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Abstract 

Greenhouse gases have become an increasingly significant issue in the last few decades. As a 

response, many organizations have sought to tighten their regulations on their operations to 

reduce their contributions to greenhouse gases. The International Organization for 

Standardization has a standard 15848-1 that classifies industrial valves for the oil and gas 

industry. They too have aimed to tighten their regulations, including this specific standard. 

However, the current requirements from ISO 15848-1 has made it extremely difficult for 

manufacturers to get any industrial valves and seals passed. This begs the question, are the new 

tightness classifications for the ISO standard appropriately relating the test gas, Helium, to the 

allowable Methane leakage concentration? And with that, is Helium even the best option for a 

testing gas? To investigate this, a series of experiments were conducted to collect Helium and 

Argon leak rate data under many temperature and pressure conditions. With this data, a 

Helium/Argon leak rate ratio model was created with machine learning techniques. Using this 

model, an Ar/CH₄ multiplier, and diffusion modeling, the ISO 15848-1 tightness classes can be 

assessed for their accuracy. A disconnect between the ISO 15484-1 Helium and Methane 

requirements has been identified and there is a call to reconsider the Helium requirements. In 

addition, a suggestion to investigate Argon as an alternative leakage test gas is also raised.  

Keywords: fugitive emissions, methane leak testing, ISO 15848 
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1. Introduction 

Fugitive Methane emission from the oil and gas industry’s exploration endeavors along 

with production and supply lines have raised serious concerns regarding a contribution to 

greenhouse gases (Daniels & LeBoeuf, 2019). Atmospheric Methane poses a particularly great 

risk “due to its capacity to trap by volume 28 times more heat than carbon dioxide” (Daniels & 

LeBoeuf, 2019). “Fugitive emissions from valves account for 60% of the total Methane 

emissions from a refinery, with as much as 80% of the leakage, per valve, occurring at the valve 

stem” (Daniels & LeBoeuf, 2019). The primary issue here is that valve leakage of fugitive 

emissions involving Methane is grossly significant for many years (Daniels & LeBoeuf, 2019). 

That is until organizations such as the Oil and Gas Climate Initiative (OGCI) and various 

governmental entities worldwide have decided to intervene (Daniels & LeBoeuf, 2019). It is 

obvious that there needs to be something done with fugitive emissions across barriers for 

industrial valves in the oil and gas industry.  

The Intergovernmental Panel on Climate Change (IPCC) Guidelines divide the oil and 

gas industry into three broad categories: oil and gas production; crude oil transportation and 

refining; and natural gas processing, transportation and distribution. All three categories are 

responsible for contributing to the issue that is fugitive emissions. IPCC Guidelines for national 

greenhouse gas emission inventories fugitive emission from oil and gas operations as emissions 

from all non-combustion sources (IPCC Guidelines for National Greenhouse Gas Inventories, 

2019). The general definition of fugitive emissions given in the IPCC Guidelines is “an 

intentional or unintentional release of gases from anthropogenic activities excluding the 

combustion of fuels”. In general, fugitive emissions from oil and gas activities may be attributed 

to fugitive equipment leaks, process venting, evaporation losses, disposal of waste gas streams 
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(e.g., by venting or flaring), and accidents and equipment failure (IPCC Guidelines for National 

Greenhouse Gas Inventories, 2019). Some of the key factors affecting the amount of fugitive 

emissions are based on equipment used, design of the systems, maintenance, operating 

conditions and other factors. Different agencies have regulations, testing and qualification 

guidelines corresponding to Methane fugitive emissions such as ISO 15848, TA-Luft, and API 

622, 624 and 641 (Kazeminia & Bouzid, 2015) (Daniels & LeBoeuf, 2019). All of which are 

now being called on to reflect the new regulations outlined by new legislation and guidelines.  

The focus of this project is the classification of fugitive emissions of Methane from 

industrial valves in the oil and gas industry outlined by the International Organization for 

Standardization (ISO) 15848-1 standard. Within this standard, ‘fugitive emission’ is specifically 

defined as a “chemical or mixture of chemicals, in any physical form, which represents an 

unanticipated or spurious leak from equipment on an industrial site” (International Organization 

for Standardization, 2015). Since fugitive emissions are an unavoidable matter, it is important to 

understand their behaviors in regard to the oil and gas industry. ISO 15848-1 outlines a leakage 

measuring procedure, a leak rate classification system (tightness classes) and qualification 

procedures for fugitive emissions involving industrial valves containing Methane (International 

Organization for Standardization, 2015). These classifications are used by the valve 

manufacturers to categorize the valves’ industrial applications. Manufacturers often do not use 

Methane to test these valves in their facilities because it is an expensive gas, can harm the 

environment, and it is at risk for exploding when under high amounts of pressure (CCOHS, 

2020). When Methane is not used, the next choice gas for testing industrial valves is Helium. 

Helium is a common testing gas due to its small molecular size being easy to work with for 

leakage tests and it is more affordable than Methane (TQC, n.d.). ISO 15848-1 outlines specific 
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Helium leak rates for three different tightness classes, each of which are related to an allowable 

Methane leakage concentration. However, Helium is difficult to store and there is currently a 

Helium shortage that has lasted for a few decades. Helium is becoming less ideal as a test gas as 

the need to conserve as much stored harvested Helium as possible increases and the available 

supply decreases (Vishik). In addition, the relationship between Helium and Methane is not 

made clear by ISO 15848-1 (Baars). Alternative test gases for leak testing applications are being 

taken under consideration and thus far, Argon is a great candidate (Chamberlain, 2014). To 

investigate these claims further, the focus of this project is Methane fugitive emission across 

barriers on shafts and to investigate how the ISO guidelines for testing relate Helium to Methane. 

To do this, it is necessary to: integrate permeation through barriers and diffusion of gases in air 

to compare the proposed guidelines; relate leak rates across barriers, through experimentation, 

for Helium, Argon and Methane; and develop a Helium/Argon leak rate ratio model to estimate 

Methane leakages through conversion. Once this model is created, the associated diffusion 

modeling It is through this that the similarity between Helium and Methane in fugitive emissions 

valve testing can be assessed and the possibility of Argon as an appropriate test gas can be 

investigated. 

 

1.1 Problem Statement 

The objective of ISO 15848-1 “is to enable classification of performance of different 

designs and constructions of valves to reduce fugitive emissions” (International Organization for 

Standardization, 2015). In application, these valves are used by oil and gas companies for the 

transportation of Methane gas. Hence, in application the fugitive emissions contain Methane 

leakages. In recent years, legislation around the world have criticized fugitive emissions 
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standards and have sought to adjust them to make them more strict in an effort to support new 

environment protection laws (Kazeminia & Bouzid, 2015). ISO 15848-1 provides Helium leak 

rates for valve testing facilities to meet that will theoretically translate the valve’s performance to 

a specific allowable Methane leakage concentration. The ISO standard also outlines how to take 

these measurements using Helium as a test fluid. However, with this standard being revised to fit 

newer legislation, there is not a clear definition of the relationship between Helium and Methane 

within the ISO standard (Baars). Hence, it cannot be assumed that the valves’ behavior in 

application is being accurately modeled by using the test Helium leak rate targets. This is an 

issue because manufacturers are having a difficult time getting their valves approved by the 

international standards when using Helium leakages (Baars). It seems as though the new Helium 

tightness classifications are too strict and thus not displaying an accurate relationship between 

the allowable Methane concentrate and the target Helium concentrate used for testing scenarios. 

This pushes some manufacturers to take the expensive route with safety risks and environmental 

risks by testing with Methane in an attempt to meet the standard (Baars) (U.S. National Library 

of Medicine, n.d.). An additional issue is the possibility of improperly calibrated valves being 

used in oil and gas application, could ultimately contribute to global warming or climate change 

if they malfunction (U.S. National Library of Medicine, n.d.). Considering that this standard is 

internationally recognized, these issues apply to companies throughout the world. Countries such 

as the United States, Europe and Japan are concerned with this standard (Patil, 2013) (Kazeminia 

& Bouzid, 2015). 

The best way to solve this problem is to find the proper relationship between the Helium 

test leak rate targets and the allowable Methane leak rate concentration. These comparisons can 

be made starting by collecting Helium and Argon leak rate data. Methane cannot be used for 
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testing with because of its potential danger and its associated expenses. With Helium and Argon 

leakages, the individual leak rate ratios for each set of experimental conditions can be 

determined. These ratios will show a behavioral comparison between the two gases and can be 

modeled using regression analysis tools. Via third party experimentation, the leak rate ratio 

behavioral comparison between Argon and Methane produces a ratio coefficient of 1.5 which 

can be applied to the He/Ar leak rate ratio modeling. With this, He/CH₄ leak rate ratio values can 

be predicted. These ratios can then be used to draw comparisons across the ISO 15848 tightness 

classes. Better understanding the necessary Helium leak rate targets for the ISO tightness classes 

will allow for companies to be able to properly classify their valves and even have a higher 

likelihood of getting their valves to pass the standards, which has been an ongoing problem since 

the stricter standards were issued.  

 

2 Literature Review 

Some important things to understand for the purposes of this project are: Helium leak 

testing, why is Helium used, the safety measures taken for testing valves, factors on 

permeability, the current state of Helium availability, the ISO tightness classifications, 

diffusion’s role in context to this problem, and what other researchers are currently doing to 

address these issues.  

 

2.1 Helium leak testing 

In manufacturing, “Helium is used to find small leaks” in individual parts and in 

assemblies (TQC, n.d.). The Helium is used as a tracing gas that can help manufacturers identify 

unwanted leaks (TQC, n.d.).  Some factors that can cause an unwanted leak include porosity, 
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small defects in the welds, micro-cracks, defective seals, incorrect components assembly, etc. 

Helium is also used as a tracing gas for instances where the manufacturer expects some amount 

of leakage from their part or assembly and they want to be able to monitor that leakage behavior. 

Included in this are parts and assemblies that must undergo fugitive emissions testing, which is 

the focus of this research.  

Different methods are used to conduct some of these leak tests: ultrasonic measurement 

and bubble test, pressure decay, Helium spray, Helium sniff, Helium accumulation, and vacuum 

systems (TQC, n.d.). For fugitive emissions testing, ISO 15848-1 outlines a specific measuring 

process for testing valve leakages (International Organization for Standardization, 2015). This 

method involves a pressure change caused by gas accumulation. In this, there is  measurement of 

Helium that has escaped across a seal and into another chamber. Thus, providing a measurement 

of Helium leakage across barriers.  

 

2.1.1 Why use Helium or Argon 

Helium is a widely used test gas because it is one of the smallest gas molecules and it is 

an inert gas (TQC, n.d.). Argon is also considered to be an appropriate test gas because, like 

Helium, it is inert, non-explosive, and non-toxic (Vacuum Instruments Corporation, n.d.). 

Neither Helium nor Argon are considered to be contributors to greenhouse gases, making them 

attractive options for leakage testing (World Health Organization, n.d.). Both gases can be safely 

discharged to the atmosphere without any adverse environmental effects. Some recommend 

attempting to recapture Helium due to shortages, but it can be rather uneconomical to do so 

(Chamberlain, 2014). 
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 Both of these inert gases are in the atmosphere but are considered to be trace and 

extremely rare (World Health Organization, n.d.) (Vacuum Instruments Corporation, n.d.). 

Hence, “there is little ambient ‘noise’ to interfere with leak measurement” processes (Vacuum 

Instruments Corporation, n.d.). Both Helium and Argon are non-reactive, so there will not be any 

negative effect on the part or instruments as a result of any chemical change (Vacuum 

Instruments Corporation, n.d.) (TQC, n.d.). Helium has a melting point of -272.2˚C and Argon 

has a melting point of -189.34˚C, making them appropriate choices for industrial tests to sub-

zero temperatures (Thomas Jefferson National Accelerator Facility - Office of Science 

Education, 2020) (Royal Society of Chemistry, 2020).  

An important characteristic is that both gases can be detected by spectrometers, making it 

possible to even track their leakages (TQC, n.d.) (Vacuum Instruments Corporation, n.d.).  

However, it is easier to collect and keep Argon samples as opposed to Helium (Chamberlain, 

2014). Helium is extremely difficult to recapture from the atmosphere and it is difficult to store 

since it is so small (Chamberlain, 2014).   

Argon is more affordable than Helium as a testing gas. For example, to purchase a size 

300 cylinder of industrial grade Argon gas costs $39.68/CL whereas the same size cylinder of 

industrial grade Helium gas costs $229.35/CL, which is 5.8 times more expensive than Argon 

(AirGas, 2020). Hence, Argon is an even more attractive candidate for being a primary testing 

gas.  

 

2.1.2 Safety 

Though both Helium and Argon are inert gases and can be exhausted to atmosphere, 

proper safety considerations to prevent asphyxiation risks should be taken. These gases when 
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bottled contain no Oxygen and therefore are considered asphyxiants (TQC, n.d.). The gases will 

displace Oxygen increasing the risk of Oxygen deprivation to the user, especially if the 

surroundings are not well-ventilated.   

 

2.1.3 Factors on permeability and diffusion 

The primary test fluids used in industry include Helium, Argon and Methane. Methane 

(CH₄) is classified in the group of flammable gases, it is hazardous to use it as a testing gas. 

Hence it is often necessary to use Helium or Argon as alternate test gases. Therefore, it is 

important to investigate the molecular similarities of these gases when it comes to permeability 

and diffusion. For this, atomic radius, and molecular weight are factors that have a significant 

impact on both permeability and diffusion, which can help better understand the gases’ 

similarities. For the purposes of these comparisons, instead of using properties of Methane, the 

properties of Carbon are used for comparison instead. This is because the Hydrogen atoms are 

free to move around the Methane molecule, which does not affect the molecule’s core size, 

hence not affecting its permeability. In the Table below, the atomic and covalent radii of Carbon, 

Helium, and Argon are outlined.  

Atomic Number Element Symbol Atomic Radius [Å] Covalent Radius [Å] 

2 He 1.400 0.370 

6 C 1.700 0.750 

18 Ar 1.880 1.010 

Table 1 - Molecular radii of He, C, and Ar 

 (Royal Society of Chemistry, 2020) (Royal Society of Chemistry, 2020) (Royal Society of 

Chemistry, 2020) 

In Table 1, the atomic radius of Carbon is closer to the atomic radius of Argon rather than 

Helium. Carbon makes up the majority of Methane’s substance. With this, it can be argued that 
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Argon will be more similar to Methane in its behavior. This encourages the investigation of 

Argon as a testing gas in place of Methane rather than Helium as a testing gas in place of 

Methane.  

 

2.2 Global Helium shortage 

Helium is becoming an increasingly scarce resource, which is concerning considering it 

is widely used across industries such as oil and gas, space technology, and medical 

instrumentation (Hope, 2019). Pricing of Helium is suffering in this shortage and it is easily 

influenced due to there being very few Helium suppliers (Hope, 2019). It is already a difficult 

element to capture since it floats freely around the atmosphere, but also the Helium reserves 

discovered by oil companies are running out and scientists are struggling to find new reserves 

(Carmin Chappell, 2019). This is the third global Helium shortage in the last 14 years and there 

is not much hope for a future of abundance in Helium (Murphy, 2019). Even if there is easy 

access to Helium in the future, that supply will also be limited and there is no way to stockpile 

the briefly available supplies due to Helium being extremely difficult and expensive to store 

(Murphy, 2019). 

Some ways to try to work with the Helium shortage is the implement Helium storage and 

exploration policies to maintain the reserves and not sell it for below market rates (Vishik). 

Although this is helpful in the short term by making the supply steadier, the issue with the 

limited reserves of a resource that is not renewable is not addressed (Vishik). Another suggested 

solution for preserving Helium use is to limit wasteful applications (Vishik). For research 

applications, the installation of a recirculatory system is encouraged to recapture the used Helium 

(Vishik). However the cost to install a system like this is high and not all laboratories may be 
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able to implement this system or make the proper accommodations even if they see their savings 

emerge within a few years (Vishik). If Helium continues to be a primary resource for research 

and manufacturing, having these systems will become not optional (Vishik). It is crucial to find a 

solution to this because once all of the Helium has been extracted from the Earth, there is no way 

to recreate it (Vishik). And there are many medical applications where Helium cannot be 

replaced by another substance, increasing the importance to find some feasible solutions to the 

world’s Helium shortage (Vishik). A realistic solution is to find an alternative for the 

applications that can accommodate another test fluid. This has become one of the driving 

motivations for this research.  

