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PREFACE 

In planning a randomized block experiment we frequently find that 

we have blocks available which a.re quite homogeneous, and yet conta:in 

different numbers of experimental units. Tb.e usual practice is to dis

card experimental units from the larger blocks making them all equal 

in size to the smallest one or to discard all blocks that have fewer ex

pe:rirnenta.l units than the largest one. The purpose of the d esign pro

posed in this paper is to allow usage of these commonly discarded ex

perimental units so as to gain more information about the treatments 

and, in the first case, to include more treatments in the experiment. 

A particular example where this would be useful is an experiment 

involving animals as experimental units where the blocks consist of lit= 

ter mates . Let us suppose that we have two litters of size seven, three 

of size five , and one of size four. Using the staircase design we can 

in.elude seven tlfeatments and still have the four we are most interested 

in replicated six times. 

Another usage of ·the design is in analyzing an ordinary random= 

ized block experiment when data are missing in a stairstep pattern. 

The most probable occurrence of this is a single step, e . g . where one 

or more treatments are missing in a single block. 

I am indebted to Dr. F. A. Graybill for suggesting the problem, 

and for his advice during the preparation of this pa.per . 
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INTRODUCTION AND NOTATION 

Consider a two-way class ification model 

( 1. 1 ) Y ij = µ. + pi + T j + e i j , i = 1, 2, ... , a. , j = 1, 2, ... , N , 
J 

where µ., p1. , -r. are constants and e . . is a normal independent variable 
J lJ 

with mean zero and variance <T2 • Also the j's will be ordered in such a 

way that a .;as a., for j<j'. The purpose of this paper is 
J J 

1. to derive the least squares method for testing the hypothesis 

-r1 = .,. 2 = ... = "N under the model given above and to give the 

power of this .test, 

2. to derive the best, linear, unbiased estimates for Tj - "j" and 

the variances of these estimates . 

First we will separate the j's into subsets such that a . = a. 1 if and 
J J 

only if j and j 1 are in the same subset. Each of these subsets will be 

called a step. We will designate the .number of steps as k. 

1 
Let aj = M for j = 1, 2, ... , Nl' 

2 
aj = M for j = N1 + 1, N1 + 2, ... , N1 + N 2, 

k 
aj = M for j = N1 + N 2 + ... + Nk-l + 1, N1 + N 2 + ... + 

Nk-1 + 2, ... ' Nl + N2 + ... + Nk, 

where 

k 

L Nl = N 

l = 1 

1 
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Now, let 

p 

Np= L Nl' 

l. = 1 

Y .. = Y .~ for i = 1, 2, ... , M\ 
s-1 s-1 s j = N . + 1, N + 2, . . , N , 

lJ lJ 

's Y .. = Y . . for i = 1, 2, 
lJ lJ 

s 
'T , = 'T, 

J J 
f . s-1 s-1 2 Ns. or J = N + 1, N + , . . . , • 

for j = 1, 2, ••• SI N 
s 

The following diagram will serve to illustrate some of the notation. 

j=l, 2, .•. , N. 

1 
I 

2 I 
3 

IM4 
4 

Y . . Y .. Y .. yij lJ lJ lJ 

I I 
N4 

I IM3 

Ml IM2 

I 
N3 

-

Nz 

'l It may be helpful to note further that Y .. is 
lJ 

1 I 2 
asubsetofY . . , Y , . isasub-

lJ lJ 

set of the union of Yij1 and Y?, Y'.~ is a subset of the 
lJ lJ 

union of Y~j and Y .~ 
1 lJ 

3 
and Yij' etc. 

A subscript replaced by a dot indicates the mean of the elements 

when summed over the range of the replaced subscript, eg. 



•2 
Y .. 

lJ 

3 

Since superscripts are l:>eing used in abundance, a Y, M, N, or 'T 

that is raised to a power will always be enclosed in the appropriate 

brackets. 

If, in a summation, the lower limit of summation should exceed 

the upper limit of summation, the sum will be zero. 
/ 

The notation used in the section on least squares is that used by 

Kempthorne,(1952).P pages 79,..gz~ with the following exceptions. To be 

consistent with the notation given above, the normal equations are di-

vided by a constant to give them in terms of means instead of totals. 

