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PREFACE 

During the pas.t few years Professor E. W. Titt and his studen.ts 

have been developirig a general theory of s.econd order linear partial 

differential equations .. In the course of these studies, new expres-

sions for Legendre1s and TchebycheffYs derived polynomfa1s were 

found by A. J. Kainen. This paper is an extension, generalization, 

and general investigation of these expressions. The gene.ral theory 

may be found in papers 1, 2, 3 and 4 of the bibliography and the specific 

details leading to these new expressions are in papers 2 and 3. 

I wish to thattk Professor R. B •. Deal, who served as my 

adviser during the preparation of thi s paper, and Professor L. Wayne 

Johnson for their kind interest in all matters pertaining to my work. 

I am also indebted to the Office of Naval Research and the National 

Science Foundation for financial support of this work. 
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I. INTRODUCTION 

In recent years E. W. Titt has been in the process of developing 

a theory of linear second order partial differential equations, with 

n independent variables, following the ideas of Green and Volterra. 

In order to obtain an integrating factor for the normal hyperbolic 

equation, a potential is. integrated over a hyper surface in the interior 

of the characteristic cone. The analytical treatment of the distributed 

potential is facilitated by the reduction of the (n.-1)-tuple integral to a. 

s:lngle integral. Th:i.s single integral is in the nature of a transform. 

of the original potential, the kernal K of which varies in an.alytic 

form from dimension to dimension. 

The complete development can be found in the papers of E. W. 

Titt and others, some of which have not been published [;, 2, 3, 4] • 

The kernal K is given by the integral 

s 
K -f µ ((?- µ2l-3 dG 

- 71 9 
µ 

where µ. and S are non.-euclidian distances occuring in the distribu-

tion of the potential of a splitting hyperplane. The notation used 

here is that used by 0. P. Sanders [4]. This expre·ssion for K was 

obtained by solving the differential equation 

(1.1) 
2 2 a-4 

[D + n-ZD] K= µ (S -µ) Z(n-3), 
ss -g- s sn-3 

The operator on the left is referred to as A and the application of 

this oper.ato:r plays a large part in the development of the prope.rties 
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. t a 
of the kernal. If an exponential change of variable, S = e , µ :;:: e , 

is made in (1.1) the expression £or 6. becomes 

The repeated application of Am times to K results in the following 

e~ressions for 6.~ 

t 2n-3 3)l 
~K(e ea)_. (n- ~ e(n-3 ... m)a e"'"mt [nZ-(m-2)2] 

' {n:--3-m)t 

for m even and 

(n-3-m)a .. mt r,D2 ( 2)2} e e I: ... m- .•. 

Ti 2 2] [ 2 J n ... 3 -m LD -3 . D ... 1 sinh (t-a) 

for m odd. In an unpublished paper Kain.en shows that the series of 

n-3m operators operating on sinh (t ... a) are either Legendrels derived 

polynomials or Tchel,ycheff's derived polynomials.[2] The :r~.sults 

obta.in.ed by Kainen are given. in the following expressions for 

Legendre's and Tchebycheff•s derived polynomials. 

p(>-\cosh t) = (Z>..)t 
n 2~!{n->..)! 

• l D(D2-Z2)(D~-42) ••• 
inhzi.t. s ·.· 

[n2-(n->..-I)"1 sbilin+ >..t 

D(D2-Z2)(D2-42) ••• [o2 -(n+>..-1) 2] sinhn ... >.,t 

for n+ >.. odd, 



pP·\cosh t) = <2"-l! . 1 (D 2 -l)(D2 -32) ..• 
n 2"-x. ~(n->..) ! sinh zx:t 

[n 2 -(n->..-1)2] sinhn+X.t 

(-1/1·2"-x.! 2 2 2 r, 2 . 2] s1·nhn-X.t = (n-X.)t(2X:)! (D -l)(D -3 ) ..• LD -(n+ X.-1) 

for n+ A. even, 

(>..) n2X.-l(>..-l)! 
T (cosh t)::; n {n-X:H 

1 D(D2 -22)(D2 -42} ... 
sinhZ>..-lt 

[n 2-(n-X.-l) 2J sinhn+ >..+ 1t 

for n+ X. odd and 

( 2 X.-l{ i 
T }.\ ht)-n X.-1). . 1 (D2-l)(·n2 .. 32) ... ( cos - ( ') t . Z' 1 . 

r.. n-"- · sinh "-- t 

[ 2 2] n+ X.-1 D -. (n .. >..-1) sinh t 

for n+ >.. even. 

