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Abstract: Colorectal cancer is one of the most commonly diagnosed forms of cancer with 

over 4% of both men and women developing it sometime during their life.  Currently, 

surgical excision of large tumor masses followed by chemotherapy is the preferred 

method of treatment. However, the large inoperable masses can be difficulty to resect 

with wide margins, and adjunctive chemotherapeutics do not penetrate uniformly in 

advanced stage tumors.  Additionally, a drug’s cytostatic or cytotoxic effect may not be 

sufficient to eliminate both the targeted tumor and developing metastases located far from 

the primary treated regions.  To address these issues, we hypothesized that the use of 

High Intensity Focused Ultrasound (HIFU) in combination with a Doxorubicin (Dox) 

loaded Echogenic Low Temperature Sensitive Liposome (E-LTSL) would deliver 

sufficient drug to solid tumor masses and promote immunomodulatory effects against 

distant metastasis in a murine colon cancer model.  To test this hypothesis we 1) 

developed an E-LTSL that allowed precisely controlled penetration of Dox into colon 

tumors under image guidance, 2) characterized the acoustic and therapeutic effects of E-

LTSL nanobubbles with HIFU in an immunocompromised mice, and 3) determined the 

efficacy of HIFU+E-LTSL in an immunocompetent bilateral mouse colon model.  The 

data generated from these aims indicated that HIFU+E-LTSL enhanced local drug 

delivery and penetration compared to traditional chemotherapeutic approaches. 

Interestingly, while the Dox permeation into tumor from vasculature was enhanced with 

HIFU+ELTSL compared to other treatments, it didn’t translate into significantly 

improved efficacy in an immunocompromised mouse model with multiple treatments.   

However, in an immunocompetent mouse model, both local treatment and systemic 

effects were comparatively more effective with the combined treatment at reduced 

treatment frequencies.  In conclusion, HIFU+E-LTSL increased the requisite Dox 

delivery to colorectal cancer and also augmented systemic anti-tumor immune response 

rates. 
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CHAPTER I 

 

 

REVIEW OF LITERATURE 

 

Abstract 

Conventional chemotherapeutic approaches result in variable outcomes in colon cancer 

patients for a number of reasons including the lack of homogenous drug penetration into 

solid tumors, inadequate drug extravasation, and presence of stromal cell mediated 

chemo-resistance.  To overcome these barriers, nanomedicines are being currently 

developed to improve outcomes relative to conventional chemotherapy. This review 

focuses on established and novel approaches that enhance drug concentration in tumors 

as well as promote immunomodulation of host cells with the use of focused ultrasound 

and nanomedicines. Preclinical data suggest that the proposed combinatorial approach 

has the potential to drastically improve survival outcomes in patients. The measured 

success of combination therapies is linked not only to tumor control in the treated site, 

but also to prevention of tumor recurrence and progression of metastasis.  
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Introduction 

According to Siegel et al. [1], colorectal cancer was the third most commonly diagnosed 

form of cancer in both men and women in the United States in 2019. The percentage of 

deaths attributed to colon cancer according to these projections rested at 9% (27,640 

deaths) for men and 8% (23,380 deaths) for women [1].  Similarly, in 2018, nearly 1.1 

million cases of colon cancer were diagnosed worldwide while 550,000 died from the 

disease [2].  Current treatment approaches for advanced stage colon cancer includes 

surgery plus adjunctive radiation, and chemotherapy. Additionally, immunotherapy is fast 

emerging as the 4th modality for treatment in patients. Despite this, the response rates 

vary based on the tumor microenvironments, resulting in modest outcomes in patients. 

This literature review primarily focuses on ways to address these clinical limitations by 

leveraging the advances in High intensity focused ultrasound (HIFU) mediated 

nanomedicine therapy in conjunction with chemotherapy.      

Principles of HIFU therapy 

HIFU is minimally invasive, safe, and reliable [3]. Ultrasound and more specifically, 

HIFU has several characteristics that affect how it interacts with tissue. Ultrasound can be 

achieved with a transducer that emits sound at a frequency above the human audible 

range of 20 kHz. When used for imaging, increasing the frequency yields a higher spatial 

resolution, but at the cost of increasing attenuation, and thus, decreasing the potential 

imaging depth.  HIFU, however, tends to utilize lower frequencies to ensure greater depth 

of penetration and focuses the sonic energy into a single spot.  This focal point 

experiences mechanical and thermal effects sufficient to cause a noticeable biological 
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effect compared to an imaging ultrasound. HIFU can be aimed at an unlimited depth from 

the body surface, and its intensity in tissue can be modulated by modifying the treatment 

parameters.  Since HIFU has the added benefit of heating deep-seated tissue, this 

property can be leveraged to enhance drug release locally from nanoparticles (e.g. in 

colon cancer) and immune effects from cancer cells in the local region. Towards this 

goal, in this dissertation, we focused on how HIFU heating and its mechanical effect 

impact anti-tumor outcomes. It may be noted that in addition to HIFU, a variety of other 

methodologies can also be utilized for tumor heating. For example, a water bath can heat 

a region of tissue locally with some accuracy, but it can still be challenging to generate 

precise heating without indiscriminately warming adjoining tissue. Likewise, invasive 

catheters for tumor heating required surgical procedures, that at times may be technically 

challenging. In contrast, HIFU heating maintains a steady, elevated temperature with 

precise spatial control in tissue [4-6].  Previous studies have shown that mild and ablative 

heating with HIFU improved chemotherapy delivery in vivo [5, 7], ex vivo [8], and in 

vitro [4, 5] compared to free drug or non-heated encapsulated drug studies. The proposed 

mechanism of drug delivery enhancement in interstitial spaces was via. by the 

modification of perfusion and interstitial fluid pressure [9].  

As noted above, HIFU can expose tissues to a range of energy ranges, thereby generating 

moderate to high heating and bio-effects. For instance, mild hyperthermia (40–45°C) is 

fundamentally distinct from hyperthermia-based ablative technologies (> 55°C) that are 

intended to destroy tumor tissue by heating [10], and thus for various bio-effects, tissue 

temperatures must be delicately balanced and precisely controlled [11, 12]. The most 

commonly used method for performing absolute thermometry is based on temperature-
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dependent chemical shift changes in proton resonance relative to that of a reference 

resonance under magnetic resonance imaging (MRI)[13]. However, the use of MRI is 

expensive, requires large dedicated facilities, and has technical limitations (e.g., 

interference by target tissue movement), and the agents that are required to create tumor 

imageability (e.g., gadolinium) may alter the chemical shift, thereby disrupting the 

fidelity of temperature measurement and drug delivery [14, 15]. Thus, developing novel 

liposomal nanoparticles that encapsulate temperature sensitive contrast agents that can be 

imaged with less-expensive ultrasound can be clinically relevant [16]. Towards this goal, 

the objective of this project was to assess the role of perfluoropentane or PFP (~30⁰C) in 

tumor imaging, and sonoporation. PFP can be injected in the form of liquid droplets 

dispersed in an aqueous medium that then are converted to echogenic bubbles upon 

warming to body temperature for ultrasound imaging [17]. We hypothesized that this 

method of enhancement of the extravasation and penetration of systemically administered 

chemotherapeutics, and ability to provide thermometry control under US guidance can be 

highly significant for treatment of deep-seated colon tumors away from the body surface. 

In addition to precise temperature elevations, HIFU can also induce cavitation effects 

with perfluorocarbon-based bubble agents for chemo-immune responses.  When first 

looking at the innate immune response, prior research has shown that tumor cells exposed 

to mild hyperthermia for 2 h expressed shock proteins such as HSP72 which promoted 

natural killer (NK) cell proliferation and cytotoxic activity [18-20].  Hyperthermia also 

enhanced immune responses directly from immune cells.  For example, natural killer 

cells directly heated for several hours at a temperature of 39.5ºC demonstrated higher 

NKG2D clustering, allowing superior lytic function [21].  Other leukocytes, when 
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directly heated such as dendritic cells [22, 23], macrophages [24, 25], and CD8+ T [26] 

have also shown the upregulation of immunogenic markers with HIFU. Similarly, 

ablative treatments with HIFU have shown to replace surgical approaches for 

unresectable tumors [27], providing the added benefit of flooding the local area with 

tumor antigen for immune cell recruitment [28].  While direct destruction of tumors with 

HIFU heating is interesting to some extent, the heating ranges drastically impact immune 

activations. For example, one study found that tumor cells killed with HIFU  heating 

<55ºC had more dendritic cell (DC) maturation than cells destroyed by <80ºC 

temperature ranges[29].  Furthermore, Xing et al. showed that mice receiving HIFU 

treatment two days prior to surgical amputation demonstrate reduced metastasis [30]. 

Studies that have analyzed immunomodulatory effects of focused ultrasound can be 

found in Table 1.1. For therapeutic optimization, here we mainly focused on mild-

hyperthermia ranges, and how they impact outcomes in colon cancers in combination 

with nanomedicines. 

Physical and Bioeffects of Nanomedicines 

Synthesized nanoparticles (NPs) based nanomedicines containing chemotherapeutic 

agents have been widely reported for increasing the circulatory half-life of the drugs, and 

reducing toxic side-effects. Here, we focus on liposomal NPs. Liposomes are made up of 

a phospholipid bilayer containing hydrophilic lumen, and can load therapeutics into the 

bilayer or the aqueous core[31]. Liposome NPs primarily rely on enhanced permeability 

and retention (EPR) for drug delivery to tumors [32-35].  In EPR, NPs passively 

accumulates in the tumor by utilizing its disorganized vasculatures [36, 37]. For instance, 

Doxil, the first FDA approved liposome, encapsulating doxorubicin or Dox (a commonly 
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used drug that treats a wide range of different malignancies) leveraged EPR, increasing 

the drug delivery by 10-20 fold compared to Dox alone in tumors [38-40]. This approach 

also minimized the off-target effects and limited cardio-toxic effects [38, 41-48].  While 

EPR is effective in early stage tumors, large inoperable tumor masses with avascular and 

necrotic tissues show sub-optimal responses to liposome NPs. These are also 

compounded by the low rates of perfusion and high interstitial fluid pressure [49]. So, 

liposome NP may be of little use in advanced tumors, resulting in modest outcomes [50-

54].  Attempts to address this by increasing dose and frequency of administration often 

causes intense side effects [55]; all of which often results in tumor recurrence and 

metastasis.  Thus, a key critical barrier that this dissertation is aiming to address is to 

develop methodologies suitable for reliable drug (e.g. Dox) penetration into whole tumor. 

Towards this aim, we evaluated the role of HIFU heating with heat sensitive liposomal 

NP therapies, allowed for rapid delivery of chemotherapies to neoplastic sites compared 

to Dox, even in the absence of EPR effects [5, 56-58].  Low temperature sensitive 

liposomes (LTSLs) preferentially release their drug payload once they pass through a 

warm region (~40C), and thus, it can dramatically improve drug delivery relative to 

conventional therapy [59].  In addition, innovations in nanoformulation compositions by 

incorporating gaseous contrast agents that rupture or burst under HIFU mediated sonic 

stress, can offer unique benefits to improve homogeneous tumor bioeffects [60, 61].  

Further, the long-term efficacy following surgical removal of large, identifiable tumor 

masses via immune activation of tumor microenvironment can prevent recurrence and 

metastatic growth [62-65]. Thus, these led to our interest in the dual-mode therapy with 

HIFU and LTSLs especially in the context of activating the adaptive immune response in 
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patients [66-68].  Below we discuss the proposed chemo-immunotherapy mechanisms 

that can be activated with HIFU heating and LTSL-based nanoformulations. 

Colon cancer biology, and the role for chemo-immunotherapy with HIFU and 

LTSLs 

Despite known and proposed advances in drug delivery modalities, there are several 

known mechanisms by which cancer cells develop chemo-resistance.  These include 

modifications of  drug targets, drug inactivation, increases in drug efflux pumps, DNA 

damage repair, cell death inhibition, and cancer epithelial/mesenchymal transition, 

leading to a more aggressive cancer subtypes [69]. The two factors that are covered in 

this review are drug efflux pumps and cancer stem cells, which are of importance when 

considering treatments with Dox in colon cancer models.  ATP-binding cassette (ABC) 

transporters proteins are often responsible for multidrug resistance in cancer, since they 

actively regulate intracellular concentrations of chemotherapeutics by actively pumping 

them out of the cell. P-glycoprotein, a well-known membrane protein, which is regulated 

by the Abcb1 gene, is normally used to help remove toxicants from the cell, but it can 

also aid chemotherapeutic resistance where it is overexpressed [70-73].  Other proteins 

regulated by Abcg2 and Abcc1 have been shown to function similarly [74-76].  In 

addition to efflux pumps, cancer cells expressing stem markers, such as Aldh1a1, Notch2, 

and Gata6 are more resistant to chemotherapeutics.  The Aldh1a1 gene encodes for an 

aldehyde oxidizing enzyme, and has been correlated to poor survival in patients with 

colorectal cancer [77]. When overexpressed in cancer stem cells, it protects against 

reactive oxygen species often associated with chemotherapeutic cytotoxic effect, 

increasing the likelihood of tumor metastasis [78].  Other markers tend to be more cancer 
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specific. For example, Notch2 expression correlated to suppression of colorectal cancer 

[76].  In contrast, Gata6 overexpression can cause mixed results, with  aggressive 

metastatic tumor growth in some cases [79, 80] and tumor suppression in others [81].  

Thus, understanding the roles of these multidrug resistance genes can potentially help 

delineate the chemotherapeutic effects of various agents. 

Cancer cells rapidly mutate to alter drug targets and influence therapeutic response [82].  

Also, as tumors grow, they induce an immunosuppressive tumor microenvironment, 

augmenting metastatic and aggressive phenotypes, while also preventing the phagocytic 

clearance by the immune cells [83, 84].  For example, resistance to pharmacologic agents 

used in chemotherapy (e.g. gemcitabine, doxorubicin) in solid tumors has been linked to 

tumor-associated macrophages (TAMs)[85, 86]. TAMs induce upregulation of cytidine 

deaminase (CDA), the enzyme that metabolizes drugs like gemcitabine following its 

transport into the cell[87]. TAMS can enhance tumor proliferation by secreting high 

amounts of vascular epithelial growth factor, Il-10, or TGF-β [88, 89].   Shree et al. 

showed that TAMS were able to inhibit doxorubicin efficacy by limiting Taxol-induced 

tumor cell death via cathespin expression [90]. TAMs can be categorized into M1 

(classical activated) and M2 (alternative activated pro-tumor) phenotype. In the case of 

immunosuppressive cancer, TAMs demonstrate an M2-like phenotype, thereby 

contributing to drug resistance and cancer stem cell like phenotype[91]. Importantly, the 

activation and recruitment of M1 macrophage has shown to enhance efficacy of 

chemotherapeutics by stroma depletion and drug resistance in pancreatic tumors[92]. 

Tumors also produce cytokines that induce the proliferation of CD4+ T regulatory cells, 

and this phenomenon can enhance malignancy [93, 94]  Likewise, dendritic cells altered 
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by TME produce inadequate activation of cytotoxic cells [95]. Based on this premise, we 

hypothesize that successful reactivation and reprogramming of an immune competent 

profile with nanomedicines and HIFU heating can improve chemosensitivity and allow 

development of dual-mode chemo-immunotherapy protocols for more effective outcomes 

in colon cancer.  

To achieve this goal, in this project we characterized the role of LTSLs that were 

loaded with PFP agents with HIFU heating. As described previously, liquid chemical 

agents can transition into a gaseous state upon specific ultrasonic activation.  The gaseous 

component is often referred to as an ultrasound contrast agent (UCA) since it provides a 

stark echogenic signal during ultrasound imaging relative to the surrounding tissue.  

Examples of UCAs include octafluoropropane and perfluoropentane, and these have been 

incorporated into the liposome [8] by sonication [16], or are co-injected during treatment 

without direct integration into the liposome [60]. For instance, Suslick et al. used an 

ultrasonic horn to sonicate a solution to generate protein shelled microbubbles[96].  

Freeze-drying is another method of microbubble synthesis in which a continuous aqueous 

phase with a stabilizer is used to disperse a liquid with the use of high-shear-flow 

emulsification [97].   

