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PREFACE

During the past few years Professor E. W, Titt and his students
have been developing a general theory of second order linear partial
differential equations. In the course of these studies, new expres-
sions for Legendre's and Tchebycheff's derived polynomials were
found by A, J. Kainen. This paper is an extension, generalization,
and general investigation of these expressions. The general theory
may be found in papers 1, 2, 3 and 4 of the bibliography and the specific
details leading to these new expressions are in papers 2 and 3,

I wish to thank Professor R. B. Deal, who served as my
adviser during the preparation of this paper, and Professor L. Wayne
Johnson for their kind interest in all matters pertaining to my work,
Iam also indebted to the Office of Naval Research and the National

Science Foundation for financial support of this work.
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i. INTRODUGTION

In recent years E. W. Titt has been in the process of developing
a theory of linear second order partial differential equations, with
n independent variables, following the ideas of Green and Volterra.,

In order to obtain an integrating factor for the normal hyperbolic

equation, a potential is integrated over a hyper surface in the interior

of the characteristic cone. The analytical treatment of the distributed

potential is facilitated by the reduction of the (n-l}-tuple integral to a
single integral. This single integral is in the nature of a transform
of the original potential, the kernal K of which varies in analytic
form from dimension to dimension.

The complete development can be found in the papers of &, W.
Titt and others, some of which have not been published [i, 2,3, 4] .

The kernal K is given by the integral

s
wo [ p®-p?™ % a9
) 0
M

where p and S are non-euclidian distances occuring in the distribu~
tion of the potential of a splitting hyperplane. The notation used
here is that usedby O. P. Sanders [4] . This expression for K was
obtained by solving the differential equation

2 2n~4 .
] ST~ ) 2(n~3).
(1.1) Dog + 1=2Dg] K =~ !

The operator on the left is referred to as A and the application of

this operator plays a large part in the development of the properties



of the kernal. If an exponential change of variable, S = et, o= ea,

is made in (1.1) the expression for A becomes

an-4 e-(t-a)

AK = (2e%) sinhn”4(t;~a).

The repeated application of A m times to K results in the following

expressions for A K

A K(e e) _(_:_3&_]_‘_1_;_1_?1 (n.- -m)a -«mt I:D _2)2:[

I:DZ-ZZ:[D sinh -3~ m(t a)

for m even and

. n-3 ‘ ‘
ZmK(et, ea) - 2 (n-3)? e(n—?:-m)a e-rnt {DZ—(m—Z)ZI .

N=<M»n
[D -3 ][D -1] simh™” B (N

for m odd. In an unpublished paper Kainen shows that the series of
operators operating on sinhn"?’m(t-—a) are either Legendre's derived
polynomials or Tchebycheff's derived polynomials.[Z] » "I‘he::'x‘fé‘sults

obtained by Kaineu are given in the following expressions for

Legendre's and Tchebycheff's derived polynomials.

P()‘)(cosh t) = (20! . L
n

. D(D2-2%)(D%-4%) .
2Min-N)t  sinh -

2>; :
[D ~(z-\- 1)2] sinhP+

_(-)*2Ma pp2-2%)pi-4dy ... [DZ-(n+x—l)Z] sinh™ M
T @A)

for n4+ N\ odd,
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PSIM (cosh t) =

[D%-(n-x-1)%] sinn™
I i U X
n=aj:

(0%-1)(p%-3%) ... [D?-(nt A-1)?] sinn®

for nt \ even,

% i ¢ 0000

r P Ry
T e BB 2 HB A 2

TJ(_IR)(COSh i) =
DZ- n-=\=-1 # sinhn"')u' 1t
[D"-( )]

for nt+ \ odd and

Py 1
w0t g T

D% (n-x- 1)2:[ iy el

T cosh t) = 2 (mrahin® iy ...
for n4 \ even,

The principal contribution of this paper is the study of a

certain function

F= {Dz-(a-Z)Z] [D?-(a-é)z_-[ [D2-32] [DZ-I] SRR
for a odd and

F= [DZ-(a-Z)Z] [DZ—(a.—4)Z] Ay [D2-42] [DZ~22]D stk
for a even, which may be written as

F = [D-(a-2)] [D-(a-4)] ... [D+(a-4)] [D+(a-2)] stk s

where a is an integer, which is shown to satisfy the differential

equation



[sinhx D__ + (a-b) cosh x D_ -ab sinh x| F=o0.