The principal i::ont'ribution of this paper is the study of a 

certain function 

for a odd and 

. hb Slll . X 

[ z 2][2 2] [2 2][2 2i. b F = D -{a-2) D -(a-4) . . . D .. 4 D -2 JD smh x 

for a even, which may be written a.s 

F = [n-(a-2)] [n-(a-4)] ... [n+ (a-4)} [D+ (a-2)] sinhbx 

where a is an integer, which is shown to satisfy the differential 

equation 
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[sinh x Dxx + (a-.b) cosh x DX .-,ab sinh x] F :::: 0. 

It is shown th.at various special cases yield the various Legendre 

and Tchebycheff polynomials that ariE,e m the study of the kernal. 

The function F turns out to be of interest in itself and its relatian ... 

ships with the Gegenhauer polynomials, the associated Legendre 

£unctions, and what might be termed the associated Gegenhauer 

functions, are sttldied. 
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IL THE FUNG TION F 

This chapter shows that the function F satisfies the differential 

eqnatiort, discusses the analog with circular functions and discusses 

the connection with the hypergeometric and Reimann differential 

equations. 

1. To show that the function 

(2.1) F = [n-(a-2)] [n-(a .. 4)] ... [n+ (a-4)] [n+ (a-2)] sinhbx 

is a solution of the differential equation 

( 2. 2) [s.inh x Dxx + (a-b) cosh x Dx .. ab s.inh x J F = 0, 

F is directly substituted in the equation and the result shown to be 

equal to zero, Before the substitution is made the form of the 

equation is changed by the use of the relationships 

X -X e ... e 
sinh X = z 

:X -x 
h e + e cos x. = · 2 · 

The equation now appears as 

[ X -x X . -x X ... :x, J 
(e - e ) D + (a-b)(e + e ) D '" ab(e - e ) F = 0 . 

XX X 

The coefficients of the exponentials are now factored and tq.e 

equation appears as 

( 2 . 3) 
-x 

e 

5 
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The next step is the direct substitution of F. 

In .. aaditio:h to the .ordinary rules for opeqtol"s the_ followj.p.g one 

easily verified. 

(2. 4) 

Direct substitution of (2 .1) on the left hand side of the equation 

( 2. 3) gives 

ex[D + a} [o - b] [o - (a-2)] [n - (a-4)] 

-e -x[D .. aJ [o + b] [o - (a-2)] [o .. (a-4)] ... [n + (a-2)] sinh bx. 

The exponentials are now moved to the right after a rearrangement 

of the operators to give the following equation 

[o - (a-1,J [o .. (a-3)] [o - (a-5)] ... 

- [o - (a-3)] [o - (a-5)] ... 

[o + (a-3)} [o + (a-1)] [o - (a-1)] e -x [o + b] sinh bx = O. 

The last operator to the right is now allowed to operate on the sinhbx 

accoi,4ing to (2. 4). This gives 

(2. 5) [o - (a-1)] [o - (a-3)] ... 

[o + (a-3)] [o + (a-1)] ex be -x sinhb-lx 

~ [o - (a-1)] [o - (a-3)] 

f"i ] [ ] -X X b-1 L:° + (a-3) D + (a-1) e be sinh x = 0~ 



The two terms of the left hand side of equation (2. 3) are now equal 

and opposite in sign and therefore F is a solution of (2. 2). 

Only one restriction has been made in the work above and that 

was on a. The middle of F is seen to be as follows if a is an odd 

integer 

(2. 6) [n - (a-2)] •.. (D-3)(D-l)D+l)(D+ 3) ..• [n + (a-2)] 

or if a is an even integer 

[ D - (a-2)] .•. (D-4)(D-2)D(D+ 2)(D+ 4) .•. [ D + (a-2)]. 

