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Abstract

Weather surveillance radars can effectively detect flying animals, such as

groups of birds, bats, and insects. Further, these radars are demonstrably useful

for detecting the existence of certain bird roosting locations, particularly those of

many species of swallows. The roosts appear on radar as distinctive rings of high

reflectivity. Detecting and locating bird roosts have a variety of applications

from ecological conservation to wind farm placement and air traffic control.

In this thesis, I first detect the presence of a roost in NEXt Generation

Weather RADar (NEXRAD) images of purple martin and tree swallow roosts

and improve upon Chilson et al. (2019)’s work by altering the network architec-

ture and data preprocessing. Because determining the exact locations of bird

roosts is more useful than detection, I also use image segmentation to attempt

to locate roosts. I apply a standard U-Net, which shows promising results for

determining roost location, achieving a true positive rate of around 0.80 and

true negative rate of around 0.85. To increase performance, the dataset is aug-

mented 32 times its original size through a variety of image transformations.
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Chapter 1

Introduction

Locating and tracking bird roost locations is important for biological conserva-

tion, research, citizen science, and agriculture, among other applications (Bauer

et al. 2017b). For example, knowing roost locations can help inform decisions

about wind turbine placement and the use of bird-safe glass in windows. Accord-

ing to Johnson et al. (2002), over 100 million birds run into man-made objects

and about 3.5 million birds migrate over wind farms in the United States every

year. Birds can also cause problems for farms and local ecology by eating crops

and spreading diseases among environments, or they can have positive agricul-

tural and environmental impacts by eating insect pests and pollinating plants

(Bauer and Hoye 2014; Bauer et al. 2017b).

The network of weather surveillance radars known as “NEXRAD” is de-

signed to detect weather across the United States, but it can also be used

to detect biological phenomena (Bauer et al. 2017a; Chilson et al. 2012a; Gau-

threaux Jr. and Belser 2003; Kelly et al. 2012; Chowdhury et al. 2016; Stepanian

and Horton 2015). Weather surveillance radars are particularly useful for find-

ing and tracking roosts because there are already 160 radars scattered across the

United States in NEXRAD, and the roosts of some species create a “roost ring”

– a distinctive ring of heightened reflectivity on NEXRAD (Kelly and Pletschet

2018). A roost ring forms on radar when a flock of birds leaves its nest for the

morning, typically slightly before sunrise. This ring can be used to pinpoint the
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location of a roost. An example of a roost ring on several fields of NEXRAD

is shown in Figure 1.1. Manually searching for roosts on raw radar images is

time-consuming, suggesting the need for a technological approach to analyze

the raw, non-quality-controlled NEXRAD output (Chilson et al. 2012b). Chil-

son et al. (2019) found that deep learning is effective for roost detection on 2D,

RGB radar images.

Currently, deep learning, specifically convolutional neural networks (CNNs),

is the most effective way to automatically locate objects in images (Zhao et al.

2018). Since Girshick et al. (2013) created Region-CNN (R-CNN), a variety of

architectures have been created for object detection and segmentation, including

Fast R-CNN, Faster R-CNN, Mask R-CNN, the You Only Look Once (YOLO)

network, and U-Net (Girshick 2015; Ren et al. 2015; He et al. 2017; Redmon

et al. 2015; Ronneberger et al. 2015). These architectures have been effective

at segmenting images similar to the radar images in this work’s dataset.

This thesis is an extension of Chilson et al. (2019), and it explores the

usefulness of CNNs for a) detecting roosts, referred to as the detection problem,

and b) roughly determining roosts’ latitude and longitude locations on level-two

NEXRAD images, referred to as the localization problem. To solve the detection

problem, this work seeks to predict the presence or absence of a roost, while

for the localization problem, it attempts to estimate locations of roosts in an

image with image segmentation. A shallow CNN architecture similar to the one

in Chilson et al. (2019) is used for detection. For localization, this thesis uses

a U-Net, a common architecture for image segmentation (Ronneberger et al.

2015).

The dataset consists of purple martin and tree swallow roosts in the Eastern

half of the United States. To see if the tool is useful for discovering new roost
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locations, this thesis applies the localization method to an unlabeled set of

purple martin roosts in Indiana from 2018 and 2019. Because the Indiana

dataset is unlabeled, statistics must be calculated on a separate, labeled test

set. The Indiana dataset is useful for qualitatively determining how well the

method may perform on unprocessed data.

The next chapter provides relevant background on bird roosts, NEXRAD

radars, and neural networks, as well as a discussion of related works. Chapter 3

describes the dataset used in-depth, while Chapter 4 discusses methods and

experimental design, including neural network architectures. Chapter 5 shares

and discusses results, while the final chapter provides a conclusion, suggested

improvements, and future work.
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Figure 1.1: An example roost is circled in black on images of four different
NEXRAD fields from July 16, 2015. These images were created with the Py-
ART library (Helmus and Collis 2016).
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Chapter 2

Background

2.1 NEXRAD for Roost Location

Since the early 1990s, NEXRAD has scanned the bottom 10 km of the atmo-

sphere every five to ten minutes (Chilson et al. 2012a). Purple martin roosts are

typically visible on level-2 NEXRAD from late June to late August, and roosts

have been confirmed at 80 different radars in the eastern half of the United

States (Kelly and Pletschet 2018). Most roosts are found about 20 minutes be-

fore and 40 minutes after sunrise (Kelly and Pletschet 2018), though this thesis

also includes 30 minutes before and after this period, which totals to about 24

radar scans per day. Refer to Chapter 4 for more details.

In addition to birds and weather, radars can detect noise like dust and

insects, which are much more common in the lowest parts of the atmosphere.

Since radars generate beams that scan upwards at an angle and the Earth curves

away, the scans closest to the radar capture much more noise. This means that

the center of the radar images in the dataset for this thesis are much noisier

than the perimeters of the images.