It is shown that various special cases yield the various Legendre
and Tchebycheff polynomials that arise in the study of the kernal,
The function F turns out to be of interest in itself and its relation=
ships with the Gegenbauer polynomials, the associated Legendre
functions, and what might be termed the associated Gegenbauer

functions, are studied,



II. THE FUNCTION F

This chapter shows that the function F satisfies the differential
equation, discusses the analog with circular functions and discusses
the connection with the hypergeometric and Reimann differential
equations,

1. To show that the function
.+ B
(2.) F= [D-(a-2)][D-(2-4)] ... [D+ (a-4)] [D+ (a-2)] sinh’x
is a solution of the differential equation
(2.2) [sinhxD__ 4+ (a-b) cosh x D_ - ab sinh x| F = O,

F is directly substituted in the equation and the result shown to be
equal to zero, Before the substitution is made the form of the
equation is changed by the use of the relationships

X -X
& =g

=%
X o

cosh x = f—-—-—z—-—-—- .
The equation now appears as
x -X x -X x -
[(¢* - e™) D+ (a<b)(e™ + ¢™) D_- ab(e* - e™)] F = 0.

The coefficients of the exponentials are now factored and the

equation appears as

(2.3) e*[D 4+ a][D -] F-e™ [D _-a][D, +B] F=o.



The next step is the direct substitution of F.

In addition to thé ordinary rules for operators the following one

easily verified,
(2.4) (D 4 1) sind™x) = 52 stan™ N x)

Direct substitution of (2.1) on the left hand side of the equation

(2.3) gives
e“[D+ a][D-b][D-(a-2)][D - (a-4)] ... [D+ (a-2)] sinh®x
-e™*[D -a][D + b][D - (a-2)][D - (a-4)] ... [D + (a-2)] sink x.

The exponentials are now moved to the right after a rearrangement

of the operators to give the following equation

[D - (a-1)][D - (a-3)][D - (a-5)] ...

[D+ (a-3)][D + (a-1)] e*[D - b] sink®x

-[D - (a-3):| [D - (a.-S)] T
I:D + (a.-3)1 [D + (a.-l):[ [:D - (a.-l)] e-x[D + b] sinhbx = .

The last operator to the right is now allowed to operate on the si.nhbx

according to (2.4). This gives

(2.5) [D-(a-)][D - (a-3)] ...
D+ (a=3)||D + (a-1)| e be ™™ sinh x
]: ( ):[[ ( ):[ X X b=l

-[D - (a-1)] [D - (a-3)] ...

D+ (a-3)||D + (a-1)| €™ be™ sinh x = 0.
]: ( )][ ( )] - A b-1



The two terms of the left hand side of equation (2. 3) are now equal
and opposite in sign and therefore F is a solution of (2. 2).

Only one restriction has been made in the work above and that
was on a. The middle of F is seen to be as follows if a is an odd

integer
(2. 6) [D - (a-2)] ... (D-3)(D-1)D+1)(D+3) ... [D+ (a-2)]
or if a is an even integer

[D - (a-2)] ... (D-4)(D-2)D(D+ 2)(D+4) ... [D+ (2-2)].

Ifais not an integer the continuity of the operators is lost at the
middle. This is best seen from an example, Take (2,6) and move
both e* and e ™™ by it from left to right and the middle of the two

results appear as follows

(D-4)(D-2)D(D+ 2)
and

(D-2)D(D+ 2)(D+4).