In addition to serving as contrast agents, bubbles also increase the cavitation nuclei in the 

HIFU field when exposed to alternating high- and low-pressure acoustic waves.  Stable or 

non-inertial cavitation occurs if the less intense HIFU pulses match the cavitation nuclei’s 

resonant frequency and bubble oscillation.  In contrast, inertial cavitation occurs when the 

pressure waves from HIFU cannot sustain a steady volumetric change of the cavitation 

nuclei and it collapse (and destruction) in a non-uniform fashion.  The collapse forms a 
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microjet which can puncture holes in a cell membrane [98]. In general, the point at which 

stable or inertial cavitation occurs from ultrasonic contrast agents is heavily dependent on 

the frequency and peak pressure of HIFU [99].  For driving drug penetration in tumors, 

inertial cavitation is preferred since it is capable of causing sonoporation [100].  

Cavitation based sonoporation also opens phospholipids bilayer of cells to assist a greater 

nuclear localization of encapsulated agents [101, 102].  In addition, bubble mediated 

sonoporation can improve the immunogenic gene expressions by gene delivery [103].  

Liu et al. showed microbubble immunomodulation in CT26 tumors with HIFU.  Mice 

that received both HIFU and microbubbles compared to HIFU only, demonstrated 

reduced tumor growth rates and an increased infiltration of CD8+ and CD4+ cells into 

the tumor [104]. Although promising, current bubble and HIFU mediated cavitation of 

tumors has limitations. Typically, microbubble-based agents have a short half-life, and 

are not good for local drug delivery applications.  Approaches to address by  co-loading 

microbubbles and drug into the liposome, or encapsulation of bubble agents into a 

polymer shell and then conjugates them to the liposomes showed to improve the systemic 

circulation and drug loading efficiency [105]. To further improve response rate, in this 

project, we developed LTSL-based echogenic nanobubbles (E-LTSLs). E-LTSLs are 

composed of a phospholipid bilayer, and co-encapsulate drug cargo and the ultrasound 

contrast agent (UCA) perfluoropentane (PFP) [16].  Specific lipid components include: 

1,2-Dipalmitoylsn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy (Polyethylene glycol)2000] (DSPE-mPEG2000), and 

monostearoyl-2-hydroxy-sn-glycero-3-phosphocholine (MSPC). DSPE-mPEG helps the 

liposome evade the reticuloendothelial system since it lowers the accumulation of serum 
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protein on the lipid bilayer, which can increase the clearance rate of particle [106].  

Similarly, monostearoyl-2-hydroxy-sn-glycero-3-phosphocholine (MSPC) solid to liquid 

transition (39.5-42ºC) allows rapid drug release. Thus, our lipid combination can allow 

the E-LTSLs to release Dox in heated tissue while simultaneously providing imageability 

when the PFP transitions to a gas state. Additionally, we proposed that our approach can 

induce bubble mediated sonoporation to enhance immune effects [107]. Thus, the novel 

integrated platform of ultrasound guided nanotechnology platform that incorporates 

multiple components with established advantages of mechanical and thermal effects can 

aid rapid translation for cancer therapy. We also posit that even if cavitation doesn’t play 

a huge role in drug penetration, the amount of energy absorbed by the bubbles in 

presence of HIFU would aid rapid temperature increase and immunological effect, 

indirectly assisting the immunotherapeutic outcomes [108].  Furthermore, it would allow 

us to monitor local drug release, positioning them truly as a theranostic agent. 

Several interesting image guided approaches have been described in literatures for 

monitoring local drug delivery and responses.  For example 2D passive acoustic mapping 

of cavitation using Sonovue microbubbles with ultrasound activation was correlated with 

bioluminescence from liposomal release of luciferin and subsequent interaction with a 

luciferase expressing murine tumor cell line. [109]. A key limitation of cavitation 

imaging correlation is that stable and inertial cavitation does not occur until nearly 80% 

of echogenicity is lost [110].   Another common way to report the liposomal release is by 

using magnetic resonance imaging (MRI).  MRI tracks LTSLs via the encapsulated 

[Gd(HPDO3A)(H2O)] contrast agent [6, 10]. In contrast to MRI, ultrasound imaging can 

provide the benefits of imaging and also aid drug and immune activations [111, 112].  
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Using a fluorescent drug or chemical in conjunction with the bubble based LTSL agents 

can allow image guided therapy during HIFU [108, 113]. Thus, the use of 

micro/nanoobubbles based LTSL can intimately connect drug release and bubble 

associated cavitation in tumors [60]. Ultrasound imaging makes them a very useful 

theranostic agent since bubble creation and visualization can help monitor drug release in 

real time as the liposomes become unstable with external trigger [109, 114]..  When 

exposed to HIFU hyperthermia, PFP bubbles can exert additional stress on tumor cells to 

induce immunological activation. Table 1.2 shows a list of bubble-based therapies and 

imaging modalities pertaining to use in colorectal cancer models.  Based on this, the 

proposed hypothesis and aims are described below.   

Dissertation Hypothesis 

HIFU induced Dox release and acoustic activation from echogenic low temperature 

sensitive liposomes (E-LTSL) will promote superior cytotoxicity and immune effects 

against murine colon cancer model. 

Aim 1: Synthesis of E-LTSL, characterization & assessment of drug penetration in 

colon tumors 

Hypothesis: Echogenic liposomes with HIFU hyperthermia (40–42°C) can acoustically 

modulate the tumor microenvironment to result in improved drug penetration relative to 

liposomes alone.  

1. Synthesize and characterized long-circulating echogenic nanobubble encapsulated LTSLs 

(E-LTSLs) and NTSLs (E-NTSLs) 

 

2. Evaluation of in vivo drug release following short duration (~20min each) HIFU 

treatments administered sequentially over an hour in a large volume of mouse xenograft 

colon tumor 
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3. Determination of the impact of the HIFU/nanobubble combination on intratumoral drug 

distribution. 

Aim 2: Determine impact of E-LTSL nanobubbles in an immunocompromised 

murine colon carcinoma model 

Hypothesis: Systemic E-LTSL and HIFU will improve survival in immunodeficient mice 

1. Characterize extravasation of systemically administered Dox in solid tumor mass in 

presence of echogenic low temperature sensitive liposomes (E-LTSL) with high intensity 

focused ultrasound (HIFU) 

 

2. Test E-LTSL efficacy in immunocompromised C26 colon carcinoma mouse model  

 3. Characterize tumor microenvironment changes linked to multidrug resistance.   

 

Aim 3: Determine impact of E-LTSL nanobubbles on chemo-immunotherapy 

outcomes in murine colon carcinoma model 

Hypothesis: E-LTSL/HIFU would inhibit tumor growth by reprogramming tumor 

microenvironment 

1. Determine the tumor growth rate reduction in treated and untreated (abscopal) tumor with 

HIFU combined LTSL and E-LTSL 

 

2. Analyze the immune profile in treated and untreated CT26 tumors  

 

3. Determine immune tolerance mechanisms of HIFU activated LTSLs 
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Author (et al.) Year Summarized Findings 

Chapelon [117]

  

1992 Rats with treated adenocarcinomas had reduced rates of 

metastasis 

Hu [118] 2007 Mechanical and thermal HIFU both increased Dendritic 

cell accumulation in tumor draining lymph nodes but 

antitumor effects were superior for mechanical based 

HIFU, 

Chida [119] 2009 HIFU treatment increased CD4+ and CD8+ T cell tumor 

infiltration 

Deng [120] 2010 Tumor lysate generated from HIFU ablation was loaded 

into dendritic cells increased CTL activity against 

hepatocellular carcinoma 

Huang [121] 2012 Surgical resection of tumor post HIFU inhibited tumor re-

challenge 

Xia [122] 2012 HIFU ablation of hepatocellular carcinoma increased 

tumor specific CTLs with increased levels of IFN-γ and 

TNF-α secretion. 

Bandyopadhyay 

[123] 

2016 Low intensity focused ultrasound in B16 tumors 

increased tumor antigen and when combined with 

ablative radiation therapy reduced primary tumor growth, 

recurrence, and metastasis rates. 
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Skalina [124] 2019 Low intensity focused ultrasound induced localization of 

HSP on cell surface 4T1 breast cancer and prostate 

adenocarcinoma, priming immune response prior to 

radiotherapy ablation of tumor. 

Aydin [125] 2019  Non ablative HIFU in B16 and 4T1 cell lines induced 

increased calreticulin, increased proinflammatory 

cytokines, and decreased anti-inflammatory cytokines 

from tumors. 

Cohen [126] 2020 Non-ablative pulsed HIFU promoted innate and adaptive 

immune response in B16 melanoma and 4T1 breast 

cancer tumors.  Tumor growth rate was reduced 24 hours 

after the HIFU Treatment. 

 

Table 1.1. List of HIFU tumor immunomodulation studies. 
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Author (et al.) Year Summarized Findings 

Xu [127]  2010 Dual mode targeting and imaging demonstrated in 

LS174T human colon cancer cell line.  Texas red labeled 

nanobubbles were fluorescently quantified and correlated 

to echogenic signal. 

Lin [128] 2010 HIFU combined with microbubbles enhances lipid coated 

quantum dots concentration in CT26 colon carcinoma 

tumor of BALB/c mice  

Lin [129] 2012 HIFU combined with Sonovue microbubbles enhances 

Dox concentration in CT26 colon carcinoma using 

liposomal Dox carrier. 

Wu [130] 2013 Nanobubbles demonstrate high echogenicity and half-life 

relative to Definity microbubbles in colorectal 

adenocarcinoma (LS174T).   

Zhang [131] 2014 Tumor angiogenesis was hindered with HIFU and 

endostain microbubbles. 

Sta Maria 

[132] 

2015 Using a mouse xenograft human colorectal 

adenocarcinoma model, low dose focused ultrasound with 

microbubbles increased NK cell accumulation at tumor 

24h after treatment. 
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Perera [133] 2017 Fluorescence imaging and ultrasound imaging confirmed 

that lipid/surfactant stabilized perfluorpentane 

nanobubbles maintained echogenicity longer than 

microbubble formulation in vivo.   

Bulner [134] 2019 Enhanced anti tumor effect observed with the use of anti 

PD-1 and HIFU stimulated microbubbles. Projected T-cell 

dependent mechanism not observed. 

 

Table 1.2. List of bubble enhanced colon cancer therapy studies. 
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CHAPTER II 

 

 

SEQUENTIAL HIFU HEATING AND NANOBUBBLE ENCAPSULATION 

PROVIDE EFFICIENT DRUG PENETRATION FROM STEALTH LIPOSOMES IN 

COLON CANCER 

 

Abstract  

Mild hyperthermia generated using high intensity focused ultrasound (HIFU) and 

microbubbles (MBs) can improve tumor drug delivery from non-thermosensitive 

liposomes (NTSLs) and low temperature sensitive liposomes (LTSLs). However, MB and 

HIFU are limited by the half-life of the contrast agent and challenges in accurate control 

of large volume tumor hyperthermia for longer duration (>30min.). The objectives of this 

study were to: 1) synthesize and characterize long-circulating echogenic nanobubble 

encapsulated LTSLs (E-LTSLs) and NTSLs (E-NTSLs), 2) evaluate in vivo drug release 

following short duration (~20 min each) HIFU treatments administered sequentially over 

an hour in a large volume of mouse xenograft colon tumor, and 3) determine the impact 

of the HIFU/nanobubble combination on intratumoral drug distribution. LTSLs and 

NTSLs containing doxorubicin (Dox) were co-loaded with a nanobubble contrast agent 

(perfluoropentane, PFP) using a one-step sonoporation method to create E-LTSLs and
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E-NTSLs, which then were characterized for size, release in a physiological buffer, and 

ability to encapsulate PFP. For the HIFU group, mild hyperthermia (40-42°C) was 

completed within 90 min after liposome infusion administered sequentially in three 

regions of the tumor. Fluorescence microscopy and high performance liquid 

chromatography analysis were performed to determine the spatial distribution and 

concentration of Dox in the treated regions. PFP encapsulation within E-LTSLs and E-

NTSLs did not impact size or caused premature drug release in physiological buffer. As 

time progressed, the delivery of Dox decreased in HIFU-treated tumors with E-LTSLs, 

but this phenomenon was absent in the LTSL, NTSL, and E-NTSL groups. Most 

importantly, PFP encapsulation improved Dox penetration in the tumor periphery and 

core and did not impact the distribution of Dox in non-tumor organs/tissues. Data from 

this study suggest that short duration and sequential HIFU treatment could have 

significant benefits and that its action can be potentiated by nanobubble agents to result in 

improved drug penetration.  

Introduction 

To improve cancer chemotherapy delivery and survival outcomes, particularly in difficult 

cancers (e.g. ovarian, pancreas, primary liver tumor etc.), a key current direction is use of 

nanomedicine such as liposomes. These range in type from long-circulating non-

thermosensitive liposomes (NTSL; e.g. Doxil, Onivyde, etc.) and low temperature 

sensitive liposomes (LTSL) that release drug above 40 °C (e.g. Thermodox) [10, 56, 133-

135]. These liposomes are also being combined with high intensity focused ultrasound 

(HIFU) and microbubbles (MBs) to leverage precisely selected and dynamic modulation 

of biological, physiological, and mass transport properties of the tumor 
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microenvironment [59, 136-139].  These are promising advancements, but they are 

associated with several limitations. For example, MBs have short half-lives (within a few 

minutes) and limited drug payload capacity [140], and additional innovations are needed 

in formulation approaches to improve their use for image guided drug delivery (IGDD) 

[141]. Administering mild hyperthermia (40–45 °C) with HIFU to the entire volume of a 

deep seated tumor for long duration (~ 30 min–1 h) is associated with technical 

challenges related to spatiotemporal control, thereby reducing its feasibility for clinical 

use [142]. Thus, developing new approaches for administration of HIFU treatment for 

desired drug release from liposomes in tumors is needed. 

Theoretically, liposomes offer the key advantage of ferrying both imaging and 

therapeutic agents that can potentially be utilized to measure/monitor the temporal and 

spatial patterns of solid tumor IGDD. However, such capability is limited by multiple 

factors, including target tissue movement, low spatial resolution (in positron emission 

tomography (PET), off-target radiation exposure (in PET or computed tomography (CT)), 

and inability to accurately define regions of interest (ROIs) at certain tissue depths (in 

fluorescence and luminescence modalities). Unlike these IGDD modalities, US imaging 

is safe, portable, widely-accessible and provides unlimited field of view at large distances 

from the body surface for routine clinical use. In prior research, the encapsulation of a 

perfluoropentane (PFP)-based nanobubble contrast agent enabled it to stay in liquid form 

in the liposome core because of Laplace pressure, thereby allowing PFP to attain gas 

bubble state and echogenicity slowly at body temperature [143]. This phenomenon 

resulted in longer circulatory life and stable ultrasound imageability [144]. A variety of 

methodologies have been reported for PFP encapsulation in liposomes. Recently, we 
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adapted the PFP emulsification encapsulation technology reported previously by Ibsen et 

al. and others [145-147] to synthesize nanobubble encapsulated echogenic LTSLs (E-

LTSLs) and E-NTSLs. Our central hypothesis is that interaction of long circulating 

echogenic liposomes with HIFU hyperthermia (~ 40–42 °C) can acoustically modulate 

the tumor microenvironment to result in improved drug penetration relative to liposomes 

alone. The motivation to this idea stems from our previous studies where increased 

liposomal drug penetration by reducing interstitial fluid pressure [59, 148] and improving 

tumor perfusion was noted [149, 150]. We believe that by incorporating PFP in 

liposomes and its combination with short bursts of HIFU treatment, the drug release and 

liposome transport in tumor blood vessels within the first hour of injection can be further 

improved drastically, followed by transport of doxorubicin across the endothelial barrier 

and cellular uptake in tumor by bubble mediated sonoporation [149, 150]. 