T is used as a symbol for an estimate of 'T because of typing restric~ 

tions. Q~ 
J 

s-1 s -1 
will refer to only the Q.'s where j = N + 1, N + 2, .. 

J 

..• NS. 

'2 U is distributed as x , will be used to denote a random variable 
p, I\. 

U which is distributed as the non-central x 2 with p degrees of freedom 

and non-centrality L The probability density function is 

f ( u) -A = e 

m = 0 

V is distributed as F' , will be used to denote a random vari-P, q, I\. . 

able V which is distributed as the non-central F with p degrees of 

freedom, q degrees of freedom, and non-centrality A. The probability 

density function is 



00 

f(V)=e-X. L 
m = 0 

p 
m m+"I-1 

X. V 

, A( p q m+P q 
m. I-' m + °I' 7) ( 1 + V) -z+ 7 

4 



THE TEST FUNCTION AND ITS DISTRIBUTIONAL PROPER TIES 

The purpose of this section is to give a test of the hypothesis Tl = 

'T 2 = ..• = 'TN and to prove the distributional properties of the test func.,. 

tion. The proof that this test is the same as that given by the method 

of least squares will be given in the next section. 

Consider the following quadratic forms: 

Ml Nl 

1 LL l I. q,::: . . . ( y ..... y. 
x. . lJ 1. 

' 1 . - ..1-l 1 l= J=N'"" + . 

i = 1 

Ml+lNlN 
___ ,......_l_+_l ( y 1£ - yl+ 1) 2 ' 

Nl+I 

5 

l = 1, 2, . . . , k, 

l = 1, 2, ... , k .,. 1, 

I. = 1, 2, . . . , k, 

l = 1, 2, . . . , k ... 1, 

l = 1, 2, ... , k, 
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I. = 1, 2, ... , k. 

Theorem: If 

k.-1 k 

( 2 .1) Lq: ( M 1 ... 1 ) { N - 1 ) ~ 1 J. 
- £_ ( M .. M ) ( N11), 

V = ! = 1 J, = 2 
k 

L q~ + 
N ... 1 

£ = 1 

then V is distributed .as F 1 , , where p, q, I\. 

k 

p = N ... 1 , 
1 ~ 1 ! · 

q= (M -l)(N .. 1} - £_ (M -M )(N1) 

and >.. = 0 if and only if 7' 1 = 'T 2 = 
Proof: It is clear that 

may be written as 

I. = 2 

k-1 I.+ 1 ! 

[ 
M . N N !+ 1 1! . l+ 1 . 2]. + . 2 1 1 ( ,- - 7 ) 
2cr N + ' · . 

1 = 1 . 
I 

l = 1, 2, . . • , k 
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And 

l = 1, 2, . . . , k 

may be written as 

t = 1. 2, . . . 9 k. 

I. = 1, 2, . . . , k. 

i = 1 

Similarly· 

I. Ml+l 

q. 1.2 = N NI.+ 1 I: ( YI.I. ~ .. yl_+ 1 .... y II. .+ yl+ 1) 2 - i. 1 9 I. = 1, 2, ..• 9 k ,.. 1 N +. 1. 1. • • 

i = 1 

may be written as 

Adding qi + ql 4 , we have 

I. M.l+l 

'l: a NN~tl I:(<~ • y~: 1) 2 l = 1, 2., • • • , k .. 1 

i = 1 
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which may be written as 

2 

y~+lJ· 
l. 

l = 1, 2, ..• , k ... 1. 

Also 

t. = 1, 2, ••. , k, 

Ml 

= ;z L( Nl y il. + N 2 y / + ... + Nl y l) 2 l = 1, 2, •.•. , k. 

i = Mt+l+ 1 

k, ... l k 

Now we will add ) q 8 + ) q5 by collecting coefficients of t;;:i , m 1 
similar terms. First we will collect coefficients of the term 

~ 
·~ .. {.Yp) 2 L L 

p = 1. 2, . . • , k, t = p, p + 1, .•. , k 

. Mt+l. 1 l= + 

where p~t or the term does not e:iist .. 

until l = p -1. In q;._1 the coefficient is 

In { the coefficient is 

8 p 
In the ql , Yi. will not occur 



which reduces to 

2 {N ) N 1. p . p+ 
Np+!Np 

9 

We co~tinue in this manner until l = t -1 which will give us the last qf 
involving this term because of the upper limit of summation. This co .. 

