Pg C). Though we used a 

different baseline, our analysis of MOD17 GPP data in 2008–2014 also shows that the 

decrease in GPP in the summer of 2012 was substantially larger than the increase in GPP 

in the spring of 2012, resulting in large annual loss of GPP (-0.12 Pg C) (Fig. 8). However, 

the results from GPPVPM, GPPSiBCASA, and GPPCASA showed that the GPP increase in the 

spring is close or slightly larger than GPP loss in the summer of 2012, the annual GPP 

anomaly ranging from 0.01 (GPPSiBCASA), to 0.11 Pg C (GPPVPM), to 0.18 Pg C (GPPCASA), 

while the GOME-2 SIF anomaly showed a decrease in 2012 (Fig. 3.7). The differences 

in modeling GPP responses to spring warming and summer drought among these four 

models are likely to affect our understanding of the responses of ecosystem respiration 

(ER) to spring warming and summer drought. As NEP is the sum of GPP (carbon gains) 

and ER (carbon losses), the large decrease in GPP (e.g., -0.38 Pg C year-1 in 2012, 

GPPMOD17) from the previous study (Wolf et al. 2016) implied a slightly larger decrease 

in ER, which could then result in a small carbon sink (0.11 Pg C year-1 in 2012). In 
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addition, since CASA-GFED3 and SiBCASA-GFED4 are the biosphere models used by 

CarbonTracker (CT2014) and CarbonTracker Europe (CTE2014) to generate prior 

biosphere carbon fluxes, the spatial-temporal differences in GPP distribution, magnitude, 

and anomaly from these two models are likely to affect CarbonTracker and 

CarbonTracker Europe outputs. Previous studies have reported that atmospheric CO2 

inversions are sensitive to the land surface prior fluxes, especially at fine scales and the 

areas with sparse or no available observations (Peylin et al. 2013; Zhu et al. 2014). 

Therefore, methods to incorporate more reliable carbon flux estimates from atmospheric 

CO2 inversions is critically needed for us to better understand the terrestrial carbon cycle. 

 3.4.3 Differential responses to climate extremes across biomes 

Numerous studies have reported the negative impacts of high temperature and droughts 

on vegetation productivity (Ciais et al. 2005; Welp et al. 2007; Wolf et al. 2016; Yuan et 

al. 2016a). Short-term drought or heatwaves lead to stomatal closure, membrane damage, 

and disruption of photosynthetic enzyme activities, all of which reduce GPP. If plants 

experience continuous drought, they may respond to drought stress by structural or 

physiological adjustments such as decreased leaf area index, changes in the root-shoot 

ratio, or changes in leaf angle (Frank et al. 2015). But different species have adopted 

different strategies to deal with water stress. These strategies can be broadly classified as 

dehydration tolerance or dehydration avoidance (Bacelar et al. 2012). Plants with a 

dehydration tolerance strategy usually grow rapidly when water is available but will 

senesce and/or become dormant during drought. Plants with a dehydration avoidance 

strategy tend to grow more slowly and maintain greenness during drought by increasing 

water extraction from the soils and reducing water loss from transpiration. Our study 
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showed that the impacts of spring warming and summer drought on the change in GPP 

varied across biomes (Fig. 3.10). This change was not only due to the characteristics 

(timing, magnitude) of the heatwaves and drought at specific regions (Fig. 3.11), but also 

species-specific plant drought responses and strategies (von Buttlar et al. 2017; Wolf et 

al. 2014). Our results show that grasslands experienced the largest reduction in GPP while 

forests had the largest increase. This difference may be explained by the observation that 

grasslands are drought sensitive, and more susceptible to heatwaves and droughts as they 

have less accessibility to soil water (shallow roots) and higher turn-over rates (Frank et 

al. 2015). Trees usually have deeper roots and better access to soil water, thus forests are 

considered to be less affected by heatwaves and drought (Frank et al. 2015; van der Molen 

et al. 2011; Zhang et al. 2016b).  Grasslands occur in the most severe drought-affected 

areas, while most forests are in the northwestern and eastern part of CONUS, which were 

either not affected by the 2012 drought or were classified as abnormally dry (D0) by the 

U.S. drought monitor (Fig. 11). Cropland systems are different from natural systems by 

the frequent human intervention (for example, irrigation or changing planting date). 

Consequently, the impacts of climate extremes on croplands are expected to be highly 

modulated by human management (Lobell et al. 2012; van der Velde et al. 2010). 

However, cropland over the Corn Belt, the most important crop area in the US, is mainly 

rainfed (Leng et al. 2016), leading to a similar GPP response to drought for cropland and 

grasslands. 
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Figure 3.17 Drought-affected areas over CONUS on August 14, 2012 

 3.4.4 Uncertainties and remaining issues 

The uncertainty of ecosystem models remains a challenge for carbon cycling research. 

Extreme climate events were found to dominate the global interannual variability of GPP 

(Zscheischler et al. 2014). At present, most ecological models do not accurately represent 

the responses of major ecosystem processes to climate extremes and do not accurately 

track the interannual variability of GPP (Reichstein et al. 2013). For example, previous 

studies indicated that improving GPP estimates for most models requires better 

representation of water stress effects on photosynthesis (Schaefer et al. 2012; Verma et 

al. 2014; Yuan et al. 2014). In this study, VPM, MOD17, and CASA are all light use 

efficiency models, but use different water regulation scalars. VPM uses a water-related 
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vegetation index (LSWI) as the water constraint, MOD17 uses vapor pressure deficit 

(VPD), and CASA uses the evapotranspiration supply/demand ratio (actual 

evapotranspiration/potential evapotranspiration). LSWI is found to be a good indicator of 

soil moisture when taking all the biomes into consideration (Zhang et al. 2015). However, 

it may not work well for forested areas because of the lower spectral sensitivity to water 

stress (Sims et al. 2014). VPD represents the impacts of atmospheric dryness on 

vegetation photosynthesis because stomatal conductance changes with VPD. However, 

soil moisture also plays an important role in regulating GPP by affecting leaf cell turgor 

pressure or stomatal conductance, thereby directly affecting photosynthesis (Hashimoto 

et al. 2013; Leuning et al. 2005). The evapotranspiration ratio requires well simulated 

hydrologic fluxes in soils where additional information (e.g. soil texture, soil/rooting 

depth) is required. This information is usually not easy to collect and comes with 

uncertainties. Therefore, more effort is needed to quantify the model uncertainties and 

improve model structure. 

Since SIF can be directly observed from space, has a very good relationship with 

GPP (Guanter et al. 2014; Wagle et al. 2016; Zhang et al. 2016a), and is a good indicator 

of agricultural drought (Sun et al. 2015), we used SIF as a reference to which we 

compared the impacts of spring warming and summer droughts on vegetation 

photosynthesis. However, we acknowledge that GOME-2 SIF has some uncertainties, 

especially in the western part of CONUS (Fig. 3.6) due to the relatively large signal-to-

noise ratio (Zhang et al. 2016a). SIF retrievals from recently launched satellites (OCO-2, 

Sentinel-5 Precursor, and FLEX-Fluorescence Explorer) with higher spatial resolutions 
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and observations tailored for SIF may improve our understanding of the impacts of 

climate extremes on vegetation. 

In this study, we only considered the impacts of climates extremes on terrestrial 

ecosystems within a year. However, droughts may affect terrestrial ecosystems across 

months or even years, depending upon plant functional types (Frank et al. 2015; von 

Buttlar et al. 2017). Extreme events could cause plant functional loss, changes in the 

community structure of ecosystems, increased wildfires, and pest and pathogen outbreaks, 

all which may necessitate a long recovery period (van der Molen et al. 2011). Further, 

species’ response to climate extremes vary widely, and some impacts could persist long 

after extreme events (Rammig et al. 2014). Analysis of the responses of terrestrial 

ecosystems to climate extremes should be conducted over the next few years. 

 3.5 Conclusion 

The spring warming and summer drought of 2012 across CONUS had substantial impacts 

on the terrestrial carbon cycle and offered a unique opportunity to investigate the 

responses of photosynthesis (GPP) and respiration processes at large scales. We presented 

an improved VPM model that incorporates C3 and C4 croplands and can better capture 

the seasonal dynamics and interannual variation of GPP than the MOD17 product when 

these models are compared to GPPEC data from eddy covariance flux tower sites. Spatial-

temporal comparisons among GOME-2 SIF, GPPMOD17, and GPPVPM products during 

2008–2014 showed strong consistency between GOME-2 SIF and GPPVPM data products. 

Anomaly analyses of (1) annual GPP from three other models (VPM, SiBCASA, and 

CASA) and (2) GOME-2 SIF data between the baseline years (2008, 2009, 2010, 2013, 

2014) and drought year 2012 suggested that increased GPP during the warm spring 
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compensated for decreased GPP during the dry and hot summer, resulting in close to net 

neutral changes in annual GPP. The results from this study clearly highlight the 

importance of assessing the impacts of co-occurring climate extremes at seasonal and 

annual scales over large spatial domains. Our results demonstrate the need to further 

improve GPP models, which could increase the accuracy and reduce uncertainties in GPP 

estimates of terrestrial ecosystems.  
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Chapter 4: Spatial-temporal dynamics of maize and soybean planted 

area, harvested area, gross primary production, and grain production 

in the Contiguous United States during 2008-2018 

 Abstract 

The United States of America ranked first in maize export and second in soybean export 

among the countries in the world. Accurate and timely data and information on maize and 

soybean production in the Contiguous United States (CONUS) are important for food 

security at the regional and global scales. There is a need to better understand the spatial-

temporal dynamics of maize and soybean production in the CONUS under changing 

climate, land use, and market. In this study, we evaluate the interannual dynamics of 

maize and soybean planted area and harvested area in the CONUS during 2008-2018. We 

find the increases of maize and soybean planted areas in mid-2010s, driven by markets 

and international trade. The results also show that severe summer drought in 2012 had 

little impact on soybean planted and harvested areas and maize planted area, but it 

substantially reduced maize harvested area and grain production. We use the Vegetation 

Photosynthesis Model (VPM), the Crop Data Layer (CDL), climate, and image data to 

estimate 8-day gross primary production (GPP) of maize and soybean in the CONUS 

during 2008-2018 (GPPVPM). Annual GPPVPM (GPPVPM_Year) had strong linear 

relationships with maize and soybean grain production from the agricultural statistic data 

at the county scale. The Harvest Index, defined as the ratio between grain production and 

GPPVPM (HIVPM_GPP), ranged from 0.25 (2012) to 0.36 for maize and from 0.13 to 0.15 

for soybean. The linear regression models between grain production and cumulative 

GPPVPM (GPPVPM_acc) over time at 8-day resolution show that by the end of July, 
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GPPVPM_acc accounted for ~90% of variance in maize and soybean grain production 

during 2008-2018 at the county scale, which was approximately two months before 

farmers started to harvest maize and soybean. Our findings suggest that the VPM and 

GPPVPM data product are useful tools and data for farmers, decision makers, stakeholders 

and the public.  

 4.1 Introduction 

Crop production and food security is one of fundamental challenges in our society due to 

the rising global population, dietary change, and increasing biofuel production that uses 

crops as feedstock (Ray et al. 2013). Maize (Zea maize, L) and soybean (Glycine max) 

are two of the major sources of caloric energy for human and are critical for world food 

supply. The United States of America (USA) is the largest maize and soybean producer 

in the world (Meade et al. 2016) and ranked first in maize export and second in soybean 

export in the world. Inter-annual variation of maize and soybean area and grain 

production in the USA affect the world grain trade market (Gardiner 2016). Therefore, 

accurate and timely information and knowledge on planted area, harvested area, grain 

production and grain yield of maize and soybean in the USA is crucial 

for agriculture, food security, and international trade (Iizumi and Ramankutty 2015; 

Tilman et al. 2011).  

Crop production, the amount of specific crop produced in one calendar year in a 

region, is the product of crop harvested area and crop yield. For crop production 

estimation, it is essential to have information of both crop area and crop yield. The 

National Agricultural Statistics Service (NASS) of the United States Department of 

Agriculture (USDA) provide annual crop statistical reports for crop planted area, 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/food-security
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/trade-policy
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harvested area, grain yield, and grain production in a year at various administration levels 

(e.g., national, state and county). The data collection through sample-based agricultural 

surveys is not only time consuming and costly but also has long time lags and data gaps 

(Doraiswamy et al. 2003). Satellite-based remote sensing has been used to monitor 

cropping area, grain yield, and grain production since the early 1970s (Atzberger 2013; 

Fritz et al. 2019; Lobell 2013). Notable progress has been made in satellite-based 

mapping of cropland areas (planted area and/or harvested areas) (Cai et al. 2018; Massey 

et al. 2017; Wang et al. 2019a; Wardlow and Egbert 2008; Zhong et al. 2014) at various 

spatial scales. A number of studies reported annual maps of maize and soybean area for 

a few states or counties in the corn-belt region (Cai et al. 2018; Wang et al. 2019a; 

Wardlow and Egbert 2008; Zhong et al. 2014). A few studies generated annual maps of 

croplands over the contiguous United States (CONUS) with a spatial resolution of 250-

m (Massey et al. 2017). The overall accuracy of those crop maps ranged from 60 to 96% 

(Cai et al. 2018; Massey et al. 2017; Wang et al. 2019a; Wardlow and Egbert 2008; Zhong 

et al. 2014). The USDA/NASS also generated the Cropland Data Layer (CDL) product 

(Boryan et al. 2011), which includes all major crop types in CONUS. The CDL dataset 

that covers all the states in CONUS at 30-m spatial resolution started in 2008, and it is 

widely used in the studies of crop yields in various states (Guan et al. 2016; He et al. 

