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PREFACE

In planning a randomized block experiment we frequently find that
we have blocks available which are quite homogeneous, and yet contain
different numbers of experimental units, The usual practice is to dis-
card experimental units from the larger blocks making them all equal
in size to the smallest one or to discard all blocks that have fewer ex-
perimental units than the largest one, The purpose of the design pro-
posed in this paper is to allow usage of these commonly discarded ex-
perimental units so as to gain more information about the treatments
and, in the first case, to include more treatments in the experiment,

A particular example where this would be useful is an experiment
involving animals as experimental units where the blocks consist of lit-
ter mates, Let us suppose that we have two litters of size seven, three
of size five, and one of size four, Using the staircase design we can
include seven treatments and still have the four we are most interested
in replicated six times,

Another usage of the design is in analyzing an ordinary random-
ized block experiment when datd are missing in a stairstep pattern.
The most probable occurrence of this is a single step, e.g. where one
or more treatments are missing in a single block,

I am indebted to Dr, F. A, Graybill for suggesting the problem,

and for his advice during the preparation of this paper.
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INTRODUCTION AND NOTATION
Consider a two-way classification model

(1.1) Yij=p‘+ pi+'rj+ eij’ s S LT a.j, Y=l & ki MG

where p, Pys Tj are constants and eij is a normal independent variable
with mean zero and variance crz. Also the j's will be ordered in such a
way that aj;a , for j<j'. The purpose of this paper is

1. to derive the least squares method for testing the hypothesis

T =Ty ® e Sifar under the model given above and to give the
power of this test,

2, to derive the best, linear, unbiased estimates for -rj - Tj" and

the variances of these estimates,

First we will separate the j's into subsets such that a.j = a.j, if and
only if j and j' are in the same subset. Each of these subsets will be
called a step, We will designate the number of steps as k,

Letaj= Ml A P= e By iy Nl'

2
aj=M forj=N1+1. N1+ By e ,N1+ NZ’

where



Now, let
P
NP-E N,, N - o, ML LG,
| =l
Yiszi? for d'= 1.9, 5, 0 5, j=NB"1+ 1, Ns'1+ i
Ylsz:._]S fori:l, Zs ’MB-}-I. j=ls 2, 2 Nsl
s P s-1 s-1 s
-rj='rj forJ:N +1,N .|.Z,...,N,

nlt ot 152 N
'rj—-'rj e =l 8 isv s

The following diagram will serve to illustrate some of the notation,

Ny

!
It may be helpful to note further that Y;j is a subset of Y::i, Yi.‘l? is a sub-

set of :he union of Yi{j and Yii, Y;f is a subset of the union of Y'}d and Yfi'
and Yij' etc.
A subscript replaced by a dot indicates the mean of the elements

when summed over the range of the replaced subscript, eg.



M3 N2
'2
22 v
i ] = 1 =
Y2:1_133_,
o M™N

™ =

Since superscripts are being used in abundance, a Y, M, N, or 7
that is raised to a power willk always be enclosed in the appropriate
brackets,

If, in a summation, the lower limit of summation should exceed
the upper/limit of summation, the sum will be zero.

The notation used in the section on least squares is that used by
Kempthorne {1952}, pages 79-82, with the following exceptions, To be
consistent with the notation given above, the normal equations are di-
vided by a constant to give them in terms of means instead of totals.

T is used as a symbol for an estimate of T because of typing restric-

tions. st will refer to only the Qj's where j = Ns"1 +1, N° -1 + 2,

., N°.
U is distributed as X;Z X will be used to denote a random variable
2

U which is distributed as the non-central XZ with p degrees of freedom

and non-centrality \. The probability density function is

1
oD _—Z—U m+%*l

- m
f(U):e")‘ N e
Z my 2

U
Z p
m =0 m?' 2 Fm+z)

V is distributed as Fi) a, \ will be used to denote a random vari-
? 9

able V which is distributed as the non-central F with p degrees of

freedom, q degrees of freedom, and non-centrality \. The probability

density function is






THE TEST FUNCTION AND ITS DISTRIBUTIONAL PROPERTIES

The purpose of this section is to give a test of the hypothesis 7

T2

13

- = Ty and to prove the distributional properties of the test func-

tion. The proof that this test is the same as that given by the method

of least squares will be given in the next section.