I:fqj.s not an integer the continuity of the operators is lost at the 

middle. This is best seen from an example. Take (2. 6) and move 

both ex and e -x by it from left to r i ght and the middle of the two 

results appear as follows 

(D-4)(D-2)D(D+ 2) 

and 

(D-2)D(D+ 2)(D+ 4), 

These two expressions sti ll contain the same factors. For a case 

where a is not an integer the middle appears, for example, as 

follows 

(D-3. 5)(D-l. 5)(D+ 1. 5)(D+ 3. 5). 

After ex and e -x are moved by this middle, it appears 

(D- 4. 5)(D-2. 5)(D+. 5)(D+ 2. 5) 

and 
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(D~2. SXD-1. 5)(D+ 2. 5)(D+ 4. 5). 

The middJ.e terms no longer match up and the step leading to (2. 5) 

can not be made if a is not an integer. 

2. A slight modification in F leads to a function which is a 

solution of equation (2. 2) with circular coefficients, i.e. 

(2. 7) [sin x Dxx + (a-b) cos x Dx - ab sin x] F = 0. 

The modification in F is that the constant part of the operator is 

imaginary, and that sinh x becomes sin x. 

(2. 8) F = [n - (a-2)i] [n - (a-4)i] ... [n + (a-4)i] [n + (a-2)i] sin\,: 

If F is viewed from a slightly different standpoint the change is seen 

to be even smaller. If th~ symmetric factors of F in (2. 2) are 

multiplied together F becomes 

for a even and 

F = [n2 - (a-2) ~ [n2 • (a-4) 2] . . . [n2 -9] [n2 - 1] sinh bx 

for a odd. If (2. 8) is written this way it becomes 

for a even and 

F = [.n2 + (a-2/J [n2 + (a-4/] ... [n2 + 9] [n2 + 1] 

for a odd. 

.b 
Slll X 
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The fact that this circular F satisfies (2. 7) parallels section one 

closely and only the main points are given here. After the direct 

substitution (2. 7) becomes 

eix[D + ai] [n .. bi] [n .. (a-Z)i] •.• [D + (a-2)i] sin bx 

•e -ix[D ... ai] [n + bi] [n ... (a-2)1] ... [D + (a-Z)i_} sinbx = O. 

The e~ponentials are now moved to the right to give 

[n .~ (a-l)i} •. , [n + (a-l)i] eix [n - bJJ sin bx 

-[D .. (a-l)i] .•. (n+ (a-l)i] e-ix [n+ bi] sinbx= O. 

A rule analogue to (2. 4) is easily verified for sin x 

(2. 9) 
b +ix b 1· [n ± bi] sin x == be.... sin • x. 

The application of (2. 9) gives 

[n .. (a•l)~ ... 
I 

-[n - (a-l)ij .•• [n + (a-l)i] e .. ixbeix sinb"'1x 

which is equal to zero showing (2. 8) to be a solution of (2. 7). 

3. If the change of va:dable y = cosh t is made in the equation 

[sinh t Dtt: (a-b) cash t Dt - ab sinh t] F(cosh t) = 0 

the following equation results 

{2.10) r(l-y2) D + (b-&-l)y D + ab] F (y) = o . 
L' YY Y 

The hyper~ometrlc equation is usually written 



(2.11) [z(l-z)Dzz + ['Y - (a.+!3+l)z] Dz - a.13JF{a.,j3;'(;z) = 0 . 

The change of variable z =~ in (2.11) gives the equation 

(2.12) 

F(a., (3;'(; l+y) = O. 
-z-

A comparison of (2.10) and (2.12) shows that by setting 

a = a, a-b+l 
13 = -b, '( = 2 

that ( 2 .12) reduces to (2 .10). One can then express F(y) as follows 

or 

F(y) = F(a, -b; a-b+ I ; l+ y) 
2 -z-

F(cosh t) = F(a, -b,a-b+l,l+cosh t). 
2 2 

Since F( cosh t) is a solution of the hypergeometric differential 

equation, it is also a solution of Reimann's equation. Expressed 

in this form 

F(cosh t) = P 
0 
0 

00 

a 
3-a+ b -b 

· ~ 

1 
0 

b-a+ 1 
z 
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III. THE NATURE OF F 

1. This chapter is concerned with studying the nature of the 

solutions of (2.2) and (2. 7). For certain values of the parameters 

the solutions of (2. 2) and (2. 7) .become the trivial solution, being 

identically equal to zero. The two things affecting the nature of 

the solution are whether a) b+ 2, a= b+ 2 or a (b+ 2 and whether 

a and bare odd,or even. Each of the twelve possible cases must 

be investigated. The twelve cases are the combinations of the 

following two sets of cases. 