 

2.3 ISO 15848-1 leakage tightness classifications 

The International Organization for Standardization (ISO) is a worldwide non-

governmental organization of national standards bodies (International Organization for 

Standardization, 2015). Their goal is to make things work by giving world-class specifications 

for products and systems to ensure quality, safety and efficiency. For the purposes of this report, 

the focus is on ISO 15848-1, which concerns industrial valves and classifications. “The objective 

of this part of ISO 15848 is to enable classification of performance of different designs and 

constructions of valves to reduce fugitive emissions” (International Organization for 

Standardization, 2015). This is for the application of flammable or inert gas at temperature while 

under pressure. The tests require for the fluid to be “Helium gas of 97% minimum purity & 

Methane of 97% minimum purity” (International Organization for Standardization, 2015).  The 

classes vary in criteria due to the difference in valve operating conditions and hazards during 

industrial use. These varying conditions result in different levels of valve emission performance; 
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thus, the classes indicate the appropriate minimum leak rates for three different Helium and 

Methane conditions. The ISO 15848 tightness classes for Helium and Methane are shown in 

Tables 2 and 3, respectively.  

 

Class 

Measured leak 

rate  

(mass flow) 

Measured leak 

rate  

(mass flow) 

Measured leak rate  

(volumetric flow) 

Remarks 
mg · s−1 · m−1 

stem perimeter 

(for information) 

mg · s−1 · mm−1 

stem diameter 

through stem seal 

system 

mbar · l ∙ s−1 per 

mm stem diameter 

through stem seal 

system 

AHa ≤ 10−5 ≤ 3.14 ∙ 10−8 ≤ 1.78 ∙ 10−7 

Typically achieved with 

bellow seals or 

equivalent stem (shaft) 

sealing system for 

quarter turn valves 

BHb ≤ 10−4 ≤ 3.14 ∙ 10−7 ≤ 1.78 ∙ 10−6 

Typical achieved with 

PTFE based packings or 

elastomeric seals 

CHb ≤ 10−2 ≤ 3.14 ∙ 10−5 ≤ 1.78 ∙ 10−4 

Typically achieved with 

flexible graphite-based 

packings 

 a Measured by the vacuum method 

 b Measure by the total leak rate measurement method (vacuum or bagging) 

Table 2 - Tightness classes for stem (or shaft) seals with Helium  

(International Organization for Standardization, 2015) 

Class 
Measured leakage 

(sniffing method) ppmv 

AM ≤50 

BM ≤100 

CM ≤500 

Table 3 -Tightness classes for stem (or shaft) seals with Methane  

(International Organization for Standardization, 2015) 

Table 2 contains units for a leak rate whereas Table 3 is in terms of concentration. 

Whether the test fluid is Helium or Methane, there are three classes A, B and C specified for leak 

rates at different conditions with an increasing order of allowable leak rates. Each class allows 
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for a different level of performance for an intended application. A manufacturer may perform 

tests for a specific tightness class based on what they want their equipment to do or the 

conditions they expect their equipment to experience.  

 

2.4 Current and Past Research 

 ISO 15848-1 has been mentioned frequently in research studies before. Often, teams are 

trying to abide by the ISO standard with systems they have built or parts they have designed. For 

example, researchers in Canada were interested in predicting the leak rate through porous 

compression packing rings for the design of external sealing valves (Kazeminia & Bouzid, 

2015). Their goal was to predict the leak rate through these seals and use that information to 

“design and select suitable compression packing for a maximum tolerated leak for a given 

application” (Kazeminia & Bouzid, 2015). However, this team explains how recent legislations 

have become “very strict on the amount of emission that is tolerated” (Kazeminia & Bouzid, 

2015). Thus, requiring many “standards such as TA-Luft, ISO 15848-1 and API 622 and 624 and 

others” to be revised to respect the updated regulations (Kazeminia & Bouzid, 2015). Due to “the 

ubiquitous use of the yarned packing rings in the sealing of valves, and the strict regulations on 

fugitive emissions and the new environment protection laws, quantification of leak rate through 

[the seals] becomes more than necessary and a tightness criteria based design procedure must be 

developed” (Kazeminia & Bouzid, 2015). Their model consists of two elements: Darcy’s model, 

which is a commonly used “numerical expedient for the simulation of multiphase fluid flow in 

porous materials”, and the Klinkenberg slip effect , which is used to illustrate the material 

properties (Kazeminia & Bouzid, 2015). The research team used this model to predict values 

under certain conditions and compared the predicted leak rate values to leak rate values they 
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obtained experimentally. They graphed the results to observe the accuracy of their methodology 

as seen in Figures 1 and 2 (Kazeminia & Bouzid, 2015). 

 

Figure 1 - Measured and predicted leak rate for packing GI versus gas pressure for Journal of 

Fluid Science and Technology study 

 

 

 



14 

 

Figure 2 - Measured and predicted leak rate for packing GII versus gas pressure for Journal of 

Fluid Science and Technology study 

(Kazeminia & Bouzid, 2015) 

The team concluded that their model was able to predict the leak rate with reasonable accuracy 

(Kazeminia & Bouzid, 2015).  

The significance of this study in relation to this thesis is that the research team found 

themselves with a similar problem where they needed to go outside of any fugitive emissions 

regulations to determine their safe and usable leak rates for packing rings. This is due to the strict 

legislation now surrounding these standards that all have been going through many revisions to 

meet the legislation (Kazeminia & Bouzid, 2015). This further supports the need to find proper 

Helium and Methane relationships for ISO 15848-1 to provide realistic standards to fit the new 

guidelines. Essentially, the team’s project scope falls in line with that of this project.  

Another group of researchers with Clarke Valve decided to design an entirely new valve 

to pass the new and improved ISO 15848-1 standard, rather than try to adjust the existing 
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equipment and seals to the new standards (Daniels & LeBoeuf, 2019). This team decided to 

focus on API 641 and ISO 15848 due to their common applications across industry. The API 641 

standard is specific to quarter-turn valves and focuses on the life span of these valves at different 

temperatures with a constant pressure (Daniels & LeBoeuf, 2019). Both static and dynamic 

leakage measurements are recorded for this standard. ISO 15848-1 differs in that it has a range of 

distinct pressure values and temperature values for both control and isolation valves, which has 

been described in greater detail in chapter 2.3 of this thesis (Daniels & LeBoeuf, 2019) 

(International Organization for Standardization, 2015).  

The team believes that there is a need for an entirely new valve design to reduce the 

fugitive emissions. Their goal was to out-perform the industry’s ‘low emissions’ valve that 

routinely emits 500 ppmv per valve, making the ‘low emissions’ valve a large contributor to the 

“annual tonnage of product lost to the atmosphere” (Daniels & LeBoeuf, 2019). The newly 

designed valve from Clarke Valve is a deviation from current valves in operation currently 

worldwide, however it serves the same function (Daniels & LeBoeuf, 2019).  

 

Figure 3 - Clarke Valve's proposed shutter valve bonnet and stem stack. 

(Daniels & LeBoeuf, 2019) 
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During independent testing, in the case of API 641 testing the valve produced average emissions 

of 6.25 ppmv, which easily passes the API standard of 100 ppmv as a maximum allowable 

leakage (Daniels & LeBoeuf, 2019). For the ISO testing, the newly-designed valve consistently 

“allowed less than 10 ppmv over 100,000 mechanical cycles” which is more than appropriate for 

the ISO standard (Daniels & LeBoeuf, 2019). In conclusion, new valve designs can reduce 

emissions per valve as much as 95% making it an extremely attractive option to oil and gas 

producers worldwide and thus earning Clarke Valve millions of dollars in investments toward 

these new technologies (Daniels & LeBoeuf, 2019).  

The significance of this study in relation to this thesis is that it describes a dire need for 

adjustments to accommodate the changing standards set for ISO 15848-1 in fugitive emissions 

testing. The industry desperately needs to address the concerns associated with the fugitive 

emissions standards for industrial valves. Going forward it is important to look at newer 

technologies to fit into the improved Helium and Methane correlations proposed by this thesis.  

 

3 Data Collection 

The purpose of the experiments is to collect static leak rate data of Argon and Helium 

under a range of pressure and temperature conditions. The collection of this data was a combined 

effort of Abigail Hovorka, Brandon Mansur and Milad Najafbeygi.  

To collect this data, a testing vessel with plastic barrier seals on a stem that separate a 

high-pressure chamber from a low-pressure chamber was used. Figure 4 shows an example of a 

seal stack like the one used for the experiments. There are different layers of barrier seal stack 

that sometimes was used in varying configurations.  The stack included, spring energized seals, 

spacers and v-ring seals. During the experiments, it was found that the spring-energized seals 
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often failed to seal at low-pressures if that seal had already faced a temperature change from hot 

to cold or vice-versa. 

 

Figure 4 – Example of a V-ring barrier stack like what was used in the experiments 

(VAC AERO International, 2013) 

Figure 5 shows the position of barrier seals in the testing vessel indicated by the green arrows in 

the center pointing toward the black shapes in the center. The leakage collection sides A and B 

are indicated by the orange and blue arrows at the bottom of Figure 5. The high-pressure section 

is in the center indicated by the red arrow at the bottom of Figure 5. The items labeled “Spacer” 

with the blue arrows at the top of Figure 5 pointing toward the larger black shapes are metal 

sleeves that help to position the barrier seals into place in the center of the testing vessel. The 

shape in in the middle of Figure 5 labeled “Stem/Shaft” represents the shaft, or stem, that goes 

through the testing vessel and it is what the barrier seal stacks are surrounding.  
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Figure 5 - Shows the position of barrier seals, the high-pressure chamber, and the low-pressure 

Side-A and Side-B 

 

3.1 The System 

The system built for this project was designed and executed by Brandon Mansur, who 

also helped to collect data to ensure its functionality. The operation and maintenance of this 

system was performed by Abigail Hovorka, Brandon Mansur and Milad Najafbeygi.  

Note: Ideal Gas Laws were used to help produce the leak rate readings because the 

volume of the system was always a constant and the only variables were pressure and 

temperature, which were known for any given experiment.  

This experimental setup is capable of achieving a temperature range of -70ºC to 240ºC. 

One of the most important tasks for designing this system was to ensure that the delivery method 

for temperature change would be consistent, reliable and replicable. 
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For low temperature tests, a cryogenic chamber that uses liquid Nitrogen as the cooling 

agent was designed.  This chamber is a large container with a metal frame and galvanized metal 

panels with fiberglass insulation behind the panels (Figure 6). 

 

Figure 6 - High-Pressure Gas Supply, Test and Collection System (front) 
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Figure 7 - High-Pressure Gas Supply, Test and Collection System (back) 

Liquid Nitrogen, when released into the cooling chamber, vaporizes, and reduces the 

temperature. To minimize any thermal gradients inside the cooling chamber, two fans were 

installed on either end of the cooling chamber with the purpose of circulating and mixing the air 

inside the cryogenic chamber. The cooling process was done in two steps to minimize 

overshooting. First, reducing and stabilizing the temperature at a target value slightly above (~ 

4˚C) the set point and in the second step, allowing the temperature to reach the set point. Once 

the set point is reached, liquid Nitrogen is sprayed to maintain the temperature. The temperature 

inside the chamber was monitored with four thermocouples attached to the interior walls. To 

minimize heat gain from the surroundings, walls of the chamber were lined with insulated layers 

that including reflective tape and plastic insulation sheets, as shown in Figures 8 and 9. Exit 
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holes for sensor wires and pressure channels were closed-off with spray foam. It can take nearly 

24 hours for the barriers to reach the experimental temperature.  

 

Figure 8 - Inside of the cooling chamber 
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Figure 9 - Tubing of the inside of the box has been covered by insulation 

For high temperature tests, four flexible ceramic heater bands were used to heat the test 

vessel. The heater bands were spaced along the length of the test vessel and they were adjusted 

using a PI controller on the side of the experimental setup. These heater bands can increase the 

temperature of the vessel’s exterior, which can ultimately reach the center of the vessel within 

2˚C of the target temperature. It is there, at the center of the vessel, that the barriers and 

pressurized test gas are located. It takes an hour to increase the temperature from room 

temperature to 100˚C, and 2 hours to reach 204˚C in the control volume.  

For each experiment, data collection starts after the pressure is stabilized in the high-

pressure side of the test vessel. To minimize gas leakage possibilities from the test setup, the use 
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of tubing connections was limited and instead, the use of long, curved, singular pieces of tube 

were used.  

To pressurize the test vessel, the booster, seen in in the center of the photo in Figure 7 

and seen on the schematic in Figure 10, is boosted using controls in the LabVIEW program. This 

booster increases the pressure in the high-pressure chamber of the experimental set up, which is 

labeled in Figure 5. The pressure within the high-pressure chamber is monitored by a regulator 

and the pressure value is displayed in the LabVIEW program. When the desired pressure within 

20 psi is displayed in LabVIEW, the solenoid valve, which is labeled in the Figure 10 schematic,  

that allows the test gas into the chamber is shut and then the system is depressurized, indicated 

by the large pressure gauge shown in the middle of Figure 6.  

Once the high pressure chamber is pressurized, the LabVIEW program logs the data 

given by the pressure transducers for sides A and B. The measure data is the amount of leakage 

across the plastic barriers from the high pressure chamber to the low pressure chamber. This is 

the data that has been analyzed.  
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Figure 10 - Equipment schematic 

Figure 10, courtesy of Brandon Mansur, shows a schematic of the system. It shows the test gas 

booster, which is what is used to increase the Argon or Helium pressures in the high pressure 

chamber, and how it is connected to the solenoid driven routing, and pressure regulator. The 

schematic also shows the burst caps, transducers, ventilation and safety valves which are all 

located on the exterior of the cryogenic chamber. To prevent any damage to the low-pressure 

side transducers, the burst caps and ventilation valves were installed for both sides A and B.  In 

case of a barrier seal failure, causing the highly pressurized test gas to flood into the associated 

low pressure chamber, the burst caps and valves can vent the gas from the low-pressure sides. 

This protect the equipment measuring the leakage across the barriers, as they can be severely 

damaged by the high pressure influx. 
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3.2 Safety considerations 

In order to conduct the experiments safely under high pressures, and with gases that can 

displace Oxygen, the LabVIEW equipment was placed in a separate bunker space with proper 

ventilation. This includes all of the equipment used for remotely controlling the experiments. 

This allowed the pressurization, depressurization, and test gas venting procedures to be 

controlled safely from the bunker space. The bunker spaces were separated by 50 cm thick 

concrete walls, making it safe against potential explosions. Cameras were also installed inside 

the test bunker to allow for continuous monitoring without having to enter the bunker during a 

high-pressure test.  

The risk for overheating the testing vessel was a legitimate concern. So high-temperature 

experiments, the ceramic heater bands were setup to shut-off power by the LabVIEW program if 

overheating was observed.  There was also a concern for unknowingly flooding the bunkers with 

Nitrogen, thus displacing Oxygen for anyone who enters the room before, during or after an 

experiment. To address this, Oxygen sensors were installed both inside the test bunker space and 

the remote-control bunker space. These sensors trigger alarms and an exhaust fan in the test 

bunker space when Oxygen levels drop below a set threshold. 

 

3.3 High temperature experiment calculations 

To increase the temperature of the vessel for high-temperature experiments, we used 4 

heater bands controlled by a proportional-integral (PI) controller.  The circuit is connected to a 

thermocouple and it measures the chamber temperature as feedback. Equations 1 and 2 are 

expressions for the PI control method: 

𝑢(𝑡) is fed into the system as the value of the controller output and manipulated variable input 
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𝑒(𝑡) = 𝑆𝑃 − 𝑃𝑉 

Equation 1 - PI Control Error Calculation 

𝑢(𝑡) = 𝑢𝑏𝑖𝑎𝑠 + 𝐾𝑐𝑒(𝑡) + 𝐾𝑐𝜏1 ∫ 𝜏0𝑒(𝑡)𝑑𝑡 

Equation 2 - PI Control  Temperature Calculation 

Generally, when the PI controller is switched from manual to automatic mode for the first 

time, the term 𝑢𝑏𝑖𝑎𝑠 as a constant set to the value of manipulated variable input 𝑢(𝑡). So, If the 

error is zero, there could be a "bumpless" transfer. In Equation 2, 𝐾𝑐 is a controller gain, and 𝜏1 

is an integral time constant. Both are tunings for the PI controller. The multiplier on the 

proportional error and the integral term is 𝐾𝑐. The higher the value of 𝐾𝑐 makes the controller 

more aggressive at responding to the errors away from the set point. The setpoint (SP) is the 

target value and process variable (PV) is the measured value. PV can deviate from the desired 

value. Difference between the setpoint and the process variable is the error and defined 

as Equation 1. 

