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Abstract

Spiking neural networks (SNNs) attempt to computationally model biological

neurons. While similar to artificial neural networks (ANNs), SNNs preserve the

temporal and binary aspects of neurons. Computational evolution is also a bi-

ologically inspired computing method, and it has been used to evolve neural

networks. NeuroEvolution of Augmenting Topologies (NEAT) is a method to

simultaneously evolve the structure and weights of a ANNs. In this work, I ap-

ply the NEAT algorithm to SNNs. I compare the performance of ANNs evolved

with NEAT and SNNs evolved with NEAT on XOR, a cosine function, and the

single pole balancing problem. Multiple values are used for the compatibility

threshold (3 options), compatibility weight coefficient (2 options), compatibility

disjoint coefficient (2 options), and spiking threshold (2 options). On the XOR

problem, 15 SNNs with different parameter combinations found solutions on all

five test repetitions while only two ANN parameter combinations did. On the

cosine problem, only one SNN parameter combination found a solution on every

repetition, but all ANNs did. However, the successful SNNs appeared to capture

more of the nonlinearity of the cosine curve than the ANNs. On the single pole

balancing problem, no SNNs found any solution while many ANNs were able to

find solutions on multiple repetitions. The results indicate that SNNs evolved

with NEAT can solve and perform comparably to ANNs evolved with NEAT on
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some problems.
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Chapter 1

Introduction

Evolutionary computing and artificial neural networks are both computational

ways to represent and use biological ideas. Evolutionary computing uses the

ideas of natural evolution, survival of the fittest, reproduction, and mutation, to

find solutions to problems. Artificial neural networks (ANNs) and spiking neural

networks (SNNs) are inspired by the organization and mechanisms of the brain.

ANNs create networks of artificial neurons and synapses using real-valued weights

to represent the strength of the synapse and mathematical functions to determine

the output of a neuron. Spiking neural networks also use mathematical functions

to determine neuron output, but rather than real-valued weights they use binary

spikes over a time interval.

Neural networks have a number of factors that determine their success. Two

of these are their weights and their architecture. Both of these aspects must

be well-tuned in order for networks to have low errors on problems. However,

both of these can be difficult, if not impossible, to tune by hand. Hebb [15]

presented a method for finding weight values of spiking neural networks without

manual calculation. The method, known as Hebbian Learning, laid the ground-
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work for algorithms to calculate weight values for both ANNs and SNNs. These

algorithms are broadly called learning algorithms. Networks are trained by re-

peatedly slightly altering the weight values in ways that slowly decrease the error

of the network.

One of the most popular learning algorithms for ANNs today is called back-

propagation. Introduced in Rumelhart et al. [33], backpropagation changes each

weight by using partial derivatives to calculate their effect on the output value.

However, because backpropagation relies on derivatives, the calculations the net-

work does must be differentiable, which is not the case in SNNs. There have

been many learning methods created specifically for SNNs because traditional

backpropagation does not work [1, 31, 11, 8, 27].

Network performance is also highly reliant on the network structure (its archi-

tecture or topology). Like weights, well-performing architectures can be difficult

to design by hand. Unlike weights, however, there does not exist a prevailing

method to learn them. While methods exist [5, 6, 19], they have not been as

widely adopted as backpropagation.

Evolution has also been used to find both network topologies and weights.

Because evolution does not rely on derivatives, it can be used on both differen-

tiable and non-differentiable functions. This allows for it to be applied to learn

weights for SNNs as well as ANNs. When evolution is used to evolve weights (or

other factors) or a network without changing the network architecture, the archi-

tecture is considered static. A popular method for evolving both the architecture

and weights of a network together is NeuroEvolution of Augmenting Topologies

(NEAT) [37]. NEAT and other methods for evolving ANNs and SNNs will be

discussed in Chapters 4 and 5.

This work looks specifically at evolving SNNs with NEAT. The exploration
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and use of this combination has not been extensive, but has been promising.

NEAT with SNNs has been compared to static-architecture SNNs on classifica-

tion problems with the evolved networks having a lower error by about 10% [30].

NEAT with SNNs has also been applied to control problems, and when com-

pared to NEAT with ANNs, found solutions more often and in fewer generations

[32]. These works will be discussed further in Chapter 5. NEAT with SNNs has

been demonstrated to be successful on both classification and control problems

on neuromorphic hardware, hardware specifically designed to run spiking neural

networks [42]. (While Vandesompele et al. [42] provides further demonstration

of the success of NEAT and SNNs, it provides little discussion of the algorithm,

focusing instead on the hardware, which is out of scope of this work.)

This work explores the use of the NEAT algorithm in evolving spiking neural

networks. I apply this method to solve the XOR problem, a cosine function, and

the single pole balancing problem. These problems are used to show the algo-

rithm’s performance on supervised learning problems (binary classification and

multi-class classification) and reinforcement learning problems. (I consider cosine

as a multi-class classification problem because the experiments use a discretized

version as discussed in Section 6.2.2). I intend to provide a proof of concept of

evolving SNNs with NEAT through direct comparisons with ANNs with NEAT

on these simple problems. I use multiple types of neurons and a range of pa-

rameter combinations to allow for comparison and discussion. Such a parameter

evaluation is not performed in previous works. This thesis lays groundwork for

future work with SNNs and NEAT, providing results for simple problems across

a range of parameters.

I find that SNNs evolved with NEAT are able to solve and perform comparably

to evolved ANNs on XOR and the cosine function. However, SNNs were unable
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to find solutions to the single pole balancing problem while ANNs were. The

compatibility threshold and genomic distance parameters are demonstrated to

direct effect the number of population extinctions. The spiking threshold for the

SNNs appeared to have little effect.

The contributions of this work are: 1. provide further research showing the

evolution of SNNs with NEAT to be viable for binary classification tasks; 2.

provide evidence that NEAT and SNNs are capable of solving multi-class clas-

sification problems; 3. add to research regarding SNNs and NEAT performing

on reinforcement learning problems, despite negative results; and 4. provide an

initial study of the effects of the compatibility threshold, genomic distance pa-

rameters, and the spiking threshold, on NEAT with SNNs.

This work is organized as follows. The next chapter will give a brief introduc-

tion to neural networks. Chapter 3 will look at the basics of artificial evolution,

going over its main components. Chapters 4 and 5 will discuss previous works

regarding the evolution of ANNs and SNNs, respectively. Chapter 6 will cover

the methodology of this work, followed by the results in Chapter 7, discussion in

Chapter 8, and conclusions in Chapter 9.
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Chapter 2

Neural Networks

2.1 Biological Basis for Neural Networks

Animal brains are complex organs capable of complex intense loads of computa-

tion. Among other things, human brains are made of an estimated 100 billion

of neurons. Neurons are nerve cells that communicate and convey information

to other neurons. Neurons are made of dendrites, a soma, an axon, and termi-

nal branches [22]. The terminal branches connect to other neuron’s dendrites.

Neurons communicate by sending neurotransmitters to each other through their

axons to connected neuron’s dendrites. Because of ion imbalances between the

inside and outside of the neuron, neurons naturally have a small charge, or rest-

ing potential. Further potential is generated by interactions ions flowing into

and out of the cell membrane [24]. These interactions can cause an increase in

membrane potential, the electric charge of the cell. As the membrane potential

increases, it causes more ionic movement. A high charge can affect the potential

of nearby points in the membrane, which can then trigger ion flow at those neigh-

boring locations, and the cycle propagates down the synapse [17]. This is called
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a spike. Eventually, the membrane reaches its maximum charge, the ions flow

back outside the membrane and the charge returns to its resting potential [24].

When returning to the resting potential, the neuron goes through a refractory

period. During a refractory period, the neuron cannot emit another spike. A

series of spikes from one neuron over a time period is called a spike train. When

discussing a spike going from neuron to neuron, the neuron that emits the spike

is called the presynaptic neuron, and the neuron that receives the spike is called

the postsynaptic neuron.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) consist of neurons (or nodes) connected to-

gether. Neurons take input values, apply a computation, and output a value.

The outputs of some neurons then become the inputs to others. Input neurons

take user input and values are passed through the network until they reach output

neurons that give a final output. This section will review some basic information

about ANNs.

2.2.1 ANN’s Relationship to Biology

Artificial neural networks are inspired by the neurons and connections in the

brain. However, because of the complexity of the biological networks, ANNs have

abstracted many of the details and are more computationally efficient. They

remove the temporal aspect of spiking and change the binary input signals to

real numbers. A neuron simultaneously receives a real number value from all the

neurons that feed to it. These values are summed and sent through an activation

function to give the output of the neuron.
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2.2.2 ANN Methods

Artificial neural networks are comprised of weights and activation functions.

Weights are values assigned to the connections between neurons. The weight

between neuron i and neuron j is represented as wij. The output value of neuron

i is multiplied by wij before being passed to neuron j. Activation functions are

the functions that neurons use to transform input values to output values. Some

popular functions include sigmoid, hyperbolic tangent (tanh), and rectified linear

units (ReLu). The output y of a neuron j with a single input x from neuron i

using activation function f can then be represented as

y = f(wi,jx) . (2.1)

The output of a node with multiple inputs xj can be calculated by summing

over the inputs. The output of a neuron with J inputs can be calculated with

y =

j=J∑
j=0

f(wi,jxj) .

Traditional networks are usually organized into layers. In this case, the layer

of neurons that receive input is called the input layer, the layer that produces

the final output is called the output layer, and any layers in between are called

hidden layers. For example, in a 3-layer network, the neurons in layer 1 receive

the initial input and only output to the neurons in layer 2. Layer 2 neurons only

output to layer 3 neurons, which then gives the final output. There are no cross

connections between neurons in the same layer and no looped connections from

a later layer to a previous layer. However, these are not strict rules. Many of

successful networks to date have connections that skip over layers [2, 41]. There
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are also networks that have connections that loop backwards, called Recurrent

Neural Networks (RNNs) [7].

Equation 2.1 can be expanded to the computation of an entire layer using

matrix multiplication. Vectors are used to represent the inputs and outputs, and

a matrix is used to represent the weights. Each row in the weight matrix contains

the weight values from a single input neuron to all output neurons. The output

vector yl of layer l with inputs equal to the output vector yk from the previous

layer k and weight matrix Wl,k can be computed with

yl = f(Wl,k × yk) . (2.2)

Using Equation 2.2, the output of previously discussed three-layer network

can be calculated. Given an input vector x to layer 1, a hidden layer 2, and

output layer 3, the final output, y3 can be calculated with

y3 = f3 (W2,3 × (f2 (W1,2 × f1 (Win,1 × x)))) . (2.3)

Any function can be used as an activation function. However, using a lin-

ear function will across multiple layers is computationally equivalent to a single

linear function, which eliminates the functionality of multiple layers and unneces-

sarily increases computation, so it is important to choose a non-linear activation

function.

These weights can be hand-designed; however, more often they are deter-

mined through a learning process. A learning or training process is a process of

computationally determining the weight values for a network that will optimize

performance on a problem.

In order to perform training, the network needs a function E for calculated the
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error of the network. In the case of supervised learning, networks are generally

trained with a dataset mapping inputs to desired outputs. The error can then

be calculated by comparing the network output with the desired output. There

are many different methods for calculating error. Mean-squared error, which

is average squared difference between the desired label and output label, is a

common error function. In reinforcement learning, the error function is often a

function of the environment. For example, in the single pole balancing problem,

the error is defined as the difference between the maximum possible time to

balance the pole and the actual time the network balanced the pole. The training

process then changes the weights to minimize this error.

Backpropagation is the predominate method to train the weights of ANNs.

Weight updates in backpropagation can be divided into two main steps: the

forward pass and the backwards pass. In the forward pass, the network output

and error are computed with the current weights, like Equation 2.3, and the

error is computed. In the backwards pass, the partial derivative of the error with

respect to each weight, ∂E
∂wi,j

, is calculated using the chain rule. Weights are then

updated proportional to their effect on the error:

∆wi,j = −η ∂E

∂wi,j
.

η is called the learning rate, and is a hyperparameter that controls the mag-

nitude of the changes. The change here is negative in order to minimize the error

function.

Evolution can also be used to train ANNs. This is explored in Chapter 4.
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2.3 Spiking Neural Networks

Like ANNs, spiking neural networks are modeled after brain circuits. Spiking

neural networks differ from ANNs because they retain the temporal aspect of

the biological circuits. Rather than receiving all inputs from previous neurons at

once, neurons receive inputs over a period of time. Neurons then have a function

to determine whether to output a value. The following sections will introduce

prominent neuron methods and ways to convert real valued input into spikes.

