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Abstract 

The microstructure of unconventional reservoir rocks not only controls the storage and 

transport of hydrocarbons but also controls the mechanical properties of the shale. Scanning 

Electron Microscopy (SEM) has been valuable in understanding the microstructure of reservoir 

rocks. However, quantitative image analysis has been proven to be difficult. There are many 

limitations to image analysis that produce significant errors in determining areal porosity and 

organic matter content within shales. Current methods in building a suitable database for 

statistical analysis is time intensive, requires a trained technician, and cannot deal with the 

thousands of images already collected. This research evaluates the application of machine 

learning, more specifically Deep Learning, to reduce the time required to analyze SEM images 

from days, for a single large-area high-resolution MAPS area to a matter of seconds for a single 

image.  

The objective of the initial work presented was to determine if there were significant 

microstructural differences between different formations that could be captured by computer 

software. In order to avoid acquiring large amounts of data required for training a network from 

scratch, the technique called transfer learning was applied to the pretrained convolutional neural 

network (CNN) AlexNet (Krizhevsky et al. 2017). This technique allows a user to re-teach the 

pre-trained network to focus on a new dataset than it was originally trained on. The dataset used 

comprised of 27,000 images (each 512x512 pixels) from 18 different formations spanning range 

of maturities. Results from this study generated probabilities of classification in association with 

different formations. Images with higher probability to other formations other than the intended 

label suggests there are microstructural similarities between formations. This work proved that 

convolutional neural networks can learn to identify features from the shale microstructure with 
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an accuracy of 92%. As a result, this method was applied for classifying image quality with 

reasonable accuracy of 95% accuracy.  

In addition to classification, CNNs can be applied to individual pixels within an image 

for classification. This is known as image segmentation. The focus in this topic is the 

identification and quantification of discrete objects such as pores, grains, organics, etc. applied 

directly to SEM images. When the model was applied to a large-area, high resolution maps with 

a large enough representative area (REA), it can provide representative and accurate results of 

area porosity and organic matter content (OM), consistent with lab measured porosity and TOC 

values. Accuracy of segmentation range from 92-99% for intersection over union metric (IoU) 

when classifying pore, OM and mineral content. Direct inspection of the images when compared 

to data generated using the Ilastik software proved to surpass the random forest method by more 

accurately defining boundaries between labels. The model was trained using Woodford images 

but was able to be successfully applied to images from other formations such as the Marcellus, 

Vaca Muerta, and Eagle Ford shales in addition to the Osage formation in the STACK play. This 

method was then expanded to identify carbonates, silicates, and other heavy minerals in addition 

to pore and organics. A sensitivity study was done in order to determine the best model. The 

sensitivity study was done to determine whether deeper or shallower models performed better 

with the data, more or less convolutional layers in the model, or a narrower or wider model 

performed better with the data, more or less filers per convolutional layer. This research shows 

that applications of CNNs to shales can quickly and accurately provide results in identifying 

similar formations in addition to features of interest. 



1 

 

 Introduction 

1.1 Motivation and problem statement 

Organic rich shales have typically been treated as source rock and seals for conventional 

reservoirs. In recent years, tight reservoirs and organic rich shales have emerged as a major source 

of production within the United States. The constancy in shale production is associated with the 

size of the resources available, which extend nearly 500,000 square miles, as well as improvements 

in technology which allow for the development of these resources at a lower cost (EIA 2020). The 

distribution and location of current and prospective shale formations within the United States can 

be seen in Figure 1.1 and within North America in Figure 1.2. For the contiguous American shale 

plays, the technically recoverable crude oil is estimated at 246 BBL and technically recovered dry 

natural gas is 2,341 Tcf (EIA 2020). Of these values, approximately 174 billion barrels of crude 

oil and 1,611 Tcf of natural gas are technically recoverable from tight/shale reservoirs (EIA 2020).  

Compositionally, there is no difference between the oil and gas of conventional and 

unconventional reservoirs, they differ primarily in the method of extraction. The choice of method 

is mainly controlled by the microstructure of the reservoir. Conventional reservoir rocks have 

favorable storage porosity and permeability which allow the hydrocarbons to be easily stored and 

produced, often flowing naturally. However, an unconventional reservoir is typically the source 

rock for conventional reservoirs; characterized by ultra-low permeability, low porosity and organic 

matter. Unconventional reservoirs have hydrocarbons that have never migrated, they are still 

sequestered in the host shale. Due to the tight nature of unconventional reservoirs, it becomes 

imperative to understand the microstructural properties, such as mechanical properties, in order to 

be able effectively produce from them by being able to predict how the formation will react during 

the production and completion processes.  
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Figure 1.1 – Map of US shale plays in the lower 48 states (EIA, 2016) 

In unconventional reservoirs such as tight-sands, shales, and coalbed methane formations, 

petroleum resides in the micro- and nano-pores, as well as being absorbed within the organics 

(Ambrose et al. 2010). Most of the current investigation surrounding these pores has been made 

using indirect measurements at a macroscopic scale to quantify pore volume and describe pore 

structure (Curtis et al. 2010). Nuclear magnetic resonance (NMR) spectroscopy, mercury injection 

capillary pressure (MICP), and Brunauer-Emmett-Teller (BET) surface area analysis, are the just 

some of the most common indirect measurement methods for measuring porosity and 

characterizing pore structure on a macroscopic scale. While these methods are very effective in 

characterizing the pore structure, they do not generate a detailed image of the pore structure.  

Standard scanning electron microscopy (SEM) and focused ion beam SEM (FIB-SEM) 

produces 2D and 3D images of pores at the nanometer scale. In SEM, a 2-D image is generated by 

bombarding the surface of a sample with a beam of electrons and then detecting the various signals 

produced by the interaction of the beam with the sample’s surface (Goldstein 2003; Reimer 1998; 
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Rodriguez et al. 2014). The SEM also provides surface topography through secondary electrons 

(SE) and atomic composition through backscattered electrons (BSE). In addition, using a different 

type of detector, elemental composition can be determined using energy dispersive x-ray 

spectroscopy (EDS). This detector allows for spot analysis in the mapping of elements across the 

surface. FIB-SEM uses an ion beam to slowly mill away the surface, while a series of successive 

images are taken in order to generate a stack of images for a 3D representation. Through a 

combination of these methods, we gain a 2D representation of the rock’s matrix with mineralogical 

information. And, by using FIB-SEM imaging to reconstruct a 3D representation of the matrix, we 

can visually understand the microstructure and its connectivity at a very fine scale. 

 
Figure 1.2 – Map of Canada and Lower 48 current and prospective shale plays (EIA, 2011) 

SEM imaging provides detailed surface and topographic information and 3D 

reconstructions capture connectivity; however, some of the main disadvantages are the size and 
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cost of the instrument as well as the resolution of the instrument. Sample preparation is particularly 

important in as it could result in imaging artifacts if done incorrectly.  

In the context of this study, we are interested in determining pore size distributions, organic 

matter content, and minerology based on a single SEM image. This procedural method is called 

digital rock physics (DRP), and it investigates and calculates petrophysical properties through 

image analysis, when these properties would typically be derived through core analysis (Kalam 

2012). The idea behind DRP is to provide high resolution representations of the complex pore 

geometry for other forms of analysis. In any DRP workflow, the first step prior to analysis is the 

segmentation of images, based not just on simple grayscale thresholding, but on multi-band 

thresholding (Andrä et al. 2013; Iassonov et al. 2009). Improper segmentation can result in 

misleading outcomes or even entirely inaccurate representations. Current methods of segmentation 

are time intensive and are done manually with the help of commercial software.  

Due to the growing amount of data in the oil and gas industry, there has been a push to 

automate processes and apply new technologies to handle large data sets. This trend is also known 

as ‘Big Data’ or ‘Big Data analytics’. A typical dataset involved with big data embodies six main 

characteristics: volume, variety, velocity, veracity, value and complexity (Mohammadpoor et al. 

2018; Ishwarappa et al. 2015). Much of the data provided includes unstructured data, which is data 

that is unorganized or may be text heavy and multi-structured data. Multi-structured data is 

typically a result of multiple people or machine interactions. An example of how multi-structured 

data might be used within a company is shown in Figure 1.3. 
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Figure 1.3 – Big Data flow model showing how multi-structured data works together to 

create a data set ready for processing (Cameron 2014)  

Due to the massive amount of data  continually generated on a daily basis, and the complex 

nature of the issues that are required to be solved within the oil and gas industry, current methods 

of analysis are prohibitively time and effort consuming. Artificial intelligence (AI) applied in the 

oil and gas industry has provided cost saving measures by quickly and robustly analyzing the 

different problems. Machine learning (ML) and AI have provided a means to create tools that 

enable the development of assets quickly with minimal downtime. Examples of groups within a 

company that would benefit from these workflows include reservoir engineering, geology, 

petrophysics, geophysics, production, and operations.  

With the development of new technologies, image analysis has become easier thanks to 

deep learning (DL) and artificial neural networks (ANN). These methods, if trained properly, can 

provide for rapid and simple analysis of the image data. In many forms of image analysis, such as 
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formation classification and feature extraction, an ANN is trained to learn specific details about 

the image. Currently, work is being done to determine petrophysical properties from images. In 

the future, the hope is to predict petrophysical properties such as minerology and Young’s 

modulus, as well as porosity and organic content, from images of the microstructure.  

1.2 Scope of the thesis 

The goal of this thesis is to present a comprehensive method for evaluation of SEM image 

quality, shale play identification, and an automated and robust method of segmentation of shale 

SEM images in order to identify areal porosity, organic matter and mineralogy. SEM imaging 

analysis can be directly correlated to measurements made on core. Conventional methods require 

core plugs which can be expensive to obtain, whereas SEM images can be obtained more cheaply 

from cuttings and less consolidated samples. Initial work began with the evaluation of image 

quality and shale play identification to determine if convolutional neural networks could identify 

the differences in grayscale images for the image quality question and identify plays based purely 

on microstructure.  

In the evaluation of image quality, the focus was to determine whether an SEM image can 

be classified as ‘good’ or ‘bad’. The class of bad would include images that contained artifacts 

from imaging, such as curtaining, brightness/contrast, and charging, or indications of poor sample 

preparation. The purpose of this step was a proof of concept to determine whether or not images 

taken from different laboratories met the standards that are needed in following models of 

segmentation and play identification. The shale identification portion of this thesis was done as a 

proof of concept to determine what can be learned from shale microstructure and to see if a model 

could learn the differences that are apparent to humans upon visual inspection.  
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Initial success with the classification of images, allowed for a narrowing of the scope of 

the project from single image classification to classification of single pixels within an image, also 

known as segmentation or feature extraction. In providing a method of feature extraction from 

SEM images, this thesis addresses the automation of image segmentation of large areas, high 

resolution MAPS images, 3-D volumes from FIB-SEM, and micro-CT images, in order to generate 

volumetric measurements. Earlier works include the results of Tran (2017), Curtis et al. (2014) 

and Goergen et al. (2014). 