The NEXRAD images for this thesis come from both single- and dual-

polarization radar. Single-polarization radar transmits and receives waves that

have horizontal polarization, while dual-polarization radar have both vertical
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and horizontal polarization. Single-polarization radar includes the reflectiv-

ity, Doppler radial velocity,1 and spectrum width fields, while dual-polarization

radar includes these products, along with the differential reflectivity (ZDR),

correlation coefficient (ρHV ), and differential phase (φDP ) fields. In this thesis,

we use only reflectivity, velocity, ZDR, and ρHV because they have been shown

useful for locating roosts (Muller et al. 2015).

Reflectivity measures the intensity of the beam reflected back to the radar

after bouncing off a flock of birds (Diehl and Larkin 2005). Velocity is used to

determine the direction that the birds are flying, which is important because

birds to fly outwardly from their nest, while weather and dust fly in one direction

(Gauthreaux Jr. and Belser 2003). ρHV measures the similarity between the

horizontal and vertical polarizations of the radar beam. Birds tend to have

a lower ρHV than airborne water droplets (Van Den Broeke 2013). ZDR is the

difference in reflectivity between the horizontal and vertical polarizations, which

has been shown useful for determining bird orientation (Stepanian and Horton

2015).

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are layers of connected nodes that can ap-

proximate complicated, nonlinear relationships in data (Rumelhart et al. 1986;

Dayhoff and DeLeo 2001). They consist of an input layer, some number of

hidden (i.e., middle) layers, and an output layer, as shown in Figure 2.1.

Each node (or blue circle in Figure 2.1) takes inputs, multiplies them by a

set of “weights” and adds a “bias,” as shown in Figure 2.2. Since the output

1For the remainder of this thesis, we refer to “Doppler radial velocity” as simply “velocity.”
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Figure 2.1: An example of a feedforward neural network. X1 to Xm are the
inputs, while Y1 to Ym are the outputs, and b is the bias.

of a single neuron can be represented linearly, the weights increase or decrease

the effect of an input variable. The weights are calculated and updated via

the backpropagation algorithm described in the following section (Lecun 1985;

Rumelhart et al. 1986; Werbos 1990).

After summing the weighted inputs and the bias, the output z is passed

to an activation function σ. This function decides whether or not the node is

“activated” at a given time and introduces nonlinearity into the neural network,

allowing it to model a wide range of functions. The bias shifts the activation

function to the left or right of the origin to get a better fit for the data (Raudys

1998). There is a variety of possible activation functions, but we shall limit our

discussion to the ones used in the networks described in Chapter 4.
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Figure 2.2: An example node. Inputs are multiplied by weights, and the prod-
ucts are summed together, along with the bias. An activation function is applied
the output of the sum to obtain the final output.

One of the earliest activation functions is the sigmoid function, which bounds

its outputs between zero and one and is typically used for regression. The

sigmoid function can be represented by the following equation (Jain et al. 1996):

σ(z) =
1

1 + e−z
. (2.1)

The softmax function, like sigmoid, returns values between zero and one, but

the output values always sum to one and are often interpreted as probabilities

for classification. For example, in binary classification, softmax may return 0.7

for the most probable class and 0.3 for the other class. The softmax function is

represented by the equation

σ(z)j =
ezj∑m
k=1 e

zk
, (2.2)
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where m is the number of classes, and j is a position in the input z to the

activation function (Goodfellow et al. 2016).

The Rectified Linear Unit (ReLU) activation function returns zero for values

less than or equal to zero and a positive value otherwise:

σ(z) = max(z, 0). (2.3)

ReLU is the standard activation function for hidden layers because it is

inexpensive to compute. The function also sets many values to zero, which

makes models sparser and more expressive, resulting in less overfitting. The

downside of ReLU is that it can sometimes make models too sparse and result

in a vanishing gradient (Krizhevsky et al. 2012).

2.2.1 Backpropagation Algorithm

The process of passing data from the input layer to the output layer described

in the previous section is called “forward propagation.” Introduced in 1985,

backpropagation (or the backwards propagation of errors) updates the weights

to minimize the loss function (Lecun 1985; Rumelhart et al. 1986; Werbos 1990).

The weights are updated via backpropagation from the last layer of the network

to the first layer. The data is then passed back through the network via forward

propagation, yielding a new (ideally smaller) error value, which is then used to

update the weights, described formally by Equation 2.6. The process is repeated

until the error no longer decreases.

To calculate the weight update, backpropagation uses gradient descent, an

optimization algorithm that finds a local minimum for a differentiable function.

In the case of backpropagation, gradient descent uses the loss function. The

9



algorithm first finds the vector that leads to the greatest decrease in the loss

function (i.e., the derivative) and then takes a step in the direction of that vector.

The size of the step is determined by the learning rate and the magnitude of the

gradient. Rather than taking a full derivative, we take the partial derivative

with respect to the loss for each weight because the network has more than

one input. Because there are multiple layers, we can use the chain rule to pass

information backwards through the network (Goodfellow et al. 2016).

Two loss functions L will be discussed in this thesis. n is the number of

examples, m is the number of pixels per image, yi is the true label, and ai is

the predicted label. The binary cross-entropy loss function,

L = − 1

n

n∑
i=1

[
yilog(ai) + (1− yi)log(1− ai)

]
(2.4)

is used for detection. Its prediction ai for each image is bounded between zero

and one, making it useful for classification. The function calculates the average

difference between the predicted and actual probability distributions.

The second loss function used is dice loss,

L = 1− 2
∑m∗n

i=1 aiyi∑m∗n
i=1 ai

2 +
∑m∗n

i=1 yi
2
. (2.5)

Dice loss is more appropriate for image segmentation and uses the dice score

coefficient (DSC) (Sudre et al. 2017; Milletari et al. 2016). The numerator of

the DSC is the intersection of all the pixels in the predicted segmentation and

the ground truth, and the denominator is the total amount of pixels in both the

predicted segmentation and the ground truth. Each pixel in the ground truth

is either zero or one, and each pixel in the predicted segmentation is also either
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zero or one. L = 1 −DSC so that the loss will maximize overlap between the

set of all predicted pixels and the set of all ground truth pixels.