2.3.1 Types of Spiking Neurons

There are many types of spiking neurons that compute the method of determining

an output spike in different ways. Here I will discuss four common types of

neurons: Hodgkin-Huxley neurons, Leaky Integrate-and-Fire (LIF) neurons, the

Spike Response Model, and Izhikevich neurons.

Hodgkin-Huxley

In 1952, Hodgkin and Huxley [16] created a set of equations based on an electrical

circuit representation to model the current in the membrane of a giant squid axon.

They present a series of differentiable equations modelling the ion channels of

sodium (Na) and potassium (K ) as well as a leakage (L) channel. Each channel

has a conductance g, maximum conductance g, a resistance R, and voltage, or

reversal potential, V . The conductance of the sodium and potassium channels

are dependent on gating variables m, n, and h. The gating variables are used

to model whether the ion channel is open or closed. Together m and h control

the sodium channel and n controls the potassium channel. If the sodium or

potassium channels are open, they reach their maximum conductances of gNa
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and gK , respectively.

The local conductance g of each channel is the inverse of its resistance R. This

gives gNa = 1
RNa

, gK = 1
RK

, and gL = 1
RL

. Using Ohm’s Law, the local current I

can be written as IL = gL(v − VL), INa = gNa(v − VNa), and IK = gK(v − VK).

Summing these provides the total current into the neuron:

I = gNa(v − VNa) + gK(v − VK) + gL(v − VL) . (2.4)

The resistance of the leaky channel is constant, so the conductance gL is always

equal to its maximum conductance gL. The sodium and potassium resistances,

however, depend on the gating constants. Hodgkin and Huxley [16] defines the

current conductance g in terms of gating values as gNa = gNam
3h and gK =

gKn
4. This gives the sodium and potassium conductances as INa = gNam

3h and

IK = gKn
4 respectively. Substituting these values into Equation 2.4 yields

I = gNam
3h(v − VNa) + gkn

4(v − VK) + gl(v − Vl) . (2.5)

The gating values are changed through differential equations dependent on

two parameters α and β with separate values for each ion channel. The initial

values of the gating values, as well as values for the α and β values can be chosen

to allow the model to mimic different types of human neurons.

The refractory period of a neuron is not separately addressed in Hodgkin-

Huxley neurons. Rather, it is modelled using the gating variables.

This model is biologically plausible because of its basis in the specific ion

channels. However, it requires a high amount of computational time because of

the complexity and number of differential equations.
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Leaky Integrate-and-Fire

The Leaky Integrate-and-Fire (LIF) model also has its basis in electric circuits.

Its inspiration comes from a simple circuit with a capacitor C and resistor R in

parallel, where the driving current I represents the input current to the neuron.

The conductance into neuron i at time t is represented as:

I(t) =
∑
j

wij
∑
f

α(t− t(f)j ) , (2.6)

where
∑

j sums over all the input neurons, and
∑

f sums over all of the spikes

from neuron j. wij is the weight value from neuron j to neuron i. t−t(f)j becomes

0 if there is a spike fired at time t from neuron j. When considering input spikes to

be of an infinitesimally short length, the α function can be represented abstractly

by the Dirac-δ function, where δ(x) = 0 if x 6= 0, and
∫∞
−∞ δ(x)dx = 1 [10]. It is

often concretely calculated as exp
(
t
τ

)
[10]. Time-based simulations also often use

a step function across a time-step.

In LIF neurons, the change in voltage v at time t is represented by

dv

dt
=
v0 − v(t) +RI(t)

τ
, (2.7)

where v0 is the resting potential of the neuron — the voltage value of the neuron

when there is no input — and τ = RC is a constant called the membrane time

constant.

Spikes output from neuron i are represented by the time of their firing t
(f)
i ,

where f is the index of the spike. A spike occurs when the neuron voltage exceeds

a threshold value called the spiking threshold. After a neuron emits a spike, the

voltage is reset to a static value vreset. This is different from the Hodgkin-Huxley
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model, where variables within the system cause the voltage reset.

Spike-Response Model

The Spike-Response Model (SRM) is a generalization of the LIF model. The main

difference between LIF and SRM is the direct inclusion of the refractory period.

The refractory period is represented with a kernel function η. While η can be

arbitrary, it usually decreases the membrane’s voltage below a threshold, during

which time the neuron is not able to spike no matter what input it receives. The

response of the neuron to an input spike is represented by a kernel κ. The voltage

update equation is generally presented as:

v(t)

ds
= η

(
t− t̂

)
+

∫ +∞

−∞
κ(t− t̂, s)I(t− s) , (2.8)

where t is the current time, t̂ is the time the neuron last output a spike, and I

is the incoming current. The kernels η and κ can be chosen to model different

types of neurons. For example, Kistler et al. [25] calculated kernels based on the

Hodgkin-Huxley model, and Jolivet et al. [21] calculated kernels based on cortical

interneurons.

Izhikevich Model

In 2003, Izhikevich presented a model for neuronal current as a system of ordinary

differentiable equations as a compromise between the biological plausibility of

the Hodgkin-Huxley model and the efficiency of the integrate and fire model [20].

Izhikevich calculated the current of a neuron by using a separate variable u that

controls the refractory period:
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v′ = 0.04v2 + 5v + 140− u+ I (2.9)

u′ = a(bv − u) (2.10)

if v ≥ 30mV, then


v ← c

u← u+ d

(2.11)

The parameters a, b, c, and d are dimensionless and control different aspects

of the model. The parameter a models the time scale of u — how slowly or

quickly the neuron returns to resting potential after a spike. The parameter b

“describes the sensitivity of the recovery variable to the subthreshold fluctuation

of the membrane potential” [20]. Parameter c is the neuron reset voltage, and

parameter d is the rest value of u.

Izhikevich explains the parameters for the parametric part of the model as

being chosen to give time and voltage in ms and mV, respectively, and to keep the

resting potential between -70 and -60 mV, which is in the range for the resting

potential of biological neurons.

Using different values for a, b, c, and d, Izhikevich demonstrates that these

equations can model many types of neurons observed in biology. The simplicity

of the model makes it computationally inexpensive, but it still retains biological

plausibility.

2.3.2 Real Value to Spike Translation

Most problems contain inputs that are real values, not spikes. Because of this, a

translation method has to be used. There are two common types of translation

methods: rate-based and temporal-based.
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Rate-Based Encoding

Rate-based encodings convert real number values into spikes by producing a num-

ber of spikes that is proportional to the value when averaged over a period of time

[24]. The spikes can be evenly or randomly distributed over the time period. For

example, given a time window of 100 milliseconds, encoding the number 3 could

produce 3 spikes at random times, spikes at 33, 66, and 99 milliseconds, or a

number of spikes proportional to 3 (given that all input values have the same

multiplier), like 30. Rate-based encoding can also be used to distribute spikes

across trials, and/or multiple neurons [24].

Temporal-Based Encoding

Temporal-based encodings convert real number values into spikes by producing

spike trains with spikes at specific points during the time window. There are

many different types of temporally-based encoding methods [24]. One popular

method is reverse correlation encoding. In this method, the magnitude of the

input is inversely represented by the distance to the beginning of the spike train

so that larger values will appear sooner during the time period [24]. For example,

given a time window of 100 milliseconds, a value of 3 might appear only at the

97th millisecond, while a value of 82 might appear at the 18th millisecond.
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Chapter 3

Evolution

Evolutionary computing and evolutionary algorithms mimic biological computa-

tion as a mechanism to solve specific problems. In nature, individuals survive

based on their ability to navigate the environment. If they survive long enough

to reproduce, their genes are passed on in the population. Darwin [3] described

this mechanism as “natural selection.” Genes that code for successful traits for

survival are more likely to be passed on and spread throughout the population.

Scientists have adapted this to computational tasks.

Evolutionary algorithms can find solutions to problems that would not have

been thought of by man but are extremely successful. For example, Hornby et al.

[18] at NASA used an evolutionary algorithm to design a successful flight antenna.

Not only did these antennas outperform hand-designed ones, but they could be

created in four weeks as opposed to three months.

Evolutionary algorithms evolve a population of genomes, or individuals, that

represent solutions to a problem. Genomes are made of genes, values that corre-

spond to a specific part of the solution.

There are many components of evolutionary algorithms. These algorithms
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generally involve some or all of these components: representation of an individual,

the evaluation method, a parent selection mechanism, variation operators, and a

replacement mechanism. The following sections include a brief review of each.

3.1 Overview

The general outline of an evolutionary algorithm is as follows:

1. Initialize a population of solutions

2. Evaluate solutions on the problem

3. Select parents for variation

4. Perform:

• Recombination

• Mutation

• Other variational operators

• A combination of the above

5. Select survivors

6. Repeat steps 2 through 5 until a terminating condition

Steps 2–5 represent a generation. A generation in computational evolution is

representative of a generation in biological evolution: individuals in a population

reproduce to create new individuals with slightly different genes. However, in

computational evolution, what happens during a generation is less constrained.

For example, recombination, the analog of reproduction, can take many different

forms, and is not required.

17



3.2 Representation

The way solutions are encoded into genomes is called representation. Some of

the basic representation methods are bit string encoding, integer string encoding,

and tree encoding, although there are many other methods, and often the rep-

resentation is chosen based on the specific problem [7]. Representation directly

influences variation operators, which will be discussed later.

For example, artificial neural networks can be represented for evolution in

many different ways, and this is one of the challenges of evolving network topolo-

gies as will be discussed in Section 4.1. However, when evolving a static structure,

one can use a vector where each value represents a specific weight in the network.

3.3 Evaluation

Evolution also requires a method to evaluate an individual. An evaluation func-

tion is used to assign “fitness” to each of the individuals. Fitness measures each

individual’s performance on the problem. Fitness values are then used to com-

pare individuals for parent and survivor selection. Fitness is often used as a

termination condition for the algorithm as well — when an individual’s fitness

reaches a certain value, the problem is considered solved and the algorithm is

stopped.

For example, if an ANN is being evolved to solve a classification task, the

fitness could be assigned to be the number of examples correctly classified. The

algorithm could be terminated when the network correctly classifies a certain

percentage of the examples.
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3.4 Variation Operators

Variation operators modify individuals. Without modification, the population

would never change. The initial population would stay stagnant and persist

through the generations. This would keep populations from ever evolving, find-

ing, and converging to a solution. There are two main methods of variation —

recombination and mutation. Using either or both can allow the populations to

change and evolve over the generations.

3.4.1 Parent Selection

Before performing variation, the individuals to undergo these variations must be

selected. Parents can be selected at random. While this method may work well

in some situations, it is possible that well-performing individuals are not chosen

to undergo variation and their genes are removed from the population. To try

to prevent this, proportionality can be introduced to selection, giving solutions

with a higher fitness a larger likelihood of being selected [4]. Parent selection and

survivor selection can use many of the same algorithms like tournament selection

and roulette wheel selection. These methods will be discussed in Section 3.5.

3.4.2 Recombination

Recombination takes two or more individuals — parents — from the population

and combines them to make new individuals — children (or offspring) — with

parts of both. There are many different methods of combining solutions. The

method used is dependent on the representation of the individuals. As such,

methods may be individualized to the specific problem. I will describe a few of

the common methods here.
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Single-Point Crossover

In single-point crossover, two parents create two offspring. A point is chosen in

the length of the bit string. One child gets the first section of the genome from

the first parent and the second section from the second parent, while the other

gets the first section from the second parent and the second section from the first

parent [4]. Where to divide the bit string can be deterministic or random. This

method can be expanded to multi-point crossover, where the genomes are divided

into more than two sections and the children get multiple smaller sections from

each parent [4]. Single point and multi-point crossover are mainly used with bit

strings and real valued vectors.

Consider evolving a static neural network with 4 layers, represented by a

vector of weights sorted by their layer in the network. Using single point crossover

with Parent A and Parent B could yield Child C with layer 1 and 2 weights from

Parent A and layer 3 and 4 weights from Parent B, and Child D with layer 1 and

2 weights from Parent B and layer 3 and 4 weights from Parent A.

Uniform Crossover

In uniform crossover, each value has the possibility of coming from each parent

[4]. This prevents the need for a hyperparameter for cut points as in single-point

and multi-point crossover.

Using a four layer neural network, uniform crossover could yield Child A with

layers 1 and 4 from Parent A and layers 2 and 3 from Parent B, and Child B

with layers 1 and 4 from Parent B and layers 2 and 3 from Parent A.

20



Blend Crossover

Another simple crossover method is blending. In blend crossover, the children

have the average value between each parent for each gene [7].

