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ABSTRACT 

 
This dissertation builds on and contributes to work in the field of 

financial risk management, specifically option-implied probability 
distributions. Although a number of studies have examined estimating 
the middle portion of probability distributions, there has not been a 

strong focus on the tails of the distribution, which are of particular 
importance in a risk management setting. As such, this study provides 
additional insights about these tails, by horse-racing four different tail-

fitting methods. This research differs from previous studies by 
introducing a new, non-parametric, heuristic tail-fitting method that is 

similar in methodology to the consensus, most-often used method to 
estimate the middle portion of the probability distribution; and, by 
identifying which tail fitting method produces the most stable estimate 

with the least tail-option pricing error. In short, the non-parameterized, 
heuristic method, similar to the fast and stable method most commonly 
used to estimate the middle portion of the probability distribution, is also 

stable, with the least option pricing bias in the tails of the distribution. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Option pricing theory, along with increasingly available data and 

computational power, presents an opportunity to reveal valuable 

information about market expectations and risk preferences.  Investors 

have long used derivatives to infer information, e.g., cost of carry rates 

and Black-Scholes implied volatilities.  Beyond just this, with a complete 

set of options prices, an asset’s entire risk-neutral probability 

distribution (RND) can be revealed.  Given the well-documented non-

normality of most assets’ returns (i.e. the Black-Scholes volatility smile), 

the higher moments of the return distribution are of interest. 

 

Foremost, knowledge of the RND is desirable because it enables the 

pricing of any derivative of the underlying asset with the same time to 

expiration, regardless if it be illiquid or ‘non-vanilla.’  Beyond this 

obvious application, there are several lines of research that use option-

implied RNDs.   
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For example, central bankers use RNDs to assess market sentiment over 

future changes in interest rates, exchange rates and stock prices, and 

likewise to confirm the market’s acceptance of major policy decisions.  Of 

particular interest is the predictive power of RNDs prior to major 

economic events such as crash episodes, exchange rate/interest rate 

regime changes, wars, and elections.  RNDs are fruitful for this type of 

analysis because unlike other market-based time series data, which in 

isolation capture only an expectation (and therefore represent only one 

expected economic scenario), RNDs capture the uncertainty that is 

fundamentally inherent in the marketplace -- that there are multiple 

future scenarios. 

 

Another line of research uses RNDs to measure risk aversion.  They 

separately estimate the risk neutral density from option prices and the 

objective density from historical returns of the underlying asset, and use 

these two separately derived functions to infer implied relative risk 

aversion.  Knowledge of economy-wide risk aversion is of particular 

importance since it makes possible a number of forecasting applications 

in risk management, which require the RND to first be converted into its 

objective counterpart (the following section discusses risk-neutral versus 

objective probabilities). 

 



3 
 

In this thesis, I develop a particularly stable method for fitting the tails of 

the RND.  The tails have proven difficult to estimate, due mainly to data 

limitations.  Options are only written on a limited range of strike prices 

and those that are written far away-from-the-money tend to have little 

liquidity.  However the tails are of prime importance when attempting to 

predict major market events, the most common application of RNDs.  My 

model will be tested (horse-raced) against other methods that have been 

put forth:  first, in a time series analysis of stability; then in a pricing 

error test using observed option prices. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

On April 26th, 1973 the Chicago Board Options Exchange (CBOE) was 

spun-off from the Chicago Board of Trade (CBOT), originally to celebrate 

the Board of Trade’s 125th anniversary.  The idea for the Exchange is said 

to have come from the brothers “Eddie” and “Billy” O’Connor, prominent 

CBOT soybean traders, and Joseph Sullivan, then-assistant to the CBOT 

president, who would become the first president of the CBOE.  The 

Exchange came about despite antagonism from many of the existing 

members of the CBOT, who felt options to be too specialized for exchange 

trading.  Nevertheless, for the first two years of the CBOE’s existence, the 

“smoking room” of the CBOT became the first trading floor for 

standardized options. 

 

While this was the beginning of modern-day trading in standardized 

options, over-the-counter (OTC) options have existed since antiquity.  In 

fact, some of the earliest-dated writings on record, cuneiform tablets 
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from circa 1750 BCE, are option contracts on real estate.  Indeed, the 

Code of Hammurabi, pre-dating Moses’ Law by roughly 200 years, gives 

legal foundation for option-contract rights on real property.   

 

But 1973 wasn’t really when organized options markets became a thing 

either.  At that time, the CBOE only listed call options, no puts until 

1977.  As well, it wasn’t until 1983 that they first listed index options, 

the most popular traded contracts today.  To tell the truth, the date 

when the CBOE really came to become was Black Monday, October 19th, 

the 1987 crash!   That being when the overall stock market lost over 20% 

during morning hours trading; all CBOE contracts nearly went to zero in 

the following 24 hours, only to survive by a single, miraculous trade in 

the CBOT’s index futures market 1 ; a date that the standard Black-

Scholes Option Pricing Model completely broke down, and hasn’t 

recovered since.  The problem: mis-valued risk in the tails of assets’ 

return distributions2. 

 

Option Pricing. 

 

1973 was also the year when Black and Scholes (1973) and Merton 

(1973) standardized option pricing.  Prior to, the valuing of options was 

                                                           
1
 See Vitale (2012). 

2
 This could also be viewed as a qualitatively different kind of risk (i.e. an “on/off” risk, 

liquidity-risk), separate from the asset’s return distribution. 
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somewhat ‘chaotic’ in-itself.  Not just because the pricing of contingent 

claims was beyond the ‘mathematic dossier’ of most practitioners, but 

because the models depended on a correct valuation of the risk of the 

underlying asset; which is another, simpler, but also quasi-understood 

problem; too many degrees-of-freedom from a quant’s perspective; and 

too complex overall from a practitioner’s perspective.  Sprenkle (1964) 

was the standard prior to Black-Scholes: 

 

𝐶 = 𝑆𝑁(𝑑1) − (1 − 𝑍)𝐾𝑁(𝑑2)𝑒
−𝑟𝑡     (1) 

 

where, 

 

                               𝑑1 =
𝑙𝑛(

𝑆

𝐾
)+(𝑟+

𝜎2

2
)𝑡

𝜎√𝑡
,       𝑑2 = 𝑑1 − 𝜎√𝑡 

 

𝐶   = value of the call option 

𝑆   = underlying share price 

𝑁(. ) = cumulative standard normal distribution function 

𝑍  = degree of risk-aversion 

𝐾  = strike price 

𝑟  = growth rate of the underlying share price 

𝑡   = time to expiration 

𝜎  = standard deviation of share price returns. 
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Of the model’s inputs S, K, and t are known, while r, Z, and σ must be 

assumed.  The Black-Scholes model simplifies this by setting the growth 

rate of the underlying share price, r, equal to the risk-free interest rate, 

and risk-aversion, Z, equal to zero; leaving only one non-observable 

input, σ, the volatility of the underlying returns.  The rationale for this 

simplification comes from a no-arbitrage argument.  If the model holds 

true, then the call option’s delta, the ratio of the change in the option’s 

price to the change in the underlying’s price, is known: 

 

∆=
𝑑𝐶

𝑑𝑆
= 𝑁(𝑑1).       (2) 

 

This delta can be replicated by taking a leveraged position in the 

underlying stock.  Therefore, a risk-free portfolio can be created by 

combining a long position in the call with a dynamically hedged short 

position in the leveraged underlying stock; dynamic, because the delta 

changes as the underlying share price changes (this is referred to as the 

option’s gamma).  Essentially, in this model, risk is priced as if the 

derivative’s required return falls along the capital market line of the 

Capital Asset Pricing Model (CAPM): 

 

𝑟𝐶 = 𝑟𝑓 + ∆𝐶𝛽𝑆(𝑟𝑚𝑘𝑡 − 𝑟𝑓),      (3) 
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where, 

 

 𝑟𝐶 = required return of the option 

 𝑟𝑓 = risk-free rate 

 ∆𝐶 = delta of the option 

 𝛽𝑆 = beta of the underlying asset 

 𝑟𝑚𝑘𝑡 = required return of the market portfolio. 

 

While equation (1) is un-wieldy at first glance, its intuition is relatively 

simple.  This was shown by Cox, Ross, and Rubinstein’s (1979) binomial 

option pricing model, which, while a simplification of Black-Scholes, is 

actually more flexible (less parameterized), and is used by many option 

practitioner-traders today.    

 

The binomial option pricing formula fits the following model: 

 

[Insert Figure (1) Here] 

 

The rationale for risk-neutral pricing can be found if one considers the 

model in Figure (1).  There are three securities: a risk-free bond, a stock, 

and a call option on said stock.  But, there are only two possible states at 

time t, an upward move or a downward move.  The prices and payouts of 

the three securities must be linked to each other, or else there are 
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arbitrage opportunities to lock-in risk-free returns greater than the risk-

free rate (an assumed absurdity!).  Who knew the game of musical chairs 

was preparing children to understand option pricing? 

 

In essence, the call option only exists for convenience; its price and 

payouts can be replicated by combining the prices and payouts of the 

risk-free bond and the underlying stock.  Therefore, no new risk (or 

additional degree-of-freedom) is added by introducing a call option to the 

market.  Suddenly, there is hope; options aren’t so mysterious.  They are 

but an organized means of bringing risk-management to everyone! If 

people want to buy options, market makers can provide the market, 

without having to take the opposite risk of their clients.  

 

The difference between the binomial option pricing model and Black-

Scholes is analogous to the difference between the binomial probability 

distribution and the normal distribution.  The binomial model can be 

applied in multiple, time-period steps.  Figure (2) shows this with two 

time periods3.  At the limit, with an infinite number of time periods 

between today and the option’s expiration date, the Black-Scholes model 

is derived, where the underlying asset is assumed to follow a continuous-

time Brownian motion. 

 

                                                           
3
 The left side of Figure (2) could also be viewed as a trinomial option pricing model, via 

Boyle (1986). 
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Problems with the Standard Model. 

 

The 2008 real-estate, mortgage crash is more recent in our memories 

than the 1987 stock market crash, but the two events have many 

similarities.  New technology, whether part of the real-asset portfolio, or 

the ‘intangible’ portfolio,  demands an amount of capital be employed 

towards its undertaking.  How much of our overall capital should be 

employed to these new endeavors is something of a guess.  The ‘norm,’ in 

American business history has been to provide too much capital to new 

markets, wait until the ‘bubble’ bursts, and then feed capital at a more 

restrained rate to the surviving firms.  Figure (3) paints this picture. 

 

Portfolio insurance became popular in 1986 and 1987, leading to a 542% 

and 128% rise in average, daily option volume traded in those two years 

respectively.  In the 2008 real-estate crash it was collateralized debt 

obligations (CDOs) and credit default swaps (CDSs) that overwhelmed the 

markets, but in the mid-to-late 80’s it was options.  Portfolio insurance is 

essentially a put option on a basket of underlying stocks.  The market 

makers of portfolio insurance offset their position by taking short index 

futures at the CBOT.  The CBOT market makers offset their position by 

shorting individual stocks at the New York Stock Exchange (NYSE). 
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The Friday prior to Black Monday, Oct. 16th, 1987 was an option and 

futures expiration date.  That week had been one of the worst weeks in 

stock market history, with the market losing over 10%.  Due to record 

volumes of trade, many market makers were unable to fully hedge their 

positions prior to the close of trade that Friday, leaving a back-log of 

short orders to be filled Monday morning.  Monday morning opened on 

time, but in a free-fall, the stock market losing 20% in hours.  Tuesday 

morning most of the specialists on the NYSE couldn’t open at all, having 

run out of trading capital, with banks un-willing to lend in such a 

chaotic market. 

 

Blair Hull was Chairman and chief executive officer of Hull Trading 

Company, a prominent market maker at the CBOE.  At 12:15 pm ET, on 

Tuesday, the CBOE and NYSE have halted trading, with the NYSE in 

agreement to open in an hour at a level that would put the Dow Jones 

Industrial Average (DJIA) 500 points lower (roughly another 20% drop).  

Hull happened to also be a member of the nearby CBOT, the only one of 

his 285-employee operation, a membership he had never before utilized.  

He walked over to the index futures pit to find only one contract with 

sellers, there were no buyers in any contract.  It was the thinly traded 

MMI contract, consisting of 20 stocks, all members of the DJIA.   
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He started buying, un-hedeged long positions, and quickly started a 

short-squeeze, panic buying by all traders of the MMI, who were 

suddenly all short in a rapidly rising market.  The other index futures 

quickly followed suit, and by 12:38 pm members of the NYSE forced their 

exchange to re-open, as they were being short-squeezed in the underlying 

stocks.  The DJIA sky-rocketed, closing the day with a record gain of 102 

points!  Many describe it as the greatest, group euphoria across all 

exchanges imaginable; having gone to the brink and survived.  The next 

day the DJIA would rise a new record 126 points!  Within a month, the 

stock market was setting new all-time highs, and would continue on for 

twelve more years of a nineteen-year bull market run. 

 

Hull was relying on an old, trader adage: “be long the halt.”  It’s a 

courageous strategy that relies on cooler heads, and lenders of last resort, 

to prevail during halted trading.  But that doesn’t always happen; that 

Tuesday morning most stocks on the NYSE didn’t open until after 11:00 

am, only to be halted again an hour later.  Prior to normal morning 

trading hours, the Federal Reserve had issued a statement affirming its 

readiness to serve as a source of liquidity to support the economic and 

financial system.  But the statement is all they would provide throughout 

the crisis.  In fairness, politically the Federal Reserve wouldn’t want to 

start a short-squeeze like Hull did, nor do we know what would have 

happened had Hull’s trade not been so effective, so quickly. 
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Hull’s company used a proprietary model separate from Black-Scholes to 

price options.  Regardless, Black-Scholes, or the binomial model was the 

standard option pricing model in 1987.  The Black-Scholes model 

assumes stock prices follow a log-normal distribution; and therefore their 

returns a normal distribution.  This means zero skewness and kurtosis of 

three.  Figure (4) shows the z-score of daily returns of the S&P 100 in the 

week before and of the Black Monday crash.  Returns are scaled by the 

implied-volatility index of the S&P 100 (VXO), which is an average, option-

implied volatility across all S&P 100 options.   

 

As can be seen, in four of the ten days, the absolute value of the z-score 

is greater than two; that’s 40% of the returns landing farther than two-

standard deviations away from center.  In a standard, normal 

distribution this should only happen once every 22 days; the odds of it 

happening four times in ten days: 0.0001%.  Moreover, there are two, 

three-standard deviation events in-a-row.  The odds of one, three-

standard deviation event: 0.135%; the odds of two-in-a-row: basically 

zero, by any practical limits.  The skewness of returns over this ten-day 

period was -1.56, and kurtosis 6.98!   

