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Abstract 

Confirmation bias is persistently devastating to rational judgment and decision-making. Previous 

research supports cognitive and behavioral distinctions between two types of confirmation bias: 

motivated confirmation bias and unmotivated confirmation bias. Motivated confirmation bias is a 

member of the larger class of motivated reasoning biases. These often occur when one’s 

individual or group identity is tied up in certain beliefs or propositions that command one’s 

assent. Prior research has shown that even when individuals possess cognitive problem-solving 

skills such as high numeracy, these skills offer no benefit to rational thinking or judgment in the 

face of motivated reasoning problem sets. Prior research has also shown that dopaminergic genes 

DRD2, DARPP-32, and COMT are predictive of susceptibility to unmotivated confirmation bias; 

however, the role of these genes in motivated confirmation bias had yet to be tested. The present 

investigation examined the possible connection. Participants were 200 university students who 

completed questionnaires and tasks assessing motivated confirmation bias, numeracy, political 

philosophy and party identification. Logistic regression modeled the association of these 

measures with accuracy on a bias detection task. Numeracy predicted accuracy; however, 

genotypes and political measures did not. These results suggest that distinct genetic determinants 

are responsible for motivated and unmotivated confirmation bias. Further, the findings replicated 

previous research demonstrating that accuracy is much diminished in the motivated scenario 

compared to an unmotivated control. However, contrary to this earlier work, the current findings 

suggest that numeracy confers a benefit in both motivated and unmotivated conditions, rather 

than just in motivated situations. Overall, these findings suggest continued research is needed to 

uncover the neurobiological determinants of motivated confirmation bias.  

 Keywords: Motivated confirmation bias, DRD2, DARPP-32, COMT, numeracy.
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Dopaminergic Genes Predictive of Unmotivated Confirmation Bias are Not Predictive of  

 

Motivated Confirmation Bias  

 

Biases and heuristics are cognitive shortcuts or tools we use to navigate complex 

environments. They are often used when there is not enough information available to make a 

more educated decision, not enough time to weigh out evidence for or against, not enough 

severity of consequences to justify thinking over testing, or not enough likelihood that one’s 

belief is wrong to justify reexamining it. One of the two key features that make cognitive biases 

and heuristics so useful and often used is that they are highly reliable—i.e., they usually lead us 

to the correct solution. The other key feature behind their utility is that they are fast—even 

automatic. As a consequence, and added benefit, biases and heuristics require less cognitive 

resources than deliberative consideration of alternatives.  

These and other benefits of cognitive biases and heuristics are often overlooked because 

they are typically studied in the contexts in which they go wrong—when they lead to suboptimal 

beliefs, decision-making, and outcomes. While cognitive biases and heuristics usually reach 

optimal outcomes, they also fail in certain cases where the outcome is substantial. For this 

reason, researchers in the judgment and decision-making field of cognitive psychology have 

sought to discover ways in which to overcome biases and stop reliance on heuristics where 

circumstances dictate. These are typically circumstances in which the outcome of a decision is 

significant enough to warrant the work and resources of more deliberative thought. 

Strategies and Interventions for Augmenting Cognition 

There are two main approaches to augmenting cognition in the face of biases and 

heuristics: training- or teaching-based interventions meant to change the way one thinks, or 

instead, accepting the way one thinks and redesigning user interfaces and information 
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presentation to reach different outcomes. This latter approach is a human factors approach. It 

uses cognitive psychology to design products and systems that optimize user behavior. One 

example of this approach is seen in the presentation of health risk information (see Garcia-

Retamero and Cokely, 2013 for review). Garcia-Retamero and Cokely (2011) developed an 

intervention (an informational brochure) to augment sexually transmitted infection (STI) risk 

awareness. Inaccurate risk perceptions are often due to cognitive biases and heuristics, including 

the availability heuristic, representativeness heuristic, anchoring, and framing effects, among 

others. The availability heuristic is used in this context when one judges the likelihood of an 

outcome based on the ease with which examples come to mind (Schwarz et al., 1991). The 

representativeness heuristic is used when one judges that the likelihood of an outcome is 

predicted by outcomes of a similar type or outcomes that followed similar antecedent conditions, 

e.g. thinking that a medical condition will improve on its own because previous medical 

conditions did so (Read & Grushka-Cockayne, 2011). Anchoring bias occurs in the context of 

risk perception when perceptions of present and future risks are biased by information about the 

frequency and severity of past risks (Lieder, et al., 2018). Such information need not be first-

hand and may even be false. Framing effects bias risk perception when information is provided 

such that it limits perceptions of, and responses to, a problem (Druckman, 2001). Framing effects 

were famously demonstrated by Tversky and Khaneman (1981) with a contagious disease 

response paradigm. Participants read a problem that stated the United States would soon face an 

outbreak of an Asian disease and 600 fatalities were expected. Participants then chose one of two 

response programs based on their expected outcomes. These responses were presented 

differently in two conditions: a “saved” condition, and a “die” condition. In the “saved” 

condition, participants read that under program A, 200 lives would be saved, while under 
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program B, there was a 1/3 probability that all 600 people would be saved, and a 2/3 probability 

that none would be saved. In the “die” condition, participants read that under program C, 400 

people would die, while under program D, there was a 1/3 probability that no one would die, and 

a 2/3 probability that all would die. Across the two conditions, Programs A and C, and Programs 

B and D, were probabilistically equivalent, e.g. 200 people would be saved (Program A), 400 

people would die (Program C).  However, in the “save” condition, 72% of participants chose 

Program A, whereas in the “die” condition, only 22% of participants chose the equivalent 

program: Program C. The “save” condition was framed such that it promoted risk-averse 

responses. The “die” condition was framed such that it promoted risk-taking responses.  

Similarly, Garcia-Retamero and Cokely (2011) showed that framing effects had different 

consequences on sexual behavior; specifically, gain-framed messages were more successful in 

fostering STI preventative behaviors, whereas loss-framed messages were more successful in 

fostering illness-detection behaviors like health screenings. More importantly, they showed that 

the two framing conditions could be made not only equally, but also more behaviorally effective 

simply by adding visual aids. Other successful interventions are often similarly simple. For 

example, Hales and Pronovost (2006) demonstrated the utility of procedural checklists in error 

avoidance in the face of cognitive challenges exacerbated by stress and fatigue. They can help, 

for example, in overcoming inaccurate initial diagnoses that lead to confirmation biases from 

which information contradicting the initial diagnosis is ignored, and confirmatory information is 

sought (Mendel et al., 2011). 

A more controversial intervention to mitigate cognitive bias is incentivizing certain 

behaviors. Smith and Walker (1993) incentivized normative or neutral (Nash equilibrium) 

auction bids with a payoff of $250.00. They found that the payoff opportunity increased the 
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amount of cognitive work participants undertook to reason out the normative bid. In a review of 

monetary incentives in experimental research, however, Camerer and Hogarth (1999) found the 

opposite, as well as that such incentives introduced several experimental confounds. Hogarth et 

al. (1991) also found that financial incentives merely encourage people to pursue their strategies, 

biased or otherwise, with greater resolve.  

Another type of cognitive bias intervention is the social influence or “nudge” approach 

advocated by Thaler and Sunstine (2009) wherein one seeks to change biased and incorrect 

beliefs and their resulting behaviors. An example of this approach is influencing beliefs and 

behaviors about smoking by implementing public messaging that suggests the majority of people 

do not smoke and that even those who do smoke want to stop smoking (Marteau et al., 2011). 

Other examples from Marteau et al. (2011) include countering over-consumption of alcohol by 

using smaller serving glasses at restaurants and bars, and countering obesity by making side 

salads, rather than French fries, the regular side item. In the financial compliance domain, Castro 

and Scartascini (2013), sought to improve rates of tax compliance in a developing municipal 

economy in Argentina by modifying beliefs in three areas: levels of enforcement of tax 

compliance, level of equity in tax compliance, and levels of fairness in the tax system itself. 

They found no effect with public messaging about equity and fairness; however, they discovered 

that simply informing municipal residents of the legal consequences and associated fines for 

noncompliance increased compliance significantly. Altering beliefs in this way is a double-edged 

sword. While nudging can be used to overcome false and biased beliefs, it can also be used to 

create false and biased beliefs, even if for a common good, thereby raising ethical questions 

about the approach (Nys & Engelen, 2017). While young smokers’ risk perceptions about 

smoking are likely inaccurate and biased by availability and similarity heuristics, nudging might 
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counter those by creating opposing biases beliefs, for example, that smokers are socially 

undesirable.  

Training-based interventions are more varied. They include training in logic, statistics 

and bias awareness among many others (Babcock & Loewenstein, 1997; Fischoff, 1982; Niu et 

al., 2013). One of the hurdles for training interventions is that individuals and organizations can 

be resistant to debiasing efforts (Arkes, 2003). Most training regimens show improvement in 

cognitive performance in the short term and immediate context; however, they usually run into 

the same two hurdles: gains are unlasting and context dependent (Fong & Nisbett, 1991). In 

studies where participants are retested weeks or months after training, gains have either 

significantly diminished or returned to pre-training levels. The second challenge is that of 

domain transfer: gains in laboratory or classroom settings are diminished or undetectable when 

trainees face real-world problems (Hogarth, 2001; Kagel & Levin, 1986). Subjects with training 

in critical thinking show little improvement in normative thinking (Niu et al., 2013). Mowen & 

Gaeth (1992) reported slight improvement in participants who were trained in the cognitive 

mechanisms underlying biased decision making; however, as with critical thinking, the material 

proved difficult to teach to nonexperts.  

One approach that avoids the domain transfer problem is the use of domain-dependent 

strategies and cognitive “tricks” like using the wisdom of the crowd to inform one’s judgment 

(Mannes et al., 2012). This only works in circumstances where the crowd consists of members 

who have relevant pieces of information about the problem, all of which will point toward the 

same solution, and false beliefs about the problem which point in many different directions, all 

of which will cancel one another out (Atanasov et al., 2017). Another such trick applies to the 

pick-a-door problem. When given a problem in which one must choose between three or more 
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options, for example, when one chooses Door Number One, Two, or Three, and has no basis on 

which to select one over the other, a person can improve their odds of successfully choosing the 

“correct” door merely by choosing one door and then changing one’s answer (Herzog & 

Hertwig, 2009). This is counterintuitive, but it works because the likelihood that the first choice 

is correct is only 33%; while the likelihood the correct door is one of the other two doors is 67%. 

Thus, one necessarily improves one’s odds by changing the original choice.  

Aczel et al. (2015) showed that training in analogical thinking was beneficial in 

combating the domain transfer problem. Analogical thinking is the use of one problem with a 

known solution as an analogy by which to solve another problem with an unknown solution. In 

their experiment, participants were placed in three conditions: a no training control group, a bias 

awareness training group, and an analogical thinking training group. Only the analogical training 

group showed significant improvement over pretraining testing when retested one month later. 