The current approach in liposome mediated drug delivery is to apply HIFU 

homogeneously in a small volume of target region for ~ 30–60 min. This is promising, 

but for effective therapeutic outcome and realize the full potential of liposome and HIFU 

combination in clinic, a large volume of tumor must be treated within the first hour of 

injection. In this regard, we hypothesized that in contrast to focal heating of small 

volumes for long duration, zonal heating of a tumor covering the entire volume for 

shorter durations upon echogenic liposome injection can be an elegant way to increase 

extravasation of the released drug from NTSLs or LTSLs (see schematic illustration), 

however this has not heretofore been adapted to cancer drug delivery. The objective of 

this study was to apply E-LTSLs and E-NTSLs in a mouse model and determine their 

impact on drug delivery following zonal hyperthermia of a large volume of colon tumor. 
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Additionally, the influence of tumor transit time of LTSLs/NTSLs and the synergistic 

benefits of thermally induced drug release as opposed to ultrasound induced inertial 

cavitation for modulation of the tumor microenvironment and extracellular matrix for 

tumor drug penetration was assessed. 

Materials & Methods 

Materials 

 PFP (99%, Exfluor Research Corporation, Round Rock, TX, USA) was used as the US 

contrast agent. Monostearoyl-2-hydroxy-sn-glycero-3-phosphocholine (MSPC), 1,2-

dipalmitoylsn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy (Polyethylene glycol)2000] (DSPE-mPEG2000) were 

obtained from Corden Pharma Corporation (Boulder, CO, USA). 1,2-Dihexadecanoyl-sn-

Glycero-3-Phosphoethanolamine, Triethylammonium Salt (Lissamine™ Rhodamine B) 

was obtained from Thermo Fisher Scientific Inc., and PKH67 Green Fluorescent Cell 

Linker was obtained from Sigma Aldrich (Milwaukee WI, USA). Dox was obtained from 

LC Laboratory (Woburn, MA, USA). Acetonitrile (high performance liquid 

chromatography (HPLC) grade) was obtained from Pharmco-AAPER (Brookfield, CT, 

USA). Ethylene glycol (99%, spectrophotometric grade), phenylboronic acid (98%), and 

2,2-dimethoxypropane (98%) were purchased from Alpha Aesar (Ward Hill, MA, USA). 

The PD-10 column was obtained from GE Healthcare Life Sciences, (Buckinghamshire, 

United Kingdom, UK). C26 colon cancer cells were kindly provided by the National 

Cancer Institute. 

Synthesis of E-LTSLs and E-NTSLs 
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LTSLs (lipid composition: DPPC, MSPC, and DSPE-mPEG2000 molar ratio of 

85.3:9.7:5.0) and NTSLs (DPPC, cholesterol, and DSPE-mPEG2000 in the molar ratio of 

58.1:36.8:5.07) were prepared by hydration of a lipid film followed by the extrusion 

method as described previously [16, 151, 152]. Briefly, lipid mixtures were dissolved in 

chloroform. The solvent was evaporated and the resulting lipid film was hydrated in 

citrate buffer (pH 4.0) mixed with 1,3-propanediol (1, 3-PD) (0.65 M, for PFP 

emulsification) at 55 °C for 30 min and extruded five times through double stacked 200 

nm polycarbonate filters to yield a final lipid concentration of 50 mg lipid/mL (80.8 mM 

for LTSLs and 70.3 mM NTSLs). A PD-10 size-exclusion column equilibrated with 5–10 

column volumes of 1 × phosphate buffered saline (PBS) was used to remove free 1,3-PD 

from the outside of the liposomes. 

Encapsulation of Dox into the LTSLs and NTSLs was carried out using the pH-gradient 

loading protocol described by Mayer et al.. [150]. In general, the outside of the E-LTSLs 

was adjusted (by column) to about pH 7.4 using PBS, whereas the inside remained acidic 

at pH 4. Dox was loaded at 2 mg/100 mg lipid concentration at 37 °C for 1 h. PFP-loaded 

E-LTSLs and E-NTSLs were prepared using a one-step sonoporation method. Briefly, 2 

mL of the liposomal formulations were incubated under continuous sonication (~ 20 kHz) 

in 3 mL vials along with PFP (boiling point 30 °C; 20 μL/100 mg lipid) for 1–2 min. PFP 

and LTSLs were kept cold prior to being combined, and the sonication bath was kept at 4 

°C to minimize PFP vaporization. This method was repeated at least in triplicate (n = 3) 

for evaluation. Free Dox and PFP were removed using a PD-10 column. For all in vitro 

characterizations, LTSLs were used as a positive control. LTSL synthesis was carried out 

using our previously published procedure [152]. 
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Confirmation of PFP encapsulation in liposomes E-LTSLs using a fluorescence 

technique 

To confirm PFP loading in LTSLs, a fluorescent methodology was developed. Briefly, a 

thin film of LTSLs (lipid composition: DPPC, MSPC, DSPE-mPEG2000, and 

Lissamine™ Rhodamine B at a molar ratio of 84.3:9.7:5:1) was prepared as described in 

Section 2.2 and hydrated with 1 mL of water for 15–30 min at 55 °C. Next, 9 μL of PFP 

and 1 μL of PKH67 were transferred in a 0.5 mL tube and sonicated for 5 min at 4 °C, 

and 5 μL of PKH-67 labeled PFP then were sonicated with 1 mL of LTSLs and directly 

imaged on a mattek well plate under an Olympus IX81 confocal microscope using a 2 ms 

exposure time with the Tetramethylrhodamine (TRITC, ex/em of 545/600 filter) and a 

100 ms exposure time with the green fluorescent protein (GFP, ex/em of 480/530) filter 

at 60 × APO. 

To measure PFP stability as a function of temperature (25–42 °C), E-LTSLs (50 mg 

lipid/mL) were diluted 300 fold in PBS, and 3 mL of sample were placed in a quartz 

cuvette equipped with a stopper and magnetic stirrer. Fluorescence of the released 

PKH67 labeled PFP was recorded at an excitation wavelength of 490 nm and 

fluorescence emission was measured at 502 nm using a Cary Eclipse Fluorescence 

Spectrometer (Agilent Technologies, Santa Clara, CA, USA) equipped with an inbuilt 

temperature control system. The temperature was set to steadily increase from 25.5 to 

42.5 °C. A fluorescent reading was recorded at every 0.5 °C increment. 10 × triton was 

used to lyse the E-LTSLs after the temperature increase to allow complete release of PFP. 

Empty LTSL signal was used as a blank. 
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Characterization of E-LTSLs and E-NTSLs 

E-LTSLs and E-NTSLs were characterized for size (z-average) using dynamic light 

scattering (DLS) with a 90 plus PALS Nanobrook device (Brookhaven Instruments, 

Holtsville, NY, USA). Briefly, 10–20 μL of E-LTSLs or E-NTSLs were added to 2 mL 

of PBS in a cuvette, and DLS measurements were recorded at room temperature. For 

each liposomal formulation an average of five measurements were taken, and the mean 

size and standard deviation were calculated for the E-LTSL and E-NTSL samples. Zeta 

potentials were measured using water rather than PBS with the same equipment and 

lipids. 

Dox release from E-LTSLs and E-NTSLs 

Stability was assessed by measuring release of encapsulated Dox from E-LTSLs and E-

NTSLs as a function of temperature (25–42 °C) in PBS. E-LTSLs (50 mg lipid/mL) and 

E-NTSLs (50 mg lipid/mL) were diluted 300 fold in PBS, and 3 mL of sample were 

placed in a quartz cuvette equipped with a stopper and magnetic stirrer. Fluorescence of 

the released Dox was recorded at an excitation wavelength of 480 nm and fluorescence 

emission was measured at 590 nm using a Cary Eclipse Fluorescence Spectrometer 

(Agilent Technologies, Santa Clara, CA, USA) equipped with an inbuilt temperature 

control system. The temperature was set to steadily increase from 25.5 to 42.5 °C. A 

fluorescent reading was recorded at every 0.5 °C increment. 

Drug release based on fluorescence quantification as a function of change in temperature 

was determined using the following equation: 

% Dox release=[(It – Io)/(Im – Io)] x 100 
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where Io represents the initial fluorescence intensity of E-LTSLs and E-NTSLs in 

suspension at 25 °C, It is the intensity of the same sample at a predetermined 

temperature, and Im represents is the fluorescence intensity of completely released Dox 

from E-LTSLs at 45 °C or from E-NTSLs post-lysis of the liposomes with 10 × triton. 

In vivo drug delivery study 

Study design 

Athymic nude mice bearing C26 mouse adenocarcinoma cell tumors were divided into 

nine treatment groups designed using a combination of four different liposome 

formulations with or without HIFU: NTSLs ± HIFU, E-NTSLs ± HIFU, LTSLs ± HIFU, 

E-LTSLs ± HIFU, and free Dox only. In all groups (n = 5–6 mice), 5 mg Dox/kg body 

weight were administered intravenously. 

Establishment of mouse model of colon cancer 

All animal-related procedures were approved and carried out under the regulations and 

guidelines of the Oklahoma State University Animal Care and Use Committee. C26 cells 

were grown as a monolayer to 80–90% confluence in RPMI supplemented with 10% v/v 

fetal bovine serum (FBS) and 1% v/v streptomycin/penicillin. Confluent cells were 

harvested, washed, and diluted with sterile cold PBS to generate 0.5 × 105 cells/50 μL. 

Next, 50 μL of cell inoculum was injected per mouse in the thigh region of the mouse 

hind leg using a 25-gauge needle (BD, Franklin Lakes, NJ, USA). Mice were monitored 

and tumor growth was measured by serial caliper measurements (General Tools Fraction 

+ ™, New York, NY, USA). Tumor volumes were calculated using the formula (length × 

width2)/2, where length is the largest dimension and width is the smallest dimension 
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perpendicular to length. Tumors were allowed to grow to a volume of 300–400 mm3 

prior to initiating studies, and treated at 5 mg Dox/kg Body weight IV. 

Segmental hyperthermia generation in mouse tumors 

An integrated ultrasound-HIFU alpinion system was used for tumor identification, 

sonication, and treatment characterization. The HIFU transducer has 1.0 MHz central 

frequency, 45 mm radius, and 64 mm aperture diameter with a central opening 40 mm in 

diameter. For HIFU treatments, each tumor was divided into two halves (top and bottom). 

The top half was further divided into three fragments along the y-axis: F1, F2, and F3, 

where F1 was on top, F2 in the middle, and F3 on the bottom (Fig. 2.2a). A 3 × 3 raster 

pattern of focal points (A, B, C) along the x axis was used to generate a mild-

hyperthermia gradient of 40–42 °C for ~ 20 min in each fragment (Fig. 2.2b). Each focal 

point (~ 5.23 mm3) with dimensions of 1x1x10mm in x, y and z, axis, respectively was 

heated sequentially for 7 min. Thus, this methodology covered ~ 25mm3 of each 

fragment for a 20 min hyperthermia session (Fig. 2.2b). Since the transducer footprint (10 

mm) was aligned along the z axis, adjacent muscle and bone tissue were also heated 

during sequential heating. 

HIFU treatment set-up and methodology 

Mice were anesthetized with 2–5% isoflurane and restrained in custom built mouse 

holders attached to a 3D positioning stage. The tumor bearing flank region was dipped in 

degassed water maintained at 37 °C for coupling with the HIFU transducer. Using real 

time ultrasound guidance, the tumors were positioned so that the target was in the center 

of the focal zone of the transducer. Prior to actual drug delivery studies, we calibrated the 



27 
 

instrument to a temperature of 42 °C in tumor bearing mice by optimizing the HIFU 

parameters (duty cycle, pulse repetitive frequency, total acoustic power, and time) as 

described previously [5, 153]. Furthermore, a temperature gradient was established by 

inserting a thermocouple inside of the mouse tumor and taking readings at and up to 2 

mm away from the focus. This was done to ascertain the effective diameter over which 

sufficient heating for Dox release could be achieved (Fig. 2.2b). Tumors were allowed to 

equilibrate for 3 min before commencing the treatment. For hyperthermia treatment, the 

center of the tumor was aligned with the HIFU focus at a fixed focal depth for efficient 

coverage, and VIFU-2000 software was used to define the target boundary and slice 

distance in X, Y, and Z directions for automatic rastering of the transducer. HIFU 

treatment parameters used were as follows: HIFU treatment parameters used were as 

follows: 5 Hz frequency, 50% duty cycle, 10 W acoustic power, and a peak 

positive/negative pressure of 6.15/− 4.41 MPa to achieve a mean target temperature of 

40–42.5 °C at the focus. 

Post HIFU treatment tissue harvesting procedures 

Upon completion of treatment, mice were euthanized. To clear the vasculature of 

drug/liposomes, transcardiac perfusion was performed immediately by opening the chest 

cavity and intracardially injecting 10 mL of PBS. Tumor and tissue samples from liver, 

spleen, lung, heart, kidney, skin, and muscle both adjacent and contralateral to the heated 

tumor were excised, weighed, snap-frozen over liquid nitrogen, and stored at − 80 °C 

until Dox analysis. 

Quantification of Dox by HPLC 
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Tissue homogenization and sample preparation for HPLC were carried out using 

previously published methods [16, 59]. Briefly, samples were homogenized, and Dox 

was extracted and quantified with HPLC using daunorubicin as the internal standard. The 

HPLC detection system consisted of fluorescence detectors, and detection was performed 

at ex/em of 498/593 nm. Data were acquired using Shimadzu LC solution software. 

Concentrations of the analyte in tissues were determined using peak-area ratios of the 

sample analyte to the internal standard from the calibration curve. 

Histology 

A single whole tumor tissue sample from each HIFU group as well as the free drug group 

was selected prior to homogenization to be saved for histology. Histological analysis of 

NTSL and LTSL alone treated tumors were not performed since they do not demonstrate 

Dox penetration in the absence of HIFU. To analyze Dox distribution, 8 μm sections of 

frozen tumors were prepared, and two serial sections were mounted per slide. 

Fluorescently-labeled tissues were mounted with mounting medium containing DAPI 

(Vector Laboratories) to visualize cell nuclei at an exposure time of 10 ms (ex/em of 

365/440), and Dox was imaged at an exposure 100 ms (ex/em of 480/590). Image 

acquisition and display parameters were constant for different treatments to allow for 

qualitative comparison. Whole-section digital histological scans were acquired using a 10 

× objective on an Olympus ZDC2 IX81 fluorescence microscope equipped with a color 

CCD camera, cooled monochrome CCD camera, motorized scanning stage, and 

Metamorph mosaic stitching software. Cell density, and cavitation were assessed in 

hematoxylin- and eosin- (H&E) stained sections using an Aperio ScanScope at 20 ×. 
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Statistical analysis 

Treatment groups were compared for differences in mean tumor Dox concentration using 

analysis of variance (ANOVA) followed by Tukey's multiple comparison post-hoc test. 

All analyses were performed using GraphPad Prism 5.0 (GraphPad Software Inc.). All p-

values were two-sided, and p < 0.05 was taken to indicate statistical significance. Values 

were reported as mean ± standard error of the mean (SEM). 

Results  

Fluorescence analysis of PFP encapsulation in liposomes 

Confocal microscopy confirmed the presence of the PKH-labeled PFP emulsion within 

the liposome aqueous core at 25 °C (Fig. 2.3a-c). Its presence was indicated by distinct 

yellow-to-orange spots formed by co-localization of red LTSLs with green PFP following 

sonication. PFP remained stable inside the E-LTSL from 25 to 43 °C, and a more intense 

signal indicative of release was noticed following triton (Fig. 2.3d). 

Characterization of E-LTSLs and E-NTSLs 

Active loading of Dox by transmembrane pH gradient yielded an encapsulation 

efficiency of ~ 95% and ~ 65% for E-LTSLs and E-NTSLs, respectively. Following PFP 

loading by one-step sonoporation, E-LTSLs and E-NTSLs retained about 70–80% of the 

encapsulated drug. Table 2.1 shows the hydrodynamic diameter, polydispersity index, 

and zeta potential values of E-LTSLs and E-NTSLs at room temperature (25 °C), and 

these were fairly similar among various groups following PFP loading. 

Dox release from E-LTSLs and E-NTSLs in physiological buffer 
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Percent Dox release from E-LTSL and LTSL alike in PBS by its fluorescence 

dequenching was minimal (< 5%) at 25–39 °C (Fig. 2.4); was followed by a more gradual 

release at 40 °C (~ 20%), and was rapid and complete (> 95%) near the temperature 

giving maximum release rate (~ 41–42 °C). In 10% FBS, Dox release from E-LTSL and 

LTSL was ~ 20% at 37 °C, and ~ 90% at 40 °C. Greater than 95% release was attained at 

41–42 °C. In contrast, release from NTSL and E-NTSL was alike in serum/PBS, and was 

< 5% at all the temperatures tested (Fig. 2.4). 