Consider the following quadratic forms:

Mt
1_ ¢ ! 2 4.2 )
qE"XX(Yij‘Yi.‘Y.ﬂY.,) , 0=1, 2, ..., K
i=1j=n"11
2 441 " Al K +1, 2 _ '
Y= mr p (¥ sY YT T f=loz e, ke
i=1
N
q.?:MIE(Y,z'Y{)Z: =1, 2, , k,
S E
2+1__f
M INTN
4 1, o Ryl 2 B |
% 7T (y " -y™H) ", 1=1, 2, , k-1,
N
M
5_ 1 z: g1 191 2
q.!:-l:?- (N Yi% +NEY ) . 1=1, 2, , K,



Mt N

B z: Z 0.2 -

- (Ylj) ’ 2‘—-1, 2,...,k.
i=1j=ntl1

Theorem: If

k k-1
3 4
(21) 2 g+ p_ay (Man(n-1 - (mh-mh
g =1 = t=1 ‘ £=2
V= =g = ' N
1 2 -
Zqz + Zqz
=1 £=1
then V is distributed as F]’? N> where
? L
k
_ . - (ML g 1 L N
P‘N“'l ’ —(M"l)(N"l)" (M"M)(Nﬁ) ]
£=2
(2.2)
kl £+1 2
241, Y4 4412
A = E[ E(Tﬂr)]-f- [ zz+1+(7.‘7.+)}
=1 2?1 '
a.nd)\::Oifandonlyif'rl:Tz:,,}-,ETN,
Proof: It is clear that
! 12 t=1,2, ...,

'MZ NZ

'2' E L
(-Yij—Yi.»-.Yoj%-Y“‘ ,

i=1j=N£*1+1 .

may be written as

L {

MY N
E 2 9.2 0.2 0.2 P2
,+1

i=1j=ntt

U
R
R



And
N!
QE:ME g(Yij;YI)Z s L1=1, 2, » k
=l
may be written as
N
3 { F vl (2 2
q; = M’ E'[(Y,j) e(Y_‘.)] , t=1, 2, ..., k
i=nh |

Adding qi + 'qg, we have

Mt N
Z [(ij)ze(yiﬁ.)zl , 1=1 2 ..., k
i=1 j=n"1
Similarly
£+1
qf:NNz"'lZ(Y.-Y Y‘Z Yl;“':l)z, £1=1,2, ..., k=~1
i=1

may be written as

NN Vil |
2 el M ol 2 o il 2 _ ,.
Y= & E [(Yi.—Yi. T S A B
i=1 )

Adding q.f + q£4, we have

£+1

qE l+1 E (Y ._Yl'f‘l)z . f_:l, 2, e s k=1

i=1



which may be written as

Also

E(N anyHE £=1,2, ..., k

“'I E(NY v N, Y, +...+N£Yi£)_2 . 2=1,2, ...,k

k=1 k
Now we will add -Z- ql + E qz by collecting coefficients of

similar terms. First we will collect coefficients of the term

M

(YiP)Z.’ p=1 2, ..., k, t=p,p+1 ..., k

i= Mt+1+ 1

where p<t or the term does not exist, In the qf? Yip will not occur

until £ = p~1, In qgﬁl the coefficient is

p-1
N N
o

, =
In qg the coefficient is
VPN
N P-l-l(N )
NP+1 { NP )




which reduces to

2
(NP) Moyt

We continue in this manner until £ = t -1 which will give us the last qg
involving this term because of the upper limit of summation. This co-
efficient will be

t=1 2
N M)
N ( Nt—-l) Z-

which reduces to
2
() X,
NENE

Also from the qts we have the coefficient

Adding, we have

p-l o
L_l\i.,_(N ) “ps + "ps 2 + . .,__,_NLT+'_.1;.
NP PT | NPHINP T NPHENPHD NENEL T N

Examining the last two terms of the sum in brackets, it may be seen to
add to

el
N + N _ _Nt' 1
'Nt Ntml Nt Nt-l Ntﬂ

Continuing in this manner, it will be seen that the above coefficient re=~

duces to
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p-l :

N° TN N

, p 1 P NPl

—————+(N) (N +N)—N.
NP [Np] Np P

In case p = 1 this is slightly irregular since Np"ﬁl is zero in that case,
However, here we have Np = Np, so that we still have the coefficient
N_.