2018a; Marshall et al. 2018). To date, no study has investigated the spatial-temporal 

dynamics of maize and soybean planted area, harvested area, and grain production in the 

entire CONUS during 2008-2018, which are likely affected by weather and climate (e.g., 

drought, flood), market and prices.  
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Grain yield (ton/ha) and grain production (ton) of maize and soybean crops are 

related to growing conditions and crop properties including leaf area index, aboveground 

biomass, gross and net primary production (GPP, NPP), which can be estimated by 

satellite images and models (Guan et al. 2016; He et al. 2018a; Marshall et al. 2018; 

Sakamoto et al. 2014; Xin et al. 2013). Several studies evaluated the relationship between 

vegetation indices and grain yields of maize and soybean at county scale from the NASS 

crop statistics (Becker-Reshef et al. 2010; Burke and Lobell 2017; Johnson 2016). Some 

studies used vegetation indices to estimate crop aboveground biomass and then used the 

biomass-based harvest index (HIAGB), which is calculated as the ratio between grain yield 

and crop aboveground biomass, to estimate grain yield, and then compared the resultant 

yield estimates with the yield data from the NASS crop statistics at county scale (Guan et 

al. 2016; Lobell et al. 2002). GPP can be estimated by using a light use efficiency (LUE) 

model driven by remote sensing images and climate data, and several GPP data products 

are available to the public (Running et al. 2004; Wu et al. 2018; Zhang et al. 2017). Some 

studies used the model-based GPP and harvest index to estimate grain yield, and then 

compared the resultant yield estimates with the yield data from the NASS crop statistics, 

for example, croplands in the Midwest during 2009-2012 (Xin et al. 2013), and croplands 

in the CONUS during 2010-2015 (Marshall et al. 2018) at county scale. These studies at 

county scale reported reasonably good relationship between the model-based yield 

estimates and the yield data from NASS crop statistics, with a range of R2 values from 

0.5 to 0.7. Several studies showed that harvest index (HIAGB) varies among crop types 

and environment (Hay 1995; Lobell et al. 2002), which may affect the yield estimates in 

those studies. In addition, note that NASS crop statistics is based on the samples in a 
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county, thus the distribution of these samples would affect the yield estimates in a county. 

One study used model-based GPP and harvest index (HIGPP, calculated as the ratio 

between GPP and grain production) to estimate grain yields of several crops and compare 

them with the yield data from the NASS statistics reports for Montana during 2008-2015 

(He et al. 2018a). To date, no study has directly evaluated the relationship between GPP 

and grain production at county and state scales in CONUS during 2008-2018, which are 

also affected by weather, climate, land use and land management (planted area and 

harvested area).  

In this study we addressed three research questions on maize and soybean croplands 

in the CONUS. First, we asked what the spatial-temporal dynamics of maize and soybean 

planted area, harvested area, and grain production in the CONUS during 2008-2018 are? 

We analyzed the agricultural statistical data of maize and soybean (planted area, 

harvested area, grain production) from the USDA NASS and satellite-based planted area 

of maize and soybean from the USDA Cropland Data Layer (CDL) dataset during 2008-

2018. The analysis will show the interannual variations (increase, decrease, no change) 

of maize and soybean planted area, harvested area and grain production during 2008-

2018, and assess the effect of severe drought (e.g., summer drought in 2012) on maize 

and soybean planted area, harvested area, and grain production at county, state and 

national scales. Second, we asked what are the relationships between GPP and grain 

production at county scale during 2008-2018? We analyzed the GPP data from the 

satellite-based Vegetation Photosynthesis Model (VPM) and MOD17 algorithm, and 

grain production data from the NASS. The analysis quantified the relationships between 

maize and soybean GPP and grain production from NASS crop statistics at county-, state-, 
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and national-level under varying climate conditions (drought year versus normal years). 

During 2008-2018, severe drought and heat wave events occurred in various regions of 

CONUS, for example, the 2012 summer drought, which was reported as one of the worst 

droughts since 1988. Third, we asked to what degree GPP can be used to estimate grain 

production in a year? We calculated cumulated GPPVPM over the maize and soybean 

growing season and analyze the relationship between cumulated GPPVPM and grain 

production of maize and soybean in CONUS at county scale. The analysis will develop a 

simple linear regression model, which is based on the relationship between GPPVPM and 

grain production (harvest index, defined as HIGPP) which can be used to forecast (early 

prediction) grain production of maize and soybean croplands in CONUS before farmers 

start to harvest maize and soybean crops.  

 4.2 Materials and methods 

 4.2.1 Study Area 

The study area is the contiguous United States (CONUS). It covers 48 states and 3,233 

counties. Climate in the CONUS ranges from subtropical climate in the southern region 

(e.g., Florida) to temperate climate in the northern region. Crop cultivation is mainly 

concentrated in the Great Plains (wheat, maize, soybean) and in the regions around the 

Great Lakes known as Corn-Belt (maize, soybean). Crop cultivation is dominated by a 

single crop per year, and major crop types include maize (~35%), soybean (~33%), winter 

wheat (~22%), and sorghum (~3%). 
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 4.2.2 USDA-NASS statistical data of cropland planted area, harvested area, and grain 

production during 2008-2018 

The annual county-, state- and national- level statistics data of crop planted area (acre), 

harvested area (acre), grain production (bush) and grain yield (bu/acre) for maize and 

soybean during 2008-2018 were downloaded from the USDA-NASS Quick Stats 

Database (https://quickstats.nass.usda.gov/). For summer crops, the NASS planted and 

harvested area estimates were mostly based on the June Agricultural Survey (JAS) data. 

During the first two weeks of June, producers in the designated sample farms are asked 

by investigators about the acreage and other information by crop, including planted and/or 

intend-to-plant areas, and the acreage they intend to harvest (USDA 2014). The yield 

statistics were based on two large panel surveys that are annually conducted throughout 

the growing season. One is the Agricultural Yield Survey (AYS), which is based on 

farmers’ reported yield information for most crops. Each year, a subsample of farmers 

who responded to the list portion of the JAS, are contacted monthly by phone during the 

growing season (August to November) and asked to provide expected crop yield. The 

other is the Objective Yield Survey (OYS), which provides independent yield estimates 

by aggregating field biophysical crop measurements into a model (USDA 2014). These 

biophysical crop measurements, such as plant counts per unit area, grain size, were 

sampled in the fields across the major crop growing areas. The OYS is very costly and is 

conducted only in the top crop production states. Ultimately, the results from both the 

AYS and OYS surveys are analyzed by the NASS Agricultural Statistics Board (ASB) to 

establish the yield estimates. The NASS crop grain production is estimated from the 

expected harvested area and yield at the survey reference date and predicted assuming 

https://quickstats.nass.usda.gov/
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normal conditions for the remainder of the crop growing season. For the unit of cropping 

area, we converted acres to hectares by applying a scale factor of 0.405. For the unit of 

grain production, we converted bushel to metric ton by using a scale factor of 0.0254 and 

0.0272 ton/bu for maize and soybean when, respectively. 

 4.2.3 Cropland area dataset from the USDA-NASS cropland data layer (CDL) at 30-m 

spatial resolution during 2008-2018 

The annual CDL dataset at 30-m spatial resolution is a remote sensing-based land cover 

product. The CDL product utilizes both in-situ ground reference data and multiple 

satellite imagery to identify and map field crops. The major sources of agricultural and 

non-agricultural ground reference data, which were used as training data in the supervised 

classification, includes the USDA’s Farm Service Agency (FSA) Common Land Unit 

(CLU) data and the National Land Cover Dataset (NLCD) 2001. The CLU-based data 

were collected in every growing season when producers reported crop types and crop 

acreage in their fields to the FSA county offices. The major remote sensing images used 

by the CDL classifier include AWiFS, Landsat TM and ETM+, Deimos-1 and UK-DMC-

2 and MODIS satellite data. Before 2009, the 56-m AWiFS data was the primary source 

of imagery and the 30-m Landsat data were used as supplementary source because 

AWiFS has a higher temporal resolution of 5-day than Landsat (16-day), which provides 

the opportunity for having more cloud-free observations throughout the crop growing 

season. The resultant CDL data in 2008-2009 had a spatial resolution of 56-m. During 

the growing season of 2009, some technical issues happened in AWiFS and the increased 

competition from international customers disrupted the continuing use of AWiFS data.  

As a result, Landsat became a primary source of images after 2009 (Boryan et al. 2011). 
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The CDL data in 2010-2018 has a spatial resolution of 30 meter. In 2018, the CDL data 

from 2008-2009 were aggregated to 30 meters. In this study, we used the 30-m CDL data 

throughout 2008-2018 to keep our analysis in a consistent spatial resolution.  

The CDL data include more than 100 crop types, with classification accuracy higher 

than 90% for major crops (maize, soybean and winter wheat) (Boryan et al. 2011). It has 

been widely used in applications related to land use and land cover change, agricultural 

sustainability, and agricultural production decision-making. To make use of the dataset 

more effective and efficient, CropScape, an interactive Web-based CDL data portal, was 

developed to visualize, query, and analyze CDL data through standard geospatial web 

services in a publicly accessible online environment (Han et al. 2012). In this study, 

CropScape was used to obtain the acreage statistics for all the crop categories for each 

county during 2008-2018. We calculated the annual total area for maize and soybean for 

each county as the sum of both the single cropping and double cropping area, respectively. 

The state and national total areas for each crop in each year was then calculated by adding 

the annual total area over all the counties in the state and nation. 

 4.2.4 The input datasets for regional simulation of the Vegetation Photosynthesis 

Model 

The input datasets for simulations of the VPM model include climate (air temperature 

and radiation), vegetation indices (VIs), and land cover data. The NCEP climate dataset 

(https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html) was used for simulations of 

VPM at the global scale (Zhang et al. 2017) and the NCEP/NARR climate dataset was 

used for simulation of VPM in the CONUS (Wu et al. 2018). The original 3-hourly NARR 

data with a spatial resolution of 32 km were first aggregated into daily 

https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
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maximum/minimum/mean air temperature, daily daytime mean air temperature, and daily 

shortwave radiation. The resultant daily data were further aggregated to 8-day intervals 

to match the MODIS data by calculating the averages for air temperature and the sum for 

downward shortwave radiation in each 8-day period. The 8-day climate data with a coarse 

resolution of 32 km were then interpolated to 500-m by applying a weighted distance 

factor to the nearest four grid cells (Wu et al. 2018; Zhang et al. 2017). 

Two vegetation indices, Enhanced Vegetation Index (EVI) and Land Surface Water 

Index (LSWI), were derived from the MOD09A1 surface reflectance data (Collection 6). 

EVI and LSWI were processed with a rigorous quality check by identifying those 

observations affected by cloud, cloud shadow and aerosol as bad-quality observations, 

based on the quality assurance layer (QA) in the MOD09A1 dataset (Zhang et al. 2016a). 

The bad-quality observations in the EVI time series data were then gap-filled by applying 

the “Best Index Extraction Algorithm” (BISE) (Zhang et al. 2017). In this algorithm, a 

standard seasonal pattern for each pixel was first generated by extracting the median 

values of all the valid data for each day of year (DOY) across 19 years (2000-2018). Gaps 

were then filled with a linear interpolation and smoothed using a Savitzky-Golay filter. 

The International Geosphere-Biosphere Programme (IGBP) land cover classification 

from MOD12Q1 is used to provide information of biomes. In this study, we also used the 

CDL dataset to determine the percentage of maize and soybean within each 500-m 

MODIS pixel (see section 2.4).  

 4.2.5 GPP data from the Vegetation Photosynthesis Model (VPM) 

The VPM model is a light use efficiency (LUE) and estimates daily GPP as a product of 

LUE and the amount of photosynthetically active radiation absorbed by chlorophyll in 
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the canopy (APARchl). The detailed description of the VPM model can be found in 

previous publications (Xiao et al. 2004a; Xiao et al. 2004b) (Zhang et al., 2017). We used 

the improved VPM model, which differentiates between C3 and C4 crops based on the 

cropland data layers.  

GPP = APARchl * LUE              (4.1) 

APARchl = FPARchl * PAR    (4.2) 

LUE = LUE0 * Tscalar * Wscalar                    (4.3) 

LUE0 = LUE0_C3 * %C3 + LUE0_C4 * %C4  (4.4) 

where %C3 and %C4 are the area fractions of C3 and C4 plants within a pixel, LUE0_C3 

and LUE0_C4 are the maximum LUE values for C3 and C4 plants, respectively.  

A number of publications have reported the evaluation of GPPVPM with GPPEC 

estimates from the eddy flux tower sites, including maize (Dong et al. 2015; Kalfas et al. 

2011), soybean (Jin et al. 2015; Wagle et al. 2015), winter wheat (Doughty et al. 2018; Yan et 

al. 2009) and paddy rice (Xin et al. 2017). All these publications reported strong agreement 

between GPPVPM and GPPEC, with a range of R2 values from 0.70 to 0.98. We also ran 

VPM simulations with NCEP/NARR climate data, MODIS images and the CDL data to 

estimate daily GPP in the CONUS during 2008-2014 (Wu et al. 2018). We compared the 

resultant GPPVPM data with the other three GPP data products:  GPP from the MOD17 

data product (GPPMOD17), GPP from CASA model (GPPCASA), and GPP from SiBCASA 

(GPPSiBCASA) (Wu et al. 2018), and the results showed that GPPVPM had the stronger 

relationships with GOME-2 solar-induced chlorophyll fluorescence (SIF) data in both 

normal years and drought year (2012) than do the other three GPP datasets.  
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In this study, we ran the VPM simulations with NCEP/NARR climate, MODIS 

images and the CDL data during 2008-2018 to generate 8-day GPP data (g C m-2 day-1) 

at 500-m spatial resolution. Each pixel has 46 GPPVPM data in a year and we calculated 

annual sums of GPPVPM for individual pixels. We also aggregated annual sums of GPPVPM 

by crop types and their planted areas. The average annual GPP (GPPVPM_avg) values of 

individual crop types (maize, soybean) in a county were calculated by the area fraction 

of specific crop type from the CDL datasets in each 500-m pixel. The total annual GPP 

(GPPVPM_Year) (January - Dececmber) for a crop type for each county was calculated by 

multiplying GPPVPM_avg with the total area of all those pixels with a specific crop located 

in the county. 