Biodistribution of Dox 

Whole tumor 

Tumor Dox concentrations were 1.2 ± 0.2, 1.6 ± 0.1, 0.9 ± 0.1, 2.8 ± 0.7, 1.6 ± 0.1, 2.1 ± 

0.3, 5.2 ± 0.5, and 3.8 ± 0.1 μg Dox/g tissue for free Dox, NTSLs, LTSLs, E-LTSLs, E-

NTSLs, E-NTSLs + HIFU, E-LTSLs + HIFU, and LTSLs + HIFU, respectively. Drug 

delivery to both heated LTSL and E-LTSL treated tumors exceeded free Dox delivery by 

~ 4- and ~ 5-fold, respectively, and was significantly higher than all other treatment 

groups. Compared to the LTSLs + HIFU treatment, heated tumors treated with E-LTSLs 

achieved ~ 1.5-fold greater drug delivery. In addition, the unheated E-LTSLs had twice 

the Dox concentration compared to LTSL (Fig. 2.5 and Table 2.2). 

Tumor fragments 

Dox delivery in the E-LTSLs + HIFU treated tumor resulted in a general trend of 

decreasing concentration starting from the F1 fragment to the bottom (2.6 and Table 2.3). 

E-LTSL - HIFU tumor fragment doxorubicin concentrations were 6.4 ± 1.3, 5.4 ± 0.5, 4.7 

± 0.9 and 2.8 ± 0.4 for F1, F2, F3, and bottom respectively. In contrast, F1, F2, and F3 



31 
 

demonstrated similar drug delivery for LTSLs, NTSLs, and or E-NTSLs in all heated and 

unheated fragments. 

Organ biodistribution 

Treatment with NTSLs and E-NTSLs alone resulted in significantly higher Dox 

concentrations in spleen than the other groups. Adding HIFU to LTSL and E-LTSL 

treatment resulted in significantly greater Dox concentrations in heated muscle compared 

to the Dox group. Dox levels in, the heart, the kidney, and liver were comparable 

between various groups (Fig. 2.7, Table 2.2). 

Ratio of Dox in heated tumor adjoining muscle and unheated contralateral muscle 

Because HIFU treatment also heated the muscles adjoining the tumor, the Dox 

concentration was significantly greater relative to contralateral unheated muscle by 4- to 

5-fold for E-LTSL and LTSL (Table 2.2). Additionally, E-LTSLs achieved ~ 1.2-fold 

greater drug uptake compared to LTSLs alone in the heated muscle relative to 

contralateral unheated muscle (Fig. 2.8). Drug delivery attained by NTSL and E-NTSL 

were similar in heated muscle compared to the unheated contralateral muscles with 

slightly greater uptake of Dox for NTSLs. 

Histological examination of whole tumors 

H&E images did not reveal any cavitation-like effect following HIFU and E-LTSL 

treatment. Moderate to high Dox delivery along the periphery of the tumor was evident in 

all HIFU treated tumors. In the E-LTSL and E-NTSL treated tumors and to a lesser extent 

the LTSL treated tumors, drug penetration into the tumor core was more evident (Fig. 
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2.9). The LTSL treatment resulted in some brighter areas along the periphery to the core 

on the bottom and top of tumor, whereas both the E-NTSL and E-LTSL groups had a 

much more uniform distribution of Dox throughout the whole tumor. Unlike HPLC data, 

the fluorescence images for E-LTSLs + HIFU treatment did not demonstrate an apparent 

drug gradient decrease from top to bottom of the tumor. 

Discussion 

Improving the ability to target liposomes and release drugs in real time at sufficient levels 

with enhanced penetration in a solid tumor is an important clinical need. The objective of 

this study was to understand the mechanisms of focal drug delivery from liposomes and 

HIFU in a mouse model and ways we can optimize this technology for clinical use. 

Previously, MBs encapsulated in a solid lipid or polymeric shell have been utilized for 

controlled drug delivery in tumors [154, 155]. Such treatments are limited by the short 

half-life of MBs, which is caused by quick destruction by the reticulo-endothelial system 

due to their large size, and instability upon systemic administration. In contrast to MBs, 

nanosized echogenic liposomes encapsulating PFP theoretically should have increased 

stability and half-life [156]. To confirm that bubble encapsulation inside E-LTSLs is 

indeed possible, we loaded optically labeled PFP into LTSLs. Confocal microscopy 

clearly showed that the process of PFP emulsification achieved effective encapsulation in 

liposomes, rather simply forming an admixture with the lipids (Fig. 2.3.). To rule out 

alteration in liposome integrity and to investigate the role of PFP permeability through 

the liposomal membrane, the thermal stability of E-LTSL and E-NTSLs was explored in 

vitro (Fig. 2.4). Our data suggest that PFP encapsulation has no impact on Dox release in 
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physiological buffer. Additional investigations in mouse colon tumors indicated that both 

LTSL + HIFU and E-LTSL + HIFU treatments resulted in 4- to 5-fold greater Dox 

delivery at 42 °C than the LTSL and Dox groups at body temperature. Also, drug 

delivery attained by E-LTSLs was slightly greater (~ 1.5-fold) than that of LTSLs, which 

suggests that bubble formation during HIFU treatment may provide an additive response 

(Fig. 2.5). As in tumors, in adjoining heated muscle tissues we observed relatively higher 

Dox concentration for the E-LTSLs + HIFU treatment, which reinforces the role of 

bubble agents in improved cellular uptake (Fig. 2.7). Recently, Theek et al.. reported that 

sonoporation using MBs enhanced the extravasation and penetration of relatively large 

liposomal nanocarriers out of the blood vessels into the tumor interstitium by a variety of 

mechanisms, including perfusion modulation, mechanical disruption, and pore formation 

in tumor vessels [157]. It is currently not known whether or not similar mechanisms drive 

drug delivery and uptake in presence of nanobubbles. Although the data for thermally 

sensitive E-LTSLs are in line with Theek et al. studies, we observed that NTSLs and E-

NTSLs were relatively less effective in achieving such outcomes. We believe that the 

presence of liposomal components (cholesterol, PEG) in NTSLs that resist triggered 

release of a drug at hyperthermic temperatures and support liposome accumulation in 

tumors relative to non-tumor tissue through the enhanced permeation and retention effect 

could be responsible for slow stromal transport of chemotherapeutic agents [158]. Thus, 

we propose that enhanced uptake of chemotherapeutics in a tumor from thermally and 

non-thermally sensitive carriers in presence of nanobubbles is an interplay among a rapid 

drug release rate, enhanced diffusion from blood vessels, and reduced resistance to drug 

transport upon nanobubble and hyperthermia treatment. For NTSLs and E-NTSLs, the 
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apparent lack of such a phenomenon suggests that the lipid components are the rate 

limiting factors. Future studies, especially those focused on the roles of intravascular 

versus interstitial transport of released drug from NTSLs + HIFU, would shed more light 

on these processes. 

In a previous study, the plasma pharmacokinetics of Dox in a LTSL formulation was 

evaluated after intravenous administration. In contrast to Dox, which demonstrates a 

rapid initial clearance of > 95% in ~ 5 min, the LTSL formulation decreased ~ 90% over 

a 4 h time period [59]. Thus, currently HIFU treatments are generally performed over the 

first hour so that the maximal amount of drug is released at the peak plasma LTSL 

concentration. However, achieving spatially and temporally controlled homogeneous 

heating of deep seated tumors for long durations (30 min to an hour) is not always easy 

with HIFU due to target motion and if the treatment cell area (focal spot) has a large 

volume [142]. Thus, a gap between LTSL injection and HIFU hyperthermia treatment 

can impact drug delivery, which highlights the importance of mean transit time and quick 

intravascular heating of tumors [159, 160]. To assess such impacts and devise alternative 

methodologies of tumor heating following liposome injection, we chose three regions in 

our tumor model and sequentially heated them for durations of 21 min each. Our data 

suggest that segmental heating of tumors does not impact LTSL drug delivery when the 

plasma concentration of LTSLs is > 75% of Cmax over the first hour, and it achieves a 

similar level of drug in the chosen regions even when heated for shorter duration. 

However, relative to LTSLs, the sustained presence of PFP nanobubbles in the tumor 

microenvironment from E-LTSLs has a positive influence on maintaining high 

concentrations of Dox in the tumor. It may be noted that in case of MBs, ultrasound 
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contrast agents acoustically shield the beam from the underlying tissue resulting in 

temperatures higher than the target temperature [161]. However, encapsulated PFC 

emulsions in echogenic liposomes tend to be incompressible when in a liquid state [162], 

and produce poor oscillation and backscatter in the US, and thus instead of generating 

unusually high temperature, they most likely cause sonoporation and reduced resistance 

to drug transport upon combination with mild hyperthermia. Thus, we propose that zonal 

hyperthermia using HIFU for shorter durations (15–20 min) with nanobubble liposome 

provides larger drug coverage when administered sequentially, without adversely 

impacting net drug delivery compared to single point larger duration heating (~ 1 h), and 

thus this approach may be useful for treating deep seated tumors, and should be an 

investigation of future studies. 

Successfully implementing a drug delivery system that permits selective anatomic 

delivery from passively accumulated NTSLs in tumors faces additional challenges, such 

as lack of enhanced intratumoral drug distribution [163]. Previously, the MB and HIFU 

combination has been shown to modulate microvascular permeability within a tumor 

[104]. In other studies, NTSLs that contained echo-contrast PFP gas enhanced gene and 

siRNA delivery in vitro and in vivo [164-166]. For MBs, the mechanism governing 

enhanced penetration was reported to be impulsive pressures exerted by the collapse of 

gaseous agents and formation of subsequent cavitation bubbles, resulting in improved 

transmembrane permeability [167]. Although a direct cavitation response was not 

detected in our H&E images following nanobubble treatment, E-NTSLs positively 

impacted the intratumoral penetration of Dox. Fluorescence analysis of E-LTSLs + HIFU 

treated tumors also revealed significantly improved intratumoral Dox delivery compared 
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to treatments with Dox or NTSLs (Fig. 2.9). Prior research has shown that the 

extravascular transport distances of 70-nm nanoparticles were 40 and 10 μm in tumors 

with high and low permeability, respectively [168]. Thus, if acoustic pressure, pulse 

resonance frequency, and sonication rates are synergistically optimized with 

nanobubbles, out data suggest that this can improve intratumoral penetration relative to 

nanoparticle or hyperthermia alone even for non-thermosensitive liposomes. While the 

degree of permeability produced by HIFU hyperthermia or bubbles needs to be studied in 

greater detail, our initial data suggest that nanobubble action is potentiated in the 

presence of hyperthermia to cause greater transport of drug to the tumor core and thus 

this may serve as a suitable alternative to MBs. 

In conclusion, the results of our study suggest that zonal administration of HIFU 

sequentially for short duration is a promising method for improving drug delivery into 

solid tumors from LTSLs. Intravenous administration of PFP encapsulated in LTSLs or 

NTSLs allowed Dox to reach the tumor core, and the mechanisms governing such 

transport involve the interplay of hyperthermia and reduced tissue barriers. This approach 

might prevent tumor recurrence in deep seated tumors and should be the subject of future 

investigations. 
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Fig. 2.1. Schematic illustration of Doxorubicin (dox) delivery regulated by zonal 

administration of High Intensity Focused Ultrasound (HIFU) across mouse colon tumor.  
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Fig. 2.2. a) The tumor was divided into a top half consisting of three sequentially heated 

fragments and a bottom unheated half. Before injection, fragment 1 (F1) was heated for 3 

min. During injection, starting at F1, a 1 min heating regime was applied to point A, 

followed by B, and finally C. This process was repeated seven times to ensure that F1 

was heated between 40 and 42 °C for a total of 21 min. F2 and F3 were heated in the 

same way to achieve a cumulative heating of ~ 60 min.; b) Illustration of the thermal 

gradient in the mouse tumor model up to 2 mm away from the HIFU focus. Temperature 

was measured throughout the tumor by moving the HIFU focus over a thermocouple 

inserted into the tumor. Any area within the 1 × 1 × 10 mm focus volume and up to 3 mm 

radius could be heated for 40–42 °C. 
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Fig. 2.3. Confocal microscopy showing PFP (green) encapsulated in the lipid bilayer 

(red) at 25 °C; d) Thermal scan for E-LTSL loaded with PKH67 labeled PFP. Increase in 

fluorescence signal is observed post lysis of E-LTSL with triton, due to de-quenching of 

PKH67 PFP from the liposomes. LTSL were used as control for the baseline fluorescence 

from liposomes (data not shown). 
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Liposomes Size (nm) Polydispersity index Zeta Potential (mv) 

Mean SEM Mean SEM Mean SEM 

NTSL 190.1 1.9 0.1 0.01 -26.8 3.6 

ENTSL 193.8 1.2 0.11 0.04 -43.8 0.6 

LTSL 176.8 0.5 0.11 0.01 -48 1.7 

ELTSL 171.6 0.5 0.12 0.01 -28.3 1.1 

 

Table 2.1. Size, polydispersity and zeta potential of NTSL, E-NTSL, LTSL and E-LTSL 

at 25°C 
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Fig. 2.4. Percent release of doxorubicin (Dox) in PBS and FBS between 25 and 42.5 °C 

for NTSLs, E-NTSLs, LTSLs, and E-LTSLs. 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/doxorubicin
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Fig. 2.5. Doxorubicin (Dox) concentrations in tumors at body temperature (37 °C) as 

well as HIFU treated tumors for free Dox, NTSLs, E-NTSLs, LTSLs, and E-LTSLs for 

all liposome formulations following a 5 mg/kg Dox injection. Data are shown as mean 

Dox concentration ± standard error of mean (n = 3 − 6), (F8,28=23.63, *p < 0.05, Tukey's 

multiple comparison); *Indicates significant differences from the unheated internal 

control. 
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Organs Dox LTSL LTSL 

HIFU 

NTSL NTSL 

HIFU 

E-

LTSL 

E-

LTSL 

HIFU 

E-

NTSL 

E-

NTSL 

HIFU 

Spleen 7.2 

(1.9) 

7.8 

(1.0) 

7.3 

(0.7) 

27 

(1.7) 

16 

(3.9) 

8.0 

(0.8) 

6.5 

(0.9) 

29 

(3.9) 

16.3 

(2.7) 

Heart 4.1 

(0.7) 

3.9 

(0.5) 

3.8 

(0.3) 

2.4 

(0.4) 

1.2 

(0.1) 

3.4 

(0.3) 

5.1 

(1.2) 

2.0 

(0.3) 

1.1 

(0.1) 

Kidney 15.1 

(0.5) 

22.5 

(4.5) 

10.5 

(1.5) 

6.3 

(0.6) 

2.3 

(0.5) 

23.6 

(3.6) 

12 

(2.0) 

6.0 

(1.2) 

1.6 

(0.1) 

Lung 1.7 

(0.1) 

3.0 

(0.5) 

2.6 

(0.5) 

1.6 

(0.4) 

2.4 

(0.6) 

1.1 

(0.3) 

3.5 

(0.2) 

1.3 

(0.1) 

1.0 

(0.2) 

Liver 18.7 

(1.3) 

14 

(1.1) 

11 

(2.7) 

4.9 

(0.9) 

4.2 

(1.6) 

15.8 

(0.9) 

12 

(2.1) 

7.2 

(0.9) 

6.0 

(1.2) 

Muscle 2.5 

(0.1) 

1.9 

(0.2) 

8.1 

(1.3) 

0.9 

(0.2) 

1.4 

(0.2) 

1.5 

(0.1) 

9.9 

(0.4) 

0.9 

(0.1) 

1.1 

(0.2) 

Tumor 1.2 

(0.2) 

0.9 

(0.1) 

3.8 

(0.1) 

1.6 

(0.1) 

1.9 

(0.1) 

2.1 

(0.4) 

5.1 

(0.4) 

1.6 

(0.1) 

2.1 

(0.3) 

 

Table 2.2 Average Dox delivery in various organs with and without HIFU for 

various liposome groups. (Data are expressed as μg Dox/g of tissue; (mean ± SEM) 
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Fig. 2.6. 