These two expressions still contain the same factors. For a case
where a is not an integer the middle appears, for example, as

follows
(D-3.5)(D-1. 5)(D+1. 5)(D+ 3. 5).
After e and e ™ are moved by this middle, it appears
(D-4. 5)(D-2.5)(D+ . 5)(D+ 2. 5)

and



(D-2, 5{D-1, 5)(D+ 2. 5)(D+ 4. 5).

The middle terms no longer match up and the step leading to (2.5)
can not be made if a is not an integer,
2. A slight modification in F leads to a function which is a

solution of equation (2. 2) with circular coefficients, i.e.
(2.7) [smexx+ (a-b) cos x D_ - ab sin x:[ F=0,

The modification in F is that the constant part of the operator is

imaginary, and that sinh x becomes sin x.
(2.8) F=[D-(a-2)i][D - (a-4)i] ... [D+ (@a-4)i] [D + (a-2)i] sin"x.

If F is viewed from a slightly different standpoint the change is seen
to be even smaller. If the symmetric factors of F in (2. 2) are

multiplied together F becomes
F = [D% - (a-2%] [D? - (a-9)7]... [D? - 4]D sinn%
for a even and
F = [D? - (a-2)°] [D? - (a-9)%] ... [D? -9][D® - 1] sinh®
for a odd. If (2.8) is written this way it becomes
F=[D%+ (a-2’][D% + (@-49%] ... [P+ 4D sin’
for a even and
F=[D?+ (a-2°] D%+ (a-97] ... [D%+ 9][D% + 1] sin®x

for a odd.



The fact that this circular F satisfies (2.7) parallels section one
closely and only the main points are given here. After the direct

substitution (2,7) becomes
e*[D 4 af] [D - bi][D - (a-2)i] ... [D+ (a-2)i] sin
™D . ai][D+ bi][D - (2-2)1] ... [D+ (a-2)i] sinx = 0.
The exponentials are now moved to the right to give
[D » (a-l)i] voo [D+ (a-D)i] e [D - bi] ain'x
-[D = (a-1)i] ... [D+ (a-Di] ™™ [D + bi] sin® = 0.

A rule analogus to (2.4) is easily verified for sin x

+ix
(2.9) [D £ bi] sin®x = be~  sin”lx.
The application of (2,9) gives
[D - (@-1i] ... [D+ (a-1i] ™ be™1% ain®"1x

[0 - (@i] ... [D+ (a-Di] e Fbe'™ sin®x

which is equal to zero showing (2.8) to be a solution of (2.7).

3. If the change of variable y = cosh t is made in the equation
[sinh t Dy, + (a-b) cosh t D, - absinh t| Flcosh t) = 0
the following equation results
(2.10) [t-y%) Dy + (b=a-l)y D+ ab] F (y) = 0.

The hypergeometric equation is usually written
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(2.11) |:zr;(1-z)Dzz + [\( = (a+p+1)z Mo u.ﬁ:]F(a, BiY;z) =0.
The change of variable z =l"z'—Y in (2.11) gives the equation
2
(2.12)  [0-y*)Dy  + [2y - (a4 B+D) - (a4 B+Dy]D - ap]
F(a, B;yil+y) = 0.
-5

A comparison of (2.10) and (2.12) shows that by setting

a-b+1
W oyn T

a=a, B=
that (2.12) reduces to (2.10). Omne can then express F(y) as follows
F(y) = F(a, -b; a-bs+1l; l4+y)
TR
or

F(cosh t) = F(a,-b,a~b4+1,14+cosh t).
i 2

Since F(cosh t) is a solution of the hypergeometric differential
equation, it is also a solution of Reimann's equation. Expressed

in this form

0 w4

F(cosh t) = P 0 g il
3-a4b -b b-atl
2R 25t



III. THE NATURE OF F

1. This chapter is concerned with studying the nature of the
solutions of (2.2) and (2.7). For certain values of the parameters
the solutions of (2. 2) and (2.7) become the trivial solution, being
identically equal to zero. The two things affecting the nature of
the solution are whether adb4 2, a=b4+ 2 or a{b4 2 and whether
a and b are pddor even. Each of the twelve possible cases must
be investigated. The twelve cases are the combinations of the

following two sets of cases.