P

We will now collect coefficients of the term

wt p=1, 2, , k-1,
:>: Yp Y, r=p+l, p+2, , k,
i= MM b=z, rel, , K

In the q? this term will not occur until § = r «1. In this case the coef-

ficient is
r-l
_ 2 N Nr NP
NN
which reduces to
AN NG
- T
In qf the coefficient is
— 2 N Nr+ 1 Np Nr
NTFH(NT) 4
which reduces to
2 Nr+ 1 Np N
Nr+1Nr

We continue in this manner until £ = t -1 which again will give the last

qf involving this term. This coefficient will be



1

2NN N N
t'pr
IS Y

which reduces to

Also from qt5 we have

Adding we have

2N N N N N
— __L_E. + 2N_N r+l + r+2 4+ ... + _..._t__.I. + _].'_ .
Nr pr Nr+ 1 Nr Nr+ 2 Nr+ 1 Nt Nt- Nt

As before, the sum in brackets is ‘if , and therefore the above coeffi-
N
cient is zero. DBut these two general terms are the only possible ones

involved in the qf and the qf, so we now have

k-1 k k
§ 8 E 5 E

qf-"_ qzz qﬂ ’
L=1 £=1 £=1

where

!
9 0.2
4 = N, E(Yi.) . 2=1,2, ..., k

i=1

Now adding qz + qZ we have

m! N

6 1.2 | B

q = E __;_ (Y~ £=1,2, ..., k.
i=1j=nt1l41
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Thus we have shown that

k k-1 K k-1 k k j
(2.3) Zqi+ qu + qu + qu;& Zq? =,Zqﬁ’ .

£=1 =1 £=1 f=1 £=1 =1

Now it is easily shown that the rank of q} is (Mﬂ -1) (Nz -1}, the

2 £+1

rank of 4, is (M -1), the rank of qf is (Nl-l), the rank of qz‘ is 1,

=+1

and the rank of qzs is (Mz -M™ 7). Adding we see that

k k-1 k
Do+ D vl v D (1)

£i=1 =1 =1
-1 k
k+1
s (k-1 4 (vfomMhy LB = )ty
£=1 £=1

Thus we have the fact that the sum of the ranks of the quadratic forms
on the left of (2.3) above is equal to the number of squared observations
on the right, We may now invoke a theorem proved by Madow (1940)
showing the quadré,tic forms to be independent, and verifying the follow-

distributions.

1
1. M i gistributed as y 2 where p = (MY -1)(N,-1), A= 0
_— a8 Xp,ar ¥ /I ’
since
L 1 ' £,
E(Y;-Y ~Y,+Y )=0.
2
0. 12 ] _
2. —0-_-2 is distributed as XP’)\’ where p= (M -1}, A =0,
since
3 3 1 |
IR i S R

3
9y - )
3. -0-_-2 is distributed as Xp, A where p = (Nz-sl),
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20
J=Nl'_1+1
since
[} [} t 4
E(Y", - Y = - .
( .J .,) Tj T,
4 2
Y 12 _
4, — is distributed as XPs)\’ where p = 1,
o
X% |
n_ M N’NJ€+1 o i+l 2
20 N )

since

1 ]
(Yt oyt o gt
We will make use of the following theorems which are proved by
Tang (1938).