Doxorubicin (Dox) concentrations in HIFU treated tumor fragments (F1, F2, and F3) for 

NTSLs, E-NTSLs, LTSLs, and E-LTSLs following a 5 mg/kg Dox injection. Data are 

shown as mean Dox concentration ± standard error of mean (n: 3 − 6). E-LTSL F1* is 

significantly different from unheated bottom fragment (p < 0.05, pair wise comparison). 
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Liposome F1 F2 F3 Unheated 

fraction 

NTSL/HIFU 2.3 

(0.3) 

2.2 

(0.1) 

2.5 

(0.4) 

1.6 

(0.1) 

E-NTSL HIFU 1.7 

(0.4) 

2.4 

(0.5) 

2.0 

(0.5) 

2.0 

(0.2) 

LTSL/HIFU 4.2 

(0.8) 

3.4 

(0.6) 

3.8 

(1.1) 

3.4 

(0.6) 

E-LTSL/HIFU 6.4 

(1.3) 

5.4 

(0.5) 

4.7 

(0.9) 

2.8 

(0.4) 

 

Table 2.3. Average Dox delivery in heated fragments (F1, F2 and F3), and unheated 

fraction of colon tumor, (data are expressed as μg Dox/g of tissue; (mean ± SEM)). 
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Fig. 2.7. Doxorubicin (Dox) concentrations in μg Dox/g of tissue for organs and muscle 

distal to tumors in a 37 °C water bath for Dox, NTSLs, E-NTSLs, LTSLs, and E-LTSLs 

as well as HIFU treated tumors for all liposome formulations following a 5 mg/kg Dox 

injection. Data are shown as mean Dox concentration ± standard error of mean (n = 5–6) 

(*p < 0.05, Tukey's multiple comparison); *Indicates significant difference with Dox 

treatment group in same organ. 
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Fig. 2.8. Ratio of doxorubicin (Dox) in tumor adjoining muscle heated with HIFU and 

unheated contralateral muscle for NTSLs, E-NTSLs, LTSLs, and E-LTSLs. Data are 

shown as mean concentration of Dox in tissue ± standard error of mean (n = 3–6), 

(F3,10=3.93, *p < 0.05, Tukey's multiple comparison). 

 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/doxorubicin
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Fig. 2.9. H&E (left column) and fluorescent (right column) images of HIFU treated 

tumors. All tumors are oriented with the F1 fragment on top when appropriate.
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CHAPTER III 

 

 

THERAPEUTIC EFFICACY OF HIFU AND ECHOGENIC LTSL IN 

IMMUNOCOMPROMISED COLON CANCER MODEL 

 

Abstract 

A key drawback of conventional cancer chemotherapy is the inability to achieve 

homogeneous drug delivery to solid tumors and prevent tumor recurrence. These can be 

further complicated by the acquired chemo-resistance. To overcome this barrier, the 

objectives of this study were to 1) characterize extravasation of systemically administered 

doxorubicin (Dox) in solid tumor mass in presence of echogenic low temperature 

sensitive liposomes (E-LTSL) and high intensity focused ultrasound (HIFU) in C26 colon 

carcinoma mouse model, 2) evaluate E-LTSL efficacy in immunocompromised mice 

bearing C26 tumors, and 3) characterize multidrug resistance in the tumor 

microenvironment following various treatments.  For drug extravasation characterization, 

mice bearing colon cancer received intravenous injection of Dox in the presence of HIFU 

+/- E-LTSLs.  HIFU heating was performed in ~50% of the tumor volume, with the rest 

acting as an internal unheated control. HPLC was performed to ascertain Dox delivery. 

The net penetration depth from blood vessels was determined computationally by 
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analyzing fluorescent images of tumor sections. Efficacy of HIFU+E-LTSL (with 

encapsulated Dox) was evaluated by monitoring tumor growth after three successive 

treatments over a 6-day period.  Data suggested that HIFU+E-LTSL treatment group 

resulted in significantly higher mean drug extravasation from blood vessels compared to 

other groups. However, the survival rates from HIFU+E-LTSL was modest compared to 

untreated control. Cancer stem cell markers and xenobiotic efflux pumps Aldh1a1, 

Notch2, Gata6, Abcc1, Abcg2, and Abcb1, which play a role in chemo resistance remain 

largely unchanged with HIFU/ELTSL treatment, leading us to believe that Dox E-LTSL 

efficacy was not dependent on these factors.  In conclusion, our animal data suggest that 

HIFU+E-LTSL enhances tumor Dox penetration. However, the marked increased drug 

delivery capabilities were insufficient to improve therapeutic outcomes in immune-

compromised mice bearing the colon tumors. 

Introduction 

Conventional chemotherapy delivers insufficient and heterogeneous drug delivery into 

solid tumors.  This is because solid tumors have densely packed cells, abnormal 

vasculature support, and high interstitial fluid pressure that prevents the dispersion of 

drugs deep into the tumor [171-173]. Current methods of increasing chemotherapeutic 

drug delivery and reduce side-effects include the use of nanoparticles (NPs) to a targeted 

region. NPs increase drug delivery by exploiting vaso-regulatory factors and chemicals 

including nitric oxide [171], bradykinin [174, 175], and tumor penetrating peptides such 

as iRGD [176-178]. To further enhance this process, NPs can be combined with focused 

ultrasound for improved cavitation and stimuli-sensitive release of contents in the tumors.  

Although promising, tumors with poor expression of targeted ligands or with poor 
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vasculature networks may not achieve sufficient drug delivery.  In some cases, some 

treatments such as those that utilize miRNAs may actually promote metastasis [179].  

Additionally, multidrug resistance acquired post treatment in the form of cancer stem cell 

and xenobiotic efflux pump upregulation can negate the advantages of effective dosage 

[180, 181]. Xenobiotic efflux pumps are transmembrane proteins that actively pump 

endogenous and exogenous compounds out of the cell [181, 182].  Colon cancers 

generate resistance to chemotherapeutic drugs such as Dox by upregulating proteins from 

the ABC protein family which actively remove intracellular delivered agents, preventing 

response to treatment [183]. Long-term multidrug resistance can also be acquired by 

cancer stem cell activation or with changes in expression of cell regulatory proteins, 

causing resistance to standardized chemotherapeutic practices [184-186]. Thus, a critical 

need is to enhance penetration depth of anticancer drugs in the solid tumor by tackling 

the tumor microenvironment factors, especially in tumors that are not good for targeted 

therapy.  We hypothesized that systemically administered NP-encapsulated doxorubicin 

and combination with mild hyperthermia (42 ºC) can increase therapeutic efficacy against 

malignant murine cancers.  Prior research with hyperthermia have shown that it can boost 

Dox diffusion into tumors both in the free and NP-encapsulated forms [187, 188]. [189].  

To further increase Dox uptake in a target region, in this study, we utilized the 

sonoporation effects of our NPs by systemically administering echogenic lot temperature 

sensitive liposomes (E-LTSL).  E-LTSL are synthesized by encapsulating an ultrasound 

contrast agent (UCA), Perfluoropentane (PFP) in its aqueous core. E-LTSLs offer a 

number of advantages over more commonly used microbubbles. In contrast to 

microbubbles, E-LTSL have a smaller size, better stability, and an enhanced half-life. 
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Thus, E-LTSL can serve as an effective theranostic agent for detection of tumor 

vascularity in real time.   Also, unlike microbubble agents, E-LTSLs cause minimal 

cavitation effects in the tissue due to a lack of violent inertial cavitation [112, 190]. Due 

to these favorable features, E-LTSL may have clinical utility for improving drug 

penetration in tumors. The objective of this study was to assess whether the presence of 

E-LTSL and HIFU measurably increase Dox delivery in the murine colon tumor model. 

Additionally, we determined if enhanced Dox extravasation from E-LTSL correlated with 

the therapeutic efficacy, and multidrug resistance pathways in the colon tumors. 

Materials & Methods 

Materials 

PFP (99%, Exfluor Research Corporation, Round Rock, TX, USA) was used as the 

nanobubble contrast agent. Monostearoyl-2-hydroxy-sn-glycero-3-phosphocholine 

(MSPC), 1,2-dipalmitoylsn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[methoxy (Polyethylene glycol)2000] (DSPE-

mPEG2000 ) were obtained from Corden Pharma Corporation (Boulder, CO, USA). 

PKH67 Green Fluorescent Cell Linker was obtained from Sigma Aldrich (Milwaukee 

WI, USA). Dox was obtained from LC Laboratory (Woburn, MA, USA). Acetonitrile 

(high performance liquid chromatography (HPLC) grade) was obtained from Pharmco-

AAPER (Brookfield, CT, USA). FITC Rat Anti-Mouse antibody was obtained from (BD 

Biosciences CA, USA) Ethylene glycol (99%, spectrophotometric grade), phenylboronic 

acid (98%), and 2,2-dimethoxypropane (98%) were purchased from Alpha Aesar (Ward 

Hill, MA, USA). The PD-10 column was obtained from GE Healthcare Life Sciences, 
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(Buckinghamshire, United Kingdom, UK). C26 cells were kindly provided by the 

National Cancer Institute.   

Synthesis and characterization of E-LTSL  

E-LTSL (lipid composition: DPPC, MSPC, and DSPE-mPEG2000 molar ratio of 

85.3:9.7:5.0) were prepared by hydration of a lipid film followed by the extrusion method 

as described previously. Briefly, the lipids were dissolved in chloroform. The solvent was 

evaporated and the resulting lipid film was hydrated in citrate buffer (pH 4.0) mixed with 

1,3-propanediol (1, 3-PD) (0.65 M, for PFP emulsification) at 55 °C for 30 min and 

extruded five times through double stacked 200 nm polycarbonate filters to yield a final 

lipid concentration of 50 mg lipid/ml. A PD-10 size-exclusion column equilibrated with 

5–10 column [16, 153, 154].volumes of 1 × phosphate buffered saline (PBS) was used to 

remove free 1,3-PD from the outside of the liposomes.  This procedure yielded low 

temperature sensitive liposome which is the precursor to the E-LTSL. 

Loading of PFP into an LTSL (forming an E-LTSL) was performed using a one-step 

sonoporation method. Briefly, 2 mL of the liposomal solution was continuously  

sonicated (~20 khz) at 4 °C in 3 mL vials along with PFP (boiling point 30 °C; 20 μL/100 

mg lipid) for 1–2 min. PFP and LTSLs were kept cold prior to being combined, and the 

sonication bath was kept to minimize PFP vaporization. Free 1,3-PD and PFP were 

removed using a PD-10 size-exclusion column equilibrated with 5–10 column volumes of 

1x phosphate buffered saline (PBS). 

E-LTSL were characterized for size (z-average) using dynamic light scattering (DLS) 

with a 90 plus PALS Nanobrook device (Brookhaven Instruments, Holtsville, NY, USA). 
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Briefly, 5-10 µL of E-LTSL were added to 3 ml of PBS in a cuvette, and DLS 

measurements were recorded at room temperature. For each liposomal formulation, an 

average of three measurements were taken, and the mean size and standard deviation 

were calculated for the E-LTSL samples. Zeta potentials were measured in de-ionised 

water. 

Establishment of mouse model of colon cancer 

All animal-related procedures were approved and carried out under the regulations and 

guidelines of the Oklahoma State University Animal Care and Use Committee. C26 cells 

were grown as a monolayer to 80–90% confluence in RPMI supplemented with 10% v/v 

fetal bovine serum (FBS) and 1% v/v streptomycin/penicillin. Confluent cells were 

harvested, washed, and diluted with sterile cold PBS to generate 0.5 x 106 cells/50 μl. 

Next, 50 μl of cell inoculum was injected per mouse in the thigh region of the mouse hind 

leg using a 25-gauge needle (BD, Franklin Lakes, NJ, USA). Mice were monitored and 

tumor growth was measured by serial caliper measurements (General Tools Fraction+™, 

New York, NY, USA). Tumor volumes were calculated using the formula (length X 

width2)/2, where length is the largest dimension and width is the smallest dimension 

perpendicular to length. Tumors were allowed to grow to a volume of 300–400 mm3 

prior to initiating studies, and the mice were treated with 5mg Dox/Kg Body weight IV.  

Study design 

Athymic nude mice bearing C26 mouse adenocarcinoma cell tumors were divided into 

two treatment groups: Dox + HIFU and Dox + HIFU + E-LTSL. In both groups (n = 7 

mice), Dox was co-administered at 5 mg/kg body weight intravenously along with 250L 
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E-LTSL/kg body weight. Four mice from each group were used for Dox quantification 

with HPLC and three mice were used for tumor imaging.  

Hyperthermia generation in mouse tumors with HIFU 

An integrated ultrasound-HIFU alpinion platform was used for tumor identification, 

sonication, and treatment characterization. For hyperthermia treatment, the center of the 

tumor was aligned with the HIFU focus at a fixed focal depth for efficient coverage, and 

VIFU-2000 software was used to define the target boundary and slice distance in X, Y, 

and Z directions for automatic movement of the transducer. The HIFU transducer had 1.0 

MHz central frequency, 45 mm radius, and 64 mm aperture diameter with a central 

opening 40 mm in diameter. The mouse was oriented so that its dorsal side was facing the 

transducer and the caudal half was lowered into a 37 ºC water bath.  The path from the 

transducer to the tumor aligned along the z-axis as shown in Fig 3.1. For HIFU 

treatments, each tumor was divided into two halves; the upper half of the tumor, which 

received direct HIFU heating, is referred to as the Treated half and the bottom half of the 

tumor, which did not receive direct HIFU heating, and was referred to as the Untreated 

half.  The HIFU focus was positioned at the top region of the tumor for heating and was 

repositioned along the x axis throughout time to thoroughly heat the entire area. HIFU 

treatment parameters used were as follows: 5 Hz frequency, 50% duty cycle, 10 W 

acoustic power, and a peak positive/negative pressure of 6.15/-4.41 MPa to achieve a 

mean target temperature of 40–42.5 ºC at the focus. The total treatment duration was 63 

min with a 3 min preheating time. Groups with no HIFU heating were kept in a 37 ºC 

water bath for 63 min. 
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Post HIFU treatment tissue harvesting procedure 

Following completion of HIFU, mice were euthanized. To clear the vasculature of 

drug/liposomes, transcardiac perfusion was performed immediately by opening the chest 

cavity and intracardially injecting 10 mL of PBS. Tumors were excised, weighed, snap-

frozen over liquid nitrogen, and stored at −80 °C until Dox analysis. 

Quantification of Dox by HPLC  

Tissue homogenization and sample preparation for HPLC were carried out using 

previously published methods [16, 61].  Briefly, samples were homogenized, and Dox 

was extracted and quantified with HPLC using daunorubicin as the internal standard. The 

HPLC detection system consisted of fluorescence detectors, and detection was performed 

at ex/em of 498/593 nm. Data were acquired done using Shimadzu LC solution software. 

Concentrations of the analyte in tissues were determined using peak-area ratios of the 

sample analyte to the internal standard from the calibration curve. 

Whole tumor histology by fluorescence imaging 

Three mice tumor from each treatment group were selected for histology. 8 µm sections 

of frozen tumors were prepared, and two serial sections were mounted per slide. Cell 

density, and cavitation were assessed in hematoxylin- and eosin- (H&E) stained sections 

using an Aperio ScanScope at 20x.  A nitroblue tetrazolium (NBT) stain was used to 

determine regions of thermal necrosis.    

Blood vessels in tissue sections were Labeled with CD-31 (rat anti mouse) mouse 

antibodies and slides were fixed, mounted and allowed to dry for 24 h before imaging.  

CD-31 was imaged at an exposure 200 ms (ex/em of 490/520) and Dox was imaged at an 
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exposure 100 ms (ex/em of 480/590). Image acquisition and display parameters were 

constant for different treatments to allow for qualitative comparison.  Blood vessels were 

imaged at top of the treated half of the tumor and thorough out the untreated half. Whole-

section digital histological scans were acquired using a 10X objective on an Olympus 

ZDC2 IX81 fluorescence microscope equipped with a color CCD camera, cooled 

monochrome CCD camera, motorized scanning stage, and Metamorph mosaic stitching 

software.  