Formally, backpropagation for the weight w between layer j and layer k can

be described by the following three equations:

∆k = Lkσ
′(xk)

wjk ← wjk − αyj∆k

∆j = σ′(xk)
∑
k

wjk∆k

(2.6)

α represents the learning rate, x the input, y the output, L the loss, and ∆ the

error gradient for a layer (either k or j) (Goodfellow et al. 2016). The error

gradient is a vector used to update weights to minimize error during training.

In this thesis, we use a variation of gradient descent called mini-batch gra-

dient descent. This variation calculates the gradient for a subset of the train-

ing data and then applies the weight updates to the network (Li et al. 2014).

Mini-batch gradient descent calculates an approximation rather than the true

gradient, but it is much faster than standard gradient descent over the entire

dataset. Though using a mini-batch is slightly more unstable than using the

entire dataset, the gradients produced by the mini-batches will on average point

in the direction of the true gradient (Wilson and Martinez 2003).

2.2.2 Deep Learning

Deep learning is a subset of machine learning that uses particularly deep neural

networks (Goodfellow et al. 2016). Before the introduction of deep learning in

2012, the performance of neural networks with many layers suffered from the

vanishing gradient problem. Because backpropagation uses the chain rule to
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compute the gradient, the error gradient can be multiplied by very small num-

bers, drawing it close to zero (Bengio et al. 1994). Because the error gradient

is so small, it has little effect on the model during backpropagation.

Fukushima (1980) introduced the concept of convolutional layers – layers

of neural networks that apply a mathematical operation called a convolution,

which repeatedly multiplies different parts of an input matrix by a small set

of weights called a filter. The outputs of these multiplications are collected

in a matrix called a feature map, as illustrated in Figure 2.3. Convolution

helps to solve the vanishing gradient problem for deep networks by decreas-

ing the network’s number of parameters. Because the filter size is typically

much smaller than the input matrix, the number of parameters is considerably

reduced (Goodfellow et al. 2016). Deep networks can also capture complex, spa-

cial relationships, which traditional neural networks cannot learn. Convolution

produces concise, descriptive feature maps because filters (i.e., sets of weights)

are small and learned through training. More information about deep learning

can be found in Goodfellow et al. (2016).

Networks that use convolutional layers are called convolutional neural net-

works (CNNs). The networks described in this thesis are all CNNs; further

descriptions of the architectures used can be found in Chapter 4.

2.2.3 Coordinate Channels

CNNs are not able to accurately transform points back and forth between Carte-

sian space and the CNNs’ underlying latent space (where the CNN encodes

meaningful features). For example, a CNN trying to predict the location of a

pixel with the Cartesian coordinates (100, 200) may predict the nearby location

12



Figure 2.3: The first six steps of the convolution algorithm with a 5 × 5 input
matrix and 3 × 3 filter. The shaded parts of the input matrix are multiplied
by the filter to produce the 3 × 3 feature map.

(95, 210). This issue can subtly degrade performance on location problems (Liu

et al. 2018).

Adding a handcrafted feature that represents Cartesian coordinates helps

CNNs to calibrate themselves and improve predictions of locations. Liu et al.

(2018) created a custom layer called CoordConv that adds these Cartesian co-

ordinate channels to the convolutional layer, as illustrated in Figure 2.4. Co-

ordConv is 150 times faster than regular convolutional layers, and it uses 10

to 100 fewer parameters. When segmenting grayscale objects on a black back-

ground with Faster R-CNN, CoordConv had a 24% improvement on the average

intersection-over-union compared to convolution without CoordConv (Liu et al.

2018).
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Figure 2.4: The left subfigure shows a normal convolutional layer, while the right
subfigure shows a convolutional layer with CoordConv. Before convolution is
applied, Cartesian coordinates i and j are concatenated to the input as channels.
These extra channels are handcrafted features that aid in localization. Figure
from Liu et al. (2018).

One criticism of CoordConv is that it breaks translation equivariance, an

assumption of CNNs that states that the location of an object should not af-

fect the CNN’s ability to detect it. However, CoordConv does not completely

dispense of this property. If the weights of the coordinates are zero (i.e. the net-

work learns that the coordinate channels are not useful), then the CNN retains

translation equivariance, but if the network finds coordinate channels useful for

the given problem, it dispenses of the equivariance.

2.2.4 Batch Normalization

Batch normalization is a technique that makes CNNs converge faster and makes

them more resilient to small changes in hyperparameters. The technique comes

from the concept of whitening, which normalizes the outputs of layers, giving

them means of zero and variances of one (Ioffe and Szegedy 2015). Because

normalizing each output in this way is computationally expensive and is not
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always differentiable for backpropagation, the variance γ and mean β of the

entire training set must be learned. Since γ and β are calculated from the entire

training set, they are also more representative than calculations using smaller

samples (Ioffe and Szegedy 2015). Algorithm 1 shows how batch normalization

is applied to an activation x over a mini-batch. The mini-batch mean and

variance are calculated to normalize x. x is then scaled with γ and shifted with

β.