 4.2.6 MOD17 GPP dataset 

We used the MOD17 GPP product in this study (Running et al. 2004), MOD17A2H V006 

(GPPMOD17). GPPMOD17 has the same spatial resolution (500-m) and temporal resolution 

(8-day) with GPPVPM. In the MOD17 data product, GPP is estimated as the product of 

APARcanopy and light use efficiency (LUE) (Running et al. 2004), but the land cover data 

product used in the MOD17 does not differentiate between C3 and C4 croplands for the 

CONUS, and C3 LUE0 parameter value was used for cropland simulations (Wu et al. 

2018). For simple comparison purpose, we also calculated the average annual MOD17 

GPP (GPPMOD17_avg) values of individual crop types (maize, soybean) and the total annual 

GPP (GPPMOD17_Year) (Jan - Dec) in a county and state, based on the CDL crop type data. 

 4.2.7 Statistical analyses 

Simple linear regression models were used to characterize the relationship between grain 

production and GPP, and between grain production and cropping areas at county, state 
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and national scales, at a minimum 0.05 significance threshold (p-value). Model 

performance was evaluated using the coefficient of determination (R2), bias and RMSE.  

A number of studies have used the vegetation indices over time to predict grain 

yields of crops in a field or a county (Peng et al. 2018; Zhao and Lobell 2017). In this 

study, we used the cumulative GPP over time to predict grain production in a county. A 

simple linear regression model was used to assess the relationship between grain 

production and cumulative GPP over time at 8-day temporal resolution at county-scale 

(see Equation 4.5). The model was run at 8-day time step over a year across all the 

counties in the CONUS during 2008-2018. We calculated the averaged R2 value among 

all the counties at each time step, and then plot the R2 values as a function of time. Based 

on the time course of R2 value in a year, we assess the performance of using cumulative 

GPPVPM to predict grain production over time at county scale. This will address the 

research questions related to in-season grain production forecasting: (1) at what day in a 

year the model starts to predict grain production at county scale with reasonable accuracy, 

and (2) to what degree weather and climate (e.g., drought, flood) affect the model 

prediction over years.  

 𝐺𝑟𝑎𝑖𝑛 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑎 ∗ ∑ (𝐺𝑃𝑃𝑡 × 𝑘) + 𝑏𝑡
1        t = 1, 2, 3, …, 46                                   (4.5) 

Where t is the number of time steps in a year, which ranges from 1 to 46, as time series 

GPP has 46 data points in a year; k is the number of days in each time step, k is equal 

to 8 days when t ranges from 1 to 45, and k is 5 (non-leap year) or 6 (leap year) when 

t is 46. In this study, we simply used a calendar year schedule to run the statistical 

models for all counties.  
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 4.3 Results 

 4.3.1 Spatial-temporal changes of maize and soybean planted area, harvested area, 

and grain production during 2008-2018 

At the CONUS scale, Fig. 4.1a,b shows the interannual variation of maize and soybean 

planted area (CDL, NASS), harvested area (NASS) and grain production (NASS) in the 

CONUS during 2008-2018. There are very small differences (0.4 - 6.5%, 0.1 - 5.8%) in 

maize and soybean planted areas between the CDL and NASS datasets (Fig. 4.1a, b), 

which supports the use of the CDL dataset as input data for model simulations. The 

differences between NASS planted area and harvested areas are also small, except 2012 

for maize crop (Fig. 4.1a, b). We calculated the mean values of planted area, harvested 

area and grain production over years (excluding the drought year 2012) and the deviation 

(anomalies) to the mean values for individual years (Fig. 4.1c, d, e, f, g). The anomalies 

of maize planted area from both CDL and NASS have similar dynamics during 2008-

2018 (Fig. 1c,d). The maize planted area gradually increased between 2008 and 2012 and 

varied moderately over 2013-2018 (Fig. 4.1c). Maize harvested area had a similar 

anomaly dynamics with the planted area (Fig. 4.1e). The anomaly of annual maize grain 

production does not follow the same patterns of maize planted area and harvested area 

(Fig. 1f), which suggests the effect of climate and crop management on grain production. 

The anomalies of soybean planted area from both CDL and NASS also have similar 

dynamics during 2008-2018 (Fig. 4.1c,d). Soybean planted area varied slightly during 

2008-2013 but started to have large increase in 2014 (Fig. 4.1d). The step-wise increase 

in soybean planted area in 2014 and 2017 were largely driven by international market 

demand. The anomaly of soybean harvested area agreed well with that of soybean planted 
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area with a smaller magnitude of variation. The anomaly of soybean grain production had 

a similar dynamics with the harvested area during 2008-2018, except 2016, a very warm 

and wet year (National Climate Report - Annual 2016; 

https://www.ncdc.noaa.gov/sotc/national/201613).  

 

Figure 4.18 Annual national planted area from CDL maps (plt_CDL), planted area 

from NASS statistics (plt_NASS), harvested area from NASS statistics (harv_NASS), 

difference between NASS planted and harvested area (dif_NASS), and grain 

production for a) maize and b) soybean; (c) normalized anomaly of planted area 

derived from CDL and NASS for maize (d) normalized anomaly of planted area 

derived from CDL and NASS for soybean (e)normalized anomaly of harvested area 

from NASS for maize and soybean (f)normalized anomaly of production from NASS 

for maize and soybean. 

At the county scale, Fig. 4.2 shows the spatial distributions of planted area and 

harvested area of maize and soybean crops in 2010 across all counties of the CONUS. 

There were strong spatial consistencies in planted areas between the CDL and NASS 

datasets in CONUS for both maize and soybean (Fig. 4.2), The CDL planted area 

estimates were highly consistent (only ~1% to 3% discrepancy) with NASS planted and 

harvested area estimates for both maize and soybean crops during 2008-2018 at the 

https://www.ncdc.noaa.gov/sotc/national/201613
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county and state scales (Fig. 4.3). The relationships between CDL planted area and NASS 

planted areas in individual years were relatively stable at the county and state scales 

(Table 4.1 and Table 4.2), with moderate differences in 2008 and 2009, which is 

consistent with previous studies (Lark et al. 2017; Pritsolas and Pearson 2018). These 

results further support the use of the CDL dataset as input data for model simulations. We 

further calculated the interannual trend of maize and soybean planted areas from the CDL 

and NASS datasets during 2008-2018 (Fig. 4.4). A large number of counties in the NASS 

dataset do not have data for all the 11 years, and they were thus not included in the 

analysis of interannual trends of planted area. For those counties with 11 years of maize 

and soybean planted area data, the spatial pattern of the interannual trends (slope values) 

from the NASS dataset has some similarity with that from CDL dataset (Fig. 4.4). 

According to the CDL dataset, interannual trends (slope values) of soybean planted area 

differed to large degree from those of maize planted area (Fig. 4.4). Most counties over 

the CONUS showed an increase of soybean planted area during 2008-2018, while fewer 

of them showed such increase of maize planted area. In Illinois, maize planted area 

decreased while soybean planted area increased during 2008-2018. In the northern Great 

Plains, maize and soybean planted area increased  in recent years.  
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Figure 4.19 Spatial distribution of CDL planted area, NASS planted/harvested area, 

and NASS production over CONUS in 2010  
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Figure 4.20 Relationship between NASS planted/harvested area and cdl plant area 

at county- and state- level from 2008-2018 
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Table 4.5 The regression statistics between the CDL planted area and the NASS 

planted area and harvested area of maize and soybean in the CONUS during 2008-

2018 at the county scale.  We used a simple linear regression model y = a * x. All 

the regression models have p-value < 0.001. 

Year 

Maize 

plt_CDL vs plt_NASS plt_CDL vs harv_NASS 

slope R2 
bias 

(ha) 

RMSE (103 

ha) 
slope R2 

bias 

(ha) 

RMSE 

(103 ha) 

2008 0.94 0.977 
-

1362.9 
32.72 0.98 0.967 179.7 32.3 

2009 0.93 0.984 
-

1349.7 
32.63 0.97 0.975 -26.6 32.24 

2010 0.98 0.99 -232.6 32.55 1.02 0.98 1034.6 32.16 

2011 1.00 0.992 -62.2 34.59 1.04 0.977 1551.3 34.22 

2012 0.98 0.99 -383.8 35.41 1.04 0.966 1660.2 34.64 

2013 0.99 0.991 -361 35.67 1.03 0.977 1223.4 35.13 

2014 0.97 0.99 -735.3 33.9 1.02 0.98 683.1 33.36 

2015 0.99 0.992 -85.3 34.35 1.04 0.977 1426.7 33.88 

2016 1.00 0.992 52.5 34.79 1.04 0.978 1548.5 34.37 

2017 1.01 0.99 320.1 33.62 1.05 0.973 1813.9 33.19 

2018 1.00 0.99 321.8 33.96 1.04 0.971 1819.5 33.55 

Year 

Soybean 

plt_CDL vs plt_NASS plt_CDL vs harv_NASS 

slope R2 
bias 

(ha) 

RMSE (103 

ha) 
slope R2 

bias 

(ha) 

RMSE 

(103 ha) 

2008 0.96 0.977 
-

1126.7 
29.68 0.96 0.977 -1126.7 29.68 

2009 0.98 0.98 -673.5 30.29 0.98 0.98 -673.5 30.29 

2010 1.00 0.986 36.2 29.94 1 0.986 36.2 29.94 

2011 1.03 0.986 193.4 29.88 1.03 0.986 193.4 29.88 

2012 0.99 0.992 -490.5 29.7 0.99 0.992 -490.5 29.7 

2013 1.01 0.988 12.8 30.73 1.01 0.988 12.8 30.73 

2014 1.02 0.986 113.5 33.08 1.02 0.986 113.5 33.08 

2015 1.02 0.985 666.5 33.04 1.02 0.985 666.5 33.04 

2016 1.02 0.987 592.8 32.69 1.02 0.987 592.8 32.69 

2017 1.03 0.982 1053.7 35.73 1.03 0.982 1053.7 35.73 

2018 1.05 0.984 1573.8 35.77 1.05 0.984 1573.8 35.77 
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Table 4.6 The regression statistics between the CDL planted area and the NASS 

planted area and harvested area of maize and soybean in the CONUS during 2008-

2018 at the state scale.  We used a simple linear regression model y = a * x. All the 

regression models have p-value < 0.001. 

Year 

Maize 

plt_CDL vs plt_NASS plt_CDL vs harv_NASS 

slope R2 
bias (103 

ha) 

RMSE 

(106 

ha) 

slope R2 
bias (103 

ha) 

RMSE 

(106 ha) 

2008 0.92 0.995 -57.72 1.75 0.97 0.99 14.9 1.73 

2009 0.92 0.997 -56.49 1.77 0.96 0.993 10.93 1.75 

2010 0.98 0.998 -11.33 1.85 1.01 0.994 54.66 1.83 

2011 0.99 0.998 -4.87 1.94 1.04 0.995 74.38 1.92 

2012 0.97 0.998 -18.29 1.97 1.04 0.99 79.78 1.92 

2013 0.98 0.999 -17.01 1.9 1.03 0.993 60.81 1.87 

2014 0.97 0.999 -34.57 1.86 1.01 0.994 38.73 1.84 

2015 0.99 0.999 -5.54 1.85 1.03 0.994 65.84 1.83 

2016 0.99 0.999 1.69 1.9 1.04 0.994 72.87 1.88 

2017 1 0.999 14.09 1.85 1.05 0.992 87.46 1.82 

2018 0.99 0.998 14 1.82 1.04 0.992 86.67 1.79 

Year 

Soybean 

plt_CDL vs plt_NASS plt_CDL vs harv_NASS 

slope R2 
bias (103 

ha) 

RMSE 

(106 

ha) 

slope R2 
bias (103 

ha) 

RMSE 

(106 ha) 

2008 0.93 0.992 -51.06 1.46 0.94 0.992 -37.52 1.45 

2009 0.95 0.994 -31.93 1.48 0.96 0.992 -17.85 1.48 

2010 0.98 0.996 2.98 1.52 0.99 0.995 13.34 1.51 

2011 1 0.995 7.22 1.51 1.01 0.995 23.8 1.5 

2012 0.96 0.998 -25.36 1.49 0.97 0.998 -11.61 1.49 

2013 0.99 0.995 -2.97 1.51 0.99 0.994 4.69 1.51 

2014 0.99 0.993 0.85 1.61 1 0.993 9.79 1.61 

2015 1 0.993 27.48 1.59 1.01 0.992 39.46 1.58 

2016 1 0.995 25.92 1.62 1.01 0.994 35.55 1.61 

2017 1.01 0.993 47.97 1.75 1.02 0.993 56.07 1.75 

2018 1.03 0.994 67.03 1.75 1.04 0.993 87.57 1.73 
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Figure 4.21 Changing trend of planted area for maize and soybean from 2008-2018 

Fig. 4.5 shows the relationships among maize and soybean planted area, harvested 

area and grain production during 2008-2018 at the county and state scales. The slope 

values in the regression models represents the average yields (ton ha-1) in the CONUS 

during 2008-2018, which was calculated by either planted area or harvested area and they 
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have very small variations among the methods (Fig. 4.5). The relatively small scattering 

among the data points (Fig. 4.5) indicate very good management of maize and soybean 

croplands among the crop producers in the CONUS.  For maize, the average yields at the 

county scale (Table 4.3 & Table 4.4) and the state scale (Table 4.5 & Table 4.6) among 

individual years had a small variation (< 10%), except for 2012. Because of extreme heat 

and drought in the summer of 2012, the average yield of maize in 2012 was 8.24 ton ha-1 

at the county scale (Table 4.3) and 7.91 ton ha-1 at the state scale (Table 4.5), which is 

substantially (more than 20%) lower than multi-year average yields (10.7 ton ha-1 or 10.6 

ton ha-1). For soybean, the average yields at the county scale (Table 4.4) and the state 

scale (Table 4.6) also had a small variation among individual years, and the 2012 drought 

only resulted in ~10% drop in comparison to multi-year average yields. The results 

indicate that the soybean crop was less impacted than the maize crop in the 2012 severe 

drought.  
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Figure 4.22 Relationship between county- and state- level production and cropping 

areas from 2008-2018 
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Table 4.7 The regression statistics between county-level NASS production and 

cropping areas for maize from 2008 to 2018. All the regression models have p-

value < 0.001. 