Theorem 1: If Al and A2 are independent and if A, is distributed

as X, and A, is distributed as XLZ N then A, + A, is distributed
3L 2’ "2
as y
a1+ az, )\1+ )\2.
Theorem 2: If A, and A, are independent and if A, is distributed
12 . o 35 cpaes 12 .
as and if A, is distributed as yx and if A, = 0, then
1° )\1 2 a,, xz 2
Al, f_z_
5y
is distributed as F; If )\1 = 0, this reduces to Snedecor's F,

10320 M

Now, by Theorem 1, we have

k k-1
1 1 : 2
~Z Zqz* e
T o le=1 f=1
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1
is distributed as y 2 , where
Ps A

k k-1
DRNEVSPEEY SN S ST VL

P =
£=1 £=1
k
= (N -1 ¢ (vfenyy)
t=2
k
= (Ml-l)(Nl-l) + Z [(Ml:-l)(NE) - ‘(M1~MZ)(N@)]
1=2
7 k
= (MI-1)(N-1) - Z (Ml-—Mz)(N-ﬁ) )
£=2
and X\ = O,

Also, we have
k k-1
1 3 4
L2+ 2 q
T o lg=1 £=1
12
is distributed as ¥ ) where

k
p = E (N,-1) + {k-1) = N-1,
£=1

k | N , k-l o of4 1
A = Mz (71 - 72‘)2 + Y NiN“l (’r’lz '-'r£+1)2
2_|az 2 o e ) et
j=N .

£=1 i | £=1

Thence, by Theorem 2, we have V as defined in (2.1) above is

distributed as F!
: ' P, g\’

Now it is clear that \ = 0 if and only if Ty = Ty = ... =Ty since \is

where p, g, and \ are as defined in (2.2) above,

a sum of non-negative terms and can be zero if and only if each term of
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the sum is zero. Therefore to test the hypothesis TI= Ty = eee = "TN

we use V as Snedecor's F with p degrees of freedom and q degrees of

freedom, where p and q are as defined in (2. 2).



THE ANALYSIS OF VARIANCE

In the last section we showed that the test function V could be used
to test the hypothesis TI=T2= cee =Ty We will now show that V can
be derived by the method of least squares. The model can be consid-

ered as a two-way classification model with unequal numbers in the sub-

classes. In this case the quantities in Table 3.1 are calculated.

TABLE 3.1
Due to df Sum of Squares
P 1 2 2
Blocks ignoring treatments M -1 Ni. (Yi )" -N (Y )
1 - -a .. aas
Treatments eliminating blocks N -1 E Qj?j
Error N -Ml-N + 1 By subtraction
Total N -1 B % O
£ T Lt TR

If we now denote the mean square for treatments eliminating blocks by

T and the mean square for error by E, then W = -E- is the test func-

tion used to test the hypothesis Ty Ta = pe We will now show

= TN -
that V is equal to W.
In the above table, the Total S. S. - the Block ignoring treat-

ments S, S, is equal to



It remains only to show that

N K k-1
29 = 24+ 29

£=1

j=1

and the rest follows by subtraction.

L=1

We have the following systém of normal equations:

(3.1.1)

.1.2)

(3.1.k-1)

1K)

»2.1)

.2,2)

(3.2, k=1)

(3.2.K)

where

Y.:ﬁ

~ k]
T

ad

H
)
<+
o)
+

v
it
)

+
)

[

i
)
+
-
+

Gu oo
11
=)
+
0.)
+
| %

H

i:Mz"i'lp M2+ 2, . M
i=M+1, M4 2, ..., M
i= MR, MmNy 2, , M
i=1, 2, ..., M"

i=1,2, ..., N

j=N+1, N1+2, NZ
jﬁ :L\.[k‘.mz"-]s Nk-2+ 2’9 .
PSS 'S S

17
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M!
i
;-! v, i=1
M!

Imposing the linear restriction 7 = 0, we find from (3.1.k) that

P"'Pi:Yi. ’ i=1, 2, .. sMk‘
Substituting this into (3.2.k) we have
- ‘ -
A N* lY.]f t NkY.k. k-1 Rl Kk
zjY.j- N ,j=N '!'1’ +2’ .IO’N
Now since

S N
Z’j o EN;J .

j-..-.]_ +1

under the restriction, 7 = 0, we may now substitute back and solve
(3.1.k-1) obtaining

)
Ny N* Y

D I . — (YT - Y )
: 5 NE-I N a'e 3 s

i

B+ Py

N |
Y 4 TS = XN Ll M2 s s MO

i

Substituting back into (3. 2.k-l) we get

kel
¥y

-1 k-l K :