The objectives of this thesis are to: 1) automate feature extraction of SEM images by being 

able to process a large number of images quickly, and 2) work with data that might not be of the 

highest quality, (i.e. noisy, presence of artifacts, poor contrast, etc.). Current methods of SEM 

image analysis can be costly because they require a skilled technician, which can create user bias 

in the analysis, so the downsides are two-fold. Another prohibitive consideration is the time-

consuming nature of the work, which can limit the number of images that can be examined. The 

method proposed in this thesis allows for the segmentation of a large-area, high resolution MAPS 

image taken at 10 nm resolution, up to ~1.8 mm2 in area, in order to provide a quantitative analysis 

of areal porosity and organic matter content with lab comparison measurements. 

1.3 Organization of the thesis 

This thesis is presented in five chapters and is organized as follows: 

• Chapter 2 introduces background research in understanding shale microstructure analysis, 

SEM in shale analysis, and machine learning, (or more specifically, convolutional neural 

networks) 
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• Chapter 3 reviews the equipment, methodologies and machine set up for running 

convolutional neural networks 

• Chapter 4 reviews the results acquired by classification and segmentation of shale SEM 

images using convolutional neural networks 

• Chapter 5 concludes the investigation with takeaways and a review of the most significant 

findings of this project 
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 Background Research and Literature Review 

2.1 Shale Microstructure Analysis 

Shale microstructure is complex in nature but is essential to understand for shale 

production. Shale reservoirs are difficult to characterize due to the significant portion of their total 

porosity resides at the nano-scale (Clarkson et al. 2013). Many early studies viewed shales and 

other fine-grained rocks exclusively as seals for conventional reservoirs due to their low 

permeability and source rocks for other reservoirs (Brace 1980, Saif et al. 2017). For conventional 

reservoirs, the API method of measuring porosity is well documented and is determined through 

the combination of bulk density and grain density. 

Both permeability and porosity are controlled in shale by microstructure. Knowledge of 

pore size leads to an understanding of fluid flow through the reservoir. Current and most popular 

macroscopic techniques for the measurement of porosity includes mercury injection capillary 

pressure (MICP) and nuclear magnetic resonance (NMR) relaxation spectroscopy. More recently, 

the use of focused ion beam (FIB) and scanning electron microscopy (SEM) have allowed to 

visualize the micro- and nano-scale structures in 3D. 

Scanning electron microscopy, transmission electron microscopy, and optical microscopy 

have been used to identify lithology, pore space, interconnectivity of pores, and grain size within 

a rock matrix (Prasad 2001; Sok et al. 2010; Knackstedt et al. 2013). These techniques allow for 

mapping of large areas; however, these methods are limited in resolution. Image acquisition using 

SEM resolves small features, but with a favorable resolution comes a limited field of view.  
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Using a combination of focused ion beam SEM, or FIB-SEM, one is able to investigate the 

microstructure at micro- and nano-scale in 3D. Traditional optical methods such as SEM images 

can reveal the surface and 2-D morphologies. Disadvantages to this method includes the 

destructive nature of gathering images for the 3-D representation but with high resolution of up to 

2nm/pixel. Figure 2.1, shows a schematic representation on how images are gathered in FIB-SEM 

imaging.  

 
Figure 2.1 – (a) Schematic diagram of the FIB-SEM dual beam system. The ion beam (I-

Beam) is used to remove material from the surface to create a cross-sectional view that can 

be imaged with the electron beam (E-Beam). (b) shows a BSE image of a cross-sectioned 

shale taken with the E-Beam (Curtis et al. 2010). 

X-Ray computer tomography (CT) is another method for gathering 3-D representations of 

shales. Current technologies allow for the resolution to be in the micrometer range. The technique 

is specifically called microtomography and is referred to as micro CT or µCT. µCT is a non-

destructive method of imaging and is a combination of a series of 2-D x-ray images that are rotated 

around a single axis and reconstructed to form a single 3-D image. A voxel, or volume pixel, is 

associated with the x-ray absorption at the single point (Knackstedt et al. 2004; Monteiro et al. 

2017; Herman 2009; Saif et al. 2017).  
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In the case of shales, a 3-D approach facilitates obtaining important information on spatial 

distributions of organic matter, pore distributions, pore shape, connectivity etc. The scanning 

electron microscope is a powerful tool that produces images by scanning a samples surface with a 

focused beam of electrons. These electrons interact with the atoms of the surface of the sample to 

provide a wide range signals that contain information about the topography and composition of 

the surface of the sample.  

 

 

Figure 2.2 – The procedures of a FIB-SEM reconstruction. (left) a stack of images procured 

with a FIB-SEM, (middle) a reconstructed volume using image stack, (right) segmentation 

of images to produce quantitative results for modeling 

2.2 Machine Learning 

Machine Learning (ML) has become an important tool in modern research and analysis. It 

is a method of data analysis that allows a user to automate model building and detect meaningful 

patterns in the data. It stems from artificial intelligence (AI) which is based on the idea of allowing 

a computer to mimic human behavior and thinking (SAS, 2019). Advances in hardware and 

computing technologies have allowed machine learning to advance. These algorithms 

automatically build mathematical models using training data to make decisions based on what was 

provided. The basis of ML has been largely modeled after the brain and how neurons in our central 

nervous system interact. Although machine learning has been around since the 50s, recent 

advances in computational power and algorithms have made advances in AI more notable.  
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One of the first tests of AI was done by Alan Turing in 1950. This test, called the “Turing 

Test”, and it was done to determine if a computer could obtain real intelligence. The test was to 

see if the computer could learn to fool the human into believing the computer was a human. An 

interrogator would question both the human and the computers labeled X and Y and they would 

not know which was labeled which. Based on the interview, the interrogator would be asked to 

determine the label of the computer and the human. An example of how the test was conducted is 

shown in Figure 2.3.  

 

Figure 2.3 – Turning Test in which person C attempts to guess if A or B is the Human 

This breakthrough in understanding if computers can think gave way to Arthur Samuels AI 

program of checkers. In 1952, Samuel wrote the first computer learning program that taught a 

machine to play checkers better than himself and today he is considered one of the pioneers of 

machine learning (Puget 2016). The Samuel Checkers-playing Program is considered to be one of 

the first self-learning programs and it also demonstrates some of the fundamental concepts of AI. 

In Samuel’s 1959 paper on machine learning using the game checkers, he discusses different 
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procedures used in the development of his program, such as the Neural Network approach. 

According to Samuel, this approach involves a reward-and-punishment routine by inducing 

behavior by randomly assigning values to nodes similar to backpropagation in neural networks 

that will be discussed in later chapters. The second approach he discusses in the paper is using a 

highly organized network. Although the organized network is considered more efficient than the 

Neural Network approach, it becomes inefficient for new applications as it requires reprograming 

for each new application. Samuels machine-learning program was one of the earliest examples of 

non-numerical computation (Wiederhold et al. 1990).  

 
Figure 2.4 – Organization of a perceptron. When the retina “views” an image, where 

certain neurons are activated. These neurons that are activated are known as connections 

and are transmitted to a projection area. The perceptron will produce a response from the 

association area where the responses will give feedback back to the association area 

(modified from Rosenblatt 1958) 

The next advance in ML was the creation of the perceptron by Frank Rosenblatt at the 

Cornell Aeronautical Laboratory in 1958. Rosenblatt states that a perceptron is designed to 

illustrate some of the fundamental properties of intelligent systems, i.e. the nervous system in 

biological systems. The organization of the perceptron model, shown in Figure 2.4, follows such 

that an optical pattern affects the retina of a sensory unit which is assumed to respond as an all-or-

nothing basis. Once these responses are activated, they are then transmitted to a set of cells known 

as a projection area. Several connections received by this area are algebraically summed to be 

greater than or equal to a certain threshold. Once the threshold has been reached, the connection 
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fires off to send an output response. During the creation of this algorithm, it original uses was 

intended to be a machine, rather than a program, for image recognition. It first implementation was 

in the software for IBM 704, where it was implemented as “Mark 1 perceptron” (Foote 2019).  

While the perceptron seemed promising as image recognition and object detection, it 

struggled with new problems especially in detecting faces which inherently stalled much of the 

research in this topic. As a result, it was several years before the resurgence of neural networks in 

the 1990s and advancements in computational power did neural networks become successful.  

Following the Samuel Checkers-playing program and the struggle of the perceptron model, 

in 1967, the “nearest neighbor” algorithm, also known as k-nearest neighbor algorithm, was 

written that allowed computers to gain basic pattern recognition (Foote 2019). This method is used 

for both classification and regression and is based on feature similarity. Typical problems included 

the traveling salesman problem and optimization for shortest path problems.   

2.2.1 Machine Learning Classifications 

Machine Learning tasks are classified into different categories such as supervised learning, 

unsupervised learning, and reinforcement learning. In the following sections we will discuss the 

uses of each type of learning.  

2.2.1.1 Supervised Learning 

In supervised learning, the algorithm used is trained on labeled data and maps inputs to 

desired outputs (Osisanwo et al. 2017). This is the most common learning method used by most 

ML applications. Supervised learning is often used in classification and regression problems since 

the goal is to have the program learn from a classification system already created and minimize 

the error with respect to the given inputs (Ayodele 2010; NewTechDojo 2018). This method is 
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highly dependent on pre-determined classifications which can be influenced by biases in the 

labeling of the data. A workflow of the supervised learning process is shown in Figure 2.5. A 

significant portion of the process comes with data pre-processing and model train set definitions. 

In addition, all of these are affected by the Algorithm Selection, which will be discussed later.  

 
Figure 2.5 – How supervised machine learning works. Step 1) A machine learning method 

is provided a dataset with labels; the algorithm learns from the dataset. Step 2) The 

machine is then fed unseen data with unknown labels and labels the new data 

appropriately (NewTechDojo 2018). 

Typical machine learning algorithms include decision trees, naïve Bayes classification, 

Support Vector Machine (SVM), random forest, linear regression, ordinary least squares 

regression, logistic regression, and neural networks just to name a few. We see that for supervised 

learning it is common to have training data labeled for classification. These methods take in a 

sequence of desired inputs. The goal of these methods is to produce the correct output given a new 

and unseen input (Gharhramani 2004).  
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2.2.1.2 Unsupervised Learning 

Unlike supervised learning, unsupervised learning’s goal is to learn or detect patterns that 

were not labeled. For this we are interested in seeing if a model can detect  patterns within the data 

without giving explicit labels on the data. There are two main types of unsupervised learning, 

including clustering and association (NewTechDojo 2018). In the categorizing approach, the 

ultimate goal is to teach the computer by not giving explicit examples as you normally would in 

supervised learning. This can be considered a form of reinforcement learning as often the computer 

can be rewarded for taking certain actions and punished for others (Ayodele 2010).  

 
Figure 2.6 – How unsupervised learning works. Step 1) the machine learning algorithm is 

provided uncategorized data where the model determines if there are patterns within the 

data. Step 2) the user observes and learns from the data that the algorithm matched 

(NewTechDojo 2018).  