The retest covered the same biases as the pretest; however, it set those biases in different 

domains than those used on the pretest. The authors reasoned that analogical reasoning was 

effective in addressing domain transfer because it requires an understanding of the underlying 

logic that is common across problems in distinct domains. Vendetti et al. (2014) relied on the 

same reasoning in developing an experimental intervention that used analogical reasoning 

problems themselves as a tool to promote a broader analogical reasoning mindset to overcome 

limitations in domain transfer. As with Aczel et al. (2015), improvements were statistically 

significant and effect sizes were modest. In sum, numerous interventions to counter cognitive 

biases have been developed and tested without great success. This suggests some deeper 

understanding of the cognitive and neurological mechanisms underlying biases may be 

warranted.  
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Confirmation Bias 

Confirmation bias is a much-studied cognitive bias that is persistently devastating to 

rational judgment and decision-making. Cognitively, it can take many forms, most commonly 

noticing and remembering confirmatory information while not noticing or not remembering 

contrary information. Behaviorally, confirmation bias is seen in how a person differentially 

interacts with confirmatory and contrary information. In consuming highly polarizing political 

information, for example, it is seen in seeking out information that confirms one’s beliefs and 

avoiding information that contradicts one’s beliefs. Interactions with confirmatory information 

can feel pleasurable, while interactions with contrary information can feel painful. 

Neurobiologically, imaging studies show that interactions with information that changes strongly 

held political beliefs are accompanied by activity in self-monitoring and emotion related areas 

(Kaplan et al., 2016).  

There is not a single, agreed upon, definition of confirmation bias, and some experts use 

the term to refer to a class of biases (Nickerson, 1998). Charness & Dave (2017) give a threefold 

definition of confirmation bias that includes seeking, interpreting, and using information to 

support one’s prior beliefs. Yariv (2002) includes the phenomenon in which people update their 

beliefs in order to view their past actions more favorably. Nickerson (1998) includes a variety of 

phenomena including hypothesis-driven information seeking and interpretation, restriction of 

attention to a favored hypothesis, treating confirmatory evidence preferentially, and 

overweighting confirming evidence, among others. Nickerson (1998) also argues that unwitting 

or unconscious confirmation bias is an essential component of the concept (Fischoff, 1982). Yet, 

while many studies demonstrate unconscious confirmation bias; awareness of the bias does not 

appear to diminish it. 
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Klayman (1995) describes a class of biases held together by a common propensity of 

over-belief in one’s preferred opinions. For Klayman, the class of confirmation bias includes the 

specific biases of positive hypothesis testing (Klayman & Ha, 1987), wherein one searches for 

belief-confirming evidence, and the availability heuristic, wherein the search of one’s own 

memory more readily produces instances that confirm expectations. Importantly, search styles, 

like searching for confirming evidence rather than disconfirming evidence, are not necessarily 

biased or suboptimal in many circumstances (Friedrich, 1993). Nevertheless, they can produce 

bias when one stops testing examples and concludes that the positive cases are sufficient to 

support the desired conclusion. This phenomenon can be observing in the rule discovery 

paradigm first used by Wason (1960). Subjects were given sets of three numbers or “triples” (e.g. 

2, 4, 6) and asked to identify the rule to which the numbers adhered, much like a pattern 

recognition question on a standardized test. Subjects tested their hypotheses by proposing 

additional triples and an experimenter indicated whether the new triple obeyed the rule. Subjects 

stopped when they were highly confident that they had discovered the rule. Wason found that the 

participants tended to propose triples that fit their hypothesized rule. In doing so, they sought 

confirmation of their hypotheses, and they expected that the triples they proposed would fit the 

rule. This strategy, also called positive testing, was suboptimal, not least because Wason’s rule 

was broader than most suspected—namely, any sequence that increases. Any one triple (e.g. 2, 4, 

6), however, conforms with many rules: the numbers are positive, the numbers are single digit, 

the numbers are even, the numbers increase by two, etc. Thus, a participant might propose 

several examples, find that they all are correct instances of their hypothesized rule, and then 

falsely conclude that they have enough evidence to identify the rule. In this case, participants 

often propose examples such as 8, 10, 12. The experimenter confirms that these numbers fit the 
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rule, and so the participant concludes the rule is “increases by two.” The more general the rule, 

the more difficult it is to discover it by positive testing alone. Rules such as “the numbers are 

Arabic numerals, the numbers are numbers, the numbers are any three things and needn’t be 

numbers are all,” would be very difficult to discover using only positive tests as one’s search 

strategy.  

Some authors consider positive hypothesis testing to be an example of confirmation bias 

because in using it, the individual is attempting to confirm their own beliefs or bias. Klayman & 

Ha (1989) among others, argue that the use of positive hypothesis tests does not necessitate that 

one is trying to “prove” the tested hypothesis. Subjects have even used positive hypothesis tests 

to seek to disconfirm a hypothesis, as in attempting to show the any-ascending-sequence rule as 

false by offering an extreme triple like “-100, 0, 105” (Klayman & Ha, 1989). In their view, it is 

not the positive test search strategy only that makes for confirmation bias; rather, it is the 

conclusion that one has sufficient information from this search strategy to stop collecting data. 

Positive hypothesis testing is, nevertheless, often an inferior strategy because it can only 

uncover false positives—triples one expects to work but which fail. Negative hypothesis testing 

or seeking to disconfirm, is usually a more optimal strategy because it can uncover false 

negatives—triples one expects to fail but which work. This reveals more information about the 

underlying rule, and it does so more quickly and efficiently (Klayman, 1995).  

The feature that defines an optimal strategy is the environment; specifically, whether the 

environment is one in which false positives or false negatives are more consequential and more 

in need of discovery. A common example of a case where false positives are more consequential 

and hence positive testing is more optimal, is that of car buying. Buying a lemon is a greater risk 

than missing out on reliable cars (Friedrich, 1993). 
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Klayman (1995) also argued that the well-educated are not immune from instances of 

confirmation bias. In a study by Lord, Ross, and Lepper (1979), death penalty proponents and 

adversaries evaluated the same body of evidence and each concluded that the evidence supported 

their positions. More, the evidence used in the study, which was mixed, further entrenched each 

side. Both appeared to seize on the confirming pieces alone and disregard information that 

detracted from their views. Plous (1991) made a similar finding with advocates and detractors of 

new technologies when interpreting a technology’s performance data. Skeptics of a new 

technology interpreted the performance data as further evidence for their skepticism of the 

technological product. Advocates of the new technology interpreted the same performance data 

as supporting their own view.  

Koehler (1993) made a similar finding among scientists. In Koehler’s study, the 

participants were a group who advocated for the scientific study of parapsychology and another 

group that aimed to refute parapsychological claims. The participants were tasked with 

evaluating the methodology of a number of studies that reached different conclusions about 

parapsychology—a matter logically distinct from the claims themselves. Nevertheless, each side 

tended to more readily approve of the methodologies of studies whose conclusions were 

consistent with their beliefs, and more readily criticized the methodologies of studies that 

reached conclusions that opposed their beliefs. The study is an example of a more general 

phenomenon; scientists are less skeptical of evidence that supports their beliefs than they are of 

evidence that is inconsistent with their beliefs. For example, professional audiences who read 

peer-reviewed studies do not equally discount studies in which the data are believed to be flawed 

in some way. Rather, confirmatory flawed data are more readily believed than flawed data that 

contradicts one’s prior beliefs (Gorman, 1986, 1989). 
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Two Types of Confirmation Bias 

Prior research supports cognitive and behavioral distinctions between two types of 

confirmation bias: motivated confirmation bias and unmotivated confirmation bias (Kunda, 

1990; Nickerson, 1998). Motivated confirmation bias is a member of the larger class of 

motivated reasoning biases (Haidt, 2001; Kunda, 1990). These often occur when an individual or 

group identity is tied up in certain beliefs or propositions that command assent. However, 

confirmation bias can operate independently of any of the properties of motivated reasoning, 

such as the desire to prove or defend a hypothesis or fear of a competing hypothesis. Both 

Wason’s rule discovery task (1960) (discussed above) and card selection task (1968) serve as 

examples of a common preference for positive or confirmatory test strategies over disconfirming 

strategies. However, this occurs in the absence of a motivated reasoning component. Even 

though subjects who used positive testing as a search strategy sought to confirm a specific 

hypothesis, they had no loyalty to such a hypothesis, and the failure of the hypothesis was no 

threat to their identity, broader goals, or values. Thus, the rule discovery task shows that 

confirmation bias need not be motivated to prove a hypothesis in order to count as confirmation 

bias. This is true even if one agrees with Klayman and Ha (1989) that use of the positive test 

strategy alone is insufficient to count as confirmation bias, and that some conclusion about 

having made a sufficient search to discover the rule is required.  

More recent investigations of confirmation bias also demonstrate that it need not take the 

motivated form. In fact, unmotivated confirmation bias is often studied because it is easier to 

induce and control experimentally. Work from Doll et al. (2011) used a probability task in which 

playing cards with novel symbols were played head-to-head. Participants were instructed to 

select between two playing cards the one with the highest probability of being the winning card. 
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Cards had an assigned probability of winning prior to the task, yet participants were given 

inaccurate instructions about which cards were most likely to win. Although feedback from each 

trial was immediate—that is, the participants saw whether the cards they selected won or lost—

some participants did not learn the true probabilities observed via these outcomes and instead 

persisted in complying with the erroneous instructions. Other participants were successful at 

learning throughout the task despite the instructions and adjusted their play to achieve better 

outcomes. In other words, some participants were more susceptible to confirmation bias than 

others. However, none of the participants in this task had any vested interest in proving that 

certain cards turn out to be more probable winners than others. The outcome did not engage any 

emotional commitments such as their individual or group identities. 

Somewhere between these extreme cases of unmotivated and motivated confirmation bias 

are cases where motivation creeps into the task process. Scherer et al. (2012) demonstrated a 

phenomenon known as post-prediction selection bias, wherein making a prediction biases 

subsequent information searches. Scherer et al. (2013) expanded on this and showed that a 

completely arbitrary hypothesis, on a topic on which a person knows nothing, is also sufficient to 

bias future information searches.  An arbitrary hypothesis can become a preferred hypothesis 

motivating confirmation bias merely by the participant predicting that the hypothesis is true. In 

their experiment, participants viewed two paintings, displayed side-by-side, and then indicated 

which painting’s original form they thought was better liked by college students. The “original 

form” description was included to make the choice even more arbitrary. Participants then 

selected articles to read from a list provided by the experimenters. As expected, participants 

selected articles consistent with their prediction. Since the predictions were arbitrary and 

uninformed, the two options are said to be hedonically neutral, i.e. unmotivated. They further 
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argued that motivation for bias in this case was merely the desire to be correct in one’s 

prediction.   

Similarly, though perhaps more easily classified as motivated confirmation bias, is the 

phenomenon in which people seek to support and defend the beliefs and actions of their past 

selves (Hart et al., 2009). In doing this, people seek to view their past selves in a positive light 

and may even seek to avoid confronting the consequences of what would occur if they were 

wrong. This may take the form of selecting sources of information that support prior decisions 

such as taking one job over another or purchasing one house over another. More consequential 

are failures to confront information that contradicts prior decisions such as political decisions 

and civil actions (Bronfman et al., 2015; Lerman & Acland, 2020), wrongful convictions 

(Rossmo & Pollock, 2019), conclusions in strategic intelligence analysis (Whitesmith, 2019), 

and medical diagnoses (Elston, 2020).  

A Social Conception of Motivated Confirmation Bias 

 More recently, researchers in a variety of disciplines including social psychology and 

communications have studied motivated confirmation bias from a social perspective. Several 

studies have examined the effects of modern, individualized, news consumption and how news is 

shared within ideologically homogeneous groups (Athey et al., 2017; Duffy & Ling, 2020; Masta 

& Shearer, 2018; Törnberg, 2018), both of which can lead to confirmation bias (Garrett, 2017). 