With a static architecture network, blend crossover yields two networks with

all weights being the average of their parents.

Tree Crossovers

Methods to perform successful crossover on tree and graph structures have been

extensively studied. A lot of this difficulty is also based in how the graph

is represented. Depending on the representation, crossover methods described

above work, although they may not be intuitive. A common method is subtree-

crossover, where a random node in each tree is chosen and the subtrees of those

nodes are swapped [7].

3.4.3 Mutation

Various methods of mutation exist, and, like recombination, they depend on the

chosen representation. For bit string representations, it is common to flip the bit

value [4]. For real valued vectors there are a few more options. One option is

to completely replace the previous value with a new random value; another is to

add a value drawn from a distribution [35]. Using a uniform distribution here

would allow for a random value within a certain range.

Mutation is generally considered as a per-gene operator: each gene is con-

sidered individually and is mutated with a probability. This is in contrast with

selection and replacement, which consider the genome as a whole. However, two

probabilities can be used to separately determine if the genome will undergo
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mutation and then if a gene will undergo mutation.

3.4.4 Inversion

Inversion is a variational method that is used with vector representations. Inver-

sion is the process of reversing the order of part of or all of the vector string [4].

This method keeps the same genes but changes their order.

3.5 Replacement

After recombination and mutation, members of the next population must be se-

lected. This is called replacement. One approach is to replace members randomly.

While this may work, it risks replacing well-performing individuals. Generally, it

is better to choose a method of replacement that takes fitness into account.

Two popular selection methods are (µ+λ) and (µ, λ). In these methods,

µ refers to the parent population and λ refers to the child population. These

methods consider individuals’ ranks in the population. Ranks can be assigned

linearly or through other functions to apply different selective pressures. In (µ+λ)

methods, the next population is selected based on rank from the merged parent

and child populations [7]. In (µ, λ) methods, the population is selected based

on rank from only the child populations [7]. Rank-based selection methods like

these avoid some of the problems of fitness-proportional selection that occur from

varying fitness distributions [7].

Another option is roulette wheel selection. In roulette wheel selection, a

‘roulette wheel’ is created by having a list of individuals with the number of

each individual proportional to its normalized fitness. Then until the population

is replaced, individuals at random indices are copied to the next generation [35].
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Yet another method is tournament selection. Tournament selection is a method

to select the well-performing individuals with replacement. Until the new popu-

lation is full, n individuals are selected at random from the merged parent and

child populations. The individual among those n with the highest fitness value

is copied into the new population [35]. The number of individuals selected for

each tournament, n, is called the selection pressure [35]. The higher the n, the

higher the selection pressure. Low selection pressure increases the chance that

poor performing individuals will be copied into the new population. A higher

selection pressure generally decreases diversity and leads to faster convergence.

A lower selection pressure may keep the population from reaching convergence.

As such, n must be chosen thoughtfully and with consideration to the problem.

Elitism is a method that can be added to any other selection method. Elitism

is directly transferring the top n performing individuals to the next generation

without performing recombination [35]. Other variation operators may or may

not be performed with elitism.
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Chapter 4

Evolution of Artificial Neural

Networks

Artificial neural networks can be evolved in a number of ways. These methods

can be broadly categorized as using static architectures or evolving architectures.

In both of these methods, there are a variety of aspects of the network that

can be evolved. Some examples include network weights, activation functions,

learning rules, and hyperparameters like learning rate and momentum. Evolving

the weights of the network is most common.

In this chapter, I will review some literature on the evolution of both static

topologies and evolving topologies. First, I will start with a common problem that

occurs when evolving neural networks: choosing an encoding method. Section

4.2 will review literature on the evolution of networks with static architectures.

Section 4.3 will discuss literature on evolving the topologies of networks.
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4.1 Problems with Encodings

One challenge when it comes to evolving neural networks is finding an appropriate

encoding. When evolving network weights with a fixed structure, encodings are

straight-forward. For example, a vector of real numbers can be used, where each

value represents a specific weight in the network. However, this is not possible

when the network structure is changing. The encoding now has to account for

the structure of the network as well as the weights of the changing connections.

One of the main challenges trying to find an encoding for evolving topologies is

developing a method for appropriate crossover. One approach is to swap random

subtrees, similarly as in genetic programming. However, because of the nature of

neural networks, two differently structured networks may solve the problem, and

a random swap may have a negative effect. Many different methods have been

developed to address this problem and some will be described in later sections.

4.2 Evolution of Static Architectures

Consider evolving the weights of an artificial neural network with a predefined,

static architecture. In this problem, the weights can be represented as a vec-

tor, with each index of the vector corresponding to a particular weight in the

architecture. Each vector is evaluated for fitness by instantiating a network with

the encoded weights, training it for a predefined amount of time, and using the

end error as the fitness. Within this basic framework, there is a wide variety of

implementation options.

25



4.2.1 Fogel et al. 1990: Evolving Neural Networks

Fogel et al. [9] demonstrates the evolution of neural networks with static architec-

tures on XOR and a gasoline blending problem. An evolutionary programming

approach is used to evolve the networks. Children are created by mutating each

value in the parent vector by adding a number drawn from a normal distribution

with a mean of zero. The variance of the mutation distribution decreases over

time. The next population is computed through a variation of (µ + λ) selec-

tion. This method is applied to XOR using a network with a single hidden layer

with two nodes and to a gasoline blending problem, using a network with two

hidden layers with two nodes in the first and five in the second. In both cases,

the evolutionary algorithm was able to solve the problem in fewer generations on

average than backpropagation. Fogel et al. [9] claims that one of the strengths

of evolutionary programming over backpropagation is its generalization: at the

time, backpropagation required networks to be in layers, but evolutionary pro-

gramming could be applied to networks with skip connections or feedback loops.

Although backpropagation has since been applied to networks with skip connec-

tions and feedback loops [14, 29], the generalizability of evolutionary algorithms

influenced the use of them in this work.

4.2.2 Weiland 1990: Evolving Neural Network

Controllers for Unstable Systems

Wieland [44] uses genetic algorithms to evolve recurrent neural networks on vari-

ations of the pole balancing problem. The pole balancing problem consists of

applying forces to a moving cart to balance a pole upright on top of it. Five

variations of the problem are addressed: a single pole with the location and the
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angle of the pole as inputs to the network, a single pole with only the angle as

input to the network, a single pole with no network inputs, multiple poles, and

jointed poles. The networks are fully recurrent: each node has an input from

every other node as well as itself and knows the full state of the network. The

number of neurons in the networks varied depending on the problem. The net-

works are represented as vectors. The genetic algorithm uses mutation, crossover,

and inversion. The algorithm was able to balance a single, unjointed pole for 106

timesteps in only 6 generations. The two-pole problem with poles of lengths 1.0

and 0.1 meters required 150 generations to reach 106 timesteps, and the jointed

pole problem with the bottom pole with a length of 1 meter and the top pole

a length of 0.1 meters required 30 generations. Wieland [44] shows that fully

connected recurrent networks with a set number of neurons can be evolved with

a genetic algorithm to control unstable systems. The use of evolution on recur-

rent networks reinforces Fogel et al. [9]’s claim regarding evolutionary algorithms’

generalizability. Wieland [44] also shows that ANNs can be evolved to solve re-

inforcement learning problems and not just supervised learning problems.

4.3 Evolution of Weights and Topologies

It is possible to evolve the architecture of the network alongside the weights or

other objectives. There are a wide variety of methods to address the encoding

and crossover problems discussed in Section 4.1. The following sections review

three methods that address these problems to simultaneously evolve weights and

topologies of networks.
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4.3.1 Evolving Connectionist Systems

Evolving connectionist systems (ECOS) were introduced by Kasabov [23]. These

systems learn both the weights and the topology of an artificial neural network.

Kasabov [23] gives seven main principles of the systems: 1) fast learning from

a large amount of data, 2) adaptation in real-time, 3) input variables, output

variables, connections, and neurons are changed, 4) data learning and knowledge

representation are comprehensive and flexible, 5) interaction with the environ-

ment, 6) representation of space and time in their respective scales, and 7) self-

evaluation [23, 43, 34]. ECOS learning methods can be applied to any type of

artificial neural network. The initial application by Kasabov was fuzzy neural

networks [23]. Other methods implementing ECOS are evolving self organizing

maps and evolving clustering methods [24].

4.3.2 SANE

In 1997, Moriarty and Miikkulainen [28] developed the SANE algorithm to evolve

both the architecture and weights of neural networks. Genetic algorithms are used

to coevolve populations of neurons and architectures. To evaluate fitness, multiple

combinations of neurons and architectures are run on the problem. Architectures’

fitnesses are assigned as the average of all of these runs. Neurons’ fitnesses are

assigned as the average of the top five runs that they participated in. Taking

only the top five helps make sure that good neurons are not discarded because of

bad architectures. Moriarty and Miikkulainen [28] shows that the method allows

for the specialization of neurons using lesion studies on the evolved networks.
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Genome

In, Out = (1, 4)
Weight = 0.7
Enabled = True
Innovation = 1

In, Out = (2, 4)
Weight = -0.5
Enabled = True
Innovation = 3

In, Out = (3, 5)
Weight = 0.2
Enabled = True
Innovation = 5

In, Out = (4, 5)
Weight = 0.4
Enabled = True
Innovation = 6

Connection Genes

Key = 1
Input

Key = 5
Output

Key = 4
Hidden

Key = 3
Input

Key = 2
Input

Node Genes

Network

5

4 3

1 2

Figure 4.1: An example genome and corresponding network used in NEAT. Repli-
cated with modification from [37].
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4.3.3 NEAT

NeuroEvolution of Augmenting Technologies (NEAT) is an algorithm developed

by Stanley and Miikkulainen [37] from the University of Texas at Austin in 2001.

The authors sought to overcome some of the challenges of evolving network

topologies discussed above. The main contributions are an encoding method

allowing for crossover, the use of historical markers, speciation to protect inno-

vation, and starting all networks from a minimal size.

In order to encode the networks, there are two types of genes included in each

genome: node genes and connection genes. Node genes include the node’s key

and its role in the network (input, output, or hidden). Connection genes contain

the connection’s inputs and outputs, its weight, whether it’s enabled or disabled,

and its historical marker. An example genome and its respective network is shown

in Figure 4.1.

Mutations control the changing structure of the networks. Nodes can be

added by splitting a connection between two nodes and inserting the new node

at the split. The old connection is still included in the gene but is marked as

disabled and does not effect the output of the network. The connection leading

into the new node is given a weight of one while the connection coming from

the new node uses the weight of the old connection. To add a connection, two

unconnected nodes are connected.

Historical markings are used to track the origin of each gene. The algorithm

defines a global innovation number that tracks the latest assigned innovation

number. New nodes or connections can only be created through mutation; when

this happens, the gene is assigned the current global innovation number, and the

global innovation number is incremented. When a mutation is inherited, it main-
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tains the same innovation number. In this way, the markers represent the role of

the node in the network. When genomes crossover, the genes with the same in-

novation number are paired, matching up the different topological parts. During

crossover, the genes that are in both parents with the same innovation numbers

are inherited randomly from either parent. Genes with innovation numbers that

are only present in one of the parents are classified as disjoint or excess. Disjoint

genes are genes that have innovation numbers that are within the range of the

other parent’s innovation numbers; excess genes are genes that have innovation

numbers that are greater than all the other parent’s innovation numbers. Disjoint

and excess genes are inherited from the more fit parent.

Stanley and Miikkulainen [37] uses speciation to help protect network inno-

vation. A species is a group of networks within the population that share certain

qualities. Early structural innovation can be punished by the fitness function

because of a bad weight value even if the new structure is a helpful change. To

mitigate this, a speciation method is introduced. New innovations are evalu-

ated within the context of the species of similar networks, rather than the entire

population. Species are determined by the genomic distance δ between genomes,

measured by the number of excess and disjoint genes and the difference in match-

ing genes’ weights. The genomic distance is defined as

δ =
c1E

N
+
c2D

N
+ c3W , (4.1)

where E is the number of excess genes, D is the number of disjoint genes, N is the

number of genes in the larger genome, and W is the average weight differences

of matching genes, and c1, c2, and c3 are parameters that control the influence of

the excess genes, disjoint genes, and weight differences, respectively. A variable
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δt is defined to be the maximum distance genomes can have and still exist in the

same species.

Explicit fitness sharing is used to keep species small and decrease the chance

that a single species might dominate a population. This helps promote diversity

within the population. An individual’s fitness with fitness sharing, f ′i , is defined

as:

f ′i =
fi∑n

j=1 sh(δ(i, j))
, (4.2)

where fi is the individual’s raw fitness. The function sh(δ(i, j)) is equal to 0 if

δ(i, j) > δt, otherwise it is equal to 1.
∑n

j=1 sh(δ(i, j)), then, is the number of

individuals in the same species.