Year 

Maize 

prod_NASS vs plt_CDL prod_NASS vs plt_NASS prod_NASS vs harv_NASS 

slope R2 

bias 

(103 
ton) 

RMSE 

(103 
ton) 

slope R2 

bias 

(103 
ton) 

RMSE 

(103 
ton) 

slope R2 

bias 

(103 
ton) 

RMSE 

(103 
ton) 

2008 10.34 0.931 -14.11 344.52 9.83 0.950 -17.56 344.27 10.36 0.969 -12.77 348.85 

2009 11.05 0.945 -12.45 362.17 10.43 0.963 -14.21 362.77 10.92 0.978 -10.10 366.68 

2010 9.81 0.949 -14.31 329.46 9.71 0.961 -14.52 330.46 10.14 0.970 -10.42 333.61 

2011 9.34 0.930 -16.05 339.13 9.37 0.942 -17.26 339.57 9.87 0.963 -12.17 344.40 

2012 7.73 0.864 -12.24 290.68 7.63 0.867 -12.98 290.50 8.24 0.897 -9.82 294.77 

2013 9.80 0.925 -7.39 359.88 9.73 0.940 -9.41 360.14 10.28 0.959 -5.56 364.24 

2014 10.81 0.940 -7.16 373.26 10.57 0.952 -9.99 372.73 11.16 0.970 -6.67 376.55 

2015 10.66 0.937 -14.20 379.85 10.64 0.952 -14.89 381.03 11.21 0.967 -10.32 385.29 

2016 11.18 0.939 -18.98 406.71 11.22 0.953 -19.16 408.20 11.78 0.970 -14.43 412.94 

2017 11.08 0.929 -15.84 390.59 11.23 0.946 -15.63 392.59 11.82 0.964 -11.15 397.27 

2018 11.16 0.920 -16.33 397.86 11.31 0.943 -16.08 400.57 11.90 0.963 -11.52 405.55 

 

Table 4.8 The regression statistics between county-level NASS production and 

cropping areas for soybean from 2008 to 2018. All the regression models have p-

value < 0.001. 

Year 

Soybean 

prod_NASS vs plt_CDL prod_NASS vs plt_NASS prod_NASS vs harv_NASS 

slope R2 
bias 

(ton) 

RMSE 

(103 
ton) 

slope R2 
bias 

(ton) 

RMSE 

(103 
ton) 

slope R2 
bias 

(ton) 

RMSE 

(103 
ton) 

2008 2.76 0.894 828.19 82.71 2.68 0.926 -570.07 82.39 2.71 0.928 -491.39 82.50 

2009 2.92 0.883 2260.98 89.25 2.89 0.921 807.65 89.09 2.93 0.925 853.93 89.20 

2010 2.90 0.895 22.98 89.77 2.94 0.924 -794.78 89.93 2.97 0.926 -754.80 90.00 

2011 2.68 0.843 1872.97 84.23 2.80 0.891 -59.08 83.99 2.83 0.898 37.05 84.20 

2012 2.72 0.907 216.27 82.62 2.69 0.909 -422.19 82.24 2.72 0.914 -311.26 82.43 

2013 2.88 0.894 1730.69 90.79 2.94 0.921 567.62 90.62 2.95 0.922 644.31 90.70 

2014 3.10 0.901 1824.62 105.62 3.19 0.931 255.89 105.38 3.21 0.931 347.42 105.46 

2015 3.16 0.896 -258.61 108.45 3.25 0.920 -323.39 109.11 3.28 0.923 -155.46 109.30 

2016 3.40 0.919 110.10 114.83 3.51 0.948 -457.77 115.32 3.54 0.949 -373.80 115.41 

2017 3.13 0.885 1413.64 116.07 3.27 0.910 1161.90 116.66 3.28 0.911 1235.02 116.73 

2018 3.28 0.877 63.52 124.04 3.48 0.904 29.68 124.89 3.51 0.906 260.35 125.12 
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Table 4.9 The regression statistics between state-level NASS production and 

cropping areas for maize from 2008 to 2018. All the regression models have p-

value < 0.001. 

Year 

Maize 

prod_NASS vs plt_CDL prod_NASS vs plt_NASS prod_NASS vs harv_NASS 

slope R2 
bias(103 

ton) 

RMSE(106 

ton) 
slope R2 

bias 

(103 

ton) 

RMSE(106 

ton) 
slope R2 

bias 

(103 

ton) 

RMSE 

(106 

ton) 

2008 10.63 0.973 -945.24 18.27 9.85 0.979 -876.9 18.3 10.36 0.989 -570.2 18.5 

2009 11.03 0.952 -1049.75 19.24 10.43 0.987 -776.6 19.5 10.89 0.995 -445.6 19.7 

2010 9.60 0.953 -896.99 17.97 9.61 0.988 -651.8 18.2 10.01 0.992 -349.0 18.4 

2011 9.22 0.944 -1043.77 18.43 9.39 0.976 -879.3 18.7 9.86 0.987 -532.3 18.9 

2012 7.36 0.913 -583.77 14.80 7.37 0.950 -399.3 15.0 7.91 0.958 -154.2 15.2 

2013 9.64 0.936 -742.34 18.72 9.75 0.979 -591.1 19.0 10.27 0.988 -296.3 19.2 

2014 10.68 0.939 -781.61 20.14 10.63 0.976 -681.8 20.4 11.18 0.988 -367.9 20.6 

2015 10.47 0.943 -1017.06 19.86 10.64 0.983 -800.2 20.2 11.16 0.989 -472.0 20.4 

2016 10.94 0.940 -1222.26 21.49 11.20 0.979 -986.7 21.8 11.71 0.987 -643.1 22.0 

2017 10.78 0.934 -1117.69 20.70 11.15 0.974 -856.7 21.0 11.73 0.983 -524.5 21.3 

2018 10.96 0.929 -1284.46 20.63 11.25 0.971 -942.2 21.0 11.82 0.983 -602.1 21.3 

 

Table 4.10 The regression statistics between state-level NASS production and 

cropping areas for soybean from 2008 to 2018. All the regression models have p-

value < 0.001. 

Year 

Soybean 

prod_NASS vs plt_CDL prod_NASS vs plt_NASS prod_NASS vs harv_NASS 

slope R2 
bias(103 

ton) 

RMSE(106 

ton) 
slope R2 

bias(103 

ton) 

RMSE(106 

ton) 
slope R2 

bias(103 

ton) 

RMSE(106 

ton) 

2008 3.00 0.954 -206.69 4.35 2.80 0.971 -166.90 4.40 2.83 0.972 -160.00 4.40 

2009 3.18 0.955 -164.03 4.71 3.04 0.973 -123.97 4.76 3.07 0.975 -112.30 4.77 

2010 3.15 0.955 -264.67 4.90 3.10 0.968 -205.81 4.96 3.12 0.969 -201.61 4.96 

2011 2.92 0.937 -163.85 4.57 2.94 0.952 -159.03 4.59 2.98 0.956 -147.83 4.60 

2012 2.81 0.959 -90.00 4.20 2.71 0.959 -60.07 4.22 2.74 0.963 -54.40 4.22 

2013 3.03 0.953 -82.90 4.64 3.01 0.968 -68.06 4.67 3.02 0.969 -63.49 4.67 

2014 3.27 0.949 -108.59 5.37 3.26 0.965 -95.65 5.40 3.28 0.966 -92.46 5.40 

2015 3.36 0.950 -270.45 5.51 3.37 0.963 -188.06 5.59 3.39 0.964 -176.84 5.60 

2016 3.61 0.963 -255.44 6.02 3.63 0.978 -184.06 6.09 3.66 0.978 -177.66 6.09 

2017 3.32 0.942 -214.05 6.00 3.37 0.958 -115.37 6.10 3.39 0.958 -111.88 6.10 

2018 3.38 0.941 -271.06 6.18 3.49 0.957 -175.53 6.27 3.54 0.955 -163.77 6.28 
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 4.3.2 The relationship between GPP and NASS grain production during 2008-2018 

Fig 4.6 shows the spatial distributions of GPPVPM at 500-m, county, and state scales in 

the CONUS in 2010, which were highly consistent with the spatial distributions of NASS 

grain production, planted area, and harvested areas (Fig. 4.6). For maize croplands, the 

pixels, counties, and states with the high GPPVPM occurred in the Midwest region. For 

soybean croplands, the pixels, counties and states with the high GPPVPM occurred in the 

Midwest region and along the Mississippi delta area. 
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Figure 4.23 Spatial distribution of GPP simulated by VPM, and total GPP calculated 

by mean GPP and CDL cropping map at 500-m spatial resolution and county-level 

scale in 2010. 

Fig. 4.7 shows the relationship between GPPVPM_Year (and GPPMOD17_Year) and NASS 

grain production of maize and soybean in the CONUS during 2008-2018 at the county 

and state scales. The slope values in the regression models represent the average harvest 

index (HIGPP) of maize and soybean in the CONUS during 2008-2018 at the county and 

state scales. For maize, GPPVPM_Year during 2008-2018 explained the 93% variation of 
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NASS grain production at the county scale, with an average HIVPM_GPP of 0.31 (Fig. 4.7). 

Because of severe drought in 2012, HIVPM_GPP in 2012 (0.25) was substantially (19%) 

lower than the average HIVPM_GPP (0.31), but R2 value was still relatively high (R2 = 0.89, 

p-value <0.001) (Table 4.7). For soybean, GPPVPM_Year during 2008-2018 explained the 

91% variation of NASS grain production at the county scale with an average HIVPM_GPP 

of 0.13 (Fig. 4.7). The HIVPM_GPP in 2012 (0.13) was similar to 2011 but slightly lower 

than other years (0.13 - 0.15) (Table 4.7). In comparison, GPPMOD17_Year also had strong 

relationships with NASS grain production at the county and state scales (Fig. 4.7). For 

soybean crop (C3 plant), HIMOD17_GPP (0.17-0.18) values are moderately larger than 

HIVPM_GPP (0.14-0.15). However, for maize crop (C4 plant), HIMOD17_GPP values (0.60, 0.60) 

are substantially larger than HIVPM_GPP (~0.31, 0.31) at the county and state scales (Fig. 

4.7). This issue with MOD17 dataset can be attributed to the fact that the land cover 

dataset used in the MOD17 data product does not identify croplands in CONUS as C4 and 

C3 plant function types, separately.  
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Figure 4.24 Relationship between county-level crop production from NASS statistics 

and annual total GPP estimates calculated from simulated mean GPP by VPM and 

MOD17 multiplying by CDL pixel-counting acreage for maize and soybean from 

2008-2018, the black solid line is the regression line for all the county-level 

production and total GPP over 2008-2018. All statistics with p < 0.001. 
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Table 4.11 The regression statistics between county-level NASS production and 

total GPP from VPM and MOD17 for maize and soybean from 2008 to 2018. All 

regression models have p-value < 0.001. 