Dox quantification analysis  

CD-31 labeled blood vessels were analyzed individually for Dox penetration and 

migration into the surrounding tumor interstitium by selecting a large number of ROIs 

across each tumor used for imaging.  Dox fluorescence intensity was measured along a 

distance extending radially from the center of the blood vessels.  These values were 

plotted as the average fluorescence at set distances moving away from the center of blood 

vessels.  

E-LTSL efficacy study design 

C26 cells were seeded in 200uL complete RPMI with 10% fetal bovine serum and 1% 

streptomycin-penicillin at a density of 2x104 cells/well in 96-well plates.  Cells were 

allowed to attach and grow to a confluency of 80, and then treated with 3.125, 5, 6.25, 10, 

12.5, 18, and 25 M for 1h at 37°C and 42°C, and cell viability was assessed at 48h with 

MTT assay by measuring the absorbance at 540 nm. For in vivo studies, athymic nude 

mice bearing C26 mouse adenocarcinoma cell tumors (70 mm3) were divided into eight 

treatment: Control, HIFU, Dox ± HFU, and E-LTSL ± HIFU. In all groups (n = 4-5), 



59 
 

mice were treated at 5 mg Dox/kg body weight administered intravenously every 3 day 

(day 0, 3, and 6 respectively).  HIFU treatment parameters used were as follows: 5 Hz 

frequency, 35% duty cycle, and 6W acoustic power to achieve a mean target temperature 

of 40–42.5 ºC for 1h at the focus. Survival endpoints included tumor volume exceeding 

2000 mm3 or a 15% decrease in body mass. 

qRT-PCR Characterization of C26 Multidrug Resistance 

At the end of study, intracardiac injection of10 mL of PBS were performed, and tumors 

were excised, weighed, snap-frozen over liquid nitrogen, and stored at −80 °C. Total 

RNA from the C26 colon carcinoma tumors was extracted using TRIZOL according to 

the manufacturer’s instructions. RNA concentration was measured using NanoDrop 

ND100. 5µg of total RNA was treated with DNase I according to manufacturer’s 

protocol, and RNA was purified with phenol-chloroform. cDNA synthesis was performed 

using 1µg DNase I treated RNA per reaction using iScript Reverse Transcription 

Supermix for RT-qPCR. Real-Time RT-PCR reaction was performed with cDNA diluted 

5x.  Relative gene expression for Aldh1a1, Notch 2, Gata6, Abcc1, Abcg2, and Abcb1 

was evaluated by qRT-PCR using SYBR green reagent using Applied Biosystem 7500 

fast Real-Time PCR instrument and a 40-cycle run for target amplification. Specific 

primers sequences are listed in Table 3.1. qRT-PCR data were analyzed by the 2(-ΔΔCT) 

method using GAPDH as a reference gene. 

Statistical Analysis 

Treatment groups were compared for differences in mean tumor Dox concentration, 

fluorescence intensity of Dox from the center of a blood, tumor volume, survival time, 
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and RNA fold change respectively with ANOVA followed by Tukey's multiple 

comparison post-hoc test using GraphPad Prism 5.0 (GraphPad Software Inc.). All p-

values were two-sided, and p < 0.05 was taken to indicate statistical significance. Values 

were reported as mean ± standard error of the mean (SEM). 

Results 

Characterization of E-LTSL and LTSLs 

Table 3.1 shows the hydrodynamic diameter, polydispersity index, and zeta potential 

values of LTSLs and E-LTSL at room temperature (25 °C).  Both LTSL to E-LTSL 

demonstrated similar physicochemical properties.  LTSL and E-LTSL demonstrated a 

hydrodynamic diameter of 176±3.6 and 165±2.1nm, zeta-potential of 0.2±0.004 and 

0.2±0.01mV, and polydispersity index of -42.6±0.7 and -28.3±1.8 respectively (Table 

3.1). 

Dox Tumor Biodistribution  

E-LTSL nanobubbles resulted in a significant increase in Dox tumor concentrations.  

Whole tumor Dox concentration for the 37°C, HIFU, and HIFU+E-LTSL groups were as 

follows: 1.2 ± 0.2, 2.6 ± 0.1, and 3.0 ± 0.3 g Dox/g of tissue (Fig 3.2 and Table 3.2).  

Dox levels in HIFU treated, HIFU + E-LTSL treated, HIFU untreated, and HIFU + E-

LTSL untreated tumor group were as follows:  2.0 ± 0.1, 3.9 ± 0.7, 2.4 ± 0.1, and 1.7 ± 

0.1 g/g.  While HIFU hyperthermia increased Dox payload, E-LTSL nanobubble 

demonstrated a substantial increase in Dox delivery relative to Dox alone.  

Dox penetration depth  
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Fluorescence intensity measured radially from the center of blood vessels to a distance of 

200 μm (Fig 3.4) showed an increased Dox signal (red) for the HIFU + E-LTSL relative 

to all other groups (Fig 3.5).  In general, the mean fluorescence intensity in the treated 

regions for the HIFU+E-LTSL was > 1.5-fold compared to other groups.  

Dox Whole Tumor Fluorescence Imaging 

HIFU+E-LTSL showed Dox signal in the HIFU heated region (Fig. 3.6c).  In contrast, 

HIFU treated tumors showed Dox signal only around the tumor periphery (Fig. 3). H&E 

staining suggested minimal tissue damage in the treated regions (Fig. 3.6d).  NBT 

analysis that measured cellular metabolism showed an absence of cellular necrosis as 

indicated by uniform purple-blue staining across various treatments (Fig. 3.6e). 

Cytotoxicity of Dox with and without hyperthermia 

The cytotoxicity of Dox measured by MTT in C26 cells following 3.125-25 μM 

treatment demonstrated a dose-dependent decrease in the C26 viability at 37°C and  42°C 

compared to untreated control.  Also, heating the cells with Dox treatment decreased C26 

percent viability by approximately 15% compared to 37°C (Fig. 3.7).   

E-LTSL & HIFU efficacy in murine colon cancer model 

HIFU+E-LTSL decreased the tumor volumes by 2-fold relative to the untreated control 

(261±31 vs 458±66.5 mm3).  Likewise, E-LTSL alone demonstrated reduced tumor 

growth compared to control.  For all other groups, the tumor regressions were modest 

(HIFU, Dox, Dox + HIFU, and E-LTSL were 354±75, 311±50.9, 347±57, and 

LTSL=287.4±3.3 mm3, respectively; Fig 3.8) compared to untreated control.   This was 
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further illustrated by survival data where both HIFU+E-LTSL and E-LTSL treated mice 

showed an increase in survival by an average of 4 days longer than Control and HIFU 

and 2-3 days longer than Dox and HIFU+Dox treated mice (Fig. 3.9.).   

Expression of drug resistant marker in tumors 

qRT-PCR evaluation of C26 tumors revealed changes in mRNA expression related to 

chemo-resistance pathways.   HIFU+E-LTSL achieved >2-fold enhanced expression of 

Abcb1 compared to untreated control. Also, HIFU+E-LTSL showed a 5-fold greater gene 

expression of GATA6 than control, HIFU, Dox and HIFU+Dox (Fig 3.10).  All other 

targets analyzed showed minimal to no change in gene expressions between the various 

treatment groups.    

Discussion 

Understanding the mechanisms of HIFU enhanced combined liposomal nanobubbles 

chemotherapy can help synergize the colon cancer outcomes. Our whole tumor analysis 

of Dox accumulation showed E-LTSL delivery can be significantly improved with HIFU 

compared to unheated counterparts with E-LTSLs (Fig 3.2).   This is in line with prior 

findings where presence of nanobubbles improved drug extravasation  [191] We also 

found that by using each tumor as its own internal control, E-LTSL precisely attained 

regional delivery compared to HIFU [192, 193]. This suggests that E-LTSL may 

overcome the current limitations of heterogeneous drug delivery of nanoparticle and 

conventional therapy [144, 191, 194, 195]. For example, Dox was found in peripheral 

regions of the tumor for all of the treatment groups. In contrast, the HIFU+E-LTSL 

treated regions demonstrated uniform Dox distribution in the heated region (Fig. 3.3).  
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Also, the mean Dox concentration was ~200 μm for HIFU+E-LTSL treated tumor region, 

suggesting sonoporative effects of E-LTSLs. 

Dox is known to demonstrate short half-life [196]. To address this,  liposomes with  EPR 

mediated Dox accumulation have been developed [137].  By using the thermosensitive E-

LTSL, we found that it was able to increase  the Dox concentrations by 2-fold in the 

treated zones of tumors compared to respective controls, suggesting that it can improve 

the shortcoming of Dox’s short circulatory half-life.  E-LTSL benefits also include a lack 

of reliance on the presence of ligand rich environment (e.g. αv integrin expression) for 

localized therapy [197]. Incidentally, in vitro data showed that the C26 cells were 

responsive to Dox, however, the H&E and NBT staining of treated tumors showed that 

the E-LTSL/HIFU treatments did not kill C26 cells post-treatment, and that the higher 

concentrations of Dox in the tumor didn't translate into superior survival with E-LTSL 

and HIFU.  This is in contrast to previous studies where substantial differences in 

therapeutic effect with Dox-based liposomes were noted [198-200].  To explore the 

possible mechanisms, we determined the expression of xenobiotic efflux pumps and 

cancer stem cell markers in the tumor samples (Fig 3.10).  Xenobiotic efflux pumps are 

transmembrane proteins that help remove exogenous chemicals from inside to outside of 

the cells [201][202].  We found that xenobiotic efflux genes, abcc1 and abcg2, were 

mildly downregulated in the HIFU+E-LTSL groups.  In contrast, abcb1 was 2-fold were 

greater than all other treatment groups, suggesting the likely presence of chemo-

resistance phenotype.  Surprisingly, these didn't correlate with the chemoresistant cancer 

stem cell markers, notch 2 and aldh1a1.  Likewise, Gata6 was significantly upregulated in 

HIFU+E-LTSL compared to other groups, however, this marker has been associated with 
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both increased and decreased tumor progression in various tumor types[81, 203, 204]. 

Based on this, we hypothesize that an interaction of adaptive immune system with Dox 

may be needed to attain sufficient therapeutic effects. This is evidenced by prior research 

that showed the potential role of immune system in Dox therapeutic effects [205, 206]. 

Notably, in one particular study, immunocompromised mice and immunocompetent mice 

received similar Dox treatments [207]. Results indicated therapeutic effects in the 

immune competent model only. Thus, the presence of fully functioning adaptive immune 

system may improve immunogenic cell death and resultant T-cell response [207-211]. 

Future studies focusing on these mechanisms to understand therapeutic outcomes against 

colon cancer can shed more light on such mechanisms. 
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Fig. 3.1. The treated regions of the tumor received ~60 min of HIFU heating. Prior to E-

LTSL and Dox injection, 3 min of preheating was performed. Fluorescence tumor 

imaging analysis were performed in the entire tumor. 
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Primer (Mus musculus) Sequence 

mGapdh-forward CATCACTGCCACCCAGAAGACTG 

mGapdh-reverse ATGCCAGTGAGCTTCCCGTTCAG 

mAldh1a1-forward GGAATACCGTGGTTGTCAAGCC 

mAldh1a1-reverse CCAGGGACAATGTTTACCACGC 

mNotch2-forward CCACCTGCAATGACTTCATCGG 

mNotch2-reverse TCGATGCAGGTGCCTCCATTCT 

mGata6-forward ATGCGGTCTCTACAGCAAGATGA 

mGata6-reverse CGCCATAAGGTAGTGGTTGTGG 

mAbcc1-forward CAGTGGTTCAGGGAAGGAGTCA 

mAbcc1-reverse CACTGTGGGAAGACGAGTTGCT 

mAbcg2-forward CAGTTCTCAGCAGCTCTTCGAC 

mAbcg2-reverse TCCTCCAGAGATGCCACGGATA 

mAbcb1-forward GGTGGTGTCATTGTGGAGCAAG 

mAbcb1-reverse GCATCAGTGTCACTCTGGGATC 

mGata6-forward ATGCGGTCTCTACAGCAAGATGA 

mGata6-reverse CGCCATAAGGTAGTGGTTGTGG 

mAbcc1-forward CAGTGGTTCAGGGAAGGAGTCA 

 

Table 3.1. PCR primers used for identification of multidrug resistance genes in C26 

colon carcinomas. 
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Liposome Size (nm) Polydispersity Zeta potential (mv) 

Mean SEM mean SEM mean SEM 

LTSL 176.1 3.6 0.2 0.004 -42.6 0.7 

E-LTSL 164.46 2.1 0.2 0.007 -28.3 1.8 

 

Table 3.2. Size, polydispersity and zeta potential of LTSL and E-LTSL at room 

temperature (25 °C). 
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Fig. 3.2. Doxorubicin (Dox) concentrations in  tumors for HIFU and HIFU + E-LTSL 

following 5 mg/kg Dox injection. Compared to unheated tumors (37C), HIFU and 

HIFU+E-LTSL enhanced Dox delivery to tumors 1.5- to 2-fold. Data are shown as mean 

Dox concentration ± standard error of mean (n = 4, p < 0.05, Tukey's multiple 

comparison). *Indicates significant difference between groups. 
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Fig. 3.3. Doxorubicin concentrations in heated regions showed significantly higher dox 

concentrations for HIFU + E-LTSL compared to other groups. Data are shown as mean 

Dox concentration ± standard error of mean (n=4; p < 0.05, Tukey's multiple 

comparison). *Indicates significant difference between groups.  
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HIFU Treatment 
Treated Unheated Whole Tumor 

mean SEM mean SEM mean SEM 

37ºC NA NA NA NA 1.2 0.2 

HIFU 2.0 0.1 2.4 0.1 2.6 0.1 

HIFU + E-LTSL 3.9 0.7 1.7 0.3 3.0 0.3 

 

Table 3.3. Doxorubicin (Dox) concentrations in whole tumor and various treated zones 

for 37ºC, HIFU, and HIFU + E-LTSL tumors following a 5 mg/kg Dox injection. Data 

are shown as mean Dox concentration ± standard error of mean (n=4).  
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Fig. 3.4. Average fluorescence intensity of Doxorubicin starting from the center of the 

blood vessel in the treated and unheated regions ( E-LTSL). 
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Fig. 3.5. Representative fluorescent images from tumor () E-LTSL in treated and 

untreated tumor regions:  a) CD-31 fluorescently labeled blood vessels, b) Dox 

fluorescence (pseudo-colored red), c) colocalization of Dox with CD31 
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Fig. 3.6. .  HIFU treated region in the tumor are labelled as T and the untreated region 

was labelled as UT. a) CD-31 fluorescently labeled blood vessels. b) Dox fluorescence in 

various tumor sections. c) colocalization images of Dox and CD31, d) H&E staining, and 

e) and NBT staining.  Both the Treated (T) and Untreated (UT) regions are shown in all 

the tumor sections.     
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Fig 3.7. MTT was used to measure C-26 cell viability 48h post Dox incubation at 37°C 

and 42°C. Cells at 37°C were incubated with [Dox] in a concentration range of 3.125-25 

M at 37°C for 4 h. For hyperthermia group, cells were incubated with [Dox] from 

3.125-25 M and simultaneously heated to 42°C for 1h followed by a 3 incubation at 

37°C.  C26 viability was adversely effected by both increasing [Dox] and hyperthermic 

treatment.  Data are shown as viability% ± standard error of mean (n=3). 
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Fig. 3.8. Tumor growth rates in mice following various treatments. Mice bearing C26 

tumors were treated at 5 mg/kg Dox injections on day 0, 3 and 6. Data are shown as mean 

tumor volumes ± standard error of mean (n=4; p < 0.05, Tukey's multiple comparison). 

*Indicates significant difference between treatment groups on Day 6.  
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Fig. 3.9. Mean survival of tumor bearing mice following E-LTSL and HIFU treatment. 