 

3.4 Low temperature experiment cooling method 

Liquid Nitrogen was used as the cooling agent.  Liquid Nitrogen, with a boiling 

temperature of -195.8°C, is commonly used in cryogenic systems for its availability and cost 

effectiveness. Two commonly used methods with liquid Nitrogen cryogenic chambers are: one 

that uses a liquid Nitrogen pool at the bottom of the chamber, and one that applies a spray of 

liquid Nitrogen into the cryogenic chamber. The liquid Nitrogen pool method requires more 

Nitrogen, and it drops the temperature faster. To keep the Nitrogen in its liquid state and 

facilitate controlled evaporation, elaborate insulation tools and techniques are necessary. In 
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contrast, the Nitrogen spray method consumes less Nitrogen, and controlling temperature is 

much easier. The latter method was chosen for these experiments. To reduce the temperature, 

liquid Nitrogen is sprayed toward the top of the box. The two fans that circulated the inside air 

were very effective in minimizing temperature gradients, although some pooling did result at the 

bottom of the chamber. 

 

3.5 Data collection process 

In order to produce a data set that was reliable, appropriate for the scope, replicable, and 

consistent between experiments, the following procedure was executed for each experiment. 

After installing new seals, the first experiment was always a high-pressure run at 10,000 psi. This 

was done to have the same prestressed condition for all seals in all experiments. The seal stacks 

were replaced after they experience 204˚C for a full set of pressures with a single test gas. 

The experimental procedure details are shown, outlined by Abigail Hovorka and Milad 

Najafbeygi: 

1) Recording data: Start the experiment by starting the recording of the data. The data gets 

recorded in a LabVIEW output file format. For any test, data recording starts 

automatically by running the LabVIEW program. File nomenclature was based on seal 

type on side A and side B, temperature, pressure, and number of experiments in that 

condition. 

2) Setting temperature:  

a. Heating: connect the heater bands and wiring, connect thermocouple to controller 

feedback port, set the temperature on the PI controller, and check it with 

LabVIEW program.  
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b. Cooling: connect the housing valve to the liquid Nitrogen tank. Set the 

temperature to 4ºC higher than the target temperature in the LabVIEW program. 

Turn on the fans and stay on until the temperature stabilizes. Reduce the 

temperature gap and allow the temperature to stabilize at the target valve. 

3) Purging: Open the valves and apply bottle pressure to the high and low-pressure 

chambers to remove air from the system. 

4) Zero reading: To eliminate the effect of atmospheric pressure and temperature change in 

pressure measurement, before pressurizing the system, open the valves and take zero-

point readings of the transducers. 

5) Pressurizing system: Open the air regulator to start actuating gas booster for pressurizing. 

In cold experiments, set the pressure in 100 psi higher than the target pressure because of 

the effect of the cold temperature in gas.  

6) Close: After setting the pressure on the high-pressure side, close the low-pressure side 

valves. 

7) Depressurizing the system: For depressurizing the system, reduce the pressure on the 

high-pressure side and open the low-pressure valves. 

8) Stop the experiment: Finish the test by stopping the recording in LabVIEW. 

 

3.6 Data collection matrix 

Table 4 shows the data collection matrix. During these experiments, leak rates were 

measured at low and high temperatures for a range of pressure between 600 psi to 10,000 psi. 

The main goal was to capture the most extreme conditions and to obtain repeatable leak rate data 

points. The 10,000 psi tests were used to not only observe high pressure behavior, but to also 
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stress the seal for the remaining experiments. Once the seals have been stressed, their condition 

is constant; if the experiments were run with the pressure increasing between the experiments, 

the stress on the seal would be different each time. Whereas if the seal is subjected to high 

pressure in the beginning, the stress that is caused by the high pressure is the same amount of 

stress the seals will exhibit for every experiment.  

The 600 psi tests were used not only to observe leak rate behavior as low pressures, but 

they were also used as a standard part of procedure to check the energizing and sealing 

capabilities of the seals. Issues were observed routinely at this low pressure, which are most 

likely caused by the V-rings in the seal stack not functioning as expected. Table 4 indicates 

which pressure and temperature experiment combinations were conducted.  

  Pressure (psi) 

T
em

p
er

a
tu

re
 

(º
C

) 

600 720 1000 1500 2250 3750 6250 10,000 

-46 ✓    ✓ ✓ ✓ ✓ 

-29 ✓    ✓ ✓ ✓ ✓ 

0 ✓    ✓ ✓ ✓ ✓ 

20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

121 ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

204 ✓     ✓  ✓ 

Table 4 - Data collection matrix 

 

4. Modeling Approaches 

The following proposed models and their methodology were produced by Abigail 

Hovorka, except for data processing assistance from Milad Najafbeygi which is specifically 

mentioned in chapter 4.1 Linear Modeling. There were two data sets from the experiments. A set 

of Helium leak rate data and a set of Argon leak rate data. Each of these sets contain the same 

combinations of pressure and temperature conditions. There were anywhere from 2 to 5 

experiments completed for the different sets of conditions on the matrix (Table 4) that were 
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covered. This resulted in dozens of data sets and millions of data points. When these low 

pressure data points were graphed, they showed a linear behavior, see Appendix B. Thus, the 

goal with this this data set was to create a linear model for the purposes of predictive modeling. 

These model iterations are described in chapter 4.1 in depth. After creating this models, there 

was an interest in researching a more complex model with high data inclusivity. That model is 

described in chapter 4.2 in depth.  

 

4.1 Linear Modeling 

Following data collection, between 1 and 3 individual leak rate ratios of He/Ar have been 

calculated for the individual pressure and temperature combinations. The goal with this linear 

modeling was to find a He/Ar regression model that was representative of the data, using the 

experimental leak rate ratios. Two methods for data outlier elimination were tested. To pre-

process the data, which is where Milad Najafbeygi aided, the low pressure data for both sides A 

and B of the test vessel were plotted using MATLAB, see Appendix B for some of those low 

pressure graphs. The slope from those graphs for each experiment were calculated and used as 

the leak rate for that specific gas under the specific experimental conditions. The average of the 

leak rates was calculated for each run number; multiple experiments were conducted with new 

sets of seals, so there were multiple first run experiments for each set of conditions. These 

averaged leak rates were then used to create the ratios. The averaged leak rate for the Helium 

was divided by the averaged leak rate for the Argon, thus creating the He/Ar leak rate ratio. 

Table 5 displays the leak rate ratios calculated for the different experimental conditions. The 

production of this Table and the necessary calculation involved were completed with the aid of 

Milad Najafbeygi.    
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Table 5 - Data Matrix for Linear Modeling  
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This set of ratios with the different experimental combinations is the data set used to create a 

regression model for He/Ar leak rates. The linear models include coefficients calculated from the 

experimental He/Ar ratios to produce regression models. With these regression models, the 

probable He/Ar leak rate ratio for any temperature and pressure can be determined. Using this 

model, and an Ar/CH₄ multiplier, a He/CH₄ model can be determined. This multiplier has been 

determined from third-party select experiments as a conservative Ar/CH₄ leak rate ratio. Using 

the regression model and ISO industry standards for allowable Methane leak rate concentrations, 

an equivalent Argon leak rate and Helium leak rate can be found. Due to the molecular behavior 

of Argon, it is found to model Methane leak rates more closely than with Helium, while 

providing a conservative estimate since Argon leaks faster than Methane. 

 

4.1.1 Method 1 with data bounds from IQR 

This method used for eliminating outliers involved an interquartile range, denoted IQR, 

to summarize the variability (NIST/SEMATECH e-Handbook of Statistical Methods, 2012). The 

interquartile range is the difference between the first and third quartiles of the data 

(NIST/SEMATECH e-Handbook of Statistical Methods, 2012). The first quartile, denoted Q1, is 

the value in the data set that contains 25% of the data below the median and the third quartile, 

denoted Q3, is the value in the data set that contains 25% of the data above the median 

(NIST/SEMATECH e-Handbook of Statistical Methods, 2012). This does not necessarily mean 

that the value for the first quartile is an equal magnitude of distance from the median as is the 

third quartile, it means that the amount of data points between the median and the specific 

quartile are equal. This is represented in Figure 11. The IQR is the area of the data spread that 

encompasses the bulk of the data around the median.  
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Figure 11 – The Middle Half of the Observations in a Frequency Distribution Lie within the 

Interquartile Range 

(Centers for Disease Control and Prevention, 2012) 

The lower-bound for acceptable data is represented by Q1 and the upper-bound is represented by 

Q3. These bounds are <0.75σ土 on a normal probability plot, so this method has been named 

Method 1. Any data point that falls outside of these bounds is considered an outlier and is 

removed. The values for the bounds are calculated to be: 

Q1  

(lower bound) 
3.904 

Q3 

(upper bound) 
21.543 

 Table 6 - Method 1 bounds 
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Therefore, any He/Ar ratios below 3.904 or any data above 21.543 are considered to be outliers. 

When this method was applied it removed nearly 50% of the data set. The final data set for 

Method 1 is displayed in Table 7. 

T P Ratios 

-46 2250 21.127 

-46 2250 12.928 

-29 2250 8.143 

-29 2250 19.957 

-29 3750 18.718 

0 2250 11.496 

121 3750 3.956 

204 600 5.522 

204 10000 8.571 

25 600 14.823 

25 600 4.102 

25 750 4.807 

25 1000 17.956 

25 1000 4.158 

25 1500 7.596 

25 2250 14.348 

25 2250 13.176 

25 3750 4.263 

25 3750 9.787 

25 3750 16.491 

25 6250 7.876 

25 6250 9.364 

25 10000 18.223 

25 10000 16.500 

Table 7 - Method 1 Filtered Data Set 

After removing data points from the set, a regression analysis was performed with the 

remaining data. The regression analysis produced residuals, residual plots, statistical inferences, 

intercept coefficients and variable coefficients for the regression model. Before moving forward 

with these coefficients to build the regression model, an analysis on the residuals was required to 

confirm the validity of the coefficients produced. A way to do this is to test for normality among 

the residuals. The Shapiro-Wilk test for normality is a useful tool for determining a data set’s 
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normality. This test calculates a W-test statistic from the data set. In this case it is the set of 

residuals (NIST/SEMATECH e-Handbook of Statistical Methods, 2012). The W-test statistic is 

calculated as follows:  

𝑊 =  
(∑ 𝑎𝑖𝑥(𝑖))𝑛

𝑖=1
2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

 

Equation 3 - Calculation for W-test statistic 

Where 𝑥𝑖 represents the ordered sample values (𝑥1is the smallest data point) and the 

𝑎𝑖values are constants calculated using the mean, variances and covariances of the ordered 

statistics using the sample size n from a normal distribution. With this test statistic, a p-value can 

be determined from data Tables (NIST/SEMATECH e-Handbook of Statistical Methods, 2012). 

For simplicity, the statistical software R has been used to produce this test statistic and p-value. 

Using a Shapiro-Wilk test on the residuals, it can be determined that there is normality among 

the residuals with 90% confidence (p-value=0.162).  

Another way to assess model validity is to look at the Significance F-value in the analysis 

of variance (ANOVA) Table produced by the regression analysis. In an ANOVA Table, the 

experimental response measurements are separated into components that correspond to different 

sources of variation (NIST/SEMATECH e-Handbook of Statistical Methods, 2012). An ANOVA 

Table includes five columns of data: degrees of freedom (df), sum of squares (SS), mean squares 

(MS), F-test statistic (F), and significance F value (significance F). Degrees of freedom is the 

number of data points that can be assigned to a particular distribution. The sum of squares is the 

squared sum of each data point’s variation from the mean. This allows the computation of 

variance displayed in the ANOVA Table. The mean squares are the sum of squares divided by 

their respective degrees of freedom. Relating these variances to the number of data points 
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provides an understanding on the population variance. The F-test statistic is the mean square of 

the regression divided by the mean square of the residuals. An F-test statistic is a test statistic on 

the F-distribution. Finding this value produces a ratio of explainable and unexplainable variance. 

With this F-test statistic and the degrees of freedom for the data set, the significance F-value is 

produced and can be analyzed like a normal p-value (Simon Fraser University, 2011).  

ANOVA      

  df SS MS F 

Significance 

F 

Regression 2 219.819 109.910 4.514 0.023 

Residual 21 511.286 24.347   

Total 23 731.105       

Table 8 - Method 1 ANOVA Table 

In this model, the Significance F-value is less than 0.05, which shows statistical validity.  

 Lastly, one of the more well-known methods for validating model is R², which is a 

“widely used goodness-of-fit measure whose usefulness and limitations are more or less known 

to the applied researcher” (Cameron & Windmeijer, 1997). It is also described as the variance of 

the predicted values divided by the variance of the data (Gelman, Goodrich, Gabry, & Vehtari, 

2019). The R² for the model produced by Method 1 is 0.301 with an adjusted R² of 0.234, It is 

generally better to look at the adjusted R² value as it is an unbiased estimator that makes 

corrections for the sample size and the number of variables (Nau, 2019). To many, these R² 

values would be considered “too low” since they are below the classic 0.7 recommendation 

(Grace-Martin, 2020). However this is not always the case because an R² value, no matter what 

size, is meant to explain the explained variance in a model for a given data set (Nau, 2019). It is 

still showing that there is some significant effect on the output values by the input variables, in 

terms of this linear model; these variables showcase a small, but reliable relationship with the 
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leak rate ratio values (Grace-Martin, 2020). Considering there are other metrics to help validate 

this model, it is still important to assess the predictions it produces.  

Regression Statistics 

Multiple R 0.548 

R Square 0.301 

Adjusted R Square 0.234 

Standard Error 4.934 

Observations 24.000 

Table 9 - Regression Statistics for Method 1 

With this in mind, and considering the model has been validated in two other ways, this model 

can proceed in making predictions.  

Now that the model has been validated, the coefficients produced from the regression 

analysis can be used to produce a regression model for He/Ar leak rate ratios.  

These are the upper 95% coefficients:  

Upper 95% 

14.0884 

-0.0125 

0.0013 

Table 10 - Method 1 regression values 

When using these coefficients to calculate He/Ar leak rate ratios for the same inputs as the 

experimental data, the predicted ratios plotted alongside the experimental ratios can be seen in 

Figures 12 and 13. The same general trend is followed with the predicted ratios.  
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Figure 12 - Method 1 Experimental Ratios vs. Predicted Ratios (plotted by pressure) 

 

Figure 13 - Method 1 Experimental Ratios vs. Predicted Ratios (plotted by temperature) 
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In Figures 14 and 15, Method 1 is plotted to provide a visual for values predicted between 600 

psi and 10,000 psi. 

 

Figure 14 - Graphical representation of Method 1’s He/Ar regression model for one temperature 

(-46˚C) 
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Figure 15 - Graphical representation of Method 1’s He/Ar leak rate ratio regression model for 

various temperatures 

The regression analysis provides multiple values and coefficients for the regression 

model: intercept coefficient, variable coefficients, and coefficient values at the upper and lower 

bounds of a 95% confidence interval. The first set of coefficients consist of the least squares 

estimate for the regression model variable coefficients and the regression model intercept. The 

“least squares regression” technique is used to create values for a best fit line for a set of data. 