I. a=b+ 2 a. a odd b odd 

II. a> b+ 2 b. a even b even 

III. a< b+ 2 c. a odd b even 

d. a even b odd 

The following rules of operators will be used 

and 

. b 
SID X = (b+a)(b-a) sinbx + b(b-1) sinb- 2x . 

The function studied first is (2 .1), however the form used here 

will be the following 

(3. 2) 

for a odd and 
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[ 2 2Jr, 2 2] [ 2 2] . b F = D ... (a .. 2) L D - (a~4) • • • D -2 D sinh x 

for a even. For a odd there are a-1 second order factors to the 
-z-

operator and for a even there are a ... 2 second order factors and one 
-z-

12 

first order factor to the operator. The trivial cases are treated first. 

2. The first trivial case is (I, a) where a = b+ 2 and both. are odd. 

The first term of (3.1) drops out when a= b+ 2. Each application of 

rule (3 .1) on sinhbx, starting with the operators at the left, reduces 

the power of sinh x by two. After a-3 second order operators have 
-z-

been applied to (3. 2) the function appears as 

(3 . 4) b~ [ n2 - 1] sinh x ::: b!(sinh.x ... sinh.x) =. 0. 

Therefore the function is identically zero when ~e parameters of the 

function fall into case (I, a). 

In the same way after the application of a-4 second order 
-z-

operators for case (I, b) equation (3. 3) becomes 

(3. 5) 

Thus the function is identically zero for both case {I, a) and (I, b). 

The next case is. (Il, a) where a> b + 2 and both are odd. This 

case is the same as {I, a) except that there are additional factors in 

the operator on the left. The factor corresponding to a = b + 2 ia 

applied first instead of the one on the far left. After b - 3 factors have 
--r 

been applied a result similar to (3. 4). is. obtained. 

After the applicatiol} of the last operator on the .right the function 

becomes identically zero as in (3. 4). 



A similar treatment of (II, b) shows that it is also identically 

zero. 

3. The first non trivial case is (II, c) where a> b+ 2 and a is odd 

and b is even. After the application of b operators the lowest order 
"Z 

term is a constant. Since a is odd and b is even none of the terms 

drop · out. The application of more operators does not change the 

nature of the function since [o2 - a 2] constant= constant. The 

function in this case is a polynomial of even powers of sinh x. 

The next case follows (II, c) closely. For a) b+ 2 and a even, b 

odd - case (II, d) - it is seen that after b + 1 operators are applied 
--z-

that the lowest order term is sinh x. As in case (II, c) none of the 

terms drop out. The application of the rest of the second order 

factors does not change the nature of the function which is a poly-

nomial in odd powers of sinh x. The application of the single 

opexat9:r 'however makes the function become a polynomial in even 

powers of sinh x (degree b-1) times cosh x. 

For the cases where a(b+ 2 there are no trivial cases since 

none of the factors are present that lead to trivial cases. When a 

and bare both odd, case (III, a), the lowest power remaining after 

. . b•a+l all the operators have been applied 1s smh x. This is easily 

seen from (3 .1). The function is then a polynomial in odd powers 

of sinh x. 

For case (III, b) the lowest term remaim.ng after all the second 

order operators have been applied is sinhb-a+ 2x. The single D 

operator is still left. When it is applied it gives a cosh x factor to 

each term. The function is then a polynomial of odd powers of 

sinh x times cash x. 
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The last two cases, (III, c) and (III, d), follows the previous 

cases closely. After the application of the second order operators 

we have polynomials in even powers of sinh x and odd powers of sinh x , 

respectively for (III, c) and (III, d) . Since a is even for (III, d) there 

remains a single operator to be applied. The function becomes a 

polynomial in even powers of sinh x times cosh x. 