Year 

VPM 

Maize Soybean 

slope R2 
bias (103 

ton) 

RMSE 

(103 ton) 
slope R2 

bias (103 

ton) 

RMSE 

(103 ton) 

2008 0.33 0.926 -14.6 350.79 0.14 0.898 -1 82.22 

2009 0.36 0.955 -13.42 362.46 0.15 0.92 -1 87.74 

2010 0.29 0.943 -14.09 329.04 0.14 0.93 -3.05 88.48 

2011 0.28 0.95 -15.84 341.11 0.13 0.919 -2.19 83.09 

2012 0.25 0.891 -16.03 290.61 0.13 0.921 -2.23 81.25 

2013 0.31 0.954 -12.26 359.62 0.14 0.934 -1.84 89.23 

2014 0.32 0.965 -9.79 374.19 0.15 0.949 -2.94 103.68 

2015 0.31 0.95 -15.65 380.38 0.15 0.914 -4.07 106.25 

2016 0.32 0.945 -19.88 406.84 0.15 0.928 -3.72 112.72 

2017 0.33 0.933 -19.56 388.7 0.15 0.914 -3.79 113.11 

2018 0.33 0.948 -20.02 398.62 0.15 0.922 -4.34 122.18 

Year 

MOD17 

Maize Soybean 

slope R2 
bias (103 

ton) 

RMSE 

(103 ton) 
slope R2 

bias (103 

ton) 

RMSE 

(103 ton) 

2008 0.59 0.907 -18.98 339.18 0.15 0.878 -2.45 74.54 

2009 0.62 0.921 -16.83 357.01 0.16 0.877 -1.22 80.78 

2010 0.55 0.919 -14.4 326.75 0.16 0.914 -2.56 82.46 

2011 0.57 0.918 -14.46 338.97 0.16 0.862 -0.51 77.51 

2012 0.53 0.82 -16.08 284.75 0.17 0.879 -1.95 75.1 

2013 0.6 0.916 -10.58 357.09 0.17 0.904 -1.18 83.05 

2014 0.65 0.932 -10.92 370.25 0.18 0.903 -1.57 96.47 

2015 0.62 0.911 -16.75 375.58 0.18 0.889 -3.91 98.46 

2016 0.6 0.925 -21.2 403.72 0.18 0.912 -3.4 104.84 

2017 0.62 0.909 -21.68 384.69 0.17 0.879 -2.73 105.24 

2018 0.66 0.91 -22.43 392.83 0.18 0.882 -4.08 112.8 

 

 4.3.3 In-season relationships between cumulative GPP and NASS grain production 

over time in a year during 2008-2018 

In the CONUS, both maize and soybean are cultivated as single crop in a year at 

individual crop fields. Maize crops are usually planted in April through June and 

harvested in October and November. Soybean crops are usually planted in late April 
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through June and harvested in September through November. For simplicity, we 

calculated cumulative GPPVPM values (GPPVPM_acc) of maize and soybean in a county 

from January 1st at 8-day interval, and then we established the simple linear regression 

models that used NASS grain production (Y, dependent variable) and GPPVPM_acc (X, 

independent variable) over time (8-day interval) within a year (NASS grain production = 

a * GPPVPM_acc + b). We calculated average R2 value of all counties for each time step 

and reported the R2 values over each time step in a year (Fig. 4.8).  According to the R2 

curve, the model prediction skill increases over time and reaches 90% by the end of July 

(Fig. 8), which is approximately one to two months before the start of harvesting time for 

soybean and maize crops. The model prediction skill showed slight differences among 

individual years. For maize, the prediction skill was slightly lower in 2008, 2009, and 

2012 than in other years, which could be explained by the warm spring and summer 

drought in 2012 and the underestimation of planted areas in 2008 and 2009 from the CDL 

dataset. Similarly, for soybean, the prediction skill was slightly lower in 2008 and 2009 

than in other years, but it was relatively stable in the drought 2012. In comparison, 

GPPMOD17_acc also showed very good prediction skills in most years for both maize and 

soybean, except for maize in 2012 (Fig. 4.8). 
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Figure 4.25 Linear regression models for county-level crop grain production from 

NASS statistics and accumulative total GPP estimates calculated from simulated 

mean GPP by VPM and MOD17 multiplying by CDL pixel-counting acreage over 

time (8-day interval) for maize and soybean from 2008-2018 

We further selected five top maize and soybean production states (Iowa, Illinois, 

Nebraska, Minnesota, and Indiana) to explore the in-season relationship between 

GPPVPM_acc (and GPPMOD17_acc) and grain production from the NASS dataset (Fig. 4.9). 

The GPPVPM_acc and GPPMOD17_acc are calculated from the planting dates providing by 

USDA/NASS (2010) at the state level. According to the R2 curves (Fig. 4.9), the model 

prediction skill for individual states was slightly higher and less variable, in comparison 

of national data analysis (Fig. 4.8). Severe drought in 2012 has moderate effect on model 
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prediction skill for maize grain production in Illinois, Nebraska, Minnesota and Indiana 

states, and for soybean grain production in Illinois and Nebraska (Fig. 4.9). Both 

GPPVPM_acc and GPPMOD17_acc have strong in-season relationships with NASS grain 

production in these five states (Fig. 4.9), which suggests that cumulative GPP is a useful 

variable for explanation and prediction of maize and soybean grain production at the 

county scale within maize and soybean crop growing seasons.   

 

Figure 4.26 Linear regression models for county-level crop grain production from 

NASS statistics and accumulative total GPP estimates calculated from simulated 
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mean GPP by VPM and MOD17 multiplying by CDL pixel-counting acreage over 

time (8-day interval) for five top productive states from 2008-2018 

 4.4 Discussion  

 4.4.1 Maize and soybean planted and harvested areas from the CDL and NASS 

datasets 

Satellite remote sensing has been widely used to identify and map cropland planted area 

in the CONUS (Cai et al. 2018; Massey et al. 2017; Wang et al. 2019a; Zhong et al. 2014). 

The CDL crop planted area datasets have an overall accuracy of 85% to 95% for major 

crop types in the CONUS, and up to 97% producer and user accuracy for maize and 

soybean. Such high classification accuracy was achieved by the machine learning image 

classification algorithm (Mueller et al. 2009) and large amounts of ground reference data 

used to train the algorithms. The training and validation ground reference data were 

sampled from USDA Farm Service Agency (FSA) Common Land Unit (CLU) database 

and its associated attributes reported by famers. Note that several global GPP data 

products, e.g., MOD17A2 (Running et al. 2004) have not incorporated the CDL dataset, 

thus they underestimate GPP of maize and other C4 crop fields. Our previous study in the 

CONUS (Wu et al. 2018) and this study clearly show that the use the CDL cropland area 

dataset is essential for simulations of VPM and other data-driven models.    

The spatial-temporal consistency of crop planted areas between the remote sensing 

approach (e.g., CDL) and the agricultural statistical approach (e.g., NASS) at 

administrative levels (e.g., county, state or province, nation) has been an important 

research topic among both agricultural and remote sensing communities (Cai et al. 2018; 

Wang et al. 2019a). Previous studies reported good agreement between the CDL and 
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NASS planted area data in 2009 (Boryan et al. 2011; USDA 2014). Our study also shows 

that the CDL crop planted area estimates had good spatial-temporal consistency with the 

NASS planted area estimates at county, state and national scales during 2008-2018. The 

NASS agricultural statistics uses stratification methods to classify land into different 

agricultural intensity groups or strata based on percent cultivation in a given land parcel, 

which provides the area sampling frames (Boryan and Yang 2017).  In 2010, an automatic 

stratification method based on the CDL dataset was developed and used in several states 

(Boryan et al. 2014), which significantly improved stratification accuracies in intensively 

cropped areas and performed less well in non-agricultural areas as compared with the 

land cover map method. Recently, an integrated automated stratification and traditional 

manual hybrid stratification process was implemented in NASS area frame operations 

(Boryan and Yang 2017).  

Our study demonstrates the potential of the CDL and NASS statistic datasets in 

understanding the changes of planted area, harvested area, and grain production of maize 

and soybean in the CONUS during 2008-2018. Over these years, maize and soybean 

planted areas in the CONUS were not affected by summer drought but did increase in 

response to international demand and grain price in late 2010s. However, maize harvested 

area and grain production in the CONUS was substantially reduced in 2012 with severe 

summer drought, particularly in the Midwest states. As the climate models predict larger 

climate variation and more frequent and severe drought in future years (Dai 2012; IPCC 

2013; Trenberth et al. 2013), improvingthe resilience of maize and soybean crops to 

climate variation and change is a major challenge for the farmers and the society.  
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 4.4.2 Harvest Index  ̶  The relationships between GPP, AGB and NASS grain 

production of maize and soybean   

Gross primary production (GPP), net primary production (NPP) and aboveground 

biomass (AGB) are related to grain yield (ton ha-1) and production (ton). The “Harvest 

Index” (HI) is widely used term (Hay 1995) and often defined across various scales from 

plants to fields, and county as the ratio between crop grain yield (ton ha-1) and 

aboveground biomass (AGB), namely HIAGB. Grain yield of individual plants is affected 

by two processes: (1) flowering and pollination, which affects grain number, and (2) 

grain-filling, which determines individual grain sizes. Many studies have shown that 

these two processes are highly sensitive to heat and drought stresses (Guan et al. 2016; 

Liu et al. 2008; Lobell et al. 2014). Many studies reported that HIAGB values often vary 

substantially among individual crop types, for example, 0.25 – 0.58 for maize (Guan et 

al. 2016), and 0.30 – 0.44 for soybean (Johnson and Major 1979; Krisnawati and Adie 

2015; Lobell et al. 2002; Monfreda et al. 2008), which could be attributed to large degree 

how and when maize and soybean plants were harvested and AGB was measured.  

Harvest Index can also be defined as the ratio between NASS crop grain production 

and gross primary production, namely HIGPP. In a study on croplands in Montana (He et 

al. 2018a), GPP data from the data-driven model during 2008-2015 and calibrated 

HIGPP_VPM (0.44) were used to estimate maize grain production; The resultant GPP-

derived maize production had a strong linear relationship with NASS maize production 

at the county scale (R2 = 0.82). Our study shows that GPPVPM_Year data during 2008-2018 

were strongly correlated with NASS grain production (GP) data for maize (GP = 0.31 * 

GPPVPM_Year, R
2 = 0.93) and soybean (GP= 0.14 * GPPVPM_Year, R

2 = 0.91) at the county 
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scale over the CONUS (Fig. 7). HIGPP of maize, which is the slope of the simple linear 

regression model between GP and GPPVPM_Year of maize at the county scale in individual 

years, varied from 0.25 in the severe drought year (2012) to 0.36 in the wet year (2009) 

(Table 5). HIGPP of soybean varied from 0.12 in the drought year (2012) to 0.14 in the wet 

year (2009) (Table 5). The interannual variations of HIGPP in this study at the CONUS 

scale could come from multiple sources, many studies have discussed the effects of 

environment, management and crop genetics (variety) (Erickson et al. 2017; Licht et al. 

2019; Lobell and Azzari 2017). In this study, the environmental factors such as severe 

drought in 2012 have a strong effect on GPP and maize grain production. The differences 

of planted area between CDL and NASS datasets were larger in 2008 and 2009 than in 

other years (Table 4.1 and Table 4.2), which could lead to moderate variations of annual 

HIGPP in those two years. It is well known that crop genetics (e.g., crop variety) affects 

crop grain yield and production, as some crop types and genotypes are more tolerant to 

drought and pathogens, and more sensitive to changing crop management, like narrow 

row spacing and more intensive managment . However, as HIGPP values of maize and 

soybean exhibit  relatively moderate interannual variations during “normal” years, it 

clearly indicates the potential of using HIGPP and GPPVPM data to estimate maize and 

soybean grain production over those “normal” years at the county scale. Additional 

efforts are needed to elucidate the relationships between GPP and NASS grain production 

at those individual farms used in the NASS crop surveys, which could further reduce the 

spatial-temporal variations of harvest index (HIGPP) for maize and soybean crops.  
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 4.4.3 Explanation and prediction of maize and soybean grain production by GPP at the 

county scale 

Numerous studies have used vegetation indices to predict crop grain yields (Bolton and 

Friedl 2013; Zhao et al. 2015). A number of LUE models estimate daily GPP of croplands 

(He et al. 2018a; Yuan et al. 2007; Zhang et al. 2017). Several studies have used GPP 

data to estimate crop grain yields by assuming that yield is a function of GPP, autotrophic 

respiration, HIAGB and the root to shoot ratio (Guan et al. 2016; Marshall et al. 2018; Yuan 

et al. 2016b). These studies then compared the resultant yield estimate with the yield data 

from the flux tower sites (Yuan et al. 2016b), and NASS yield data in the Midwest Corn-

Belt (Guan et al. 2016) and the CONUS (Marshall et al. 2018).  These studies include 

maize, soybean, and winter wheat, and reported moderately strong relationships between 

NASS grain yield data and modeled yield (R2 ranging from 0.5 to 0.7) at the county and 

state scales (Guan et al. 2016; Marshall et al. 2018). Note that NASS crop grain yield data 

at the county scale were derived from the survey and sampling approach, thus, further 

studies are needed to compare yield data at individual farms or fields used in the NASS 

crop surveys.   

In our study, we focus on the relationship between GPP and NASS grain production 

of maize and soybean in the CONUS at the county scale. To explore the potential of in-

season forecasting, a linear regression model between cumulative GPPVPM_acc over time 

at 8-day interval and annual NASS grain production at the county scale accounted for 

more than 80% of variation of NASS grain production of maize and soybean among all 

the counties in the CONUS by the end of June, and more than 90% by the end of July 

(Fig. 4.8 and Fig. 4.9). Peng et al. (2018) incorporate satellite derived EVI and climate 



66 

 

forecast data in a crop model to forecast U.S. maize yield, they also report EVI improved 

the forecasting significantly in July and August. Therefore, the satellite-based 

information can play an important role in early crop yield and production forecast. 

The capacity of in-season forecasting can be further improved in several aspects. 

First, the GPPVPM simulation in this study was carried out at a moderate spatial resolution 

(500-m), and it could be improved by using high spatial resolution (e.g., 30-m Landsat, 

and 10-m Sentinel-2). Second, in-season forecasting of crop grain production requires in-

season maps of crop type (e.g., maize, soybean), planted area and harvested area at high 

spatial resolutions (e.g., 30-m or 10-m). In this study, we use the crop type and planted 

area maps from the CDL dataset with a high spatial resolution of 30-m. However, the 

CDL dataset took time to generate and was often scheduled to release in the spring of 

next year (one-year delay), which cannot meet the demand for grain production prediction 

in the current year (in-season forecast mode). Numerous crop-type classification studies 

have used single image  (Van Niel and McVicar 2004; Yang et al. 2011) or multiple 

images (Chang et al. 2007; Foerster et al. 2012) in the growing season. Recently, a few 

studies reported their efforts for high spatial resolution and in-season crop mapping (Cai 

et al. 2018; Wang et al. 2019a). It remains a major challenge for the remote sensing 

community to develop in-season maps of crop types, planted areas, and harvested areas 

in the CONUS. 