. a odd b odd

a even b even

I,a=hbh'y 2
. as s 2

IHca &b 2 . aoddb even

A 0 T B

a even b odd

The following rules of operators will be used

(3.1) ]:D‘2 . a.z] adib% = [Bia)iben) oinhx ¢ Bibsl) stah® %<
and

b-2

[ + a%] sinPx = (bsa)(b-a) sin®x + B(b-1) sin %x,

The function studied first is (2.1), however the form used here

will be the following
(3.2) F= [DZ - (a-2)%][D? - (a-9)7] ... [D? - 3% [D® - 1] sinkx
for a odd and

11
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F= [D®- (a-2%[D? - (a-97] ... [D? -2%]D sinn®x

for a even. For a odd there are a-1 second order factors to the
operator and for a even there are—zz second order factors and one
first order factor to the opera.tor._z'I-'-he trivial cases are treated first,
2. The first trivial case is (I,a) where a = b4 2 and both are odd.
The first term of (3.1) drops out when a = b+ 2. Each application of
rule (3.1) on ainhbx, starting with the operators at the left, reduces
the power of sinh x by two. After a-3 second order operators have

G
been applied to (3.2) the function appears as

(3.4) bt[D? - 1] sinh x = bi(sinh x - sinh.x) = 0.

Therefore the function is identically zero when the parameters of the
function fall into case (I, a).
In the same way after the application of a<4 second order

e

operators for case (I, b) equation (3, 3) becomes

(3. 5) gl.[nz - 4]D sinh® = B D(2) = 0.

Thus the function is identically zero for both case (I,a) and (I, b),

The next case is (I[,a) where a> b 4+ 2 and both are odd. This
case is the same as (I,a) except that there are additional factors in
the operator on the left. The factor corresponding toa =b + 2 is
applied first instead of the one on the far left. After 1_3_5__3 factors have

been applied a result similar to (3.4) is obtained,
b![D% - (@-2)%] [D? - (@-9)7] ... [D? - (2+2)%] [D? - 1] sinh x.

After the application of the last operator on the right the function

becomes identically zero as in (3.4).



Ao

A similar treatment of (II, b) shows that it is also identically
zZero,

3. The first non trivial case is (II,c) where a) b4+ 2 and a is odd
and b is even., After the application of b operators the lowest order
term is a comstant. Since a is odd and Eis even none of the terms
drop out. The application of more operators does not change the
nature of the function since [DZ - az:l constant = constant, The
function in this case is a polynomial of even powers of sinh x,

The next case follows (I, c) closely. For a)b+2 and a even, b
odd - case (II,d) - it is seen that after b 4+ 1 operators are applied
that the lowest order term is sinh x, A—szi: case (II, c) none of the
terms drop out, The application of the rest of the second order
factors does not change the nature of the function which is a poly-
nomial in odd powers of sinh x, The application of the single
operator however makes the function become a polynomial in even
powers of sinh x (degree b-1) times cosh x.

For the cases where a¢b4 2 there are no trivial cases since
none of the factors are present that lead to trivial cases, When a
and b are both odd, case (IIl,a), the lowest power remaining after

all the operators have been applied is si.nhb'a"" 1::.

This is easily
seen from (3.1), The function is then a polynomial in odd powers
of sinh x,

For case (III, b) the lowest term remn.in:llzig after all the second
order operators have been applied is sinhb'a"' Zx. The single D
operator is still left. When it is applied it gives a cosh x factor to
each term. The function is then a polynomial of odd powers of

sinh x times cosh x.
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The last two cases, (III,c) and (III,d), follows the previous
cases closely. After the application of the second order operators
we have polynomials in even powers of sinh x and odd powers of sinh x,
respectively for (III, c) and (III,d). Since a is even for (III, d) there
remains a single operator to be applied. The function becomes a
polynomial in even powers of sinh x times cosh x.