In unsupervised clustering, we are interested in finding similarities in the data. The 

assumption is that within the clusters, the data will match reasonably well with other data points 
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within the cluster. This method works well when it is provided with enough data. Unsupervised 

learning can also experience overfitting if not carefully applied to the data. The ultimate goal of 

unsupervised learning to help model or even structure the data to help the user understand more 

about the data (NewTechDojo 2018). Unlike supervised learning, unsupervised learning does not 

have correct answers and these algorithms are used to present the structure of the data for easy 

analysis in the future. Examples of unsupervised learning are clustering and dimension reduction. 

This can be done using Principal Component Analysis (PCA), K-means clustering, and 

Independent Component Analysis (ICA).  

2.2.1.3 Reinforcement Learning/Semi-Supervised Learning 

Reinforcement learning is similar to both supervised and unsupervised learning. In 

reinforcement learning, the model interacts with its environment by producing certain actions 

(Ghahramani 2004). Some forms of reinforcement learning can be used in unsupervised cases in 

categorizing of data. The interactions with the environment can be rewarded or punished based on 

the results. The ultimate goal is to minimize the punishments the machine receives.   

2.2.2 Machine Learning Algorithms 

Machine learning comprises of many different algorithms that are classified as supervised, 

unsupervised or reinforcement learning. The following section discusses various types of ML 

algorithms used in this project.  

2.2.2.1 Decision Trees and Random Forest 

Decision tree is a machine learning model that creates a list of branches from observations 

in the data to the targeted value in the leaves. This can be used to visually and explicitly represent 
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decisions and decision making (Gupta 2017). In the process of creating a decision tree, the root 

node has a condition that splits the tree into branches. These branches either have another node or 

what splits to another branch or it does not split and becomes a leaf where it has been classified. 

 
Figure 2.7 – An example of a Decision Tree in determining if a person is fit or not 

(Kulkarni 2017). The root node is to determine if the person’s age is <30. If yes, then take 

the right branch. This branch wants to know if the person eats a lot of pizza. If yes, they 

are considered unfit and if no, then they are considered fit.  

In classification using Decision trees, the data is continuously split according to certain 

parameters. An example is shown in Figure 2.7. Here the purpose is to determine whether a 

person is considered fit. To start off, the root note initially determines the age of the person; 

whether or not they are younger than 30. If the answer is yes, take the left node, and if the person 

is older than 30, take the right node. Say the person is 35, we take the right node. From here, this 

brings us to the first branch, determining whether or not this person exercises in the morning or 

not. In our case, we will say that they do exercise in the morning, so we take the left node and 

determine that they are fit.  

Random forest is similar to decision trees. In fact, random forest is made up of a 

collection of decision trees. When decision trees get to deep, meaning they have too many 
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branches downward, overfitting of the data tends to happen (NewTechDojo 2018). In the process 

of creating a random forest model, multiple decision trees are grown to prevent overfitting of the 

data. This method provides an average of the different trees which helps to reduce the variance in 

the data. The two main concepts that give the name random is that there is random sampling of 

the data during the training process as well as a random subset of features are used when 

considering the splitting of nodes.  

Both decision trees and random forest are great in accurately providing classification and 

regression. Random forest is extremely flexible with the data and returns a high accuracy and 

also can maintain a high accuracy when a large proportion of the data is missing. When 

implemented correctly, these methods provide easy and accurate results. One disadvantage of 

random forest is that it is computationally expensive for large forests.  

2.2.2.2 Neural Networks 

Artificial Neural Networks (ANNs) are a machine learning model that are inspired by the 

networks of biological neurons found in brains. They also constitute the core that makes up Deep 

Learning (Géron 2019). These models are very versatile and provide a means to tackle complex 

tasks such as image classification, speech recognition, text recognition, image segmentation etc. 

In 1943, McCulloch and Pitts presented a simplified computational model of how biological 

neurons interact with each other and the mapping of nervous activity and neural events through 

logical calculus. This is an example of the early success of ANN development.  
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Figure 2.8 – Representation of a biological neuron (Blaus 2014). The dendrites of the 

neuron cell receive the data form the previous neuron as input (i.e. the neural network 

layer receives input data from previous layer). The data is processed in the cell body (the 

layer performing its calculation). If the nucleus data reaches a certain threshold, the 

neuron will fire an output signal to the next cell (if the layer reaches activation threshold it 

will sends data onto next layer) . 

 When understanding how neurons interact with one another in a neural network, it 

becomes important to understand how they are related to their biological counterparts. The main 

components consist of the cell body and an axon. The cell body is where most of the complex 

actions occur in the neuron. Once the nucleus has reached its threshold requirement, the neuron 

activates and sends the data to the next neuron. The nervous system is highly organized and each 

of these neurons can be connected to thousands of other neurons (Géron 2019).  

This first example of an artificial neuron was created by McCulloch and Pitts (1943) and 

was considered a binary model. This model was activated once a certain number of inputs were 

activated. They were able to create networks where logical expressions, such as and, or, and not, 

are able to be expressed. An example is shown in Figure 2.9a-d. Figure 2.9a shows that if neuron 

A gets activated then Neuron C will also be activated. Figure 2.9b shows that when both neurons 

A and B are activated then C will activate. In Figure 2.9c, it shows that when either A or B are 
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activated then C will activate, and the last case, Figure 2.9d, shows that when A is activated and 

B is not then C will activate.  

 

 
Figure 2.9 – Logical computations of neurons. (a) shows when neuron A is activated then 

neuron C will be activated. (b) shows that when neurons A and B are both activated then 

neuron C will activate. (c) shows when either neurons A or B are activated then C will 

activate. (d) shows that when neurons A activate and not B then C will activate (Géron 

2019) 

As mentioned previously, the perceptron, created by Rosenblatt (1957) is one of the 

simplest ANN architectures. Shown in Figure 2.4, displays how multiple neurons will connect 

from the retina to the predicted responses. These neurons are typically organized into multiple 

layers where neurons of one layer only connect to the layers of the preceding layer.  

2.2.2.2.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNN)s, also known as convnets are a specific type of 

ANN that have demonstrated excellent performance in the classification of images (LeCun et al. 

1989). They are considered a regularized version of a multilayered perceptron. In designing a 

CNN, there are multiple hidden layers. These layers focus on the bulk of the calculations within 

the network. In addition to convolutional layers, layers such as pooling, padding, and fully 

connected layers are used in creating the ANN classifier.  

(a) (b) (c) (d) 
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Convolutional layers are the building blocks to CNNs. Unlike ANNs, where each datapoint 

(pixel in the case of images) is associated to a neuron, each neuron in the preceding layer is 

connected to only the neurons associated with a rectangle in the previous layer. Using this method 

allows the network to focus on low level features in the first layers then assemble them to higher 

level features in the following layers (Géron 2019).  

 

 
Figure 2.10 – Example of how CNN layers are processed from the input layers. Each point 

in the convolutional layer is associated with a rectangle of the previous layer. (a) represents 

how the first data point in the first hidden layers is determined with a 5x5 filter. (b) shows 

how when the 5x5 filter is moved over by one pixel, it creates the second data point in the 

Input Image 

First Hidden Layer 

Input Image 
First Hidden Layer 

(a) 

Image 

(b) 

Image 
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first hidden layer. This process is repeated across the entire image to complete the first 

hidden layer (Nielsen 2019). 

Filters in convolutional layers are associated matrix functions where the filter is applied 

across the image to produce results. An example is shown in Figure 2.10 where the input image, 

28x28 pixels, is applied with a 5x5 filter that is moved across the first five layers of the image 

and applying matrix multiplication to generate the first row in the first hidden layer. Once the 

filter has reached the end of the row, the filter will shift down one row and repeat the process 

until the 5x5 filter has seen every pixel in the input image. This process will generate a 24x24 

image in the first hidden layer (convolutional layer). For each neuron in the input, the equation 

below represents how each neuron in the first hidden layer is calculated.  

𝜎 (𝑏 + ∑ ∑ 𝑤𝑟,𝑐 𝑎(𝑗+𝑟),(𝑘+𝑐)

4

𝑐=0

4

𝑟=0

) 

In the hidden layer calculation, 𝜎 represents the activation function, which will be 

discussed later in the chapter. 𝑏 is the shared value for the bias term, which is similar to an 

intercept value in regression. 𝑎(𝑗+𝑟),(𝑘+𝑐) is the input patch in the image where j and k are the 

location in the input image, and 𝑤𝑟,𝑐 is the 5x5 array of weights that are used in generating the 

new 24x24 image. The weights used in generating this layer indicate that all the neurons that 

were created in this first hidden layer will detect the same feature, such as a horizonal line or a 

vertical line. This will create a feature map of the input image (Nielsen 2015; Géron 2019). An 

example of a feature map generated in a convolutional layer is shown in Figure 2.11. Using the 

equation mentioned above, Feature map 1 and Feature map 2 are generated using a vertical and 

horizonal filter, respectively.  
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Figure 2.11 – Example of feature map generation. A vertical filter is used to create Feature 

Map 1 where as a horizonal filter is used to create Feature Map 2 (Géron 2019).  

Activation functions are used as a gateway to proceed with a convolutional filter. This is 

based on whether the neuron’s input is relevant for the model’s prediction (MissingLink.ai 

2020). Many neural networks used a non-linear activation function since they allow for more 

complex mapping between the inputs and outputs of the data. This is important when analyzing 

datasets that include text, images, video and audio. Some of the most common non-linear 

activation functions are sigmoid, tanh, Rectified Linear Unit (ReLU), Leaky ReLU, and softmax. 

A table containing their function and their respective graphs is shown in Table 2.1. 
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Table 2.1 – Table of common activation functions used in Neural Networks 

Activation Function Equation Plot 

Sigmoid 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
𝑒𝑥

1 + 𝑒𝑥
 

 

Tanh tanh(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

Rectified Linear Unit 

(ReLU) 
𝑓(𝑥) = max (0, 𝑥) 

 

Leaky ReLU 𝑓(𝑥) = max (0.1𝑥, 𝑥) 

 

Softmax 𝑦𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑚
𝑖=0

 

 
 

Loss functions are used during training of a model to optimize the algorithm. The goal of 

the loss function is to minimize the error generated during training and to determine how well a 

model is performing given specific data as the price paid for the inaccuracy of a prediction 

(Mahendru 2019). Some common loss functions used in machine learning are binary cross 

entropy and categorical cross entropy. 

Binary cross entropy is used in two-class classification, such as determining if an image 

is a cat or a dog. The definition of entropy is generally used to indicate disorder or uncertainty. 
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This type of loss is used for classification models which provides a probability, p, for a certain 

class, y. The equation is shown below: 

𝐿 =  −𝑦 ∙ log(𝑝) − (1 − 𝑦) ∙ log(1 − 𝑝) = {
−(log(1 − 𝑝) , 𝑖𝑓 𝑦 = 0

− log(𝑝) , 𝑖𝑓 𝑦 = 1
 

This is also called Log-Loss where the probability, p, is determined using the activation function 

for final classification. 

 In the case of multi-class cross entropy, it is calculated similarly to binary cross-entropy. 