Del Vicario et al. (2016, 2017) go further, finding that information consumers congregate into 

like-minded communities that nurture confirmation bias. In legacy forms of news delivery such 

as evening news broadcasts and physical newspapers, consumers were exposed to more 

heterogenous messages. Exposure to diverse perspectives has been shown to moderate bias 

(Guilbeault et al., 2018). Ling (2008, 2014) showed that news consumption via mobile 
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communication devices, such as smart phones, intensifies social cohesion and likely also 

exacerbates information silos. Ling (2020) argued that both cognitive and social conceptions 

should be combined in future studies of confirmation bias. Some researchers have taken this 

approach, using social network analysis and cognitive measures (Gašević et al., 2019; Houghton 

et al., 2015). However, as Ling (2020) notes, these studies can be methodologically difficult, not 

least because motivated confirmation bias is difficult to measure and control. Nevertheless, this 

is precisely the type of confirmation bias that has real world consequences.  

The Perils of Motivated Confirmation Bias 

Motivated confirmation bias has extensive public and private costs. For example, it 

affects the public understanding of science on a variety of polarized issues. These include 

vaccination (Meppelink et al., 2019), climate change (Druckman, 2015), gun control (Kahan, et 

al., 2017), and COVID-19 (Garcia-Alamino, 2020), among others. Since people can select and 

cultivate not only their own news sources, but also their own health and science information 

sources, their choices are easily influenced by confirmation bias. Worse, these choices can 

further entrench false beliefs. Knobloch-Westerwick et al. (2020) showed that people are 

selective about the news and information to which they expose themselves and tend toward that 

which agrees what they already believe. Meppelink et al. (2019) reached the same conclusion 

with regard to beliefs about vaccinations. In their study of nearly 500 parents of small children, 

parents indicated their beliefs about vaccination through an online survey and then selected from 

a reading list of 10 articles on vaccination. Unsurprisingly, people chose to read articles 

consistent with their beliefs. Participants also evaluated two preselected readings (one pro-

vaccination, one anti-vaccination) on three dimensions: credibility, usefulness, and 

convincingness. Unsurprisingly again, participants rated the reading that was consistent with 
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their beliefs higher on all three aspects. More worrisome, Meppelink et al. (2019) also measured 

participants’ health literacy using the Newest Vital Signs (NVS: Fransen et al., 2014), a 

validated health literacy measure, and found that the most health literate participants were also 

the most biased in their reading selections and perceptions.  

Research has demonstrated a number of factors that are correlated with biased 

information search and selective exposure across a variety of contexts including health literacy 

and others. These include dogmatism, authoritarianism, and anxiety (Hart et al., 2009), less 

positive affect, higher need for cognition, and greater cognitive reflection (Knobloch-Westerwick 

et al., 2020). Two of particular importance to the current study, problem solving skills and 

facility with numerical information, are discussed below.  

Problem Solving Skills Can Exacerbate Confirmation Bias 

Prior research has shown that even when individuals possess cognitive problem-solving 

skills, these skills may not offer any benefit to rational thinking or judgment in the face of 

motivated reasoning problem sets (Kahan et al., 2017; Meppelink et al., 2019). Kahan et al. 

(2017) demonstrated differences in rationality on a motivated confirmation bias detection task. In 

the task, participants interpreted a data table and indicated what conclusion it supported. In the 

control, i.e. unmotivated, condition, participants were told the data table was about the 

effectiveness of a rash treatment cream. In the treatment, i.e. motivated, condition, participants 

were told the data table was about the effectiveness of a ban on carrying concealed weapons to 

reduce crime. Apart from these instructions, the data tables, and hence the numerical tasks, were 

identical. Kahan demonstrated two major findings. First, numeracy, or facility with numerical 

information (an analog of literacy), was predictive of accuracy in the control condition, but not in 

the treatment condition. This finding suggests that the advantage in reasoning that numeracy 



 16  

typically conveys is not operable in motivated reasoning scenarios. Second, in the treatment 

condition, accuracy was predicted by whether the data table a given participant interpreted was 

one that was congruous with that participant’s political beliefs. Thus, if the data table showed 

that the gun control measure reduced crime, liberals were more likely than conservatives to 

interpret the table correctly. Conversely, if the data table supported the conclusion that the gun 

control measure was ineffective, conservatives were more likely than liberals to interpret it 

correctly.  

Kahan et al. (2017) designed the experiment to evaluate two competing hypotheses: the 

science comprehension thesis (SCT) and the identity-protective cognition thesis (ICT). The SCT 

holds that people fail to understand scientific findings because they lack the intellectual ability to 

do so. The SCT would hold, for example, that many people reject the scientific evidence for 

climate change because climate science is complex and difficult to understand. The ICT, on the 

other hand, holds that most of the science presented to the public at large can be readily 

understood by its audience. Instead, the more determinative factor in whether an individual 

accepts or rejects scientific claims is whether those claims threaten one’s individual or group 

identity. The ICT would hold, for example, that many people reject the scientific evidence for 

climate change because they see those claims as threatening the truth of their cultural, religious, 

and/or political beliefs. ICT is a hypothesis about motivated confirmation bias; it holds that the 

public’s rejection of scientific claims is a defensive response to perceived threats. When 

confirmation bias is at work, individuals avoid such threatening information and instead seek out 

information that confirms their prior beliefs (Nickerson, 1998). 

Kahan’s findings supported the ICT hypothesis; while numeracy was predictive of 

accuracy in the control condition, with higher numeracy increasing the likelihood of a correct 
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response, the advantage conveyed by numeracy was not detectable in the treatment condition. 

Consistent with the ICT hypothesis, accuracy in the treatment condition was predicted by 

participants’ political identities (party affiliation and political philosophy) and whether the 

information participants were judging confirmed or contradicted their political outlook.  

The Neurobiology of Confirmation Bias 

Kappes et al. (2020) showed that people are differentially sensitive to the strength of 

others’ opinions, appropriately moderating their own views when others’ opinions confirm their 

own beliefs, but not so when others’ opinions contradict their own beliefs. While climate 

scientists’ belief in climate change has strengthened over time, for example, the percentage of the 

U.S. population that believes in climate change has simultaneously decreased (Funk & Kennedy, 

2016). Kappes et al. (2020) argued that this phenomenon is due to differences in the posterior 

medial prefrontal cortex, where neural sensitivity is reduced in the face of disconfirming 

opinions.  

In a neuroimaging study, Kaplan et al. (2016) presented 40 politically liberal participants 

with arguments that contradicted their political positions, as well as arguments that contradicted 

some non-political positions. When participants viewed political counterevidence, as compared 

to non-political counterevidence, neural activity was increased in the precuneus, posterior 

cingulate cortex, medial prefrontal cortex, inferior parietal lobe, and anterior temporal lobe. By 

contrast, when viewing arguments that countered their non-political beliefs, participants showed 

increased neural activity in the dorsolateral prefrontal cortices and orbitofrontal cortices. There 

were also differences between participants who more strongly resisted counterevidence and those 

who changed their minds. Belief perseverance was positively correlated with activity in the left 

dorsomedial prefrontal cortex and negatively correlated with activity in the left orbitofrontal 
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cortex. Since participants rarely changed their political beliefs in the face of counterevidence, 

belief change was assessed using non-political arguments. Participants who changed their minds 

showed less neural activity in two areas: the dorsal anterior insular cortex, and the amygdala.  

Talluri et al. (2018) examined perceptual sensitivity in the selection and accumulation of 

post-choice information in a perceptual task. Participants viewed an initial dot-motion stimulus 

and stated the direction of motion they perceived. They then viewed a second dot-motion 

stimulus and indicated their perception of the overall direction of motion—their perception of the 

direction of motion across both stimuli. Participants were more sensitive to motion in the second 

stimulus when the direction of motion was consistent with their stated prior perception. This was 

true whether their prior perception was correct or incorrect. Modeling supported the hypothesis 

that rendering a choice after the first stimulus modulated weighting of sensory neurons so as to 

increase sensitivity to choice-consistent perceptions.  

Using a similar paradigm, Rollwage et al. (2020) demonstrated how a better 

understanding of the neurobiology of confirmation bias can inform interventions to overcome 

such bias. They examined the selection and accumulation of post-choice information in a 

perceptual task that involved identifying whether dots moving on a screen were indicative of 

motion to the left or right. Participants also indicated their level of confidence in their choice. 

Following exposure to additional evidence indicating the same direction of motion as the first 

exposure, participants gave a final determination of motion directionality. Participants who were 

wrong in their initial choice but highly confident were less likely to change their minds after 

viewing additional evidence than were participants who were wrong but less confident. measured 

Neural activity was measured using magnetoencephalography (MEG) to develop neural models. 
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Rollwage et al. concluded that high-confidence choice selection alters later neural processing of 

additional evidence that privileges choice-consistent data.  

The tasks used by Talluri et al. (2018) and Rollwage et al. (2020) were perceptual and 

thus not ones that would invoke a motivated reasoning bias. Thus, it is possible that the 

underlying neural mechanisms are at work in both simple, or unmotivated, confirmation bias, 

and more complex motivated confirmation bias. Moreover, since perception of one’s own 

confidence level is metacognitive—a perception of one’s own cognitions—and also an indicator 

of post-choice confirmation bias, Rollwage et al. suggest that metacognitive interventions may 

be effective in identifying and preventing confirmation bias.  

 Palminteri et al. (2017) showed that prediction error valence—whether positive or 

negative—has differential effects on learning. Participants were placed into two learning groups 

in which they answered multiple choice questions. Partial feedback consisting of indicating to 

participants whether their selected option was correct or incorrect was provided to one group. 

The second group was given complete feedback which indicated correctness or incorrectness for 

each possible answer choice. In factual learning, participants were more sensitive to, and learned 

more readily from, positive prediction errors. Thus, participants were more likely to remember 

the answer to a question if they thought they answered it incorrectly and were surprised by 

feedback that they were correct. In counterfactual learning, however, participants were more 

sensitive to negative prediction errors. In such cases they were more likely to remember an 

incorrect answer to a question as being incorrect if they did not choose that answer and were 

surprised by feedback stating they were correct in not choosing it. In either case, while the 

feedback type biased learning in different directions, participants still showed improved learning 

when their prior beliefs were confirmed.  
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 Prior research has also shown that dopaminergic genes in the dopamine reward system 

are predictive of individual differences in susceptibility to unmotivated confirmation bias (Doll 

et al., 2011). Specifically, the findings of Doll et al. support the conclusion that individual 

differences in dopaminergic genes play a causal role in individual cognitive differences—and 

these in turn play a causal role in individual behavioral differences.  

Doll et al. identified single nucleotide polymorphisms (SNPs) predictive of individual 

differences in susceptibility to unmotivated confirmation bias. These SNPs are located in genes 

that affect dopamine regulation in the striatum (DARPP-32 & DRD2) and prefrontal processing 

efficiency (COMT). Striatal dopamine regulation is thought to affect confirmation bias because 

striatal dopamine is key to reward prediction error, the mechanism that likely goes awry in 

confirmation bias. While these findings implicate dopaminergic genes as a causal influence in 

unmotivated confirmation bias, the role of these genes in motivated confirmation bias has yet to 

be tested. 

Reward Prediction Error 

A reward prediction error (RPE) is a miscalculation of the likely result of an outcome. 