Currently, there is some disagreement over why batch normalization in-

creases CNN resilience and speed. Ioffe and Szegedy (2015) asserts that neural

networks suffer from internal covariate shift, which is “the change in the distri-

bution of network activations due to the change in network parameters during

training.” Because the weights of layers are updated during training, the weights

of later layers are affected by those of earlier layers, causing the network’s input

distribution to shift. Ioffe and Szegedy (2015) suggests that batch normalization

reduces internal covariate shift by normalizing the outputs of each layer. On the

other hand, Santurkar et al. (2018) suggests that batch normalization does not

necessarily reduce internal covariate shift but rather smooths the optimization

landscape, allowing networks to converge faster and avoid local minima.
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Algorithm 2.1: Batch Normalization applied to activation x over a

mini-batch. Algorithm from (Ioffe and Szegedy 2015)

Input : Values of x over a mini-batch B = {x1...m}; Parameters to be

learned: γ, β

Output: {yi = BNγ,β(xi)}

µ← 1

m

m∑
i=1

xi // calculate mini-batch mean µ

σ2
B ←

1

m

m∑
i=1

(xi − µB)2 // calculate mini-batch variance σ2
B

x̂i ←
(xi − µB)2√

σ2
B + ε

// normalized xi is x̂i

Note: ε is a very small constant to avoid dividing by zero.

yi ← γx̂i + β ≡ BNγ,β(xi) // scale with γ and shift with β

2.2.5 U-Net

The U-Net architecture was first developed by Ronneberger et al. (2015) for

biomedical image segmentation but has since been used for other semantic seg-

mentation applications, including agriculture, augmented and virtual reality,

and chemical engineering (Zhao et al. 2019; Han et al. 2019; Zhu et al. 2019).

The architecture was designed to perform semantic segmentation with a rela-

tively low training time and few labelled images. Segmenting a 512 × 512 image

takes less than one second on an Nvidia Titan GPU (Ronneberger et al. 2015).

The architecture, shown in Figure 2.5, is a roughly symmetrical CNN with

23 convolutional layers. The first half of the U, the “contracting path,” down-

samples the data while increasing the number of features, while the second half
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Figure 2.5: U-Net architecture. Figure from Ronneberger et al. (2015).

of the U, the “expansive path,” upsamples the data and decreases the feature

channels. The final output is a 2D map showing the semantic segmentation of

the input image. The U-Net also includes skip connections (shown in gray in

Figure 2.5), which transfers spatial information from the first half of the U to

the second half since this information may have been lost during the downsam-

pling step. These skip connections have been shown to reduce network training

times (Szegedy et al. 2016a; Drozdzal et al. 2016).

2.3 Related Work

This work builds directly on that of Chilson et al. (2019), which seeks to detect

the presence or absence of roosts on NEXRAD images with CNNs. This thesis

is also very related to Lin et al. (2019), which semantically segments NEXRAD
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images to find flocks of birds. As such, we discuss these works in detail. For

completeness and comparison, we also discuss earlier methods that use radar

hardware for bird detection and localization.

2.3.1 Roost Detection

Chilson et al. (2019) detects purple martin and tree swallow roosts on NEXRAD

images and attempts to solve the same detection problem as this thesis. The

primary difference from this work is that Chilson et al. (2019) focuses only on

the presence or absence of a roost, while this work also focuses on the location of

the roost in the image. Chilson et al. (2019) also uses a slightly different dataset

than the one described in Chapter 3, though some examples are shared between

the two sets, particularly in Texas and along the southeastern coast of the

United States. Additionally, the detection architecture described in Chapter 4

is slightly different from the architecture in Chilson et al. (2019).

Chilson compared three networks: a simple artificial neural network with-

out convolution, a shallow CNN, and the Inception-v3 network (Szegedy et al.

2016b). Each network classified the images of the radar products separately,

and these classifications were then passed to a dense layer for aggregation. Be-

cause of the small dataset, Inception-v3 was trained using transfer learning on

ImageNet (Deng et al. 2009).

The shallow CNN tested had an area under curve (AUC) of 0.930-0.961

for single-polarization radar and 0.931-0.970 for dual-polarization radar. The

Inception-v3 network (Szegedy et al. 2016b) had an AUC of 0.929-0.956 for

single-polarization and 0.971-0.990 for dual-polarization (Chilson et al. 2019).

The AUC ranges represent a 95% confidence interval. See Figure 2.6 for a full

summary of the results. All results were verified using k-fold cross validation
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with k=5. These detection results were promising, but finding exact locations

would be much more useful for ecologists studying bird roosts.

2.3.2 MistNet

Lin et al. (2019) introduces MistNet, a deep CNN that semantically segments bi-

ological data on NEXRAD for the purposes of analyzing bird migration patterns.

Lin et al. (2019) used a training set of 239,128 dual-polarization NEXRAD scans

across CONUS at zero to three hours after sunset. The test set contained 971

dual-polarization and 4,891 single-polarization scans three hours after sunset,

which is the peak time for nocturnal migration. All pixel labels, except a sub-

set of 50 used to calculate statistics, were noisy; rather than hand-labeling, all

pixels with ρHV <= 0.95 were labels as biology.

MistNet uses a VGG-16 architecture Simonyan and Zisserman (2015) pre-

trained on ImageNet, followed by a CNN architecture from Shelhamer et al.

(2016) that makes a prediction every eight pixels. To better generalize the

model to data prior to 2012-2013, the training data was augmented with a down-

sampled version of each scan that matched the resolution of single-polarization

radar. MistNet outputs were also post-processed as follows: pixels were clas-

sified as precipitation with a cut off of >0.45 on either a single elevation or

an average of all five elevations. Further, the eight pixels surrounding a pixel

classified as precipitation were also classified as precipitation.

MistNet obtained an F-score of 97.3 on single-polarization and 97.9 on dual-

polarization radar. The true postive rates (TPR) were 98.8 and 99.4 and true

negative rates (TNR) were 99.0 and 96.3 for single- and dual-polarization, re-

spectively.
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To demonstrate its usefulness for nocturnal bird migration, Lin et al. (2019)

analyzed MistNet’s output on about 10 million scans from the spring and fall

of 1999 to 2018. MistNet outputs were used to estimate cumulative migration

pattern during the entire period for CONUS, illustrate the differences among

migration patterns during different seasons and nights, and estimate where birds

might be in airspace. Results can be found in Figure 5 of Lin et al. (2019).

Lin et al. (2019) differs from this thesis in that we are examining roost

rings, not biological data in general. Second, we have a comparably small

dataset that has been hand-labeled by ecologists and verified in the field. Since

MistNet labels all pixels with ρHV <= 0.95 to biology, we can compare the

effectiveness of a small, handle-labeled dataset to that of many noisy labels.