It will compare the distributions of the predictions, i.e. the activation function in the output layer, 

to the probability of the true class. For the loss, an input vector Xi and its corresponding target 

vector Yi are used in the equation below: 

𝐿(𝑋𝑖, 𝑌𝑖) =  − ∑ 𝑦𝑖𝑗 ∙ log(𝑝𝑖𝑗)

𝑐

𝑗=1

 

where Yi, in a target vector in (yi1, yi2, …, yic) where c is the total number of classes and pij is the 

probability that the ith element is in class j. yij is defined below: 

𝑦𝑖𝑗 =  {
1, 𝑖𝑓 𝑖𝑡ℎ𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑗 
0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

2.2.3 Model Evaluation During Training 

During model training, it is important to test the model with an unbiased way to 

determine the model skill on unseen data and to prevent overfitting of the data. The purpose of 

separating the dataset into training, validation, and testing is to provides an unbiased evaluation 

of the model during the training phase (Brownlee 2017). The validation set is used in evaluating 

the model as it is being trained on the training dataset to help tune the model’s parameters. The 

test data is a training, set  
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Figure 2.12 – Example of how K-fold cross validation is separated out for training and 

testing (Ren et al. 2019).  

A popular method to use during training is K-Fold cross-validation. This method is a 

resampling procedure used in model evaluation on a limited data sample (Brownlee 2019). K-

Fold Cross Validation uses a single parameter, k, to indicate the number of subsets of data that it 

will be separated into. It is a popular method as it generally results in a less biased model than a 

test/train split of the data. To begin, the data is randomly shuffled, before being separated into k-

partitions of the data. An example of the k-fold process is shown in Figure 2.12. For each unique 

set,  

2.3 Image Preparation/Preprocessing 

Image preparation is key when beginning training. Some pre-trained networks require 

specific input sizes while others allow you to adjust the input size to fit the needs of your images. 

In addition, Image augmentation is a technique that allows a user to increase the dataset. Some 
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parameters that are generally used include, zoom, shear, rotation, translation, and reflection. An 

example is shown in Figure 2.13.  

 

Figure 2.13 – Example of image augmentations that include rotation, scaling, and shearing 

(Sudhakar 2017). 

2.4 Machine Learning Metrics and Analysis 

Understanding how well the model has performed is important but understanding how 

each metric applied to different scenarios is important to having a valuable model. This section 

of the thesis will discuss typical metrics used in machine learning classification and image 

segmentation.  

2.4.1 Classification 

One of the most common and easiest to understand metrics in classification is the 

confusion matrix. It is mainly used in classification problems where the output is typically one or 

more classes and used when the true values are known. It is called a confusion matrix to show 
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where the model is confusing the data. This is a matrix that described the performance of a 

machine learning model on testing data (Drakos 2018). Accuracy, precision, recall and F1 scores 

can be calculated using the values found in confusion matrices. True positive values (TP) and 

True Negative (TN) are when both the actual label and the predicted label of the image are the 

same. False positive (FP) and False Negative (FN) are when the actual label and the predicted 

label are not the same. In Figure 2.14, TP is determined when the actual label ‘yes’ is accurately 

predicted ‘yes’ and TN values are determined when ‘no’ is accurately predicted ‘no’.  

 
Figure 2.14 – Representation of a confusion matrix for two classes predicting yes and no. 

The red box indicated the values used in calculation of recall and the dashed green box is 

used in the calculation of precision (Drakos 2018). 

Accuracy is the most straight forward measure of classifiers and is defined below: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

It is defined as the sum of the true positives and true negatives over the sum of all responses and 

is a value between 0 and 1. Unbalanced dataset may cause higher accuracies when in reality it 

should not be. As an example, you are interested in determining the difference between cats and 

dogs. In your data set you have 90 images as dogs and 10 images as cat. If you were to predict 
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that every image you see is a dog, then the accuracy would be 0.9 or 90%. As a result, accuracy 

is a good measure when the classes within a dataset are balanced (Drakos 2018).  

 Recall or sensitivity or True Positive Rate (TPR) is the defined as the number of items 

that are correctly classified that are identified as positive (Drakos 2018). The red box in Figure 

2.14 shows the values that are used in calculating recall. The equation is shown below: 

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Recall tells the most about a model’s performance with respect to how many were incorrectly 

classified. It is not so much about correctly guessing but more about determining which answers 

were correctly classified as true and yes.  

Precision is the number of items that are correctly identified as positive out of total items 

identified as positive (Drakos 2018). The green dashed box is Figure 2.14 shows the values from 

the confusion matrix that are used in calculating precision. The equation is shown below: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

In the case of precision, it is more about being precise and about how correct the answer was to 

the real response. The main goal of precision is to minimize the number of false negatives by 

having recall as close to 100% as possible, however, to minimize the number of false positives, 

then the goal would be to make precision as close to 100%.  

 F1 Score is a single-number evaluation metric that makes comparing models easier. Just 

like in regression, when comparing multiple models adjusted R2 is the single-number evaluation 

metric that considers the number of variables in your model, F1 score allows you to quickly 

compare classifier models. This value is comprised of both precision (P) and recall (R). The 

equation is shown below: 
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𝐹1 = 2 ∙
𝑃 ∙ 𝑅

𝑃 + 𝑅
= (

2

𝑅−1 + 𝑃−1
) 

For multiclass classification, the actual values are still represented by columns and the predicted 

values are represented by rows. For a single class, the true positive is the diagonal position, the 

false positive is the sum of the column excluding the diagonal value, and the false negative value 

is the sum of the row excluding the diagonal. Precision and recall are all calculated similarly as 

above for each class then averaged to generate overall values. F1 score is calculated the same as 

binary classification.  

 

Figure 2.15 – Confusion matrix for multiclass classification. The diagonal represents the 

true positive value correctly classified and values not along the diagonal are considered 

false positive or false negative. Precision is determined across each row then averaged while 

recall is determined along each column the averaged. 

 

2.4.2 Image Segmentation 

In image segmentation, a pixel is assigned a probability of belonging in a specific class 

(Higham 2018). There are three main metrics used in segmentation, pixel accuracy, intersection 
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over union, also known as the Jaccard Index, and the Dice Coefficient, also known as the F1 score. 

Using a combination of these three metrics, you will know if the model is performing well. 

 Pixel accuracy is the percentage of pixels in the image that are correctly classified. In 

calculation of pixel accuracy, it is common to report the accuracy for each class as well as globally. 

The equation used in this method is essentially comparing binary representation of a single 

instance by comparing the pixels that are true positive (TP) and true negative (TN) in their 

segmentation over both true positive values and true negative values along with the false positive 

(FP) and false negative values (FN) according to their targets masked image. This may seem easy 

to apply but by itself and an unbalanced dataset, the value can be misleading when some classes 

have small representation within the image (Tiu 2019; Jordan 2018). 

 
Figure 2.16 – Computing the intersection over union metric as the intersection of the 

ground truth and the predicted image over the union of both the ground truth and the 

predicted image (Rosebrock 2016).  

The metric intersection over union and mean intersection over union are used as a pixel 

class comparison and as a model comparison. Intersection over union is done using an unseen but 

labeled dataset to a segmentation model. The true class is compared to the predicted class by taking 

the overlapped area of the true class and the predicted class over the combination of both the true 

and the predicted areas (Figure 2.16). An example is shown in Figure 2.17 where the intersection 
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is defined by the pixels found in both the ground truth and the predicted image and the union is 

defined by the pixels in both ground truth and predicted images.  

      

      

Figure 2.17 – In this example of how intersection and union are determined, (a) the 

expected output is the segmentation of the lady vs. the background. (b) the model 

prediction. (c) The intersection is the overlapping area between the true segmentation and 

the predicted segmentation. (d) The union is determined between both the combination of 

both the ground truth labels and the predicted labels (Jordan 2018). The results from these 

images are used to determine the intersection of union metric.  

 

(a) (b) 

(c) (d) 
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2.5 GPU Computing 

 

Figure 2.18 – GPU vs CPU (Boston) 

GPU computing makes use of a graphic processing unit (GPU) that is used to speed up 

computations by allowing parallel processing. These devices are utilized by a computer by 

offloading the more computationally expensive calculations from the central processing unit 

(CPU) to the GPU. GPUs were initially created for computer graphic used in video games but 

have since been proven critical in providing acceleration in calculations as compared to CPU 

processing. Shown in Figure 2.18, a typical CPU can contain anywhere from four to eight cores 

for processing while a GPU has hundreds of smaller cores. While GPUs can process much faster 

than CPUs due to GPU-parallelism, they are not as versatile when it comes to managing inputs 

and outputs of the computer (OmniSci 2020). GPUs are best suited for highly repetitive and 

parallelized computing task such as machine learning, financial simulations, etc.  

 GPU computing has allowed for an increase in processing speeds by allowing GPU-

parallelization. NVIDIA offers a parallel-programing model, NVIDIA® CUDA®, that offers 

support in correctly applying GPU-parallelization to certain NVIDIA CUDA enable GPUs.  

 Methodology 
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Chapter 3 describes the details of the equipment and procedures used in this study. There 

are two main topics: Shale Image Classification and Shale Image Segmentation 

3.1 Equipment and Materials 

3.1.1 SEM Sample Preparation 

SEM samples were selected from core at desired depths from multiple formations. The 

samples were prepared perpendicular to the bedding plane. These samples were polished by hand 

starting at 120 grit emery paper to initially smooth the surface before polishing with 400, 600, 

and 800 grit paper. This sequence was done in successive order to ensure no notable scratches or 

artifacts are seen on the surface during imaging. A Fischione™ Model 1060 argon ion mill 

(Figure 3.1a) is used to further ensure the sample surface is smooth. A two-step procedure is 

used in the milling process where the surface is milled for three hours at 5kV focusing at the 

center of the sample with a high incidence angle, followed by an additional nine hours at 6 kV 

covering the surrounding region.  

The milled sample is then covered lightly in Au/Pd using a Desk V DENTON vacuum to 

sputter coat the surface in three-second increments for approximately ten seconds total. This is 

also done to reduce charging effects on the surface. If the sample is known to have additional 

charging issues during images, a copper tape is applied before sputter coating the sample surface.  



36 

 

 

Figure 3.1 – (a) Model 1060™ Fischione mill used in sample preparation. (b) depiction of 

how sample is milled using ion beam. Two ion guns blast the surface of the sample while 

the sample rotates to create an even surface (Curtis 2017) 

3.1.2 SEM and Image Acquisition 

A FEI Helios Nanolab™ 650 DualBeam™ machine was used in image acquisition. A 

concentric backscatter detector (CBS) at 2 kV accelerating voltage is used during imaging and is 

sensitive to atomic number of atoms. As a result, heavier elements, i.e. pyrite, rutile etc., have a 

higher atomic number and will appear lighter in contrast to pores and organics, which have zero 

or low atomic number. During the segmentation portion of this thesis, an Oxford XMAX 20 mm2 

detector was used in acquiring elemental maps for mineral labeling.  
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Figure 3.2 – FEI Helios Nanolab™ 650 DualBeam™ Scanning Electron Microscope 

FEI MAPS software was used in the generation of large area, high resolution images used 

in both segmentation and formation classification. Each MAP was taken at 10 nm resolution and 

500 µm wide and contained approximately 200-1,000 individual images, or tiles, stitched 

together to generate the large-area images. These MAPS varied in length but varied up to 1mm. 