~kel _ kel | MS e e T _i=MNyl
J -J mx-1 N MET



o el M oel | e MBelo M
A M= N
T RPN e
k-1 : k-1 K
2 X KT v
: N N

Finishing the solution in this manner, we obtain

NPy'Pl N yP

;p=Yp i s & P - - o
EFAY 5

£=p+l

which may be written as

?PzYP-—YP =

h| J .l P L A
N I
j-Npl laNpl‘l'Zs szaP
Now
MP
s 10% I z
Qj M Y.j Yi L]
i=1
Sa Ly sy W e
But
MmP mP
Y :>: Y
i, pE kel gkl ki
i=1 i ool i=M 41
MmP mP N mP
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Mk"l MP
" E Y5, § X,
_M ‘N];(kaYkl) M5 gkl 1= M1 j= M5yl
MPNE - MP - MP MP
k = = ]1- Rk
wiN, . el NkZYk.ZNi_Nk»lYkl
= e (Y ,,Y‘:‘)_*_ e Mbk:[hf 5o
MPNE mP N
MP
§ Iy,
i‘:Mk%1+1
NP
K k-1 .
kel

Continuing in this fashion, we have

P
> Yy, K 0

ey
g - ) MN R / KU, MN ¥ £
M, M NZ e s ¢ 0 MN ° & < s
£=p+l
mP p-l
P
M
k Z

Z M™N ) p=1 to e »
. MP ;ii i o « NP e a s o ®

F=psl
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Thence
p-1 "
J - NP
i Ek ?M!N!(Y! aly pali? K
f=psl MP ;
And
N x NP K NP
~ ~ z
D Gfye) ) aife) MP ) (YE -YP)
j=1 gl =00 g 1]ty
k pal
Ay MPN, Np- (Y P _¥P)
p=1 2
k [
e M'N gial= i
k
& ) ;,(Y : o
L= psel
Collecting coefficients of (Y‘r - Yr+1)2, we have
r+1 r r+1l 2 1 Taped
M r+1(N Y5 . M N M™HN, ) 2 MIN;MTTHN )
(Nr-g.l)& Mr(Nr"'l)Z MI(qu.I)Z

Combining all but the first term gives

r+1

M MTHN (NN 4 N

r+l)

o T4l
r+1(N ) N*M (Nr-l-l) 4 T+
2 rIER I

+
(qu-l P (Nr+l 2 (N )
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r4+l r
Nr+1N

r+l

M

N
Collecting coefficients of (Y‘r - Yr"'l)(Y!s - Ys+1) , T<s8, we have

rl b r TG 1 r+l
2 M Nr+1N NB+1 3 M NrM Nr+le+1 2 p M NIM Nr+le+1
Nr+1Ns+I MrNr+1Ns+1 MINr+1Ns+1

r+l r., 841 r s+1
Nr+1N M Ns+1 M NrNr+1M N

i
Nr+1Mr+1Ns+I Nr+1Mr Ns+1

M s4+1

+¢a-

1 841

M NlNr+1M N

841

841

+
N H MmN

Combining all but the first term of each part gives
241 r P sl oy |
M Nr+1N Ns+1 N" M Nr+1Ns+1 -Nr+1N M Na+1

- +
Nr+1Na+1 Nr+1Ns+1 Nr+1Ns+1

r s+l

N Nr+1M N

s+l | .
Nr+1Ns+1

Now since these two general terms are the only possible ones in-

volved in the second summation of the expression for
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k-1 . p+1 P
MU N e opel 2
+ T (Y~ - Y )
NP+ .. .
p=1
k k-1
3 4
22% "_‘Zq :
f=1 ' £=1

since NO = 0,

Now by subtraction the Error S, 8. must be

k k-1
D a4+ 2 _a
g=1 =1

Also since the degrees of freedom for error and treatments eliminating
blocks in Table 3.1 are the same as q and p of {2.2), then we have
W = V. Thus we have shown that the test function given in the last

section can be derived by the method of least squares.