efficient will be 

which reduces to 

5 
Also from the qt we have the c@efficient 

Adding, we have 

p~ ,'' 
N .· Np . . 2 [ . ~P+ I . . Np+ 2 . . Nt . 1 J 

p + {Np) p+ 1 · p + P+ Z P+ 1 + · ' ' + t t,,.1 + t . 
N . N N N N·· NN · N 

Examining the last two terms of the sum in brackets, it may be seen to 

add to 

Continuing in this m.anne:r, it will be seen that the above coefficient re= 

duces to 
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Np 

In case p = 1 this is slightly irregular since Np-l is zero in that case. 

However, here we have N = Np 9 so that we still have the coefficient 
p 

We will now collect coefficients of the term 

p = 1, 2, ,;I, •• o fl k .. 1, 

r = p + l 9 p + 2, . . . , k, 

t = r, r + 1, . . . , k. 

In the q: this term will not occur until l = r • l. In this case the coef.

ficient is 

which reduces to 

In q~ the coefficient is 

which reduces to 1 

2N N 
. r p 
Nr 

2NrN 1 N N 
r+ .. p r 

We continue in this manner until t = t .. J which again will give the last 

q: involving this term. This coefficient will be 



which reduces to 

5 
Also from qt we have 

Adding we have 

2NtN N p r 

ZN N .pr 
Nt 

11 

- z~pNr + ZN N [ Nr+l Nr+2 Nt 1] 
Nr p r Nr+ INr + r+ 2 r+ 1 + · · · + t · t-1 + t · 

N- N N N N 

As before, the sum in brackets is J._, and ther.efore the above coefii .. r. 
N 

cient is zero. But these two general terms are the only possible ones 

involved in the q: and the qf, so we now have 

k-1 

Lq~ + 
I. = 1 

where 

Ml 

qi = Nl L ( y:. ) 2 I. = 1. 2, . , . , k. 

i = 1 

Now adding qf + qJ we have 

Ml Nl 
6 L L I. 2 q = ( Y .. ). 
l lJ 

. . Nl.-l 1 i = 1 J = + 

I. = 1, 2, , .. , k .. 
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Thus we have shovyn that 

k k-1 k k-1 k k 

( 2. 3) Lq~ + Lq: + Lq; + Lq: + Lqf = Lqt . 
I. = 1 l = 1 I. = 1 I. = I I. = 1 I. = 1 

Now it is easily shown that the rank of q~ is ( Ml. -1) { N 1 -1 ), the 

rank of q; is (M1+ 1 .. I ), the rank of qi is (N1 -1), the rank of qj is.l, 

5 , . l . t+ 1 and the rank of qi 1s { M ,.. M · ) • Adding we see that 

k 

L(M1 -I)(N.e-l) + 
l = 1 

k-1 

k-1 

L (Ml+l ... 1) + 

l = 1 

k 

L(Nl-1) 

I.= I 

+ ( k-1) + L ( M.e ... Ml+ 1) + (Mk ... Mk+ 1) 

l = 1 

k 

= LM.eNl 

J. = 1 

Thus we have the fact that the sum of the ranks of the quadratic forms 

on the left of ( 2. 3) above is equal to the number of squared observations 

on the right. We may now invoke a theorem proved by Matlow ( 1940) 

showing the quadratic forms to be independent, and verifying the follow .. 

distributions. 

since 

since 

1 

1. 
q.f I 2 I. -z is distributed as Xp, X., where p = (M -1) (~ --1 ), X. = 0, 
(J" 

I. l I. l E(Y,,-.Y. ~Y. + Y) = 0. 
lJ l. • J .• 

2 

2. 
qt . 1 2 l+ I 
_,,. is distributed as x , , where p = ( M -1 ), X. = O, 
(J"~ p, ~ 

3 
q 

3. ~ is distributed as X 12 , , where p = ( N1 -1 ), 
(J"~ .p,~ 



since 

since 

4. 