To summarize the results of this chapter a table of the twelve 

cases is given using the notation P(x) for a polynomial in x . The 

polynomials below have either only odd powers or only even powers . 

a odd b odd a even b even a odd b even a even b odd 

a= b+ 2 F .::. 0 F =- 0 

a> b+ 2 F =- O F =- 0 P(sinh2x) cosh x P( .&·iDlh. 2:x) 

a (b+ 2 P(sinh x) cosh x P( sinh x) P(sinh2x) cosh x P( sinh 2:x) 

Table I. 

4. The function behaves in exactly the same way for the circular 

sin x. Taking the trivial cases first, it is seen that (I, a) follows exactly 

and -after a-3 operators F becomes 
-z-

bt [n2 + 1] sin x = b~ [sin x - sin x] .=. 0. 

Likewise for (I. b) equation (3. 5) becomes 

b~ [n2 + 4_] D sin2x = b~ D(2) .::. 0. 
r 

The same arguments apply here as in section 2 for cases (II, a) and 

(II, b). 

Section 3 could be quoted practically verbatum here for the non 

trivial cases by replacing sinh x by sin x. The results, if tabled, ait!e 

exactly the same as in Table 1 except hyperbolic functions are 

replaced by circular functions. 
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IV . F AND OEGENBAUER1S DERIVED POLYNOMIALS 

1. In this chapter the function F is shown to include certain 

classical derived polynomials. 

Gegenbauer 1s polynomial is one of the solutions of the equation 

( 4.1) r(l-x2) D - (2a.+l)x D + n(n+ 2a.)] Ca(x) = 0 L' xx :x: n 

where c:(x) is the notation for Gegenbauer 1s polynomial [s, 6, 7, s]. 

If (4.1) is differentiated>.. times the following equations result 

t; 2 3 2 2 ]a >.. = 1 L(l-x )D .. 2xD ... (2a.+l)xD ... (2a.+l)D + n(n+2o.)D Cn(x) = 0 

ii 2 4 3 3 2 2 · 2] a. X. = 2 L{l - x )D - 4xD - (2a+l)xD * 2D - (2a.+l)D + n(n+Zct)~ Gn(x) = 0 

........ .... ................... .......................... , ... 

or 

[ 2 2 1 r. . ]>..a. (1-x )D .. (2X.+ 2a.+l)xD + Ln(n+ 2a.) •>--(>..+ 2a) D Cn(x) = O. 

DX. Ca(x) is the >..th derivative of Gegenhauer~s polynomial and is n . 

called Gegenbauer 1s derived polynomial. The notation for Gegen.bauer's 

derived polynomial is Ca(>..)(x) and, from a.bove, it satisfies the 
n 

differential equation 

(4. 2) r(l-x2)D - (2~ 2a+ 1) x D + n(n+ 2a.) - >..(X.+ 2a}] Ca.(X.)(x) = O. 
~ XX X n 



2. To obtain another form of the equation for Gegenbauer 1s 

derived polynomials a change of variable is ma.de. The change is 

x ::; cosh t which leads to 

D = 1 D 
X sliili 't t 

a.nd 

D = 1 D .. cosh t D 
xx (sinh t) 2 tt (sinh t) 3 t· 

A direct substitution of these values into (4. 2) and simplification 

leads to the differential equation 

~4. 3) (A) 
Lsinh t Dtt + (2X.+ 2a.) cosh t Dt + [A(X.+ 2a.) - n(n+ 2a.)] sinh t] c: (cosh t) 

Comparing (4. 3) with (2. 2) and setting a= X. + n + 2a. and b = n - >.. 

leads to a special case of (2. 2). Therefor.e the differential equation 

for Gegenbauer' s derived polynomials is a special case of the 

differential equation for F. However, saying the equations are the 

same does not assure that F and c:(>..)(cosh t) are the same for 

certain values of a and b since these equa.ti,ons have two solutions . 

Since Ca.(cosh t) is a polynomial, it follows that Ca.(>..)(cosh t) is a 
n - , n 

polynomial. The other solution of (4.,3) is an infinite form [s] . 