Lin et al. (2019) also provided evidence that not only are CNNs capable of

locating biological data accurately, but deeper architectures are also necessary

for capturing features involved in roost localization.

2.3.3 Radar Methods

Other approaches to finding birds or roosts focus on hardware. Zaugg et al.

(2008) modifies a radar to detect individual, flying birds by sensing the move-

ment of their wings. Though the radar can detect single birds within 8 km,

it has a fixed radar beam and cannot detect larger birds properly. The Avian

Radar Sensor Design, proposed by (Weber et al. 2005), modifies a WSR-88D

radar to detect flocks of birds or large, solitary birds within 10 km, though

the modification causes the radar to detect weather less effectively. Finally,

the Airport Surveillance Radar (ASR-9) detects small flocks that could poten-

tially harm a plane during takeoff or landing (Troxel et al. 2001). ASR-9 takes

readings every five seconds at multiple angles and is effective up to 10 km away.
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This thesis focuses on implementing a software solution to finding roosts

on existing NEXRADs currently used in weather forecasting, rather than using

specialized radars. However, these works provide early evidence of radars’ capa-

bilities for locating birds and flocks. They also show the limitations of previous

methods; hardware solutions are expensive and difficult to scale, especially given

their limited ranges of about 10 km.
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Figure 2.6: The ROC curves of each radar field for a standard (not convolu-
tional) neural network (top left), the Inception-v3 network (top right), and a
custom shallow CNN (bottom left). The bottom right ROC curve shows the ag-
gregate results for all three architectures on both dual- and single-polarization
data. The figure is from Chilson et al. (2019).
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Chapter 3

Dataset

The Purple Martin Conservation Association collected the majority of the data

for this thesis showing roost location (Kelly et al. 2012), though Bridge et al.

(2016) collected a smaller amount of data. Chilson et al. (2019) labeled all

negative examples (or examples that do not contain a roost).

The dataset consists of NEXRAD images in the eastern half of the United

States from the years 2009 to 2017. Because all NEXRADs were incrementally

updated to dual-polarization in 2012 and 2013, data before that period is only

available as single-polarization. Figure 3.1 illustrates the locations of the radars

and data and the types of data found in each location.

The input consists of RBG images created with the Py-ART package (Hel-

mus and Collis 2016). The data is of the form (width×height×# of channels),

where the width and height are each 250 pixels and the number of channels is

three to represent red, green, and blue. Because this thesis is an extension of

Chilson et al. (2019), the data is in the same RGB format since Chilson et al.

(2019) originally used color images for transfer learning. Chapter 6 discusses

potential changes to this format.

Single-polarization data consists of the reflectivity and velocity radar prod-

ucts, while dual-polarization data consists of reflectivity, velocity, ρHV , and ZDR

products. See Chapter 2 for more information on these radar products. In the

dataset for this thesis, there are 11,314 examples with roosts and 10,836 without
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Figure 3.1: Each roost label from the Oklahoma Biological Survey dataset.
Only radar locations with associated data are shown.

roosts for the reflectivity and velocity products, and there are 6,383 examples

with roosts and 6,464 without roosts for the ρHV and ZDR products. Table 3.1

summarizes the number and type of examples in the dataset. The detection

problem uses both examples with and without roosts, while the localization

problem only uses examples with roosts. Labels for the detection problem are

simply roost (positive) or no roost (negative), while the labels for localization

are created using pixel segmentation. See Chapter 4 for more details.

The public NEXRAD data was downloaded from Amazon Web Services

(AWS), and the Oklahoma Biological Survey collected the original data labels

(Amazon Web Services 2020). Labels include the latitudes, longitudes, and
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Figure 3.2: Examples of radar reflectivity images containing multiple roost rings,
which are circled in black. The left subfigure shows eight roost rings on the
KLSX radar on August 1, 2012 at 10:53:35 GMT, and the right subfigure shows
four roost rings on the KBMX radar on July 15, 2011 at 11:19:14 GMT. Radar
images were created with Py-Art (Helmus and Collis 2016).

sometimes radii of the roosts, along with associated metadata, such as times-

tamps, radars, and ID numbers. A single radar image could have one or multiple

roost locations, as shown in Figure 3.2.

The original dataset had been rounded to anywhere between one and six

decimal places, which is not precise enough to correctly predict locations since

labelled locations can be off by tens of kilometers. To remedy this issue, most

of the data was relabeled using a web application created using JavaScript and

Electron (Electron 2020). See Figure 3.3 for details on the interface.

3.1 Data Augmentation

Data augmentation can greatly increase the effective dataset size when hand-

labelled data is scarce (Dieleman et al. 2015). As an added benefit, augmenta-

tion also has an implicit regularizing effect on models (Hernández-Garćıa and
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Figure 3.3: This simple Electron app written in JavaScript was used to relabel
roost locations in the dataset. Users click on spots where roosts are likely present
and have the option of flagging spots that may or may not have a roost. The
small black star represents the label from the original dataset. Radar images
were created in Py-ART (Helmus and Collis 2016). Code for the Electron app
can be found at https://github.com/kteavery/record-long-lat.

König 2018). Augmentation is accomplished by applying transformations to

data, such as rotating, translating, scaling, flipping, adding noise, adjusting

brightness, and changing color. When applying these transformations, the fi-

nal label must be preserved (Dieleman et al. 2015). For example, distorting the

roost ring into a physically unrealistic shape would be an invalid transformation.