Unfiltered tiles were used in both the segmentation and formation classification.  

3.1.3 Image Classification Computer 

A windows server machine was initially used for image classification. This computer 

contains two NVIDI Quadro K6000 GPUs that each provide computing power of 5,196 GFLOPs 

single precision and 1,732 GFLOPs double precision. Gigaflops (GFLOPs) are measure of 

floating-point operations a processor can perform per second. Initial work with image 

classification used MATLAB version R2017b – R2020a.  
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Table 3.1 – Computer Specifications for Image Classification 

 Parameters 

OS Windows Server 2016 

Memory 96 GB 

CPU Intel® Xeon® Processor E5-2690 @ 2.90GHz × 16 (x2) 

GPU NVIDIA Quadro K6000 (x2) 

CUDA Cores 5760 

Virtual Memory (GB) 24 

Single Precision Compute 

Power (GFLOPs) 
10,390 

 

3.1.4 Image Segmentation Computer 

A Unix box using Ubuntu 18.04.03 was used in segmentation work. The switch from 

Windows to Linux was done due to the slower communication time between MATLAB to the 

GPUs in Windows.. Computer specs are shown in Table 3.2. Initial work utilized five NVIDIA 

GeForce® 1080 Ti GPUs where each GPU provided 10,609 GFLOPS in single precision and 

332 GFLOPS double precision processing power. Later work in segmentation utilized two 

additional NVIDIA Titan RTX GPUs where each GPU provided 12,442 GFLOPS in single 

precision and 389 GFLOPS in double precision processing power. A comprehensive table of 

GPU comparisons is shown in Table 3.3.  

 

Table 3.2 – Computer Specifications for Image Segmentation 

 Parameters 

OS Ubuntu 18.04 64-bit 

Memory 64 GB 

CPU Intel® Core™ i7-7700K CPU @ 4.20GHz × 8 

GPU NVIDIA GeForce 1080 Ti (x5) 

NVIDIA Titan RTX (x2) 

CUDA Cores 27,136 

Tensor Cores 1,152 

Virtual Memory (GB) 103 

Single Precision Compute 

Power (GFLOPs) 
89,320 

Tensor TFLOPs 260 
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Table 3.3 – GPU comparison 

NVIDIA 

Model 

Memory 

Size (GB) 

Memory 

Clock 

Speeds 

(MT/s) 

CUDA 

Cores 

Tensor 

Cores 

Single 

Precision 

(GFLOPs) 

Double 

Precision 

(GFLOPs) 

Half 

Precision 

(GFLOPs) 

GeForce 1080 

Ti 

11 11,000 3,584 – 10,609 332 166 

Titan RTX 24 14,000 4,608 576 12,442 389 24,884 

Quadro K6000 12 – 2,880 – 5,196 1,732 – 

 

3.2 Evaluation of image quality 

3.2.1 Dataset preparation 

The purpose of this portion of the project was to determine the image quality, i.e. was it 

sufficient for further processing for play identification and image segmentation. Image sub-tiles 

were taken from SEM images to generate the dataset. Table 3.4 shows the number of images 

used in each classification. Examples of poor SEM images are shown in Figure 3.3 and some of 

examples include poor brightness and contrast, charging of the sample, contamination, 

curtaining, poor focus, redeposition, shading and astigmatism.  

   

(a) (b) (c) 
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Figure 3.3 – Examples of poor imaging. (a) poor brightness/contrast, (b) charging, (c) 

contamination of the sample, (d) curtaining effect, (e) out of focus, (f) redeposition, (g) 

shading, and (h) astigmatism. 

SEM images at varying resolutions were gathered and used to generate the training 

dataset. For the purposed of image classification, a pre-trained CNN called AlexNet was used. 

Transfer learning was used due to the limited number of images in our dataset. Image input size 

for AlexNet is 227x227 pixels (Krizhevsky et al. 2017). The images were tiled to 455x455 pixels 

before being resized to 227x227 for use in the pre-trained network AlexNet through the Deep 

Learning package on MATLAB.   

Table 3.4 – Number of images per classification for evaluating image quality 

Classification 

No. of Images 

(455x455 pixels) 

Good 833 

Bad 1,935 

 

(d) (e) (f) 

(g) (h) 
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3.2.2 Model Training 

In model training, supervised learning, more specifically transfer learning, was used on the 

pretrained CNN AlexNet through the Deep Learning package in MATLAB version R2017b 

(Krizhevsky et al. 2017). This network was initially trained and applied to the ImageNet database. 

This database contains more than 15 million images which consist of everyday objects such as 

pens, pencils, coffee mugs, cars, planes, etc. Transfer learning is used to train the last layers of a 

CNN to identify a different set of images. This process uses the parameters determined in the initial 

training of the ImageNet database, and fine tuning those parameters and retraining the final layers 

to better suit the needs of the new dataset.  

 
Figure 3.4 – An illustration of the architecture of AlexNet, explicitly showing the 

delineation of responsibilities between two GPUs. One GPU runs the layer-parts at the top 

of the figure while the other runs the layer-parts at the bottom. The GPUs communicate 

only at certain layers (Krizhevsky et al. 2017). Each box is a computational layer that has a 

height, width and number of feature maps in each layer. CNNs used in classification also 

include dense layers or classification layers to provide prediction results. 

AlexNet is a CNN created by Alex Krizhevsky and competed in the ImageNet Large Scale 

Visual Recognition Challenge in 2012. This network achieved a top-5 error of 15.3% meaning the 

percentage of test images for which the correct label is not among the top 5 considered the most 

probable. The architecture consists of eight layers, five convolutional layers followed by three 

fully-connected layers. At the time of initial training by Krizhevsky, GPU computing was still 
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taking off. He used two GTX 580 GPUs that have 3GB of memory each. Training on a single with 

3GB of memory limits the size of the network that can be trained.  

In initial training of AlexNet, the number of training parameters was over 1.2 million which 

is too big to fit on a single GPU. Figure 3.4, shows how cross-GPU parallelization was utilized in 

model training. This method allowed for half of the kernels on each GPU where each GPU can 

only communicate at certain layers. The first convolutional layer filters the 227x227x3 image with 

kernel sizes of 11x11x3 sliding across the image with a stride of 4 pixels. This data is then fed to 

the second layer where it filters the output of the first convolutional layer with a kernel size of 

5x5x48, followed by the third, fourth, and fifth layers connected to the outputs of the pervious 

layers with a kernel size of 3x3x192. These convolutional layers are then connected to the fully 

connected layers to produce the predicted output. Table A.5.1 in the appendix shows the training 

parameters used in transfer learning of AlexNet. 

 During model training, the data was separated into a training, validation and testing set, 

with 80% of the images in training, 10% in validation and 10% in testing. Table 3.5 shows the 

number of images used in each dataset. 

Table 3.5 – Separation of data during training 

 

Percentage, % 

No. of Images 

(455x455 px) 

Training 80 2,254 

Validation 10 281 

Testing 10 283 
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3.3 Image Classification 

3.3.1 Dataset preparation 

3.3.1.1 Method 1 

Initial dataset creation was done in a similar manner to evaluate image quality. Images 

from the Unconventional Shale Consortium database were used. SEM images taken at varying 

resolutions were used in generating this dataset. Sub-tiles of these images were generated at a 

512x512 pixel size. An example image and a sub-tile taken from the Marcellus formation is 

shown in Figure 3.5. A total of 13,756 sub-tiles, 1,500–2,500 per formation, were generated 

using this method and we applied it to seven formations, Eagle Ford, Haynesville, Lower 

Bakken, Marcellus, Niobrara, Wolfcamp, and Woodford.  

 
Figure 3.5 – Example of sub-tile generation from SEM images taken from the Marcellus 

formation.  

3.3.1.2 Method 2 

Based on the results from Method 1 (shown in Chapter 4, page 63), a different method of 

image gathering was used. Over 28,000 SEM sub-tiles from 18 different formations were taken 
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from a MAPs dataset. For two of the 18 formations, Eagle Ford and Vaca Muerta, thermal maturity 

values were obtained which allowed for the separation into oil and gas windows. In Figure 3.6, 

shows the distribution of sub-tiles per class where each class has a range of 1,200–1,600 images 

for the new dataset.  

 

Figure 3.6 – Distribution of image counts per formation. For Eagle Ford and Vaca Muerta, 

thermal maturity values were obtained and allowed for separation into oil and gas 

windows. 

As opposed to Method 1, these images were taken directly from MAPS image tiles imaged 

at 10nm/pixel resolution and at a size of 3072x2048 pixels. These MAPS tiles were tiled further 

to create sub-tiles at 512x512 pixels. An example of this image separation is shown in Figure 3.7. 

What is considered A tile is considered a single 3072x2048 pixel image that is used in the MAPS 

images, and a sub-tile is what has been reduced further to desired size 512x512 pixels. This value 

of 512x512 was decided upon to try and capture the local microstructure and the surrounding 

features. 
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Figure 3.7 – MAPS data consists of hundreds of tiles that are stitched together. These tiles 

are separated further into sub-tiles for training. A typical tile size is 2048x3027 pixels but 

the sub-tile in this report is 512x512 or 128x128 pixels used for classification and 

segmentation respectively. (a) shows the typical size for a MAPS image with a black box 

indicating the size of a tile, (b) shows a tile taken from the MAPS image with the size of 

512x512 and 128x128 pixels, (c) shows a 512x512 pixel image used for classification and (d) 

shows a 128x128 pixel image used for segmentation.  

The sub-tiles were down-sampled using nearest neighbor’s interpolation to fit AlexNet 

imaging requirements. This reduced the resolution from 10nm to 56 nm. Although a significant 

amount of the information about micro- and nano- pores will be lost when the images are resized, 

(a) 

1 µm 

500 nm 

3 µm 

(b) 

(c) 

(d) 
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we are interested in the overall texture of the 512x512 images. Future work will be to determine if 

reducing image resolution will affect training.  

   

   

   

   
Figure 3.8 – Example of image transformations. (a) Original SEM sub-tile, (b)-(c) 

reflections across X- and Y-axis, (d) rotation between -3 and 3 degrees, (e)-(f) shearing in X 

and Y directions, (g)-(h) translate image along X and Y axis, respectively -5 to 5 pixels, (i)-

(j) upscaled image to 120% and 80%, respectively along the X-axis, (k)-(l) upscaled image 

to 120% and 80%, respectively along the Y-axis 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
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Overfitting of the data is the result of the network focusing on features of specific images. 

In the case of shales, the position of the mineral grains, the formation of the organics and the pore 

structure are descriptors of the shale itself. In order to prevent overfitting, we applied random 

applications of transformations to the sub-tiles. These transformations include rotation and 

shearing in the horizontal and vertical direction, translation in the horizontal and vertical 

directions, scaling, and reflection in the vertical or horizontal planes. Examples of these 

transformations are shown in Figure 3.8.   