= 0. 

Therefore if Fis a polynomial ·for a= >.. + n + 2a. and b = n - >.., F 

can be set equal to c:(>..)(cosh t) except for a multiplicative constant. 

One restriction is immediately apparent and that is n must be an 

integer and 2<1 must he an integer since a must be an integer. The 

case where 2a.+n / an integer, while applicable, will not be 

considered. It is seen from Table 1. that there are four cases where · 
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F i s a polynomial in cash x. The s e are c a ses (I4_c ), (II, d), (III, c) 

and (Ill, d). 

F r om the fact tha.t a = >..+ n+ 2a. and b = n-X. it follows that 

n+ X.+ Zn) n - X. which implies that a) h + 2 if 2a.) 0, so only c a se II i s 

c onsi d er ed. Th e case X. = 0 i s n ot being c onsi dered here . From this 

the following r e sults are obtained 

( 4. 4) 

for 2a) 0 and od d . 

Ca. (X.)(cosh t ) = kF(cosh t) 
n 

F r educes to the t rivia l solution fo r 2a. e ven . 

The above e quation m ay a l s o b e w ritten a s 

o r 

d ep ending on wh ether n+ >..+ 2a. i s odd or even. 

k i s found by c omparing the c oefficient of the highest order 

term of Ca.(X.) (cosh t) and th e right ha.t1.d side of the above equations. 
n 

This constant i s of the same type as the on e found in the next chap t e r 

a.nd will not be computed h ere. 

3 . The most important s pec ial cases. of Gegenbauer 1s polynomials 

are the Legend re p olynomials corresp.onding to the value a. = 1/2 

[6, 7] . T h e y are denoted by P n(x) . Legendre1 s deri ved polynomials 

are den o t ed by P (\)(x). These ar e not to be confused with ,Legendr e ' s 
n 

associated func tions P >..{x) which are treated in chapter IV. From n 

(4 . 4 ) it follows that 

p ( X.l(cosh t) = kF{cosh t) 
n 



or 

for n+ X.-1 odd, or 

for + X.-1 even. The restriction is made that n be greater than X.. 

In order to evaluate k the coefficient of the highest ppwer of 

this representation iscompar~d with the usual representation of 

PiX.) (x) . The highest term in the usual definition is [ 6] 

(2n) '. n-X. cash t. 

The repeated application of (2. 4) gives the highest term of F to be 

k is solved for from the above equations,; its value .is found to be 

(4. 5) 

The important special case of X. = 0, 2a. = 1 gives Legendre's 

polynomial. This case gives the following values for a and b; 

a = n+ 1, b = n. Since a<b+ 2 and a mod 1 / b mod 1 these values 

correspond to cases (Ill, c) and (III, d). Since both of these are 

polynomials in cash t, F can be set equal to Legendre's polynomial, 

18 

except for a multiplicative constant, for a = n+ 1 and b = n. This leads 

to the following representation 

(4. 6) P ( cosh t) = ~. [n2 -' .(tl;-1) 4J · .. -~ [o2 
n n . . 



for n even and 

for n odd. For X. = 0 (4. 5) reduces to 1 as used above. -, n. 

19 

4. The developement for F(cos t) is analogous to the developement 

for F(cosh t). If the change of variable x = cos tis made in (4. 3), 

then equation ( 4. 4) becomes 

[sin t Dtt + (2X.+ 2a.) cos t Dt + [x.(X.+ 2a.) - n(n+ 2a.)J] c:(X.)(cos t) = O. 

The same arguments as in section two lead to the following equations 

for 2a.) 0 and odd, 

for n+ X.+ 2a. odd and 

for n+ X.+ 2a. even. 

Ca.(X.)(cos t) = kF(cos t) 
n 

The special case for Legendre's derived polynomials is treated 

in the same way and the equations of section three become 

P(X.)(cos t) = kF(cos t) 
n 

k is determined in the same way as in section three and is found to 

be the same thing, 
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Likewise for the special case>..= 0 (4. 6) becomes 

for n even and 

for n odd. 



V. F AND GEGENBAUER'S ASSOCIATED FUNCTIONS 

1. In this chapter the function F is shown to include certain 

classical associated functions. 