Because the dataset is small, we augmented the data by first flipping, then

rotating by 45◦, and finally adding salt-and-pepper noise. By stacking these

augmentation techniques, the dataset size was increased by 32 times, as illus-

trated in Figure 3.4 and Table 3.1. Although flipping and rotating preserve the
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Roost No Roost

Single-Pol Available
(No Augmentation)

11,314 10,836

Dual-Pol Available
(No Augmentation)

6,383 6,464

Single-Pol Available
(With Augmentation)

362,048 346,752

Dual-Pol Available
(With Augmentation)

204,256 206,848

Table 3.1: The number and distribution of labels before and after data augmen-
tation.

physical realism of the bird roosts, these transformations would not be accept-

able for identifying weather on NEXRAD images since the weather would come

from unrealistic directions.
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Figure 3.4: This figure shows the result of augmenting the radar images shown
in Figure 1.1 using the augmentation procedure described. The rotation and
noise steps only show the reflectivity and Zdr products for conciseness. Radar
images were created with Py-ART (Helmus and Collis 2016).
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Chapter 4

Methods

This chapter describes the implementation details of both bird roost detection

and localization problems described in Chapter 1. Detection is examined both

as a preliminary question to verify the correctness of our data processing and

machine learning methodology, as well as a comparison to Chilson et al. (2019).

The code for this project is publicly available on GitHub.1

4.1 Network Architectures

Several different architectures were examined during the course of the experi-

ments, including a custom, shallow CNN to detect the presence of roosts and

a U-Net to segment images and thus locate roosts. These architectures are ap-

plied separately to each radar field: reflectivity, velocity, ρHV , and ZDR. The

outputs of the networks for each field are then passed through two dense layers

(for the shallow CNN) or two convolutional layers (for the U-Net) to combine

their outputs, as shown in Figure 4.1.

4.1.1 Shallow CNN

The architecture of the custom, shallow CNN developed is shown in Figure 4.2.

This architecture is based on the custom architecture described by Chilson et al.

1https://github.com/kteavery/BirdRoostLocation
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Figure 4.1: All four radar fields are trained separately and combined with either
(top) two dense layers or (bottom) two convolutional layers.

(2019) with a few modifications that were determined via a grid search. First,

we add CoordConv layers, as described in Chapter 2. We then change the order

in which the batch normalization layers are applied. In Chilson et al. (2019) and

in the original Ioffe and Szegedy (2015) paper, batch normalization is applied

before the activation layer, but this is changed to after the activation layer so

that the input of the following layer will be normalized. Here the hidden layer

refers to the unit consisting of the convolutional layer, activation layer, and

any other operations. Finally, we add three more hidden layers to capture more

complex features. A summary of the hyperparameters for both the custom CNN

in this thesis and the CNN in Chilson et al. (2019) is shown in Table 4.1.
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Chilson et al. (2019)
type BN filters nodes kernel pool stride activation

Conv Y 32 5 x 5 1 ReLU

Max Pool 2 x 2 2

Conv Y 64 5 x 5 1 ReLU

Max Pool 2 x 2 2

Dense Y 500 ReLU

Dense N 2 softmax

Updated CNN
type BN CC filters nodes kernel pool stride activation

Conv Y Y 8 5 x 5 1 ReLU

Max Pool 2 x 2 2

Conv Y Y 8 5 x 5 1 ReLU

Max Pool 2 x 2 2

Conv Y Y 16 5 x 5 1 ReLU

Max Pool 2 x 2 2

Conv Y Y 32 5 x 5 1 ReLU

Max Pool 2 x 2 2

Conv Y Y 64 5 x 5 1 ReLU

Max Pool 2 x 2 2

Dense Y N 500 ReLU

Dense N N 2 softmax

Table 4.1: A comparison of the architecture and hyperparameters of Chilson
et al. (2019)’s shallow CNN (top) and this work’s CNN for detection (bottom).
BN is an abbreviation for batch normalization, and CC is an abbreviation for
CoordConv.
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Figure 4.2: The custom CNN includes five consecutive units of the boxed layers
shown above, followed by the flatten, dense, ReLU, and sigmoid layers. This
architecture was trained on each of the radar fields for the detection problem.

4.1.2 U-Net

The U-Net architecture is the same as described in Ronneberger et al. (2015)

and shown in Figure 2.5. Because the architecture is used for localization, the

ground truth is a 240 × 240 matrix with a filled circle around each roost. The

radius of the circle is either listed in the label (11.73% of cases) or set to the

average radius of 28 km if no radius is listed (88.27% of cases). Roosts locations

were also interpolated based on data at the same radar from other days of the

month. For example, a roost visible on July 6 and July 8 but not on July 7

would be labeled as present on all three days.

When labeling the images using the interface in Figure 3.3, clicking on a

roost in an image records the coordinates of the roost. If several records are

created within 20 pixels of each other, the records are averaged to create one

circle on the ground truth mask. Records greater than 20 pixels from each other

are considered separate roosts, although the circles created from the records

sometimes overlap on the ground truth masks. An example of this is shown
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Figure 4.3: A 240 × 240 pixel mask showing a July 16, 2015 reflectivity image
with one roost and its corresponding mask. The left image was created with
Py-ART (Helmus and Collis 2016).

in Figure 4.4. A discussion of potential changes to the labeling method is in

Chapter 6.

Figure 4.3 shows a simple example of a mask with one roost, while Figure 4.4

shows a more complex case. All reflectivity images shown in Figure 4.4 are from

the KGRX radar in June 2014, but different roosts are more visible at different

times. In the top right reflectivity image, the roosts are obscured by weather,

and various roosts are visible in the other three images.

4.2 Training

Training took place on a Microsoft Azure machine with 12 CPUs and 112 GB

of RAM. A complete run of the neural net for detection takes about five to six

hours, while localization takes about four days.
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Figure 4.4: A mask showing the locations of roosts on the KGRX radar in June
2014. The exact days and times are as follows: top left – July 8, 2014 at 11:16:58
GMT, top right – July 30, 2014 at 11:44:22 GMT, bottom left – July 31, 2014
at 11:35:27 GMT, bottom right – July 11, 2014 at 11:19:24 GMT. Radar images
were created with Py-ART (Helmus and Collis 2016).

4.3 Prediction

To further validate our results, we examine the results of our method on the

three NEXRADs in Indiana: KIND, KIWX, and KVWX. We examine the years

2018 and 2019 from late June to late August starting an hour before sunrise,

which totals to 3364 images for each radar field.