N1 
I. l 2 

(7'."''7") ' J . 
• N1 .. 1 1 
J = + 

l l l l 
E ( Y , - Y ) = Tj - 'T • • 

fl J ': 0 

4 
qt . d' t "b t d t 2 t.. 1 -z 1s 1s r1 u e as X X., w.u.e:re p = 9 

<r P» 

A = _M_t_+_l_N_I._N..,.l_+_l ( .,.'t ... ,/+ l) 2 
2<r2 N1+1 

'l t+ 1 '1' .. .,. • 

We will make use of the following theorems which are proved by 

Tang ( 1938). 
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Theorem 1: If A1 and A 2 are independent and if A1 is distributed 

as x 12 , and A 2 is. distributed as x iZ , then A 1 + A 2 is distributed 
~f ''1 az, A.z 

as x 
al+az, Al+ Az, 

Theorem 2: If A1 and A 2 are independent and if A1 is distributed 

as x 12 , and if A 2 is distributed as x' 2 , and if x. 2 = O, then 
al' ''1 az, /\,2 

is distributed as F• , . If x.1. ::,.: O, this reduces to Snedecor's F. 
al' az, '''1 

Now, by Theorem 1, we have 



is distributed as. x~ X., where 

k k•l 

p = L ( M1 -1 )( N l "'1) + 
l = 1 

L (Ml+l ... 1) 

l = 1 

k 

= { M 1 ,,. I)( NI -1) + L ( Ml .. 1 )( N!) 

l. = 2 

k 

= ( M 1 ... 1 )( NI -1) + L [ ( M 1 -1 )( Nt) .. ( M 1 - M 1) ( Nt) 1 
l = 2 

k 

= ( M1 ... 1 )( N - 1) - L { M 1 .. Ml)( Nl) 

l = 2 

and>..= O. 

Also, we have 

'2 is distributed as x , , where 
p, I\. 

X. = 

k 

P = L ( Nl -1) + ( k ... 1) = N -1 , 

l = 1 

14 

Thence, by Theorem 2, we have V as defined in ( 2.1) above is 

,distributed as Fi,, q, >.., where p, q, and >.. are as defined in {2. 2) above. 

Now it is clea.r that >.. = 0 if ,.and o:rtl.y i.£ .,.1 = 7' 2 = ••• :::: TN since X. is 

a sum of non ... negative terms and can he z.ero if and only if each term of 
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the sum is zero. Therefore to test the hypothesis Tl= r 2 = •.• = 7'N 

we use V as Snedecort s F with p degrees of freedom and q degrees of 

freedom, where p and q are as defined in ( 2. 2). 



THE ANALYSIS OF VARIANCE 

In the last section we showed that the test function V could be used 

to test the hypothesis 'Tl= 'Tz = ..• =TN. We will now show that V can 

be deri ved by the method of least squares. The model can be consid .. 

ered as a two-way classification model with unequal numbers in the sub-

classes. In this case the quantities in Table 3.1 are calculated. 

TABLE 3.1 

Due to df 

Blocks ignoring treatments 

Treatments eliminating blocks N -1 

Sum of Squares 

>o.'r . j J J 

Error N - M1 - N + 1 By subtraction 

Total N -1 fu 2 2 
(Y .. k) - N (Y ) 

1 J lJ • • • .. 

If we now denote the mean square for treatments eliminating blocks b y 

T T and the mean square for error by E, then W = ""E" is the test func-

tion used to test the hypothesis Tl = Tz = ... =TN. We will now show 

that V is equal to W. 

In the above table, the Total S. S. - the Block ignoring treat-

men ts S . S. is equal to 

16 



It remains only to show that 

N 

~ Q,7. 
L. J J 
j = 1 

k 

= Lq: 
£. :,: 1 

and the res.t follows by subtraction, 

k-1 

+ Lqt 
I. = 1 

We have the following system of normal equations: 

...... ..... .-...JI 2 2 
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(3.1.1) Y. = µ + P· + 7' . 
l. · 1 • 

i = M + 1, M + 2, 0 0 0 :} 

{3 .1. 2) 

( 3 .1. k-1) 

( 3 .1. k) 

( 3. 2 .1) 

(3 .. 2.2) 

(3. 2. k-1) 

(3.2.k) 

where 

-- -- -.r.z 
Y. =Jt+p,+"t 

l.. . l 

Y. "· '""· ,..,lk, .. ,1 
=· µ. + p. + '1' 

1, 1 

....... "·· "· Y. = µ. 
1. + pi + 7' 

1 .... ,.., 1 -1 y 
,j = µ + p + 7j . 