Rewards are best understood in their classical conditioning context; they strengthen the 

probability that a rewarded behavior will increase in frequency. Punishments, by contrast, 

weaken the probability that a punished behavior will increase in frequency. The reward 

prediction component of RPE is a prediction about the amount of reward that follows a behavior. 

This can occur in two ways. The reward can be greater than predicted (positive reward), or the 

reward can be less than predicted (negative reward). In some cases, the difference between the 

expected and actual reward is easy to measure. In a gambling task experiment, participants might 

win a variable number of marshmallows when they select a winning card. The RPE, in this case, 
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could be measured as the difference between the number of marshmallows expected and the 

number received. In other cases, predicted reward and actual reward are more difficult to 

measure. This is the case when the predicted and actual reward are amounts of dopamine 

released by dopaminergic neurons, or the felt effects of dopamine modulation. If the release of 

dopamine as a reward is perceived as pleasure or another positive affective state, then RPE might 

be perceived as a feeling of more or less pleasure than expected. This is how RPEs can be 

rewarding, encouraging the repetition of a behavior, or punishments, discouraging the repetition 

of a behavior. The former occurs when the error is an underestimation of the reward (reward is 

more than expected); the latter occurs when the error is an overestimation of the reward (reward 

is less than expected).  

 RPEs are encoded by dopaminergic neurons; however, dopaminergic neurons do much 

more than RPE. The various roles these neurons play can be distinguished by timescale. The 

signaling associated with RPE is phasic, occurs approximately 100 ms after stimulus onset, and 

has a latency period of approximately 150 ms (Schultz, 2017). Other dopamine functions, 

including reward more broadly, occur over seconds and longer. In addition to these phasic 

activities, dopaminergic neurons also play an essential role in maintaining homeostatic dopamine 

levels through tonic dopamine release. This tonic activity is what is disrupted in Parkinson’s 

disease (Schultz, 2017).  

Dopaminergic neurons that encode RPE do so by encoding estimated value—typically 

the averaged value of recent past rewards that followed a specific action (Bayer & Glimcher, 

2005). The averaged value is also the expected value, and any prediction error is the difference 

between the expected average and actual reward. If there is an RPE, the information from the 

error is used to update a new average for reward prediction. In this way, learning about expected 
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rewards is encoded. This simple model cannot account for all learning, however, especially 

learning complex tasks. Consider a game in which a subject is rewarded with a marshmallow 

after eating a chocolate, and rewarded with a chocolate after eating a marshmallow, but not 

rewarded if the subject ever eats two chocolates in a row or two marshmallows in a row. The 

optimal strategy is to switch back and forth between the rewards; however, dopaminergic 

encoding of RPE can likely only explain an approach or avoidance behavior for each reward, and 

not a more complex switching strategy (Bayer & Glimcher, 2005). This is because the RPE gives 

feedback after single actions and not series of actions. It will always signal an approach or avoid 

response after each action. Combining series of actions requires more complex, higher-order, 

learning mechanism (Bayer & Glimcher, 2005). Thus, RPEs are optimal for predicting binary 

(approach, avoid) and immediate probabilistic outcomes.  

That dopaminergic neurons play a role in encoding a predicted value, also called a utility 

value, was worked out theoretically through neurocomputational modeling (Bayer & Glimcher, 

2005). This theoretical approach was followed by neurophysiological experiments to test a series 

of theoretical models. Bayer and Glimcher (2005) found support for the encoding of utility 

values in reward prediction models through neurophysiological experiments with midbrain 

dopaminergic neurons. Interestingly, the behavior of these neurons could only account for one 

type of RPE; namely, the RPE that occurs when a reward is greater than expected (positive 

RPE). In other words, they did not account for RPEs that occur when a reward is less than 

expected. Thus, the firing pattern of these neurons that encodes the difference between predicted 

and actual rewards is only observed when actual rewards are greater than expected. The authors 

speculated that the encoding of negative RPEs may be accomplished by another system.  
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More specifically, Bayer and Glimcher (2005) found a correlation between the spike 

frequency of dopamine neurons and a calculated RPE function that considers the average of the 

last seven rewards. In their experiment, these rewards were varying amounts of juice given to 

primates. The trials occurred back-to-back over the course of several minutes. The primates were 

trained in a delayed saccade task and had to work out what amount of time post-stimulus would 

achieve a maximum reward. The behavior of these neurons in response to negative RPEs was 

quite distinct. They rectified—which is to say, their activity followed a ramp function—the 

importance of which is that their activity was not sensitive to, and did not differentially encode, 

the exact difference between varying averaged rewards and predicted rewards (Bayer & 

Glimcher, 2005). Instead, this activity was distinctive of all negative RPEs.  

Further evidence that positive and negative RPEs are encoded by different mechanisms 

comes from human neuroimaging studies in which these processes have been shown to be 

correlated with activity in different brain areas. A meta-analysis of thirty-five fMRI studies of 

human subjects by Garrison et al. (2013) found activity in the midbrain and ventral striatum 

correlated with positive RPE. Negative or aversive RPEs were found to correlate with increased 

activity in a more confined area of the left ventral striatum (Garrison et al., 2013). This, of 

course, does not imply that the mechanisms for encoding these distinct RPEs are different; it is 

possible that the mechanisms are the same but carried out by redundant systems in different 

locations. Thus, dopaminergic neurons in the confined portion of the left ventral striatum may 

still distinguish between different negative reward prediction areas by spike frequency.  

Nevertheless, such compartmentalization appears to be part of an integrated hierarchy of 

processing structures. Both positive and negative RPEs are correlated with activation of the 

anterior cingulate cortex (ACC) (Garrison et al., 2013), a known point of integration for a variety 
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of processes from distinct neural substrates. Within the ACC, specific regions show activity that 

correlates with only positive, only negative, and both positive and negative RPEs. Positive RPEs, 

for example, showed activation in the pregenual ACC, while both positive and negative RPEs 

showed activation in the anteromedial ACC. This may be evidence that distinct systems for 

positive and negative RPEs have inputs into distinct regions of the ACC and the information 

from these inputs is combined in yet another region of the ACC.  

Since RPEs help us to refine our expectations of the environment’s response to our 

behaviors, they are tremendously important in reward-based learning. Unsurprisingly, learning is 

easily disrupted when the systems responsible for recalculating these expectations are disrupted 

(Murray et al., 2008). 

SNPs Associated with Susceptibility to Confirmation Bias 

The SNPs examined by Doll et al. were in genes that code for the DARPP-32 protein, the 

COMT enzyme, and D2 dopamine receptors, all elements involved in dopamine regulation. The 

polymorphisms, shown to be predictive of individual differences in susceptibility to confirmation 

bias, likely have their effects on cognition and behavior via RPE calculations in the striatum and, 

in the case of COMT, possibly PFC dopamine regulation at neurons with striatal projections. 

DRD2 

 Dopamine receptor D2 (DRD2) is the gene that codes for the D2 dopamine receptor 

subtype principally expressed in the striatum (Camps et al., 1989). The DRD2 SNP of interest is 

C957T (rs6277). Although a synonymous mutation, the resulting mRNA occurs in different 

conformations for 957C and 957T. 957T mRNA is degraded at a higher rate than 957C mRNA.  

The result is that T alleles produce less D2 receptors (Hirvonen et al., 2004, 2005, 2009). 

Behaviorally, because there is less D2 affinity, T allele carriers are less sensitive to RPEs in 
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which dopamine drops below baseline. Their takeaway from negative RPEs is avoidance rather 

than reward recalculation. 

Doll et al. (2011) showed that participants with the T allele at C957T were less accurate 

than C/C homozygotes when given incorrect instructions in a probabilistic card task. This finding 

is supported by other work showing that T alleles are part of a mechanism responsible for under-

learning from punishment (negative RPEs), i.e., diminished learning of information inconsistent 

with prior beliefs. This occurs because confronting information that challenges one’s beliefs 

causes dopamine levels to drop below baseline, and D2 receptors are essential for detecting this 

drop (Doll et al., 2011). In such an occurrence, one experiences a negative RPE; however, one 

fails to learn from it and recalibrate future reward predictions. Additionally, Frank (2005), 

Hikida et al. (2010), and Shen et al. (2008) have demonstrated that instead of recalibrating to 

better predict future outcomes, individuals with T alleles at C957T show improvements in 

avoidance learning. Thus, in the face of RPEs, learning still takes place in these individuals; 

however, what is learned is not a recalibration of probabilistic outcomes that maps onto the 

world. Rather, it is an avoidance of stimuli that produce the negative feelings caused by the drop 

in dopamine levels produced by negative RPEs (punishments).  

DRD2 variants have been examined in connection with a variety of cognitive functions. 

Zhang and Zhang (2016) showed associations between multiple SNPs in DRD2 and individual 

differences in performance at insight problem solving. A number of recent studies have also 

demonstrated support for a link between DRD2 variants, including at C957T, and neurological 

and psychiatric disease (Nkam et al., 2017). C957T variants are associated with both 

schizophrenia and cognitive and neurological deficits accompanying schizophrenia (Zai et al., 

2017), such as diminished working memory capacity (Schwarz et al., 2016) and inhibitory 
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control (Liu et al., 2014). For this reason, it was theorized that C957T polymorphisms may play 

a contributory causal role in schizophrenia; however, a metanalysis of 17 independent studies 

recently found no link between C957T and the cognitive components of executive function: 

working memory, response inhibition, and cognitive flexibility (Klaus et al., 2019). Even among 

healthy adults, however, differences in reward learning performance among T/T homozygotes at 

DRD2 C957T, and C allele carriers have been observed (Byrne et al., 2016).  

DARPP-32 

 The DARPP-32 polymorphism of interest, though synonymous, results in different 

transcription rates for the DARPP-32 protein leading to more or less available synaptic dopamine 

(Scheggi et al., 2018). The SNP has been widely studied and its two alleles differentially 

associated with schizophrenia and biopolar disorder (Yoshimi et al., 2008), suicide (Feldcamp et 

al., 2008), amygdala volume and anger (Reuter et al., 2009), and neurological connectivity in 

associative emotional learning (Ćurčić-Blake et al., 2012) among others. DARPP-32 is an 

intracellular protein encoded in the PPP1R1B gene that has been shown to affect reward 

learning. When presynaptic dopamine crosses the synapse and stimulates postsynaptic D1 

dopamine receptors, phosphoryl groups in the postsynaptic cell attach to DARPP-32 proteins at 

two sites, Thr-34 and Thr-75. DARPP-32 is then dephosphorylated by D2 receptor stimulation. 

Such protein phosphorylation is a pervasive and essential means of functional regulation; it 

enables signal transduction that is both fast and reversable, enabling the phasic bursts typical of 

the dopamine reward system’s RPEs, and thereby strengthening synaptic plasticity, and by 

extension, reward learning (Stipanovich et al., 2008; Svenningsson et al., 2004). Here, 

phosphorylation also inhibits protein phosphatase-1 (PP-1) from attaching at these sites and 

reducing the strength of synaptic connections (Munton et al., 2004). Frank et al. (2007, 2009) 
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found that T alleles at rs907094 are positively correlated with increased learning from positive 

RPEs. This may occur because T alleles at this SNP are part of a haplotype that is associated 

with greater DARPP-32 expression (Meyer-Lindenberg et al., 2007). Similarly, Doll et al. 

(2011) found that while T alleles at rs907094 promote learning from positive RPEs, they are 

negatively correlated with learning from negative RPEs.  