4.4 Metrics

For the detection problem, true positives (TP) are correct predictions of a roost

in an image, while false positives (FP) are incorrect predictions of a roost when

one does not exist. Conversely, true negatives (TN) are correct predictions
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Actual Label

Roost
Background
/ No Roost

Predicted Label
Roost TP FP

Background
/ No Roost

FN TN

Table 4.2: A binary contingency table for whether or not (in the case of de-
tection) a NEXRAD image contains a roost or (in the case of localization) the
correct location is identified on a NEXRAD image.

that a roost does not exist in an image, and false negatives (FN) are incorrect

predictions that a roost does not exist. See Table 4.2.

To determine these metrics for the localization problem, we must discretize

the predictions and labels. In general, a “positive” label would be the circle of

pixels that are marked with a roost, while a “negative” label would be back-

ground or the pixels that are not marked with a roost. A pixel of a prediction

is marked as correct (true) if it is the same as a corresponding pixel of the truth

mask. If the pixel is different from the truth mask, the pixel is labeled as false.

Therefore, a whole prediction image could be some part true and some part

false. The dice score coefficient measures the proportion of overlap between

predictions and ground truth and is defined in Chapter 2, along with dice loss.

Equations 4.1, 4.2, and 4.3 are used to evaluate the effectiveness of the

given method for either detection or localization. ACC stands for accuracy,

TPR stands for true positive rate, and TNR stands for true negative rate:

ACC =
TP + TN

TP + FN + FP + TN
(4.1)

TPR =
TP

TP + FN
(4.2)
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TNR =
TN

FP + TN
(4.3)

Receiver-operating characteristic (ROC) curves plot the true positive rate

versus the false positive rate. Because both rates are between zero and one,

the line y=x represents random guessing, and curves above that line represent

better than random performance. The area under the curve (AUC) of the ROC

curve is a useful summary of the plot and a metric of performance that accounts

for true and false positives and negatives. An AUC of 0.5 is random, while 1.0

is perfect (Fawcett 2006).

K-fold cross validation is an evaluation method that gives a more realistic

estimate of a model’s skill. The dataset is split evenly into k groups. The first

group is used as the test set, the second as the validation set, and the remaining

groups as the training set. This process is repeated for each combination of the

groups. For example, the second group might be the test set, the fifth group

the validation set, and the remaining the training set. The experiments are run

on each combination of training, test, and validation sets. For the models in

this thesis, k is equal to five.
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Chapter 5

Results and Discussion

5.1 Shallow CNN

The classification architecture was moderately successful in detecting roosts.

The binary cross entropy loss for all four products and the aggregate classifier

of the products is shown in Figures 5.1 and 5.3. The accuracy, true positive and

negative rates, and the area under the ROC curve are summarized in Table 5.1.

The learning curves are shown in Figures 5.2 and 5.4, and ROC curves are

shown in Figure 5.5.

ρHV and ZDR, the radar products that became available after NEXRAD

was updated in 2012-2013, were slightly more unstable than reflectivity and

velocity, possibly because there was less data available for those fields. ZDR

was the most predictive field with an AUC of about 0.6675 and an accuracy

of about 61.78%. The aggregate detection performed comparably to its ZDR

input, but it would likely perform much worse on pre-update data, which would

only include reflectivity and velocity. A different aggregate architecture may be

able to combine the four fields more effectively and rely more heavily on the

more accurate ZDR field.

This detection experiment corrects Chilson et al. (2019)’s results. The shal-

low architecture used in this work was also based on Chilson et al. (2019)’s

shallow architecture, but it was further refined, as described in Chapter 4.
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BCE ACC

Reflectivity 0.7110 ± 0.0193 0.5784 ± 0.0165

Velocity 0.6963 ± 0.0653 0.5673 ± 0.0357

ρHV 0.6330 ± 0.1326 0.5974 ± 0.0248

ZDR 0.5439 ± 0.1952 0.6178 ± 0.0139

Aggregate 0.6476 ± 0.0798 0.5947 ± 0.0231

TPR TNR AUC

Reflectivity 0.5784 ± 0.0165 0.5784 ± 0.0165 0.6089 ± 0.0232

Velocity 0.5673 ± 0.0357 0.5673 ± 0.0357 0.5905 ± 0.0517

ρHV 0.5974 ± 0.0248 0.5974 ± 0.0248 0.6415 ± 0.0294

ZDR 0.6178 ± 0.0139 0.6178 ± 0.0139 0.6675 ± 0.0163

Aggregate 0.5947 ± 0.0231 0.5947 ± 0.0231 0.6268 ± 0.0346

Table 5.1: Results summary for the detection architecture. The abbreviations
are as follows: BCE = binary cross entropy loss, ACC = accuracy, TPR = true
positive rate, TNR = true negative rate, AUC = area under a ROC curve.

Chilson et al. (2019) has data contamination, which makes the the results

optimistic. The data were split by year, rather than by roost. This would

normally make sense in meteorological contexts, but since roost locations persist

over months and years, splitting by roost leads to more independence among

splits. Chilson et al. (2019)’s results are summarized in Section 2.3.1. See the

Results section of Chilson et al. (2019) for more details.

In contrast to Chilson et al. (2019), ZDR performed much better than the

reflectivity field, and ZDR performed better after modifications to Chilson et al.

(2019)’s original shallow architecture. Unlike Chilson et al. (2019)’s results,

velocity performed only slightly worse than other fields.
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Figure 5.1: The detection loss curves for each radar field for 2500 epochs. The
plots are averages of five runs.

5.2 U-Net

The U-Net was somewhat successful in locating roosts. The dice loss for each

radar product is shown in Figure 5.6, while the dice loss for the aggregate model

is shown in Figure 5.7. Table 5.2 summarizes accuracy, true positive rates, and

true negative rates for the localization models as described in Section 4.4.