This, theoretically, is as close to the true values for a regression model to which the analysis tool 

can be. The upper and lower 95% values show what the coefficients are at the upper and lower 

bounds of the 95% confidence interval for the best fit line values. The 95% confidence interval is 

a range of values that we can be 95% certain contains the true regression model values. The 

upper 95% values were selected to build the regression model shown below.  This predicts lower 

and more conservative Ar leakage threshold to meet a given Helium leak rate.  If the intent is to 
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define equivalent Helium leak rate to meet a given CH₄ leakage threshold, the lower 95% values 

for the regression model is likely a better and more conservative option. The resulting He/Ar leak 

rate ratio model is (X1 is temperature in ˚C and X2 is pressure in psi):  

𝑓(𝑃, 𝑇)  =  14.0884 − 0.0125𝑋1 + 0.0013𝑋2 

Equation 4 - Method 1 He/Ar Leak Rate Ratio Multivariate Linear Regression Model 

The He/CH₄ leak rate ratio model is shown below, estimated by multiplying the He/Ar leak rate 

model (Equation 12) by 1.5.  The selection this factor is explained in chapter 4.2.  

𝑓(𝑃, 𝑇)  =  21.1326 − 0.0187𝑋1 + 0.0020𝑋2 

Equation 5 - He/CH₄ Leak Rate Ratio Multivariate Linear Regression Model 

 

4.1.2 Method 2 with Tukey Fences 

This method for eliminating outliers used an interquartile range, similar to Method 1, but 

the upper and lower bounds were found differently. In this case, the Tukey Fences were used.  

 

Figure 16 – Box and Whisker Plot Example 

(Zheng, 2019) 

An IQR is useful to eliminate outliers because it identifies the behavior of the data’s overall 

spread in the middle half of the data set. The IQR narrows the focus to the consistent and reliable 
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data points. In this case, the term “reliable” means a set of data that could be repeated if 

performed again, hence providing an accurate representation of the true behavior of the 

experiment’s dependent variables. Once there is a measure of the data’s spread, it can be used to 

identify how far that reliability can reach in the data set. The mathematical method to determine 

this new reliable spread was founded by John Tukey, a famous statistician. This method creates a 

lower bound and an upper bound, referred to as “Tukey Fences”, for the data considered to not 

be an outlier. Equation 6 shows the calculation for the lower bound and Equation 7 shows the 

calculation for the upper bound (NIST/SEMATECH e-Handbook of Statistical Methods, 2012). 

𝑄1 − 1.5 × 𝐼𝑄𝑅 =  𝐿𝐵 

Equation 6 - Tukey Fence Lower Bound Calculation 

𝑄3 + 1.5 × 𝐼𝑄𝑅 =  𝑈𝐵 

Equation 7 - Tukey Fence Upper Bound Calculation 

The significance of the 1.5 coefficient is that it extends the data set spread toward the 

extremes of the probability density function, denoted as PDF. Any areas in the PDF that are 

outside of >3σ土 are areas that are considered to be “extremes” in the data spread. Hence, the 1.5 

value is the standard coefficient used for finding IQR outliers (Simon Fraser University, 2011). 

When the theory was applied to this ratio data set, the results were as follows: 

Q1 3.904 

Q3 21.543 

IQR 17.639 

LB -22.554 

UP 48.000 

Table 11 - Method 2 bounds 
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Therefore, any He/Ar ratios below -22.554 or any data above 48.000 are considered to be 

statistical outliers. This eliminated five ratios. The data set after outlier elimination for Method 2 

is included in Table 12. 
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T P   

-46 600 2.686 

-46 2250 21.127 

-46 2250 12.928 

-46 3750 34.621 

-29 600 2.179 

-29 2250 8.143 

-29 2250 19.957 

-29 3750 18.718 

0 600 0.8233 

0 2250 11.496 

0 3750 22.790 

0 6250 39.553 

121 1500 2.709 

121 3750 3.956 

121 600 2.386 

204 600 2.831 

204 600 5.522 

204 3750 3.750 

204 3750 2.929 

204 10000 8.571 

25 600 2.881 

25 600 14.823 

25 600 4.102 

25 750 24.074 

25 750 4.807 

25 1000 2.839 

25 1000 17.956 

25 1000 4.158 

25 1500 25.095 

25 1500 7.596 

25 2250 2.763 

25 2250 14.348 

25 2250 13.176 

25 3750 4.263 

25 3750 9.787 

25 3750 16.491 

25 6250 7.876 

25 6250 26.487 

25 6250 9.364 

25 10000 18.223 

25 10000 16.500 

Table 12 - Method 2 Filtered Data 
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After removing five data points from the set, a regression analysis was performed with 

the remaining data. Just like Method 1, the regression analysis produced residuals, residual plots, 

statistical inferences, intercept coefficients and variable coefficients for the regression model. 

Before moving forward with these coefficients to build the regression model, an analysis on the 

residuals was required to confirm the validity of the coefficients produced. A Shapiro-Wilk test 

was used again to check for normality among the residuals. It can be determined that there is 

normality among the residuals with 99% confidence (p-value=0.0167). Model validity is integral, 

so the Significance F-value has also been found for this model to assess validity.  

ANOVA      

  df SS MS F 

Significance 

F 

Regression 2 1127.541 563.770 8.593 0.001 

Residual 38 2493.180 65.610   

Total 40 3620.721       

Table 13 - Method 2 ANOVA Table 

In this model, the F-value is less than 0.05, which shows statistical validity. Like with Method 1, 

the final metric to observe is the adjusted R² value for the regression model using the Method 2 

filtered data set. There is something similar happening with Method 2. The R² value is 0.311 and 

the associated adjusted R² value is 0.275, again bringing up the concern with lower R² values. 

The same idea goes for this situation, these metrics are still indicating that there is a small but 

noticeable relationship between these variables and the leak rate ratios being predicted (Grace-

Martin, 2020). Although, it is worth noting that the Method 2 adjusted R² is greater than that of 

Method 1, indicating that the relationship between pressure, temperature and the leak rate ratios 

is more reliable in Method 2.   
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Regression Statistics 

Multiple R 0.558 

R Square 0.311 

Adjusted R Square 0.275 

Standard Error 8.100 

Observations 41.000 

Table 14 - Regression Statistics for Method 2 

Now that the model has been validated in multiple ways, the coefficients produced from the 

regression analysis can be used to produce a regression model for He/Ar leak rate ratios.  

These are the upper 95% coefficients:  

Upper 95% 

13.758 

-0.022 

0.002 

Table 15 - Method 2 regression model coefficients 

When using these coefficients to calculate He/Ar leak rate ratios for the same inputs as the 

experimental data, the predicted ratios plotted alongside the experimental ratios can be seen in 

Figures 17 and 18. The same general trend is followed with the predicted ratios.  
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Figure 17 - Method 2 Experimental Ratios vs. Predicted Ratios (plotted by pressure) 

 

Figure 18 - Method 2 Experimental Ratios vs. Predicted Ratios (plotted by temperature) 
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In Figures 19 and 20, Method 1 is plotted to provide a visual for values predicted between 600 

psi and 10,000 psi. 

 

Figure 19 - Graphical representation of Method 2’s He/Ar leak rate ratio regression model for 

one temperature (-46˚C) 
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Figure 20 - Graphical representation of Method 2’s He/Ar leak rate ratio regression model for 

various temperatures 

For the same logic used for Method 1, the upper 95% values are used for the Model 2 regression 

model. The resulting He/Ar leak rate ratio model is (X1 is temperature in deg C and X2 is 

pressure in psi): 

𝑓(𝑃, 𝑇)  =  13.7577 − 0.0219𝑋1 + 0.0024𝑋2 

Equation 8 - Method 2 He/Ar Leak Rate Ratio Multivariate Linear Regression Model 

The He/CH₄ leak rate ratio model is shown below, estimated by multiplying the He/Ar leak rate 

model (Equation 16) by 1.5.  The selection this factor is explained in chapter 4.2.  

𝑓(𝑃, 𝑇)  =  20.6365 − 0.0328𝑋1 + 0.0036𝑋2 

Equation 9 - Method 2 He/CH₄ Leak Rate Ratio Multivariate Linear Regression Model 
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4.2 Random Forest Modeling 

For this method, the goal was to use more of the available data than in the previous 

methods to capture more of the data’s behavior. The previous two methods had a shorter original 

data set including only 1 to 3 leak rate ratios for each set of conditions in the data collection 

matrix. This next method uses the same raw data sets that were collected from the experimental 

set up. However, the pre-processing method was quite different. Rather than just producing a few 

leak rate ratios per set of conditions as displayed previously in Table 5, for each run for each set 

of conditions, 15 leak rates were produced and thus 15 leak rate ratios per run per set of 

conditions were produced.  

The data collected included millions of data points. The most important task was to 

process the raw data in such a way that the data could be used to create a model that would make 

predictions based off of temperature and pressure inputs. To do this, there needed to be a series 

of leak rate changes associated with each set of temperature and pressure experimental 

conditions. And with that larger data set, a Helium/Argon leak rate ratio model tracking the ratio 

change could be made. This model would then be able to make appropriate ratio predictions for 

any set of temperature and pressure inputs within the experimental bounds.  

 

4.2.1 Preliminary Data Processing 

The first step was cleaning the data. In each of the experiments, there was a clear 

pressurization period before the leakage occurred, a clear leakage period and a clear 

depressurization period after the leakage occurred from the raw data shown in Figure 21. 
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Figure 21 - Screen capture of raw data set’s first 40 rows 

 Those are shown in Figure 22 in regions A, B and C, respectively. Region B is the region that 

encapsulates the necessary data for the modeling. Hence, removing regions A and C were 

necessary.  
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Figure 22 - Experimental Regions (depicted with results from a random experiment) 

There were a few cases where the pressurization time was long due to the team manually 

resetting the pressure due to a system failure or possibly having to depressurize and go into the 

room to fix something and then immediately pressurize again (Figure 23).  
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Figure 23 - 0˚C 600 psi Run 1 Argon High Pressure Data 

In these cases, region B was considered the section of the graph where there was stable leakage 

after the last pressurization attempt. For example, in Figure 23, the region B would be from 

around 150 seconds until around 300 seconds. Sometimes the depressurization time, region C, 

made up the majority of the data sets, like in Figure 23. This is most likely because of a system 

fail-safe and the team not realizing it until the next morning. This means that the depressurization 

time could have lasted for up to eight hours and in this time the data shows zero psi for those 

eight hours, again explaining the behavior in Figure 23. These fail-safe are mechanically induced 

by the pressure transducers when a certain pressure is reached in the low-pressure chambers to 

avoid damage to the transducers. There is not a downside to these experiments other than the fact 

that they sometimes contain data for 200,000 seconds, making them difficult to open and 

manipulate due to their file size. The best way to identify regional shifts (i.e. when one region 

ends and another begins) was to graph the leak rate data like in Figure 22 or 23, then removing 
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the data associated with regions A and C. When the data would approach a regional shift, there 

was a significant difference in leak rate values which were then followed by a series of leak rate 

values all within a small range. In total, there were 321 experiments that needed to be cleaned. 

When the regions A and C were eliminated, the high-pressure leakage data looked like this: 

 

Figure 24 - high-pressure data post region A and C elimination 
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Then the data for low pressure side A would look like this: 

 

Figure 25 - low pressure data post region A and C elimination 

For the purposes of building a model for the He/Ar leak rate ratios, the data collected by low 

pressure side A would be used. Therefore, the additional depressurization region labeled “D” 

needed to be eliminated. This region “D” is showing the point where the low-pressure chamber 

reached a maximum capacity and was programmed to release the gas to protect the pressure 

transducer.  

 The purpose for using the low-pressure side A data is so that a true leak rate from the 

high-pressure chamber could be determined. If the leak rate from the high-pressure chamber 

were used for model building, there would be no way to tell how much was leaking into low 

pressure side A, low pressure side B, or the atmosphere. Hence, tracking the gas that leaks across 

the barriers from the high-pressure chamber into the low-pressure side A allows for an 

appropriate leak rate across the barrier to be observed.  
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One of the major challenges to overcome with the 321 data sets was that they were all 

different sizes. Some experiments lasted 72 hours and some lasted 1 hour, it depended on the 

type of gas, the pressure and temperature conditions. The experiments would run until the system 

would release the gas from the low-pressure chamber to protect the equipment or until the 

experiment duration reached 3 days. The purpose of these experiments was to capture the fact 

that some of these leak rates were faster and some were slower. So rather than comparing the 

leak rates minute-by-minute or second-by-second, there would be a comparison of percent 

leakage. This means that the same percent of leakage would be compared to the corresponding 

experiment with the opposite gas. This allows for a more direct comparison between the leak 

rates of the different gas data sets.  

For this method, VBA coding was the main tool. It was necessary to come up with a way 

to produce equally sized data sets from the varied experiment lengths. This was done by dividing 

the row count of each data set by the number 15, producing 15 groups of data per experiment. 

The number 15 was chosen because of the size of the smallest data set being 30 points, and at 

least 2 values needed to be in each group to produce a slope. Since the interest here is to model 

the leak rate, the slope of the values in each of the 15 groups was taken using linear estimation 

VBA coding as well.  This method allows for the entire leakage behavior to be compared 

between the different gases. The data was then consolidated to create the individual experimental 

conditions’ leak rate ratios. An example of what this data looked like finally is presented in 

Table 16: 
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RUN 2 

Helium Argon Ratio 

LP A Slopes LP A Slopes LP A Ratio 

0.0121 0.0019 6.3271 

0.0117 0.0009 13.1694 

0.0114 0.0012 9.8345 

0.0112 0.0010 10.7926 

0.0110 0.0010 11.2320 

0.0109 0.0009 11.5853 

0.0108 0.0009 11.8445 

0.0106 0.0009 11.9435 

0.0105 0.0009 12.2570 

0.0104 0.0008 12.6427 

0.0103 0.0002 52.6423 

0.0103 0.0009 11.5293 

0.0101 0.0008 12.7575 

0.0101 0.0008 12.9133 

Table 16 - Final Ratio Calculation Example for Run 2 0˚C 2250 psi 

When the data was consolidated, there were some sets of ratios that were obviously 

compromised. The experimental ratio of Helium to Argon is theoretically around 2.0 and some 

of the experimental leak rate ratios were around 0.5 or even 20.0, but some data sets were 

showing ratios over 2000. These sets of data were considered errors as a result of instrument 

malfunction and were removed.  

Once these ratios were determined for each set of conditions experiments, the ratios were 

compiled into one large column consisting of over 1000 rows, along with their corresponding 

temperatures and pressures. A preview of that data set is shown in Figure 26: 
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Figure 26 - screen capture of final data consolidation’s first 40 rows 

With all of the leak rate ratios in one place, any ratio that was negative was removed since it is 

inappropriate to model a negative leakage. These negative values are likely due to noise in the 

data or the system instruments. The outliers were then removed using the same Tukey Fence 

method from model Method 2. The data set initially contained 1,148 data points and after the 

removal of negatives and outliers, the final data set contained 1,004 values, resulting in a 12.5% 

loss. This was deemed an acceptable loss due to the highly variable nature of the data and the 

difficulty associated with the data collection process. Also, a 12.5% loss still yielded a 

reasonably large enough data set to which modeling could occur; considering significantly 



59 

smaller data sets were used for the modeling Methods 1 and 2, it was believed that 1,004 data 

points were more than sufficient for modeling purposes.  

 

4.2.2 Building the caret model 

Once the data had been cleaned, it was time to start modeling the data. The first modeling 

attempt was a multivariate linear regression like in Methods 1 and 2, but it did not exhibit 

normality in the residuals. This was also the first attempt because the low pressure leak rates 

exhibited linear behavior, see Appendix C. This meant a different model type would be 

necessary but knowing which one to use was not immediately obvious. The final data when 

plotted did not have a particular shape (Figures 27-28).  