 

It’s not that portfolio insurance and standardized-options were a bad 

idea, precisely the opposite, but that market-makers hope in the Black-
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Scholes model to hedge their trading-risk was unfounded.  The idea of 

no-arbitrage pricing makes head-sense, but who in their heart really 

believes the ‘invisible-hand’ of the marketplace will stick to a normal 

distribution?  Nor were CDOs and CDSs necessarily a bad idea during the 

2000’s real-estate boom.  But liquidity is a blessing not to be taken for 

granted.  It can’t be stored up, predicted, or replicated.  It exists for the 

moment; tailor-made; in-valuable.    

 

The Volatility Smile 

 

Ever since Black-Scholes it has been common to quote option prices in 

terms of their implied-volatilities.  Since the underlying asset’s standard 

deviation, σ, is the only non-observable input to the model, if one knows 

the option price, they can ‘back-out’ the σ that would cause the model to 

price the option correctly.  This is theoretically similar to a Method-of-

Moments estimate assuming a normal distribution of underlying returns.  

There is no closed-form solution for this inverse problem, however, 

Manaster and Koehler (1982) developed a Newton-Raphson numerical, 

iterative-search method that guarantees convergence to an implied-

volatility.   

 

The CBOE calculates and distributes many implied-volatility indices, but 

the VIX index is the unrivaled bellwether of U.S. large-cap stock market 
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volatility.  It estimates the average, annualized 30-day implied-volatility 

across all strike prices of the S&P 500 index.  Its methodology, outlined 

in CBOE (2015), is to create a theoretical portfolio of calls and puts that 

should return the underlying price minus its futures price, squared.  

Basically, the ‘portfolio’ engineers a parabolic return distribution, and 

gives us the square-root of the price of that payout-scheme.  As long as 

we believe in no-arbitrage pricing, it all makes a lot of sense. Figure (5) 

shows the history of this bellwether. 

 

A casual glance at Figure (5) reveals that the market-wide implied-

volatility is time-varying, mean-reverting, and prone to large, upward 

spikes in down markets.  The upward spikes are evidence of negatively 

skewed and leptokurtic returns.  However, the business-cycle adjusted, 

average volatility has remained relatively constant, around 25%.  Another 

way to view this is that the long-run, average volatility did not adjust 

higher after the extraordinarily large spike upwards on Black Monday.  

However, this does not tell the whole story.  The VIX index is largely 

driven by implied-volatilities at strike prices around the mean of the S&P 

500 index’s expected return distribution, not by returns in the tails of the 

distribution.   

 

Another way to view implied-volatilities is through the volatility smile, a 

graph of implied-volatilities across strike prices for a single date and 
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expiration date.  It’s called a ‘smile’ because implied-volatilities tend to be 

higher away-from-the-money, in other words, away from the underlying 

asset’s price.  Figure (6) illustrates this for several asset classes. 

 

If the Brownian motion assumption of the Black-Scholes model holds 

true, then implied-volatilities should be the same for all strike prices, in 

other words, there should be no ‘smile,’ but a flat line with a level equal 

to the single volatility of the Brownian motion.  If a ‘smile’ exists, it 

indicates that the underlying asset’s expected return distribution has 

higher probabilities of returns in the tails of the distribution than would 

exist in a normal distribution, in other words, that the returns are 

leptokurtic, a kurtosis higher than three.  If the smile is higher on one 

side than the other, oftentimes called a ‘smirk,’ then there exists 

skewness in returns to the higher side, which again, should not exist if 

returns are normally distributed. 

 

Rubenstein (1985), published before Black Monday, found no volatility 

smile in index or individual equity options, finding any variance in 

implied-volatilities to be within option bid-ask spreads, which admittedly, 

were relatively large at the time.  Bates (1991) and (2000) revisited the 

problem and explicitly found that Black Monday was the advent of the 

volatility smile.  It didn’t exist before, but has existed in S&P 100 and 500 

index options ever since! 
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And the phenomenon is by no means unique to equity index options.  

Mayhew (1995) and Toft and Prucyk (1997) found volatility smiles for 

individual stocks, although surprisingly not as pronounced as those in 

index options.  Campa, Chang, and Reider (1998) and Bollen and Rasiel 

(2002) found that foreign exchange options exhibit volatility smiles, 

although again, not near as pronounced as those in index or even 

individual equity options; however, currency implied volatilities are much 

lower than equities’ in general.  Jarrow, Li, and Zhao (2003) likewise 

found volatility smiles in the interest rate options market.  Figure (6) also 

shows ‘smiles’ for gold, oil futures, and a ‘smirk’ for options on volatility 

itself.  The positive skewness implied in the VIX index correlates with the 

large, positive spikes found in Figure (5). 

 

Risk-Neutral Pricing 

 

The fact that index options exhibit a larger ‘smile’ than individual stocks 

illustrates an important aspect of option pricing.  A large tail event in the 

index is more likely due to a liquidity-risk event, whereas tail events in 

individual stocks could very well be unique to only that stock.  Since the 

market-wide liquidity event is more ‘important’ to investors, its option-

implied probability is higher than an otherwise equally-likely event with 

less ‘importance.’  While the reason for this is not immediately obvious, it 
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has to do with risk-neutral pricing, briefly discussed before in relation to 

Figure (1).  

 

Note in Figure (1) that the underlying stock returns either 𝑒𝑟𝑡+𝜎√𝑡  or 

𝑒𝑟𝑡−𝜎√𝑡.  ‘r’ in this case represents the expected return of the stock.  In 

turns out, in solving for the option’s price, the choice of r is unimportant; 

it drops out of the final solution.  Most textbooks set r equal to zero in 

the binomial model for simplicity, hence the nomenclature U and 1/U for 

𝑒𝜎√𝑡 and 𝑒−𝜎√𝑡.  However, if one really wants to maintain the binomial 

model’s comparability with Black-Scholes, r should be set to the risk-free 

rate. 

 

If one sets r equal to the risk-free rate, then both the bond and the stock 

have the same required return.  Since these two securities ‘complete’ the 

market (since they are two unique securities in a two-state market), if 

their returns are the same, then every security in this market will have 

that same required return, in this case, the risk-free rate!  The call option 

described by the middle tree in Figure (1) is another security in this 

market; therefore it too should return the risk-free rate.  Equation (4) 

states this using the probabilities implied by the binomial model: 

 

𝐶𝑡 = 𝑝𝑈 (𝑆𝑒
𝑟𝑓𝑡+𝜎√𝑡 − 𝐾) + (1 − 𝑝𝑈)∅ = 𝐶𝑜𝑒

𝑟𝑓𝑡.    (4) 
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The value of the call at its expiration date, 𝐶𝑡, is equal to the probability 

of an upward move times its value in an upward move, plus the 

probability of a downward move times its value in a downward move, 

which equals the initial call price grossed up at the risk-free rate.  In fact 

any security’s value follows this same model: 

 

𝑋𝑡 = 𝑝𝑈𝑋𝑡,𝑈 + 𝑝𝐷𝑋𝑡,𝐷 = 𝑋𝑜𝑒
𝑟𝑓𝑡,     (5) 

 

where 𝑋𝑡  is the value of said security at time t, 𝑋𝑡,𝑈  is its value in an 

upward move, and 𝑋𝑡,𝐷 in a downward move.  If there are more than two 

possible future states of the market, the future value of the security is a 

weighted average of the security in each state, weighted by the 

probability of each state: 

 

 𝑋𝑡 = ∑ 𝑝𝑖𝑋𝑡,𝑖𝑖 = 𝑋𝑜𝑒
𝑟𝑓𝑡.      (6) 

 

Note that while the Black-Scholes model assumes an infinite number of 

possible future states of the market (compared to only two for the 

binomial model), its Brownian motion assumption means the 

probabilities of those future states follow a normal distribution, a 

distribution with only two moments: a mean and a variance.  Because 

there are only two degrees-of-freedom in defining a normal distribution, 
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the same two securities, a risk-free bond and an underlying stock 

returning the risk-free rate, are enough to ‘complete’ the market.  That 

said, the future value of a security whose returns follow a continuous 

probability distribution function (pdf) can be described in the continuous 

state equivalent of equation (6): 

 

𝑋𝑡 = ∫𝑋𝑡(𝑖)𝜃(𝑖)𝑑𝑖 = 𝑋𝑜𝑒
𝑟𝑓𝑡,     (7) 

 

where 𝜃(𝑖) is the pdf of 𝑋𝑡.   

 

One obvious concern should arise when considering risk-neutral pricing: 

in the real-world, neither the underlying stock nor the option should 

return the risk-free rate!  Equations (4) through (7) do not represent 

pricing in the real-world; they represent pricing in what is often referred 

to as the risk-neutral world.  It is an invented world created by assuming 

the stock returns the risk-free rate.  This is purely for pricing 

convenience; in this invented world one never needs to know investor 

risk-aversion or risk-premia for risky assets.   

 

However, this convenience comes at a cost.  The probabilities implied by 

the binomial model, 𝑝𝑈 and (1 − 𝑝𝑈), are not real-world probabilities; they 

are referred to as risk-neutral probabilities.  They are derived in such a 

way that forces the stock to return the risk-free rate.  The real-world 



21 
 

probabilities would have the stock return the risk-free rate plus a risk 

premium, based on the co-variance of the stock with the market and the 

market-wide appetite for risk.  For example Sprenkle’s formula, Equation 

(1), prices the option in the real-world.  All of the probabilities in 

Equations (4) through (7), including also those in the Black-Scholes 

formula, are risk-neutral probabilities.   

 

One way to describe this is the following: 

 

𝑋0 = 𝐸𝑃[𝑋𝑡]𝑒
−𝑟𝑡 = 𝐸𝑄[𝑋𝑡]𝑒

−𝑟𝑓𝑡,     (8) 

 

where 𝐸𝑃[. ]  is the expected value using real-world probabilities, often 

referred to as the P measure, and 𝐸𝑄[. ] is the expected value using risk-

neutral probabilities, referred to as the Q measure.  ‘r’ is the risk-

adjusted required return specific to asset X in the real-world, while ‘𝑟𝑓’ is 

the risk-free rate and the required return for all assets in the risk-neutral 

world. 

 

Cochrane (2005) derives the relationship between real-world probabilities 

and risk-neutral probabilities: 

 

𝑝𝑄(𝑖) = 𝑝𝑃(𝑖)
𝑈′(𝑖)

𝐸𝑃[𝑈′(.)]
,     (9) 
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where, 𝑝𝑄(𝑖) is the risk-neutral probability of state i, 𝑝𝑃(𝑖)  is the real-

world probability of state i, 𝑈′(𝑖) is the market representative’s marginal 

utility curve in state i, and 𝐸𝑃[𝑈′(. )]  is the market representative’s 

expected marginal utility, averaged across all states.   

 

It turns out that risk preferences do show up in the Black-Scholes and 

binomial models (and any other risk-neutral pricing models) -- they just 

show up in the probabilities rather than the required return.  Breaking 

down Equation (9), there are two components to risk-neutral 

probabilities: one due to rational expectations: the real-world 

probabilities; the second due to subjective preferences in the form of the 

marginal utility curve (scaled by average marginal utility), which 

represents the market-representative’s subjective value of an additional 

dollar added to her returns (or wealth).  It is as if both the head and heart 

play a role in determining probabilities. 

 

The higher the marginal utility (the subjective value of returns), the 

higher the risk-neutral probability; in other words, states of the world 

deemed more ‘important’ to the representative investor get a higher risk-

neutral probability than their corresponding real-world probability.  

Examples of people making decisions based on risk-neutral probabilities 

are common.  Consider that people consistently over-estimate the 
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probability of a plane crash4.  Consider that American’s spend more 

money on the lottery 5  (an objectively negative net-present-value 

investment) than all other forms of entertainment combined.  In an 

extreme example, consider that no one would take 5-to-6 odds on a game 

of Russian roulette!    

 

Bernoulli (1738) used decreasing marginal utility to solve the St. 

Petersburg paradox.  Consider a coin-flipping bet which pays-out based 

on the number of heads flipped in a row, doubling with each additional 

heads thrown (for example: it might payout $0 if a tails is flipped on the 

first toss; $100 if only one heads is thrown, followed by a tails; $200 if 

two heads are thrown; $400 for three, $800 for four, and doubling so on).  

One finds, using real-world probabilities of a fair coin, the expected 

payout of this bet is infinite!  But who would pay more than a few 

hundred dollars for it?   

 

The solution to the paradox is that people’s marginal utility of returns 

decreases the richer they get.  A marginal dollar is more ‘important’ to a 

poor person than to a rich person.  Thinking in terms of the binomial 

model, if there is an upward move, the representative investor is better 

off, and therefore values the marginal dollar less than she would have in 

a downward state.  Summing up, risk-neutral probabilities of a 

                                                           
4
 See Clark and Rock (2016). 

5
 $73B in 2017 according to Gallup, with an expected loss of $0.40 on the dollar.   
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downward move are relatively higher than probabilities of an upward 

move, compared to their real-world counterparts.  This causes the asset-

specific, risk-adjusted expected returns of all risky assets to decrease 

exactly to the risk-free rate when using risk-neutral probabilities.   

 

APPLICATIONS 

 

Before delving into the mechanics of estimating option-implied pdfs, it 

behooves us to look into some applications of such pdfs.  Foremost, 

knowledge of the pdf is desirable because it enables the pricing of any 

derivative of the underlying asset with the same time to expiration, 

regardless if it be illiquid or ‘non-vanilla.’  Beyond this obvious 

application, Table (3) summarizes three fronts of applications of option-

implied pdfs.    

 

For example, central bankers use option-implied pdfs to assess market 

sentiment over future changes in interest rates, exchange rates and 

stock prices, and likewise to confirm the market’s acceptance of major 

policy decisions.  Of particular interest is the predictive power of options 

prior to major economic events such as crash episodes, exchange 

rate/interest rate regime changes, wars, and elections.  Option-implied 

pdfs are fruitful for this type of analysis because unlike other market-

based time series data, which in isolation capture only an expectation 
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(and therefore represent only one expected economic scenario), pdfs 

capture the uncertainty that is fundamentally inherent in the 

marketplace -- that there are multiple future scenarios. 

 

A third line of research uses option-implied pdfs to measure risk 

aversion.  The risk-neutral density is estimated from option prices, while 

the objective density from historical returns; together these two infer 

implied-relative risk aversion.  Knowledge of economy-wide risk aversion 

makes possible value-at-risk (VAR) and other forecasting applications in 

risk management. 