 4.5 Conclusion  

Our study evaluated  spatial-temporal dynamics of NASS crop statistical data (crop 

planted area, harvested area, grain production), satellite-based CDL crop planted area, 

and GPP estimates from the VPM model at the county, state and CONUS scales during 
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2008-2018. There are strong spatial-temporal consistencies between the crop planted area 

from the CDL dataset and crop planted area from the NASS crop statistics during 2008–

2018 at the county and state scales, which supports the use of the CDL dataset for model 

applications (He et al. 2018; Marshall et al. 2018). For maize and soybean crops, the 

HIGPP values, which is calculated as the ratio between NASS grain production and GPP 

at the county scale, have relatively small variations over years during 2008-2018, except 

the extreme drought year (2012). Cumulative GPPVPM and GPPMOD17 over time at 8-day 

interval within the maize and soybean growing season, together with HIGPP, were able to 

explain and predict grain production of maize and soybean at the county scale about 1-2 

month ahead of crop harvest. The strong and robust linear relationships between 

GPPVPM_acc and NASS grain production of maize and soybean in the CONUS at the 

county scale highlight the potential of GPPVPM_acc data products in monitoring and 

forecasting maize and soybean grain production in the CONUS. 
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Chapter 5: Spatial-temporal dynamics of winter wheat croplands in 

the Contiguous United States: Consistency between agricultural 

statistical and satellite approaches 

 Abstract  

Winter wheat is a major staple crop grown in the US, and the US is the third largest wheat 

exporters globally. Timely and reliable winter wheat production prediction in the US is 

important for regional and global food security. In this study, we evaluated the 

consistency between the agricultural statistical data and satellite-based data for winter 

wheat over the CONUS at county and national scales. First, we evaluated the planted area 

estimates from the Cropland Data Layer (CDL) and National Agricultural Statistics 

Service (NASS) during 2008-2018. There was strong spatial-temporal consistency 

between the CDL and NASS datasets for the planted acreage. However, both the CDL 

and NASS planted acreage showed a significant difference (>40%) from the NASS 

harvested area in the Southern Great Plains, where winter wheat is used as both a grain 

crop and forage crop. We then estimated gross primary production (GPP) of winter wheat 

at 8-day interval during 2008-2018 using the Vegetation Photosynthesis Model (VPM), 

which was driven by the CDL, climate, and satellite images. The total GPPVPM had a 

moderate linear relationship with grain production of winter wheat, with R2 value of 0.68 

at county scale over the CONUS. When excluding those counties with a significant 

difference (over 40%) between planted and harvested area, the relationship is improved 

with the R2 value of 0.85. Our findings suggest that the importance of reliable in-season 
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crop type classification and the potential of GPPVPM in crop monitoring, which could 

provide useful data to decision makers, stakeholders and the public..  

 5.1 Introduction 

Wheat is the most widely cultivated staple food crop in the world, accounting for 

approximately one sixth of the total arable land area, and wheat grain contributes about 

20% of the total dietary calories worldwide (Mitchell and Mielke 2005). Wheat is also 

widely traded in the world food market, and approximately ~23% of the world’s wheat 

grain production are traded internationally every year. The United States of America 

(USA) is the fifth largest wheat producer (after European Union, China, India, Russia) 

and the third largest wheat exporter (after Russia and European Union) (FAS/USDA 

2020). Winter wheat dominates the USA wheat production, accounting for approximately 

80% of the total wheat production (USDA 2014). The fluctuation of winter wheat 

production in the USA could have significant impacts on the global food security. 

Therefore, timely, reliable, and spatially specific information on winter wheat planted 

area, harvested area, and grain yield and production are critical for regional and global 

food security and international food trade.  

 The agricultural surveys and statistical reports by governmental agencies have 

been the major data sources for crop planted area, harvested area, grain yield, and grain 

production in a year at various administration levels (ADB 2015; Carfagna and Carfagna 

2010; NASS/USDA 2012; NASS/WAOB/USDA 1999). The National Agricultural 

Statistics Service (NASS) of the U.S. Department of Agriculture (USDA) is responsible 

for in-season forecast and year-end estimation of grain production of most crops grown 

in the USA. Each year NASS conducts several surveys and extensive field observations 
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to collect a variety of data needed to fulfill this task (NASS/USDA 2012; 

NASS/WAOB/USDA 1999). However, the data collection through agricultural surveys 

is not only time consuming and costly but also have long time lags and data gaps (De 

Groote and Traore 2005).   

 Satellite-based remote sensing has been widely used to identify and map crop 

planted area and harvested area since the early 1970s (Mulla 2013). Numerous studies 

have used multiple-temporal remote sensing data to characterize and map individual crop 

types (Massey et al. 2017; Skakun et al. 2017; Yang et al. 2019; Zhong et al. 2019) . The 

annual Cropland Data Layer (CDL) datasets, which were produced by NASS/USDA 

(Boryan et al. 2011) reported annual planted areas for all major crop types in the 

contiguous United States (CONUS) over the period of 2008-2018. The annual maps of 

pixel-based crop planted area from the CDL provide a supplementary acreage estimates 

to NASS acreage survey data, and it was reported that CDL-based crop planted area 

estimates were slightly lower than the NASS statistical estimates (Boryan et al. 2011). To 

date, no systematic comparative study was carried out to examine the spatial-temporal 

consistency of winter wheat planted area estimates between CDL and NASS datasets 

during 2008-2018 in the CONUS. No comparative study was conducted to investigate the 

differences between winter wheat planted areas (CDL, NASS) and harvested area (NASS) 

during 2008-2018 in the CONUS, neither.   

 Numerous efforts have been made to estimate crop yield and/or crop production 

by satellite remote sensing (Franch et al. 2015; Huang et al. 2016; Zhuo et al. 2019). 

Researchers use climate and satellite data to predict crop yield and/or production across 

a wide range of spatial scales and geographic regions. Both statistical models and process-
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based models have been used to estimate crop yields (Becker-Reshef et al. 2010; Cai et 

al. 2019; Wang et al. 2019b; Zhuo et al. 2019). Climate variables, such as air temperature, 

solar radiation and precipitation are common inputs to both statistical and process-based 

models (Gornott and Wechsung 2016; Zhuo et al. 2019). Though climate data describes 

the environmental condition that affects crop growth, it cannot directly detect the impact 

of both abiotic and biotic factors on crop growth (Hatfield et al. 2008; Mahlein et al. 

2012). Thus, it requires more input rather than climate data alone for predicting crop yield 

accurately (Cai et al. 2019). Various remote sensing-based data using various spectral 

bands have been extensively used for monitoring crop growth and estimating crop yield 

(Becker-Reshef et al. 2010; Franch et al. 2015; He et al. 2018a). For example, vegetation 

indices (e.g. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation 

Index (EVI)) derived from optical bands have been used to estimate winter wheat yield 

and production by applying an empirical harvest index (HI) specific to different crop 

types in different countries (Becker-Reshef et al. 2010; Franch et al. 2015). Satellite-

based gross primary production (GPP) also have been used to estimate crop yield and/or 

production (add reference]. GPP can be estimated by using a light use efficiency (LUE) 

model driven by both remote sensing images and climate data (Running et al. 2004; Wu 

et al. 2018; Zhang et al. 2017). Crop yield can then be estimated as the product of GPP 

and GPP-based HI (HIGPP) (He et al. 2018a). He et al. (2018a) modeled HIGPP from 

county-level MODIS GPP and grain production statistics for croplands in Montana during 

2008-2015 and applied the HIGPP for yield prediction. To date, no study has been 

conducted to evaluate the spatial-temporal relationships between annual GPP and annual 

winter wheat production in the CONUS during 2008 - 2018. There is also no study to 
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assess the potential of using GPP data for in-season forecasting of winter wheat 

production in the CONUS.  In this study, we investigated the spatial-temporal dynamics 

of winter wheat planted area, harvested area, gross primary production, and grain 

production in CONUS at county and national scales during 2008-2018, which could shed 

new insights on vulnerability and resilience of winter wheat production in CONUS to 

climate and other driving factors. First, we analyzed the agricultural statistical data on 

winter wheat planted area, harvested area and grain production from the USDA NASS 

and satellite-based data on winter wheat planted area from the USDA Cropland Data 

Layer (CDL) dataset during 2008-2018. The analysis will quantify the spatial-temporal 

consistency of winter wheat planted area between NASS and CDL datasets, the spatial-

temporal differences between winter wheat planted area and harvested area, and the 

relationships between winter wheat grain production and planted area or harvested area. 

Second, we analyzed the gross primary production (GPPVPM) data from the satellite-based 

Vegetation Photosynthesis Model (VPM), which were already evaluated with GPP data 

from the in-situ cropland eddy flux tower sites (GPPEC) (Wu et al. 2018), and grain 

production data from the NASS at county scale. The analysis will quantify the spatial-

temporal relationships between winter wheat GPPVPM and grain production (GP) from the 

agricultural survey statistics at county- and national-level under varying climate 

conditions (drought year versus normal years). The resultant relationship between 

GPPVPM and grain production, which is called as harvest index (HI) and defined as HIGPP 

(HIGPP = GP / GPP), could be used for comparison with other HI value defined by net 

primary production (HINPP; HINPP = GP / NPP) and aboveground biomass (HIAGB; HIAGB 

= GP / AGB). Third, we calculated the relationships between cumulative GPPVPM over 



73 

 

time and annual grain production at county scale and explored the potential to monitor 

winter wheat grain production in the CONUS within the winter wheat growing season. 

 5.2 Materials and methods 

 5.2.1 Study area 

The study area is the Contiguous United States (CONUS), which includes 48 states and 

3,233 counties. Climate in the CONUS ranges from subtropical climate in the southern 

region (e.g., Florida) to temperate climate in the northern region. Winter wheat is 

primarily grown in the Great Plains, with Southern Great Plains (Kansas, Oklahoma, and 

Texas) being the largest producing zone, contributing more than 40% of the total wheat 

production in the US (Steiner et al. 2015). Winter wheat cultivation is largely rain-fed. 

Note that some winter wheat fields in the Southern Great Plains are treated as dual-

purpose use fields, in other words, these fields could be used as a cool-season beef cattle 

grazing fields and/or grain production, dependent upon weather, market conditions and 

other factors (Edwards et al. 2011). 

 5.2.2 Winter wheat planted area, harvested area, and grain production data during 

2008-2018 from the USDA-NASS statistical dataset 

We used the official archive of annual county- and national- level statistics on crop 

planted area, harvested area, grain yield and production, which is available from the 

USDA National Agricultural Statistic Service (NASS) Quick Stats database 

(https://quickstats.nass.usda.gov/). The NASS crop statistics are based on data obtained 

from multiple frame-based sample surveys of farm operators, objective yield surveys, 

processors, and commercial storage firms, and so on. For example, the NASS winter 

https://quickstats.nass.usda.gov/
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wheat planted area and harvested area estimates come mostly from the Agricultural 

Survey in December and June. Farmers are asked by investigators about the acreage they 

planted and the acreage they intend to harvest (USDA 2014). The grain yield statistics 

were established based on both the Agricultural Yield Survey (AYS) and Objective Yield 

Survey (OYS). AYS is based on farmers’ reported yield and OYS is based on model 

simulation driven by field biophysical crop observations. The grain production is 

estimated from the expected harvested area and yield at the survey reference date and 

predicted assuming normal conditions for the remainder of the season. 

 5.2.3 Winter wheat planted area data from the USDA-NASS Cropland Data Layer 

dataset 

The annual CDL dataset is a remote sensing-based land cover product at 30-m spatial 

resolution, which includes more than 100 crop types in the CONUS since 2008 (Boryan 

et al. 2011). The CDL product is based on the machine learning method which utilizes 

both in-situ ground reference data and multi-temporal satellite imagery to locate and 

identify field crops. The major sources of training data used as in the supervised 

classification, includes the USDA’s Farm Service Agency (FSA) Common Land Unit 

(CLU) data and the National Land Cover Dataset (NLCD). The CLU data were collected 

based on the reported crop types and crop acreage from producers to the FSA county 

offices in the growing season. The CDL classifier utilized multiple remote sensing images, 

including AWiFS, Landsat TM and ETM+, Deimos-1 and UK-DMC-2 and MODIS 

satellite data (Boryan et al. 2011). The CDL data has a spatial resolution of 30 meters in 

2010-2018 and of 56 meters in 2008-2009. In 2018, the CDL data from 2008-2009 were 
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reproduced to 30 meters to keep a consistent resolution. In this study, we used the 30-m 

CDL data throughout 2008-2018 to keep our analysis in a consistent spatial resolution.  

 The CDL data provide very detailed information about multiple crop distribution, 

with classification accuracy higher than 90% for major crops (maize, soybean and winter 

wheat) (Boryan et al. 2011). It has been widely applied in scientific research related to 

land use and land cover change, agricultural sustainability, and agricultural production 

decision-making. An interactive Web-based CDL data portal, CropScape, was developed 

to visualize and analyze the CDL data in a more effective and efficient way (Han et al. 

2012). In this study, the acreage statistics was calculated from CropScape for all the crop 

categories at each county during 2008-2018. The annual total area for winter wheat at 

each counties calculated as the sum of both the single cropping and double cropping area, 

respectively. The national total areas for winter wheat in each year was then calculated 

by adding the annual total area over all the counties in the nation. 