 In contrast to findings from Doll et al. (2011), a study by Collins and Frank (2012) found 

no relationship between DARPP-32 polymorphisms and reinforcement learning. Byrne et al. 

(2016) hypothesized that this difference may be due to differences in cognitive processing 

associated with differences in the two study designs. Doll et al. (2011) used a probability 

selection task in which participants learned and categorized novel symbols. Collins and Frank 

(2012) used known categories and category members in their task. Byrne et al. (2016) reasoned 

that the DARPP-32 polymorphisms may play distinct rolls in these two types of learning and 

categorization.  

 DARPP-32 also modulates striatal plasticity with different effects on reward learning 

(Doll et al., 2015). DARPP-32 polymorphisms are also associated with individual differences in 

working memory, prefrontal activity, and differences in model-based and model-free learning 

(Deserno et al., 2015). A recent study demonstrated that DARPP-32 T alleles in the striatum 

increased model-free learning over C alleles; however, C alleles were predictive of better 

performance in model-based learning (Doll et al., 2016).  

COMT 

 Catechol-o-methyltransferase (COMT) is an enzyme that degrades catecholamines 

including extracellular dopamine. The COMT gene codes for the enzyme; however, a 

nonsynonymous polymorphism, Val158Met (rs4680), has been shown to contribute to individual 
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differences in dopamine regulation (Gogos et al., 1998; Huotari et al., 2002; Matsumoto et al., 

2003). Val158Met is the most studied of the SNPs examined here. Its alleles are differentially 

associated with focus during working memory tasks (Heinz & Smolka, 2006), emotional 

resilience (Smloka et al., 2005), and a variety of findings related to risks of schizophrenia, 

ADHD, and substance abuse, among others. Differences at this SNP are associated with different 

basal dopamine levels and, by extension, the availability of D1 receptors in the prefrontal cortex 

(PFC) (Slifstein et al., 2008). The Met version of COMT operates less efficiently in breaking 

down synaptic dopamine such that Met carriers have four times as much available dopamine as 

Val carriers. This leaves more synaptic dopamine available to activate postsynaptic neurons in 

the PFC. The result is sustained PFC activation and improved executive functioning, working 

memory for abstract rules (Durstewitz et al., 2010; Durstewitz & Seamans, 2008) and high-order 

cognitive faculties in reward learning (Frank et al., 2007, 2009).  

 Unlike the SNPs in DRD2 and DARPP-32, the Val158Met SNP in the COMT gene does 

not have significant effects on striatal dopamine (Gogos et al., 1998); however, there is evidence 

that the effects of COMT in the PFC play a role in striatal dopamine regulation through neuronal 

projections from the PFC to the striatum (Krugel et al., 2009). 

 Doll et al. (2011) found that Met allele carriers were more susceptible to unmotivated 

confirmation bias. In a probabilistic card selection task in which participants were given 

incorrect instructions about which cards were most likely to be winners, Met allele carriers 

continued to play according to the incorrect probabilities in the instructions and did not switch 

strategies based on the observed outcomes in the task trials. Doll et al. reasoned that this 

susceptibility to confirmation bias was the downside of the improved working memory 

associated with Met carriers. While improved working memory might allow these participants to 
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keep instructions in mind throughout multiple trials with feedback, it is unclear why improved 

working memory could only hold those instructions in mind, and not the feedback from the trials 

themselves. Thus, Doll et al.’s finding regarding COMT and confirmation bias may require 

additional or alternative explanation.  

 Like DARPP-32, COMT polymorphisms also play differential roles in model-based and 

model-free learning. Doll et al. (2016) showed that prefrontal Met alleles predicted better 

performance on a model-based learning task than Val alleles, such that Met allele carriers 

outperformed Val/Val homozygotes. They reasoned that Met alleles amplified model-based 

choice performance by augmenting working memory, a cognitive process which occurs in the 

prefrontal cortex and is dopamine dependent (Otto et al., 2013). 

 Despite numerous studies showing an effect of COMT polymorphisms on cognitive 

abilities, a meta-analysis of 58 studies recently found no such effect (Geller et al., 2017) and 

concluded the effect was either too small to detect or was not there at all. The study differed 

from a 2008 meta-analysis (Barnett et al.) in that Geller et al. only included studies of healthy 

adults; however, both studies failed to find the much-discussed association between Val158Met 

polymorphisms and individual differences in cognitive function.  

 Apart from cognitive functions as traditionally conceived, the COMT Val158Met 

polymorphism has been implicated in emotional decision-making, a relationship that de Souza 

Costa et al. (2016) showed to be mediated by sex. Using the Iowa Gambling Task (IGT), de 

Souza Costa et al. showed Val/Val homozygotes performed better in the latter half of 100 

selections in the task only when those Val/Val genotypes belonged to women. Learning in the 

IGT typically shows up in later trials because most learning takes place in early trials. Decision-

making in later trials is considered emotional decision-making because the task is probabilistic 
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and the decisions are therefore risky. By contrast, early trials which take place prior to or during 

early learning are considered to be ambiguous. De Souza Costa et al. reasoned that the sex 

differences may be due to an increased focus on a long-game payoff in men, and an increased 

sensitivity to individual losses in women. Regardless of sex, Met alleles at Val158Met have been 

associated with a negativity bias such that resistance to negative emotional states is reduced (Gao 

et al., 2016). These Met alleles are also associated with anxiety disorders (McGrath et al., 2004) 

and depression (Åberg et al., 2011).   

 The Val158Met polymorphism is also predictive of individual differences in 

susceptibility to framing effect biases (Quinn et al., 2019). Specifically, Val carriers were more 

susceptible to framing effects. Participants answered questions in one frame, then answered the 

same questions differently framed. Val carriers were more likely to change their responses to the 

questions when they were reframed. The authors hypothesized that the Met allele, and its 

accompanying increased dopamine in prefrontal synapses, may enhance consistent choice 

selection.  

Current Study 

 In order to discover whether the dopaminergic genes predictive of unmotivated 

confirmation bias are also predictive of motivated confirmation bias, we used the motivated 

confirmation bias detection task developed by Kahan et al. (2017) and its unmotivated control 

task in conjunction with genotyping the relevant SNPs in DRD2, DARPP-32, and COMT genes. 

This approach allowed us to rely on a peer-reviewed paradigm for detecting motivated 

confirmation bias established in a sample of 1111 participants. In doing so, we sought to 

replicate Kahan’s findings as well as to replicate and extend the findings of Doll et al. by 



 31  

evaluating whether motivated bias is associated with the same genes found to be predictive of 

unmotivated confirmation bias.  

Hypotheses 

Given that RPE underlies motivated confirmation bias, we hypothesized that the same 

SNPs identified by Doll et al. (2017), DRD2 (rs6277), DARPP-32 (rs907094), and COMT 

(rs4680), as predictive of individual differences in susceptibility to unmotivated confirmation 

bias would also be predictive of individual differences in susceptibility to motivated 

confirmation bias. It was further hypothesized that political identity would predict bias; 

specifically, that in the treatment condition, participants whose stimuli affirmed their political 

beliefs would be more accurate, and those whose stimuli contradicted their political beliefs 

would be less accurate. Political ideology was not expected to have any effect on accuracy in the 

control (unmotivated) condition. Finally, it was hypothesized that in the control condition, 

numeracy and accuracy would show a strong, positive, correlation, such that increased numeracy 

would be associated with improved accuracy. In the treatment condition, however, it was 

expected that this relationship would not hold. Rather, it was hypothesized that Kahan’s findings 

would be replicated and motivated confirmation bias would wipe out any advantage in accuracy 

that numeracy would otherwise convey. 

It is possible that genotype might interact with numeracy to influence cognitive 

performance, such as susceptibility to bias. The dopaminergic genes examined here have been 

associated with various cognitive processes and traits in multiple studies. These include 

executive functioning such as working memory, response inhibition, and cognitive flexibility, 

emotional decision-making, and framing-effects-induced bias, among others. However, it is also 

the case that several of these purported links between the genetic polymorphisms under 



 32  

examination here, and various cognitive properties, have not shown an effect in meta-analyses. 

Therefore, while we conducted analyses to detect any such interactions, we did not form a 

hypothesis regarding them. Similarly, Doll et al. (2015) found that COMT polymorphisms at 

C957T had differential effects on model-based and model-free learning.   

Methods 

 

Participants and Procedure 

 

Participants were 200 university students, 128 males and 72 females, mean age = 18.97, 

who participated in this experiment for class credit. The study protocol was approved by the 

University of Oklahoma Institutional Review Board and Institutional Biosafety Committee. All 

participants completed informed consent and HIPAA forms before beginning the experiment. 

Following randomization to study groups, the participants completed the primary experimental 

task and other study measures. Participants were randomly assigned to either the control (n = 96) 

or experimental (n = 104) group which were distinguished according to the version of the 

primary experimental task that was administered. All study questionnaires were delivered in-

person via computer. 

The primary experimental task was a motivated bias detection task (MBDT) developed 

by Kahan et al. (2017). The MBDT is a data interpretation task designed to elicit and detect 

motivated confirmation bias in the treatment condition when compared to the control condition. 

Control group participants were asked to interpret a data table to determine the effectiveness of a 

hand cream to treat a skin rash while the experimental group participants were asked to interpret 

a data table indicating the effectiveness of a concealed-carry weapons ban at reducing crime. 

Each study group was further randomly subdivided into whether the data table presented in the 

scenario was in support of the effectiveness or ineffectiveness of the skin cream/weapons ban. 
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The resulting four scenarios are presented in Figures 1-4. Each participant responded to only one 

scenario. As shown in the figures, the numerical data and their positions in the table were 

unchanged across the scenarios but the column labels differed. When properly interpreted on the 

basis of the data alone, the varying positions of these labels should result in a single “correct” 

judgment to be made with regard to effectiveness. Accuracy of the resulting decision of the 

participant served as the primary dependent variable for all analyses.  

After completion of this task, participants completed a nine-question numeracy scale and 

a demographics questionnaire. The numeracy scale combined questions from separate validated 

numeracy scales such as Weller et al.’s (2012) scale and the Cognitive Reflection Test (CRT) 

(Liberali et al., 2012) and was originally combined and used by Kahan et al. (2017). The same 

scale was used here to replicate Kahan’s findings. Like other numeracy scales, Kahan’s 

combined scale measures participants’ facility with quantitative data and their ability to apply it 

to solve practical problems. Use of this measure allows for analyses exploring whether numeracy 

confers any benefit when motivated reasoning is at play. Each question in the numeracy scale 

was marked correct or incorrect and participants were scored from 0-9 based on their number of 

correct answers.  

The demographics questionnaire included two questions about political identity. The first 

was a 7-point party identity Likert scale ranging from strong democrat to strong republican. The 

second was a 5-point political ideology Likert scale ranging from very liberal to very 

conservative. These scales were also used in Kahan et al. (2017) and were used here to replicate 

those findings. The purpose of capturing political ideology is to assess differences in accuracy on 

the MBDT when considering alignment between participants’ political outlook and their 
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randomly assigned table. Kahan found, for example, that data tables were more likely to be 

interpreted correctly when they confirmed participants’ prior political beliefs.  

At the conclusion of the computer-based surveys, participants provided saliva samples for 

DNA analysis. Each participant used one Oragene®•Discover OGR-600 from DNA Genotek. 