 

Figure 3.9 – Image datasets generated using image augmentations. Model 1 was the dataset 

consisting of no additional augmentations. Model 2 utilized the dataset consisting of 5x 

augmentations meaning each image had up to five augmentations. Model 3 utilized the 

dataset consisting of 10x augmentations meaning each image had up to ten augmentations.  

In addition to expanding the dataset, we wanted to test how augmentation would affect 

training. Two addition models were where created using 5x augmentations and 10x augmentations, 
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meaning for every image, up to five or ten images were created using a combination of 

augmentations. In Figure 3.9, shows the number of images per formation that are in each dataset.  

3.3.2 Model Training 

Using the AlexNet architecture, we utilized five GTX 1080 Ti GPUs simultaneously using 

the Deep Learning package MATLAB version R2018b to test training parameters. The model 

trained within 24 hours using 53,045 GFLOPS single precision processing power. An example of 

the network used is shown in Figure A.5.1 for multi-GPU processing, and Table A.5.2 shows the 

training parameters used in transfer learning of AlexNet located in the appendix.  

3.4 Image Segmentation 

3.4.1 Data Preparation 

3.4.1.1 Method 1 

Image segmentation is a computer vision task where a network assigns a class label to a 

set of pixels. The first step in being able to train a model is the generation of the training set. 

Initial segmentation work was done using MATLAB and the Image Segmenter App. A total of 

16 images from the Wolfcamp formation, at a size of 3072 x 2048 pixels at 10 nm resolution, 

were labeled as mineral, pore, organic or pyrite. An example of a training image is shown in 

Figure 3.10 with 3.9a as an expected input SEM  and 3.9b as the expected output.  
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Figure 3.10 – Example of a Wolfcamp training image generated using method 1. This 

image was labeled using MATLAB. (a) is the SEM image used as the expected input, (b) 

labeled images as the expected output. 

3.4.1.2 Method 2 

Method 2 focused on providing minerology from SEM imaging. The dataset contained 10 

classes such as calcite, clay, dolomite, heavy minerals, k-feldspar, organics, plagioclase, pores, 

(a) 

(b) 
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pyrite, and silica, all determined through elemental maps. The dataset used in the initial image 

segmentation included a multi-layered SEM image with respective Energy Dispersive X-ray 

Spectroscopy (EDS) elemental data as expected input, and a hand-drawn labeled image as the 

expected output. The initial dataset consisted of 319 images at 128x128 pixels, taken at 10nm 

resolution. This included 208 images from a Woodford MAPS tile image and 121 images from an 

Eagle Ford MAPS tile image. An example of both a Woodford and Eagle Ford training labeled 

image is shown in Figure 3.11 and Figure 3.12 respectively.  

Table 3.6 – Percent representation of mineral components of Eagle Ford and Woodford 

images in Method 2 dataset 

Component Eagle Ford (%) Woodford (%) 

Calcite 55.5 0.2 

Clay 25.5 30.6 

Dolomite 0.2 13.3 

Rutile 0.2 0.6 

K-Feldspar 0 3.4 

Organics 13.5 29 

Plagioclase 2.1 3.6 

Pores 0.5 7.4 

Pyrite 0.7 5.6 

Silica 1.9 6.3 

 

Table 3.7 – FTIR Minerology comparison of images taken at same depth 

 Eagle Ford (wt.%) Woodford (wt.%) 

Calcite 61 0 

Clay 12 55 

Dolomite 5 3 

Heavy Minerals 14 4 

K-Feldspar 0 15 

Plagioclase 5 3 

Pyrite 0 2 

Silica 5 17 

 

Labeled images were hand- drawn using Gimp 2.9 by overlaying elemental maps to 

determine elemental makeup of the mineral grains. The distribution of pixels across the entire 

image set is shown in Table 3.6 and the FTIR minerology is shown in Table 3.7. 
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Figure 3.11 – SEM segmentation dataset example image from the Woodford formation 

with respective elemental data accompanied by the hand drawn label mask used in 

training.  

 



52 

 

 
                            

Figure 3.12 – SEM segmentation dataset example image from the Eagle Ford formation 

with respective elemental data accompanied by the hand drawn label mask used in 

training.  

 



53 

 

3.4.1.3 Method 3 

The labeling process of method 2 was very time consuming. Based on the results 

determined in Method 2 (discussed in Chapter 4), the decision was made to reduce the number of 

classes from ten to three, i.e. pore, organic, and mineral. The idea was to generate a model that 

will accurately determine porosity and organic matter, which then can be masked to help 

determine only minerology (Method 4).  

Since, labeling by hand was time intensive, image label generation was done using an 

open source software created by the NIH. The interactive learning and segmentation toolkit 

(ilastik) use a random forest classifier to labeled images through user interactions. While this 

method has been proven to be successful and much faster than hand labeling individual images, 

this method can be slow when processing multiple images; each image requires some user input. 

As a result, this method was a great method in generating a usable training set quickly and 

effectively as compared to the previous method. An example of the user interface and how 

labeled images were generated is shown in Figure 3.13. 
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Figure 3.13 – Example of how images are labeled in ilastik. (a) the user will draw lines on 

areas of interest that will be used as input for the random forest model. In this case, the 

user draws a red line as training data for pore/organics and a green line to represent 

minerals. (b) After the model has run, this is the predicted output. 

 A Woodford MAPS image dataset was used in generating a training set. A total of three 

MAPS tiles were used in generating a labeled training set. After an ilastik labeled image was 

(a) 

(b) 
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generated from a MAPS tile using the random forest classifier, the 2048x3072 image was tiled 

across the image to generate ~1,400 sub-tiles at 128x128 pixels.   

3.4.1.4 Method 4  

Based on the results from Method 3, the original dataset from Method 2 was applied to 

the network that was proven to be successful in Method 3 (Model 5). Due to the class disparity 

within Method 2, some classes were combined to six classes: pore/ organics (combined), 

silicates, carbonates (calcite and dolomite), clays, feldspars, and other high-density minerals such 

as rutile, apatite and pyrite. An example of an Eagle Ford image is shown in Figure 3.14. 
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Figure 3.14 – Two examples of Eagle Ford images used in segmentation separating out 

pore/organic, silicates, carbonates and other heavy minerals. On the left is the SEM images 

with its respective labeled images on the right.  

 

3.4.2 Model Training 

3.4.2.1 Method 1 

This method was done in MATLAB using a pretrained network U-Net known for image 

segmentation. The U-Net architecture is a network that provides end-to-end training from very 

250 nm 250 nm 

250 nm 250 nm 

(a) 

(b) 
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few training images (Ronneberger et al. 2015). This network is modeled after a fully 

convolutional network with 23 convolutional layers and is trained to segment cell walls. This 

model provides an up-sampling of the data to allow propagation of important information to the 

higher resolution layers. In turn, this generates the U-shape of the network. Ronneberger et al. 

(2015) attempted to make maximal use of the NVIDIA Titan GPU (6 GB) memory by using 

larger image input size over a smaller image and larger batch size.  

 

 
Figure 3.15 – U-Net CNN architecture. The blue box represents a multi-channel feature 

map where the number of channels is located above the box in gray. The x-y size of the 

feature map is located to the left of the box. The arrows between the boxed represent 

different operations performed between feature maps. (Ronneberger et al. 2015) 

3.4.2.2 Method 2 

Based on Method 1’s success with MATLAB (discussed in Chapter 4), the next step was 

to transfer over to Python 3.6 and Keras using TensorFlow 1.14 for mineralogical segmentation. 

Due to the success of U-Net in MATLAB, five custom models were tested to determine which 
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model would produce the best results. The models are shown in Figure 3.16, where models 4 

(3.15d) and 5 (3.15e) are modeled after a U-Net and models 1–3 (3.15a–c) are fully 

convolutional networks. Each model was trained on a single GeForce 1080 Ti GPU and training 

look less than 10 minutes.  

  

 

 

 
Figure 3.16 – Model architectures tested during Method 2 segmentation. (a) Model 1, (b) 

Model 2, (c) Model 3, (d) Model 4, and (e) Model 5, Models 4 and 5 are modeled after the 

U-Net architecture. Models 1-3 (a-c) are considered fully convolutional networks as they 

provide conventions between convolutional layers. Each convolutional layer (large black 

box) has a filter (blue small box) associated with each layer that traverses the image by 

filter to produce individual pixels for the following layer. Models 4-5 (d-e) are fully 

convolutional networks but provide local connections of data from the beginning of the 

model due to the concatenation or merging of layers.  

 

(a) (b) 

(c) 

(d) 

(e) 
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3.4.2.3 Method 3 

With some success in Method 2, the decision was to reduce class sizes from the 10 

mineral components down to three to focus on determining porosity and organic matter content 

derived from SEM image analysis. The results from Method 2 are discussed in Chapter 4. Based 

on this success, this was heading in the right direction. The model (Figure 3.17) used here was a 

modification after Model 5 in method 3. As compared to Model 5, this network added two 

additional convolutional layers.  

 

 

Figure 3.17 – Model used in generating pore and organic classification. The layer is the 

input layer requiring an image of 128x128x1, i.e. a grayscale image. A filter size of 1x1x1 is 

read to the first convolutional layer. The first convolutional layer is of size 128x128x16 

which corresponds to a multi-layered image generated from 16 separate filters. The next 

convolutional layer has 32 filters that generates 32 images at a size of 128x128. And the 

pattern continues throughout the rest of the layers. For both layers with 32 filters, they are 

merged at the end to provide a single output. The last layer consists of a 128x128x3 image 

corresponding to the probability masks of each pixel corresponding to each class.  

3.4.2.4 Method 4 

With success in Method 3 (Chapter 4), a similar model was applied to the new data set 

with known success in three classes. Two models tested are shown in Figure 3.18. Figure 3.17a 

uses a kernel size of 7x7, whereas 3.17b uses a kernel size of 1x1 for predicting the labels. The 
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purpose of this final method was to determine if kernel size has an effect on accurately predicting 

class labels during pixel labeling.  

 

 
Figure 3.18 – Models used in Method 4 to segment pores/organics, silicates, carbonates, and 

other heavy minerals. (a) displays model 1 the filter size (blue box) 1x1 pixels across all five 

convolutional layers and an output layer of size 128x128x4 pixels. (b) model 2 utilizes a 7x7 

filter to generate layer Conv. 2, a 3x3 pixel filter to generate layer Conv. 3 and a 7x7 filter 

used in a Transpose convolutional layer to up sample the feature image to generate a 

feature map size of 128x128.  

 Results and Discussion 

4.1 Evaluation of Image Quality 

The evaluation of image quality becomes important to avoid user bias when assessing 

SEM images taken from multiple sources. Minor issues such as brightness and contrast can 

affect batch processing of the images. The purpose of this project was to provide a tool to 

accurately and quickly assess the quality of images. Using the pre-trained network ‘AlexNet’, 

accuracy in determining between the ‘good’ and ‘bad’ was 98%. Presented in Figure 4.1 are 

(a) 

(b) 
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some of the predicted images from this model. A confusion matrix is shown in Figure 4.2 and 

metrics calculated from the confusion matrix are shown in Table 4.4. 