 5.2.4 Gross primary production (GPP) data from the Vegetation Photosynthesis Model 

(VPM) 

The VPM model is a light use efficiency model and estimates daily GPP as a product of 

the amount of PAR absorbed by chlorophyll in the canopy (APARchl) and the light use 

efficiency (Xiao et al. 2004a; Xiao et al. 2004b). A number of publications have reported 

the evaluation of GPPVPM with GPPEC estimates from the eddy flux tower sites, including 

maize (Dong et al. 2015; Kalfas et al. 2011), soybean (Jin et al. 2015; Wagle et al. 2015), 

winter wheat (Doughty et al. 2018; Yan et al. 2009) and paddy rice (Xin et al. 2017). All 

these publications reported strong agreement between GPPVPM and GPPEC, with a range 

of R2 values from 0.70 to 0.98. The input data for simulations of the VPM model include 
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meteorological data (shortwave radiation, air temperature), and satellite-based vegetation 

indices (EVI, LSWI). More detailed description of the VPM model can be found in 

previous publications (Wu et al. 2018; Xiao et al. 2004a; Xiao et al. 2004b; Zhang et al. 

2017). In this study, we followed the same procedure to run VPM simulations as reported 

in a previous study (Wu et al. 2018).  Different maximum light use efficiency (LUE0) 

parameter values for C3 and C4 crops were used, which improves daily GPP estimation 

in croplands (Wu et al. 2018). The growing-season total GPP of winter wheat at each 

pixel were calculated by summarizing daily GPP between the USDA planted and 

harvested dates (NASS/WAOB/USDA 1999) . The mean GPP (GPPmean) at each county 

during the growing season were area-weighted based on the area fraction for winter wheat 

derived from the CDL datasets in each 500-m pixel. The growing season total GPP 

(GPPtotal) for winter wheat at each county was calculated as GPPmean multiplied by the 

total area of all those pixels with winter wheat located in the county. 

 5.2.5 Statistic metrics 

To explore the interannual changes of grain production, planted area, harvested area and 

grain yield of winter wheat from 2008-2018, we calculated the anomaly of each variable 

as the difference between the value in specific year and multi-year average from 2008-

2018, and then normalized by the multi-year average. Simple linear regression models 

were used to characterize the relationship between grain production and GPPtotal, and 

between grain production and cropping areas at county and national scales, at a minimum 

0.05 significance threshold (p-value). Model performance was evaluated using the 

coefficient of determination (R2), and bias (RMSE) between the modelled grain 

production estimates and the corresponding grain production statistics.  The regression 
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slope between grain production and GPPtotal, representing the conversion coefficient from 

GPPtotal to grain production, is derived as the GPP-based Harvest Index (HIGPP). 

Timely prediction of grain yield is one requirement in yield monitoring (Cai et al. 

2019). To explore the in-season predictability from GPPVPM, linear regression models 

were applied between grain production and accumulative GPP (GPPaccum) over time at 8-

day temporal resolution at county-scale (see Equation 5.1).  

𝐺𝑟𝑎𝑖𝑛 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑎 ∗ ∑ (𝐺𝑃𝑃𝑡 × 𝑘) + 𝑏𝑡
1        t = 1, 2, 3, …, 46                                   (5.1) 

Where t is the number of time steps in a year, which ranges from 1 to 46, as time series 

GPP has 46 data points in a year; k is the number of days in each time step, k is equal to 

8 days when t ranges from 1 to 45, and k is 5 (non-leap year) or 6 (leap year) when t is 

46. In this study, we simply used a calendar year schedule to run the statistical models for 

all counties, though winter wheat is usually planted in autumn. The GPPaccum during the 

cool time is usually low and can be negligible in affecting the modelling skills. 

 5.3 Results 

 5.3.1 Spatial distribution and inter-annual changes of winter wheat planted area, 

harvested area, and grain production during 2008-2018 from the CDL and NASS 

statistics datasets 

At the national scale, winter wheat planted area, harvested area and grain production from 

NASS were the highest in 2008 but decreased substantially in 2017 and 2018 (Fig. 5.1a). 

Production showed a decreasing trend during 2008-2018, which is largely determined by 

the decrease of planted and harvested area (Fig. 5.1). Winter wheat yield was relatively 

stable during 2008-2013 but varied significantly in recent years, with the lowest value in 
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the drought year 2014 and the largest value in 2016. Overall, the planted acreage derived 

from the CDL data showed a similar changing trend as NASS planted acreage but with a 

different magnitude. The NASS harvested area showed a different changing magnitude 

as the NASS planted acreage, as well as the CDL planted acreage. The harvested 

percentage of winter wheat varied from ~75% (2013, 2014, 2017, and 2018) to ~85% 

(2008, 2010, and 2012) during the 11 years (Fig. 5.1b). 

 

Figure 5.27 Interannual variability of (a) planted area from CDL and NASS 

statistics, harvested area, yield, production from NASS statistics; (b) harvested 

percentage of winter wheat derived from CDL and NASS planted acreage during 

2008-2018. 
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At county scale, the CDL dataset in 2010 shows that winter wheat was cultivated in 

2,853 counties, and many counties in the Southern Great Plains, known as the Winter 

Wheat Belt, had a large winter wheat planted area, (Fig. 5.2a). The NASS statistical 

dataset in 2010 reported winter wheat planted area and harvested area in 2,426 counties 

(Fig. 5.2b,c). The spatial distribution of CDL-based winter wheat planted area is 

consistent with that of NASS-based winter wheat planted area. The NASS statistical 

dataset in 2010 reported winter wheat yield and production in 1,263 counties (Fig. 5.2d,e).  

The spatial distribution of winter wheat yield in 2010 (Fig. 5.2d) is very different from 

that of winter wheat planted area, and many counties in the northwest region and 

California had the highest yield while most counties in the Southern Great Plains and the 

southeastern CONUS had the lowest yield.   

 

Figure 5.28 The spatial distribution of (a) winter wheat planted area from the CDL, 

(b) winter wheat planted area from the NASS statistics datasets, (c) harvested area 

from the NASS statistics, (d) grain yield and (e) production from the NASS statistics, 

and (f) annual averaged VPM GPP at county scale in the CONUS in 2010. 
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For all the counties having winter wheat planted area and harvested area from both 

CDL and NASS datasets during 2008-2018, the CDL-based winter wheat planted area 

agreed well with NASS-based winter wheat planted area at county scale (R2 = 0.98, 

p<0.001) (Fig. 5.3a), with a relative small interannual variation as shown in the slope 

values (<10%) (Table 5.1). In many counties, winter wheat harvested areas were much 

smaller than winter wheat planted areas from the CDL dataset and the NASS dataset (Fig. 

3b,c). Most of those counties with large discrepancy between winter wheat planted area 

and harvested area were distributed in the Southern Great Plains and California, where 

some of winter wheat fields were used as cool-season forage for beef cattle production 

(grazing or haying), which is often called as the dual purpose use of winter wheat fields. 

We further calculated the interannual trend of winter wheat planted areas from both CDL 

and NASS datasets during 2008-2018 (Fig. 5.4). There are few counties included from 

the NASS dataset because of the data missing over the continuous 11 years for many 

counties. Many counties plant less winter wheat than before. But the spatial distribution 

has some differences, the CDL data showed a decreasing planting of winter wheat in the 

Northern Great Plains and Kansas, and an increase of planting in Oklahoma and Texas. 

Compared to CDL acreage data, the NASS data showed a significant decrease in planted 

area in Oklahoma. This difference could be related to the data accuracy of the two datasets. 
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Figure 5.29 The comparisons between winter wheat planted areas from the CDL 

and NASS datasets and between winter wheat planted area and harvested area 

during 2008-2018 at county scale, and the spatial discrepancy between CDL and 

NASS planted area, CDL planted area and NASS harvested area, and NASS planted 

and harvested area in 2010. The 2011 is a typical drought year over the winter wheat 

belt, and 2016 is a wet year. 

Table 5.12 Relationship between NASS and CDL cropping area for winter wheat 

from 2008-2018 

  
plt_cdl vs 

plt_nass 

plt_cdl vs 

harv_nass 

plt_nass vs 

harv_nass 

  slope R
2

 slope R
2

 slope R
2

 

2008 0.960 0.973 1.070 0.941 1.111 0.958 

2009 0.987 0.986 1.105 0.873 1.126 0.897 

2010 1.016 0.986 1.121 0.953 1.106 0.971 
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2011 1.025 0.989 1.152 0.862 1.137 0.898 

2012 1.025 0.986 1.101 0.909 1.086 0.949 

2013 1.010 0.990 1.145 0.867 1.141 0.888 

2014 0.973 0.984 1.134 0.841 1.179 0.882 

2015 1.055 0.985 1.190 0.926 1.135 0.955 

2016 1.060 0.985 1.166 0.917 1.113 0.959 

2017 1.071 0.968 1.209 0.870 1.146 0.937 

2018 1.091 0.977 1.224 0.839 1.142 0.902 
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Figure 5.30 Trend of planted area for winter wheat from 2008-2018 

For all the counties having winter wheat planted area, harvested area and grain 

production data during 2008-2018, the NASS-based grain production had a slightly 

stronger relationship with NASS-based harvested areas than do CDL-based planted area 

and NASS-based planted area (Fig. 5.5). Table 5.2 shows the interannual variations of 

the relationships (slope and R2 values in the simple linear regression models) between 
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grain production and planted area and harvested area, and the poorest relationship 

occurred in the spring drought year 2014. 

 

Figure 5.31 The relationships between winter wheat grain production from the 

NASS dataset and winter wheat cropping area from the CDL and NASS datasets 

during 2008-2018 at the county scale. The black solid line is the regression line for 

all the counties during 2008-2018. 

Table 5.13 A summary statistics for the relationships between winter wheat grain 

production from the NASS dataset and winter wheat cropping areas from the CDL 

and NASS datasets during 2008-2018. 

  plt_cdl plt_nass harv_nass 

  slope R2 slope R2 slope R2 

2008 257.563 0.797 251.732 0.813 293.283 0.891 

2009 214.095 0.662 215.726 0.692 273.397 0.863 

2010 257.448 0.801 265.183 0.819 306.041 0.888 

2011 215.925 0.601 225.973 0.631 290.309 0.795 

2012 243.865 0.751 256.137 0.794 293.257 0.868 

2013 221.878 0.610 227.598 0.632 296.460 0.817 

2014 181.539 0.555 179.375 0.572 244.449 0.768 

2015 197.584 0.723 213.490 0.761 256.620 0.852 

2016 278.651 0.745 305.255 0.801 359.768 0.893 

2017 244.456 0.675 275.462 0.748 343.499 0.876 

2018 218.487 0.595 249.051 0.653 319.785 0.802 
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 5.3.2 The relationship between GPPVPM and grain production at county scale during 

2008-2018: The harvest index as defined by GPP and grain production 

At the county scale, the NASS winter wheat grain production showed moderately linear 

relationships with annual GPPtotal (Fig. 5.6a). When all county-year data in the CONUS 

were used in the simple linear regression model between grain production (GP) and GPP, 

GPPtotal accounted for 68% of winter wheat grain production from the NASS dataset (Fig. 

5.6a). The relationships between NASS winter wheat grain production and GPPVPM 

varied by years, with R2 values ranging from 0.59 in 2009 to 0.75 in 2016 (Table 5.3). 

The slope values in the simple linear regression models with no intercept (GP = HIGPP * 

GPP) varied from 0.25 in 2012 to 0.33 in 2011 (Table 5.3).   
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Figure 5.32 (a) Relationship between NASS production and cropping area for winter 

wheat from 2008-2018, the black solid line is the regression line for all the county-

level production and cropping areas from 2008-2018. (b) Relationship between 

NASS production and cropping area for winter wheat from 2008-2018 considering 

the difference between CDL planted area (plt_cdl) and NASS harvested area 

(harv_nass). (c) Density plot of the relationship between HIGPP and difference of 

plt_cdl and harv_nass. (d) histogram of HIgpp for all county and years with a 

difference of plt_cdl and harv_nass less than <10%. 
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Table 5.14 Statistics of linear regression between NASS production and GPPVPM 

for winter wheat during 2008-2018 (pvalue < 0.05) 

Year slope R
2
 

2008 0.306 0.711 

2009 0.298 0.591 

2010 0.320 0.741 

2011 0.343 0.688 

2012 0.254 0.694 

2013 0.290 0.692 

2014 0.295 0.609 

2015 0.229 0.660 

2016 0.304 0.746 

2017 0.306 0.713 

2018 0.321 0.709 

 

As the differences between CDL planted area and NASS harvested area varied by 

county and year, Fig. 5.6b shows that HIGPP, the conversion coefficient from GPPtotal to 

grain production, were significantly affected by the differences between CDL planted 

area and NASS harvested area, with a much higher value in those counties where the 

differences between planted and harvested area are less than 30%. The relationship 

between NASS winter wheat production and GPPtotal is also stronger in those counties 

(Table 5.4).  
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Table 5.15 Statistics of linear regression between NASS production and GPPVPM at 

counties by considering the relative differences between CDL planted area and 

NASS harvested area (pvalue < 0.05). 

relative difference 

(%) 
slope R2 

[0,10) 0.27 0.87 

[10,20) 0.22 0.83 

[20,30) 0.17 0.79 

[30,40) 0.14 0.79 

[40,50) 0.11 0.81 

[50,60) 0.1 0.83 

>60 0.07 0.69 

HIGPP showed significant variation across counties and years, mostly ranging from 

0-0.4 (Fig. 5.6c). This variation is largely contributed to the difference between CDL 

planted area and NASS harvested area (Fig. 5.6c). For those counties with similar CDL 

planted area and NASS harvested area (difference <10%), the HIGPP is mainly 

concentrated in 0.2-0.4 (Fig. 5.6d). 