MEANS AND STANDARD ERRORS

We will now derive the best, linear, unbiased estimates of 7 s 2%
and the stardard errors of these estimates,

Theorem:
p-l 1 - N H
FP £ Y?S-Y?.-FT(Y.P.‘I_Y?) e ;;"’(Y'!.—Y‘!“l) :
X [=p+l :

.=Np‘1+1' NP"1+2’ -’.'NP’ p=1’ 2’ a--]k

is the best, linear, unbiased estimate of T2 T and therefore '?a - ;t
is the best, linear, unhiased estimate of Ty T

Proof: Since '?a was found by the method of least squares using
the linear restriction 2. 0, this is an obvious result of the extended
Markoff Theorem as proved by David and Neyman (1938).

Z
Theorem: The variance of the estimate of Ts - -rpiu p ifs #t,

_ M
ands,tmNp"lq-l, Np“1+ 2 e forp=1 2, ... , k. The vari-

ance of the estimate of -r]; - 'rr is

AR I P | N,

PN T MrN"“l M!N!N!I )
£L=psl
for s, WL 2 L NP pa T, YL 2, LN
p=l, Zy jos 5 Ral ;, E=p+1 pel 5 X
Proof

, s#tands, tf NP1, NP 2, L, NP,
P:l, 2, es 5 3 k.

24



25

And
MP MP 2
<
~%ig Z’eﬁ
-~ o~ i =] i=1
var{7P - 7Py = B A2 . ,
0‘2 5’2' 20’2
= + = 2 P = 15 2‘9 - ¥ k
MP MP MP
Now
k
P"‘l . N
SP ST L¢P P N p=l P § 1,8 2-1
'TS Tt st Y ‘='-“:§15—°<Y. b )h.: a -_T@(QY"E‘YL
£z ptl

T . s
..,Y.t_a_, Nr‘
e Ty s =
NPIYP']“.;-N vP =1 N g
= YP = bl s E Q(Yzﬁ.‘f@h’l
.8 NP ‘ , Z_N-E .. )
' £=psl”
o ,V =
T Nr er l’ N le Nr T r=]
t-Yt-i- gr o “F(Y ﬂYHn"'>
oy s RETY T e
NP lyP_-l_i_ N YP rel N .
- Yp a . @ . P o & . Z(Yﬁ Y,@"“l
- [ NP - z '1;;1 & . )
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¥ Yrt + Y'r-l
And
;?: e E e. r-1 E e
Var(;'f )-— =1 s Ao A - E Mz E!N!-I-FI 3
mP MP NP “ N M'N
f=p+l £
g: ;Z= eij 1:: it - - e;j
— L & +
mints! M* MENT
T T MmP NP ]2
2 T
= E| — + E | ——_
Bl . 2
r-l 2 e,,
ii? ke e &
+ > E )
it (%) M'N,
Mmi N1 72 M* 2

L=p+l
s Nt 1 MP 2
e e
E 15 ;::-l ij 2 E Z-l A8
% Vol ke NP MP
MP Np
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=l
e-..l
— —
1
g 1N_\/_m.1..
- oy M
Z = =~
i M;l—
BN 5
= Hin, w [P
- el
3 -
= - P
= ._._. S "
Al g e
o )

Mr
e
is 1Ll= .
Mp Mr Nr--l

oy i &y Peri-
MP NP m! N,




2E

2E

r-l r=l e e
N, N — — ij mel . ij
] = = i |
A2% D g Pt 553'1} ;*' :
m

I=p+l m = J41

28

N
ZE -—iE { lj‘ 1 1-; N““l
P P ¥ -]
w1 XN MP NP mf Nt
MP NP M* NP
A u% it :Z i
2
MPNPM MPN I m* NP

MPNPMr r-l
M* NP
?1,% %hu
MPNPMENT
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'w "

M"' N,C Mm Nm—]

DF " mM
M ]

m
N!NmM N.!

r-1 r-1
vl L

P+l m
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We know from the Markoff Theorem that the error mean square
is an estimate of crz., We may then use this estimate in the variances
we have just derived for '?j - :’:j" , and thus set confidence intervals on

the estimates of treatment differences,



CONCLUSIONS

The randomized block designs thaf have been proposed to date
have been for blocks containing equal numbeérs of experimental units,
This has been due, primarily at least, to the ease of computation in
this case. However, the method proposed in this paper lends itself
nicely to computation, and therefore extends the scope of the random=
ized block designs to include the realm of blocks containing different

numbers of experimental units,
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