Gegenbauer's associated function is defined analogously to 

Legendre's associated function as 

(.>.;+ 2a.-l) 

( 5.1) ca>..(x) = (x2 ... 1) 2 ca.(X.) (x) 
n n 

for x>l and 

(X.+2a-l) 

c0 >..(x) = (1-x2) 2 c«1 (X.)(x) 
n n 

for x<l. Ca.(X.) (x) satisfies the equation 
n 

Ii 2 r.. ]] a. ( >..) dl-x )Dxx - (2X.+ 2a.+ l)xDX + ln(n+ 2a.) - >..(X.+ 2a.) en (x) = 0 

or, after the change of variable x = cosh t, the equation 

(5.2) [sinhtDtt+ (2X.+2a.) coshtDt- [n(n+Za.) - >..(>..+,2a.)Jsinht] 

Ca.(>..)(cosh t) = o. 
n 

The substitution u = sinh(Z>..+Za.-l)t C~(>..)(cosh t) in (5. 2) gives 

(5. 3) [sinh t Dtt .. (2>..+ 2a. ... 2) cosh t Dt + 

[x.(>..+ 2a.-1) + 1 .. 2a "".. n(n+ 2a.)J sinh iJ u = 0, 

Since 

Zl 
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equation ( 5. 3) can be written as 

(5. 4) [sinh t Dtt + [(n->..+l) - (n+ >..+ 2a.-1)] cosh t Dt -

(n->..+ l)(n+ >..+ 2a.-l) sinh t] sinh>..t c:>..(cosh t) = 0. 

2. Equation ( 5. 4) is of the form studied in the first two chapters 

so F( cosh t) and sinh t Ca.>..( cosh t) are solutions of the same differen
n 

tial equation. The values of a and b in terms of a. and >.. are 

a=n- >..+l, b=n+>..+2a.-l. 

Since a(b+ 2 for>..+ 2a.)O, F(cosh t) falls in category III. All four 

cases of III may occur for different values of n, \ .and a.. In order to 

determine if F(cosh t) and sinh>..t Ca.>..(cosh t) are equal, the nature 
n 

of the two functifflls must be studied. ' 

From (5.1) it is seen that 

. A. a.>..( . 2>..+2a. .. l a.(>..) sinh ' t C cosh t) = s1nh C ( cosh t). 
n n 

Ca.(A.)(cosh t) is a polynomial in cosh t and 2>.. is even. The deter
n 

mining factor is then 2a.-1. For the two cases 2a.-l odd and 2a.-l 

even, it is seen that 

for 2a. -1 odd and 

sinh>..t Ca.>..(cosh t) = s.inh t P(cosh t) 
n 

. ~ . a.\ 
sinh tG (cosht) = P(cosht) n 

for 2a.-l even. If a and b are compared modulus 1, 



a mod 1 = b mod 1 

for 2a. -1 odd and 

a mod 1 / b mod 1 

for 2a.-l even. These equations imply from Table 1 that 

F( cosh t} = sinh t P( cosh t} 

for 2a.-l odd and 

F(cosh t) = P(cosh t} 

for 2a.-l even. If these equations are compared, it is seen that 

F(cosh t) and sinh\ Ca.>..(cosh t) are the same solution of (5. 4). 
n 

Therefore the following expressions can be written for Ca.>..(cosh t} 
n 

for n->.. even and 

for n->-.. odd. k is found by comparing the coefficient of the highest

order term of Ca.>..( cash t) and the right hand side of the above 
n 

equation. The coefficient of the highest order term in Ca.>..( cosh t} 
n 

is 2n(a.)n [11] and the coefficient of the highest order term on the 
(n-X:)t 

right is seen to be 

>.. 1 2a.-l 
2 -n+ (2n+ 2a.-2H(>..+ -r-}~ 

(n+ 2a.-3)!(2>..+ 2a.-l)~ 
-r-
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for 2a. odd and 

n-;\. 
2 (n+a-1)! 

(;\.+ a-1)! 

for 2a even. The above two values give two corresponding values of 

k 

2n - ;\. 1 2a. - 3 
k = 2 + (n+ -y-")~(2;\.+ 2a-l)!(a)n 

for 2a. odd and 

for 2a. even. 