 

Figure 27 - He/Ar Leak Rate Ratios Plotted against Pressure 
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Figure 28 - He/Ar Leak Rate Ratios Plotted against Temperature 

 To investigate the best fitting model, the caret package in R studio was used. The caret 

(Classification And Regression Training) package “is a set of functions that attempt to streamline 

the process for creating predictive models” (Kuhn, 2019).This package has tools for data 

splitting, pre-processing, feature selection, model tuning using resampling, and variable 

importance estimation (Kuhn, 2019). Using caret, a data set can be split into a training data set 

and a testing data set, which then are used to train a model and validate that model. For this data 

set, the split was 80% training data and 20% testing data. These values are chosen randomly, but 

with a set.seed() function, the same random values are selected each time the code is run in order 

to maintain reproducibility. Hyperparameter tuning is needed in order to adjust the predictive 

model and optimize it to increase its validity. Some models have more tunable hyperparameters 

than others. An incredible benefit to the caret package is that it can train, test and tune 238 

different types of models, making it an extremely useful tool for a situation such as this where 
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the proper model to use is unknown or not obvious initially (Kuhn, 2019). The caretList feature 

is one that allows multiple models to be tested in parallel, when using the function modelList, to 

determine which is the best-fitting model without having to test individual models one-by-one 

(see Appendix G). Initially, 7 models were created with the training data at a time to get an idea 

of what the modeling could look like; the goal here was to see if there was one model that stood 

out from the rest (Appendix G).  

 The scatter plot matrix below consists of the training data set (Figure 29). Again, creating 

a visualization to look for any obvious trends or relationships. The top left box shows the 

relationship of temperature on the leak rate ratio and the top middle box shows the relationship 

of pressure on the leak rate ratio. Both show a denser correlation of points toward the lower end 

of the x axis values.  

 

Figure 29 - Scatter Plot Matrix of Train Data 
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With these observations, there is a suspicion of possible skewing. The histogram shown in Figure 

30 shows that the raw training data is skewed to the left significantly.  

 

Figure 30 - Histogram for Raw Train Data 

Models built in the caret package are often centered and scaled to increasing model strength and 

validity. In Figure 31, the train data after R automatically centered and scaled it is shown. There 

is still a significant skew toward the left side of the graph.  
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Figure 31 - Histogram for the Train Data after being centered and scaled 

Despite the small amount of centering and scaling, this still helps to produce a more robust 

model. This same processed data is used for each of the models being tested using caret.  

 Of the 238 available models to model this data, about half of them were appropriate to 

use for the shape of the data and the type of data included in this set. Below are results for some 

of the better performing models produced with caretList: 

Model Type RMSE Rsquared MAE 

Random Forest 6.109 0.399 3.916 

Linear Model 6.999 0.205 5.123 

Classification Tree 6.598 0.303 4.447 

Table 17 - Model Results from caretList 
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4.2.3 The Random Forest Model 

From this, there was one model that regularly stood out: Random Forest. Random Forest 

is a substantial modification of bagging, “a technique for reducing the variance of an estimated 

prediction function” (Hastie, Tibshirani, & Friedman, 2009). Much like decision trees or 

classification trees, Random Forests grows many classification trees (Berkeley, 2004). This 

bagging method build this large collection of trees so that they are de-correlated and then 

averages them (Hastie, Tibshirani, & Friedman, 2009). These forests are grown to the largest 

extent possible without any pruning (Berkeley, 2004). The basic idea of Random Forests is to 

“average many noisy and approximately unbiased models, and hence reduce the variance 

(Hastie, Tibshirani, & Friedman, 2009). Using the trees for this bagging technique is ideal 

because they can “capture the complex interaction structures in the data” (Hastie, Tibshirani, & 

Friedman, 2009). Random Forests are ideal for large data bases, can handle thousands of inputs, 

do not overfit the data, are easy to train and tune, and offers an experimental method for 

detecting variable interactions (Hastie, Tibshirani, & Friedman, 2009) (Berkeley, 2004).  

Random Forest for Regression or Classification: 

1. For 𝑏 = 1 𝑡𝑜 𝐵: 

a. Draw a bootstrap sample 𝒁∗of size 𝑁 from the training data. 

b. Grow a random-forest tree 𝑇𝑏 to the bootstrapped data, by recursively repeating 

the following steps foreach terminal node of the tree, until the minimum node size 

𝑛𝑚𝑖𝑛 is reached, 

i. Select 𝑚 variables at random from the 𝑝 variables. 

ii. Pick the best variable/split point among the 𝑚. 

iii. Split the node into two daughter nodes. 
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2. Output the ensemble of trees {𝑇𝑏}1
𝐵. 

To make a prediction at a new point 𝑥: 

𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛: 𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1
. 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛: Let 𝐶𝑏̂(𝑥) be the class prediction of the 𝑏th random-forest tree.  

Then 𝐶̂𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝐶̂𝑏(𝑥)}

1

𝐵
. 

Equation 10 – Algorithm for Random Forest for Regression or Classification 

(Hastie, Tibshirani, & Friedman, 2009) 

The deeper and the greater the forest sufficiently grows, the lower the model’s bias will be 

(Hastie, Tibshirani, & Friedman, 2009). From the caretList operations, Random Forest displayed 

the highest R² value of any model tested.  

To build a better Random Forest model, it was important to train and tune it by itself 

outside of a caretList function. So, a default Random Forest model was created using the caret 

package and the methods for tuning it included hyperparameter for loops within caret training 

packages (Appendix G). The hyperparameters of interest for tuning included: mtry, ntree, 

maxnode, and nodesize. The hyperparameter “mtry” is the “number of variables randomly 

sampled as candidates at each split”; “ntree” is the “number of trees to grow”; “maxnode” is the 

“maximum number of terminal nodes trees the forest can have”; and “nodesize” is the “minimum 

size of terminal nodes” (CRAN, 2018). A series of for loops outside of caret Random Forest 

training  models to test and assess the optimal value was done for each hyperparameter 

(Appendix G). Through this, the optimal values for each hyperparameter that produced the 

highest R² value for the model were determined. Once these hyperparameters were determined, 
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the number of folds for the cross-validation in the trainControl function was adjusted manually 

until there was a point where the R² value began to level-off. 

 

4.2.4 How the Random Forest caret Model Performs 

This resulting Random Forest model found an interaction affect between the two input 

variables: temperature and pressure with a higher variable importance associated with pressure. 

“Two independent variables interact if the effect of one of the variables differs depending on the 

level of the other variable” (Glimo, n.d.). In terms of a Random Forest, this means that if a split 

on one variable in a tree makes a split to the other variable either systematically less possible or 

more possible (Berkeley, 2004). This is determined “under the hypothesis that the two variables 

are independent of each other” (Berkeley, 2004). This does not change how the input variables 

are presented to the model, but it does explain some interesting behaviors within the model.  

Before any of the hyperparameter tuning, the default Random Forest trained caret model 

returned an R² value of 0.470 with a cross validation fold number of 20; after the hyperparameter 

tuning and increasing the fold value to 250 the R² increased to 0.722 with an adjusted R² value of 

0.721, which is a significant increase. A tool called postResample is offered in the caret package 

for assessing the fitting ability of the models. With this, using the tuned Random Forest model, 

the testing data in the remaining 20% of the data are used to predict the associated output values. 

With those output values assigned to a variable, plug that variable and the actual experimental 

output data from the 20% training data to assess how closely related the predicted output values 

are to the actual output values in the testing data set. The R² associated with the postResample is 

0.404, which is smaller than the 0.722 from the tuned model, but this is a common occurrence 

when using the postResample function. The 0.722 is associated with how closely the variance 
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associated with the Random Forest model matches that of the training data whereas the 0.404 is 

how closely the variance of the Random Forest model aligns with the variance of the test data. 

This is likely due to the high variance nature of the data set. For the purposes of comparing the 

linear models to this non-linear model later-on, the metric of focus is the adjusted R² of 0.721. 

 

Figure 32 - Random Forest He/Ar Leak Rate Ratio Model (by pressure) 
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Figure 33 - Random Forest He/Ar Leak Rate Ratio Model (by temperature) 

 

Figure 34 - Surface Plot of the Random Forest Test Data 
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Figure 35 – Surface Plot of the Predictions made from Test Data Inputs 

The surface plot in Figure 34 shows the actual output values for the test data input 

variables. The surface plot in Figure 35 shows the predicted output values using the Random 

Forest with the input variables from the test data set. The R² value of 0.404 is describing the 

amount of explained error between Figure 34 values and Figure 35 values. Figure 35 helps to 

show how difficult it is to fit a model to this data set. There is a higher concentration on the left 

side, but there are still significant values spread out toward the right side of the graph seen as 

“spikes” in the data. Considering this challenging model behavior, the predicted values actually 

do recognize the concentrated areas of the graph and dip/rise with those heavier clusters while 

also helping to smooth the dramatic spikes and provide a reasonable and reliable estimate. 

Hence, it helps to explain the behavior of the highly variable experimental data.  

 Another way to observe the Random Forest’s ability to predict was to manually test data 

instead of randomizing it with the caret function. The data points including the pressure 3750 psi 
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were selected to be tested. They were removed from the data set used to build the Random Forest 

model, a total of 166 points. With this, a similar Random Forest model was created. The input 

variables for the removed points were put into the new Random Forest model in order to predict 

new outputs for those inputs. These outputs were then compared to the experimental outputs 

associated with those inputs. This was a way to see how closely a similar Random Forest model 

could predict the ratios for input variables that were not used to build the model. Figure 36 shows 

the predicted outputs plotted over the experimental outputs.  

 

Figure 36 - Removed 3750 psi outputs compared to the predicted 3750 psi outputs 

Figure 36 shows there is a close relationship between the predicted outputs and the experimental 

outputs. Hence, the Random Forest model performs well when predicted outputs for input 

variables not included in the model. This helps to increase confidence in a Random Forest 

model’s abilities with this data set.  
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4.3 How the Models Compare 

The three models have some differences but many similarities. They all show a positive 

effect due to pressure; they all take both temperature and pressure inputs, and generally exhibit 

the same kind of behavior, just at different magnitudes (Figure 37). 

 

Figure 37 - Models 1 and 2 plotted with the Random Forest model at 121˚C 
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1 is more conservative in its estimate than Model 2; and the RF model is significantly more 

conservative than Model 1’s estimates. This is determined by the magnitude of the plotted graphs 

in Figure 37. 

 

  

 

Table 18 - Model Metric Comparison 

According to Table 18, the adjusted R² of Method 1 is 0.234, which is less than that of 

Method 2, which is 0.275. And Method 2’s adjusted R² is less than the Random Forest model’s 

adjusted R² of 0.721 which is a more significant difference when compared to the difference 

between the first two methods. Although the lower adjusted R² values are still worth noting and 

it has been determined that it is not always going to have an adverse effect on assessing a 

model’s validity, the fact that the adjusted R² for the same data set has been increased to 0.721 

when changing to a Random Forest model encourages the selection of the RF model.  Having the 

highest adjusted R² value of all the potential models, the highest data inclusivity, and the more 

conservative nature of the RF model, it has been selected as the model of choice for investigating 

the ISO allowable leakage standards. 

  

5 Diffusion modeling 

Diffusion is the movements of particles through a concentration gradient (Dickson, 

2020). ISO 15848-1 provides allowable Methane leakage concentrations and this diffusion 

modeling allows the concentrations to be translated into a leak rate. This allows for the 

comparison of the testing Helium leak standards to be compared to the allowable Methane 

Model R² Adjusted R² 

Method 1 0.301 0.234 

Method 2 0.311 0.275 

Random Forest 0.722 0.721 
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amounts. Hence, the selected predictive model must be combined with diffusion modeling in 

order to get ISO leak rate comparisons. This diffusion modeling was completed by Abigail 

Hovorka with the aid of Milad Najafbeygi and Schlumberger advisor, Dr. Raghu Madhavan. 

 

5.1 Point source model 

For this, a diffusion model that can calculate leak rate from concentration at given point 

is applied. The assumptions for this model include steady state, three-dimensional free diffusion, 

continuous point source of leak rate, and the atmospheric concentration can be simplified to zero. 

The 3D diffusion Equation reads: 

𝜕𝑡𝑐 = 𝛻2𝑐 

Equation 11 – 3D-Diffusion (Part I) 

SS→ 
𝜕𝑐

𝜕𝑡
= 0 = 𝛻2𝑐 

Equation 12 - 3D-Diffusion (Part II) 

From this, the solution is: 

𝑐(𝑟) =
𝑚̇

4𝜋𝐷𝑟
+ 𝑐∞ 

Equation 13 - Final Diffusion Equation 

In this, 𝑚̇ represents a leak rate, D is the diffusion coefficient, which is a function of 

temperature, and 𝑐∞ is the atmospheric concentration, which can be simplified to zero.  

The published diffusion co-efficient values in air at 20ºC are given in Table 19. 
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Diffusion Coefficients in Air at ~20˚C 

(m2/s) 

Argon 0.0000189 

Helium 0.0000697 

Methane 0.0000196 

Table 19 - Diffusion coefficients 

(Engineering ToolBox, 2001) 

Estimated equivalent CH₄ leak-rates for a given concentration at 1” from the point source at 200 

C are given in Table 20. 

Class CH₄ (Sniffer) 

concentration 

Equivalent leak rate 

(mg/s) 

mol/s 

AM ≤50 0.000205 1.277E-08 

BM ≤100 0.000410 2.553E-08 

CM ≤500 0.002048 1.2774E-07 

Table 20 - Allowable maximum leak rate vs concentration limits 

(International Organization for Standardization, 2015) 

 

5.2 Effect of ambient temperature on concentration vs allowable leak-rate 

Diffusion is affected by the ambient temperature. Higher the temperature, faster the 

diffusion. By applying the results from Equations 11, 12, 13 from this report, a diffusion co-

efficient multiplier has been estimated for the 20ºC reference value.   

The following Equation 14 shows the relationship between diffusion coefficient and temperature. 

DAB is the diffusion coefficient between A and B gases. 

𝐷𝐴𝐵 =
2

3
√

𝑘𝐵
2

𝜋3
√(

1

2𝑚𝐴
+

1

2𝑚𝐵
)

4𝑇
3

2⁄

𝑃(𝑑𝐴 − 𝑑𝐵)2
 

Equation 14 - Diffusion Coefficient Multiplier for 20˚C 
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In this Equation, P is the atmospheric pressure, T is the temperature., 𝑘𝐵 is Boltzmann constant. 

It is equal to 1.3807(79)×10−23 J/K. 𝑚𝐴 and 𝑚𝐵 are molecular mass, and 𝑑𝐴 and 𝑑𝐵 is the 

atomic diameter. Since we measure the diffusion at the outside of the control volume, T = 293.15 

K (20ºC, environmental temperature) and the pressure is equal to atmospheric pressure, P = 

1.01325x105 Pa. Generally, 78% of air is considering Nitrogen and 21% Oxygen. So, for any gas 

diffusion on-air, 78% of total diffusion is on Nitrogen and 21% of that is on Oxygen.  Equation 

14 can be reduced to Equation 15 by applying the known parameters.   

 

 

Equation 15 - Diffusion Coefficient Equation 

 

Equation 16 - Equation for Finding the Diffusion Coefficient 

Equation 16 shows how the diffusion coefficient D1 at a new temperature T1 can be estimated 

from a known reference value D0 at T0. 

Calculated correction factors R for a range of ambient temperatures T (in ˚C),  defined by 

R(T),  are given in tabulated and graphical forms below (Figure 38).  This translates to allowing 

a temperature dependent leak-rate for CH₄ to meet a given concentration based CH₄ tightness 

https://en.wikipedia.org/wiki/Boltzmann_constant
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class.  For example, the multiplier of 0.89 at 0ºC ambient temperature allows a lower CH₄ leak-

rate to meet a given CH₄ class, while at 50ºC, a multiplier of 1.17 allows a higher CH₄ leak-rate 

to meet the same tightness class. 

T (˚C) R(T) 

-20 0.79 

-15 0.81 

-10 0.84 

-5 0.87 

0 0.89 

5 0.92 

10 0.95 

15 0.97 

20 1.00 

25 1.03 

30 1.06 

35 1.08 

40 1.11 

45 1.14 

50 1.17 

55 1.20 

60 1.23 
 

 

Figure 38 - Diffusion correction factor based on ambient temperature 

 

5.3 Effect of distributed leakage from around a valve stem   

The differences between a single point leakage (point source) from the stem against the 

likely scenario of distributed leakage from around the stem are shown below. Stem to barrier seal 

interface was modelled as a set of 8-point sources equally distributed along the circumference, 

and the leak-rate was evenly distributed among the point sources. Sniffer measurement was at a 

1” point away from the stem circumference.   

y = 0.0055x + 0.8935
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Figure 39 - Stem circumference is modelled as 8 discrete point sources with equal spatial and 

leak-rate values. 