To summarize the results of this chapter a table of the twelve
cases is given using the notation P(x) for a polynomial in x. The

polynomials below have either only odd powers or only even powers,

a odd b odd | a even b even a odd b even | a even b odd
a=bt2 | F=0 F=0
adb2 | F=o0 F=0 PsinhZx) cosh x P(sinh%)
a ¢{bt+2 | P(sinh x) cosh x P(sinh x) P{sinhzx) cosh x P(si.nhzx)
Table I.

4, The function behaves in exactly the same way for the circular
sin x, Taking the trivial cases first, it is seen that (I,a) follows exactly

and after a-3 operators F becomes

S

b'.[D2+ 1] sin x = b! [sinx - sin x} = 0.

Likewise for (I.b) equation (3.5) becomes

bl [D®+ 4]D sin®x = bt D(2) = 0.
o

The same arguments apply here as in section 2 for cases (II,a) and
(IL, b).

Section 3 could be quoted practically verbatum here for the non
trivial cases by replacing sinh x by sin x, The results, if tabled, are
exactly the same as in Table 1 except hyperbolic functions are

replaced by circular functions.



15

IV. F AND GEGENBAUER'S DERIVED POLYNOMIALS

1. In this chapter the function F is shown to include certain
classical derived polynomials.

Gegenbauer's polynomial is one of the solutions of the equation
2
(4.1) [(1-x%) D__ - (2a+1)x D_ + n(n+ 2a)] Cl{x) = 0

where C;(x) is the notation for Gegenbauer's polynomial [5, 6, ?,8].

If (4.1) is differentiated \ times the following equations result
2o X 2 2 a
A=1 [(1-x)D” - 2xD” = (2a+1)xD“ - (2a+1)D + n{n+2a)D[C (x) = 0
Xz 2 [(1-::2)1)4 « 4xD° & (284 1)xD° = 2D% . (2a4 D7 4 nlns u)bz_’] Co(x) = 0

x=3 [(1-x®)D’ - (6 4 20+1)xD* + [n(n+2a) - (2a+13)]D>]C%(x) = 0

A=n [(1x)D** M L (20 204 1)xD™ M 4 [mfns 2a) - MO 20)]D C%(x) = 0
or
[(1-x*)D? - (24 20+ 1)xD" + [n(n+ 20) -\(\+ 2)]] D* C2(x) = 0.

p* C::(x) is the \th derivative of Gegenbauer's polynomial and is
called Gegenbauer's derived polynomial. The notation for Gegenbauer's
derived polynomial is C:‘I(M(x) and, from above, it satisfies the

differential equation

(4.2) [(1-x®)D,__ - (2 2a+1) x D_+ n{n+ 2a) = \n+20)] =M (x) = 0.
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2, To obtain another form of the equation for Gegenbauer's
derived polynomials a change of variable is made. The change is

x = cosh t which leads to

X SRt *
and
1 cosh t
1 D ..
XX g ) (sinh )’ °

A direct substitution of these values into (4. 2) and simplification

leads to the differential equation

4, 3)
tsinh tD, + (2\+ 2a) cosh t Dt + [L(M- 2a) - n(n4 Zu.):[ sinh tlcz(k)(cosh t)
)

Comparing (4. 3) with (2.2) and settinga=\+ n4+ 2aandb=n « )\
leads to a special case of (2.2). Therefore the differential equation
for Gegenbauer's derived polynomials is a special case of the
differential equation for F. However, saying the equations are the
same does not assure that F and C:(”(cosh t) are the same for
certain values of a and b since these equations have two solutions.
Since C:(coah t) is a polynomial, it follows that C;(k)(coah t) is a
polynomial. The other solution of (4, 3) is an infinite form [8] .
Therefore if F is a polynomial fora=\4+ n4+ 2aand b=n -\, F
can be set equal to C:(}‘)(cosh t) except for a multiplicative constant.
One restriction is immediately apparent and that is n must be an
integer and Za must be an integer since a must be an integer. The
case where 2a+n # an integer, while applicable, will not be

considered, It is seen from Table 1. that there are four cases where
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F is a polynomial in cosh x. These are cases (I, c), (II,d), (III c)
and (101, d).