In the NEAT algorithm, each genome is started with a minimal structure —

using only input and output nodes, and no hidden nodes. Nodes are then only

added through mutation. This promotes the algorithm to find the smallest net-

work(s) that can solve the problem and prevents users from initializing networks

larger than needed.

The authors used their algorithm to solve XOR and the double pole balanc-

ing problem, with and without velocity information. NEAT successfully solved

XOR in an average of 32 generations without failing any trial. Evolved networks

tended to be small, with only one or two hidden nodes. NEAT took an average of

24 generations to solve the double pole balancing problem with velocity informa-

tion. While one compared method that evolved static networks with ten hidden

nodes took a similar number of generations, NEAT evolved networks with zero

to four hidden nodes, demonstrating the algorithms ability to find small working

structures. NEAT solves the double pole balancing problem without velocity in
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fewer generations than the compared methods.

NEAT has been applied to several different problems, including competitive

coevolution problems [38] and Pacman [45]. NEAT has also been extended in

various ways to evolve compositional pattern producing networks [39], to generate

video game content [13], and to control online, decentralized multi-robot systems

[36]. The success and influence of NEAT in a broad array of domains influenced

this work’s exploration of its utility when combined with SNNs.
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Chapter 5

Evolution of SNNs

Like ANNs, SNNs can be evolved in order to solve problems. Evolving SNNs

removes the problem of determining a learning rule that will work well with the

temporal and binary aspects of spikes. The following sections review literature

that uses evolution for spiking neural networks.

5.1 Hagras et al. 2004: Evolving Spiking

Neural Network Controllers for

Autonomous Robots

Hagras et al. [12] uses the evolution of spiking neural networks to train a robot

to follow a wall at a specified distance. The robot uses 16 photoreceptors to

receive black and white input on a wall. The image is convolved with a Laplace

filter and scaled between zero and one. The scaled values are encoded into spikes

using latency encoding: the strength of the input is the inverse delay of the spike.

That is, if the robot received a strong input, the neuron would spike earlier than
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if the robot received a low input. Network outputs are used to control the robot’s

movements. The firing rate of the two output neurons, measured over 20 millisec-

onds, is transformed to appropriate units, scaled, and controls the speed of the

wheels. The spike response neuron model is used and networks did not include

any hidden neurons. Evolution is performed using an adaptive online genetic

algorithm. The genomes consist of 20 bits: 5 bits per weight, representing the

values 0 to 31. Crossover probabilities are adaptively changed to speed up the

algorithm. Changes are controlled by comparing the best individual’s fitness to

the population’s average fitness to determine the status of the convergence of the

algorithm. The fitness of individuals is measured by the average standard devia-

tion of the robot from the wall. The method is compared to a handcrafted SNN,

SNNs evolved with a standard genetic algorithm, and a Fuzzy Logic Controller

(FLC). The standard genetic algorithm improved more quickly at first, but then

was unable to get out of local minima, while the adaptive algorithm started slower

but was able to exit local minima. The adaptive algorithm also outperformed the

other methods in terms of standard deviation fitness. The success of the evolved

networks over the handcrafted networks of the same structure demonstrates the

capability of evolution to find solutions that may not be obvious to humans.
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5.2 O’Halloran et al. 2011: Evolving Spiking

Neural Network Topologies for Breast

Cancer Classification in a Dielectrically

Heterogeneous Breast

O’Halloran et al. [30] uses the NEAT algorithm with SNNs, similar to this thesis,

to classify whether a breast cancer tumor is malignant. The generated dataset

consisted of three different tumor models with two classes: malignant or non-

malignant. The data is preprocessed and converted to spike trains using rate-

based encoding. Networks use LIF neurons. The networks are initialized with

thirty input neurons, two output neurons, and no hidden neurons. The output

neuron that fires more spikes is considered the classification. Fitness of each

individual is determined by the count of correct classifications. Networks with

evolved topologies showed classification increase from a fixed-topology network

of about 10%. O’Halloran et al. [30] demonstrates the success of SNNs evolved

with NEAT on binary classification problems. The use of LIF neurons and rate-

based encodings provides evidence that these two selections could be successful

on other problems as well, and this work follows uses the same methods.

5.3 Qiu et al. 2019: Evolving Spiking Neural

Networks for Nonlinear Control Problems

Qiu et al. [32] also uses a combination of SNNs and NEAT. Using the Izhikevich

neuron model and rate-based encoding, networks are evolved to solve the single
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pole balancing problem to test the viability of applications to nonlinear control

problems. A background current is injected into the neurons to promote firing,

ensuring that the neurons would fire at a certain rate even with no input. This

is similar to biological synaptic noise. The input data from the pole balancing

environment is normalized in the range [0, 1] and linearly converted into a spik-

ing rate with rate-based encoding. The population consists of 150 individuals.

Species-based elitism is used: if a species contains more than 5 individuals, the

best individual is copied to the next generation. The best 20% of individuals in

each species is allowed to reproduce, and the offspring form the next generation.

These and other parameters are the same or similar to those used in Stanley

and Miikkulainen [37]. Fitness is defined as the number of timesteps the net-

work keeps the pole balanced within set criteria. For pole balancing problem

without velocity information, the authors slightly modify the NEAT genomic

distance function to add a positive decay variable from the force function. On

both problem variations (with and without velocity information), SNNs evolved

with NEAT outperformed ANNs evolved with NEAT in terms of the number of

generations to find a solution and the number of runs that did not find solutions

within the generation limit. Qiu et al. [32] demonstrates the ability of NEAT and

SNNs to find solutions to reinforcement learning problems. This work provides

further exploration into this and follows many of the same evolutionary methods

used in Qiu et al. [32] that are not present in Stanley and Miikkulainen [37], like

species elitism. The use of rate-based encoding in Qiu et al. [32] work supports

evidence from Hagras et al. [12] that this encoding method can be used to suc-

cessfully convert real values into spikes for the use of SNNs evolved with NEAT

and thus is chosen for this work.
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Chapter 6

Evolving Spiking Neural

Networks with NEAT

The following chapters will discuss the methods, experiments, and results of this

work.

6.1 Goals

The goal of this work are to compare ANNs and SNNs evolved with NEAT

with various parameter combinations, and examine the effects of the parameter

changes on each type of network.

While both this work and the work of O’Halloran et al. [30] and Qiu et al. [32]

discussed above both use NEAT to evolve SNNs, this work differs from theirs in

a three of ways:

1. Use and comparison of neuron variations

2. Comparison of various NEAT and SNN parameter values
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3. Direct comparison to NEAT with ANNs (different than O’Halloran et al.

[30])

6.2 Problems

This work studies three problems: XOR, x to y mapping of a cosine function,

and the single pole balancing problem. I chose these three problems because they

represent different domains: XOR is a traditional binary classification problem,

cosine is a regression problem, and single pole balancing is a reinforcement learn-

ing problem. They also all limit the number of inputs and outputs and thus the

initial size of the networks. Limiting the initial network size decreased the run

time of the simulations.

6.2.1 XOR

XOR is a traditional proof-of-concept problem used to show that a method can

learn nonlinearities. It is a supervised learning problem where the algorithm

has to learn the binary operator XOR: (0, 0) = 0, (1, 0) = 1, (0, 1) = 1, (1,

1) = 0. In this work, the fitness of an individual is zero minus the average

mean squared error over the examples; all fitnesses are negative or zero with the

maximum possible fitness equal to zero. The fitness required for the problem to

be considered “solved” is -0.05. Because SNNs only output integers, there are

only five possibilities for their fitness: -1, -0.75, -0.5, -0.25, and 0. Because of

this, SNNs had to have a fitness of 0 to solve the problem. However, ANNs with

real valued outputs could have fitnesses between the 4 binary options. This is

why I allow for the problem to be solved at -0.05 rather than 0. I do not round

the ANN outputs before calculating their fitness because during test runs, they
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were never able to find a solution when rounded.

6.2.2 Cosine

The cosine problem used here involves mapping x coordinates to the y coordinates

of a cosine wave. I chose to examine the networks on the cosine function for

two reasons: I wanted to look at network performance on a regression problem

(however, because of discretization it becomes a multi-class supervised learning

problem), and because it shows that the networks can learn to output positive

values with little to zero input.

I limit the domain of the function to [0, π), inclusive of 0, exclusive of π.

The cosine function has a range of (-1, 1) of real numbers. However, spiking

neural networks are limited to outputting zero and positive integer values. I had

the option of scaling the function to be positive and large enough that integer

roundings would be decent approximates, or scaling the outputs of the networks

to be map between (-1, 1) (for example, make 0 spikes map to -1, 5 spikes map

to -1/2, 10 spikes map to 0, etc.). Either way the SNN output would suffer from

rounding problems. This demonstrates one of the limitations of SNNs. I chose

the former option of scaling the function. Rather than use y = cos(x), I train the

networks on y = round(10 × (cos(x) + 1)). This gives an output range [0, 20],

inclusive. In order to better compare the ANNs and SNNs, the ANN outputs are

also rounded to integers before calculating fitness.

The networks are given an explicit input bias unit. Networks have two inputs,

the x value of the function, the constant 1, and have one output: the y value of

the function.

The error on a single example is the mean squared error between the predicted
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value and the actual value. The fitness of an individual is zero minus the average

mean squared error over all of the examples; all fitnesses are negative or zero, with

zero being the best possible fitness. For the problem to be considered “solved,”

a network has to achieve a fitness greater than -1.

6.2.3 Single Pole Balancing

The single pole balancing (SPB) problem is a reinforcement learning problem

where the algorithm has to balance a pole on a moveable cart. The pole is

attached to the cart at one end and stands straight up. In this work, the network

is given the full state of the environment: the location of the cart, the velocity of

the cart, the angle of the pole, and the rotational velocity of the pole. The network

gives a single output. If the output is greater than 0.5, a force of +10 Newtons

is applied to the cart. Otherwise, a force of -10 Newtons is applied. There is

no stochasticity in the simulation. The simulation is run for 15 computational

seconds with a timestep of .05 seconds, totalling to 750 timesteps. Each SNN is

simulated for 100 milliseconds at each of these timesteps to produce an output.

Qiu et al. [32] uses a timestep of .02 and ran for 2,000 seconds, totalling 100,000

timesteps. I chose to change these parameters for the sake of experiment run

time. The fitness score of the network is the time before the pole’s angle exceeds

± 45 degrees, with the maximum time being 15 seconds. The threshold to be

considered as “solved” is the entire 15 seconds. The SNN’s output is interpreted

as a binary: if the network emits any spikes, the output is 1, otherwise it is 0.

The ANN output is not rounded before it is input to the simulation because the

simulation rounds it to determine the force to apply.
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6.3 Set-up

I used the NEAT-Python [26] implementation of the NEAT algorithm, paired

with the Brian2 [40] SNN implementation. Both of these simulations are freely

available online. The following sections details the specifics of my simulations.

6.3.1 NEAT

NEAT Simulation

For these experiments, I made use of the NEAT-Python [26] implementation

of NEAT. This section outlines some of the key implementation details of this

library.

Node genes allow for the inclusion of more information than explicitly included

within the NEAT algorithm. By default, node genes contain a key, a bias value, an

aggregation function, and an activation function. Keys are assigned to nodes as

innovation numbers. When a new node is created through mutation, it is assigned

the next integer value compared to the present largest key. During crossover, if

a node is passed to the child, the key does not change. The bias value is a real

value that is added to the node output. The aggregation function is the method

used to combine network inputs. This work uses addition as the aggregation

function. The activation function specifies an activation function for an ANN.

This work uses sigmoid and elu activation functions. Further attributes can be

added, but this work uses only these four. The the bias, aggregation function,

and activation function values are only used by the ANNs and are discarded by

the SNNs. The original NEAT implementation stores the role of the node (input,

output, or hidden) within the node gene. In this library, this information is not

stored in the node genes, rather a list of input and output nodes is stored accessed
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through a configuration object.

Connection genes include the inputs and outputs of the connection, the weight

of the connection, and whether or not that connection is enabled. In contrast to

the original NEAT algorithm, rather than using explicit innovation numbers in

the connection genes, the library replaces this by comparing input and output

nodes. If two connections have the same input and output nodes, they are consid-

ered to match. Because of the lack of innovation numbers, there is no difference

between disjoint and excess genes. Variables c1 and c2 in Equation 4.1 collapse

into a single variable as shown in Equation 6.1.