(n-;\.) !( 2n+ 2a-2) ~(n+ 2a. --1) ~ 
-z-

k = 2;\.( ;\.+ a -1) !(a)n 

(n-;\.)!(n+ a-1) ~ 

3. The most important of Gegenbauer' s associated functions 

is for the value of a.= 1/2 . This is Legendre's associated function 

[sJ. It iJs given by 

(2;\.) ~ [n2 .. (n-;\.-1) 2J ... [02 -22] D 
·~ A. 

2 · ;\.!(n-;\.)!sinh t 

for n+ ;\. odd and 

P;\.(cosh t)"7 (2 ;\.)! [o.::: ... (n-;\.-1) 2] ... [n2 - 1] sinhn+ ;\.t 
n A. A. 

Z >.!(n -;\.) ~sinh t 

for n+ ;\. ev¢n. The above equations reduce to Legendre·'s polynomials 

for ;\. = 0. The representations are 

for n odd and 
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lj,1 2] 11 2 2][2 J. n P (cosh t) =--, LP -· (n-1) ... LD - 3 D - 1 smh t n n. 

for n even. The expressions a bove a r e exactly the same as the on e s 

found in section 3 of chapter four . 

4. Two other important special ca s es of Gegenbauer' s 

associated functions exist and they correspond to the values a. = 0 

and a. = 1. They are Tchebycheff1s ass ocia ted function s of the fir st 

and second kind, respectively [6, 7] . Tchebycheff1s a s socia ted 

function of the first kind is given by the expression 

>.. 
T~( cosh t) = 2' n(X.-l)! [n2 - (n.- >.. - 1) 2J ... [ n2 - 22] D sinhn+ }... -lt 

(n- X.) !·sinh At 

for n+ }... odd and 

25 

T~(cosh t) = 2>..n( }...-l)t [n2 - (n- X.-1)2] . • . [n2 - 32] [n2 - iJ s inhn+ }... - l t 

(n-}...) tsinhAt 

for n+}... even. Tch.ebycheff•s associated function of the second kind 

is given by the expressions 

U~(cosh t) = zA(n+l)(}...)~ [n2 - (n->..-1) 2] .•• [n2 - 2 2Jn sinhn+ A+ l t 

(n-X.)!sinhAt 

for n+ }... odd and 

for n+ X. even. The express! ons for these functions reduce to 

identically zero for X. = 0. 

5. The results of the c~pter for circular functions parallel 

closely the results for hyperbolic functions. The only changes a re 
' 

that hyperbolic functions be replaced by circular ones and tha t terms 



Z 2 . 2 Z 
of the kind D "" a be replaced by D + a . A typical result is 

/\. P (cos t) 
n 

for n+ :>,., odd. 

{2}..)! [?2 + (n->,_-1) 2] . . . [p2 + 22] D sinn+ \ 

2 :>,.,,._ !(n-}..) tsin At 
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VI. SUMMARY 

In this paper the function F has been de~ed anp. studied. It 

was shown to be the solution of a certain differential equation. 

Secondly, F was studied as a function of its parameters a and band 

the analytic nature of F was found for various combinations of 

values of a and b. Then relationships between F and the classical 

Gegenbauer functions were derived through the differential equati on 

from two standpoints. One was from the standpoint of derived 

polynomials and the other was from associated functions. Throughout 

the paper the case of F with a circular ar gum.en~ nas been treated 

parallel to that of F with a l1yperbolic argument. 

Current investigations off.F,are continuing along the following 

lines. The nature of Fas related to the classical functions for other 

values of a and bis desired. It can be shown that F is always either 

a Gegenbauer polynomial or the derivative of a Gegenbauer polynomial.,, 

if n is allowed to take on non integral values . Second the developement 

of known properties of Gegenbauer' s function is to be made from the 

standpoint of F. This work is well under way. Finally, the develop~ 

ment of new properties of Gegenbauer•a function is to be investigated. 

This work has barely been touched. A more convenient notation 

would perhaps replace the parameter a by a parameter whose value 

is a - 2. 
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