Based on the results determined by the network, the confusion matrix shows that seven 

images labeled as ‘bad’ were incorrectly labeled as ‘good’ and six images labeled as ‘good’ were 

incorrectly classified as ‘bad’. Accuracy is 95.3% and is an indication on how often the classifier 

is correct. Precision is 94.8% which indicates that most images were classified correctly and how 

specific the model is predicting correct instances. Recall is 94.6% which indicates how sensitive 

the model is to detecting labels correctly. 
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Figure 4.1 – Prediction results from the image quality dataset. (a) displays a ‘good’ image 

that was correctly classified as ‘good’ with the network classifying with as 74.5% 

probability. (b) displays a ‘bad’ image that was correctly classified as ‘bad’ with a 100% 

probability. (c) is an example of a ‘good’ image that was incorrectly classified. (d) shows an 

example of an incorrect classification. In this case the image was actually incorrectly 

labeled in the dataset. The network was able to detect the lower portion of the image is out-

of-focus which is considered a win by the network. 

 

(a) 

(b) 

(c) 

(d) 
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Figure 4.2 – Confusion matrix for evaluation of image quality for determining accuracy, 

precision, recall and F1 score. The accuracy is defined on the confusion matrix as 95.4% 

which indicates the classifier is correct 95.4% of the time. The model has a recall of 94.8% 

and 92.2% for the classes ‘bad’ and ‘good’ respectively (shown in green in the right 

column), with an average recall of 94.8% indicating a high sensitivity to classifying 

correctly. The model has a precision of 96.4% and 93.3% for classes ‘bad’ and ‘good’ 

respectively (shown in green on the bottom row), and an average precision of 94.8% 

indicating that the model is precise in correctly classifying the data. 

 

Table 4.1 – Metrics calculated from the confusion matrix 

 Metric, % 

Accuracy 95.3 

Precision 94.8 

Recall 94.6 

F1 Score 94.7 

 

4.2 Image Classification 

4.2.1 Method 1 

The CNN ‘AlexNet’ took approximately two hours to train using approximately 14,000 

images from the original dataset. This model was run using the image classification computer, 
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and the specs of this computer are shown in Table 3.1. Accuracy was greater than 77%. 

Examples of prediction results are shown in Figure 4.3. The confusion matrix is shown in 

Figure 4.4 and the evaluations metrics calculated from the confusion matrix are shown in Table 

4.2. 

Based on the results shown in the confusion matrix, the network had a hard time correctly 

identifying the Wolfcamp formation. Th network predicted, seven Wolfcamp images as 

Niobrara, five as Marcellus, and four as Eagle Ford. The recall for each label is located in the 

right column, we see that the model has the hardest time at correctly identifying Niobrara with a 

recall of 66.2%. The precision for each column is located on the last row. Here we see that the 

model has a hard time with correctly labeling Wolfcamp images with a precision of 61.2%, 

although overall we see that the precision is 76.8%, this indicates that overall the model is mostly 

precise in correctly classifying. 
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Figure 4.3 – Prediction results in 7 formation classification. (a) displays a correct 

prediction of a Marcellus predicted with a 96% probability. (b) displays an Eagle Ford tile 

correctly classified as Eagle Ford. Due to the low accuracy, this model was not always 

correct and as a result, you should expect to see incorrect predictions. An example of this is 

shown in (c) where the model incorrectly classified Marcellus as Woodford with 94.2% 

probability.  

 

(b) 

(a) 

(c) 
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Figure 4.4 – Confusion matrix in 7 formation classification. The accuracy was calculated to 

be 77.5%. The far-right column is the recall for individual classes, with an overall recall of 

78% indicates how specific the model is on correctly classifying the formation. The last row 

is the precision for each formation, with an overall precision of 76.8%. This is an indication 

of how precise the model is on correctly classifying the formations.  

 

Table 4.2 – Evaluation metric calculated from confusion matrix 

 Metric, % 

Accuracy 77.5 

Precision 76.8 

Recall 78 

F1 Score 77.4 
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4.2.2 Method 2 

Due to success in Method 1 with seven formations, we decided to increase the number of 

formations. This dataset trained with 18 formations, such as Eagle Ford and Vaca Muerta, that 

had existing thermal maturity values to be separated into oil and gas windows. The confusion 

matrix is shown in Table A.1 for model 1 using no augmentations, Table A.2 for model 2 using 

5x augmentations, and Table A.3 for model 3 for 10x augmentations, located in the appendix. 

The evaluations metrics calculated from the confusion matrix are shown in Table 4.3 

The best model, in this test was determined to be Model 3 with a F1 Score of 93.2%. 

Examples of prediction results taken from model 3 are shown in Figure 4.5. In Figure 4.5b, it is 

important to note the probabilities of the top 5 predictions. The model accurately predicted this 

Eagle Ford (Oil) tile with 55% accuracy, but the second prediction probability is Vaca Muerta 

Oil. This is be an indication that the microstructure is similar enough to be identified in the top 5 

consistently.  

 

Table 4.3 – Evaluation metric calculated from confusion matrix for models 1-3 

 Model 1 Model 2 Model 3 

Accuracy, % 90.4 87.8 92.8 

Precision, % 90.4 89.3 93.6 

Recall, % 90.6 88.1 92.8 

F1 Score, % 90.4 88.7 93.2 
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Figure 4.5 – Prediction results taken from Model 3, which was confirmed to be the best 

model. (a) the model accurately predicted this Marcellus tile with a 77% probability of 

being Marcellus and (b) the model accurately predicted Eagle Ford Oil tile as Eagle Ford 

Oil with 55% probability.  

 

  

(a) 

(b) 
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4.3 Image Segmentation 

4.3.1 Method 1 

Initial segmentation results proved promising. Unfortunately, due to class imbalance, the 

network focused on identifying the minerals, organics and pores classes and ignored pyrite. 

Examples of some results are shown in Figure 4.6 and Figure 4.7. This initial work showed 

promise in the fact that machines could learn to segment effectively. Due to limitations with 

MATLAB at the time of testing, such as poor utilization of multi-GPUs, the next portion of the 

project was moved over to Python and TensorFlow.  
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Figure 4.6 – Initial segmentation Results Woodford. (a) the SEM image segmented by the 

CNN U-Net on MATLAB. (b) The network was able to accurately segment mineral but had 

difficulty differentiating organics and pores. This example does not contain pyrite.    

 

 

(a) 

(b) 
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Figure 4.7 – Example CNN U-Net segmentation results using MATLAB. (a) Input SEM 

image. (b) Segmentation results shows the network was able to accurately able to segment 

minerals but had difficulty in differentiating between pore and organics in the image. The 

network was also not able to identify pyrite in the image.  

4.3.2 Method 2 

This portion of the chapter focused on identifying mineral features in SEM image such 

calcite, clay, dolomite, pyrite, heavy minerals such as rutile etc., k-feldspar, organics, pores, 

plagioclase, and silica. Input images consisted of a 12-layered image made of the grayscale SEM 

image and 11 elemental maps. Model comparison showed mean intersection over union (mIoU) 

ranging from 64% to 87%, shown in Table 4.4. In determining pixel accuracies, intersection 

over union (IoU) was used as a metric comparison between class labels. A comprehensive 

comparison is shown in  

(a) 

(b) 
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Table 4.5 used to compare every label component in the dataset. When calculating the 

IoU metric, some images do not contain all the class labels. As a result, these values tend to be 0.  

Table 4.4 – Model mean intersection over union comparison between each model tested 

 mIoU, % 

Model 1 0.6432 

Model 2 0.6808 

Model 3 0.8199 

Model 4 0.7588 

Model 5 0.8733 

 

Table 4.5 – Intersection over union per class for each model 

 IOU Score 

Class Label Model 1 Model 2 Model 3 Model 4 Model 5 

Calcite 0.4555 0.4782 0 0 0.5472 

Clay 0 0 0 0 0 

Dolomite 0 0 0 0 0 

Heavy Minerals 0 0 0 0 0 

K-Feldspar 0.2506 0.3163 0.0450 0.1802 0.1294 

Organics 0 0.4226 0.1802 0 0.2296 

Plagioclase 0 0 0 0 0 

Pores 0 0 0 0 0.0625 

Pyrite 0 0 0 0 0 

Silica 0 0 0 0 0 

 

  

(a) (b) 
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Figure 4.8 – Segmentation results produced from tested models. (a) shows the Eagle Ford 

SEM image with (b) the labeled image. Model 1’s predicted image is shown in (c), Model 2 

is shown in (d), Model 3 is shown in (e), Model 4 is shown in (f) and Model 5 is shown in (g). 

Note that in (d) the that model was able to label pores to some degree whereas models 1-4 

could not accurately identify not just pore but also k-feldspar. Due to the differences in 

network architecture, it is important to the note that the each model tested will have 

different predictions. 

Segmentation results are shown in Figure 4.8. For model comparison, we see that these 

models did great, but due to class imbalance, these models tended to focus on more available 

classes such as calcite, and k-feldspar and tended to ignore the smaller classes such as pores and 

heavy minerals. Based on the comparisons in Fig. 4.9 and the accuracies table, we see that model 

5 performed the best. 

4.3.3 Method 3 

As per results from Method 2, it was decided Model 5 was the best all around. By 

modifying this model and adding two additional layers, the accuracy was improved from 87% to 

(f) (g) 

(c) (d) (e) 
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95%. The intersection over union (IoU) for this model was determined from Table 4.6, and the 

mean intersection over union was calculated as 94.7%.  

Table 4.6 – Intersection over Union per class 

 IoU 

Pore 92 

Organic 92.7 

Mineral 99.3 

Total 94.7 

 

Results taken form the testing set are shown in Figure 4.9. As you can see, the model 

predicted images (Figure 4.9b) did better than the ilastik image (Figure 4.9c). As a result, this 

caused the mIoU metric to be lower than it is in reality. Therefore, future work will be conducted 

using this model to generate a new training dataset which wil then be used in another model. 

Figs. Figure 4.9d and Figure 4.9e show the representation of what the predicted results look 

like. The highest uncertainty between pore, organic and mineral lies along the boundary between 

classes.  
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Figure 4.9 – Unseen testing set used in model evaluation. (a) SEM image, (b) model 

predicted image, (c) Ilastik labeled image used for reference, (d) class representation for 

the pore class as a pixel probability map, and (e) the pixel probability map for organics 

with red being 100% probability being the given class and purple having the least 

probability of being the given class.  

To prove this network can work on images that were not in the original dataset, the 

network was run on another Woodford image, taken from another well several years prior to the 

(a) 

(b) (c) 

(d) (e) 
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MAPS training images. The results are shown in Figure 4.10. Visually, it is apparent that this 

network does well with high contrast images. The model was run on additional unseen images 

such as the Eagle Ford (Figure 4.12), Marcellus (Figure 4.13), Vaca Muerta (Figure 4.14), and 

the Osage Formation (STACK) (Figure 4.15) which high success.  