A genome consists of a unique key, a list of node genes, a list of connection

genes, and the fitness of the genome. An example genome and its respective

network can be seen in Figure 6.1.

The genomic distance calculation is modified to include the differences in the

node and connection genes. The genomic distance is the sum of the distances

between the nodes and the distances between the connections. Each distance is

calculated the same as Equation 4.1, except with the excess and disjoint values

merged. The modified equation becomes:

δ =
CDC×D

N
+ CWC×W , (6.1)

where CDC, the compatibility disjoint coefficient, is analogous to c1 and c2 in

Equation 4.1 and CWC is equivalent to c3 in Equation 4.1.

The number of disjoint node genes is calculated as the number of node keys

that are contained in one genome but not the other. The number disjoint con-

nection genes is calculated by the number of connections between input/output

pairs that are in one genome but not the other. The weight difference, W , is
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calculated differently for node and connection genes. For node genes, it is the

difference between the bias values, plus 1.0 if the aggregation functions are differ-

ent, and plus 1.0 if the activation functions are different. Because in this work,

the aggregation and activation functions are the same for all nodes, the weight

difference is simply the difference between bias values. The weight difference for

connection genes is the difference between weights plus one if one is enabled and

the other is not. The total genomic distance is the sum of these two values.

Static Parameters

Each problem uses a population size of 100 individuals, initialized with no hidden

nodes and completely connected. Because one of the principles of NEAT is to find

minimal structures [37], networks are generally started without hidden nodes.

There is a 50% chance that a connection will be added or deleted and a 20%

chance that a node will be added or deleted. While both Stanley and Miikkulainen

[37] and Qiu et al. [32] used much lower mutation rates, early tests found that the

higher values worked well. Species were removed after 10 generations if they did

not show improvements. This was chosen as less than Stanley and Miikkulainen

[37] to decrease run time. Each species used elitism with the two best individuals

being copied to the next generation. 20% of the species was allowed to reproduce

each generation, similarly to Qiu et al. [32]. Species were defined to have at

least 2 individuals. Connections are not allowed to change by changing between

enabled and disabled. During testing, I found allowing weight disabling lead to

more neurons being disconnected but still evaluated, which increased run time.

Weights are initialized from a Gaussian distribution with a mean of zero and

a standard deviation of one. Weights are limited to a maximum of 30 and a

minimum of -30. Weights are constrained to prevent any one from overpowering
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the network with an exceedingly large magnitude. Weights values have an 80%

chance of mutating and a 20% chance of being replaced with a new value drawn

from the same initial distribution. Stanley and Miikkulainen [37]’s mutation

method was slightly different, having an 80% chance of a genome being mutated

and then a 90% chance of being perturbed and a 10% chance of being replaced.

The values I chose attempted to emulate that within the NEAT-Python library’s

[26] constraints.

Varied Parameters

The compatibility threshold, the maximum genomic distance for two individuals

to be considered part of the same species, varies between 2.0, 2.5, and 3.0. This

value corresponds to δt in Equation 4.1. Stanley and Miikkulainen [37] used a δt

of 3.0. In test runs, I found that values higher than 3.0 put too much pressure

on the population to have a lower number of species, causing it to go extinct

quickly. Because of this, I decided to evaluate the differences between a range

of lower compatibility thresholds, while not deviating too far from Stanley and

Miikkulainen [37].

The compatibility disjoint coefficient, the coefficient for the disjoint and excess

gene counts’ contribution to the genomic distance, varies between 0.5 and 1.0.

This value corresponds to c1 and c2 in Equation 4.1, which were both assigned

to 1.0 in Stanley and Miikkulainen [37]. The NEAT-Python simulation uses the

same value for both variables [26]. Similarly to the compatibility threshold, this

parameter influences the number of species, and higher values tended to push the

population towards extinction. I chose to only use one smaller option to allow

for a larger difference between the values while still being between zero and one.

The compatibility weight coefficient, the coefficient for the weight multiplier
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difference’s contribution to the genomic distance, varied between 0.5 and 1.0.

This value corresponds to c3 in Equation 4.1. Stanley and Miikkulainen [37] used

a compatibility weight coefficient of 0.4. However I found in test simulations that

values lower than 0.5 allowed the population to break into a large number of

very small species that never found solutions, so I decided to use larger values.

I chose 0.5 and 1.0 so that these values would match the compatibility disjoint

coefficient.

6.3.2 SNNs

SNN Simulation

In this work, I use the Brian2 library to run the spiking neural network simulations

[40]. Brian2 takes equations from the user and calculates the variable values at

each timestep. The experiments in this work use the default timestep of 0.05

milliseconds. The α function used to calculate the current into a postsynaptic

neuron at the time of a presynaptic spike (Equation 2.6) is a step function with

a width of one time-step; there is no synaptic effect on the incoming current. If

there is a presynaptic spike, the voltage of the postsynaptic neuron is increased

directly by the weight value on the next time-step.

Neurons

I use two neurons modelled from LIF. Both use a voltage reset value of 0 and a 5

millisecond refractory period. The first neuron variation, “N0,” uses a constant

input current of 1 millivolts. The second neuron, “N1,” does not use an input

current. N1 also clamps the voltage during the refractory period: the voltage is

not updated and remains at 0. This is different from N0, where, although the
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neuron is kept from spiking, the voltage is still updated by its related equation.

N0:

dv

dt
=

1− v
τ

(6.2)

N1:

dv

dt
=


0 if refractory

−v
τ

else

(6.3)

Static Parameters

In order to calculate an output from the SNN, the network must be simulated

for a specific amount of time for each input. In this work, simulations were run

for 100 milliseconds. In test simulations, I found that this time period was long

enough for the neurons to spike multiple times, but short enough to limit the run

time. Both neurons have a refractory period of 5 milliseconds, which reset the

voltage to 0. τ is fixed at 10 milliseconds. These values were used in many of the

Brian2 examples and I found they worked well.

Varied Parameters

The spiking threshold, the value the voltage a neuron had to reach before out-

putting a spike, varies between 0.75, 1.0, and 1.25. In test experiments, I found

that 1.0 worked well, and that differences more that 0.25 appeared to have a large

impact. For this reason, I chose a step of 0.25 above and below 1.0.

These parameters and those described in Sections 6.3.1 were chosen to be

constant for simplicity and consistency of simulations. These values could have

been included in the genome and evolved alongside the weights and architectures.

In future work, evolving these values should be explored.

47



Real Value to Spike Translation

The inputs for the XOR, cosine, and single pole balancing problems are real

values. I chose to use rate-based encoding to turn these values into spikes. I

chose rate-based because of its simplicity and easy integration with the Brian2

simulation. Input values are multiplied by 50 and evenly spaced across the 100

milliseconds of simulation time. During test experiments, I found that this value

worked well to give enough input for the neurons to spike. Using a high multiplier,

I address the problem of neurons needing several input spikes to ever emit an

output spike. I did this as an alternative to injecting a constant background

current in the N1 neurons as was done in [32].

6.4 Experiments

SNN trials take a combination of neuron type (2 possibilities), compatibility

threshold (3 possibilities), compatibility disjoint coefficient (2 possibilities), com-

patibility weight coefficient (2 possibilities), and spiking threshold (3 possibilities)

from the options listed above. This led to a total of 72 SNN trials, evenly split

between N0 combinations and N1 combinations. Each trial was repeated five

times. ANN trials take a combination of compatibility threshold (3 possibilities),

compatibility disjoint coefficient (2 possibilities), and compatibility weight coef-

ficient (2 possibilities). This led to a total of 12 trials, again each run five times.

XOR and cosine trials were run for a maximum of 500 generations while SPB

trials were run for a maximum of 400 generations for the sake of time.

Trials were performed at OU Supercomputing Center for Education & Re-

search (OSCER) at the University of Oklahoma (OU). ANN trials took less than

15 minutes on all problems. SNN trials took about 30 minutes on the XOR
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problem, and up to 48 hours on the cosine and SPB problems. Spiking neu-

ral networks take more time than artificial neural networks because simulating

them is computationally expensive: each network is run for a specified period of

computational time. In these trials, simulations were run for 100 milliseconds at

0.05 millisecond timesteps, resulting in 2,000 timesteps. In contrast, ANNs are

limited only by number of computations and not timesteps, so they can often be

evaluated faster.
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Genome

Node Key = (1, 4)
Weight = 0.7
Enabled = True

Key = (2, 4)
Weight = -0.5
Enabled = True

Key = (3, 5)
Weight = 0.2
Enabled = True

Key = (4, 5)
Weight = 0.4
Enabled = True

Connection Genes

Key = 1
Bias = -0.5
Activation = Sigmoid
Aggregation = Sum

Key = 4
Bias = 2.1
Activation = Elu
Aggregation = Sum

Key = 4
Bias = -0.3
Activation = Sigmoid
Aggregation = Sum

Key = 3
Bias = 0.9
Activation = Sigmoid
Aggregation = Sum

Key = 2
Bias = 1.2
Activation = Elu
Aggregation = Sum

Node Genes

Inputs: 1, 2, 3

Outputs: 5

Network

5

4 3

1 2

Figure 6.1: An example genome and its corresponding network as represented in
the NEAT-Python simulation [26].
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Chapter 7

Results and Discussion

Abbreviations:

CT - compatibility threshold

CWC - compatibility weight coefficient

CDC - compatibility disjoint coefficient

ST - spiking threshold

The plots provided are of singular examples that were specifically taken be-

cause they were found to be good representations of the whole of the results.

Data provided in tables are averaged over all repetitions of parameter combina-

tions except for the parameter values specified.

7.1 XOR

For the XOR problem, nine of the N0 combinations, six of the N1 combinations,

and two of the ANN combinations found solutions during all five repetitions (four

other ANN combinations found solutions during four of five repetitions). Table

7.1 shows the average number of generations, max fitness, number of solutions
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Neuron
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 167.79± 177.42 −0.153± 0.127 2.25± 2.10 1.86± 2.08 1.03± 1.96
N1 110.87± 88.40 −0.108± 0.081 2.83± 1.62 1.92± 1.89 0.39± 0.76
ANN 192.71± 108.93 −0.060± 0.033 3.33± 1.25 0.50± 0.76 1.00± 1.29

Table 7.1: Average number of generations, max fitness, number of solutions, and
number of timeouts for the three types of networks for XOR.

found, number of extinctions and number of timeouts for each of the different

neuron types.

Despite more SNNs finding solutions every time, Many ANNs found solutions

two, three, or four times, whereas SNNs tended to find solutions either rarely or

always. Because of this, ANNs had a higher average number of solutions found

per combination, with 3.33 ± 1.25 out of 5 times (66.7 ± 25.0%) compared to

2.25 ± 2.10 out of 5 times (45.0 ± 42.0%) for N0 combinations and 2.83 ± 1.62

out of 5 times (56.6 ± 32.4%) for N1 combinations. The standard deviations

here illustrate the larger breadth of the average number of solutions found by the

SNN combinations.

None of the N0 networks that used a spiking threshold of 0.75 ever found a

solution. A lower spiking threshold allows for more spikes, potentially decreasing

the chance that a network would never spike and give an output of 0. N0 net-

works with spiking thresholds of either 1 or 1.25 were able to find solutions, with

networks with a threshold of 1.25 only slightly less successful. This trend was

not observed in N1 networks. Because of the clamping on the N1 networks after

a spike, they spike less than N0 networks, which could account of their being less

affected by lower spiking thresholds.

Table 7.2 shows the average number of generations, max fitness, number of

solutions found, number of extinctions and number of timeouts. In N1 networks,
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Neuron CT
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 2.0 218.42± 178.74 −0.138± 0.132 2.58± 2.18 1.08± 1.89 1.33± 2.13
N0 2.5 174.58± 190.94 −0.158± 0.126 2.08± 2.22 1.67± 2.09 1.33± 2.13
N0 3.0 110.37± 141.85 −0.163± 0.123 2.08± 1.85 2.83± 1.86 0.42± 1.38
N1 2.0 181.63± 99.38 −0.083± 0.066 3.33± 1.31 0.75± 1.36 1.00± 0.91
N1 2.5 96.88± 59.24 −0.050± 0.073 3.17± 1.46 1.92± 1.75 0.17± 0.55
N1 3.0 54.10± 40.36 −0.150± 0.087 2.00± 1.73 3.08± 1.75 0.00± 0.00
ANN 2.0 282.65± 100.63 −0.071± 0.039 3.00± 1.22 0.50± 0.87 1.75± 1.48
ANN 2.5 186.90± 88.84 −0.057± 0.034 3.25± 1.48 0.75± 0.83 1.00± 1.22
ANN 3.0 108.58± 48.76 −0.052± 0.021 3.75± 0.83 0.25± 0.43 0.25± 0.43

Table 7.2: Average number of generations, max fitness, number of solutions, and
number of timeouts for the three types of networks for XOR, separated by varying
compatibility thresholds.