Participants indicated the last time they had any food or drink. They then waited at least 30 

minutes from that time before providing a saliva sample. They then washed their hands with soap 

and water and put on disposable gloves. Once gloved, participants took their saliva collection 

kits and spit into the funnel until they produced enough saliva to reach the fill line. Once 

complete, participants handed their samples to the experimenter. The experimenter verified the 

amount of saliva was sufficient, replaced the tube funnel with a tube cap, shook the capped tube 

for five seconds, and verified and wrote the participant number on the tube. After handing over 

their saliva samples, participants disposed of their gloves and washed their hands again with soap 

and water before departing the lab.  

Molecular Biology 

Reagents 

The prepIT®•L2P (PT-L2P), TaqPathTM ProAmpTM Master Mix and all other reagents were 

purchased from Thermo Fisher Scientific (Waltham, MA). 

Nucleic Acid Extraction 

DNA extraction from the saliva samples was conducted in a Biosafety Level II (BSL2) 

lab at Oklahoma Medical Research Foundation (OMRF). The extraction protocol used was DNA 

Genotek “Laboratory protocol for manual purification of DNA from 0.5 mL of sample.” Saliva 

samples were mixed by inversion and gentle shaking for 10 seconds and then incubated in a 

50C water bath for one hour. After incubation, collection tubes were wiped clean and 500 L of 
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each sample was placed into a separate 1.5 mL microcentrifuge tube. Twenty L of 

prepIT®•L2P (PT-L2P) reagent was added to each microcentrifuge tube. The combined solution 

was then vortexed for five seconds. The microcentrifuge tubes were next incubated on ice for 10 

minutes and then centrifuged at room temperature for five minutes at 15,000 x g. 500 L of 

supernatant from each tube was then transferred into separate microcentrifuge tubes and the 

pellets were discarded. 600 L of room temperature 100% ethanol was added and gently mixed 

by 10 inversions. After sitting at room temperature for 10 minutes, samples were centrifuged 

again for two minutes at 15,000 x g. The supernatant was removed and discarded. The DNA 

pellet was then washed with 250 L of 70% ethanol. After one minute, the ethanol was removed 

and discarded. 100 L of TE solution was added to dissolve the DNA pellet and the tubes were 

vortexed for 5 seconds. Samples incubated overnight at room temperature and were then stored 

at 4C until testing.  

Real-Time PCR for DNA Genotyping 

DNA genotyping was conducted at the University of Oklahoma’s Biology Core 

Molecular Laboratory. Each sample was tested to determine its genotype for three SNPs: DRD2 

gene polymorphism (rs6277), DARPP-32 gene polymorphism (rs907094), and COMT gene 

polymorphism (rs4680). DNA concentration was established via Qubit fluorometer 2.0 (Thermo 

Fisher Scientific).  

Samples were tested using TaqManTM SNP Genotyping Assays for each of the three 

genes and used TaqPathTM ProAmpTM Master Mix (Catalog no.: A30865; Thermo Fisher 

Scientific). DRD2 (rs6277) genotypes were tested using TaqMan SNP Assay (Identification no.: 

C_11339240_10; Thermo Fisher Scientific). The assay contained two minor groove binding 

fluorescent probes, a VICTM-labeled probe, which detected the C allele at C957T, and a FAMTM-
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labeled probe, which detected the T allele. For each 96-well 10 L Fast reaction, 5 L TaqMan® 

Master Mix and 0.5 L assay working stock were premixed via vortex and briefly centrifuged. 

Purified DNA samples were diluted with nuclease-free water and added to the plate wells. Two 

wells in each plate served as no-call controls. The remaining wells filled with 4.5 L diluted 

DNA sample and 5.5 L assay reaction mix. An adhesive film was added to the plate and the 

plate was briefly centrifuged.  

DARPP-32 (rs907094) genotypes were tested using TaqMan SP Assay MTO Human SM 

(Identification no.: C_7452370_1; Thermo Fisher Scientific). The assay contained two minor 

groove binding fluorescent probes, a VICTM-labeled probe, which detected the C allele and a 

FAMTM-labeled probe, which detected the T allele. Assay reaction mix, diluted DNA, and plate 

preparation followed the same procedure as that for DRD2 above.  

COMT (rs4680) genotypes were tested using TaqMan Drug Metabolism Assay 

(Identification no.: C_25746809_50); Thermo Fisher Scientific). The assay contained two minor 

groove binding fluorescent probes, a VICTM-labeled probe, which detected the Val allele, and a 

FAMTM-labeled probe, which detected the Met allele.  Assay reaction mix, diluted DNA, and 

plate preparation followed the same procedure as that for DRD2 above.  

Samples were amplified on a BioRad CFX96 TouchTM Real-Time PCR Detection 

System. A pre-PCR plate read was first run to identify background fluorescence. This 

background reading was subtracted from the PCR runs that followed. For DRD2 and DARPP-32 

amplification, samples were heated to 95C for 10 minutes to activate polymerases, then 

followed 40 cycles of denaturation at 95C for 15 seconds and annealing at 60C for 1 minute. 

For COMT amplification, samples were heated to 95C for 10 minutes to activate polymerases, 

then underwent 50 cycles of denaturation at 95C for 15 seconds and annealing at 60C for 90 
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seconds. Failed reactions were repeated. Genotypes for all samples were determined. Quality 

control for the genotype calls was established using negative controls to show a zero point for 

comparison. Samples were also run twice, as a positive control, to ensure each run produced the 

same results.  

Data Analysis 

 

Chi-square and independent samples t-tests were used to compare demographic 

characteristics between study groups. Chi-square tests were also used to compare allele 

frequencies between treatment and control groups. Binary logistic regression analysis was 

conducted to examine the effects of genotype, group assignment (treatment or control), and table 

assignment (effective or ineffective) on the accuracy of judgments made in data table 

interpretation. Additional logistic regression analyses were conducted to examine secondary 

aims related to numeracy and political identity. Data analyses were generated using SPSS 

software, Version 24 of IBM SPSS Statistics for Mac (IBM Corporation., Armonk, NY, USA). 

Statistical significance was determined at the 0.05 level. 

Results 

 

Group Differences 

 

Of the 96 participants in the control group, 55 (57.3%) received the data table which 

when correctly interpreted indicated effectiveness of the skin cream and 41 (42.7%) 

ineffectiveness. Similarly, in the experimental group, approximately half of the 104 participants, 

47 (45.2%) interpreted a table indicating the gun-control measure was effective and 57 (54.8%) 

ineffective.  

Differences between study groups are presented in Table 1. As shown, there were no 

significant differences observed between treatment and control groups in age (p = 0.19) or 
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gender (p = 0.53). Further, no differences were observed in the frequency of party identity (p = 

0.42), political philosophy (p = 0.12), or numeracy score (p = 0.32).  

Overall allele frequencies are presented in Table 2. The distribution of DRD2 genotypes 

was significantly different between treatment and control groups (p < 0.02) due to the higher 

presence of homozygous T/T genotypes in the treatment group (37:17). There were no 

significant differences in the group distributions of DARPP-32 or COMT genotypes (p > 0.05).  

Allele frequencies for all three genes were within Hardy-Weinberg equilibrium. The 

calculated Chi-squared values for differences between observed and expected allele frequencies 

for each gene were as follows: DRD2 2 = .718, p > 0.05; DARPP-32 2 = 2.855, p > 0.05; 

COMT 2 = 0.064, p > 0.05.  

We also examined group differences for a binary reclassification of the alleles according 

to the presence or absence of a particular allele. For DRD2, groups were created according to 

presence of the T allele, for DARPP-32 the C allele, and for COMT the Met allele. As an 

example, for DRD2 the two groups consisted of 1) the non-T (i.e., C/C) homozygous group and 

2) a combination of the T/T homozygous group and the heterozygous (C/T) group. No 

differences were observed in the binary allele frequency between treatment and control groups 

for any of the three genes (all p > 0.05; Table 3).  

MBDT Performance Predictors 

Only 63/200 (31.5%) participants interpreted the data tables correctly. Participants in the 

control (i.e., unmotivated) condition were significantly more likely (2 = 23.059, p < .001) to 

answer the primary task question correctly (n = 46, 48%) than participants in the treatment group 

(n = 17, 27%).  

Primary Analyses 
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 A 3-predictor logistic regression model was used to test differential effects on the 

accuracy of MDMT task performance of DRD2 genotype, group assignment (treatment or 

control), and table assignment (effective or ineffective). None of the two- or three-way 

interactions were significant, thus the model was reduced to the main effects model.  

 This 3-predictor model successfully predicted accuracy as indicated by a significant 

overall likelihood ratio, χ2(4) = 25.7, p < .001, R2 = 12.1%, Nagelkerke’s R2 = 16.9%. However, 

as shown in Table 4, only group assignment successfully predicted the odds of accurately 

interpreting the MBDT data table. Consistent with the basic group comparisons presented above, 

treatment group participants were significantly less likely (OR = .196, 95% CI: .098-.389) to 

answer correctly (p < .001). Neither DRD2 genotype nor table assignment significantly altered 

the odds of MBDT accuracy (ps > 0.05; Table 4). This analysis was replicated using the binary 

reclassification of DRD2 according to presence of the T allele. Results were unchanged and 

again only identified a significant effect of group (Table 5).  

A second 3-predictor logistic regression model was used to test differential effects on the 

accuracy of MDMT task performance of DARPP-32 genotype, group assignment (treatment or 

control), and table assignment (effective or ineffective). None of the two- or three-way 

interactions were significant, thus the model was reduced to the main effects model.  

This 3-predictor model successfully predicted accuracy as indicated by a significant 

overall likelihood ratio, χ2(4) = 24.5, p < .001, R2 = 11.5%, Nagelkerke’s R2 = 16.2%. However, 

as shown in Table 4, only group assignment successfully predicted the odds of accurately 

interpreting the MBDT data table. Consistent with the basic group comparisons presented above, 

treatment group participants were significantly less likely (OR = .216, 95% CI: .111-.420) to 

answer correctly (p < .001). Neither DARPP-32 genotype nor table assignment significantly 
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altered the odds of MBDT accuracy (ps > 0.05; Table 4). This analysis was replicated using the 

binary reclassification of DARPP-32 according to presence of the C allele. Results were 

unchanged and again only identified a significant effect of group (Table 5).  

Finally, a third 3-predictor logistic regression model was used to test differential effects 

on the accuracy of MDMT task performance of COMT genotype, group assignment (treatment 

or control), and table assignment (effective or ineffective). None of the two- or three-way 

interactions were significant, thus the model was reduced to the main effects model.  

This 3-predictor model successfully predicted accuracy as indicated by a significant 

overall likelihood ratio, χ2(4) = 25.5, p < .001, R2 = 12.0%, Nagelkerke’s R2 = 16.8%. However, 

as shown in Table 4, only group assignment successfully predicted the odds of accurately 

interpreting the MBDT data table. Consistent with the basic group comparisons presented above, 

treatment group participants were significantly less likely (OR = .211, 95% CI: .108-.411) to 

answer correctly (p < .001). Neither COMT genotype nor table assignment significantly altered 

the odds of MBDT accuracy (ps > 0.05; Table 4). This analysis was replicated using the binary 

reclassification of COMT according to presence of the Met allele. Results were unchanged and 

again only identified a significant effect of group (Table 5).  

Post-hoc power analyses were conducted for each of these three main effects models and 

showed that the analyses were underpowered for the observed effect sizes.  