From the fact that a2 = \+n+ 2a and b = n-)\ it follows that
n4 \+ 2a) n-\ which implies that a>b+ 2 if 2a) 0, so only case Il is
considered. The case \ = 0 is not being considered here. From this

the following results are obtained
(4.4) c®M(cosh t) = kF(cosh t)

for 2a)> 0 and odd. F reduces to the trivial solution for 2q even.

The above equation may also be written as
C;(M(cosh t) = k[DZ - (n4 A+ 30--2-)2] ces [DZ " 1:] sink" "Mt
or
A 2 2 2 -\
C;( )(cosh t) = k[D e (n4 \4 2a=~2) I o [D - 22:]D sinh™ "t

depending on whether n4 \+ 2a is odd or even,

k is found by comparing the coefficient of the highest order
term of Ci( M(coah t) and the right hand side of the above equations.
This constant is of the same type as the one found in the next chapter
and will not be computed here,

3. The most important special cases of Gegenbauer's polynomials

are the Legendre polynomials corresponding to the value a = 1/2
[6, 7] . They are denoted by Pn(x). Legendre's derived polynomials
are denoted by P]{lk)(x). These are not to be confused with Legendre's
associated functions P:_:(x) which are treated in chapter IV. From

(4.4) it follows that

PLM-(cosh t) = kF(cosh t)
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or
PM(cosh 1) = k[D” - (ner-1)7] ... [D% - (3)%] [D? - 1] sink®Mt
for n4 \-1 odd, or
PM(cosh t) = k[D? - (mex-1)7] ... [D? - (2°]D sinh™ Mt

for ng A-1 even. The restriction is made that n be greater than \.
In order to evaluate k the coefficient of the highest power of
this representation iscomparéed with the usual representation of

P(M(x). The highest term in the usual definition is [6]

(2n)!

-\
t.
2™(n)i(n-\)

h: 5
cosh

The repeated application of (2.4) gives the highest term of F to be

o (2n-n@ny-nt

\
1.
28+ M=l )yt

=
cosh

k is solved for from the above equations; its valueis found to be

S
(4.5 c-

The important special case of A\ = 0, 2a =1 gives Legendre's
polynomial. This case gives the following values for a and b;
a=n4l, b=n, Since a<bs+2 and a modl # b mod 1 these values
correspond to cases (III, c) and (III,d)., Since both of these are
polynomials in cosh t, F can be set equal to Legendre's polynomial,
except for a multiplicative constant, for a = n4+l and b = n, This leads

to the following representation

(4.6) P_(cosh t) ==, [D? = (a-n*] ... [D? - 3°][D% - 1] sinn®
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for n even and
1 2 2 2 AL |
Pn(cosh t) =y [D - (n-1) 1 s [D - ZZJD sinh't

for n odd. For \ = 0 (4.5) reduces tol as used above.
n!
4, The developement for F(cos t) is analogous to the developement

for F(cosh t). If the change of variable x = cos t is made in (4. 3),

then equation (4.4) becomes
[sin t D, + (2\+2a) cos t D, + [A(A+2a) - n(ns 2a)]] c®Mcos t) = 0.
The same arguments as in section two lead to the following equations
C;(U(cos t) = kF(cos t)
for 2a) 0 and odd,
cMicos t) = k[D? + (nt+20-2)°] ... [D® 4 1] sin™
for n4 \+ 2a odd and

2 -
C;(M(cos £y lr.[:D2 + (n4+ N+ Zu.-Z)z:[ avii [D + ZZJD sin™ Rt

for n4 \+ 2a even.