Neuron CDC
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 0.5 105.82± 149.84 −0.192± 0.120 1.61± 1.80 3.00± 1.94 0.61± 1.57
N0 1.0 229.76± 181.17 −0.114± 0.122 2.89± 2.18 0.72± 1.52 1.44± 2.22
N1 0.5 81.42± 54.12 −0.129± 0.072 2.42± 1.44 2.33± 1.80 0.33± 0.75
N1 1.0 197.10± 85.78 −0.046± 0.032 4.08± 0.64 0.33± 0.62 0.83± 0.90
ANN 0.5 147.87± 81.50 −0.054± 0.016 3.67± 0.75 0.83± 0.90 0.33± 0.47
ANN 1.0 237.55± 114.31 −0.066± 0.043 3.00± 1.53 0.17± 0.37 1.67± 1.49

Table 7.3: Average number of generations, max fitness, number of solutions, and
number of timeouts for the three types of networks for XOR, separated by varying
compatibility disjoint coefficients.

Neuron CWC
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 0.5 118.07± 156.52 −0.194± 0.129 1.67± 1.89 2.94± 2.07 0.56± 1.57
N0 1.0 217.51± 183.06 −0.111± 0.111 2.83± 2.14 0.78± 1.44 1.50± 2.19
N1 0.5 108.98± 90.68 −0.117± 0.083 2.67± 1.67 2.08± 1.88 0.33± 0.78
N1 1.0 169.53± 87.22 −0.058± 0.040 3.83± 0.80 0.58± 1.11 0.83± 0.90
ANN 0.5 130.83± 73.65 −0.052± 0.020 3.67± 0.75 0.83± 0.90 0.33± 0.75
ANN 1.0 254.58± 103.19 −0.068± 0.041 3.00± 1.53 0.17± 0.37 1.67± 1.37

Table 7.4: Average number of generations, max fitness, number of solutions, and
number of timeouts for the three types of networks for XOR, separated by varying
compatibility weight coefficients.
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with each increase in the connection threshold, the average number of solutions

decreased (from 3.33 to 2.83 out of five) and the average number of extinctions

increased (from .75 to 3.08 out of five). This trend is seen to a lesser extent in the

N0 networks, where the average number of extinctions did increase (from 1.08

to 2.83), but the average number of solutions found held relatively steady; the

increase of extinctions came more directly from the decrease in timeouts. This

pattern did not appear to happen in the ANNs.

Tables 7.3 and 7.4 show that, on average for all network types, increasing

either the CWC or CDC decreases the number of extinctions. In N0 and N1

combination averages, there is also an increase in the number of solutions found.

The N0 network trials with both CWC and CDC = 0.5 went extinct an average

of 4.44 times out of five. N1 exhibited similar behavior, but to a lesser extent,

going extinct an average of 3.78 times out of five. Only four ANN neurons ever

went extinct, and three of the four of them were the trials with CWC = CDC =

0.5. This behavior occurred with every compatibility threshold.

The ANNs that found solutions either four or five times all either had CWC

= 0.5 and CDC = 1 or CWC = 1 and CDC = 0.5. As mentioned above, the

networks that had both CWC = CDC = 0.5 tended to go extinct more often

— at a rate of 1.67 out of five times compared to 0.33 out of five times when

CWC = CDC = 1 and 0 out of five times when they had the paired values of

1 or 0.5. The networks with both CWC = CDC = 1 tended to time out more

often, with 2.67 out of five times, compared to 0 out of five times for when CWC

= CDC = 0.5 and 0.67 out of five times when they had the paired values of 1

and 0.5. Proportionately, the groups that had the paired values of 1 and 0.5

found solutions at a higher rate: 4.33 out of five times compared to three out of

five times when CWC = CDC = .05 and 1.67 out of five times when CWC =
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(a) An N0 network with CT = 2.0,
CWC = 1.0, CDC = 0.5, ST = 1.25
that solved XOR in the 27th gen-
eration.

x
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0.91-2.44

1437

2.55

out

1.18

1251

2.51-3.06

-0.09

0.46

0.39

-1.58

(b) An N1 network with CT = 2.0,
CWC = 1.0, CDC = 0.5, ST = 0.75
that solved XOR in the 93rd gen-
eration.

Figure 7.1: Example SNNs that found solutions to XOR.

CDC = 1. Looking at both N0 and N1 networks, this pattern does not appear to

hold. Although when CWC = CDC = 0.5, the SNNs found fewer solutions and

went extinct at higher rates, as mentioned above, when CWC = CDC = 1, the

networks performed about the same as when one was 0.5 and the other was 1.

Figure 7.1 shows SNNs and Figure 7.2 shows ANNs that found solutions to

the XOR problems. All types of networks were able to evolve small structures,

with one to two hidden nodes as well as larger, more complicated networks with

several hidden nodes. Figures 7.3, 7.4, and 7.5 show the averages and standard

deviations of the number of nodes and connections for every 10th generation.

The graphs average across all parameter combinations and repetitions. As the

number of generations increases, the number of networks included in these av-

erages decreases because of trials solving the problem and going extinct. N0

and N1 combinations tended to have the larger networks than the ANNs. N0

combinations reach a maximum average of 7.7 nodes at generation 499 and 9.3
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(a) An ANN with CT = 3.0, CWC
= 0.5, and CDC = 1.0 that found a
solution to XOR in the 306th gen-
eration.
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(b) An ANN with CT = 2.5, CWC
= 0.5, and CDC = 1.0 that found a
solution to XOR in the 146th gen-
eration.

Figure 7.2: Example ANNs that found solutions to XOR

(a) Average number of nodes in
each N0 network.

(b) Average number of connections
in each N0 network.

Figure 7.3: Average N0 network sizes on XOR by generation, averaged over all
N0 parameter combinations.
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(a) Average number of nodes in
each N1 network.

(b) Average number of connections
in each N1 network.

Figure 7.4: Average N1 network sizes on XOR generation, averaged over all N1
parameter combinations.

(a) Average number of nodes in
each ANN.

(b) Average number of connections
in each ANN.

Figure 7.5: Average ANN sizes on XOR by generation, averaged over all ANN
parameter combinations.
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Neuron
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 213.56± 146.15 −1.353± 0.570 2.03± 1.34 1.64± 1.80 1.33± 1.55
N1 336.83± 184.14 −4.947± 0.306 0.00± 0.00 2.08± 2.28 2.92± 2.28
ANN 49.52± 69.64 −0.818± 0.114 5.00± 0.00 0.00± 0.00 0.00± 0.00

Table 7.5: Average number of generations, max fitness, number of solutions, and
number of timeouts for the three types of networks for cosine.

connections at generation 459. N1 combination sizes reach a maximum average

of 6.0 nodes at generation 459 and 8.1 connections at generation 389. ANNs

average sizes reached 5.2 average nodes at generation 459 and 6.6 average con-

nections at generation 399. All network combinations show a quick increase in

size in the first 50 generations, after which the growth rate slows. N0 neurons

show both the maximum average number of nodes and connections; they also

show the largest average standard deviation across the generations. By the last

generation, N0 combinations had a total of 40 networks left to average, compared

to N1 combinations with 10 and ANN combinations with 11. The larger num-

ber of networks left in N0 combinations would account to some extent the larger

standard deviation.

7.2 Cosine

On the cosine problem, every ANN combination found a solution every repetition.

One N0 combination found a solution every repetition, while three others found

a solution four out of five repetitions. N0 trials had an average max fitness of

−1.35± 0.57. No N1 neuron combination ever found a solution, with an average

maximum fitness of −4.95± 0.31 and an overall maximum fitness of -3.95 when

CT = 3, CWC = 0.5, CDC = 1, and ST = 0.75.

Table 7.6 shows the effect of the compatibility threshold on the different types
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Neuron CT
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 2.0 317.15± 128.58 −1.324± 0.602 1.50± 0.96 1.00± 1.73 2.50± 1.71
N0 2.5 225.17± 136.12 −1.238± 0.503 2.42± 1.32 1.50± 1.61 1.08± 1.32
N0 3.0 212.38± 146.15 −1.254± 0.570 1.98± 1.34 1.62± 1.80 1.37± 1.55
N1 2.0 421.32± 138.43 −5.002± 0.502 0.00± 0.00 0.83± 1.52 4.17± 1.52
N1 2.5 313.95± 177.99 −4.892± 0.109 0.00± 0.00 2.58± 2.43 2.42± 2.43
N1 3.0 329.44± 198.55 −4.684± 0.102 0.00± 0.00 2.06± 2.23 2.89± 2.23
ANN 2.0 103.70± 99.24 −0.744± 0.125 5.00± 0.00 0.00± 0.00 0.00± 0.00
ANN 2.5 27.15± 15.37 −0.826± 0.095 5.00± 0.00 0.00± 0.00 0.00± 0.00
ANN 3.0 17.70± 4.10 −0.884± 0.068 5.00± 0.00 0.00± 0.00 0.00± 0.00

Table 7.6: Average number of generations, max fitness, number of solutions,
and number of timeouts for the three types of networks for cosine, separated by
varying compatibility thresholds.

Neuron CDC
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 0.5 176.51± 125.02 −1.341± 0.507 1.83± 1.38 2.39± 1.89 0.78± 0.97
N0 1.0 250.61± 156.03 −1.364± 0.626 2.22± 1.27 0.89± 1.33 1.89± 1.79
N1 0.5 296.96± 187.20 −4.993± 0.411 0.00± 0.00 2.44± 2.17 2.56± 2.17
N1 1.0 376.70± 172.03 −4.901± 0.116 0.00± 0.00 1.72± 2.33 3.28± 2.33
ANN 0.5 19.97± 6.12 −0.840± 0.090 5.00± 0.00 0.00± 0.00 0.00± 0.00
ANN 1.0 79.07± 88.97 −0.796± 0.130 5.00± 0.00 0.00± 0.00 0.00± 0.00

Table 7.7: Average number of generations, max fitness, number of solutions,
and number of timeouts for the three types of networks for cosine, separated by
varying compatibility disjoint coefficient.

Neuron CWC
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 0.5 155.44± 150.93 −1.506± 0.614 1.28± 1.04 2.89± 1.56 0.83± 1.74
N0 1.0 271.68± 114.82 −1.199± 0.474 2.78± 1.18 0.39± 0.95 1.83± 1.12
N1 0.5 188.89± 152.52 −5.056± 0.386 0.00± 0.00 3.89± 1.88 1.11± 1.88
N1 1.0 484.77± 27.96 −4.838± 0.120 0.00± 0.00 0.28± 0.56 4.72± 0.56
ANN 0.5 29.67± 32.64 −0.785± 0.092 5.00± 0.00 0.00± 0.00 0.00± 0.00
ANN 1.0 69.37± 88.58 −0.850± 0.124 5.00± 0.00 0.00± 0.00 0.00± 0.00

Table 7.8: Average number of generations, max fitness, number of solutions,
and number of timeouts for the three types of networks for cosine, separated by
varying compatibility weight coefficients.
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(a) Fitness plot of an N0 network that
solved cosine.

(b) Fitness plot of an ANN that solved
cosine.

Figure 7.6: Example fitness plots of (a) an SNN and (b) an ANN that found
solutions to cosine. The SNN used N0 neurons and an ST = 1.25. Both networks
used a CT = 2.5, CWC = 1.0, and CDC = 0.5.

of networks. In the ANNs, increasing the CT decreased the number of generations

it took for the network to find a solution (from 85.68 with a CT = 2.0 to 17.7

with a CT = 3.0). In SNN trials, increasing the CT increased the average number

of extinctions.

CDC and CWC, averages shown in Table 7.7 and Table 7.8 respectively, also

influenced the number of extinctions in SNNs and number of generations in ANNs.

Similarly to in the XOR problem, increasing either the CDC or the CWC lead

to a decrease in extinctions for both N0 and N1 combinations. N0 combinations

also saw an increase in number of solutions found with either variable’s increase.

Both SNNs and ANNs saw a decrease in average number of generations with an

increase of the CDC or the CWC. For the SNNs, this can be attributed to the

increase in extinctions. For the ANNs, combinations with higher CDC or CWC

values found solutions faster than their counterparts with lower variable values.