Secondary Analyses 

Having found that none of the three SNPs in the dopaminergic genes of interest were 

predictive of accuracy on the MBDT, we examined whether numeracy, political philosophy, or 

political party affiliation were predictive of accuracy. Since primary analyses indicated a group 
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effect (treatment or control) on the odds of accurate response, each of the secondary analysis 

predictor variables were examined separately in models that controlled for group assignment. 

Numeracy 

 

 We next investigated the possibility of interactions between numeracy and genotype in 

order to discover if perhaps numeracy differentially acted on genotype to influence behavior. To 

do so, we created three two-way interaction terms representing the interaction of numeracy with 

each of the three genotypes and examined each in separate analyses. In these analyses, each 

genotype included three possibilities: two homozygote and one heterozygote. Since the 

behavioral effects detected by Doll et al. (2011) showed up when isolating certain alleles, we 

also conducted analyses recoding genotype factor in the interaction into just two options (for 

example, presence of C allele vs. T/T homozygote).  None of these six analyses showed any 

significance for genotype. Finally, we included sex as a covariate. When we did so, no 

significant effect was found; however, the significant effect of numeracy that was previously 

found was lessened. A significant effect for sex can be shown by eliminating numeracy from the 

analysis; however, numeracy must be included as it accounts for more of the variability in 

performance than does sex.  

Having found no significant interaction terms, these were dropped from the model in 

order to reduce complexity and increase power. A 2-predictor logistic regression model was used 

to test differential effects on the accuracy of MDMT task performance of numeracy (scored 0-9) 

and group assignment. The resulting model successfully predicted accuracy as indicated by a 

significant overall likelihood ratio, χ2(2) = 38.1, p < .001, R2 = 17.3%, Nagelkerke’s R2 = 24.3%. 

Specifically, after controlling for group assignment, numeracy significantly altered the odds of 
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MBDT accuracy (p = .009); for every point increase in numeracy score, the odds of accurately 

interpreting the table increase by 38%.    

Party Identity 

 

 A 2-predictor logistic regression model was also used to test the differential effects on the 

accuracy of MDMT task performance of party identity and group assignment. Political identity 

was assessed on a 7-point Likert scale from Strong Democrat to Strong Republican. No group x 

party identity interaction was indicated. The resulting model successfully predicted accuracy as 

indicated by a significant overall likelihood ratio, χ2(7) = 29.0, p < .001, R2 = 13.5%, 

Nagelkerke’s R2 = 18.9%. However, after controlling for group assignment, party identity did not 

significantly alter the odds of MBDT accuracy (p = .533).  

Political Philosophy 

Logistic regression was also used to model the differential effects of political philosophy 

and group assignment on the accuracy of MDMT task performance. Political philosophy was 

assessed on a 5-point Likert scale from Very Liberal to Very Conservative. No group x political 

philosophy interaction was indicated. As with party identity, the resulting model successfully 

predicted accuracy, χ2(5) = 29.9, p < .001, R2 = 13.9%, Nagelkerke’s R2 = 19.5%. However, after 

controlling for group assignment, political identity did not significantly alter the odds of MBDT 

accuracy (p = .191). 

Discussion 

 

Confirmation bias takes two cognitively and behaviorally distinct forms: motivated and 

unmotivated. Seminal work by Doll et al. (2011) and Kahan et al. (2017) showed that the 

influence of motivated confirmation bias is so strong as to erode the benefit of numeric 

competency in rational thought, and that SNPs important to dopamine regulation predict 
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susceptibility to unmotivated confirmation bias, respectively. In order to assess whether these 

cognitively and behaviorally separable phenomena are neurobiologically distinct, we sought to 

replicate Kahan’s findings on motivated confirmation bias while also testing for effects from the 

dopaminergic SNPs identified by Doll.  

Results of this study showed significant MBDT performance differences as a function of 

interpreting the motivated (i.e., treatment) versus the unmotivated (i.e., control) task condition.  

Despite the numerical task being identical in the two conditions, control participants were 

approximately five times more likely to answer correctly than their treatment counterparts. Only 

the context of the scenario presented—the subject matter to which the participants were told the 

data referred—was different. Given no other detected group differences, it is likely that these 

differences in performance are due to this difference in context, thereby supporting the 

conclusion that treatment participants were more biased—motivatedly so—in their reading of the 

MBDT data table.  

These findings are consistent with Kahan et al. (2017) who showed that the MBDT was a 

difficult task overall, and that performance on the task was much worse when subjects were 

presented with the motivated bias scenario. Like Kahan, we attribute this difference in group 

performance to motivated confirmation bias. Doll et al. (2011) identified three dopaminergic 

genes, DRD2, DARPP-32, and COMT, that were predictive of unmotivated confirmation bias.  

Thus, we examined whether the same SNPs in dopaminergic genes underlying these reward 

prediction errors—and responsible for individual differences in susceptibility to unmotivated 

confirmation bias—would also account for differences in motivated confirmation bias and, at 

least partially, account for the observed performance differences.  
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The present investigation found no relationship between genotypes and accuracy on a 

motivated confirmation bias detection test. Separate analyses for each gene revealed odds of 

accurately interpreting the data table differed only by group assignment with no effect of 

genotype. In additional analyses, we also examined specific allelic groupings. In Doll et al. 

(2011), behavioral differences associated with the three genes of interest were detected when 

grouping by the presence or absence of an allele, thereby creating two groups or genotypes for 

each gene. In these groupings, heterozygotes were included with one or the other homozygous 

groups. Therefore, we sought to replicate this approach to determine whether the binary 

reclassification of the genes revealed an underlying effect not detected by our first analysis. Prior 

to conducting these analyses, we first examined the equality of the distribution of the binary gene 

classification in the control and treatment groups: DRD2 was classified based on the presence or 

absence of the T allele, DARPP-32 on the basis of the presence or absence of the C allele, and 

COMT on the basis of the presence or absence of the Met allele. Results showed no differences 

in the distributions of the genotypes across the groups; therefore, we re-examined our models 

using the binary allele groupings. Findings were consistent with our broader analysis; only group 

assignment successfully predicted the odds of accurately interpreting the MBDT data table.  

If correct, these findings may suggest that distinct genetic determinants of the dopamine reward 

system underlie motivated and unmotivated confirmation biases. This is a lingering possibility in 

the young field of research into the neurobiology of cognitive biases, and it is due to the 

difficulty in studying the neurobiology of motivated confirmation bias—an exceedingly 

complex, real-world phenomenon (Rollwage et al., 2020).  

Alternatively, the relationship between these dopaminergic polymorphisms and 

motivated confirmation bias may be more complex than considered here. An example of just 
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such an explanation was seen above in Byrne et al. (2016), who hypothesized that the opposing 

findings from Doll et al. (2011) and Collins and Frank (2012) on the association between 

DARPP-32 and reinforcement learning may have been due to differences in the task. One of 

those tasks involved classification of novel symbols, while the other involved classification of 

familiar symbols, a cognitive difference which might employ distinct neural processes.  

Similarly, while Talluri et al. (2018) showed that post-choice perceptual sensitivity is 

increased for choice-consistent stimuli, Rollwage et al. (2020) showed that confidence level in 

the initial choice may better explain post-selection bias. In short, prior research suggests that 

there is more than one possible explanation why the dopaminergic polymorphisms predictive of 

unmotivated confirmation bias were not predictive of motivated confirmation bias in the present 

study. It may be that these polymorphisms do not participate in these two cognitively distinct 

biases. Alternatively, if they do participate in both types of confirmation bias, they may do so as 

part of more complex, distinct mechanisms that involve other variables not examined here. One 

such candidate variable for future research is confidence, as it may be more extreme in the 

motivated form of confirmation bias.  

Doll et al. (2011) found that differences at these SNPs in the three genes of interest were 

predictive of individual differences in susceptibility to confirmation bias. Specifically, T allele 

carriers in DRD2 (rs6277), T allele carriers in DARPP-32 (rs907094), and Met allele carriers in 

COMT (rs4680), all demonstrated significantly more susceptibility to unmotivated confirmation 

bias. Were these same allelic differences part of a single neurobiological cause of both motivated 

and unmotivated confirmation bias, they would have been predictive of accuracy in the present 

study’s MBDT. We reasoned that RPEs are the probable determinant of both types of 

confirmation bias, and as such, SNPs in dopaminergic genes whose function is related to RPEs in 
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unmotivated confirmation bias would also be related to motivated confirmation bias. On the 

other hand, motivated and unmotivated confirmation bias are cognitively and behaviorally 

separable. This may be due to distinct neurological mechanisms underlying these phenomena. 

While future research will have to identify probable genetic and neurobiological markers for 

susceptibility to motivated confirmation bias, it remains possible that these will regulate 

dopamine in RPE function. 

Not having found main effects for any of the genes of interest, we conducted secondary 

analyses to examine whether numeracy, political party identity, or political philosophy affected 

the odds of correctly interpreting a motivated bias task. Kahan previously showed that 

congruency between political identity and data table assignment predicted accuracy, whereas 

incongruency predicted inaccuracy. In other words, when participants read a data table that 

confirmed their prior beliefs, they were more likely to interpret that table correctly than 

participants who read a table that contradicted their prior beliefs. Findings of the present study 

did not confirm this association – we found no effects for party identity or political ideology after 

controlling for group assignment.  

Numeracy, or the facility with which one understands and is able to work with numbers, 

is believed to enhance one’s ability to apply rational thinking or judgment in the face of a variety 

of problem sets. In the literature on numeracy and comprehending medical data for weighing 

health risks, for example, higher numeracy associated with getting medical treatment, adhering 

to instructions for the use of medications, understanding screenings risks, and better health 

outcomes overall (Reyna et al., 2009). However, prior research has shown that even when 

individuals possess cognitive problem-solving skills such as high numeracy, these skills confer 

no additional benefit when motivated reasoning is at play. For example, Kahan et al. (2017) 
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showed that performance differed between motivated and unmotivated task conditions but found 

no effect of numeracy in the motivated scenario. The present study, by contrast, found that even 

after controlling for group assignment, numeracy was still associated with increased odds of 

accurately responding in the MBDT task. So, unlike Kahan et al., who found that numeracy had 

no effect in the motivated condition, we showed that numeracy is predictive of accuracy in both 

motivated and unmotivated scenarios in certain populations. 

Why does numeracy confer any benefit at all? In both Kahan’s study and the control 

condition in the present study, numeracy conveyed an advantage that was predictive of accuracy. 

This is because numeracy is a measure of facility with numerical information (Peters et al., 

2006), and the tasks in both experiments were fundamentally numerical tasks—namely, 

interpreting data tables. This is consistent with the broader body of judgment and decision-

making research showing that numeracy is predictive of optimal, rational outcomes in a variety 

of numerical tasks, from understanding risk in medical decision-making (Reyna et al., 2009) to 

completing formal education and maintaining employment (Parsons & Bynner, 2005). Thus, 

numeracy typically conveys a performance advantage in narrow numerical tasks as well as 

broader endeavors that rely on numerical reasoning. The importance of Kahan et al.’s (2017) 

finding is that it showed this advantage was wiped away in the face of motivated confirmation 

bias.  

 Why, in confronting motivated confirmation bias, did numeracy offer a benefit to our 

participants, whereas for Kahan’s, it did not? We suspect the difference lies in the populations 

from which our respective samples were taken. Kahan et al.’s participants were 1111 adults, with 

a mean age of 48 years, recruited through an online testing firm. Our participants were 200 
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university students with a mean age of 19 years who participated in a university setting for class 

credit. Age and/or setting may be critical determinants of performance on the MBDT.  