Mice were treated at 5 mg/kg Dox injections on day 0, 3 and 6. a-b) HIFU+E-LTSL and 

E-LTSL treatments showed enhanced survival than the Control, HIFU, and HIFU+LTSL 

groups. Data are shown as mean tumor volumes ± standard error (n=4; p < 0.05, Tukey's 

multiple comparison). *Indicates significant difference between groups. 
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Fig. 3.10. Fold Change in mRNA expression using GAPDH as an endogenous control. a) 

Xenobiotic efflux pump controlling genes (abcg2, abcb1, and abcc1). b) Cancer stem cell 

markers Aldh1a1 Gata6, and Notch 2.  Abcb1 fold change in HIFU+E-LTSL was 

significantly greater compared to E-LTSL, Dox+HIFU, and control.  Gata6 fold change 

in HIFU+E-LTSL and E-LTSL was significantly greater than all non-liposome groups.    

Data are shown as mean ± standard error (n = 4). (p < 0.05, Tukey's multiple 

comparison). *Indicates significant difference between groups.
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CHAPTER IV 

 

 

INVESTIGATION OF ANIT-TUMOR EFFECTS OF E-LTSL AND HIFU 

COMBINATORIAL THERAPY IN A MURINE COLON CANCER MODEL 

Abstract 

Long-term survival in patients with highly aggressive cancers is dependent on countering 

the neoplastic growth. Recent studies have shown that the use of checkpoint inhibitors in 

the chemotherapeutic regimen achieve better survival outcomes. However, an optimal 

adaptive immune response that achieves clearance of treated and untreated tumor cells 

require further development. The objectives of this study in murine colon cancer model 

were to: 1) determine therapeutic efficacies of HIFU activated Low Temperature 

Sensitive Liposomes (LTSL or T-Dox) and Echogenic Low temperature Sensitive 

Liposome (E-LTSL) against treated and untreated tumors, 2) analyze the immune profile 

in treated and untreated CT26 tumors, and 3) determine and compare the immune 

tolerance mechanisms of the combinatorial therapies.  CT26 colon carcinoma cells were 

implanted in the flanks of immunocompetent BALB/c mice to generate a bilateral tumor 

model.  A single 5mg/kg Dox treatment and HIFU hyperthermia on the right flank 

(primary tumor) was administered.  Treated primary tumors were excised one-week post 

treatment and the untreated tumors (abscopal tumor) were followed for one-month.  

Tumors and spleen were characterized for T-cell, macrophage, and dendritic cell activity 
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by flow cytometry and histological tumor sections were used to confirm leukocyte 

infiltration into tumors.  Results showed that the HIFU+E-LTSL and HIFU+T-Dox 

treatments slowed primary and abscopal tumor growth compared to the representative 

controls.  Flow cytometry revealed an increase in the population of dendritic cells, M1 

macrophages, and functional T-cells in the untreated tumor, and splenic tissues. 

Furthermore, E-LTSL demonstrated significant infiltrations of leucocytes in the tumor 

samples with HIFU.  Our in vivo data suggests that HIFU activated release of 

doxorubicin from T-Dox and E-LTSL, and associated bubble activity from E-LTSLs 

enhanced an immune competent microenvironment and clearance of colon cancer cells. 

 

Introduction 

Immunotherapy is fast emerging as the 4th modality of cancer treatment.  

Immunotherapeutics elicit and/or improve patient outcome by regulating key processes in 

both cancer cells and white blood cells, and by promoting immune mediated detection 

and elimination of malignant cells [212-217]. Immunotherapeutic approaches that have 

shown positive results include the use of immune checkpoint inhibitors such as PD-1 and 

CTLA-4 blockers [218, 219] and the chimeric antigen receptor T-cells which are host 

derived cells modified to target their cancerous cells  [220, 221].  

Prior research has shown that chemotherapeutic drugs within the anthracycline family 

such as epirubicin, idarubicin, and doxorubicin promote immunogenic cell death (ICD) of 

tumor cells, which can enhance the activity of CD8+ T cells. One potential mechanism 

that mediates this effect is the fact that Dox cytotoxicity causes translocation of 

calreticulin to the cancer cell surface, inducing increased tumor immunogenicity [222].  
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The effects of Dox and other chemo-immunotherapeutic drugs are largely dependent on 

their intra-tumoral concentration. For example, treatments that use nanoparticle-based 

drug carriers such as Doxil improve intratumoral drug concentration, markedly enhancing 

outcomes in mouse models relative to doxorubicin alone. Importantly, a marked change 

in tumor growth reduction with Doxil is now known to be dependent on the presence of 

T-cells, suggesting an ICD based immune effect [207].   

In addition to anticancer vaccines, chemotherapy, and modified T-cells, physical 

treatments such as hyperthermia and the mechanical effects of focused ultrasound have 

also shown several beneficial effects on the adaptive immune cell population.  For 

example, cancer cells, in response to hyperthermia produce a number of immune-

stimulatory agents such as Hsp proteins that help to induce MHC II presentation on 

dendritic cells and activate the natural killer cells [223].  Additionally, mild hyperthermia 

can attract leukocytes to the tumor by releasing chemoattractant [224] and improving 

their adhesion due to expression of ICAM-1 on the endothelial cells [225].  

The mechanical and hyperthermia effects of focused ultrasound subject tissues to 

intensive alternating pressure waves, resulting in cell stress and immuno-stimulatory 

effects [126].  Different ultrasound parameters yield varying degrees of immune 

responses.  For example, tumor destruction by focused ultrasound ablation and histotripsy 

enhances white blood cell tumor infiltration and dendritic and T-cell anticancer activity 

[226, 227]. However, their associated tissue necrosis can reduce the release of antitumor 

antigen. In contrast, mild hyperthermia grade or pulsed focused ultrasound does not kill 

cancer cells but induces cell stress and antigen release. Thus, it may reverse tumor 

immunosuppression, and prime tumors prior to tumor ablation [123, 124].  Additional 
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methods to increase the effects of HIFU enhanced immune activation in tumors can be 

with the use of microbubbles or nanobubbles which potentiate associated mechanical 

stress [228]. Based on this premise, we hypothesized that the combination of HIFU 

mediated mild hyperthermia in combination with doxorubicin loaded E-LTSL would 

promote an enhanced immune-stimulatory response compared to conventional Dox 

treatments.  Notably, in Chapter 2 and 3 of this dissertation, HIFU generated nanobubbles 

from E-LTSL and improved Dox concentration and penetration into colon tumors.  

However, Chapter 3 showed that the enhanced drug penetration did not translate into 

measurable differences in tumor growth rate in immunocompromised mice, likely due to 

an absence of an active T-cell population.  Thus, we believe that the characterization of 

our proposed treatment modality in an immunogenic colon mice model can shed more 

light on the antitumor effects of our proposed modality.  To test our hypothesis, we 

utilized BALB/c immunocompetent mice harboring bilateral CT26 colon cancers, and 

these received one of the following eight treatments: Control ± HIFU, Dox ± HIFU, 

Thermodox ± HIFU, and E-LTSL ± HIFU. Thermodox is a clinically available Dox 

loaded temperature sensitive liposome similar to LTSL from Chapter 2.  Mice received a 

single HIFU treatment on one tumor (primary tumor), while the other tumor (abscopal 

tumor) remained untreated. Six days after treatment, treated tumors were surgically 

removed and the abscopal tumor was monitored up to day 27 post primary tumor 

inoculation.  Flow cytometry was used to assess T-cell, dendritic cell, and macrophage 

populations to assess response to targeted nanobubbles therapy. 

Materials and Methods 

Materials 
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PFP (99%, Exfluor Research Corporation, Round Rock, TX, USA) was used as the US 

contrast agent. Monostearoyl-2-hydroxy-sn-glycero-3-phosphocholine (MSPC), 1,2-

dipalmitoylsn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy (Polyethylene glycol)2000] (DSPE-mPEG2000) were 

obtained from Corden Pharma Corporation (Boulder, CO, USA). Dox was obtained from 

Sigma Aldrich (St. Louis, MO, USA).  Thermodox was kindly provided by Celsion 

Corporation (Lawrenceville, NJ, USA). The PD-10 column was obtained from GE 

Healthcare Life Sciences, (Buckinghamshire, United Kingdom, UK). CT26 colon cancer 

cells were obtained from ATCC (Mansassas, VA). 

Synthesis of E-LTSLs 

LTSLs (lipid composition: DPPC, MSPC, and DSPE-mPEG2000 molar ratio of 

85.3:9.7:5.0) were prepared by hydration of a lipid film followed by the extrusion method 

as described previously [16, 153, 154]. Briefly, lipid mixtures were dissolved in 

chloroform. The solvent was evaporated and the resulting lipid film was hydrated in 

citrate buffer (pH 4.0) mixed with 1,3-propanediol (1, 3-PD) (0.65 M, for PFP 

emulsification) at 55 °C for 30 min and extruded five times through double stacked 200 

nm polycarbonate filters to yield a final lipid concentration of 50 mg lipid/mL (80.8 mM 

for LTSLs). A PD-10 size-exclusion column equilibrated with 5–10 column volumes of 1 

× phosphate buffered saline (PBS) was used to remove free 1,3-PD from the outside of 

the liposomes. 

Encapsulation of Dox into the LTSLs was carried out using the pH-gradient loading 

protocol described by Mayer et al. [152]. Briefly, the outside of the E-LTSLs was 
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adjusted (by column) to about pH 7.4 using PBS, whereas the inside remained acidic at 

pH 4. Dox was loaded at 2 mg/100 mg lipid concentration at 37 °C for 1 h. PFP-loaded 

E-LTSLs were prepared using a one-step sonoporation method. Briefly, 2 mL of the 

liposomal formulations were incubated under continuous sonication (~ 20 kHz) in 3 mL 

vials along with PFP (boiling point 30 °C; 20 μL/100 mg lipid) for 1–2 min. PFP and 

LTSLs were kept cold prior to being combined, and the sonication bath was kept at 4 °C 

to minimize PFP vaporization.  

Study design 

All animal-related procedures were approved and carried out under the regulations and 

guidelines of the Oklahoma State University Animal Care and Use Committee. BALB/c 

mice bearing bilateral CT26 mouse adenocarcinoma cell tumors were divided into 8 

treatment groups: Control, HIFU, Dox ± HIFU, Thermodox ± HIFU, and E-LTSLs ± 

HIFU. In all groups (n ≥3 mice), 5 mg Dox/kg body weight were administered 

intravenously. 

Establishment of mouse model of colon cancer 

CT26 cells were grown as a monolayer to 80-90% confluence in RPMI supplemented 

with 10% v/v fetal bovine serum (FBS) and 1% v/v streptomycin/penicillin. Confluent 

cells were harvested, washed, and diluted with sterile cold PBS to generate 106 cells/50 

μL. Next, 50 μL of cell inoculum was injected per mouse in the right flank region of the 

mouse using a 25-gauge needle (BD, Franklin Lakes, NJ, USA).  Two days later, this was 

repeated for the left flank similar [229]. Mice were monitored and tumor growth was 

measured by serial caliper measurements (General Tools Fraction + ™, New York, NY, 
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USA). Tumor volumes were calculated using the formula (length × width2)/2, where 

length is the largest dimension and width is the smallest dimension perpendicular to 

length. Primary tumors, or tumors initially grown on the right flank were allowed to grow 

to a volume of 60-70 mm3 prior to initiating studies, and treated at 5 mg Dox/kg Body 

weight IV. 

HIFU treatment set-up and methodology 

An integrated ultrasound-HIFU alpinion system was used for tumor identification, 

sonication, and treatment characterization. The HIFU transducer has 1.0 MHz central 

frequency, 45 mm radius, and 64 mm aperture diameter with a central opening 40 mm in 

diameter. For HIFU treatments, mice received 30 min of heating.  Mice were anesthetized 

with 2–5% isoflurane and restrained in custom built mouse holders attached to a 3D 

positioning stage. The tumor bearing flank region was dipped in degassed water 

maintained at 37 °C for coupling with the HIFU transducer. Using real time ultrasound 

guidance, the tumors were positioned so that the target was in the center of the focal zone 

of the transducer. Prior to actual drug delivery study, we calibrated the instrument to a 

temperature of 42 °C in tumor bearing mice by optimizing the HIFU parameters (duty 

cycle, pulse repetitive frequency, total acoustic power, and time) as described previously 

in Chapter III. For hyperthermia treatment, the center of the tumor was aligned with the 

HIFU focus at a fixed focal depth for efficient coverage, and VIFU-2000 software was 

used to define the target boundary and slice distance in X, Y, and Z directions. HIFU 

treatment parameters used were as follows: HIFU treatment parameters used were as 

follows: 5 Hz frequency, 35% duty cycle, and 6 W acoustic power to achieve a mean 

target temperature of 40–42.5 °C at the focus.  For all mice, blood was collected from 
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facial vein prior to treatment and both primary and abscopal tumor volumes were 

recorded for the duration of the study. 

Surgical removal of primary tumors and tissue collection 

On day 7 post treatment, primary tumors were surgically resected, weighed, and divided 

into two separate sections: one for flow cytometry, and the other for histopathology.  

Mice were then monitored for a 20-day period prior to euthanasia.  Mice were euthanized 

if a >15% loss in body weight occurred, if any tumor dimension exceeded 2cm in length, 

or the tumor volume exceeded 2000mm3.  The abscopal tumor was processed similarly to 

the primary tumor.  The spleen was also collected, weighed, and prepped for splenocyte 

stimulation. Treatment groups were compared for differences in mean tumor volume and 

tissue mass using ANOVA followed by pairwise comparison (p<0.05) with Fisher’s 

LSD. Quantitative data was expressed as mean ± SEM. (p values < 0.05) 

Flow cytometry analysis of leukocytes 

Single-cell suspensions obtained from mechanical disruption of the tumors followed by 

enzymatic digestion (200 U/mL collagenase IV; Life Technologies, NY, USA) were 

filtered through a 70 μm cell strainer (Corning Inc., Corning, NY). Cells were stained 

with combinations of the indicated fluorochrome-conjugated anti-mouse antibodies for 

30 min in the dark on ice. The antibody combinations used to determine immune profile 

were CD45, CD11b, CD11c, F4/80, CD86, CD3, CD4, CD8, Foxp3, Ki67, Il2, 

Granzyme B for dendritic cells, macrophages, and T-cells. To assess colon cancer 

specific antitumor immunity, splenocytes were stimulated ex-vivo with Gp70 peptide for 

8h in the presence of Brefeldin. After 8h of stimulation, cells were washed with PBS and 
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stained with antibodies to assess T-cell, dendritic cell, and tumor associated 

macrophages. Treatment groups were compared for mean differences in cell populations 

and ANOVA followed by pairwise comparison (p<0.05) with Fisher’s LSD. Quantitative 

data was expressed as mean ± SEM. (p values < 0.05) 

Histopathological evaluation of immune cell infiltration in tumors 

Primary and abscopal tumors were assessed for necrosis and the extent of leukocyte 

infiltration by H&E stained sections (n=3). Median infiltration patterns between 

treatment groups were compared by ANOVA followed by pairwise comparison (p<0.05) 

with Fisher’s LSD by a veterinary pathologist blinded to treatments. Quantitative data 

was expressed as mean ± SEM. (p values < 0.05).  