y 2. " ,.., 2 ..... 2 
= µ + p + 1" .J j 

Y k-1 -. --k-1 ..... k ... l 
• =µ.+p +7'.·J . . J 

k ...... -k "k 
y . ::: µ. + 19 + "f • 

• J .J 

' 
M. 2 

i Mk+ 1, Mk+ 2, 
ke.l 

:: 
' 

M 

' i = 1, 2, 0 •• ' 
Mk 

' j = 1, 2, ... ' 
Nl 

j 
1 

J., 
1 

2, NZ = N,+ N+ ' 

.... Nk .. z . 1 Nk:-..2 . 2 .J - . + ., . + ' 

k ... J Mk""'l+ z, , j = N + 1, Jl'I .. o. , N 
k 



- -l 
p = 

18 

Ml 

L~ 
i = 1 

Ml 

hn.posing the linear restriction ;;- = 0, we find from (3.1.k) that 

Substituting this into ( 3. 2. k) we have 

Now since 

Nk-1 

L~ = 
j = 1 

k 
i = 1, 2, .•. , M . 

. k-1 Nk-1 2 J = N + 1, + , 

N 

L 7j 
. = _k-1 
J = N'- + 1 

..• ' N 
k 

..... 
under th.e restr.iction, T = O, we m.ay now substitute back and solve 

{3 .1. k - 1) obtaining 

N Nk- 1 
µ+p.= Y. +~.-(Yk_y'k-1) 

1 1. NK-J. N 

Substituting back in.to (3. 2. k - 1) we get 

M 
k- 1 

~ Y. L i. 

i = Mk+ 1 
k-1 

M 

k i..l ,M 

N . tk 1 k (' k y ,.. ) . - y ... 
N 



k-1 Mk ''k-1 = Y.j - y -k - 1 
M 

Mk-1 

Lyi. 
k 

i = M + 1 
k--1 

M 

.. Nk( yk _ y'k""l) 

N 

19 

. Nk- 2 1 Nk- 2 + 2. J = + , , 
k .. l 

, N . 

Finishing the solution in this manner, we obtain 

Np-1 y'p-1 + N y p 
.;P _ yP.. •· P ... 
I j - .j Np 

k 

L 
I.'= P+l 

j = Np-I+ I, Np-I+ 2, ••. , Np , p = 1, 2, .•• , k 

which may be written as 

k 

'T"'P _ yP .. yP 
j - .j 

Np .. I I. 1 
"" - {Y p- ... yP) 

NP L 

Now 

But 

Mp 

Lyi. 
i = I 

Mp 

l = p+l 

, Np , p = 1, 2, • . • , k . 

Mp 

Qp_ MPyP ~ y 
j - .j - L_ i. 

i = l 

P-1 p-1 
j = N + 1, N + 2, . .. . ' Np , p = 1, 2, ... , k . 

N 



Continuing m th,is fas.hio:n, w,e have 

l:ocp+l 

Mp 

Lyi. 
i:;; Mk""l + l 

Mp 

20 

p = l, 2, . . . ll k. 
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Thence 

Q~ = Mp y p .. y p - ~ ( y P'"'l - y p ) [ 
p-1 f 

J .j Np 

p = 1, 2, . . . , k . 

And 

N k 

L 0 j1J = L 
j = 1 p = I 

Np k [ Np l 
~Q~-rp=~ Mp~(yP_yP) 2 
L J J L L .J · · 
. p-1 . p -1 
J=N +1 p=l J=N +l 

k [ 
p•l l 

+ L. MPN .!'!....__ ( y p-1 .. yP) 
p Np . . • . 

p = I 
' 

k l ] [ 
M N . p-1 , 

+ L l (Y l _ yll-1) . !i__(yp-1_ yP) 
MP;/ . · . . Np . . . . 

l = p+l 

k N ] + L l ( y 1 .. y•t-1) . ii . . . . 
l = p+l 

Collecting coefficients of { y'r .. yr+l) 2 , we have 

Mr+lN (Nr)2 MrN Mr+l(N )2 
r+l r r+l 

___ (_N_r_+ ... 1-) z--- + ___ M_r_(_N_r_+_,1_)....,z-. - + •.. + 

Combining all but the .first term gives 

+ 
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:: 

Collecting coefficients of (Y•r - yr+l)(Y 18 - ys+l) , r<s, we have 

M1N Mr+lN N 
I r+l s+l 

+ 

Combining all but the first term of each pa.rt gives 

NrMr+lN N 
r+ 1 s+l 

+ 
Nr N Ms+lN 

r+l s+ 1 = 0. 