With distributed leakage as modelled in Figure 39, a higher total leak-rate that is a function of 

the stem diameter can be allowed and still meet the concentration threshold at a point.  These 

results are shown as diffusion correction factor in Figure 40.  For example, a 3” stem with 

distributed leakage gives a concentration of 0.65 times that of a point source. In converse, for a 

3” stem, a higher leak rate that is 1.0/0.65= 1.54 times that of a point source can be allowed and 

still meet a select concentration threshold. 

 

Figure 40 - Diffusion correction factor considering stem diameter (mm) 
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6 Model leak rate prediction in relation to the ISO tightness classes  

ISO 15848-1 standard tightness classifications are based on the different allowable 

concentrations of Methane. There are three classes that increase in severity as the class increases. 

The classes are A, B and C, the allowable air pollutant concentration in parts per million by 

volume for the classes are 50, 100, and 500 respectively. This is outlined in Table 21.   

Class 

Measured leakage 

(sniffing method) 

ppmv 

AM ≤50 

BM ≤100 

CM ≤500 

Table 21 - Tightness classes for stem (or shaft) seals with Methane 

(International Organization for Standardization, 2015) 

The maximum allowable CH₄ leak rates estimated from the given threshold concentrations are 

given below (Table 22) for 20˚C atmospheric temperature with a point source.  

Class CH₄ (Sniffer) 

concentration (ppmv) 

Equivalent leak rate 

(mg/s) 

mol/s 

AM 50 0.000205 1.277E-08 

BM 100 0.000410 2.553E-08 

CM 500 0.002048 1.2774E-07 

Table 22 - Allowable maximum leak rate vs concentration limits 

(International Organization for Standardization, 2015) 

The Methane sniffer data is converted into equivalent Helium and Argon leak rates using 

the experimentally determined leak rate ratios, regression model, and the diffusion model.  The 

RF model has been selected to establish threshold Helium leak rates with which the ISO 15848-1 

standards will be compared.  
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The assumptions for converting the Methane concentrations into Helium and Argon leak 

rates in the examples given below (Tables 23 through 25) include: point source diffusion, 20˚C 

free diffusion in air, Ar/CH₄ leak rate ratio of 1.5 from experiments, and a representative He/Ar 

leak rate ratio Random Forest model.  

To illustrate the implementation of these methods, three examples have been created for a 

temperature rating of 121˚C using the Random Forest model from chapter 4.2 of this report.  

Class measured 

leakage (ppmv) 

CH₄ Leak Rate 

(mol/s) 

Modeled Helium 

Leak Rate 

(mol/s) 

Argon Leak Rate 

(mol/s) 

ISO 15848-1 

Helium (mol/s, 

30mm seal) 

50 1.277E-08 7.780E-08 1.915E-08 5.873E-11 

Table 23 - Class A example at 2250 psi and 121˚C 

Class measured 

leakage (ppmv) 

CH₄ Leak Rate 

(mol/s) 

Modeled Helium 

Leak Rate 

(mol/s) 

Argon Leak Rate 

(mol/s) 

ISO 15848-1 

Helium (mol/s, 

30mm seal) 

100 2.553E-08 9.394E-08 3.830E-08 5.873E-10 

Table 24 - Class B example at 600 psi and 121˚C 

Class measured 

leakage (ppmv) 

CH₄ Leak Rate 

(mol/s) 

Modeled Helium 

Leak Rate 

(mol/s) 

Argon Leak Rate 

(mol/s) 

ISO 15848-1 

Helium (mol/s, 

30mm seal) 

500 1.277E-07 2.203E-06 1.915E-07 5.873E-08 

Table 25 - Class C example at 10,000 psi and 121˚C 

The final He/CH₄ leak rate ratio model using the Random Forest modeling determined in R 

Studio using leak rate ratio trend data has been used to calculate the Modeled Helium Leak Rate 

(mol/s) values.  

In Tables 23-25, the Helium leak rate is calculated by using the He/Ar Random Forest 

model and the Ar/CH₄ leak rate ratio of 1.5, which creates the He/CH₄ relationship. In every 
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example, the ISO Helium leak rate is significantly smaller than the modeled Helium leak rate 

determined by the regression model. In Table 26 the percent of leak rate increase from the ISO 

standard’s leak rate to the leak rate modeled with experimental data are shown.  

Class 

Modeled Helium 

Leak Rate 

(mol/s) 

ISO Helium 

Leak Rate 

(mol/s) 

Difference Percent Increase 

A 7.780E-08 5.873E-11 7.774E-08 132434.465% 

B 9.394E-08 5.8703-10 9.335E-08 15902.791% 

C 2.203E-06 5.870E308 2.144E-06 3652.666% 

Table 26 - The Percent Increase from the ISO Leak Rate to the Modeled Leak Rate 

 

Figure 41 - Percent Increase from ISO to Model per Helium Tightness Class 

In Table 26, it is shown that as the ISO class decreases, the percent increase (or change) from the 

standard’s required Helium leak rate to the modeled leak rate increases significantly. Figure 41 

helps to show the large jump in percent increase from Class B to Class A.  

In Tables 23-25, the equivalent Argon leak rate is also the calculated that has been 

converted from the Methane leak rate using the Ar/CH₄ leak rate ratio. The ISO 15848-1 
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standard has never addressed Argon as a testing gas so there is no comparison to be made from 

the ISO standard’s requirements.  

 

7. Discussion 

Multiple methods were tested to model the He/Ar leak rate ratio data in order to describe 

better the relationship between Helium and Methane. Like the researchers from the 2015 Journal 

of Fluid Science and Technology study on porous compression packing rings, the predicted 

model values were graphed with the original measured data to assess the different models’ 

behavioral accuracies (Kazeminia & Bouzid, 2015). From these different leak rate ratio models, 

there was one that stood above the rest, the Random Forest model. This model’s ability to model 

complex behavior through cross validation and advanced decision tree analysis pushes it above 

the rest of the models. Unlike the same research team who studied the porous compression 

packing rings, performance metrics were used to assess the Random Forest models’ quality of 

predictions in addition to graphing the predicted data alongside the original data, which is similar 

to the research team’s methods (Kazeminia & Bouzid, 2015). The Random Forest model was 

able to capture the data’s chaotic behavior and large variance and produce a model with an R² 

value of 0.722, higher than those of the other methods with values of 0.301 and 0.311.  

The 2015 study took into consideration the general issues regarding stricter regulations 

surrounding fugitive emissions testing; they mentioned observing issues among “standards such 

as TA-Luft, ISO 15848-1 and API 622 and 624 and others” and their potentially unnecessary 

needs to be revised (Kazeminia & Bouzid, 2015). However a study done by researchers from 

Clarke Valve did specifically focus on ISO 15848-1 and one other standard, coming to the same 

conclusion that the standards are extremely difficult to meet (Daniels & LeBoeuf, 2019). This 
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project and thesis focus specifically on the legislation-inspired revisions associated with ISO 

15848-1. When the Random Forest model predictive abilities were applied to the ISO 15848-1 

standard and conditions, this predictive model showed that the actual behavior of Helium does 

not match the theorized behavior from the ISO standard. As shown in Table 26 and Figure 41, 

the percent increase from the allowable Helium leak rate concentration values from ISO 15848-1 

to the predicted Helium leak rate concentration values from the Random Forest model is 

incredibly significant. This proves that the ISO 15848-1 Helium tightness classifications do not 

have a proper correlation to the allowable Methane leakage associated with the tightness classes. 

Had there been a percent increase been less than 10%, there may be a chance to argue that there 

is some variation there and that the ISO standard does have some kind of correlation between 

Helium and Methane. However with percent changes of 132,434.465%, 15,902.791%, and 

3,652.666% for Helium tightness classes A, B, and C, respectively, there is obviously a 

disconnect between the tightness classes’ associated Methane leak rate and the testing Helium 

leak rate and thus, an urge to change the classifications. Unlike the 2019 Clarke Valve study, a 

call to make adjustments to the ISO 15848-1 standard is being made rather than designing an 

entirely new valve that should pass the existing, more strict tightness classes (Daniels & 

LeBoeuf, 2019). Although Clarke Valve has responded to the needs of the ISO 15848-1 

standard, it can be seen that the standard itself is not in line with its intended purpose of 

correlating the Helium test leak rates to the allowable Methane leak rate concentrations in 

application. An entirely new valve may not be the best solution to the problem like they suggest 

since the standard itself is flawed.  

Something that neither of these pieces of literature address is the possibility of having a 

more appropriate test gas for these crucial fugitive emissions standards. This project has found 
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that Argon performs more like Methane, which was theorized based on the similarities between 

the Argon and Carbon molecules. Which begs the question, is Helium really the better test gas? 

Both Argon and Helium can be detected by spectrometers, making both of their leakages 

traceable; both gases are non-reactive and have extremely low melting points, all of which make 

them feasible choices for industrial testing (TQC, n.d.) (Royal Society of Chemistry, 2020) 

(Vacuum Instruments Corporation, n.d.) (Thomas Jefferson National Accelerator Facility - 

Office of Science Education, 2020). However, it is easier to capture and store Argon from the 

atmosphere than it is to capture and store Helium as discussed in the Leak Specialists report from 

2014 (Chamberlain, 2014). Considering that there is a global Helium shortage and there are 

many uses for Helium that cannot use another gas (i.e. MRI machines or research involving 

liquid Helium), it is beneficial to open the discussion on switching to Argon in areas that will 

allow for it (Chamberlain, 2014). In addition, Argon is more cost-effective than Helium. When 

purchasing industrial grade cylinders of testing gas, Helium costs 5.8 times more per cylinder 

than Argon (AirGas, 2020). With this, Argon is a better option for test gas selection. Hence, it is 

necessary to begin the investigation of implementing more industry-wide applications of Argon 

as a test gas, beginning with standards such as ISO 15848-1. 

 

8. Conclusions 

A concern that environmental organizations have become increasingly more aware about 

in the past decade is the environmental risk associated with fugitive emissions and how to reduce 

their potential environmental harm. Fugitive emissions from the oil and gas industry’s many 

explorative endeavors as well as from their production and supply lines have become a main 

focus for these environmental organizations (Daniels & LeBoeuf, 2019). This is because a 
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common gas that runs through pipes and machinery is Methane. Methane, when released to the 

atmosphere, becomes a significant contributor to the greenhouse gases “due to its capacity to trap 

by volume 28 times more heat than carbon dioxide” (Daniels & LeBoeuf, 2019). Hence, there is 

significant interest in preventing Methane from escaping to the atmosphere in order to reduce 

environmental harm. There are many standardization organizations in the world who have been 

called to adjust their standards to be stricter in an effort to reduce fugitive emissions of Methane 

in the oil and gas industry. One organization in particular that has been affected by this is the 

International Organization for Standardization (ISO). ISO 15848 is concerned with the fugitive 

emissions of Methane from industrial valves in the field (International Organization for 

Standardization, 2015). Manufacturers have been struggling to get their valves to pass the 

updated ISO standards and have either had to resort to risky Methane tests in their facility, 

redesign their entire product, or contribute to the global Helium shortage through extensive 

testing to get their valves to pass the ISO 15848-1 standard (Daniels & LeBoeuf, 2019) 

(Kazeminia & Bouzid, 2015).  

So why is it that so many manufacturers are struggling to pass their equipment when 

testing with Helium (Kazeminia & Bouzid, 2015)? The ISO 15848-1 standard does not 

effectively correlate Helium to Methane within its guidelines in these new endeavors to make the 

standards stricter to reduce global Methane fugitive emissions. In Tables 23-25, the Modeled 

Helium Leak Rate is greater than the ISO mandated Helium leak rate. In other words, the ISO 

Helium leak rates are stricter than the modeled Helium leak rates created using experimental 

data. Table 26 and Figure 41 show that the percent change from the Helium leak rates required 

by ISO 15848-1 in a testing facility and the Helium leak rate determined through modeling 

experimental data is very large. With this, it can be determined that there is little to no 
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correlation between the allowable Methane concentration tightness classes and the Helium test 

leak rates for the tightness classifications defined by the standard.  

Since there is this disconnect between Helium and Methane, a suggestion can be made to 

use Argon as a replacement test gas. It has similar leakage characteristics compared to CH₄ and 

is a better test gas than Helium to substantiate Methane tightness classes, seen in Tables 23-25.  

Argon is a readily available and it is a cheaper inert test gas, meanwhile Helium is facing a 

supply shortage and due to that has become a less economical test gas.  

In essence, the primary conclusion for this report is that there is not a clear correlation 

between Helium and Methane in ISO 15848-1 and there needs to be a better relationship 

showcased between Helium and Methane in ISO 15848-1, if Helium continues to be the primary 

test gas. Protecting the environment is the highest priority, so adjusting these standards must be 

done carefully, but there is a need to reassess the relationship between the test gas and Methane. 

And if there is no opposition to changing test gases, then a deeper investigation of Argon as a 

test gas is strongly suggested.  

 

9. Future Work 

The claim with this work is not that the new Helium leak rates for testing industrial 

valves have been found, but that there needs to be a deeper investigation for how the Methane 

concentrations correlate to Helium test leak rates. There are inconsistencies and they need to be 

addressed. Future investigations should involve more complex models or even a more involved 

factor-effect analysis to rule out any data effects external to the system.  

And besides this, Argon needs to be investigated further as well. The third party 

experimentation needs to be validated with other experiments like those outlined in ISO 15848-1 
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for passing industrial valves. Switching to Argon is a much more sustainable option in terms of 

environmental concerns, human health and finances. 

The next step for this research will be the investigation of these leak rates in a dynamic 

scenario. This report is concerned with just static leak rates, but ultimately there is a need to also 

understand the relationship between these gases in a dynamic set up. This research can be a 

starting point for any dynamic tests in the future.  
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11 Appendices - Supplementary information 

Appendix A – Issues encountered and Challenges 

Combination of issues both Milad Najafbeygi and Abigail Hovorka experienced 

1) Prior to writing this, my experience with machine learning was minimal and caret is a 

machine learning technique. Teaching myself this package was a significant challenge. My 

previous experience with R studio and my basic statistical knowledge helped a lot, but I did 

not know the basics of machine learning before this.  

2) My VBA code went through many iterations. In the beginning it took nearly 30 minutes to 

run. By the end I had it running in 3 seconds, but it took 4 or 5 different attempts at writing 

the program. 

3) It was challenging to seal the equipment when working with Helium.  Helium Leakage was 

often very high with select barrier configurations to generate back-to-back Helium and Argon 

leak-rates and meaningful ratios. 

4) We used a liquid Nitrogen setup to cool the experimental chamber to below ambient and up 

to -46˚C.  Introduction of liquid Nitrogen (at ~ -198.6˚C) led to many valve and connection 

failures during the course of this effort. 

5) Reducing temperature to -46˚C took more than 18 hours. Though it was setup on a closed 

loop controller, the system needed to be watched to prevent overshooting the setpoint, 

staging the temperature reduction in 2  steps turned out to be more practical. 

6) After each experiment with one gas, a delay of at least 24 hours was needed to fully 

depressurize the system and remove any trapped gas in the seal barrier.  Trapped gas tends to 

slow down the permeation of the second gas in back-to-back experiments and affect leakage 

results. 
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7) The available seal barrier stack did not work well after any thermal cycles.  Hence, barriers 

needed to be changed for experiments between high and low temperatures. 

8) With each new assembly and at the start of a test, the system needed to be leak tested. 
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Appendix B – Individual raw data plots for Methods 1 and 2 

These plots are courtesy of Milad Najafbeygi  

Examples of raw data are presented in this section.  For a given test pressure and 

temperature,  pressure increase at the low-pressure collection side show the leakage behavior.  

By applying ideal gas law along with the volume of the collection sides and the temperature, 

mass leakage flow rate was estimated. 

Figure 42 is an example of the high and low-pressure variation graphs at a set 0˚C low 

temperature and 6250 psi. The black dotted line is high pressure and the red and blue lines are 

low pressure.  

 

Figure 42 - low-pressure changes at 0˚C and 6250 psi for Argon 
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Figures 43-48 are results of leak rate respectively at -46˚C, -29˚C and 0˚C. The red line is a low 

pressure and the green line is showing temperature changes. 