The special case for Legendre's derived polynomials is treated

in the same way and the equations of section three become
Pg"(cos t) = kF(cos t)
Ps)(cos t).= k[DZ + (n4 h-l)zl T [Dz + 1] sin™ "M
Pg\)(cos t) = k]:Dz + (n4 )\—1)2] o [DZ - 22] sinn'ht.

k is determined in the same way as in section three and is found to

be the same thing,



.o (-n2Mar
BN YN H AN

Likewise for the special case \ = 0 (4.6) becomes

P_{cos t) :%1 [DZ + (nml)zj [DZ % 37‘] [DZ +1] sin™t

ot
for n even and

1 2 2 2 2= . n
P_{(cos t):-ﬁ-,_[:D + (-] ... [P+ 27]D sin™t

for n odd.
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V. F AND GEGENBAUER'S ASSOCIATED FUNCTIONS

1. In this chapter the function F is shown to include certain
classical associated functions.
Gegenbauer's associated function is defined analogously to

Legendre's associated function as

(ot 2a-1)
(5.1) C*Mx) = (x%-1) 2ty
for x>1 and
(At 2a-1)
cMx) = (1-x%) 2 Cz()\)(x)

af

for x<1. Cn )\)(x) satisfies the equation

[(1_XZ)DXX - (20 204+ 1)xD_ + [n{n+ 2a) = MM+ 20)] ] Ci()\)(x) =0

or, after the change of variable x = cosh t, the equation

(5.2) [einht D,, + {2\ 2a) cosh t D, - [n(n+2a) ~ MA+ 20)] sinh t]

c®M(cosh t) = 0.
n

(2\+ 2a-1) \)

The substitution u = sinh t CS‘I( (cosh t) in (5. 2) gives

(5. 3) [sinh tD,, - (2\+2a-2) cosh t D, +

tt
[MA+2a-1) + 1 - 2a - n(nt 2a)[sinh ] u= 0,
Since

u = sinhxt Ci)\(cosh t)
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equation (5. 3) can be written as

(5.4) [sinht Dy, + [(n-\+1) = (n+ )+ 2a-1)] cosh t D, -

(n=\+1)(n+ \+ 2a-1) sinh t] ainh}‘t Cgk(cosh £y =10

2. Equation (5.4) is of the form studied in the first two chapters
so F(cosh t) and sinh t Cix(cosh t) are solutions of the same differen-

tial equation. The values of a and b in terms of a and \ are
a=ne)+l, b= Zasl,

Since a{b+ 2 for \+2a>0, F(cosh t) falls in category III. All four
cases of III may occur for different values of n,) and a. In order to
determine if F(cosh t) and sinhkt C:l(cosh t) are equal, the nature
of the two functions must be studied. '

From (5.1) it is seen that

2\+ 2a =1

sinh’t C;)‘(cosh t) = sinh c;(")(cosh t).

Cﬁ(k)(cosh t) is a polynomial in cosh t and 2\ is even, The deter-

mining factor is then 2a-1. For the two cases 2a-1 odd and 2a-1

even, it is seen that
A, ~a\
sinh™t C, (cosh t) = sinh t P(cosh t)
for 2a-1 odd and
sinh™t C*H(cosh t) = P(cosh t)

for 2a-1 even, If a and b are compared modulus 1,



amodl=bmodl
for 2a-1 odd and
amodl#bmodl
for 2a-1 even., These equations imply from Table 1 that
F(cosh t) = sinh t P(cosh t)
for 2a-1 odd and
F(cosh t) = P(cosh t)

for 2a-1 even. If these equations are compared, it is seen that
F(cosh t) and sinh™ Czl(coah t) are the same solution of (5.4).
Therefore the following expressions can be written for C?‘(cosh t)
A k 2 2 2 2
c*Mcosh t) = D” « (a=xsl)7] ... [D® - 3%][D"4
: el ... P - ¥ [o%]
sinh™ M 2a-1;

for n-\ even and

c?(cosh t) = irt[nz 4 (n-x-l)z] i [DZ - 22113 sinh+ M 2a-1,
for n-\ odd., k is found by comparing the coefficient of the highest-
order term of Czh(cosh t) and the right hand side of the above
equation. The coefficient of the highest order term in Czk(cosh t)

is Zn(u)n [11] and the coefficient of the highest order term on the
tn- ,{j .
right is seen to be