 

THEORY 

 

The volatility smile may invalidate the Black-Scholes model, but not risk-

neutral pricing in general.  Real-world probabilities and risk-adjusted 

required rates of return cannot be solved for without having knowledge of 

market-wide utility preferences.  The subjective nature of these 

preferences makes them difficult to estimate (or to even grasp their full 

nature), which is therefore the reason investors found such hope in Black-

Scholes and the advent of risk-neutral pricing. 

 

However, the volatility smile is full of information about the underlying 

asset’s risk-neutral pdf.  Any asset with ‘enough’ option-prices (to 



26 
 

‘dynamically-complete’ the market; i.e. enough options at different strike 

prices), should have an estimable underlying risk-neutral pdf; and 

therefore, the price of any ‘non-unique’ security (i.e. a derivative) should 

also be estimable.  This endeavor has led to research in the inverse 

problem to option-pricing: using known, market-set option-prices to 

estimate the underlying asset’s pdf.  

 

The Inverse Problem 

 

Arrow (1964) showed that risk-neutral probabilities are unique and can 

be solved for in any ‘complete’ market model; i.e. a model with the same 

number of unique securities as states of the future world (such as a 

stock and a risk-free bond in a world with two states, as is the case with 

the binomial model).  Merton (1971) showed that risk-neutral 

probabilities are unique and can be solved for in any ‘dynamically-

compete’ market model (such as a stock and a risk-free bond in a world 

with two degrees-of-freedom, as is the case with Black-Scholes and its 

normally-distributed returns).   

 

Figure (7) gives an example of this inverse problem of using option prices 

to estimate risk-neutral probabilities under the binomial model.   
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The problem with Black-Scholes is its assumption of normally-

distributed returns, which is too simple to account for liquidity-risk, 

time-varying volatility, volatility spikes, and so forth.  The lack of an 

historical option-price database, and relatively poor computing power, 

meant the inverse option-pricing problem, of using option-prices to 

estimate the asset’s implied risk-neutral pdf, unfeasible until the mid-

1990s.   

 

There are two polar approaches to estimating the pdf from option prices.  

One is based on relatively strict assumptions, a model, which the 

observed option-prices must to adhere.  The opposite pole assumes no 

model, but a ‘sort of’ open-canvas for the option-prices to reveal their 

nature.  There are trade-offs between accuracy, bias, stability, and so-

forth, and as is usually the case, the best solution lies somewhere in-

between the two poles.   

 

Model-Based Methods. 

 

How many option-prices are needed to ‘dynamically-complete’ the 

market?  According to Fama and French (1993) there are only three-

factors driving market returns (meaning a stock, the risk-free bond, and 

one option are enough to ‘dynamically-complete’ the three degrees-of-

freedom).  At most, a handful, five-factors, are cited in a single model by 



28 
 

researchers (meaning three options are needed).  In other words, there 

aren’t that many degrees-of-freedom.  The Black-Scholes two aren’t 

enough, but a slightly more sophisticated model may be enough.   

 

Generalized distribution methods. 

 

The beauty of a model is in its simplicity, understandability, and 

manipulability.  For example, the analogy of a coin-flipping exercise to 

the normal distribution is easy for most to grasp.  However, the cost is 

the normal distribution’s naivety; it falls short in fully describing the 

reality of market returns.  There are many probability distributions with 

more than two parameters; Table (1) gives those used to model option-

implied pdfs.  However, the reasoning for why these more robust models 

should be used is seldom explained.  They are chosen simply because 

they allow for more degrees-of-freedom.  The beauty of having only a few 

degrees-of-freedom is lost if no one understands the nature of these few, 

new degrees.  Why not just build a model with many degrees-of-freedom, 

if that is the goal? 

 

Alternative Return-Generating Processes.   

Another method used to add robustness to the standard Black-Scholes 

model is to assume a return-generating process more robust than 

Brownian motion, then find a way to derive a closed-form solution 
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similar to the Black-Scholes equation but with more degrees-of-freedom.  

Factors that Black-Scholes doesn’t address, such as liquidity-risk, time-

varying volatility, and volatility spikes, can correspondingly be modelled 

with time-series components such as stochastic interest rates, stochastic 

volatility, and the Poisson-jump process.   

 

The standard Black-Scholes’ Brownian motion is based on the following 

stochastic differential equation: 

 

𝑑𝑆𝑡

𝑆𝑡
= 𝑟𝑓𝑑𝑡 + 𝜎𝑑𝑊𝑡,      (10) 

 

where 𝑆𝑡  is the underlying security’s price, 𝑟𝑓  is the constant risk-free 

rate, σ is the volatility, and 𝑑𝑊𝑡 is a Wiener process (Brownian motion) 

representing a standard normal distribution (mean of zero and standard 

deviation of one).  This has a closed-form solution of: 

 

ln⁡(
𝑆𝑡

𝑆0
) = (𝑟𝑓 −

𝜎2

2
) 𝑡 + 𝑁(0, 𝜎√𝑡),     (11) 

 

where 𝑁(0, 𝜎√𝑡) is the normal distribution with mean zero and standard 

deviation 𝜎√𝑡 .  The correction term, −
𝜎2

2
, effectively accounts for the 

difference in compounding between a continuous process and a periodic 

process. 
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Bakshi et al. (1997) introduce a model where the interest rate is not 

constant, but instead has its own stochastic differential equation which 

follows a Vasichek (1977) mean-reverting process: 

 

𝑑𝑟 = 𝜃𝑟(𝜔𝑟 − 𝑟𝑡)𝑑𝑡 + 𝜀𝑟𝑑𝐵𝑟,𝑡,     (12) 

 

where 𝜔𝑟  is the mean long-term risk-free rate; 𝜃𝑟  the rate of mean-

reversion; 𝜀𝑟  the standard deviation of the risk-free rate process, and 

𝑑𝐵𝑟,𝑡 , like 𝑑𝑊𝑡 , a normal distribution with mean zero and standard 

deviation 𝜀𝑟 .  There is also an assumed constant correlation of 𝜌𝑆,𝑟 

between 𝑑𝐵𝑡 and 𝑑𝑊𝑡.  Equation (12) has a closed-form solution of: 

 

𝑟𝑡 = 𝑟0 + 𝜃𝑟(𝜔𝑟 − 𝑟0)𝑡 + 𝑁(0, 𝜀𝑟,0√𝑡),    (13) 

 

There are three, new degrees-of-freedom in this model, compared to the 

standard Brownian motion: 𝜃𝑟 , 𝜀𝑟 , and 𝜌𝑆,𝑟.  Each period’s risk-free rate is 

a weighted average of the long-run risk-free rate, 𝜔𝑟 , and the prior 

period’s risk-free rate: 

 

E[𝑟𝑓,𝑡] = (𝜃𝑡)𝜔 + (1 − 𝜃𝑡)𝑟𝑓,0,     (14) 
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Similar to stochastic interest rates, a number of stochastic volatility 

models have been developed; Heston (1993) being the most popular.  In 

the Heston model volatility is not constant, but instead, the underlying’s 

variance has its own stochastic differential equation which follows a Cox, 

Ingersoll, and Ross (CIR) (1985) mean-reverting process: 

 

𝑑𝑣𝑡
2 = 𝜃𝑣(𝜔𝑣 − 𝑣𝑡

2)𝑑𝑡 + 𝜀𝑣𝑣𝑡𝑑𝐵𝑣,𝑡,     (15) 

 

where 𝜔𝑣 is the mean long-term variance, 𝜃𝑣 is the rate of variance mean-

reversion, 𝜀𝑣 is the standard deviation of the variance process, and 𝑑𝐵𝑣,𝑡, 

like 𝑑𝑊𝑡, represents a normal distribution with mean zero and standard 

deviation 𝑣𝑡 .  There is also an assumed constant correlation of 𝜌𝑆,𝑣 

between 𝑑𝐵𝑣,𝑡 and 𝑑𝑊𝑡.  The difference between the CIR mean-reverting 

process and the Vasicek process is that the standard deviation of the CIR 

process is dependent on the most recent volatility of the Brownian 

motion.  Equation (15) has a closed-form solution of: 

 

𝜎𝑡
2 = 𝜎0

2 + 𝜃𝑣(𝜔𝑣 − 𝜎0
2)𝑡 + 𝑁(0, 𝜀𝑣𝜎0√𝑡),    (16) 

 

Bates (1996, 2000, 2001) develops a stochastic model which includes a 

Merton (1976) Poisson-jump process:  

 

𝑑𝑆

𝑆
= 𝑟𝑓𝑑𝑡 + 𝜎𝑑𝑊𝑡 + 𝑘𝑑𝑞,     (17) 
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where 𝑘  represents the size of jumps and dq a Poisson-counter.  The 

jump-diffusion call option price, 𝐶𝑎𝑙𝑙𝐽−𝐷, is an adjustment of the standard 

Black-Scholes call option price, 𝐶𝑎𝑙𝑙𝐵−𝑆: 

 

𝐶𝑎𝑙𝑙𝐽−𝐷 = ∑
𝑒−𝑚𝜆𝑡(𝑚𝜆𝑡)𝑘

𝑘!
𝐶𝑎𝑙𝑙𝐵−𝑆

∞
𝑘=0 ,    (18) 

 

where m is the average jump size, and 𝜆 is the average number of jumps 

per time. 

 

Three degrees-of-freedom can be added with stochastic interest rates, 

another three with stochastic volatility, and two (or more) with jumps; 

however, it is a challenge to get any of these time-series models to 

consistently converge to  statistically-stable parameters; let alone if they 

are combined into a general model.  So, from a practical stand-point, it is 

uncertain which of these time-series components should be chosen to 

add a few, new degrees of freedom to the standard Black-Scholes model.    

 

Expansion methods. 

 

Expansion methods start with a simple, known probability distribution 

(usually the normal or log-normal) and then add approximating terms 

similar to a Taylor expansion.  The distribution’s cumulant-generating 
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function’s derivatives determine the distribution’s higher-order moments, 

similar to the way higher-order derivatives of a function are used in a 

Taylor expansion.  This method by no-means guarantees a well-behaved 

distribution (i.e. one whose probabilities are strictly-positive and 

integrate to one).  Table (2) gives the various expansion methods used to 

model option-implied pdfs. 

 

Mixture methods. 

 

Yet another method that adds complexity to simple probability 

distributions is to create a weighted-average of two or more simple 

distributions.  For example, Ritchey (1990) averages two normal 

distributions, which results in five degrees-of-freedom: two means, two 

standard deviations, and a single weighting parameter.  Note that the 

result is a complex distribution with a single mean, variance, skewness, 

kurtosis, and a fifth moment.  Melick and Thomas (1997) mix three log-

normal distributions, which results in eight degrees-of-freedom.   

 

Of all the model-based (parametric) methods, the mixture methods are: 

the simplest; easiest-to-understand; and, most-stable and consistently-

statistically estimable; yet, for whatever reason, they are the most seldom 

used methods.  One might even find beauty in the Ritchie model, a 

relatively simple distribution with two, separate spirits of uncertainty, 
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which is surprisingly robust to model samples that would otherwise 

appear only chaotic6.      

 

Non-Parametric Methods. 

 

Non-parametric methods embrace the mystery that shrouds option-

implied pdfs.  Instead of treating asset returns as something to be 

modeled with as few degrees-of-freedom as possible, the returns are 

treated as a ‘black-box,’ un-model-able by nature.  The number of 

degrees-of-freedom is not important, so long as the data is not ‘over-fit;’ 

that market micro-structure noise such as bid-ask spreads, sparse 

trading, minimum tick sizes, and the like don’t cause unstable pdf 

estimates. 

 

Table (4) summarizes papers from three non-parametric methods used to 

estimate option-implied pdfs.  The first method, maximum entropy, 

directly embraces the idea of chaos (or a ‘black box’) being a natural part 

of a risk model.  The next two methods fit a curve to the IV smile and 

back out probabilities based on Ross (1976), Breeden and Litzenberger 

(1978), and Banz and Miller (1978), who showed how to extract a pdf 

from a smooth set of option prices. 

 

                                                           
6
 Many have claimed this model graces the heavens as a model of mankind, in the form 

of two fishes (spirits) tied together at the tails -- Pisces -- in the chaotic, wintery quarter 

of the Zodiac, exact opposite of the pure, un-adulterated truth of Virgo. 
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Maximum entropy methods. 

The term entropy was created to describe disorder in thermodynamics.  It 

was later adapted to describe the unknown in information science.  To 

maximize entropy is to minimize assumptions about the unknown.  It is 

usually assumed that if one knows nothing about a probability 

distribution, then all probabilities should be equal (a uniform 

distribution; something rarely found in naturally created distributions).  

The idea is to know what you don’t know, an admirable ambition, and 

pick the distribution that reflects that.   

 

One usually does assume a prior distribution (normal or lognormal), then 

fits the data as close to it as possible based on minimizing the following 

error function: 

 

𝜀 = ∑𝑝𝑖𝑙𝑛 (
𝑝𝑖

𝑎𝑖
),      (19) 

  

where 𝑝𝑖 is the estimated probability and 𝑎𝑖 is the assumed probability.  

It basically amounts to minimizing a weighted average of the error 

𝑙𝑛⁡(𝑝𝑖 𝑎𝑖)⁄ .   
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Minimizing this function is unstable due to its non-linearity, and the fact 

that the logarithm can balloon to very large positive and/or negative 

numbers, which in turn, over-whelm and drive the estimation process.   

 

Kernel methods. 

 

Kernel methods sound complicated, but they are basically moving 

average curve-fitting methods.  At each observation along the implied-

volatility smile the current observation is assumed to be the mean of a 

normal distribution that fits the observations around it based on a 

chosen ‘bandwidth,’ which is the standard deviation of that normal 

distribution.  The wider the bandwidth the ‘smoother’ the curve is 

allowed to be.  A small bandwidth creates a ‘tight’ curve that comes close 

to all the points but has much ‘jaggedness.’  A large bandwidth is allowed 

to miss the mean (individual observation) for the sake of ‘smoothness’ of 

the overall curve.   

 

The kernel method is the first method we have inspected that truly 

abandons any assumption of a prior distribution.  The difference 

between it and the next methods we will examine, is that the kernel 

method fits each localized point -- it actually doesn’t need data far away 

from it to estimate a localized kernel.   
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Curve-fitting methods. 

 

If the kernel methods are a bottom-up approach (from each observation), 

the curve fitting methods are a top-down approach (one function to fit all 

the observations).  Before we describe them, it behooves us to show why 

having a smooth set of implied-volatilities is desirable.  The implied-

volatilities are just a transformation of the option prices, transformed 

such that they do not tail off to zero-value when out-of-the-money, but 

are comparable across strike prices. 