 5.3.3 In-season forecasting of winter wheat grain production using cumulative GPP 

data 

In CONUS, winter wheat is usually planted in September to November, and harvested in 

June to August of next year. We assessed the potential of the simple linear regression 

model that used cumulative 8-day GPP over time (8-day time interval) to predict grain 

production of winter wheat at county scale over individual years (grain production = a * 

cumulated GPP + b). When using all the counties-year data in the CONUS, the model 
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prediction skill increases over time and reaches in the range of 60% to 80% by the end of 

June (Fig. 5.7a). When using all the counties-year data in a state, the model prediction 

skills for those states located in the cold northern part of the CONUS, where there are 

little differences between the planted area and harvested area, reach 90% by the end of 

May (Fig. 5.7b,c). For those states located in the Southern Great Plains with big 

differences between CDL planted area and NASS harvested area, the model prediction 

skill varies over years, ranging from 70% to 90% (Fig. 5.7d,e). After excluding those 

counties with larger than 30% difference between CDL planted area and NASS harvested 

area, the model prediction skill for the CONUS increases and varies between 80% and 

90% over years (Fig. 5.7f). 
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Figure 5.33 The prediction skill of the linear regression models that predict county-

level crop grain production from NASS statistics by using accumulative GPP 

estimates over time (8-day interval) from the VPM model and CDL cropping area 

over years for winter wheat during 2008-2018 over counties in the (a) all counties in 

CONUS; (b) all counties in Montana; (c) all counties in Washington; (d) all counties 

in Kansas; (e) all counties in Oklahoma; (f) CONUS for all counties with less than 

30% differences between CDL planted area and NASS harvested area. 

 5.4 Discussion  

 5.4.1 Spatial-temporal consistency of winter wheat harvested area from NASS datasets 

and planted area from the NASS and CDL datasets 

Crop planted area and its spatial distribution are the first data layer for crop production 

monitoring and forecasting. In this study, the CDL winter wheat planted area estimates 

in the CONUS had a good spatial-temporal consistency with the NASS planted area 

estimates at county-level during 2008-2018 (R2 = 0.98). This is consistent with the 
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findings from several previous studies which compared these two different planted area 

estimates over some counties or states in a few years (Becker-Reshef et al. 2010; Boryan 

et al. 2011). This high spatial-temporal consistency can be largely attributed to the 

accuracy of the CDL and NASS statistical data, especially for major crops like maize, 

soybean and winter wheat (Boryan et al. 2011). The high accuracy and robustness of the 

CDL dataset for winter wheat planted area makes it reliable for crop monitoring.  

 Crop harvested area and its spatial distribution are directly related to crop 

production because some crop fields could not be harvested due to damage, failure, and 

other factors. In our study, we found the spatial-temporal consistency of winter wheat 

planted and harvested area in the CONUS varied substantially, especially in the Southern 

Great Plains and in some spring drought years (2011, 2013-2014). The Southern Great 

Plains is one of key regions for the Nation’s wheat and beef production. In many counties 

of the Southern Great Plain region, winter wheat is used as a dual purpose graze-grain 

system, producing both a grain crop and a forage crop to supply beef cattle (Edwards et 

al. 2011; Hossain et al. 2004). Winter wheat intended for dual-purpose management in 

this region is usually sown two to four weeks earlier at higher seeding densities (1.5-2 

times) than those used in grain-only system. Grazing is usually started 45-60 days after 

sowing and is terminated at the first hollow stem stage of growth (Edwards and Horn 

2010). Most of those grazed winter wheat areas recovered and continued to grow for grain 

production after removing beef cattle, while some fields were kept as pasture (grazing-

out) or baled for hay for beef cattle production (Steiner et al. 2018). Drought is an 

important factor that can lead to the loss of grain yield and abandonment of winter wheat 

acres in the Southern Great Plains. The winter wheat crop in this area normally breaks 
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from dormancy in late February or early- to mid-March. A lack of precipitation or snow 

before the dormancy period could significantly reduce the growth of winter wheat crops 

(Steiner et al. 2018). Those could lead to the significant differences between planted and 

harvested area, especially over the Southern Great Plains. 

Our study demonstrates the potential of the CDL and NASS datasets in 

understanding the changes of planted area, harvested area, and grain production of winter 

wheat in the CONUS during 2008-2018. Over these years, winter wheat production in the 

CONUS decreased in 2008-2010, then increased in 2010-2013, and decreased again 

during 2013-2018, which is mainly consistent with the fluctuation of planted/harvested 

area (Fig. 1). This can be largely explained by the international market and grain prices 

during this period. The winter wheat market in the U.S. have faced increasing competition 

from key competitors in the Black Sea, the European Union (EU), and South America. 

For example, Russia and Ukraine have displaced U.S. hard red winter wheat markets, 

while European soft winter wheat has challenged the U.S. soft wheat market in Middle 

Eastern and North African (Bond 2020).  

 5.4.2 Harvest Index  ̶  The relationships between GPP and NASS grain production 

The “Harvest index” (HI) is an important term used in the study of crop production and 

is defined in three ways: (1) the ratio between crop grain production (yield) and 

aboveground biomass (AGB), namely HIAGB (Prince et al. 2001); (2) the ratio between 

crop grain production (yield) and net primary production (NPP), namely HINPP (Guan et 

al. 2016; Lobell et al. 2002); and (3) the ratio between crop grain production (yield) and 

gross primary production (GPP), namely HIGPP (He et al. 2018a). The three HIs 

definitions are different but related to each other, as GPP, NPP and AGB are related to 
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each other. GPP represents the total carbon fixed by photosynthesis during the growing 

stage. NPP refers to the difference between GPP and autotrophic respiration and is often 

estimated as a sum of aboveground biomass and belowground biomass at the end of the 

plant growing season. AGB is the total biomass allocated to the leaf, stem, branches, and 

seeds. The grain production (yield) is part of AGB at harvest. Several studies have 

reported that there is a close relationship between canopy photosynthesis and yield at the 

seasonal scale (Yuan et al. 2016b; Zelitch 1982). Some previous studies utilized a  fixed 

converting ratio from NPP to yield by applying a constant HIAGB and a fraction of AGB 

to total biomass (Lobell et al. 2002; Prince et al. 2001). But The yield and photosynthesis 

relationship could be affected by wheat species, cultivars, and environmental factors (e.g., 

temperature, water, nitrogen) (Triboi and Triboi-Blondel 2002). For example, Guan et al. 

(2016) reported that the portion of photosynthesis (GPP) that turns to NPP for crops over 

the Midwest US varied with temperature based on NPP estimated from NASS yield and 

SIF-based GPP, ranging from 0.2-0.7 for the CONUS. Liu et al. (2008) also reported that 

plant roots tend to grow during the drought stress while shoot growth is decreased. Our 

results showed a mean HIGPP of 0.27 over counties with the differences between CDL 

planted area and NASS harvested area less than 10%, but it also fluctuated over counties 

and years (Fig.5). This variation of GPP-yield relationship (HIGPP) could not only result 

from above-mentioned environmental factors but also crop management and crop 

varieties. For example, the winter wheat yields in the Southern Great Plains are lower and 

more variable than other counties, because part of the crop is used as pasture when grazing 

is more profitable than harvesting. The rate of abandonment could vary in some climate 

extreme years as adverse weather reduces wheat yield.  In addition, the fertilizer 
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application, tillage, row spacing could also affect the yield both spatially and temporally 

(Vocke and Ali 2013). Further efforts are needed to quantify the responses of GPP and 

yield during climate extreme events. 

 5.4.3 In-season forecasting of winter wheat grain production 

The LUE models provide a simple but efficient way to estimate biomass or yield (Yuan 

et al. 2016b). Unlike empirical models, they are semi-empirical and can be applied in 

both site or regional scale with calibration and validation (Marshall et al. 2018; Yuan et 

al. 2016b). In our study, we combined GPP estimated from the VPMgpp and CDL crop 

area and evaluated  the relationship of these estimates with official production statistics.  

The modelled crop grain production estimates correlated well with the county- and state-

level NASS winter wheat grain production. Our current study focuses on county-level 

and state-level NASS reported crop production because the USDA NASS benchmark 

production data are readily available at those scales. The lack of field-scale crop yield 

records limit the validation of GPPVPM-based estimates of grain production at the field 

scale. The GPP simulation in this study was executed at a moderate spatial resolution 

(500-m). For the winter wheat major producing region, which produced >40% of the total 

winter wheat, it is relatively close to the field scale because there are few mixed pixels in 

these counties and state. But for other regions, the mixed pixels problem will cause 

significant discrepancy in calculating wheat GPP and grain production. GPP products 

with high spatial resolution (e.g., 30-m Landsat, and 10-m Sentinel-2) and suitable 

temporal frequency (weekly) may overcome the above limitations for field-scale 

agricultural applications. 
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 This study highlighted the importance of accurate and timely spatial classification 

of crop types in prediction of crop production, including both planted area and harvested 

area. Planted area provided the basic information at the start of growing season while 

harvested area is directly related to the grain production. For some major crops like maize 

and soybean, there could be no significant differences between planted area and harvested 

area in the CONUS. But our study showed there are significant differences between them 

for winter wheat over the CONUS, especially the Southern Great Plains, with a relative 

difference of planted to harvested area greater than 40%. Numerous studies tried to 

provide in-season crop types map as early as possible based on remote sensing data (Cai 

et al. 2018; Qiu et al. 2017), however, there is still a lack of attention about both planted 

and harvested area mapping. A separate classification of planted and harvested area can 

help to get a more accurate prediction of final production. Another issue is to have timely 

high resolution (e.g., 30 m or 10 m) crop classification map. The CDL data usually has 

six months lag time after harvest before releasing to the public, which precludes in-season 

production prediction. An emergence of some high-spatial resolution satellite 

observations, such as the Sentinel-2 (10 or 5-day revisit) and Sentinel-1 (12 or 6-day 

revisit), provides time-series image data at a finer spatial resolution (10-m) and weekly 

intervals, which offers an unprecedented opportunity to map different types of crops 

timely at a field scale, especially in those regions with complicated crop landscapes and 

frequent cloud cover. 

 5.5 Conclusion 

We evaluated the spatial-temporal consistency among NASS crop statistical data (planted 

acreage, harvested acreage, grain production), satellite-based CDL planted acreage, GPP 



96 

 

estimates from VPM and CDL planted area for winter wheat at county and national scales 

during 2008-2018. High consistency was found between CDL planted acreage and NASS 

planted acreage, but there is a significant difference between the planted acreage and 

harvested acreage. There is also moderate correlation between annual total GPPVPM and 

grain production at county and state scales. Cumulative GPPVPM at 8-day intervals within 

the wheat growing season, together with HIGPP, was able to predict wheat grain 

production at county-level from early May to late June, varying in different states. The 

HIGPP, which is calculated as the relationship slope between GPP and grain production, 

is fluctuate over counties and years, but more concentrated when excluding those counties 

with large differences of planted and harvested area, with an averaged value of 0.27. The 

results from this study highlight the importance to differentiate planted and harvested area 

in crop mapping. Our results also demonstrate the potential of accurate GPPVPM products 

in monitoring grain production of winter wheat in the CONUS.   
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Chapter 6: Conclusions and perspectives 

My research has advanced our knowledge in the field of remote sensing of vegetation in 

two main ways. First, we demonstrated the ability of SIF and hyperspectral-related 

vegetation indices to track the seasonality of GPP at the site level. Further, we analyzed 

the effect of drought on SIF and vegetation indices (Chapter 2). I also examined the 

combined impact of spring warming and summer drought on terrestrial carbon uptake at 

a regional scale by utilizing multiple datasets (Chapter 3).  Then we applied the regional 

GPP products to estimate crop production, for maize/soybean (Chapter 4) and winter 

wheat (Chapter 5). As it is projected that an increase in the intensity and duration of 

climate extremes will happen in the future, it is not only important to understand annual 

carbon uptake and the regional carbon cycle, but also has important implications for 

monitoring food production to ensure food security and understanding how 

anthropogenic activity may help mitigate the impacts of climate extremes.  

The results of my study in Chapter 2 and Chapter 3 have demonstrated the potential 

of SIF to track the seasonal dynamics of GPP and the drought impact at site and regional 

scales. In the future, it will be interesting to explore how to incorporate SIF into GPP 

models. However, more systematic work is needed for understanding the underlying 

mechanism for the relationship between GPP and SIF. There is a complex relationship 

between the carbon fixation during the Calvin cycle and SIF emitted from the leaf during 

the light reaction. It is necessary to better understand how this SIF-GPP relationship 

varies under environmental stress over time and for difference ecosystems. In addition, 

the in-situ or satellite observed top-of-canopy SIF is not identical to the total SIF emitted 

from the canopy, which is strongly affected by the direction of observation and the 



98 

 

scattering and reabsorption related to the canopy structure. A combination of in-situ 

observations and radiative transfer models can help better understand the process.  

For future regional application, an accurate and timely spatial classification of crop 

types is essential in prediction of crop production, including both planted area and 

harvested area. At state and county scales we found a strong correlation between VPM 

GPP and crop production for maize and soybean, but not for the dual-purpose winter 

wheat. There is still no timely high resolution (<=30m) map of annual crop type, let alone 

such in-season crop maps to identify planted and harvested area over years. Planted area 

provided the basic information at the start of growing season while harvested area is 

directly related to the grain production. A separate classification of crop types at the 

beginning of growing season and harvest time can help to accurately predict final 

production. Recently, emergence of high-spatial resolution satellite observations, such as 

the Sentinel-2 (10 or 5-day revisit) and Sentinel-1 (12 or 6-day revisit), provides time-

series image data at a fine spatial resolution (10-m) and weekly intervals, which offers an 

unprecedented opportunity to map different types of crops timely at a field scale. Timely 

high-resolution crop planted area maps would allow high resolution GPP (e.g., 30-m 

Landsat, and 10-m Sentinel-2) for agricultural applications than the 500-m global GPP 

simulations currently available. 
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