Results 

Tumor growth for treated (primary) and untreated (abscopal) tumors 

To evaluate antitumor immune effect of E-LTSL and Thermodox, mice with bilateral 

tumors received a single treatment in one of the flank tumors.  The mean weights for 

treated tumors  were 904.9±233.7, 920.8±252.2, 581.6±138.2, 379.3±62.5, 348.2±115.5, 

232.6±24.2, 489±260.0, and 177.7±35.4 mg for Control, HIFU, Dox, HIFU+Dox, T-Dox, 

HIFU+T-Dox, E-LTSL, and HIFU+E-LTSL respectively. HIFU+E-LTSL and HIFU+T-

Dox lowered tumor volume compared to Dox, HIFU, and Control on day 6. The mean 

tumor volumes for the treated tumor on day 6 for Control, HIFU, Dox, HIFU+Dox, T-

Dox, HIFU+T-Dox, E-LTSL, and HIFU+E-LTSL were 407.7±73.4, 441.2±124.7, 

350.1±62.4, 209.1±20.9, 199.6±34.1, 143.6±10.9, 277.4±129.9,  and 121.1±35.7mm3 

respectively. It may be noted that compared to the athymic nude mice in Chapter 3, 
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which received three treatments over 6 days, mice in this study received only a single 

treatment, and still showed significant tumor regression.  For example, HIFU+E-LTSL 

treated athymic BALB/c mice showed- a 2-fold increased volume than the 

immunocompetent mice. For the untreated abscopal tumors, mean weights for Control, 

HIFU, Dox, HIFU+Dox, T-Dox, HIFU+T-Dox, E-LTSL, and HIFU+E-LTSL were 

2861±322, 2165±553, 2042±799, 1102±238, 1460±474, 764±241, 1739±768, and 

729±285mg respectively. The mean abscopal tumor volumes on day 13 for Control, 

HIFU, Dox, HIFU+Dox, T-Dox, HIFU+T-Dox, E-LTSL, and HIFU+E-LTSL were 

820.0±169.3, 747.5±239.7, 364.7±79.2, 258.0±69.9, 586.2±148.7, 194.3±55.8, 

269.7±152.7, and 173.9±67.6 mm3 respectively.  Both HIFU+E-LTSL and HIFU+T-Dox 

reduce the growth of tumors in abscopal regions compared to other groups (p* < 0.05 

One-way ANOVA; Fisher’s LSD. (Fig. 4.2)) 

Splenic Weights 

Splenic weights for Control, HIFU, Dox, HIFU+Dox, T-Dox, HIFU+T-Dox, E-LTSL, 

and HIFU+E-LTSL were 263.3±50.6, 214.2±26.1, 159.2±17.6, 164±14.8, 172.4±13.0, 

139.6±15.1, 198.3±38.4, and 152±20.0 mg respectively (Fig 4.4).  Data are shown as 

mean mass ± standard error of mean (n = 3, p < 0.05 One-way ANOVA; Fisher’s LSD). 

Leukocyte activation and tumor infiltration analysis via flow cytometry  

To investigate the mechanisms of local and systemic tumor regression with E-LTSL and 

Thermodox, T-cell, Dendritic cell, and Macrophage populations in the primary tumor, 

secondary tumor, and spleen were quantified using flow cytometry.  HIFU+E-LTSL 

treatment significantly increased Ki67 proliferation marker and CD8+ T-cell populations 
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(~2-fold and 1.5-fold compared to the untreated control and HIFU+Dox; Fig 4.5a).   In 

particular, in the abscopal tumors, the percentage of CD11c+ Dendritic cells increased 

across all HIFU treated mice compared to the untreated control (Fig 4.5b).  Likewise, the 

percentage of CD3+ T-cells within the abscopal tumor was significantly increased in 

HIFU plus Dox treatments, with the E-LTSL±HIFU being most efficacious amongst all 

the treatment groups (Fig 4.5c).  These demonstrate that local tumor treatment enhances 

the  dendritic cell infiltration in distal untreated sites and improve the effecter T-cell 

activity, resulting in an abscopal effect. The activation of systemic immunity was also 

demonstrated by an enhancement in the population of DC and M1/M2 ratios in the spleen 

for various treatments compared to the untreated controls.  For instance, HIFU plus Dox 

formulations increased the population of the MHCII+ activated DCs  (4.6 a). Similarly, 

M1 macrophages increased with a concurrent decrease in M2 macrophages for 

HIFU+Thermodox and HIFU+E-LTSL (4.6 b-c).   

Histopathology 

H&E (n=3) were used to confirm the presence of tumor infiltrating immune cells and 

type of tumor cell death.  Examination of treated and abscopal tumor showed that Dox 

treatments induced enhanced necrosis compared to the control group.  In treated tumors, 

HIFU+E-LTSL significantly increased the infiltration of immune cells compared to the 

Control and HIFU.  Also, dox alone was more effective compared to HIFU alone (Fig 4.7 

and Fig 4.8).  The H&E matched the flow cytometry analysis with regards to HIFU+E-

LTSL, however, the identification of immune cell sub-types were not assessed.  

Discussion 
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Tumor remission and reducing recurrence are the goals of cancer therapy.  The objective 

of this study was to determine if the immunomodulatory effects of HIFU hyperthermia 

and E-LTSL-nanobubbles enhances the murine colon cancer regression and survival 

rates.     

Dox’s ability to induce ICD is critical to clinical success. Dox induced apoptotic cell 

death enhances dendritic cell recognition of cancer cells and T-cell activity [230].  In 

Chapter 3, immunocompromised mice showed reduced tumor growth rates upon 

increased drug delivery with HIFU and ELTSL, but that didn't translate into enhanced 

survival time.  Thus, the benefits of HIFU/ bubble interaction heavily dependent on 

leukocyte activation and subsequent recognition of cancer cell populations in tumors 

[123, 231].  Here, we verified those by the tumor regressions in this study in 

immunocompetent models where a single treatment on Day 0 (70mm3) showed similar 

therapeutic effects in athymic BALB/c mice that received a total of three E-LTSL 

treatments over a period of six days.  Notably, the untreated controls demonstrated 

similar tumor growth rates regardless of the immune status of the mice.  In general, 

HIFU+T-Dox/E-LTSL treated tumors (Fig 4.2 a and Fig 4.3. a) slowed growth rates 

compared to all other treatments, however, importantly  HIFU+E-LTSL showed a 

superior outcome than HIFU+Dox in their CD8+T cell proliferation rates (Fig 4.5 c).  

These were also seen in the histological analysis where an increased white blood cell 

infiltration for E-LTSL/HIFU was noted.  Thus, it appears that enhanced Dox 

concentration in tumor aids the CD8+-T-cell mediated colon cell cytotoxicity [232].      

Changes in immune cell activity and numbers were also evident in the abscopal tumor 

and splenocytes of mice that received HIFU treatments with and without 
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Dox/nanoparticle combinations.  Overall, an increased dendritic cell activity in abscopal 

tumors and a higher percentage of MHCII+ dendritic cells and macrophages in the spleen 

for HIFU+E-LTSL and HIFU+Thermodox were noted (Fig 4.6), and these correlated to 

the distant tumor growth rates (Fig 4.2 b).    

In conclusion, E-LTSL and Thermodox enhanced chemo-immuno-therapeutic effects, 

antigen expressing dendritic cells and macrophages in untargeted tumor tissue and the 

spleen. HIFU activated E-LTSL outperformed Thermodox in tumor growth rate reduction 

in both treated and untreated tumors. CD8+ T-cell infiltration within the treated tumor 

was also supported by HIFU and E-LTSL compared to Free Dox with HIFU, suggesting 

a role for nanobubble based delivery modalities in colon cancer immunity. 
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Fig. 4.1. Treatment plan for bilateral mouse model study with E-LTSL and HIFU. Mice 

were inoculated in the right flank and left flank on day 0 and 2. Treatments were 

performed when mice tumor reached ~70mm3. Treated tumors were harvested on day 7 

and the untreated flank tumors were followed for 3-4 weeks. At the end of the study, 

mice were euthanized, and the tumor and spleen tissues were evaluated for immune 

profile. 
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Fig. 4.2. a) CT26 primary tumor volume from day 0 to 6 (5 mg/kg Dox was administered 

on day 0). HIFU+E-LTSL and HIFU+T-Dox achieved significantly greater regression 

than Dox on day 6. b) HIFU+E-LTSL, HIFU+T-Dox, and HIFU+Dox achieved 

significantly greater regression than Dox relative to Control in the abscopal sites. Data 

are shown as mean ± SEM (n=3). (*p < 0.05, one-way ANOVA with Fisher’s LSD) 

*Indicates significant difference between groups. 
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Table 4.1. Mean volumes of treated and distant tumors for the Control, HIFU, 

Dox±HIFU, T-Dox±HIFU, and E-LTSL±HIFU. Data are shown as tumor weight ± SEM 

(n = 3). 
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Fig. 4.3. a) HIFU+E-LTSL, HIFU+T-Dox, HIFU+Dox, and T-Dox showed significantly 

reduced tumor weight than control and HIFU in the treated tumor; b) HIFU+E-LTSL, 

HIFU+T-Dox, HIFU+Dox, and T-Dox demonstrated reduced tumor weights than control 

in the contralateral sites. Data are shown as mean ± SEM (n=3). (*p < 0.05, one-way 

ANOVA with Fisher’s LSD) *Indicates significant difference compared to Control  
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Fig. 4.4. Splenic weight for Control, HIFU, Dox±HIFU, T-Dox±HIFU, and E-

LTSL±HIFU were significantly lower than the control, HIFU and E-LTSLs. Data are 

shown as mean mass ± standard error of mean (n = 3). p* < 0.05 One-way ANOVA; 

Fisher’s LSD. *Indicates significant difference from Control 
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Table 4.2. Spleen, primary tumor and abscopal tumor weight for Control, HIFU, 

Dox±HIFU, T-Dox±HIFU, and E-LTSL±HIFU. Data are shown as mean mass ± SEM 

(n = 3). 
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Fig 4.5. HIFU+E-LTSL activated dendritic cells and T cell response against CT26 colon 

carcinoma. a) Infiltration of Ki-67+, CD8+ T-cells in treated tumor for HIFU+E-TLSL 

was significantly higher than HIFU+ Dox and Control.  HIFU+T-Dox was also 

significantly higher than Control. b) Percentage of dendritic cells in abscopal tumors 

significantly increased for all treatment groups compared to Control and TDox. c) 

Percentage of CD3+ and CD8+ T cell cells in abscopal tumors showed significant 

increase for the HIFU+E-LTSL treated tumors compared to the Control and HIFU+Dox. 

(*p < 0.05, one-way ANOVA with Fisher’s LSD). *Indicates significant difference 

between groups. 

 

 



98 
 

 

Fig 4.6. HIFU+E-LTSL activated colon cancer specific anti-tumor immunity. a) 

Percentage of activated dendritic cells in spleen.  b) MHCII expression on M1 

macrophage in the spleen expressed as mean fluorescence intensity (MFI). c) Percentage 

of M2 macrophages in spleen. HIFU+Dox, HIFU+T-Dox, and HIFU+ E-LTSL lowered 

M2 macrophage population and increased MHCII+ M1 macrophage population in the 

spleen.  HIFU+E-LTSL significantly increased MHCII+ dendritic cells in the spleen 

compared to the Control. Data are shown as mean ± SEM (n=5). (*p < 0.05, one-way 

ANOVA with Fisher’s LSD). *Indicates significant difference between groups. 
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Fig 4.7. a) Mean tumor necrosis based on H&E analysis for a) treated primary tumor and 

b) abscopal tumor.  The scoring system used was equivalent to approximate percent 

necrosis: a score of 0, 1, 2, 3, and 4 are equivalent to <10%, 10-25%, 25-50%, 50-75%, 

and >75% necrosis respectively.  Mean leukocyte infiltration (inflammation) score for c) 

treated tumor and d) abscopal tumor.  Scoring system indicative of leukocyte infiltration: 

The scoring system used is equivalent to degree of infiltration: a score of 0, 1, 2, 3, and 4 

are equivalent to no, minimal, mild, moderate, and extensive leukocyte infiltration 

respectively. Data are shown as mean ± SEM (n=3). (*p < 0.05, one-way ANOVA with 

Fisher’s LSD). *Indicates significant difference between groups. 
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Fig 4.8. Representative H&E sections of primary tumors for a) Control, b) HIFU, c) Dox, 

d) HIFU+Dox, e) T-Dox, f) HIFU+T-Dox, g) E-LTSL, and h) HIFU+E-LTSL tumors. 

Representative H&E sections of abscopal tumors for i) Control, j) HIFU, k) Dox, l) 

HIFU+Dox, m) T-Dox, n) HIFU+T-Dox, o) E-LTSL, and p) HIFU+E-LTSL tumors. 
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CHAPTER V 

 

 

DISSERTATION SUMMARY AND CONCLUSIONS 

Summary & Conclusions 

Colorectal cancer in the United States continues to rise. In 2019 alone, 145,000 newly 

diagnosed cases were expected to occur, accounting for 9% of all cancer cases [1]. 

Success of colon carcinoma treatment is dependent on homogeneous drug delivery to the 

tumors and leveraging the synergistic benefits of immune therapy.  We hypothesized that 

E-LTSL containing Dox and bubble agents as payload would improve drug delivery and 

immune effects in combination with HIFU based focal treatment, and that the localized 

treatment would promote systemic response against untreated masses.  To investigate this 

hypothesis, we assessed Dox distribution and penetration in tumors with HIFU/E-LTSL, 

evaluated efficacy in immune- compromised and -competent C26 colon cancer mouse 

models, and determined the immune effects in the targeted and untreated (abscopal) 

tumors.  Our data suggested that HIFU+E-LTSL overcome the physical barriers to drug 

delivery and modulated tumor immune microenvironment to achieve anti-tumor effects in 

murine colon cancers. 
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Chapter II 

In this chapter, we compared the Dox delivery with HIFU using a wide range of 

liposomal formulations in a mouse colon carcinoma model.  The formulations 

incorporated features such as high stability in serum and mild hyperthermia (NTSL and 

E-NTSL), and hyperthermic (40-42.5ºC) Dox release (LTSL and E-LTSL). Additionally, 

the role of perfluoropentane-based bubble loaded liposomes (E-NTSL and E-LTSL) on 

Dox penetration in colon tumors were evaluated.  Compared to all other groups, 

HIFU+E-LTSL achieved highest and increased the spatial distribution of Dox within the 

tumor, resulting in a homogenous drug delivery in the colon tumors. This study 

demonstrated that E-LTSL mediated Dox penetration into tumor with HIFU 

hyperthermia.         

Chapter III 

Here we correlated Dox penetration, tumor microenvironmental changes, and therapeutic 

efficacy in immunocompromised murine colon cancer model.  Fluorescence imaging of 

tumor sections showed that the presence of the bubble microenvironment aided the 

extravasation and penetration of encapsulated and un-encapsulated Dox with HIFU.  

However, the enhanced Dox penetration resulted in only a modest improvement of 

efficacy in mice lacking T-cells. Quantification of RNA coding for cancer stem cell 

markers Notch2, Gata6, and Aldhah1 and xenobiotic efflux pumps within the Abc family 

(which can lead to downstream chemotherapeutic resistance) didn't show clear trends, 

suggesting that immune rich microenvironment may be hypothetically required for Dox 

therapeutic effects. 
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Chapter IV 

The objective of this study was to apply HIFU + E-LTSL in an immunocompetent colon 

cancer mouse model and evaluate therapeutic efficacy and immune profile in treated and 

untreated tumors.  Both E-LTSL and Thermodox, a clinically available low temperature 

sensitive liposome were evaluated.  Immunocompetent BALB/c mice with bilateral flank 

colon carcinomas received intravenous treatments with the drug agents, and HIFU 

hyperthermia was applied unilaterally, leaving the contralateral tumor untreated.  Tumor 

growth rate for HIFU+E-LTSL and HIFU+T-Dox showed significant reductions in the 

treated primary and untreated tumors compared to other groups.  Dox release from the 

liposomes increased the population of CD8+ T-cells tumors, with the E-LTSL/HIFU 

showing the highest proliferation compared to other groups.  Additionally, an immune 

competent microenvironment with enhanced populations of M1 macrophages and 

activated dendritic cells in the spleen and untreated tumors were noted. Overall, data 

from this study suggested that local treatment with heat and liposomes achieved systemic 

anti-tumor immunity.  

Future Perspective 

The role of hyperthermia and acoustically derived cell stress on Doxorubicin 

chemotherapy is not yet well known.  We found that co-loading bubble and doxorubicin 

agents in thermosensitive liposomes, and combination with HIFU heating was highly 

potent relative to multiple dosages of chemotherapeutic alone in colon cancer treatment. 

Additional studies in future to understand treatment sequence, dosages, and influence of 
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multiple acoustic stimulations on tumor recurrence prevention can shed more light on 

these mechanisms.  

 A currently emerging field in oncology is the integration of machine learning to 

help determine treatment responses in cancer.  MRI and CT scans of tumors taken 

following chemotherapy can show subtle tumor features that can be leveraged to predict 

therapeutic outcomes.  In general, ultrasound imaging, while less expensive and widely 

available typically demonstrates poor image resolutions.  Our E-LTSL provides real-time 

therapeutic imaging, thus it can be hypothetically coupled with machine-learning 

algorithms to asses real-time tumor drug delivery [233].  These can also be extrapolated 

to assess tumor inflammation.  Thus, E-LTSL can truly serve theranostic agent to guide 

personalized regimens. We propose that these approaches be developed further in future 

studies in clinically relevant scenarios.
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