 

Ross (1976), Breeden and Litzenberger (1978), and Banz and Miller 

(1978) showed the relation between an asset’s risk-neutral pdf and its 

option prices.  Given the value of a call option,  

 

𝐶𝑎𝑙𝑙 = 𝑒−𝑟𝑡 ∫ (𝑆𝑡 −𝐾)𝜙(𝑆𝑡)
∞

𝐾
𝑑𝑆𝑡,     (20) 

 

where K is the strike price, 𝑆𝑡 is the underlying price, r is the risk-free 

rate, t is the time-to-expiration, and 𝜙(𝑆𝑡) is the risk-neutral pdf;   

 

taking the partial derivative of (20) with respect to strike K, gives, 

 

𝜕𝐶𝑎𝑙𝑙

𝜕𝐾
= 𝑒−𝑟𝑡[1 − Φ(𝐾)],     (21) 
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where Φ (K) is the risk-neutral cumulative distribution function (cdf).  

Solving for Φ(K), 

 

Φ(𝐾) = 𝑒𝑟𝑡
𝜕𝐶𝑎𝑙𝑙

𝜕𝐾
+ 1,     (22) 

 

and taking the partial derivative with respect to strike K a second time 

yields the risk-neutral pdf, 

 

𝜙(𝐾) = 𝑒𝑟𝑡
𝜕2𝐶𝑎𝑙𝑙

𝜕𝐾2 .      (23) 

 

A similar derivation (or put-call parity) can be used to find the risk-

neutral cdf and pdf from put prices, 

 

Φ(𝐾) = 𝑒𝑟𝑡
𝜕𝑃𝑢𝑡

𝜕𝐾
,      (24) 

 

𝜙(𝐾) = 𝑒𝑟𝑡
𝜕2𝑃𝑢𝑡

𝜕𝐾2 .      (25) 

Curve-fitting methods are necessary because options only come at 

discrete strike prices.  They interpolate across the discrete strike prices, 

to create a ‘smooth’ set of continuous option-prices, whereby equations 

(22-25) can be used to calculate the cdf and pdf.  Panel (C) of Table (4) 

summarizes some of the curve-fitting methods used to estimate option-
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implied pdfs.  These curve-fitting methods are fast and stable and have 

become a staple in research using option-implied pdfs7. 

 

THE TAILS OF THE DISTRIBUTION 

 

Of the before-mentioned methodologies for estimating risk-neutral cdfs 

and pdfs, we find rest with two of the methodologies.  If one desires a 

model-based method, the mixture methods are: the simplest; easiest-to-

understand; and, most-stable and consistently-statistically estimable.  If 

one allows for a non-parametric method, the implied-volatility curve-

fitting methods are the fastest and most stable. 

 

However, neither of these methods are particularly good at estimating 

probabilities in the tails of the cdfs and pdfs.  In the case of mixture 

methods, the tails usually revert to one of the simple, inputted 

distributions, which amounts to a normal or log-normal tail; which is 

known, from the Black Scholes volatility-smile, to not be the correct 

shape for most assets’ tails (see Figure (6)).  Curve-fitting methods 

interpolate well between strike prices, but are not intended to extrapolate 

into the tails of the distribution, where there is no tradable, strike-price 

data. 

 

                                                           
7
 See Figlewski (2008) for an example. 
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The tails of the distribution are highly influential on estimates of higher-

order moments of the pdf, such as skewness and kurtosis; and on 

estimates of tail-probabilities, such as those used in value-at-risk (VAR) 

applications.   

 

As a base case, the simplest means to account for the tails is to simply 

truncate them.  The probability of an event occurring outside the 

available range of strikes can be assumed to be zero.  The remaining 

interior distribution can then be re-weighted to force the cdf to sum to 

one.  See Anagnou et al. (2002) for an example of this.  This method is a 

worst-case scenario, i.e. a floor to measure the relative improvement of 

other methods. 

 

The most common means to account for the tails is to assume they are 

normal or log-normal (see Jiang and Tian (2005) for one example).  This 

means a constant Black-Scholes IV for all strikes below the lowest 

observable strike, and a separate constant IV for all strikes above the 

highest observable strike.  But again, the tails are known to be non-

normal. 

 

Theoretically, the Pareto distribution is the correct distribution to model 

the tails of an unknown distribution.  However, it is overly conservative; 

using it often leads to infinite estimates of implied-volatility, or at the very 
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least, wildly unstable estimates.  The methodology used to calculate the 

VIX index shows that empirically this shouldn’t be the case.  Probabilities 

in the tails of the implied-pdf ‘fall’ much faster than the z-scores of the 

underlying’s payoffs ‘rise.’   In other words, the tails aren’t even 

important in calculating implied-volatility; implied-volatility is driven 

primarily by option-prices near-the-money.    

 

Therefore, the Pareto distribution’s cousin, the extreme value distribution 

(EVD) is more commonly used to model the pdf’s tails.  Technically, the 

EVD models the single, most extreme observation of the distribution, not 

the entire tail.  However, it has three degrees-of-freedom, which when 

estimated separately for the low and high tails, is a total of six -- much 

more robust than the Black-Scholes’ two degrees-of-freedom8.    

 

Finally, a new tail-fitting methodology could be introduced based upon 

the same curve-fitting logic used to interpolate between option strikes.  

However instead of interpolating between strikes, the IV smile could be 

used to extrapolate beyond the available range of strikes.  Heuristically, 

the IV smile could be extended to the left and right based on its linear 

trend.  This would provide a non-parametric tail equivalent to the fast 

                                                           
8
 Theoretically, there should only be five degrees of freedom if one knows the forward-

price of the underlying; only four if one also knows its implied-volatility.  Both these 

conditions link the lower tail to the upper tail.  However, there is no known closed-form 

solution or numerical method to assure these conditions.    
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and stable curve-fitting methodology used to model the middle of the 

distribution. 
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CHAPTER III 
 

 

DATA AND METHODOLOGY 

 

S&P 500 index option bid-ask quotes with monthly expirations are 

obtained from Optionmetrics through the WRDS system.  Data is 

available from January 1, 2003 thru December 29, 2017.  The risk-free 

rate is interpolated from the zero curve as obtained from Optionmetrics 

which is derived from BBA LIBOR rates and settlement prices of CME 

Eurodollar futures.  The forward price is interpolated from option prices 

(see Appendix 1).   

 

Summary statistics are given in Table (5).  The statistics suggest that the 

spline fit the data well.  At a minimum, five strikes are needed to fit a 

fourth order spline with one knot.  The fewest strikes available were 

eleven.  The average number of strikes available was 68.4 and the 

maximum was 164.  The large number of strikes correlated with a wide 

range of strikes.  The minimum of the cumulative distribution function, 

as obtained only from the spline fitting process (no affixation of tails) 
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averaged 0.0090 with a third quartile of 0.0085.  However there does 

appear to be some outlier days where there were too few strike prices 

available in the lower tail.  The same pattern of outliers appears for the 

range of strikes in the upper tail.  The statistical fit of the spline-fitting 

process was very good: the daily r-squared of the spline regression 

averaged 0.9990 with a minimum of 0.9742. 

 

ILLUSTRATIVE EXAMPLE 

 

To illustrate the before-mentioned methodologies, this section steps 

through the RND estimation process for a single day. 

 

 Step 1: Sort raw data. 

 

Table (6) provides the raw option price data used to estimate the RND of 

the S&P 500 index on January 31, 2012.  One expiration date is chosen 

to estimate the RND, which for Table 1 is March 17, 2012, which is 46 

days out.  The nearest to expiration date is chosen that is greater than 

two weeks.  The two week buffer follows Figlewski (2009) and is a choice 

of balance: as options approach expiration, the prices of away-from-the-

money options approach zero and fall out of the available range of strike 

prices, making estimation of the tails more difficult; however, longer 

maturity options tend to have less liquidity.   
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All options used in the analysis are required to have a minimum bid of 

0.05 and the maximum distance allowed between strike prices is 25 

points (if there is a jump in strike prices greater than 25, all options 

further away from at-the-money are dropped).  This eliminates some 

erroneous quotes in the extreme tails of the distribution. 

 

 Step 2: Transform option prices into implied volatilities. 

 

It is easier computationally to work with Black-Scholes IVs rather than 

actual options prices.  Table 1 gives the IV that corresponds to the bid-

ask midpoint based on the Black-Scholes model given the forward price 

(see Black (1976)) 

 

     𝐶 = [𝐹𝑁(𝑑1) − 𝐾𝑁(𝑑2)]𝑒
−𝑟𝑓𝑡    (26) 

       

  𝑑1 =
ln(

𝐹

𝐾
)+(𝜎2/2)𝑡

𝜎√𝑡
, 𝑑2 = 𝑑1 − 𝜎√𝑡   (27) 

 

  𝑃 = [𝐾𝑁(−𝑑2) − 𝐹𝑁(−𝑑1)]𝑒
−𝑟𝑓𝑡    (28) 

 

where F is the forward price as obtained from options prices.  The 

forward price is the strike where the call price equals the put price (see 
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Appendix 1 for the details of obtaining the forward price from option 

prices).  Using the forward price has advantages over the traditional 

Black-Scholes model in that the underlying price and its dividend yield 

are not required.  Daily closing prices of the underlying do not 

necessarily line up at the same exact time with closing prices of its 

options, and the dividend yield is not directly observable.  The only data 

besides option prices required in equations (26-28) is the risk-free rate, 

which is interpolated from the LIBOR zero curve. 

 

 Step 3: Fit spline to implied volatility smile. 

 

To interpolate between observable strike prices, a fourth-degree spline 

with a single knot at-the-money is fit to the IV smile.  Figure (8) shows 

the IV smile with both call and put prices.  Following Figlewski (2009), 

put IVs are used for below-the-money strikes and call IVs for above-the-

money, while blending put and call IVs within 3% of at-the-money.  The 

spline is fit to the midpoint of the bid-ask volatility spread.  The bid-ask 

midpoint is preferred to transaction data which is often sparse in options 

markets.  Figure (9) shows the spline fitted to these IVs.  Note that the 

fourth degree spline models the complex shape of the IV smile without 

over-fitting noise in options prices.  

 

 Step 4: Estimate risk-neutral density from interpolated prices. 
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Next, the spline is converted back into a dense set of options prices via 

equations (26-28).  Following Figlewski (2009), I build a set of options 

prices at one cent strike intervals.  Then, using equations (22-25), the 

risk-free cumulative distribution and density function can be numerically 

obtained at one cent intervals.  Figure (10) gives the resulting RND 

between the 2nd percentile and 98th percentile.  Note the obvious 

presence of negative skewness. 

 

 Step 5: Affix tails to the distribution. 

 

The above method approximates the RND within the range of available 

strike prices.  However a separate method must be chosen to estimate 

the tails of the distribution, which lie outside of the range of available 

strike prices.  The tails of the distribution are highly influential on 

estimates of higher moments of the RND, such as skewness and 

kurtosis; and on estimates of tail probabilities such as those used in 

value-at-risk applications.  Four potential tail estimation methods are 

described below, the last being a new methodology developed for this 

thesis. 
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Truncated tails. 

 

As a base case, the simplest tail methodology is to assume a truncated 

distribution.  The probability of an event occurring outside the available 

range of strikes is assumed to be zero.  The remaining interior 

distribution is then reweighted to force the cumulative distribution to 

sum to one.  See Anagnou et al. (2002) for an example of this.  This 

method is included to provide a worst-case scenario, i.e. a floor to 

measure the relative improvement of all other methods. 

 

One assumes there is zero probability of an event occurring outside some 

range, which I choose to be the 2nd and 98th percentiles.  The truncated 

RND then becomes 

 

 𝑓𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑(𝐾) = 𝑓𝑛𝑜𝑛−𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑(𝐾)/0.96    (29) 

 

The denominator has to be adjusted if strike prices are not available over 

the entire 2nd to 98th percentile range.  This method is crude, but 

provides a worst-case scenario to compare more complex methods 

against.  Figure 4 displays the difference between the spline-estimated 

RND and the truncated RND. 
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Lognormal tails. 

 

The most common method for attaching tails to the distribution is to 

assume they come from the tails of a lognormal distribution (see Jiang 

and Tian (2005) for one example).  This amounts to choosing a constant 

Black-Scholes IV for all strikes below the lowest observable strike, and a 

separate constant IV for all strikes above the highest observable strike.  

These IVs are usually chosen to match the observed IVs at the barriers of 

the IV smile, thus keeping the option price function smooth.  However 

the first and second derivatives of the option price function (representing 

the cumulative probability distribution and density function) usually 

jump at these barriers.  Figure (12) shows an example of this. 

 

Generalized extreme value tails. 

 

Figlewski (2009) attaches tails taken from a Generalized Extreme Value 

distribution (GEV).  Similar to the way the Central Limit Theorem makes 

the normal distribution the natural candidate for modeling a 

distribution’s average, the GEV is the natural candidate for modeling the 

largest value of an unknown distribution.  It has three parameters: a 

location parameter, a scale parameter, and a shape parameter which 

determines the amount of weight placed within the right tail. 
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Figlewski attaches GEV tails to the density at the 5th and 95th 

percentiles.  The parameters of the GEV tails are chosen such that the 

GEV and RND have the same cumulative distribution and density 

function at the 5th and 95th percentiles, and also so that the density 

functions match at the 2nd and 98th percentiles.  Namely, for the upper 

tail, 

 

 𝐹𝐺𝐸𝑉(𝐾0.95) = 𝐹𝑅𝑁𝐷(𝐾0.95)     (30) 

 

 𝑓𝐺𝐸𝑉(𝐾0.95) = 𝑓𝑅𝑁𝐷(𝐾0.95)     (31) 

 

 𝑓𝐺𝐸𝑉(𝐾0.98) = 𝑓𝑅𝑁𝐷(𝐾0.98)     (32) 

 

where 𝐾𝑝 is the strike price at the pth percentile.  This gives three degrees 

of freedom to each tail, to match the three parameters within each tail’s 

GEV.  Note that the GEV only models upper tails, and therefore when 

fitting the lower tail of the RND, the cumulative distribution and the 

strike prices must be converted into their upper tail equivalents, namely 

 

 𝐹𝐺𝐸𝑉(−𝐾0.05) = 1 − 𝐹𝑅𝑁𝐷(𝐾0.05)    (33) 

 

 𝑓𝐺𝐸𝑉(−𝐾0.05) = 𝑓𝑅𝑁𝐷(𝐾0.05)     (34) 
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 𝑓𝐺𝐸𝑉(−𝐾0.02) = 𝑓𝑅𝑁𝐷(𝐾0.02)     (35) 

 

If the range of available strike prices does not extend to the 2nd and/or 

the 98th percentile, the outermost available percentile is used for 

equation (35) and a percentile three less than that is used for equations 

(33) and (34).  For example, if the highest observable percentile is the 

95th, then the 95th and 92nd percentiles are used to match the 

distributions. 