Because there are many more background than roost pixels, the dataset is

imbalanced, and the accuracy metric is biased towards the larger background

label. Reflectivity, ρHV , and ZDR all do well at predicting background with a

true negative rate in the high 0.8s, but they do poorly when predicting roost
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Figure 5.2: The detection learning curves for each radar field for 2500 epochs.
The plots are averages of five runs.

locations. Velocity performs roughly equally with true positive and true negative

rates at around 0.75 each. The aggregate model does the best at predicting roost

locations with a true positive rate around 0.8, but it has a significantly worse

true negative rate at around 0.6.

Examples of localization predictions are shown in Figure 5.8. Interestingly,

because roosts tend to show up more often in the center of radar scans, the

U-Net tends to predict that the roosts will be in the center. If the ground truth

shows a roost on one side, as in the case of the bottom panel, the prediction

skews towards one side to capture the roost. The predictions also tend to predict

roosts in one large, contiguous area, rather than in discrete circles. The area is
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Figure 5.3: Detection loss curve for the aggregate classifier over 1000 epochs.
The plot is an average of five runs.

generally the size of the roost or group of roosts, as in the top panel, though it

can be larger, as in the bottom panel. Smaller roost labels in the ground truth

are likely to be ignored if they are near a large group of labels, as in the case of

the leftmost roost label in the top panel.

5.3 Predictions in Indiana

See Chapter 4 for details on the methodology used in this section. Because there

is no labelled data for Indiana radars in 2019, we cannot calculate accuracy or

true positive and true negative rates. However, we can observe the U-Net’s

performance on samples, as shown in Figure 5.9.
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Dice Loss ACC

Reflectivity 0.8326 ± 0.0144 0.8326 ± 0.0144

Velocity 0.8005 ± 0.0485 0.8005 ± 0.0485

ρHV 0.8172 ± 0.0426 0.8172 ± 0.0426

ZDR 0.8291 ± 0.0228 0.8291 ± 0.0200

Aggregate 2.5055 ± 0.0050 0.6264 ± 0.0017

TPR TNR

Reflectivity 0.6178 ± 0.0230 0.8522 ± 0.0172

Velocity 0.6478 ± 0.1139 0.8317 ± 0.0703

ρHV 0.6114 ± 0.1097 0.8368 ± 0.0568

ZDR 0.6186 ± 0.0389 0.8475 ± 0.0248

Aggregate 0.8031 ± 0.0047 0.6103 ± 0.0024

Table 5.2: Results summary for the localization architecture. The abbreviations
are as follows: ACC = accuracy, TPR = true positive rate, TNR = true negative
rate. The results for the four products are averages of five trials, while the results
for the aggregate are averages of two trials.
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Figure 5.4: The detection learning curve for the aggregate classifier over 1000
epochs. The plot is an average of five runs.

The raw, unlabelled data contains primarily negative examples since most

images will not contain a roost. To find the images that contain roosts, the

detection architecture is applied first. The positive images identified by the

detection architecture are then given to the U-Net for semantic segmentation.

Identifying positive images with the detection architecture is necessary because

U-Net was trained only on positive examples.

Because the detection architecture has an accuracy of only around 60%,

it misclassified many of the unlabeled images. Those images, which primarily

contained no roosts, were then passed to the U-Net for segmentation. Of the

examined output, the predictions for the 2019 Indiana dataset were almost all
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Figure 5.5: The ROC curves for detection.

background since the input data contained few roosts. Examples with roosts

tended to be misidentified by the detection architecture and therefore were not

segmented by the U-Net.
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Figure 5.6: The dice loss curves for each radar field for 1000 epochs. The plots
are averages of two runs.
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Figure 5.7: The dice loss curve for the aggregate model for 1000 epochs. The
plot is an average of two runs.
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Figure 5.8: Localization prediction examples using the aggregate U-Net.
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Figure 5.9: Localization prediction examples on the 2019 Indiana dataset. Ex-
amples with roosts tended to be misidentified, as shown in the top row, while
examples without roosts were more likely to be identified correctly, as shown
in the bottom row. As in Figure 5.8, black pixels in the prediction represent
background, and white pixels represent a roost. Therefore, all black predictions
mean that no roost is predicted in the image.
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Chapter 6

Conclusion

Overall, detecting and predicting roosts using the methods shown are somewhat

effective, though these methods need additional refining. The detection method

corrected Chilson et al. (2019)’s work, which had some data contamination, and

the models achieved accuracies of around 60%. Predicting roost location with

U-Net achieved a true positive rate of around 80% with the aggregate model

and a true negative rate of about 85% with the ZDR model.

Observing predictions reveals the kinds of flaws that the models face. For

example, the models tend to predict roosts in the in center of the image, and

they predict large groups of roosts as one large, contiguous area. Predictions on

the Indiana dataset reveal that the two networks are not yet effective enough

to be used in conjunction. The detection network has only a 60% accuracy and

is therefore not accurate enough to provide input for the localization network.

6.1 Future Work

This project did not make use of the data’s temporal aspects. Network architec-

tures, such as recurrent neural networks or long-short term memory networks,

would take temporal features into account. However, the dataset used into
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this project is not large enough to properly train such networks since the net-

works would require combining timestamps into a single example, which would

drastically reduce the amount of data.

Improving the mask creation method could make the localization method

more effective. The average radius size of 28.0 km seems large for many roosts in

the dataset, though this likely represents the roost rings when they reach their

maximum size before disappearing from view. Also, labeling each timestamp

individually may be more effective than interpolating roost locations based on

other days of the month.

Now that the data and splits used in Chilson et al. (2019)’s original paper has

been corrected, it would be interesting to redo an architecture search to see if

another architecture would be more effective for detection. A more sophisticated

architecture may capture complex features more effectively. Further, combining

the field outputs into an aggregate classification may be more effective with a

different architecture, rather than just two dense or convolutional layers.

Finally, the dataset should be converted to grayscale to save on computa-

tional costs. The dataset is currently in color because it is an extension of

Chilson et al. (2019), which used color images for transfer learning.
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