 

Figure 43 -  plastic seals at -46˚C and 6250 psi for Argon 

 

Figure 44 - plastic seals at -46˚C and 6250 psi for Helium 
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Figure 45 - plastic seals at -29˚C and 6250 psi for Argon 

 

Figure 46 - plastic seals at -29˚C and 6250 psi for Helium 
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Figure 47 - plastic seals at 0˚C and 6250 psi for Argon 

 

Figure 48 - plastic seals at 0˚C and 6250 psi for Helium 
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Appendix C – Individual Plots for Random Forest Modeling Data 

X-axis units: Time (sec) 

Y-axis units: Pressure (psi) 

 

Figure 49 - 6250psi Run 1 -46˚C Ar 

 

Figure 50 - 2250psi Run 2 -46˚C He 
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Figure 51 - 2250psi Run 1 -29˚C Ar 

 

Figure 52 - 600psi Run 1 -29˚C He 
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Figure 53 - 600psi Run 2 0˚C Ar 

 

 

Figure 54 - 10ksi Run 5 0˚C He 
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Figure 55 - 3750psi Run 3 25˚C Ar 

 

Figure 56 - 10ksi Run 1 25˚C He 
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Figure 57 - 600psi Run 1 121˚C Ar 

 

Figure 58 - 10ksi Run 1 121˚C He 
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Figure 59 - 10ksi Run 1 204˚C Ar 

 

Figure 60 - 10ksi Run 1 204˚C He 
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Appendix D – Seal Barrier  

Figure 61 shows the picture a typical spring energized plastic barrier seal and Figure 62 shows a 

typical V-ring stack.  These ring geometries were used to build different configurations for the 

experiments and obtain back-to-back leakage results. 

 

Figure 61 - Picture of a spring energized plastic seal ring 

 

Figure 62 - Schematic of a generic plastic V-stack 
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Appendix E – Glossary of relevant terms 

σ – sigma; standard deviation; measure of variation from the median of a data set; helps to 

measure variation and dispersion of a data set 

Å – Ånström; a unit of length equal to 10−10m  

Analysis of Variance (ANOVA) – a statistical analysis tool that splits an observed aggregate 

variability found inside a data set into two parts: systematic (influential on the data) factors and 

random (error) factors (investopedia.com/terms/a/anova.asp)  

df – degrees of freedom; the number of data points that can be assigned to a particular 

distribution  

F-distribution – Each point on the distribution requires a pair of parameters in the form of 

degrees of freedom 

 

(Saylor Academy, 2012) 

F-statistic – a test statistic on the F-distribution; a ratio of explainable and unexplainable variance 

Hyperparameter – a parameter whose value controls the machine learning process and accuracies 

Interquartile range (IQR) – a measure of where the bulk of the values lie; measurement between 

the first and third quartile (NIST/SEMATECH e-Handbook of Statistical Methods, 2012) 
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Mass flow – the movement of fluids down a temperature or pressure gradient 

Volumetric flow – movement of volume unit 

mbar – millibar; 1 mbar = 1 × 10−3bar; bar is a metric unit of pressure 

Median – middle number in an ascending sorted data set  

MS – mean squares; are the sum of squares divided by their respective degrees of freedom; 

provides an understanding of population variance 

Normality probability plot – a graphical technique to assess whether a data set is approximately 

normally distributed; data are plotted against a theoretical normal distribution to observe 

behavior 

ppmv – parts per million volume; air pollutant concentration 

SS – sum of squares; the squared sum of each data point’s variation from the mean; allows the 

computation of variance displayed in the ANOVA Table 

Shapiro-Wilk test – a normality test for data sets; produces a W-test statistic using the given data 

set 

Significance F-value – the F-statistic divided by the respective degrees of freedom 

Test statistic – a numerical description of the outcome that is calculated using sample data 

Quartiles – the division of a data set into four intervals based on the values of each point and 

how they compare to the rest of the data set; divisions are based on the spread of the data 

W-test statistic – using a prescribed data set; 𝑊 =  
(∑ 𝑎𝑖𝑥(𝑖))𝑛

𝑖=1
2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1
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Appendix F – VBA Code  

Sub count() 

Dim ws As Worksheet 

Dim dynamicCount1 As Long 

Dim dynamicCount2 As Long 

Dim dynamicCount As Long 

Dim staticCount As Long 

Dim pasteCount As Long 

Dim neededRange As Range 

Dim tempRange As Range 

Dim overallRange As Range 

For Each ws In Worksheets 

    count_LP = ws.Cells(Rows.count, "A").End(xlUp).Row  

    ws.Range("N1:P100").ClearContents  

    ws.Range("N1") = "LP A Temps" 

    ws.Range("O1") = "LP A Slopes" 

    ws.Range("P1") = "Overall LP A Slope"  

    splitCount1 = Application.WorksheetFunction.RoundDown(count_LP / 15, 0) 'change 

the value diving count_LP to control how many points we want 

    dynamicCount = splitCount1 + 1 

    staticCount = 2 

    pasteCount = 2  

    ws.Range("t1") = count_LP 
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    ws.Range("t2") = splitCount1 

    ws.Range("t4") = dynamicCount 

    ws.Range("t5") = staticCount  

    Set overallRange = ws.Range(ws.Cells(2, 3), ws.Cells(count_LP, 3))  

    overallSlope = Application.WorksheetFunction.LinEst(overallRange)  

    ws.Range("P2") = overallSlope  

    Do While Not IsEmpty(ws.Range("A" & dynamicCount))  

        Set neededRange = ws.Range(ws.Cells(staticCount, 3), ws.Cells(dynamicCount, 3))  

        ratioSlope = Application.WorksheetFunction.LinEst(neededRange)  

        ws.Range("O" & pasteCount) = ratioSlope  

        'Set tempRange = ws.Range(ws.Cells(staticCount, 5), ws.Cells(dynamicCount, 5))  

        'averageTemp = Application.WorksheetFunction.Average(tempRange) 

        'ws.Range("N" & pasteCount) = averageTemp 

        dynamicCount = dynamicCount + splitCount1 

        staticCount = staticCount + splitCount1 

        pasteCount = pasteCount + 1 

    Loop 

Next ws 

End Sub 
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Appendix G – R Code  

1. R Code for first modelList 

install.packages(c('caret', 'skimr', 'RANN', 'randomForest', 'fastAdaboost', 'gbm', 'xgboost', 'caretEnsemble', 'C50', 'ea

rth')) 

 

library(dplyr) 

library(ggplot2) 

library(PerformanceAnalytics) 

library(ggthemes) 

library(corrplot) 

library(car) 

library(psych) 

library(caret) 

library(caretEnsemble) 

library(doParallel) 

 

#created this variable so that I could keep changing the data set with my new ones and not have to copy and paste a 

million times to parRF the data set 

current_data <- finalData1 

 

#looking at the data and making sure there are not any gaps I need to deal with 

dim(current_data) 

summary(current_data$Ratio) 

anyNA(current_data) 

 

#creating a simple linear model so that I can do a Variance Inflation Factor check 

#VIF values over 10 suggest multicollinearity is present and we should get rid of the features causing it 

simple_lm <- lm(Ratio ~ ., data = current_data) 

vif(simple_lm) 

 

#shuffle the data so that we can ensure randomization 

set.seed(123) #ensures reproducability 

data_rand <- current_data[sample(1:nrow(current_data)), ] 

dim(data_rand) 

 

#creating predictors 

X = data_rand[, -3] 

Y = data_rand[, 3] 

#Y<- as.factor(Y) 

#checking to make sure they are good 

str(X) 

str(Y) 

#now to split these into train and test sets 

#using 80% to train and the remaining 20% to test 

set.seed(123) 

part.index <- createDataPartition(data_rand$Ratio,  

                                  p = 0.8,                          

                                  list = FALSE) 

#creating the inputs and outputs for the training and testing 

X_train <- X[part.index, ] 

X_test <- X[-part.index, ] 

Y_train <- Y[part.index] 

Y_test <- Y[-part.index] 
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#checking to make sure they are good 

str(X_train) 

str(X_test) 

str(Y_train) 

str(Y_test) 

registerDoParallel(4) 

getDoParWorkers() 

 

#cross validation 

set.seed(123) 

my_control <- trainControl(method = 'cv', 

                           number = 5, 

                           savePredictions = 'final',  

                           allowParallel = TRUE, 

                           index = createFolds(Y_train,5)) 

 

#TRAINING THE MODEL USING OUR X&Y TRAIN SETS 

#testing multiple model methods using methodList 

set.seed(222) 

model_list <- caretList(X_train, 

                        Y_train, 

                        trControl = my_control, 

                        methodList = c('treebag', 'svmRadial', 'rf', 'parRF', 'xgbLinear', 'knn', 'lm'), 

                        tuneList = NULL, 

                        continue_on_fail = FALSE,  

                        preProcess = c('center','scale')) 

#I like to see the models to make sure nothing suspect happened in the making of them 

model_list$svmRadial 

model_list$treebag 

model_list$rf 

model_list$parRF 

model_list$xgbLinear 

model_list$knn 

model_list$lm 

 

#now I want to see which model produced the smallest RMSE 

options(digits = 3) 

model_results <- data.frame( 

  treebag = min(model_list$treebag$results$RMSE), 

  SVM = min(model_list$svmRadial$results$RMSE), 

  RF = min(model_list$rf$results$RMSE), 

  parRF = min(model_list$parRF$results$RMSE), 

  XGBL = min(model_list$xgbLinear$results$RMSE), 

  KNN = min(model_list$knn$results$RMSE), 

  LM = min(model_list$lm$results$RMSE) 

) 

print(model_results) 

#let's resample and plot because visuals are always nice when explaining things to people 

resamples <- resamples(model_list) 

dotplot(resamples, metric = 'RMSE') 

 

#here we can see if any of the models are highly correlated with another 

modelCor(resamples) 

 

#training an ensemble of the models, which is going to perform a linear combination with all of them 

set.seed(222) 
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ensemble_1 <- caretEnsemble(model_list,  

                            metric = 'RMSE',  

                            trControl = my_control) 

summary(ensemble_1) 

plot(ensemble_1) 

 

#doing another ensemble with caretStack 

set.seed(222) 

ensemble_2 <- caretStack(model_list,  

                         method = 'glmnet',  

                         metric = 'RMSE',  

                         trControl = my_control) 

print(ensemble_2) 

 

#TIME TO EVALUATE PERFORMANCE OF THE MODELS OVER UNSEEN DATA, which is in our test data s

et 

#first predict the test set with each model then compute RMSE 

# PREDICTIONS 

pred_treebag <- predict.train(model_list$treebag, newdata = X_test) 

pred_svm <- predict.train(model_list$svmRadial, newdata = X_test) 

pred_rf <- predict.train(model_list$rf, newdata = X_test) 

pred_parRF <- predict.train(model_list$parRF, newdata = X_test) 

pred_xgbL <- predict.train(model_list$xgbLinear, newdata = X_test) 

pred_knn <- predict.train(model_list$knn, newdata = X_test) 

pred_lm <- predict.train(model_list$lm, newdata = X_test) 

predict_ens1 <- predict(ensemble_1, newdata = X_test) 

predict_ens2 <- predict(ensemble_2, newdata = X_test) 

# RMSE 

pred_RMSE <- data.frame(ensemble_1 = RMSE(predict_ens1, Y_test), 

                        ensemble_2 = RMSE(predict_ens2, Y_test), 

                        treebag = RMSE(pred_treebag, Y_test), 

                        SVM = RMSE(pred_svm, Y_test), 

                        RF = RMSE(pred_rf, Y_test), 

                        parRF = RMSE(pred_parRF, Y_test), 

                        XGBL = RMSE(pred_xgbL, Y_test), 

                        KNN = RMSE(pred_knn, Y_test), 

                        LM = RMSE(pred_lm, Y_test) 

                        ) 

print(pred_RMSE) 

 

#show the correlation score for each test 

pred_cor <- data.frame(ensemble_1 = cor(predict_ens1, Y_test), 

                       ensemble_2 = cor(predict_ens2, Y_test), 

                       treebag = cor(pred_treebag, Y_test), 

                       SVM = cor(pred_svm, Y_test), 

                       RF = cor(pred_rf, Y_test), 

                       parRF = cor(pred_parRF, Y_test), 

                       XGBL = cor(pred_xgbL, Y_test), 

                       KNN = cor(pred_knn, Y_test), 

                       LM = cor(pred_lm, Y_test) 

                       ) 

print(pred_cor) 

 

#TUNING 

#grid <- expand.grid( 

#                    sigma = c(0.01), 
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#                    mtry = c(2), 

#                    nrounds=c(100), 

#                    lambda=c(2), 

#                    alpha = c(0.1), 

#                    eta=c(5) 

#) 

xgb_grid_1 <- expand.grid( 

  nrounds= 1500, 

  eta=c(0.01,0.001,0.0001), 

  lambda = 2, 

  alpha =0.0 

) 

 

 

set.seed(222) 

model_list <- caretList(X_train, 

                        Y_train, 

                        trControl = my_control, 

                        methodList = c('treebag', 'svmRadial', 'rf', 'parRF', 'xgbLinear','knn', 'lm'), 

                        tuneList = list 

                          item1 =caretModelSpec(method = 'rf', tuneGrid=data.frame(.mtry=2)), 

                          item2  = caretModelSpec(method = 'xgbLinear', tuneGrid = xgb_grid_1) 

                          ), 

                        continue_on_fail = FALSE,  

                        preProcess = c('center','scale') 

                        ) 

model_list$svmRadial 

model_list$treebag 

model_list$rf 

model_list$parRF 

model_list$xgbLinear 

model_list$knn 

model_list$lm 

 

#now I want to see which model produced best R squared 

options(digits = 3) 

model_results <- data.frame( 

  treebag = min(model_list$treebag$results$RMSE), 

  SVM = min(model_list$svmRadial$results$RMSE), 

  RF = min(model_list$rf$results$RMSE), 

  parRF = min(model_list$parRF$results$RMSE), 

  XGBL = min(model_list$xgbLinear$results$RMSE), 

  KNN = min(model_list$knn$results$RMSE), 

  LM = min(model_list$lm$results$RMSE) 

) 

print(model_results) 

#let's resample and plot  

resamples <- resamples(model_list) 

dotplot(resamples, metric = 'RMSE') 

 

#here we can see if any of the models are highly correlated with another 

modelCor(resamples) 

 

#training an ensemble of the models, which is going to perform a linear combination with all of them 

set.seed(222) 

ensemble_1 <- caretEnsemble(model_list,  
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                            metric = 'RMSE',  

                            trControl = my_control) 

summary(ensemble_1) 

plot(ensemble_1) 

 

#doing another ensemble with caretStack 

set.seed(222) 

ensemble_2 <- caretStack(model_list,  

                         method = 'glmnet',  

                         metric = 'RMSE',  

                         trControl = my_control) 

print(ensemble_2) 

 

#TIME TO EVALUATE PERFORMANCE OF THE MODELS OVER UNSEEN DATA, which is in our test data s

et 

#first predict the test set with each model then compute RMSE 

# PREDICTIONS 

pred_treebag <- predict.train(model_list$treebag, newdata = X_test) 

pred_svm <- predict.train(model_list$svmRadial, newdata = X_test) 

pred_rf <- predict.train(model_list$rf, newdata = X_test) 

pred_parRF <- predict.train(model_list$parRF, newdata = X_test) 

pred_xgbL <- predict.train(model_list$xgbLinear, newdata = X_test) 

pred_knn <- predict.train(model_list$knn, newdata = X_test) 

pred_lm <- predict.train(model_list$lm, newdata = X_test) 

predict_ens1 <- predict(ensemble_1, newdata = X_test) 

predict_ens2 <- predict(ensemble_2, newdata = X_test) 

# RMSE 

pred_RMSE2 <- data.frame(ensemble_1 = RMSE(predict_ens1, Y_test), 

                        ensemble_2 = RMSE(predict_ens2, Y_test), 

                        treebag = RMSE(pred_treebag, Y_test), 

                        SVM = RMSE(pred_svm, Y_test), 

                        RF = RMSE(pred_rf, Y_test), 

                        parRF = RMSE(pred_parRF, Y_test), 

                        XGBL = RMSE(pred_xgbL, Y_test), 

                        KNN = RMSE(pred_knn, Y_test), 

                        LM = RMSE(pred_lm, Y_test) 