 

Smile-extrapolated tails. 

 

The new tail-fitting methodology introduced in this thesis is based upon 

the same logic used to interpolate between option strikes.  However 

instead of interpolating between strikes, the IV smile is used to 

extrapolate beyond the available range of strikes.  Bliss and 

Panigirtzoglou (2004) use a similar methodology, however they forces the 

IV smile to become horizontal as strikes go towards zero or infinity.  This 

is essentially equivalent to the lognormal tail methodology.  I propose to 

extrapolate the IV smile based on its linear trend. 

 

Specifically, the IV smile is extended to the left and right based on its 

linear trend between the 2nd and 5th percentiles (for the left tail), and 95th 

and 98th percentiles (for the right tail).  Similar to Figlewski’s method, if 
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the range of available strikes does not extend to the 2nd and/or the 98th 

percentile, the range of three percentiles farthest to the edge of the 

available strike prices is used to capture the linear trend.  Once the IV is 

extrapolated, it is converted back into a dense set of option prices and 

the RND is obtained numerically via equations (22-25).   

 

 

Figure (12) shows the IV smiles that result from the lognormal tails 

method and the smile-extrapolation method.  Between the 5th and 95th 

percentiles, the IV smiles for both methods are based solely off the fitted 

spline.  For the smile-extrapolation method, outside the 2nd and 98th 

percentiles, the smile is based solely off the high and low tail linear 

trends.  Within the trend estimation zones, the smile is a blend of the 

fitted spline and the linear trend. 

 

For the lognormal tails method, tails from a lognormal distribution are 

affixed at the 2nd and 98th percentiles such that the option price function 

remains smooth.  In terms of the volatility smile this amounts to affixing 

a flat line that connects to the fitted spline at the 2nd and 98th 

percentiles, as can be seen in Figure 5.  Note that the right tails are 

nearly identical between the lognormal tail method and the smile-

extrapolation method.  However, the left tails are drastically different as 

the lognormal tail forces the IV smile to take a sharp downward kink, 

which obviously does not reflect the observed option data.  This problem 
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leads to instability when using the lognormal tail method to estimate 

higher moments of the distribution and/or tail probabilities.  The exact 

location of the 2nd and 98th percentiles is affected by market 

imperfections such as the time to maturity of the options.  The smile-

extrapolation method is not nearly as dependent on the exact location of 

the 2nd and 98th percentiles. 

 

Figures (13) and (14) compare the density function and cumulative 

distribution of lower tails that result from the GEV method and the 

smile-extrapolation method.  Within Figure 6, note that the two methods 

are guaranteed to overlap at the 2nd and 5th percentiles, as a result of the 

GEV fitting process.  In Figure (14) the two methods are guaranteed to 

overlap at the 5th percentile.  However, outside of those three points the 

two methods could potentially vary from each other.  That is not the case 

in this particular example though.  The two tails are very similar to each 

other, suggesting that the two tail fitting methods should provide decent 

benchmarks against each other. 

 

TIME SERIES STABILITY TEST 

 

I undertake two empirical tests with aim to identify which method best 

estimates the tails of the distribution.  The time series stability test 

measures the stability of each tail fitting method.  It is important for 
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users of RNDs to know whether changes in moment estimates are due to 

underlying fundamentals or random noise.  For example, central bankers 

have suggested using RNDs to monitor investor sentiment and assess the 

effectiveness of monetary policy actions.  Noisy moment estimates could 

lead to false positive conclusions and poor decision making. 

 

First, time series of the moments generated by each of the methods will 

be graphically depicted and viewed for general stability.  Then the noise 

component of each estimated moment’s time series will be estimated in 

an GARCH(1,1) model.  Since each method estimates the interior of the 

RND the same, any differences in the noise components should be due to 

the tail fitting method.  The most stable tail fitting method should 

generate a noise component will the smallest mean squared error (MSE). 

 

Next, normal probability plots of the noise components will be graphed 

and probability plot correlation coefficients (PPCCs) calculated.  If the 

residuals of the GARCH(1,1) model are truly noise, then the normal 

probability plots should be straight lines with a slope of one.  The PPCC 

measures how close each of the noise components comes to this line.  A 

higher PPCC should indicate a more stable noise component. 

 

Last, cumulative distribution functions (CDFs) of the noise components 

will be graphed and compared against a normal distribution.  If the 
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residuals of the GARCH(1,1) model are truly noise, then they should 

follow a normal distribution.  Kolmogorov-Smirnov (K-S) tests will 

measures how close the CDFs of the noise components come to normal 

distribution CDFs.  A lower K-S test statistic indicates a more stable 

noise component. 

 

PRICING ERROR TEST 

 

As a compliment to the stability test, I undertake a pricing error test 

comparing estimated option prices to actual option data.  For a given 

day’s estimated RND, the corresponding option price estimates are 

compared to actual option prices in terms of the root mean squared error 

(RMSE) and the root mean squared relative error (RMSRE). 

 

RMSE = √
1

𝑛
∑(𝐼𝑉𝑖 − 𝐼𝑉𝑖̂)2     (33) 

 

RMSRE = √1

𝑛
∑(

𝐼𝑉𝑖−𝐼𝑉𝑖̂

𝐼𝑉𝑖̂
)
2

     (34) 

 

It is common in practice to measure pricing error in terms of Black-

Scholes implied volatilities rather than call or put prices.  Note, that on 

an economic basic, vega (the option-greek measuring the sensitivity of 

the option’s price relative to the option’s implied volatility) gets smaller as 
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the strike price moves away from the money (very small in the tails as 

defined in this thesis).  Therefore, in terms of the tail-option’s price, it is 

difficult to compare the performance of each tail-fitting method.  The 

implied-volatilities much better estimate each tail-fitting method’s 

estimate of the future uncertainty of the underlying asset’s return.   

 

In order to test if the tail estimates are biased above or below the actual 

option prices, mean error (ME) and mean relative error (MRE) are also 

calculated. 

 

ME =
1

𝑛
∑(𝐼𝑉𝑖 − 𝐼𝑉𝑖̂)      (36) 

 

MRE =
1

𝑛
∑

(𝐼𝑉𝑖−𝐼𝑉𝑖̂)

𝐼𝑉𝑖̂
      (37) 

 

Since the subject of the thesis is the fitting of the distribution’s tails, the 

RND will be estimated without using the entire range of available strike 

prices.  The RMSE, RMSRE, ME, and MRE will be calculated over the 

outer range of strikes -- the strikes not used to estimate the RND.  This 

will identify which estimation method best prices options outside of the 

range of observable strikes (i.e. in the tails of the distribution). 
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CHAPTER IV 
 

 

FINDINGS 

 

TIME SERIES STABILITY TEST 

 

Figures (15-18) show time series of the implied volatility, implied 

skewness, and implied kurtosis estimated using the four separate tail 

fitting methods.  At first glance, all four methods appear to generate 

stable estimates of implied volatility.  However the GEV tail method 

produces time periods of highly unstable estimates of implied skewness 

and implied kurtosis.  The truncated tails method also produces a few 

periods of unstable implied skewness and implied kurtosis, but appears 

to produce stable estimates most of the time. 

 

To quantify the stability of each tail estimate, Tables (7-9) give parameter 

estimates of a GARCH(1,1) model for the implied volatility, implied 

skewness, and implied kurtosis times series, respectively.  The MSE of 

the residuals is by far the highest using the GEV tails method for all 
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three implied moments.  Furthermore, the r-squared is by far the lowest 

using the GEV method for all three implied moments.  In terms of MSEs, 

the naïve methods (truncated tails and lognormal tails) produce the most 

stable implied moments, especially for higher order moments.  However, 

this is largely due to the fact that they consistently underestimate the 

higher order moments.  Using r-squared as a criteria instead, the smile-

extrapolated tails method outperforms the naïve methods, especially for 

higher order moments. 

 

Figures (19-21) give normal probability plots for the residuals of each 

GARCH(1,1) model.  If the residuals truly represent random noise, as 

GARCH models assume, then the plots should form a straight line with a 

slope of one.  The probability plot correlation coefficient (PPCC) measures 

the correlation of each probability plot with the ideal straight line.  The 

GEV method generates by far the lowest PPCC for each implied moment.  

It can be seen from the plots that the GEV method produces a residual 

distribution far too heavy-tailed compared to a normal distribution.  

However, the heavy tails do not appear to be driven by outliers.  There is 

some non-random factor causing the GEV method to estimate widely 

fluctuating implied moments.  Surprisingly, for implied kurtosis, the 

naïve methods produce residuals closest to random noise. 
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Figures (22-24) give the CDF for the residuals of each GARCH(1,1) model.  

The Kolmogorov-Smirnov (K-S) test statistic compares each CDF to its 

ideal normal distribution CDF.  The results are similar to those from the 

normal probability plots. 

 

Note that GARCH models with lags greater than one were also estimated, 

but the results were comparable. 

 

PRICING ERROR TEST 

 

Table (10) gives the general results for the pricing error test.  The 

baseline is set by the truncated tails method, with a ME of -0.3974 (a 

MRE of -100%) and a RMSE of 0.4179 (a RMSRE of -100%).  Note that all 

error estimates use the estimated implied volatility versus the implied 

volatility observed from actual option prices.  It is not surprising that 

estimates have a very large negative bias, as the truncated tail method 

assumes all tail options have a price (and implied volatility) of zero.  All 

other methods greatly improve upon these results. 

 

The normal tail method results in a ME of -0.1498 (ln[-0.1498/-0.3974] = 

a 98% improvement over the baseline) and a RMSE of 0.1721.  The 

relative errors are a MRE of -31.27% and a RMSRE of 33.76%.  Despite 

the massive improvement over the baseline, the normal tail method is 
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still a bit of a straw-man, as it is well-known that implied volatilities 

continue to rise as they move away from the mean of the distribution.  -

31.27% is most likely an unacceptably negative bias for any user of 

option-implied probability distributions. 

 

The robust model-based method, the GEV tails method, results in a ME 

of -0.0152 (-4.54% MRE) and a RMSE of 0.0326 (7.81% RMSRE).  This is 

a (ln[-0.0152/-0.3974]) 326% improvement over the baseline and a (ln[-

0.0152/-0.1498]) 229% improvement over the normal tails method.   

 

The robust non-parametric method, the spline-extrapolated method, 

gives the best pricing error results: a ME of -0.0042 (only -1.57%! MRE) 

and a RMSE of 0.0134 (4.42% RMSRE).  This is a (ln[-0.0042/-0.3974]) 

455% improvement over the baseline, a (ln[-0.0042/-0.1498]) 357% 

improvement over the normal tails method, and a (ln[-0.0042/-0.0152]) 

129% improvement over the GEV method.   

 

Tables (11-12) give results for just the lower and upper tail respectively.  

Generally, relative results are the same between methods as in Table 

(10).  It is difficult to summarize general results between the lower and 

upper tail estimates.  ME and RMSE are generally better for the upper 
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tail, but MRE and RMSRE are generally better for the lower tail.  This is 

understandable, as option-implied probability distributions are typically 

negatively skewed, meaning higher implied volatilities (and higher ME) in 

the lower tail, and there is typically option strikes that go much farther 

below-the-money than above-the-money (again, implying higher ME). 
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CHAPTER V 
 

 

CONCLUSION 

 

This thesis builds on and contributes to work in the field of financial risk 

management, specifically option-implied probability distributions.  

Although a number of studies have examined estimating the middle 

portion of probability distributions, there has not been a strong focus on 

the tails of the distribution, which are of particular importance in a risk 

management setting.  As such, this study provides additional insights 

about these tails, by horseracing four different tail-fitting methods.  This 

research differs from previous studies by introducing a new, non-

parametric, heuristic tail-fitting method that is similar in methodology to 

the consensus, most-often used method to estimate the middle portion of 

the probability distribution; and, by identifying which tail fitting method 

produces the most stable estimate with the least tail-option pricing error. 

 

Four tail-fitting methods are examined.  First (1), a base-case is laid 

down assuming truncated tails.  The middle of the distribution is 
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estimated using the popular curve-fitting method, where a fourth-degree 

spline with a single knot at-the-money is fit to the implied-volatility 

smile.  This same method is used to estimate the middle portion of the 

distribution for all four tail-fitting methods.  In the truncated tails case, 

the distribution is then truncated at the 2nd and 98th percentiles, with 

the middle portion reweighted to sum to 100%.  This method produces 

the maximum possible tail-option pricing error, as it assumes all options 

below the 2nd percentile and above the 98th percentile are worthless, 

which they never are in practice.  This produces a mean error of -0.3974 

(measured as the difference between the estimated implied volatility and 

the actual implied volatility from observed option prices) and a root mean 

squared error of 0.4179.  All other methods will improve beyond these 

baselines.  Despite its poor pricing ability, the truncated tails method 

does produce one of the most stable distribution estimates (as measured 

by a GARCH model of the time-series of the distribution’s moments). 

 

The second (2) tail-fitting method assumes normally distributed tails 

beyond the 2nd and 98th percentiles.  This method is also a bit of a straw-

man, as it is well-known that implied volatilities continue to rise as the 

strike price gets further away from the mean of the distribution.  

However, in practice, normally distributed tails are one of the most 

commonly used methods by researchers.  This methodology produces 
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distributions on an order equal in stability to the truncated tails method, 

but also produces poor pricing error results.  The mean error is -0.1489 

(a mean relative error of -31.27%) and the root mean squared error is 

0.1721 (a root mean squared relative error of 33.76%).  These are 

massive improvements over the truncated tails method, but still 

relatively poor compared to the final two methods. 

 

The third and fourth methods are not at all straw-men arguments and 

are designed to generate the best possible model-based estimate of the 

tails, and the best possible non-parametric, heuristic estimate of the 

tails.  The third (3) method assumes generalized extreme value (GEV) 

distributed tails beyond the 2nd and 98th percentiles.  Generalized Pareto 

distributed tails were also examined and the results were similar to the 

GEV tails.  This method greatly improves pricing error.  It produced a 

mean error of -0.0152 (a mean relative error of -4.54%) and a root mean 

squared error of 0.0326 (a root mean squared relative error of 7.81%).  