Since the numerical tasks in the treatment and control conditions of the MBDT are 

identical, and only the explanations about subject matter to which the data refer are different, we 

conclude that the finding of a main effect for group assignment is the result of motivated 

confirmation bias. None of the potential genetic differences or political beliefs explored in this 

study explained this effect. That these latter predictors did not have any significant effects on 

outcome was most likely due to a non-normal, low kurtosis, distribution of party identity and 

political ideology. Figures 5 and 6 show the distributions of party identity and political 

philosophy broken down by correct and incorrect responses on the MBDT. In the sample, 

participants’ party identity and political philosophy clustered around the center and away from 

the tails of the distribution. As a result, there may have been too few extreme political party 

affiliations and too few extreme political philosophies to show an effect on MBDT accuracy. We 

explored alternative classification of these scale scores which resulted in no difference in the 

findings. 

Further, the sample largely consisted of university freshmen and sophomores enrolled in 

an introductory psychology course at a southern university. It is possible that in this 

demographic, views on gun control—the context in which the treatment group data were 

presented—are less variable than elsewhere in the United States, and not captured by measures 

of political party or political philosophy. 

Limitations 

 

 We hypothesized that because both motivated and unmotivated confirmation bias likely 

operate as the result of RPEs, the same dopaminergic gene SNPs that are predictive of individual 
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differences in unmotivated confirmation bias would also be predictive of motivated confirmation 

bias. Results of the present study did not confirm this hypothesis and instead suggests that the 

neurobiological mechanisms that account for individual differences in susceptibility to motivated 

confirmation bias may differ and remain to be discovered. While alternative biomarkers have yet 

to be identified to account for such neurobiological differences, it is reasonable for future 

research to take one of two approaches. The first is to examine whether there are alternatives to 

RPEs that can serve as the underlying processes that produce confirmation bias. If there are not, 

future research should examine biomarkers that produce differences in dopamine regulation as 

alternatives. Like the polymorphisms in DRD2 and DARPP-32, these might directly affect 

dopamine availability in the striatum. Like COMT, however, prospective biomarkers might have 

only second- or third-order effects on the striatum while having their primary effects elsewhere 

(the PFC in the case of COMT) and then influence the striatum through neuronal projections 

from one region to another.  

 The sample size of 200 may not have been large enough to detect the putative effects of 

political party identity and political philosophy on accuracy in the MBDT, as effects sizes were 

lower than anticipated. A larger sample size from this population of 18-19-year-old university 

students might detect such effects. Alternatively, a broader and more age diverse population 

might be one in which political party affiliation and political philosophy are more indicative of 

beliefs and biases about gun control and gun issues.  

One alternative approach to overcome the apparent disconnect between the detected bias 

on gun control, and the undetected bias connected to political measures, might be to include a 

scenario for which university students’ views are more closely connected to their political 

commitments. Had we envisioned such a disconnect in the study sample, additional measures of 
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attitudes on gun control issues could have been included to further explore this possibility. These 

might be simple measures like Likert scales capturing one’s support for gun control, or validated 

tools like the scale developed by Teske & Hazlett (1985) for measuring attitudes toward handgun 

control specifically. Such measures would give an indication of prior beliefs that could serve as a 

ground for motivated confirmation bias. If successful, they would show up in the control group 

as a difference in accuracy between participants whose prior beliefs and table assignment (gun 

control is effective at reducing violence, or gun control is ineffective at reducing violence) were 

aligned, and those whose beliefs and table assignment were incongruous. 

Conclusions 

 The data presented here are evidence that the genetic and neurobiological determinants of 

motivated and unmotivated confirmation bias are distinct. Nevertheless, the biological 

mechanisms underlying motivated confirmation bias remain to be discovered. Future research 

should seek to replicate the present findings and identify biomarkers of interest in the 

neurobiological architecture of RPEs and dopamine regulation. That numeracy provides some 

benefit in the face of motivated confirmation bias, in at least some populations, is also a novel 

finding that warrants efforts at replication and further explanation. A better understanding of the 

precise conditions under which numeracy can be harnessed to combat motivated confirmation 

bias may provide additional tools in the effort to augment cognitive performance and improve 

rational judgment and decision-making.  

Finally, this is a young field of research that is still developing research methods for 

examining complex real-world phenomena. Imaging work like that from Kaplan et al. (2016) can 

examine the neural correlates of emotionally and cognitively complex processes, like resistance 

to changing one’s mind on political topics. However, imaging studies can only go so far. Kaplan 
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et al.’s work may be useful in identifying areas of activity where others may look for candidate 

mechanisms that explain such complex processes. It is also the case that findings from individual 

studies showing relationships between dopaminergic polymorphisms and relatively simple 

cognitive processes have not always survived examination in meta-analyses. Progress in our 

understanding of the neurobiology of simpler cognitive biases may be necessary to 

understanding complex real-world phenomena like motivated confirmation bias.  
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Table 1 

 

Treatment and Control Group Statistics for Age, Sex, Party Identity, Political Philosophy, and 

Numeracy Score 

 Treatment Control t/2 p-value 

N 

 

104 96   

Age 

 

19.19 (3.31) 18.72 (1.24) 1.32 .189 

Sex (M/F) 44/60 28/68 3.74 .053 

     

Political Philosophy     4.230 .376 

     

Very Liberal 6 (5.8%) 4 (4.2%)   

     

Liberal 32 (30.8%) 27 (28.1%)   

     

Moderate 27 (26.0%) 34 (35.4%)   

     

Conservative 30 (28.8%) 34 (35.4%)   

     

Very Conservative 1 (0.01%) 5 (5.2%)   

     

Party Identity   .632 .123 

     

Strong Democrat  4 (3.8%) 2 (2.1%)   

     

Democrat 18 (17.3%) 22 (22.9%)   

     

Independent Lean 

Democrat 

20 (19.2%) 21 (21.9%)   

 

Independent 

    

13 (12.5%) 13 (13.5%)   

     

Independent Lean 

Republican 

18 (17.3%) 11 (11.5%)   

     

Republican 21 (20.2%) 25 (26.0%)   

     

Strong Republican 2 (1.9%) 10 (10.4%)   

 

Note. Means (SD) and t-tests were used for age and numeracy score; Frequencies and chi-square  

 

tests were used for gender, party identity, political philosophy. 
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Table 2 

Allele Frequency (%) in Treatment and Control Groups for Single Nucleotide Polymorphisms in 

Three Genes of Interest: DRD2, DARPP-32, and COMT 

Gene Treatment Control 2 p-value 

DRD2   8.176 .017 

C/C  23 (22.1%) 29 (30.2%)   

T/T 37 (35.6%) 17 (17.7%)   

C/T 44 (42.3%) 50 (52.1%)   

DARPP-32   2.374 .305 

C/C 50 (48.1%) 51 (53.1%)   

T/T 16 (15.4%) 8 (8.3%)   

C/T 38 (36.5%) 37 (38.5%)   

COMT   3.012 .222 

VAL/VAL 24 (23.1%) 13 (13.5%)   

MET/MET 33 (31.7%) 34 (35.4%)   

VAL/MET 47 (45.2%) 49 (51.0%)   
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Table 3 

 

Frequency (%) of Allele Presence in Treatment and Control Groups for Each of Three Genes of 

Interest: DRD2, DARPP-32, and COMT 

Presence of allele Treatment Control 2 p-value 

DRD2 T allele  81 (77.9%) 67 (69.8%) 1.699 .192 

    

DARPP-32 C allele 88 (84.6%) 88 (91.8%) 2.350 .125 

    

COMT Met allele 80 (76.9%) 83 (86.5%) 3.010 .083 
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Table 4 

 

Logistic Regression Analysis of MBDT Accuracy for Each of Three Genes of Interest: DRD2, 

DARPP-32, and COMT 

Model β SE β Wald’s 2 df p 

Odds 

Ratio 

DRD2       

Constant -.806 .171 22.125 1 <.001  

Group  

(0 = control, 1 = treatment) 

-.8159 .175 21.686 1 < .001 .196 

Table  

(0 = ineffective, 1 = effective) 

.024 .165 .021 1 .884 1.049 

TT allele (vs. CC) .245 .257 .912 1 .340 1.203 

CT allele (vs. CC) -.305 .223 1.882 1 .170 .694 

       

DARPP-32       

Constant -.944 .213 19.67 1 <.001  

Group  -.766 .169 20.434 1 < .001 .216 

Table  -.003 .164 .000 1 .986 .994 

TT allele (vs. CC) .287 .371 .595 1 .440 .709 

CT allele (vs. CC) .229 .258 .786 1 .375 1.186 

       

COMT       

Constant -.899 .183 24.039 1 <.001  

Group  -.779 .171 20.776 1 < .001 .211 

Table  .008 .164 .002 1 .960 1.017 

VV allele (vs. MM) .018 .292 .004 1 .952 1.317 

MV allele (vs. MM) .241 .222 1.169 1 .280 1.646 
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Table 5 

 

Logistic Regression Analysis of MBDT Accuracy for Each of Three Genes of Interest, DRD2, 

DARPP-32, and COMT, with Genotypes Regrouped for the Presence of an Allele of Interest. 

Model β SE β Wald’s 2 df p 

Odds 

Ratio 

DRD2       

Constant -.817 .187 19.165 1 <.001  

Group  

(0 = control, 1 = treatment) 

-.768 .169 20.659 1 < .001 .215 

Table  

(0 = ineffective, 1 = effective) 

.001 .163 .000 1 .995 1.002 

TT & CT alleles (vs. CC) -.089 .181 .241 1 .624 .837 

       

DARPP-32       

Constant -1.022 .279 13.409 1 <.001  

Group  -.764 .169 20.407 1 < .001 .217 

Table  -.006 .164 .001 1 .972 .988 

CC & CT alleles (vs. TT) .209 .278 .566 1 .452 1.520 

       

COMT       

Constant -.867 .217 15.938 1 <.001  

Group  -.774 .170 20.782 1 < .001 .213 

Table  -.002 .163 .000 1 .990 .996 

 MM & VM alleles (vs. VV) .014 .217 .004 1 .947 1.029 
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Figure 1  

 

Control Group Table for Effective Rash Cream 

 

 

 

Note. Experimental task table and instructions presented to some participants in the control 

group. When interpreted correctly, this table indicates that the cream used to treat the rash was 

effective.  
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Figure 2  

 

Control Group Table for Ineffective Rash Cream 

 

 

 

Note. Experimental task table and instructions presented to some participants in the control 

group. When interpreted correctly, this table indicates that the cream used to treat the rash was 

ineffective.  
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Figure 3 

 

Treatment Group Table for Effective Gun Control Policy 

 

 

 

Note. Experimental task table and instructions presented to some participants in the treatment 

group. When interpreted correctly, this table indicates that the ban on carrying concealed 

handguns in public was effective in reducing crime.  
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Figure 4 

 

Treatment Group Table for Ineffective Gun Control Policy 

 

 

 

Note. Experimental task table and instructions presented to some participants in the treatment 

group. When interpreted correctly, this table indicates that the ban on carrying concealed 

handguns in public was ineffective in reducing crime.  
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Figure 5  

 

Accuracy Across the Distribution of Responses to Political Philosophy Scale 
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Figure 6  

 

Accuracy Across the Distribution of Responses to Party Identity Scale 
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