) 

print(pred_RMSE2) 

 

2. R Code for Creating Random Forest and Testing ISO Conditions 

#specifically rf code 

library(dplyr) 

library(randomForest) 

library(caret) 

library(e1071) 

 

current_data <- finalData1 

 

set.seed(100) 

 

trainRowNumbers <- createDataPartition(current_data$Ratio, p=0.8, list=FALSE) 

 

train_data <- current_data[trainRowNumbers,] 
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test_data <- current_data[-trainRowNumbers,] 

 

 

x = train_data[, 1:2] 

y= train_data$Ratio 

 

a = test_data[, 1:2] 

b= test_data$Ratio 

 

HERE IS A CARETLIST TO DEMONSTRATE WHY I WANT TO USE RANDOMFOREST 

#cross validation 

set.seed(123) 

my_control <- trainControl(method = 'cv',                             

number = 5, 

                           savePredictions = 'final',  

                           allowParallel = TRUE, 

                           index = createFolds(Y_train,5))  

 

#TRAINING THE MODEL USING OUR X&Y TRAIN SETS 

#testing multiple model methods using methodList 

set.seed(222) 

model_list <- caretList(x, 

                        y, 

                        trControl = my_control, 

                        methodList = c('rf', 'lm', 'ctree'), 

                        tuneList = NULL, 

                        continue_on_fail = FALSE,  

                        preProcess = c('center','scale') 

                        )  

#I like to see the models to make sure nothing suspect happened in the making of them 

model_list$rf 

model_list$lm 

model_list$ctree 

 

 

#rf is the winner~~~~~~~~~~~~~~~~~~~~~~~~ 

 

# Create the forest. 

output.forest <- randomForest(Ratio ~ Temp + Pressure,  

                              data = current_data, 

                              ntree = 10, 

                              mtry = c(1:10), 

                              maxnodes = NULL, 

                              importance = TRUE) 

# View the forest results. 

print(output.forest)  

 

# Define the control 

trControl <- trainControl(method = "cv", 

                          number = 250, 

                          search = "grid") 

 

 

set.seed(1234) 

# Run the model 

rf_default <- train(train_data[, 1:2], 
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                    train_data$Ratio, 

                    data = train_data, 

                    method = "rf", 

                    metric = "RMSE", 

                    trControl = trControl, 

                    preProcess = c('center','scale'), 

                    tuneLength = 3) 

# Print the results 

print(rf_default) 

 

#prediction <- predict(rf_default, newdata= a) 

#print(prediction) 

 

varImp(rf_default) 

 

################################# 

#let's do better 

set.seed(1234) 

tuneGrid <- expand.grid(.mtry = c(1: 3)) 

rf_mtry <- train(train_data[, 1:2], 

                 train_data$Ratio, 

                 data = train_data, 

                 method = "rf", 

                 metric = "RMSE", 

                 tuneGrid = tuneGrid, 

                 trControl = trControl, 

                 importance = TRUE, 

                 preProcess = c('center','scale'), 

                 tuneLength = 3) 

print(rf_mtry) 

 

#can store it and use it when needed to tune other parameters 

max(rf_mtry$results$Rsquared) 

 

#best value of mtry here 

best_mtry <- rf_mtry$bestTune$mtry  

best_mtry 

 

#let’s find maxnodes 

store_maxnode <- list() 

tuneGrid <- expand.grid(.mtry = best_mtry) 

for (maxnodes in c(1:20)) { 

  set.seed(1234) 

  rf_maxnode <- train(train_data[, 1:2], 

                      train_data$Ratio, 

                      method = "rf", 

                      metric = "RMSE", 

                      tuneGrid = tuneGrid, 

                      trControl = trControl, 

                      importance = TRUE, 

                      nodesize = 16, 

                      maxnodes = maxnodes, 

                      ntree = 300, 

                      preProcess = c('center','scale'), 

                      tuneLength = 3) 

  current_iteration <- toString(maxnodes) 
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  store_maxnode[[current_iteration]] <- rf_maxnode 

} 

results_node <- resamples(store_maxnode) 

summary(results_node) 

 

 

#search best ntrees using best maxnode 

store_maxtrees <- list() 

tuneGrid <- expand.grid(.mtry = best_mtry) 

for (ntree in c(5, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 800, 1000, 2000, 5000)) { 

  set.seed(5678) 

  rf_maxtrees <- train(Ratio~., 

                       data = train_data, 

                       method = "rf", 

                       metric = "RMSE", 

                       tuneGrid = tuneGrid, 

                       trControl = trControl, 

                       importance = TRUE, 

                       nodesize = 16, 

                       maxnodes = 8, 

                       ntree = ntree, 

                       preProcess = c('center','scale'), 

                       tuneLength = 3 

                       ) 

  key <- toString(ntree) 

  store_maxtrees[[key]] <- rf_maxtrees 

} 

results_tree <- resamples(store_maxtrees) 

summary(results_tree) 

 

#search best nodesize using best maxnode 

store_nodesize <- list() 

tuneGrid <- expand.grid(.mtry = best_mtry) 

for (nodesize in c(1:20)) { 

  set.seed(5678) 

  rf_nodesize <- train(Ratio~., 

                       data = train_data, 

                       method = "rf", 

                       metric = "RMSE", 

                       tuneGrid = tuneGrid, 

                       trControl = trControl, 

                       importance = TRUE, 

                       nodesize = nodesize, 

                       maxnodes = 8, 

                       ntree = 100, 

                       preProcess = c('center','scale'), 

                       tuneLength = 3 

                       ) 

  key <- toString(nodesize) 

  store_nodesize[[key]] <- rf_nodesize 

} 

results_nsize <- resamples(store_nodesize) 

summary(results_nsize) 

 

 

# Define the new control 
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trControl2 <- trainControl(method = "cv", 

                          number = 250, 

                          search = "grid") 

 

#final train model babyyy 

set.seed(1234) 

tuneGrid <- expand.grid(.mtry = 2)#it is not liking best mtry 

fit_rf <- train(train_data[, 1:2], 

                train_data$Ratio, 

                method = "rf", 

                metric = "RMSE", 

                tuneGrid = tuneGrid, 

                trControl = trControl2, 

                importance = FALSE, 

                #nodesize = 8, 

                maxnodes = 24, 

                ntree = 2000, 

                preProcess = c('center','scale'), 

                tuneLength = 10 

                ) 

#summary(fit_rf) 

print(fit_rf) 

varImp(fit_rf) 

 

#look at the test data 

prediction <- predict(fit_rf, newdata= a) 

print(prediction) 

 

postResample(pred = prediction, obs = b)  

 

#THE ISO PREDICTIONS! 

ISO_prediction <- predict(fit_rf, newdata = ISOComparisons) 

print(ISO_prediction) 

 

#THE OVERALL RATIO PREDICTIONS FOR PLOTTING PURPOSES 

overallTrend_prediction <- predict(fit_rf, newdata = overallTrend) 

print(overallTrend_prediction) 

write.Table(overallTrend_prediction, file = "overallPrediction-ratio-values1.csv",  

            row.names = F, 

            sep = "," 

) 

3. R Code Output After Cross-Validation Manipulation and Testing ISO Conditions Results 

>  

> current_data <- finalData1 

>  

> set.seed(100) 

>  

> trainRowNumbers <- createDataPartition(current_data$Ratio, p=0.8, list=FALSE) 

>  

> train_data <- current_data[trainRowNumbers,] 

>  

> test_data <- current_data[-trainRowNumbers,] 

>  

>  
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> x = train_data[, 1:2] 

> y= train_data$Ratio 

>  

> a = test_data[, 1:2] 

> b= test_data$Ratio 

> #HERE IS A CARETLIST TO DEMONSTRATE WHY I WANT TO USE RANDOMFOREST 

> #cross validation 

> set.seed(123) 

> my_control <- trainControl(method = 'cv',  

+                            number = 5, 

+                            savePredictions = 'final',  

+                            allowParallel = TRUE, 

+                            index = createFolds(Y_train,5))  

>  

> #TRAINING THE MODEL USING OUR X&Y TRAIN SETS 

> #testing multiple model methods using methodList 

> set.seed(222) 

> model_list <- caretList(x, 

+                         y, 

+                         trControl = my_control, 

+                         methodList = c('rf', 'lm', 'ctree'), 

+                         tuneList = NULL, 

+                         continue_on_fail = FALSE,  

+                         preProcess = c('center','scale') 

+                         )  

note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . 

 

> #I like to see the models to make sure nothing suspect happened in the making of them 

> model_list$rf 

Random Forest  

 

804 samples 

  2 predictor 

 

Pre-processing: centered (2), scaled (2)  

Resampling: Cross-Validated (5 fold)  

Summary of sample sizes: 161, 160, 162, 161, 160  

Resampling results: 

 

  RMSE      Rsquared  MAE      

  6.108728  0.399136  3.915907 

 

Tuning parameter 'mtry' was held constant at a value of 2 

> model_list$lm 

Linear Regression  

 

804 samples 

  2 predictor 

 

Pre-processing: centered (2), scaled (2)  

Resampling: Cross-Validated (5 fold)  

Summary of sample sizes: 161, 160, 162, 161, 160  

Resampling results: 

 

  RMSE      Rsquared   MAE      

  6.998939  0.2047864  5.122917 
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Tuning parameter 'intercept' was held constant at a value of TRUE 

> model_list$ctree 

Conditional Inference Tree  

 

804 samples 

  2 predictor 

 

Pre-processing: centered (2), scaled (2)  

Resampling: Cross-Validated (5 fold)  

Summary of sample sizes: 161, 160, 162, 161, 160  

Resampling results across tuning parameters: 

 

  mincriterion  RMSE      Rsquared   MAE      

  0.01          6.598019  0.3026478  4.446630 

  0.50          6.683906  0.2837249  4.606848 

  0.99          7.195303  0.1691319  5.258810 

 

RMSE was used to select the optimal model using the smallest value. 

The final value used for the model was mincriterion = 0.01. 

>  

>  

> #rf is the winner~~~~~~~~~~~~~~~~~~~~~~~~ 

> # Define the control 

> trControl <- trainControl(method = "cv", 

+                           number = 20, 

+                           search = "grid") 

>  

>  

> set.seed(1234) 

> # Run the model 

> rf_default <- train(train_data[, 1:2], 

+                     train_data$Ratio, 

+                     data = train_data, 

+                     method = "rf", 

+                     metric = "RMSE", 

+                     trControl = trControl, 

+                     preProcess = c('center','scale'), 

+                     tuneLength = 3) 

note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . 

 

> # Print the results 

> print(rf_default) 

 

Random Forest  

 

804 samples 

  2 predictor 

 

Pre-processing: centered (2), scaled (2)  

Resampling: Cross-Validated (20 fold)  

Summary of sample sizes: 763, 763, 764, 764, 764, 764, ...  

Resampling results: 

 

  RMSE      Rsquared   MAE      

  5.693178  0.4700003  3.643701 
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Tuning parameter 'mtry' was held constant at a value of 2 

 

> # Define the new control 

> trControl2 <- trainControl(method = "cv", 

+                           number = 250, 

+                           search = "grid") 

>  

> #final train model 

> set.seed(1234) 

> tuneGrid <- expand.grid(.mtry = 2) 

> fit_rf <- train(train_data[, 1:2], 

+                 train_data$Ratio, 

+                 method = "rf", 

+                 metric = "RMSE", 

+                 tuneGrid = tuneGrid, 

+                 trControl = trControl2, 

+                 importance = FALSE, 

+                 #nodesize = 8, 

+                 maxnodes = 24, 

+                 ntree = 2000, 

+                 preProcess = c('center','scale'), 

+                 tuneLength = 10 

+                 ) 

> print(fit_rf) 

Random Forest  

 

804 samples 

  2 predictor 

 

Pre-processing: centered (2), scaled (2)  

Resampling: Cross-Validated (250 fold)  

Summary of sample sizes: 801, 801, 800, 801, 800, 800, ...  

Resampling results: 

 

  RMSE      Rsquared   MAE      

  4.627624  0.7219174  3.625007 

 

Tuning parameter 'mtry' was held constant at a value of 2 

> varImp(fit_rf) 

rf variable importance 

 

         Overall 

Pressure     100 

Temp           0 

> #look at the test data 

> prediction <- predict(fit_rf, newdata= a) 

> print(prediction) 

        3        13        14        16        27        46        49        50        58        60        63        77  

 5.476508  5.476508  5.476508  3.256996  3.256996 13.809098 13.809098 13.809098 13.809098  2.325385  2.3253

85  2.325385  

       83        87        88        90       101       105       109       110       125       128       129       134  

 2.325385  2.325385  2.325385  9.434709  9.434709  9.434709  9.434709  9.434709 18.041882 18.041882 18.04188

2 18.041882  

      135       141       142       145       146       149       151       167       170       172       176       181  
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18.041882 18.041882 18.041882 18.041882 18.041882 14.936981  1.272582  1.272582  1.272582  1.272582  1.272

582 12.737691  

      187       191       196       200       201       220       229       244       249       253       260       263  

12.737691 12.737691 12.737691 12.737691 12.737691 20.851698 32.762029  8.085833  8.085833  8.085833  8.085

833  8.085833  

      276       277       281       284       285       286       308       311       313       324       326       327  

 8.085833  8.085833  8.085833  8.085833  8.085833  8.085833  6.409885  6.409885  6.409885  6.409885  6.409885  

6.409885  

      332       339       356       362       370       373       375       381       385       387       389       392  

 6.409885  6.409885  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  

5.613533  

      394       396       400       404       409       412       414       417       426       432       433       436  

 5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  5.613533  

5.613533  

      437       445       452       458       469       473       474       477       481       482       486       490  

 5.613533 10.608918 10.608918 10.608918 10.608918 10.608918 10.608918 10.608918 10.608918 10.608918  8.65

7347  8.657347  

      492       496       499       503       504       508       509       511       519       520       525       526  

 8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  

8.657347  

      527       528       529       537       544       559       560       561       564       569       573       578  

 8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.657347  8.621056  

8.621056  

      579       587       588       593       600       605       606       629       636       642       654       661  

 8.621056  8.621056  8.621056  8.621056  8.621056  8.621056  8.621056  8.621056  8.621056  8.621056  9.080287  

9.080287  

      672       683       685       687       689       691       698       706       710       711       715       718  

 9.080287  9.080287  9.080287  9.080287  9.080287  9.080287  9.080287  9.080287  9.080287  9.080287  9.080287  

9.080287  

      724       725       738       739       740       745       747       749       757       758       760       763  

 9.080287  9.080287  9.080287  9.080287  9.080287 16.678851 16.678851 16.678851 16.678851 16.678851 16.678

851 16.678851  

      776       787       790       791       794       796       806       826       832       836       839       841  

16.678851 16.678851 16.678851 16.678851 16.678851 16.678851 16.678851  2.450250  2.450250  2.450250  2.712

128  2.712128  

      843       849       852       862       867       871       873       874       887       889       890       893  

 2.712128  2.712128  2.712128  2.712128  4.154567  4.154567  4.154567  4.154567  4.154567  4.154567  4.154567  

4.154567  

      898       905       915       916       926       927       929       933       948       949       955       962  

 4.154567  4.154567 11.502261 11.502261 11.502261 11.502261 11.502261 11.502261  4.607275  4.607275  4.607

275  4.607275  

      965       970       973       977       984       991       997       999  

 4.607275  4.607275  4.607275  4.607275  4.607275  2.893933  2.893933  2.893933  

>  

> postResample(pred = prediction, obs = b)  

    RMSE Rsquared      MAE  

6.004487 0.404344 3.942619  

> View(ISOComparisons) 

> interactionCheck <- read.csv("C:/Users/Asus ROG Beast/Desktop/Schlumberger/DATA ANALYSIS THESIS/Fin

al Consolidation/interactionCheck.csv") 

>   View(interactionCheck) 

> #ISO Predictions 

> ISO_prediction <- predict(fit_rf, newdata = ISOComparisons) 

> print(ISO_prediction) 

        1         2         3  

 4.062301  2.450250 11.502261  