However, the estimated distributions are much less stable than the two 

naïve methods, on an order of magnitude of three to four times less 

stable.  This means, that while the average estimate of the distribution is 

closer to the actual, observed option-implied distribution, the estimation 

varies widely from day-to-day, giving users of the estimated distribution 

little confidence in its immediate accuracy.    
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The fourth (4) and last method uses an implied-volatility curve-fitting 

method to fit the tails beyond the 2nd and 98th percentiles.  This method 

assumes no pre-determined parameterization of the tails, and is similar 

to the fast and stable curve-fitting methodology used to fit the middle 

portion of the distribution.  Instead of interpolating between observable 

strike prices, the implied volatility smile is used to extrapolate beyond 

observable strike prices, into the tails of the distribution.  It produces the 

best pricing error results: a mean error of -0.0042 (a mean relative error 

of only -1.57%) and a root mean squared error of 0.0134 (a root mean 

squared relative error of 4.52%).  Also, this method is on an order of 

magnitude equal in stability to the two naïve methods. 

 

In short, the non-parameterized, heuristic method, similar to the fast 

and stable method most commonly used to estimate the middle portion 

of the probability distribution, is also stable, with the least option pricing 

bias in the tails of the distribution.  Researchers and other users of 

option-implied probability distributions would be wise to use the spline-

extrapolation method used in this thesis, or other non-parameterized, 

heuristic methods.   
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This thesis focused on determining whether a model-based or a non-

parameterized method is best at estimating the tails of the option-implied 

probability distribution.  Results confidently favor the latter.  Future 

research might focus on determining the best possible non-

parameterized method, or use a non-parameterized method to continue 

research along the three lines of applications outlined in Table (1).   

 

Option-implied probability distributions are still a burgeoning area of 

research and application in financial risk management.  I am confident of 

their utility and continued growth in use, and rest assured this thesis 

accomplished its goal.  Thank you for your interest and time.  God bless! 
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APPENDICES 
 

 

 

Appendix 1: Obtaining the Forward Price from Options Prices 

Throughout the RND estimation process it is necessary to convert back 

and forth between option prices and their equivalent Black-Scholes IVs.  

The traditional Black-Scholes model requires as input the underlying 

asset’s price and dividend yield.  Optionmetrics provides estimates of 

these but they are problematic.  One solution is to use equation (11), 

which takes as input the forward price in place of the underlying price 

and dividend yield.  Fortunately, given a full set of option prices, the 

forward price can easily be found.  It is the strike price where the put 

price equals the call price.   

 

However, strikes prices come in discrete intervals and the exact strike 

which equates the put and call price is likely to be between two 

observable strikes.  In order to pinpoint the forward price, option prices 

need to be interpolated between the strikes.   
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The process is threefold: first fit a spline to the IV smile derived only from 

put prices; then fit a spline to the IV smile derived only from call options; 

and last, convert both splines back into option prices and find where the 

put price function intersects with the call price function.  One 

adjustment must be made to spline fitting process: when converting 

between option prices and IVs via equation (11), the forward price cannot 

be used as an input because it has not been estimated yet.  To overcome 

this, the underlying asset price, as quoted by Optionmetrics is used in 

place of the forward price.  Since the IV smile is only used as a 

computational tool, it does not matter what forward value is used to 

calculate IVs, so long as the same value is used to convert back to option 

prices.  The quoted underlying price is close enough to the forward price 

that it can be used as a proxy. 

 

Figures 15 and 16 show this process for the set of options prices used in 

the illustrative example from the thesis.  Figure 15 gives the fitted splines 

for puts and calls separately.  Note that the IV smiles in Figure 15 do not 

match the IV smile in Figure 1.  This is because an incorrect forward 

price was used in Figure 15, which would be a problem if one spline was 

being fit to both puts and calls (as in Figure 2), but is of no consequence 

when fitting only puts or calls separately.  Figure 16 shows the splines 
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converted back into option price space and the intersection of the two 

splines, which is the estimated forward price.    

 

 

Appendix 2: Extracting Moments from the Estimated Distribution 

 

The implied moments (IM) centered about the forward price, as displayed 

in Figure 8 are determined by the following equations 

 

 (17)   𝐼𝑀2 = √∑ [𝑓(𝐾) ∗ 0.01 ∗ (𝐾 − 𝐹)2]𝐾    

 

(18)   𝐼𝑀3 =
∑ [𝑓(𝐾) ∗ 0.01 ∗ (𝐾 − 𝐹)3]𝐾

𝐼𝑀2
3⁄  

 

(19)   𝐼𝑀4 =
∑ [𝑓(𝐾) ∗ 0.01 ∗ (𝐾 − 𝐹)4]𝐾

𝐼𝑀2
4⁄  

 

where 𝐼𝑀2  is implied volatility un-scaled by the forward price, 𝐼𝑀3  is 

implied skewness, 𝐼𝑀4 is implied kurtosis, F is the option-implied forward 

price, and 𝑓(𝐾)  is the RND at strike K.  Note that implied volatility 

= 𝐼𝑀2 𝐹⁄ .  As explained in section 2.4.4, the RND is calculated at one cent 

intervals, and therefore (17)-(19) should ideally be summed at one cent 

intervals over the entire range of strike prices.  But what constitutes the 

entire range of strikes?  The moments could be summed from a zero 

strike price up to some assuredly large strike price such as two times the 

forward price.  But this is computationally infeasible.   
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If the range of strikes used to calculate (17)-(19) is not wide enough, the 

IMs may not converge to a stable estimate, and the IMs will fluctuate 

widely from one day to the next.  To illustrate this see Figure 17.  It 

depicts each one cent strike’s contribution to the summation in equation 

(19).  As the strike price goes to zero or infinity, the graph tends toward 

zero, because the RND tends to zero.  However, if too narrow a range of 

strikes is used to calculate equation (19), the graph will not tend to zero, 

and the implied kurtosis estimate will not converge.  In the case of the 

day chosen for Figure 17, the low end of the range approaches zero at a 

strike price around 350, which means the left tail of the distribution 

must be extrapolated to this strike. 

 

In this thesis I widen the range of strikes until 𝑓(𝐾) ∗ 0.01 ∗ (𝐾 − 𝐹)4  is 

less than 5% of its maximum value.  This insures that implied kurtosis 

converges to a stable estimate.  In the case of Figure 17, its highest value 

is 9,113.42, and therefore the range of strikes is widened until the graph 

drops below 455.67 both on the high and low side.  Note that since the 

limit of (𝐾 − 𝐹)4 tends toward infinity faster than (𝐾 − 𝐹)3 tends toward 

+/-infinity, implied skewness always converges within a tighter range 

than implied kurtosis.  By the same reasoning implied volatility 

converges within a tighter range than implied skewness.  Therefore, by 
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insuring that implied kurtosis converges, this also insures that implied 

skewness and implied volatility converge to a stable estimate. 
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Table 1. Applications of Option-Implied PDFs       

 

Panel A:  Central Bank Research involving Option-Implied PDFs 
 

  Author (Year)    Central Bank 
 

Neuhaus (1995)    Deutsche Bundesbank 

Leahy and Thomas (1996)  Federal Reserve Board of Governors 

Melick and Thomas (1997)  Federal Reserve Board of Governors 

Bahra (1997)    Bank of England 

Abken and Ramamurtie (1996) Federal Reserve of Atlanta 

Malz (1997)     Federal Reserve of New York 

Nakamura and Shiratsuka (1999) Bank of Japan 

McManus and Watt (1999)  Bank of Canada 

Coutant et al. (2001)   Banque de France 

Andersen and Wagener (2002)  European Central Bank 

 

Panel B:  Event Studies using Option-Implied PDFs 
 

  Author (Year)    Event 
 

Bates (1991, 2000)   Black Monday, Oct. 1987 

Melick and Thomas (1997)   Crude oil prices, first Gulf War 

Gemmill and Seflekos (1999)  FTSE 100, crashes and elections 

Söderlind (2000)    UK Exchange Rate Mechanism crisis 

Jondeau and Rockinger (2000) French snap election, 1997 

Shiratsuka (2001)    Japanese boom and bust, 80’s/90’s 

Andersen and Wagener (2002)  Euribor rates, Sept. 11th, 2001 

Campa, Chang and Refalo (2002) Brazilian Real Plan, 1994-1999 

 

Panel C:  Implied Risk Aversion 
 

  Author (Year)   Risk-Neutral / Historical Model 
 

Ait-Sahalia and Lo (1998, 2000) Kernel methods for both 

Coutant (2000)    Hermite polynomial /ARCH 

Haynes and Shin (2002)   Cubic spline / GARCH 

Perignon and Villa (2002)  Kernel methods for both 

Rosenberg and Engle (2002)  Curve fitting / GARCH 
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Table 2. Generalized Distributions Used to Model Option-Implied PDFs  

 

  Author (Year)     Distribution 
 

Sherrick et al. (1992, 1995, 1996):  Burr Type-XII  

 Aparicio and Hodges (1998):   Beta of the Second Kind 

Posner and Milevsky (1998):    Tukey’s Lambda  

DeJong and Huisman (2000):    Skewed-Student-t 

Corrado (2001):      Johnson’s 𝑆𝑈 
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Table 3. Expansion Methods Used to Model Option-Implied PDFs   
 

  Author (Year)     Expansion Method 
 

Jarrow and Rudd (1982):   Edgeworth  

Longstaff (1995):     Edgeworth  

Corrado and Su (1996, 1997):   Gram–Charlier  

Abken et al. (1996a, 1996b):   Hermite Polynomial 

Abadir and Rockinger (1997):    Confluent Hypergeometric 

Brenner and Eom (1997):   Laguerre Polynomials   

Potters et al. (1998):    Edgeworth 

Jondeau and Rockinger (2001):  Hermite Poly./Gram–Charlier 

Young et al. (2001):    Edgeworth 

Giamouridis and Tamvakis (2001, 2002): Edgeworth 
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Table 4. Non-Parametric Methods used to Estimate Option-Implied PDFs  
 

 Panel A:  Maximum Entropy Methods 
 

  Author (Year)    Prior Distribution 
 

Rubinstein (1994)    Lognormal Prior 

Buchen and Kelly (1996)   Uniform and Lognormal Prior 

Stutzer (1996)     Historical Distribution Prior 

Branger (2002)     Multiple Distribution Priors 

Rockinger and Jondeau (2002) Normal & t-Distribution Priors 
 

 Panel B:  Kernel Methods 
 

  Author (Year)    Description 
 

Rookley (1997)    In strike ad time-to-expiration 

Aït-Sahalia and Lo (1998)   In stock price, strike, maturity, 

 interest rate, and dividends 

Bondarenko (2000)    Convolution of kernel & std. densities 

Härdle and Yatchew (2002)  Non-parametric least squares 
 

 Panel C:  Curve-Fitting Methods 
 

  Author (Year)    Description 
 

Shimko  (1993)    Quadratic polynomial 

Mayhew  (1995)    Cubic Spline 

Aparicio and Hodges  (1998)  Cubic B-Splines 

Campa, Chang, and Reider  (1998) Cubic Splines 

Rosenberg  (1998, 2003)   Biv.-polynomials fitted to Log-IV  

Brown and Toft  (1999)   Seventh-Order Splines 

Andersen and Wagener  (2002) High-Order Splines 

Hayes and Shin  (2002)   Cubic Splines 

Rosenberg and Engle  (2002)  Polynomials Fitted to Log-IV 
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Table 5: Summary Statistics 

              

Option data from Januray 1, 2003 to December 29, 2017.  Forward price derived from option 

price (see Appendix 1).  CDF and spline fitting statistics based of a fourth degree spline fit to the 

implied volatility smile. 

 

  Mean 

Std. 

Dev. Min. Q1 Median Q3 Max. 

S&P 500 Index 

 

1,185.93  

    

178.73  

    

676.53  

 

1,085.36  

 

1,193.86  

 

1,305.11  

 

1,565.15  

Forward Price 

 

1,186.76  

    

181.29  

    

673.57  

 

1,083.21  

 

1,193.91  

 

1,307.32  

 

1,576.67  

Risk-Free Rate 2.18% 1.95% 0.16% 0.27% 1.34% 4.11% 6.09% 

Days to Expiration 39.1 6.4 15.0 34.0 39.3 44.0 52.0 

Number of Options 

Used 

          Puts Used 66.1 44.7 8.0 27.0 48.0 113.0 165.0 

   Calls Used 54.0 28.3 10.0 27.0 53.0 76.0 164.0 

   Total Strikes Used 68.4 42.0 11.0 29.0 58.0 110.0 164.0 

Minimum of CDF 0.0090 0.0189 0.0000 0.0018 0.0041 0.0085 0.3345 

Maximum of CDF 0.9864 0.0333 0.4928 0.9850 0.9940 0.9998 1.0000 

Spline Fitting 

          Standard Error 0.0227 0.0171 0.0013 0.0107 0.0175 0.0295 0.1353 

   R-squared 0.9990 0.0013 0.9742 0.9988 0.9994 0.9997 1.0000 
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Table 6: Raw Option Price Data 

              

Obtained from S&P Index options on Jan. 31, 2012 with an expiration date of Mar. 17, 2012 

(time to expiration = 46 days).  Underlying price = 1,312.41.  Forward = 1,308.86.  Implied 

volatilities (IV) are obtained from the Black-Scholes option pricing model using forward prices. 