Figure 7.6 shows fitness plots of a successful N0 network and a successful

ANN. While both networks’ average fitness displays standard average learning

curve, increasing quickly in the first generations before levelling off, only the
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(a) Fitness plot of an SNN that solved
cosine.

(b) Output figure of an ANN that
solved cosine.

Figure 7.7: Example outputs of (a) an SNN and (b) an ANN that found a
solutions to cosine. Values in nodes are the node The SNN used N0 neurons
and an ST = 1.25. Both networks used a CT = 2.5, CWC = 1.0, and CDC =
0.5.

(a) Output figure of an SNN that failed
to solve cosine.

(b) Output figure of an SNN that failed
to solve cosine.

Figure 7.8: Example of (a) a fitness plot and (b) the output of an SNN that failed
to find a solution to cosine. This network had N1 neurons, CT = 2.5, CWC =
1.0, CDC = 0.5, and ST = 1.25. This network’s end fitness was -4.9.
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ANN displays the same type of learning with its maximum fitness. The SNN, in

comparison, found a very successful network in the first trial, and its maximum

fitness varied little across the generations. This behavior is consistent across

networks and trials.

The outputs of the same SNN and ANN are shown in Figure 7.7. These graphs

are the outputs of the networks where they reached the solution threshold. All

values are rounded to the nearest integer, as they were during the simulations.

The output of the N0 network follows the cosine curve closely from x = 0 to

1.5, fairly well capturing the nonlinearity of the beginning of the curve. Through

the range of 1.5 and 2.25, however, rather than decreasing the slope as the curve

does, the network’s output is somewhat more scattered, following the same slope

as the middle of the curve and reaching zero at 2.25 rather than 2.75. The ANN,

between 0 and 2.5, follows a very linear path, disregarding the changes in the

curve’s slope. The network’s output at zero was 22, rather than 20 and between

2.5 and π the network outputs constant 0. Rather than learning the curve itself,

the ANNs tended to find a simpler solution, a linear mapping, that still reached

the maximum fitness threshold.

Figure 7.8 shows fitness and output graphs of an unsuccessful N1 network.

This network used the same parameters as the previous networks discussed. This

network timed out without finding a solution. The fitness curve in 7.8a is very

similar to the successful SNN fitness curve in 7.6b, except with lower maximum

fitness values. The output figure shown in 7.8b is from generation 469, where

network’s overall maximum fitness of -4.78 occurred. The network is beginning

to learn a downward curve, but the shape is not right. Near zero the output is

too low, and while it does decrease, it keeps a small slope until about 2.5, where

it drops quickly to zero.

62



x

y

-0.81

1

1061

1.02 1567

1.23

1345

3.45 2.07

0.57

(a) An N0 network with CT = 2.0,
CWC = 1.0, CDC = 0.5, and ST
= 0.75 that found a solutions to
cosine in the 137th generation.
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(b) An N1 network with CT = 2.5,
CWC = 0.5, CDC = 1.0, and ST
= 1.0 with a fitness of -4.95 from
the 279th generation.

Figure 7.9: Example SNNs networks evolved on the cosine problem.
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(a) An ANN with CT = 2.5, CWC
= 1.0, and CDC = 1.0 that solved
cosine in the 64th generation.
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(b) An ANN with CT = 2.5, CWC
= 1.0, and CDC = 0.5 that solved
cosine in the 25th generation.

Figure 7.10: Example ANNs that found a solutions to cosine.
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(a) Average number of nodes in
each N0 network.

(b) Average number of connections
in each N0 network.

Figure 7.11: Average N0 network sizes on the cosine problem by generation,
averaged over all N0 parameter combinations.

(a) Average number of nodes in
each N1 network.

(b) Average number of connections
in each N1 network.

Figure 7.12: Average N1 network sizes on the cosine problem by generation,
averaged over all N1 parameter combinations.

(a) Average number of nodes in
each ANN.

(b) Average number of connections
in each ANN.

Figure 7.13: Average ANN sizes on the cosine problem by generation, averaged
over all ANN parameter combinations.
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Figure 7.9 show SNNs and Figure 7.10 show ANNs that solved cosine. All

types of networks were able to evolve networks of various sizes and complexities.

Not all evolved networks used the bias unit, for example the ANN in Figure

7.10b. Figures 7.11, 7.12, and 7.13 show the average sizes of N0, N1, and ANN

combinations, respectively. N0 combinations held a fairly steady increase in both

number of nodes and connections across all generations. By generation 499, N0

combinations had 52 networks left to include in the averages. N0 combinations’

maximum average number of nodes and connections both occurred at the last

generation, with 11.7 average nodes and 10.6 average connections. 101 total N1

networks timed out and were able to be included in the averages by generation

499. Like the N0 combinations, the N1 combinations maintain a fairly steady

increase in size until the last generation, with maximum nodes and connections

occurring at that point. N1 combinations had a maximum average node count

of 3.5 and a maximum average connection count of 5.8. These networks are con-

siderably smaller than the N0 combinations. This could potentially account, to

some extent, the N1 combinations’ worse performance. ANNs’ longest running

trial completed at generation 424 and was the only trial remaining since gener-

ation 349. There were only 16 trials that exceeded generation 49, and by 169

there were already only four trials left. Because of this, the standard deviation

drops to near zero by generation 169. ANNs tended to solve cosine in very few

generations, which accounts for this dramatic decrease. ANN combinations had

a maximum average number of nodes of 4.5 at generation 399 and a maximum

average number of connections of 7.2 at generation 309. The ANN networks

tended to have sizes larger than N1 combinations but smaller than N0 combina-

tions. It is possible that the larger complexity compared to N1 combinations is

one of the reasons ANNs were able to solve the problem. The smaller complexity
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Neuron
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 286.40± 123.26 1.709± 0.172 0.00± 0.00 1.39± 1.96 3.61± 1.96
N1 271.28± 130.93 2.020± 0.403 0.00± 0.00 2.00± 2.25 3.00± 2.25
ANN 117.37± 92.39 11.582± 3.233 3.17± 1.52 0.92± 1.55 1.08± 1.50

Table 7.9: Average number of generations, max fitness, number of solutions, and
number of timeouts for the three types of networks for SPB.

compared to N0 combinations could reasonably be accounted for by the lower

average number of generations the ANNs took.

7.3 Single Pole Balancing

On the single pole balancing problem, neither N0 nor N1 trials were able to reach

the solution threshold of 15 seconds. The maximum fitness of any N0 network

run was 2.7 seconds, with N1 networks having an average maximum fitness of

1.70 ± 0.17. The maximum fitness of any N1 network run was 8.6 seconds with

N1 networks having an average maximum fitness of 2.03± 0.40. Comparatively,

two ANN networks were able to reach 15 seconds for all five repetitions, and five

were able to reach 15 seconds for four of the five repetitions. Together, all ANN

networks had an average maximum fitness of 11.58± 3.23 and found solutions an

average of 63.4% of the time with a standard deviation of 30.4%.

Increasing the compatibility threshold increased the average number of ex-

tinctions for both SNNs and ANNs, as seen in Table 7.10. Across the ANN

repetitions, increasing the CT also decreased the number of generations before

finding a solution. The change in the CT did not have an average trend on the

ANNs’ max fitness, average solutions found, or average number of timeouts.

Table 7.11 and Table 7.12 show that increasing either the CWC or the CDC
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Neuron CT
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 2.0 371.72± 40.46 1.83± 0.109 0.00± 0.00 0.42± 0.76 4.58± 0.76
N0 2.5 281.08± 119.38 1.704± 0.162 0.00± 0.00 1.50± 2.10 3.50± 2.10
N0 3.0 206.40± 126.43 1.591± 0.147 0.00± 0.00 2.25± 2.20 2.75± 2.20
N1 2.0 310.40± 102.35 2.133± 0.402 0.00± 0.00 1.17± 2.03 3.83± 2.03
N1 2.5 288.63± 120.46 2.145± 0.410 0.00± 0.00 1.58± 2.06 3.42± 2.06
N1 3.0 214.80± 146.37 1.782± 0.270 0.00± 0.00 3.25± 2.09 1.75± 2.09
ANN 2.0 189.10± 102.71 10.675± 2.542 2.75± 1.30 0.25± 0.43 2.25± 1.92
ANN 2.5 88.00± 51.52 12.908± 2.042 3.75± 1.09 0.75± 1.30 0.75± 0.83
ANN 3.0 75.00± 67.84 11.163± 4.239 3.00± 1.87 1.75± 2.05 0.25± 0.43

Table 7.10: Average number of generations, max fitness, number of solutions,
and number of timeouts for the three types of networks for SPB, separated by
varying compatibility thresholds.

Neuron CDC
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 0.5 250.69± 250.69 1.689± 1.689 0.00± 0.00 2.06± 2.06 2.94± 2.94
N0 1.0 322.11± 322.11 1.728± 1.728 0.00± 0.00 0.72± 0.72 4.28± 4.28
N1 0.5 212.67± 129.95 1.931± 0.366 0.00± 0.00 3.06± 2.12 1.94± 2.12
N1 1.0 329.89± 102.61 2.109± 0.418 0.00± 0.00 0.94± 1.84 4.06± 1.84
ANN 0.5 52.90± 27.36 13.012± 1.843 3.83± 1.07 1.00± 1.15 0.17± 0.37
ANN 1.0 181.83± 89.51 10.152± 3.663 2.50± 1.61 0.83± 1.86 2.00± 1.63

Table 7.11: Average number of generations, max fitness, number of solutions,
and number of timeouts for the three types of networks for SPB, separated by
varying compatibility disjoint coefficient.

Neuron CWC
Avg No. of
Generations

Avg Max
Fitness

Avg No. of
Solutions

Avg No. of
Extinctions

Avg No. of
Timeouts

N0 0.5 219.41± 138.21 1.676± 0.179 0.00± 0.00 2.67± 2.08 2.33± 2.08
N0 1.0 353.39± 48.07 1.741± 0.158 0.00± 0.00 0.11± 0.31 4.89± 0.31
N1 0.5 191.41± 138.88 1.912± 0.423 0.00± 0.00 3.39± 2.19 1.61± 2.19
N1 1.0 351.14± 47.34 2.128± 0.350 0.00± 0.00 0.61± 1.21 4.39± 1.21
ANN 0.5 101.10± 81.89 10.298± 3.507 2.50± 1.38 1.83± 1.77 0.83± 1.21
ANN 1.0 133.63± 99.19 12.865± 2.305 3.83± 1.34 0.00± 0.00 1.33± 1.70

Table 7.12: Average number of generations, max fitness, number of solutions,
and number of timeouts for the three types of networks for SPB, separated by
varying compatibility weight coefficient.
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(a) The fitness plot for the N0 net-
work that had the highest maxi-
mum fitness. The network had CT
= 2.5, CWC = 1.0, CDC = 1.0,
and ST = 1.25.

(b) The fitness plot for the N1 net-
work that had the highest maxi-
mum fitness. The network had CT
= 1.5, CWC = 0.5, CDC = 0.5,
and ST = 1.25.

(c) A fitness plot for one of the
ANN networks that found a solu-
tion during all batches. The net-
work had CT = 2.5, CWC = 1.0,
and CDC = 0.5.

Figure 7.14: Example fitness plots for the (a) N0 and (b) N1 networks that got
the highest maximum fitness and (c) one of the ANN networks that successfully
found a solution during all five repetitions.
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decreased the average number of extinctions across all combinations. Decreasing

either the CWC or CDC more than halved the average number of extinctions

for the SNN combinations. The greatest effect can be seen when increasing the

CWC with N0 combinations, dropping the average number of extinctions from

2.67± 2.08 to 0.11± 0.31 (53.4± 41.6% to 2.2± 6.2%). Increasing the CWC on

ANN combinations dropped the average number of extinctions from 1.83± 1.77

(36.6 ± 35.4%) to 0. Although there was not as sharp of an effect on the ANNs

with the CDC increase, the average number of extinctions did decrease slightly,

from 1.00± 1.15 to 0.83± 1.86 out of five (20.0± 23.0% to 16.6± 37.2%.

Figure 7.14 shows fitness graphs for the best performing N0 and N1 combina-

tion trials and an ANN that found a solution for the single balancing problem.

In all graphs, the average fitness demonstrates a slight increase in the first few

generations, increasing from nearly zero to around 0.5, where it remains. The N0

trial shows the same trend for the maximum fitness: a slight increase in the first

few generations before leveling off. This population had a network that reached a

sudden, high fitness, but that was not maintained. The N1 trial had a few spikes

of fitness within the first 20 generations, but again that performance was not

maintained and the maximum fitness dropped. The ANN shows a slight increase

in maximum fitness overall before spiking a few times and reaching 15 seconds.