 

 
Figure 4.10 – Unseen Woodford image taken several years prior to the Woodford MAPS 

training set and segmented with a convolutional neural network. The network was able to 

accurately segment pores and organics and also able to identify inorganic and mixed pores 

located in the upper left corner. 

 

(a) 

(b) 
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Figure 4.11 – Eagle Ford SEM image segmented using a convolutional neural network. The 

Network did fairly well in this image. It was able to accurately segment the pores and pore 

backs in the top right corner of the image.  

 

  
Figure 4.12 – Marcellus formation SEM image segmented using a convolutional neural 

network. The network was able to accurately label pores and organics in the image. The 

network was also able to identify, and label clay minerals located within the organics.  

 

(a) (b) 

(a) (b) 
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Figure 4.13 – Vaca Muerta SEM image segmented using a convolutional neural network. 

The network was able to accurately differentiate between the organics and the minerals 

within the clay cluster in the middle of the image.  

 

  
Figure 4.14 – Osage Formation (STACK) SEM image segmented using a convolutional 

neural network. The network was able to segment the nano-pores in the images but 

incorrectly labeled them as organic. More training data would resolve this issue in the 

network.  

Due to the nature of SEM images, a representative area becomes relevant. Tran (2017) 

presented his work on developing a Representative Elementary Area (REA) in large-area/high-

resolution MAPS data to determine the optimal size for investigating microstructural heterogeneity 

in organic rich shales. He concluded that a minimum area of 0.8 mm2 for porosity and 1.2 mm2 for 

organic matter for the Wolfcamp formation was required for statistical representation. Using these 

(a) (b) 

(a) (b) 
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recommendations in determining porosity and total organic matter (TOM), the segmentation 

network was run on MAPS to determine areal porosity and areal TOM for a Vaca Muerta dataset 

and three Marcellus datasets. An example of a single tile segmentation of the Vaca Muerta MAPS 

dataset is shown in Figure 4.15. An example of a single tile from each of the three Marcellus 

MAPS datasets is shown in Figure 4.16, Figure 4.17, and Figure 4.18, respectively. Their 

respective calculations for porosity and TOM with comparative lab measurements are shown in 

Table 4.7.  

  
Figure 4.15 – Vaca Muerta (oil window) MAPS image used for petrophysical comparison to 

lab measurements. This is an example of 1 out 144 tiles from a MAPS image on what is 

considered a representative elementary area.  

 

(a) (b) 
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Figure 4.16 – (a) Marcellus 6XXX.10’ example tile from MAPS tile set used in estimating 

petrophysical properties using Representative Elementary Area. (b) This image was 

segmented using a convolutional neural network and able to accurately identify clay 

minerals within the organics and identify organics within the pyrite framboid.  

 

(a) 

(b) 
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Figure 4.17 – (a) Marcellus 6XXX.35’ tile from MAPS tile set used in estimating 

petrophysical properties using Representative Elementary Area. (b) This image was 

segmented using a convolutional neural network and able to accurately identify the cracks 

within the organics located in the top right corner of the image. 

 

(a) 

(b) 
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Figure 4.18 – (a) Marcellus 6XXX.62’ tile from MAPS tile set used in estimating 

petrophysical properties using Representative Elementary Area. (b) This image was 

segmented using a convolutional neural network and able to accurately differentiate 

organics and clay in the middle of the image.  

 

(a) 

(b) 
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Table 4.7 – Model predicted porosity and organic matter compared to lab measurements 

 Model Predicted Lab Measurements 

 Porosity 

(Areal %) 

OM 

(Areal %) 

Porosity 

(Vol. %) 

TOC 

(wt. %) 

Vaca Muerta 2.2 5.2 2.6 4.2 

Marcellus 6XXX.10’ 2.8 18.6 10.2 9.7 

Marcellus 6XXX.35’ 7.9 18.7 9.1 9.8 

Marcellus 6XXX.62’ 2.5 10.5 9.3 6.4 

 

 This model was also applied to 3-D FIB-SEM volumes. Figure 4.19 shows 3-D examples 

of the organic, porosity and connected porosity generated using Aviso 9 after segmented using a 

CNN. In Figure 4.19b, the network was able to accurately label organics, Figure 4.19d the pore 

structure, and Figure 4.19c displays the results of both organics and pores. When compared to 

traditional methods of segmentation, this method proved to be much faster in generating 

segmented results. Figure 4.20 displays the generated pore size distribution using Aviso 9.  

 

(a) 
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Figure 4.19 – 3D FIB-SEM segmentation of the Eagle Ford. (a) shows the gray scale 3D 

representation, (b) the Total Organic Matter, (c) combined Organic Matter and Porosity, 

(d) total porosity, (e) pockets of connected porosity shown within the 3D scan. 

 

(b) (c) 

(d) (e) 
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Figure 4.20 – Pore size distribution derived from 3D segmentation of FIB-SEM scan.  

4.3.4 Method 4 

With great success with Method 3, we wanted to fine tune the model by testing filter size 

on applications to minerology. Results from this method are shown in Figure 4.22, Figure 4.23 

and Figure 4.24. From these images, we see that Model 3 with a 7x7 filter does a better job at 

smoothing and differentiating between grain boundaries. In Figure 4.22, overall Model 1 

appears to have better labeling and smoothing of the grain boundaries. In addition, it appears that 

the network did better in correcting silicate labels from the true label as compared to model 2. In 

Figure 4.22, we see similar results to Figure 4.22, where Model 1 appears to perform well and 

even do better than human labeling of the image. Model 1 also appears to begin to label some of 

the minerals within the organics whereas the hand labeled images incorrectly labeled it as 

organic. This shows promise in accurately identifying mineral groups in SEM images. However, 

in Figure 4.21, we see that both models are struggling to identify the mineral structure as 

carbonate. This is especially the case along the grain/organic boundaries.  
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Table 4.8 – Intersection over Union metric values for model comparison in mineral 

segmentation 

 Model 1 Model 2 

Pore/Organic 97.5 97.7 

Silicates 89.1 92.4 

Carbonates 95.7 97 

Others 90.1 90.5 

Mean IoU 93.1 94.4 

   

 
Figure 4.22 – Prediction results from unseen test set for models 1 and 2. (a) Displays 

prediction results from model 1 and (b) prediction results from model 2 with a filter size 

7x7. From both of these models, we actually see the predicted results are actually better 

that their hand labeled images, especially along the boundary.  

 

(a) 

(b) 
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Figure 4.23 – Prediction results testing models 1 and 2. (a) Displays prediction results from 

model 1 with a filter size of 1x1 and (b) displays prediction results from model 2 with a 

filter size 7x7. From both of these models, we actually see the predicted results are actually 

better that their hand labeled images by providing smoother boundaries between mineral 

grains.  

 

(a) 

(b) 
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Figure 4.24 – Example of what the convolutional neural network is confusing. . (a) Displays 

prediction results from model 1 with a filter size of 1x1 and (b) displays prediction results 

from model 2 with a filter size 7x7. This result shows that Model 2 is the best when 

identifying large areas of carbonates. More training data and network modification will 

help in correcting incorrect labeling such as these models.  

These results show promise in being able to accurately identify mineral groups in SEM 

images. Significant work needs to be done in order to separate minerals like what was done in 

Method 2. Future work in this area should include identifying the wettability of pores, such as 

identifying mixed, organic pores and/or inorganic pores.  

 Conclusions 

5.1 Summary 

• Evaluation of image quality proved to have an accuracy of 95%. This model 

proved to be effective in determining whether an image is ‘good’ or ‘bad’ and is 

suitable for further processing.  

(a) 

(b) 
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• Formation identification is defined as the identification of identifying similarities 

between microstructures of different formations. Higher accuracy in predicting 

formation indicates a uniqueness in microstructure. A lower accuracy in 

predicting formation may indicate similarity in microstructure between plays.  

• Successfully developed a machine learning method as an automated and robust 

feature extraction tool for shale SEM images with a reasonably high degree of 

accuracy in identifying porosity and organic matter.  

• Pore and organic size distributions can be accurately derived from MAPS SEM 

images using a representative elementary area determined by Tran (2017). The 

current model can segment a SEM MAPS dataset with an overall accuracy 

(mIoU) of 95% for three classes (pore, organic, mineral) without user input.  

• The three-class segmentation model can process a 2048x3072 SEM image in <6 

seconds without user input allowing for faster analysis of single SEM images as 

SEM MAPS data.  

• A large number of images can be quickly batch-processed with reasonable 

accuracy and can also be applied to 3-D FIB-SEM image stacks. This allows for 

faster, easier, and more robust analysis in deriving, porosity, pore size 

distributions and organic matter content from 3-D image volumes. 

• Basic minerology groups such as silicate, carbonate, and heavy minerals can be 

accurately identified in SEM images in combination with a pore/organic network.  
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Appendix A 

Table A.5.1 – Model training parameters for Image Quality 

 Parameters 

Optimizer ADAM 

Initial Learning Rate 0.001 

Learn Rate Drop Factor 0.05 

Learn Rate Drop Period 114 

L2-Regularization 0.0001 

Mini-batch Size (images) 128 

Gradient Decay Factor (%) 0.9 

Squared Gradient Decay Factor (%) 0.999 

 

 

Table A.5.2 – Initial training parameters used in Formation Classification with seven 

formations 

 Parameters 

Optimizer ADAM 

Initial Learning Rate 0.001 

Learn Rate Drop Factor 0.05 

Learn Rate Drop Period 114 

L2-Regularization 0.0001 

Mini-Batch Size (images) 256 

Gradient Decay Factor (%) 0.9 

Squared Gradient Decay Factor (%) 0.999 
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Figure A.5.1 – AlexNet architecture showing delineation of responsibilities between 

multiple GPUs during the training process. Each GPU communicates with the other GPUs 

on specific layers. This is shown in between the second and third layer and between the 

fully connected layers at the end of the network (modified from Krizhevsky et al. 2017; 

Knaup et al. 2019) 

 

Table A.5.3 – Parameters used in Model training 

 Parameters 

Optimizer ADAM 

Initial Learning Rate 0.001 

Beta 1 0.9 

Beta 2 0.999 

Epsilon 1e-7 

Mini-batch Size (images) 64 

Gradient Decay Rate 4e-5 

Loss Categorical Cross-entropy 
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Table A.1 – Confusion matrix for the original dataset before image augmentation. The 

right most column and the bottom row correspond to the percent of images that were 

correctly classified for each formation.  The rows correspond to the predicted class whereas 

the columns correspond to the target labels. 
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Table A.2 – Confusion matrix for model 2. The right most column and the bottom row 

correspond to the percent of images that were correctly classified for each formation.  The 

rows correspond to the predicted class whereas the columns correspond to the target labels. 
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Table A.3 – Confusion matrix for model 3. The right most column and the bottom row 

correspond to the percent of images that were correctly classified for each formation.  The 

rows correspond to the predicted class whereas the columns correspond to the target labels. 

 

 