 

 

  Calls Puts 

Strike     Ask Bid Mid IV     Ask Bid Mid IV   

750                 0.10 0.05 0.075 0.532   

775   

     

  

 

0.15 0.05 0.100 0.516 

 780                 0.15 0.05 0.100 0.510   

800   

     

  

 

0.15 0.05 0.100 0.487 

 825                 0.20 0.10 0.150 0.476   

840   

     

  

 

0.40 0.05 0.225 0.478 

 850                 0.40 0.10 0.250 0.472   

860   

     

  

 

0.40 0.05 0.225 0.455 

 870                 0.45 0.05 0.250 0.449   

875   

     

  

 

0.40 0.05 0.225 0.438 

 880                 0.45 0.10 0.275 0.442   

895   

     

  

 

0.50 0.10 0.300 0.429 

 900                 0.45 0.25 0.350 0.430   

905   

     

  

 

0.50 0.15 0.325 0.421 

 910                 0.55 0.15 0.350 0.419   

915   

     

  

 

0.55 0.15 0.350 0.413 

 920                 0.55 0.20 0.375 0.411   

925   

     

  

 

0.55 0.20 0.375 0.405 

 930                 0.60 0.25 0.425 0.405   

940   

     

  

 

0.65 0.25 0.450 0.397 

 950                 0.70 0.30 0.500 0.390   

960   

     

  

 

0.80 0.30 0.550 0.384 

 975                 0.90 0.55 0.725 0.380   

980   

     

  

 

0.95 0.45 0.700 0.373 

 985                 1.00 0.40 0.700 0.367   

990   

     

  

 

1.10 0.55 0.825 0.369 

 995                 1.15 0.55 0.850 0.365   

1000   

     

  

 

1.00 0.65 0.825 0.358 

 1005                 1.30 0.55 0.925 0.358   

1010   

     

  

 

1.35 0.60 0.975 0.355 

 1015                 1.40 0.60 1.000 0.350   

1020   

     

  

 

1.50 0.85 1.175 0.353 

 1025                 1.40 0.75 1.075 0.342   

1030   

     

  

 

1.60 1.00 1.300 0.346 

 1035                 1.75 0.75 1.250 0.338   

1040   

     

  

 

1.70 1.00 1.350 0.336 

 1045                 1.95 1.00 1.475 0.335   

1050   

     

  

 

1.55 1.10 1.325 0.323 

 1055                 2.10 1.50 1.800 0.335   

1060   

     

  

 

2.20 1.40 1.800 0.328 
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1065                 2.30 1.15 1.725 0.320   

1070   

     

  

 

2.40 1.25 1.825 0.317 

 1075                 2.50 1.65 2.075 0.318   

1080   

     

  

 

2.60 1.75 2.175 0.315 

 1085                 2.80 1.50 2.150 0.308   

1090   

     

  

 

2.85 1.60 2.225 0.303 

 1095                 3.00 1.95 2.475 0.303   

1100   

     

  

 

2.70 1.85 2.275 0.292 

 1105                 3.30 1.90 2.600 0.293   

1110   

     

  

 

3.40 2.05 2.725 0.290 

 1115                 3.60 2.20 2.900 0.287   

1120   

     

  

 

3.70 2.65 3.175 0.286 

 1125                 3.90 2.85 3.375 0.283   

1130   

     

  

 

4.00 3.00 3.500 0.279 

 1135                 4.30 3.20 3.750 0.277   

1140   

     

  

 

4.50 3.10 3.800 0.271 

 1145                 4.70 3.60 4.150 0.270   

1150   

     

  

 

4.50 3.80 4.150 0.263 

 1155                 5.30 3.80 4.550 0.262   

1160   

     

  

 

5.40 4.00 4.700 0.257 

 1165                 5.80 4.30 5.050 0.255   

1170   

     

  

 

6.10 4.60 5.350 0.252 

 1175                 6.50 5.00 5.750 0.250   

1180   

     

  

 

6.40 5.60 6.000 0.246 

 1185                 7.20 5.90 6.550 0.245   

1190   

 

127.20 124.10 125.650 0.236   

 

7.60 6.10 6.850 0.240 

 1195     122.70 119.50 121.100 0.233     8.00 6.60 7.300 0.238   

1200   

 

118.10 115.00 116.550 0.230   

 

8.60 7.00 7.800 0.235 

 1205     113.60 110.50 112.050 0.228     9.00 7.60 8.300 0.232   

1210   

 

109.10 106.00 107.550 0.225   

 

9.50 8.10 8.800 0.229 

 1215     104.70 101.60 103.150 0.222     10.20 8.60 9.400 0.226   

1220   

 

99.90 97.20 98.550 0.218   

 

10.80 9.20 10.000 0.223 

 1225     96.50 92.70 94.600 0.219     11.40 10.00 10.700 0.221   

1230   

 

91.60 88.60 90.100 0.214   

 

12.20 10.70 11.450 0.218 

 1235     87.40 84.40 85.900 0.212     12.90 11.30 12.100 0.214   

1240   

 

83.20 80.20 81.700 0.209   

 

13.70 12.10 12.900 0.211 

 1245     79.50 75.90 77.700 0.207     14.60 12.90 13.750 0.208   

1250   

 

74.90 72.10 73.500 0.204   

 

15.60 13.90 14.750 0.206 

 1255     70.90 68.10 69.500 0.201     16.60 14.90 15.750 0.203   

1260   

 

66.90 64.20 65.550 0.199   

 

17.70 15.90 16.800 0.200 

 1265     63.50 60.10 61.800 0.197     18.70 17.10 17.900 0.197   

1270   

 

59.70 56.50 58.100 0.194   

 

20.00 18.40 19.200 0.195 

 1275     55.50 52.90 54.200 0.191     21.20 19.60 20.400 0.192   

1280   

 

52.30 49.10 50.700 0.189   

 

22.60 21.00 21.800 0.189 

 1285     48.70 45.80 47.250 0.186     24.20 22.50 23.350 0.187   

1290   

 

45.20 42.20 43.700 0.183   

 

25.60 24.00 24.800 0.183 

 1295     41.80 39.10 40.450 0.180     27.30 25.70 26.500 0.181   

1300   

 

38.60 35.90 37.250 0.178   

 

29.20 27.00 28.100 0.177 

 1305     35.40 32.80 34.100 0.175     31.20 28.60 29.900 0.173   

1310   

 

31.60 30.00 30.800 0.170   

 

33.30 30.60 31.950 0.171 

 1315     29.60 27.00 28.300 0.170     35.30 33.50 34.400 0.170   
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1320   

 

26.30 24.40 25.350 0.166   

 

37.60 35.70 36.650 0.167 

 1325     23.50 21.90 22.700 0.163     40.20 38.10 39.150 0.164   

1330   

 

21.10 19.30 20.200 0.160   

 

42.80 40.70 41.750 0.162 

 1335     18.90 17.10 18.000 0.157     45.70 43.50 44.600 0.160   

1340   

 

16.80 15.10 15.950 0.155   

 

48.40 46.20 47.300 0.157 

 1345     14.90 13.20 14.050 0.153     51.50 49.20 50.350 0.154   

1350   

 

12.90 11.40 12.150 0.150   

 

54.70 52.40 53.550 0.152 

 1355     11.20 9.80 10.500 0.148               

1360   

 

9.90 8.40 9.150 0.147   

      1365     8.50 7.00 7.750 0.144               

1370   

 

7.20 5.90 6.550 0.142   

      1375     6.00 4.90 5.450 0.140               

1380   

 

5.20 4.30 4.750 0.140   

      1385     4.50 3.40 3.950 0.138               

1390   

 

3.80 2.80 3.300 0.137   

      1395     3.10 2.35 2.725 0.136               

1400   

 

2.65 2.10 2.375 0.137   

      1405     2.30 1.60 1.950 0.136               

1410   

 

1.85 1.30 1.575 0.134   

      1415     1.60 1.10 1.350 0.135               

1420   

 

1.35 0.90 1.125 0.135   

      1425     1.15 0.75 0.950 0.135               

1430   

 

1.00 0.60 0.800 0.135   

      1435     0.85 0.45 0.650 0.135               

1440   

 

0.80 0.40 0.600 0.138   

      1445     0.70 0.30 0.500 0.138               

1450   

 

0.65 0.25 0.450 0.140   

      1460     0.55 0.15 0.350 0.142               

1475   

 

0.50 0.15 0.325 0.152   

      1500     0.30 0.10 0.200 0.160               
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Table 7: Time Series Stability Test, Implied Volatility 

                   

Table gives parameter and standard error estimates for an GARCH(1,1) regression of the following form: 

 

𝐼𝑉̂0 = 𝛼0 + 𝛼1𝐼𝑉−1 + 𝜀 
 

𝜀𝐼̂𝑉0
2 = 𝛽0 + 𝛽1𝜀−1

2 + 𝛽2𝜀𝐼̂𝑉−1
2 + 𝑧 

 

where IV is the implied volatility as estimated using the four tail-fitting procedures.  The risk-neutral density (RND) within the observable range of 

strike prices (between the tails) is estimated in all four cases using the spline-fitting method of Figlewski (2009).  Numbers in parenthesis are standard 

errors.  ***, **, and * represent two-sided tests that the parameters are different than zero at the 99%, 95%, and 90% confidence levels, respectively.  

MSE is mean squared error.  PPCC is the probability plot correlation coefficient and K-S is the Kolmogorov-Smirnov test statistic, with stars 

representing 99%, 95%, and 90% confidence levels that the distribution of the standardized residuals is different than the normal.   

 

  Truncated  Lognormal  GEV  Spline-Extrapolated  

  Tails  Tails  Tails  Tails  
          

𝛼0  0.1897***  0.2568***  0.2007***  0.2475***  

  (0.0254)  (0.0565)  (0.006548)  (0.0531)  
          

𝛼1  -0.9957***  -0.9964***  -0.9854***  -0.9969***  

  (0.002044)  (0.002023)  (0.002836)  (0.001847)  
          

𝛽0  1.6374e
-6

***  3.0728e
-6

***  0.0000100***  2.2524e
-6

***  

  (1.5395e
-7

)  (3.0583e
-7

)  (7.3482e
-7

)  (2.773e
-7

)  
          

𝛽1  0.1229***  0.1308***  0.3068***  0.1307***  

  (0.007384)  (0.00973)  (0.0132)  (0.009256)  
          

𝛽2  0.8592***  0.8410***  0.7033***  0.8482***  

  (0.007734)  (0.0102)  (0.008205)  (0.009739)  
          

MSE  0.0001483  0.0001943  0.0005000  0.0001876  

𝑟2  0.9743  0.9750  0.9333  0.9743  

PPCC  0.9217***  0.9240***  0.8523***  0.9232***  

K-S  0.1300***  0.1278***  0.1774***  0.1305***  
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Table 8: Time Series Stability Test, Implied Skewness 

                   

Table gives parameter and standard error estimates for an GARCH(1,1) regression of the following form: 

 

𝐼𝑆̂0 = 𝛼0 + 𝛼1𝐼𝑆−1 + 𝜀 
 

𝜀𝐼̂𝑆0
2 = 𝛽0 + 𝛽1𝜀−1

2 + 𝛽2𝜀𝐼̂𝑆−1
2 + 𝑧 

 

where IS is the implied skewness as estimated using the four tail-fitting procedures.  The risk-neutral density (RND) within the observable range of 

strike prices (between the tails) is estimated in all four cases using the spline-fitting method of Figlewski (2009).  Numbers in parenthesis are standard 

errors.  ***, **, and * represent two-sided tests that the parameters are different than zero at the 99%, 95%, and 90% confidence levels, respectively.  

MSE is mean squared error.  PPCC is the probability plot correlation coefficient and K-S Statistic is the Kolmogorov-Smirnov test statistic, with stars 

representing 99%, 95%, and 90% confidence levels that the distribution of the standardized residuals is different than the normal.   

 

  Truncated  Lognormal  GEV  Spline-Extrapolated  

  Tails  Tails  Tails  Tails  
          

𝛼0  -0.6245***  -1.1027***  -1.2198***  -1.1084***  

  (0.009467)  (0.0333)  (0.0611)  (0.0500)  
          

𝛼1  -0.8497***  -0.9538***  -0.9387***  0.9692***  

  (0.006639)  (0.00531)  (0.008041)  (0.004005)  
          

𝛽0  0.00302 ***  0.000311***  0.002793***  0.000132***  

  (0.0000148)  (0.0000556)  (0.000205)  (0.0000292)  
          

𝛽1  0.1597***  0.1085***  0.5149***  0.0682***  

  (0.006149)  (0.0116)  (0.0131)  (0.008270)  
          

𝛽2  0.8577***  0.8427***  0.6687***  0.9113***  

  (0.002034)  (0.0174)  (0.003354)  (0.0101)  
          

MSE  0.02041  0.00657  0.46235  0.00759  

𝑟2  0.7078  0.9084  0.3426  0.9445  

PPCC  0.8410***  0.9912***  0.8539***  0.9924***  

K-S   0.1835***  0.0429***  0.1876***  0.0465***  
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Table 9: Time Series Stability Test, Implied Kurtosis 

                   

Table gives parameter and standard error estimates for an GARCH(1,1) regression of the following form: 

 

𝐼𝐾̂0 = 𝛼0 + 𝛼1𝐼𝐾−1 + 𝜀 
 

𝜀𝐼̂𝐾0
2 = 𝛽0 + 𝛽1𝜀−1

2 + 𝛽2𝜀𝐼̂𝐾−1
2 + 𝑧 

 

where IK is the implied kurtosis as estimated using the four tail-fitting procedures.  The risk-neutral density (RND) within the observable range of 

strike prices (between the tails) is estimated in all four cases using the spline-fitting method of Figlewski (2009).  Numbers in parenthesis are standard 

errors.  ***, **, and * represent two-sided tests that the parameters are different than zero at the 99%, 95%, and 90% confidence levels, respectively.  

MSE is mean squared error.  PPCC is the probability plot correlation coefficient and K-S Statistic is the Kolmogorov-Smirnov test statistic, with stars 

representing 99%, 95%, and 90% confidence levels that the distribution of the standardized residuals is different than the normal.   

 

  Truncated  Lognormal  GEV  Spline-Extrapolated  

  Tails  Tails  Tails  Tails  
          

𝛼0  3.1047***  4.3736***  4.2274***  5.0639***  

  (0.0226)  (0.0957)  (0.3252)  (0.2562)  
          

𝛼1  -0.9047***  -0.9486***  -0.9448***  -0.9692***  

  (0.006817)  (0.006758)  (0.0161)  (0.003972)  
          

𝛽0  0.002234***  0.001700***  0.0113***  0.001748***  

  (0.000159)  (0.00315)  (0.001974)  (0.000339)  
          

𝛽1  0.2267***  0.1399***  0.6231***  0.1097***  

  (0.0138)  (0.0117)  (0.0143)  (0.009275)  
          

𝛽2  0.7196***  0.8267***  0.7034***  0.8990***  

  (0.0113)  (0.0112)  (0.002273)  (0.007449)  
          

MSE  0.02867  0.06425  76.47863  0.53036  

𝑟2  0.7820  0.8648  0.1907  0.9034  

PPCC  0.9466***  0.9742***  0.8162***  0.9232***  

K-S   0.1024***  0.0653***  0.2317***  0.1028***  
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Table 10: Pricing Error Test 

                   

Table gives pricing error statistics and 95% confidence intervals. 