Now since these two general terms are the only possible ones in -

volved in the second summation of the expression for 

we have 

p = 1 



k 

.~ Lq: + 

0 s.ince N = O. 

l = 1 

p=l 

k-1 

Lit 
l :c: 1 . 

Now by subtra.ction the Errors. S. mu.st be 

k k.,.l 

L q~ + L_q; 
!l :,: 1 £,::; 1 

23 

Also since t.b.e degrees 0£ freedom for error and treatments eliminating 

blocks in Ta.ble 3.1 are the sa,rne as q and p of ( 2. 2 ), then we have 

W = V. Thus we have shown that the test function given in the last 

section can be derived by the method of least squares. 



M~S AND STANDARD ERRORS 

We will now derive the best, linea.r, \U'lhiased es.t:un~t~s of "I" 8 .. 7' t 
and th.e sta.n:.dard errors of ,these ~stim.ates. 

Tkeorenu 

p ~l p~l p 
s = N + 1, N + 2, • • • , N , p = 1, 2, • • • , k 

is the best, linear, unbiased estimate of '1' s .. ., . , and therefor~ :;-s .. 9t 

is the pest, linear, un.b.iased estimate of T 8 ... 7' t . 

Proof: Since 78 was found by the method of least squares us.m g 

t.he linear restrict.ion "f ::; 0, this ia. an o~vious result of the exten,ded . 
M~koff Theorem as proved J:.y David and Neyman ( 1938). 

. : . 2 2 
Theorem.; The variance of the estimate of 'T! ... Tf is O'"p ii s #. t, 

M 
- P=l P"'l . P . . - . and s, t - N + 1, N + 2, • . . , N .:£0.r p - 1, 2, . . . , k. The v.uil. .. 

ance of the es.Um.ate of 7'; .. 7'; is 

_ p .... J P"'l p r ... 1 r .. l r 
for s - N + 1, N + 2, . • • , N , t = N + 1, N + 2» • . • , N , 

p = l, ·z, .•. , k ... l, r:;;;:p+l, p+2, ••• , .k. 

Proof: 

"'P "'P "" . P I p .. J p-1 
7' - '1' ::: Yr - Y t , s # t and s, t /"' N + l, N + 2, s t • s . 

~ = 1, 2, ..• , k. 

24 
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And 

2 

f = 1~ 2, .• ~, k. 

Now 

Y r. 
,., .t + 
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r 1r-1 
-Y. t+Y • 

And 

"'P -r 
Var ( 7' s - T t ) = E 

Ml N!- 1 Mr M r Nr-1 2 

fu~eij f = 1 eit fu~e .. 
1 ::: lJ 

M i N} ... l 
.. + M rNr-1 Mr 

Mp 2 MP NP 2 

fue. fu~e .. lS J = lJ 
= E + E 

Mp MPNP 

Ml Nl 2 

r-1 ( N ) 2 ~~t--11 ij L l E 1 - . + 
+ 

( Nl) 2 MlN 
l = p+l I. 

M t N1-l 2 Mr 2 

r-1 ( N ) 2 fu~eij fueit 
L l E + E + 

( Nl) 2 Mf'r/-1 Mr 
t = P+l 
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Omitting the te:rms whose expected value is zero, we ha,ve 
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33 

We know from the Markoff Theorem that the error mean squ.a,re 

is an estimate of er 2• We may then. u.s.e tlrls. estimate in. the variances 

we have Just derived fer ;, ... :;. 1 , and thus set confide.nee inter~s on 
J J 

th.e estimates of treatment diffe3;ences. 



CONCLUSIONS 

The randomized block designs t.hat have been proposed to date 

have been for bb>cks containing equal numbers of experimental units. 

This has. been due, prtmarily at lea.st, to the ease of computati.on in 

this. case. However, the method pxoposed in this paper lends it.self 

nicely to com,Putation, .and therefore extends the scope of the random ... 

ized block designs to include the realm oi 'blocks containing different 

numbers of expe;rimental units. 
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