A-n4 1 dasl
2N ony 2a< 200 2 )

(n4 2a-3) (2 \+ 2a-1)!
=

23



for 2a odd and

27" May a-1)t
(A4 a=1)!

for 2a even., The above two values give two corresponding values of

k

2a-3
. 2L =S g s B al)itada

(n=\)}(2n4 2a-2)!(n+ 2a-1)!
i ¥

for 2a odd and

e 2A(A+a=1)i{a)n
(n-\){n+a-1)!

for 2a even.
3. The most important of Gegenbauer's associated functions
is for the value of a = 1/2, This is Legendre's associated function

[51 . It is given by

PNcosh t) = (2\)! D° - )] ... [0%-2*]p
“ X A
2"\!(n-)\)!sinh™t
sinh™ N
for n4+ \ odd and
A ANM Sl 2 2 A
PM(cosh t) 5 —{ZA) [D® - a-x-)°] ... [DF - 1] sinn™* ™t

2Mym-\)tsinhMe

for ny \ even, The above equations reduce to Legendre's polynomials

for A\ = 0. The representations are
b Wy 2 2 2 Wt |
P_(cosh t) =E-.[D - (m-1)“] ,.. [D® - 2°]D sinn™

for n odd and
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P_(cosh 1) :al.! 07 - (a-)?] ... [D? - 3] [D? - 1] sinn™

for n even. The expressions above are exactly the same as the ones
found in section 3 of chapter four.

4., Two other important special cases of Gegenbauer's
associated functions exist and they correspond to the values a = 0
and a = 1. They are Tchebycheff's associated functions of the first
and second kind, respectively [6, 7]. Tchebycheff's associated

function of the first kind is given by the expression

A
2 =1)! 2 2 2 =1
Th(cosh t) = 2a(\-1)t [D . (n-;\-},)z_—[ s [D . P ]D ginh™* M1,

(n-\)tsinh™M

for n4 \ odd and

TNcosh t) = 20t 0% - maxa1)?] ... [0* = 3% [D? - 1] mim™ Yy
(m=\)lsinh™

for ny \ even, Tchebycheff's associated function of the second kind

is given by the expressions

A
UMeosh t) = 22D [p2 | aonoy?] ... [D? - 2%]D sinn™ M1
(n-\)!sinh™Mt

for n4 \ odd and

UMcosh 1) = L@+ D! [B% « men-y®] ... [B% 2 37 [0° - Jasmp™* M
¥ (n«\)isinh

for ny A even, The expressions for these functions reduce to
identically zero for \ = 0,

5. The results of the chapter for circular functions parallel
closely the results for hyperbolic functim}s. The only changes are

that hyperbolic functions be replaced by circular ones and that terms



of the kind D‘Z = a,z’ be replaced by DZ' + az. A typical result is

y
Plicos 1) = tZM: D%+ @] ... D%+ 2°]D sin™ M
2Mn-nyisin™ |

for n+ h odd.
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Vi. SUMMARY

In this paper the function F has been defined and studied, It
was shown to be the solution of a certain differential equation.
Secondly, F was studied as a function of its parameters a and b and
the analytic nature of F was found for various combinations of
values of a and b, Then relationships between F and the classical
Gegenbauer functions were derived through the differential equation
from two standpoints. One was from the standpoint of derived
polynomials and the other was from associated functions. Throughout
the paper the case of F with a circular argument _lins been treated
parallel to that of F with a Hyperbolic argument,

Current investigations oft P are continuing along the following
lines, The nature of F as related to the classical functions for other
values of a and b is desired. It can be shown that F is always éither
a Gegenbauer polynomial or the derivative of a Gegenbauer polynomial,
if n is allowed to take on non integral values. Second the developement
of known properties of Gegenbauer's function js to be made from the
standpeint of F, This work is well under way. Finally, the develope-
ment of new properties of Gegenbauer's function i8 to be investigated,
This work has barely been touched. A more convenient notation
would perhaps replace the parameter a by a parameter whose value

is a=-2.
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