 

𝑀𝐸 =
1

𝑛
∑(𝐼𝑉̂𝑖 − 𝐼𝑉𝑖) ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑀𝑅𝐸 =

1

𝑛
∑(

𝐼𝑉̂𝑖 − 𝐼𝑉𝑖
𝐼𝑉𝑖

) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐼𝑉̂𝑖 − 𝐼𝑉𝑖)

2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑀𝑆𝑅𝐸 = √
1

𝑛
∑(

𝐼𝑉̂𝑖 − 𝐼𝑉𝑖
𝐼𝑉𝑖

)2⁡⁡⁡⁡ 

 

 

  ME MRE RMSE RMSRE 
      

Truncated   -0.3974 -1.0000 0.4179 1.0000 

Tails  [-0.4056, -0.3913] [-1.0000, -1,0000] [0.4037, 0.4359] [1.0000, 1.0000] 

      

Lognormal  -0.1338 -0.2852 0.1601 0.3182 

Tails  [-0.1376, -0.1264] [-0.2936, -0.2769] [0.1532, 0.1668] [0.3053, 0.3318] 

      

GEV  -0.0152 -0.0454 0.03258 0.0781 

Tails  [-0.0175, -0.0142] [-0.0500, -0.0424] [0.0313, 0.0337] [0.0770, 0.0834] 

      

Spline-Extrapolated  -0.0042 -0.0157 0.0134 0.0442 

Tails  [-0.0053, -0.0036] [-0.0189, -0.0143] [0.0127, 0.1468] [0.0432, 0.0459] 
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Table 11: Pricing Error Test: Lower Tail Only 

                   

Table gives pricing error statistics and 95% confidence intervals. 

 

𝑀𝐸 =
1

𝑛
∑(𝐼𝑉̂𝑖 − 𝐼𝑉𝑖) ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑀𝑅𝐸 =

1

𝑛
∑(

𝐼𝑉̂𝑖 − 𝐼𝑉𝑖
𝐼𝑉𝑖

) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐼𝑉̂𝑖 − 𝐼𝑉𝑖)

2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑀𝑆𝑅𝐸 = √
1

𝑛
∑(

𝐼𝑉̂𝑖 − 𝐼𝑉𝑖
𝐼𝑉𝑖

)2⁡⁡⁡⁡ 

 

 

  ME MRE RMSE RMSRE 
      

Truncated   -0.4363 -1.0000 0.4452 1.0000 

Tails  [-0.4429, -0.4317] [-1.0000, -1,0000] [0.4296, 0.4669] [1.0000, 1.0000] 

      

Lognormal  -0.1498 -0.3127 0.1721 0.3376 

Tails  [-0.1556, -0.1491] [-0.3349, -0.3049] [0.1638, 0.1811] [0.3257, 0.3558] 

      

GEV  -0.0156 -0.0327 0.0329 0.0646 

Tails  [-0.0175, -0.0138] [-0.0369, -0.0301] [0.0323, 0.0352] [0.0623, 0.0679] 

      

Spline-Extrapolated  -0.0029 -0.0063 0.0122 0.0263 

Tails  [-0.0036, -0.0024] [-0.0084, -0.0054] [0.0133, 0.0124] [0.0258, 0.0280] 
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Table 12: Pricing Error Test: Upper Tail Only 

                   

Table gives pricing error statistics and 95% confidence intervals. 

 

𝑀𝐸 =
1

𝑛
∑(𝐼𝑉̂𝑖 − 𝐼𝑉𝑖) ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑀𝑅𝐸 =

1

𝑛
∑(

𝐼𝑉̂𝑖 − 𝐼𝑉𝑖
𝐼𝑉𝑖

) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐼𝑉̂𝑖 − 𝐼𝑉𝑖)

2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑀𝑆𝑅𝐸 = √
1

𝑛
∑(

𝐼𝑉̂𝑖 − 𝐼𝑉𝑖
𝐼𝑉𝑖

)2⁡⁡⁡⁡ 

 

 

  ME MRE RMSE RMSRE 
      

Truncated   -0.1664 -1.0000 0.1671 1.0000 

Tails  [-0.1687, -0.1637] [-1.0000, -1,0000] [0.1514, 0.1864] [1.0000, 1.0000] 

      

Lognormal  -0.0194 -0.1103 0.0248 0.1348 

Tails  [-0.0217, -0.0170] [-0.1255, -0.0981] [0.0216, 0.0272] [0.1213, 0.1515] 

      

GEV  -0.0209 -0.1203 0.0246 0.1382 

Tails  [-0.0229, -0.0189] [-0.1305, -0.1101] [0.0226, 0.0278] [0.1254, 0.1545] 

      

Spline-Extrapolated  -0.0143 -0.0803 0.0185 0.1023 

Tails  [-0.0162, -0.0125] [-0.0901, -0.0706] [0.0167, 0.0207] [0.0925, 0.1147] 

      

      

                   

  



103 
 

 

Figure 1.  Binomial Option Pricing Model       
 

        Bond     Call     Stock 

 
where, 

 

𝐵𝑡 = price of a risk-free bond at time t 𝐶0 = call price 

𝑝𝑈 = probability there is an upward return 𝑈 = 𝑒𝑟𝑡+𝜎√𝑡 

𝑆𝑡 = underlying share price 1 𝑈⁄ = 𝑒𝑟𝑡−𝜎√𝑡 

𝐾  = strike price 𝑟𝑓 = risk-free rate. 
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Figure 2.  Multi-Period Binomial versus Black-Scholes     

 

Binomial Option Pricing Model     Black-Scholes 
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Figure 3.  S&P 500 Options at the CBOE        

 
              

Source: CBOE 
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Figure 4.  Z-Score of Daily S&P 100 Returns around Black Monday, 1987  

 

 
              

Source: CBOE, Yahoo Finance 
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Figure 5.  CBOE VIX Index and S&P 500 Index       

 

 
              

Source: CBOE, Yahoo Finance 
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Figure 6.  Black-Scholes Vol. Smile for Various Assets on Dec. 29th, 2017   

Dashed line is the underlying asset’s price.   

 

 

 
              

Source: OptionMetrics 
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Figure 7.  Example: Estimating Imp.-Volatilities under the Binomial Model  

 

Risk-Neutral Pricing: 
 

 Assumptions:  𝑆0 = $100, 𝐾 = $105, 𝑟𝑓 = 5%, 𝑡 = 1, 𝐶0 = $14.50 
 

 Value of Call: 𝐶0 = 𝑝𝑈
𝑄 (𝑆0𝑒

𝑟𝑓𝑡+𝜎√𝑡 − 𝐾) 𝑒−𝑟𝑓𝑡 =
1−𝐷

𝑈−𝐷
(𝑆0𝑈 − 𝐾𝑒−𝑟𝑓𝑡)   

  

  where, 𝑈 = 𝑒𝜎√𝑡, 𝐷 = 1/𝑈 
 

 Therefore:  $14.50 =
1−𝐷

𝑈−𝐷
($100𝑈 − $105𝑒−5%) 

 

 Which implies: 𝑈 = 1.34, 𝐷 = 0.75, 𝑝𝑈
𝑄 = 42.8%, 𝑝𝐷

𝑄 = 57.2%, [𝝈 = 𝟐𝟗. 𝟏%] 
 

 

Real-World Pricing: 
 

 Assumption: 𝑟 = 12%   (required return of the stock) 
 

 Therefore:  𝑆𝑡 = $100𝑒12% = 𝑝𝑈
𝑃𝑆0𝑒

12%𝑈 + 𝑝𝐷
𝑃𝑆0𝑒

12%𝐷 
 

 Which implies: 𝑝𝑈
𝑃 = 55.1%, 𝑝𝐷

𝑃 = 44.9% 
 

    𝐸[𝑟𝐶] = 30.3%  (expected-return of the call) 
 

    𝜎𝐶 = 105.0%  (volatility of the call)  
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Figure 8: Example of a Volatility Smile 

              

Obtained from S&P 500 Index options with an expiration date of Mar. 17, 2012 (time to 

expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  Forward price = 

1,308.86.   
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Figure 9: Fitted Spline, Fourth-Order with a Single Knot at the Money 

              

Obtained from S&P 500 Index options on Jan. 31, 2012 with an expiration date of Mar. 17, 2012 

(time to expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  

Forward price = 1,308.86.   
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Figure 10: Implied Risk-Neutral Probability Distribution without Tails 

              

Implied from S&P 500 Index options on Jan. 31, 2012 with an expiration date of Mar. 17, 2012 

(time to expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  

Forward price = 1,308.86.  Density function and cumulative function obtained numerically via 

equations (5) and (6).  Distribution displayed between the 2
nd

 and 98
th

 percentiles. 
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Figure 11: Truncated Distribution Compared to Non-Truncated Distribution 

              

Implied from S&P 500 Index options on Jan. 31, 2012 with an expiration date of Mar. 17, 2012 

(time to expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  

Forward price = 1,308.86.  Non-truncated distribution obtained numerically via equations (5) and 

(6) and displayed between the 2
nd

 and 98
th

 percentiles.  Truncated distribution displayed over 

entire range of distribution.  
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Figure 12: Lognormal Tails Compared to Tails Extrapolated from the Volatility Smile 

              

Implied from S&P 500 Index options on Jan. 31, 2012 with an expiration date of Mar. 17, 2012 

(time to expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  

Forward price = 1,308.86.  Dotted line represents the implied volatilities resulting from attaching 

lognormal tails at the 2
nd

 and 98
th

 percentiles of the probability density function.  Solid line 

represents the fitted spline with tails extrapolated from the volatility smile.  The left tail is a 

linear extrapolation of the volatility smile between the 2nd and 5th percentile.  The right tail is a 

linear extrapolation of the volatility smile between the 95th and the 98th percentile.  Vertical 

lines represent the 2
nd

, 5
th

, 95
th

, and 98
th

 percentiles.  2
nd

 percentile = 1,071.28.  5
th

 percentile = 

1,151.49.  95
th

 percentile = 1,416.01. 98
th

 percentile = 1,437.46. 

 

 
              

  

Trend estimation 

zones 
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Figure 13: Generalized Extreme Value Density Function Tails Compared to Density Tails 

Extrapolated from the Volatility Smile 

              

Implied from S&P 500 Index options on Jan. 31, 2012 with an expiration date of Mar. 17, 2012 

(time to expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  

Forward price = 1,308.86.  Dark line represents the fitted spline with left tail extrapolated from 

the volatility smile.  Light line represents a tail from a Generalized Extreme Value (GEV) 

distribution chosen such that the density and cumulative distribution match the spline-fitted 

distribution at the 5
th

 percentile, and also so that their densities match at the 2
nd

 percentile.  The 

location parameter of the GEV is estimated to be 1280.61; the scale parameter 47.49; and the 

shape parameter 0.1596.  Vertical lines represent the 2
nd

 and 5
th

 percentiles.  2
nd

 percentile = 

1,071.28.  5
th

 percentile = 1,151.49. 
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Figure 14: Generalized Extreme Value Cumulative Distribution Tails Compared to 

Cumulative Distribution Tails Extrapolated from the Volatility Smile 

              

Implied from S&P 500 Index options on Jan. 31, 2012 with an expiration date of Mar. 17, 2012 

(time to expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  

Forward price = 1,308.86.  Dark line represents the fitted spline with left tail extrapolated from 

the volatility smile.  Light line represents a tail from a Generalized Extreme Value (GEV) 

distribution chosen such that the density and cumulative distribution match the spline-fitted 

distribution at the 5
th

 percentile, and also so that their densities match at the 2
nd

 percentile.  The 

location parameter of the GEV is estimated to be 1280.61; the scale parameter 47.49; and the 

shape parameter 0.1596.  Vertical lines represent the 2
nd

 and 5
th

 percentiles.  2
nd

 percentile = 

1,071.28.  5
th

 percentile = 1,151.49. 
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Figure 15: Time Series of Option-Implied Moments using Truncated Tails 
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Figure 16: Time Series of Option-Implied Moments using Lognormal Tails 
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Figure 17: Time Series of Option-Implied Moments using GEV Tails 
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Figure 18: Time Series of Option-Implied Moments using Smile-Extrapolated Tails 
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Figure 19: Normal Probability Plot, Implied Volatility 

                   

Normal probability plot comparing standardized residuals from GARCH(1,1) model against theoretical z-scores from a normal distribution.  PPCC is 

the probability plot correlation coefficient.  For comparison, straight line represents result if residuals are perfectly normal.   
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Figure 20: Normal Probability Plot, Implied Skewness 

                   

Normal probability plot comparing standardized residuals from GARCH(1,1) model against theoretical z-scores from a normal distribution.  PPCC is 

the probability plot correlation coefficient.  For comparison, straight line represents result if residuals are perfectly normal.   
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Figure 21: Normal Probability Plot, Implied Kurtosis 

                   

Normal probability plot comparing standardized residuals from GARCH(1,1) model against theoretical z-scores from a normal distribution.  PPCC is 

the probability plot correlation coefficient.  For comparison, straight line represents result if residuals are perfectly normal.   
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Figure 22: Cumulative Distribution Function, Implied Volatility 

                   

Dark line is the cumulative distribution function (cdf) of the standardized residuals from GARCH(1,1) model.  For comparison, dashed, light 

line is the cdf for the normal distribution.  Kolmogorov-Smirnov (KS) statistic is the supremum of the absolute distance between the two cdfs. 

 

 



125 
 

Figure 23: Cumulative Distribution Function, Implied Skewness 

                   

Dark line is the cumulative distribution function (cdf) of the standardized residuals from GARCH(1,1) model.  For comparison, dashed, light 

line is the cdf for the normal distribution.  Kolmogorov-Smirnov (KS) statistic is the supremum of the absolute distance between the two cdfs. 
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Figure 24: Cumulative Distribution Function, Implied Kurtosis 

                   

Dark line is the cumulative distribution function (cdf) of the standardized residuals from GARCH(1,1) model.  For comparison, dashed, light 

line is the cdf for the normal distribution.  Kolmogorov-Smirnov (KS) statistic is the supremum of the absolute distance between the two cdfs. 
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Figure 25: Separate Fitted Splines for Put and Calls 

              

Obtained from S&P 500 Index options with an expiration date of Mar. 17, 2012 (time to 

expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  Implied 

volatilities calculated using the underlying price as the forward price. 

 

 
              

  

Put Spline 
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Figure 26: Finding the Forward Price from Interpolated Put and Call Prices 

              

Obtained from S&P 500 Index options with an expiration date of Mar. 17, 2012 (time to 

expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  Implied 

volatilities calculated using the underlying price as the forward value.  Vertical line represents 

the option-implied forward price (1,308.86), where the put price equals the call price. 
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Figure 27: Convergence of Implied Kurtosis Estimate 

              

Obtained from S&P 500 Index options with an expiration date of Mar. 17, 2012 (time to 

expiration = 46 days).  Underlying price = 1,312.41.  Risk-free rate = 0.1995%.  Vertical line 

represents the option-implied forward price (1,308.86).  Graph depicts each one cent strike’s 

contribution to implied kurtosis.  See equation (19). 

 

 
              

 

𝑓(𝐾) ∗ 0.01 ∗ (𝐾 − 𝐹)4 
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