Other ANN trials showed similar trends: a few medium spikes before a sudden

large increase.

Figure 7.15 shows SNNs and Figure 7.16 shows ANNs that were evolved for

the pole balancing problem. Both network types were able to evolve solutions

that did not use all of the inputs. Both networks also evolved more complex so-

lutions. The average size of evolved networks increased with further generations.

This is illustrated in Figures 7.17, 7.18, and 7.19 for N0 networks, N1 networks,
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(a) An N0 network with CT = 2.5,
CWC = 0.5, and CDC = 0.5, and
ST = 0.75 that has a fitness of 1.1
from the 49th generation.
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(b) An N1 network with CT = 2.0, CWC =
0.5, and CDC = 0.5, and ST = 1.0 that has
a fitness of 1.3 from the 139th generation.

Figure 7.15: SNN networks evolved on the single pole balancing problem.
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Figure 7.16: ANNs that solved SPB. Both networks used CT = 2.5, CWC = 1.0,
CDC = 0.5.

70



(a) Average number of nodes in
each N0 network.

(b) Average number of connections
in each N0 network.

Figure 7.17: Average N0 network sizes on SPB by generation, averaged over all
N0 parameter combinations.

(a) Average number of nodes in
each N1 network.

(b) Average number of connections
in each N1 network.

Figure 7.18: Average N1 network sizes on SPB by generation, averaged over all
N1 parameter combinations.

(a) Average number of nodes in
each ANN.

(b) Average number of connections
in each ANN.

Figure 7.19: Average ANN sizes on SPB by generation, averaged over all ANN
parameter combinations.
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and ANNs respectively. All network types show an increase in both node and

connection size with an increase in number of generations. The increase in sizes

tends to be more dramatic in the beginning generations before the growth slow-

ing. This is most easily seen in the ANN trials in Figure 7.19, where the number

of nodes and connections increases steadily until generation 250, where it levels

off and even begins to decrease. At generation 259 the average number of nodes

peaks at 7.3 and the average number of connections peaks at 9.6. As the net-

works grow, the standard deviation increases, and when the networks begin to

shrink, the standard deviation similarly shrinks. Because networks begin with

a minimal structure, it is always possible that small networks will still exist in

the population at an one point; this could account for the increase in standard

deviation with the increase in average size. In N0 repetitions, shown in Figure

7.17, the networks appear to grow quickly during the first 50 generations, and

continue growing less quickly during the remainder of the generations. There is

a small downturn before the last generation, however it can’t be determined if

this is the beginning of a trend or a small dip. The average number of nodes and

connections on N0 trials peaked at 3.9 at generation 369 and 6.2 at generation

379, respectively. The standard deviation of the sizes increases quickly with the

initial growth before remaining relatively constant after generation 100. N1 tri-

als, shown in Figure 7.18, have the most steady growth, continuing to generally

increase over all generations and at a faster rate than N0 trials. The maximum

average number of nodes reached 5.7 and the maximum average number of con-

nections reached 7.6, both in generation 369. The standard deviation increases

with the increase in network size, more similarly to the ANN trials than the N0

trials.

The ANN trials that reached at least generation 50 could be expected to
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have more connections than their SNN counterparts, and those that reached at

least generation 200 could be expected, on average, to have both more nodes

and connections than their SNN counterparts. It is possible that the ANN’s

success could be partially attributed to these larger sizes. However, the ANNs

that found solutions ended on average by generation 50 with only 2 networks

found solutions after generation 200. This makes it less likely that more nodes

of the ANNs compared to the SNNs was a major contributing factor to their

success. However, it is possible that the increased number of connections was

beneficial.
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Chapter 8

Discussion

The SNNs were able to find solutions to the XOR problem, with 15 of the network

combinations finding solutions during all five repetitions. Although only two

ANN parameter sets found solutions every repetition, across all of the parameter

sets they had a higher average number of solutions found than the SNNs, with

fewer networks never finding solutions.

On cosine, only one of the SNNs was able to find solutions every repetition,

with three more finding solutions four out of five times. Every ANN found a

solution every repetition.

On the single pole balancing problem, no SNN run was able to reach the time

threshold of 15 seconds, whereas two ANN networks reach 15 seconds for all five

repetitions.

Across all three problems, increasing the compatibility threshold increased the

number of extinctions in trials. This is unsurprising. A higher CT allows for more

diverse individuals to be in the same species, which allows for the convergence

of a population into a single species. If this species then becomes similar enough

and stagnates, it will be removed from the population and the population goes
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extinct. The increase in extinctions, however, did not necessarily mean a decrease

in fitness or the number of solutions found. In some instances, the average number

of solutions found did decrease with an increase in the CT value, like N1 networks

on the XOR problem. However, in other instances, like N0 networks on cosine,

the number of solutions found actually increased with the increase of CT from 2.0

to 2.5. And in several other cases, either an increase or decrease in fitness value

was minimal. The compatibility threshold appears to mainly effect the ratio of

extinction to timeouts and not the fitness of the networks.

Across problems, the compatibility weight and disjoint coefficients appeared to

have strong influence on the networks. Increasing either the CWC or CDC almost

always had the effect of decreasing the number of extinctions. The CWC and the

CDC are used in the calculation of the genomic distance. The CWC determines

the influence the difference in genome weights have on the distance, and the

CDC determines the influence the number of disjoint and excess neurons have on

the distance. A combination of two low values for these variables would mean all

neurons would be considered closer together, while two higher values would mean

the neurons would be considered further apart. The trend of increasing these

values leading to fewer extinctions across all compatibility thresholds implies that

a larger genomic distance is favorable. With a larger distance, networks would

be categorized into a larger number of species. This directly affects extinction

probability: the more species, the less likely that all species will go extinct at the

same time, leading to population extinction.

Using ANNs on cosine, we find that the networks perform best with either

a low CWC and a high CDC or a high CWC and a low CDC. In this case, it

appears that the value of the number of disjoint and excess genes versus the

average weight differences is less important than not having a particularly large
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or small genomic distance. Had either the weight or gene differences been more

important to solving the problem, we would not expect to see similar performance

between both combinations.

The spiking threshold did not appear to affect the networks on the cosine

or pole balancing problems. However, it did appear to have influence on XOR.

For the XOR problem, N0 combinations with the lowest ST option never found

solutions, while their counterparts with higher STs did. It is possible that the

lower spiking threshold made it too easy for the networks to emit a spike that

they struggled to give a zero output. Contrastingly, the lower spiking threshold

did not affect the N1 combinations the same way. N1 combinations with an ST

of 0.75 found as many or more solutions than their counterparts.

On the cosine problem, the N1 combinations struggled to reach the peak of

the cosine curve at zero across trials. This is partially due to researcher error.

The cosine curve at x = 0 has a value of 20. The simulations are run for 100

milliseconds and the neurons have a refractory period of 5 milliseconds, so the

most they could ever spike is twenty times. While the N0 neurons were able

to reach 19, they were not clamped during their refractory period, so they could

have a higher voltage when the refractory period ended, potentially already higher

than the spiking threshold and able to spike immediately afterwards. However,

the N1 neurons’ voltage was clamped during the 5 millisecond refractory period,

so when the refractory period ended, the voltage was still 0. At the very least,

the network would have to wait until the next input spike to be able produce

an output spike, which could be a few milliseconds. This clamping is one reason

why the N1 neurons did not perform as well as the N0 neurons. Had I decreased

the refractory period or increased the simulation time, the N1 neurons may have

performed better. This should be explored in future work.
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The results on the single pole balancing problem in this work do not mirror

the results found in [32]. There are two main possible reasons for this. First,

there is the difference in the simulators: the NEAT-Python [26] library changed

a few implementation details of the NEAT algorithm. Qiu et al. [32] used the

original NEAT library, which would not have these alterations. Secondly, there

were various parameter differences. I used higher probabilities to add or remove

nodes and connections, a larger timestep value, and elitism was implemented for

all species rather than with a size threshold.

When ANNs were run on the cosine problem, every combination found a

solution every repetition. However, the solutions found tended to be linear rather

than following the cosine curve. I think that there are two main factors that could

be effecting the networks’ performance here. First, these networks used the elu

activation function. I chose this function so that the network would be able to

learn values in the range (0, 20) without scaling. However, when the input to

the function is greater than zero, the activation is linear. It is possible that the

linearity in the activation function influenced the linearity in the output. The

second possible factor is that the fitness function, average mean squared error,

only accounted for the distance from the curve and not the shape. The linear

function that the networks found was a simpler solution that still fit this criteria.

Across all problems, the network sizes increase with more generations. This is

consistent with [37]. Network sizes grow quickly in the first generations and less

quickly in later generations. This could indicate that adding to the complexity of

the networks stops having as large of an influence over time and weights become

more important. The comparative network sizes do not remain consistent across

problems and there is not enough evidence to draw conclusions about the influence

of the type of neuron on network size.
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Chapter 9

Conclusions and Future Work

In this work, I compared ANNs and SNNs evolved with NEAT with different

parameter combinations. While the results are far from conclusive, they are

promising that SNNs can rival ANNs in performance.

For the XOR problem, the SNNs were able to find solutions, and in some cases

consistently. Comparing SNNs to ANNs, while the SNNs had a lower average

number of solutions found across all parameter sets, they had more networks

that found solutions consistently on every repetition.

For the cosine problem, while SNNs with multiple parameter sets were able

to find solutions, only one was able to find a solution across all five repetitions.

Comparing SNNs with ANNs, although by fitness criteria alone the ANN param-

eter combinations outperform the SNN combinations, examining the outputs of

the networks reveals that the ANNs may not be learning the full nonlinearity of

the curve as well as the SNNs.

For the single pole balancing problem, the SNNs were not able to find solutions

while the ANNs were. This is inconsistent with the results from Qiu et al. [32],

however, this is possibly due to differences in simulations and parameters.

78



The results included in this work contribute a foundation for studies on the

combination of SNNs and NEAT. While it is known from other studies that the

combination can solve problems [32, 30], the presented parameter and comparison

studies on these simple problems give insight into configurations that can be used

for more complicated studies. This work shows the effect of the compatibility

threshold, compatibility disjoint coefficient, compatibility weight coefficient, and

spiking threshold. I demonstrate the effect these have on the evolution of the

networks, including extinction rate, fitness, and number of generations before

solutions are found.

Further exploration of the combination of SNNs and NEAT is necessary before

drawing definitive conclusions. As discussed, the networks are sensitive to changes

in parameters. Further combinations of the parameters in this study should be

tried, and other parameters, like stagnation rate, elitism, and the percentage

of the population allowed to reproduce, should be included. These parameters

could also be included in the genome and evolved with the networks to further

optimize performance. Other neuron types, like Izhikevich neurons, should also

be explored. This work reviewed only a few simple problems, and the algorithm

should be applied to more complex problems. The method should be tested for

generality by using a larger dataset that can be split into training, validation,

and testing datasets. Methods should be explored to decrease run time, as time

is one of its most detrimental features.
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Chapter 10

Appendix

10.1 Gallery of Evolved Networks

10.1.1 XOR
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Figure 10.1: N0 networks evolved on XOR with CT = 2.5, CWC = 0.5, CDC =
1.0, and ST = 1.25 at generation 211.
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Figure 10.2: N1 networks evolved on XOR with CT = 3.0, CWC = 1.0, CDC =
1.0, and ST = 1.0 at generation 221.
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Figure 10.3: ANNs evolved on XOR with CT = 2.5, CWC = 0.5, and CDC =
1.0 at generation 146.
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10.2 Cosine
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Figure 10.4: N0 networks evolved on cosine with CT = 2.0, CWC = 1.0, CDC =
0.5, and ST = 0.75 at generation 137.
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Figure 10.5: N1 networks evolved on cosine with CT = 2.0, CWC = 0.5, CDC =
0.5, and ST = 1.0 at generation 119.
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Figure 10.6: ANNs evolved on cosine with CT = 2.0, CWC = 0.5, and CDC =
1.0 at generation 41.
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10.3 Single Pole Balancing
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Figure 10.7: N0 networks evolved on SPB with CT = 2.5, CWC = 0.5, CDC =
0.5, and ST = 0.75 at generation 149.
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Figure 10.8: N1 networks evolved on SPB with CT = 2.0, CWC = 0.5, CDC =
0.5, and ST = 1.0 at generation 128.
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Figure 10.9: ANNs evolved on SPB with CT = 2.5, CWC = 0.5, and CDC = 1.0
at generation 93.

91


