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Abstract 

The rapidly changing nature of work has increased the importance of non-routine thinking skills 

required to make decisions under risk and uncertainty. Cognitive ability tests are traditionally 

considered a robust tool for personnel selection and placement, provided how they assess 

thinking skills that generalize across many jobs. Tests are often designed to measure general 

cognitive ability, which is conceptualized as the foundation of higher-order thinking skills. 

However, other studies have suggested that tests of specific abilities are useful as well. There is 

growing evidence that numeracy, defined as the ability to apply mathematics in practice, is a 

strong predictor of decision-making skills. However, much remains to be examined in terms of 

numeracy’s usefulness as a predictor relative to commonly used cognitive ability tests. In this 

dissertation, I review decision-making competence as a multidimensional performance criterion, 

in which each of its dimensions have implications for workplace decisions. Using a sample of 

355 undergraduate students who completed a battery of assessments, I estimated the relative 

importance of crystallized ability, fluid ability, and statistical numeracy for predicting overall 

decision-making competence and the dimensions that comprise it. This study builds on previous 

incremental validation studies by adopting dominance analysis to partition criterion variance. 

Numeracy was consistently a superior predictor over fluid ability, whereas the relative 

importance of numeracy and crystallized ability varied across dimensions. These results 

contribute to a growing literature on statistical numeracy as an important part of decision-making 

that is underrepresented in traditional cognitive ability tests. Implications are discussed with 

respect to the importance of leveraging numeracy in personnel selection and training systems for 

jobs that require decision-making competence. 
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Introduction 

Economic development often depends on people’s ability to comprehend risks and make 

informed decisions. As the economy continues to grow in complexity, the skills necessary for 

dealing with risk and uncertainty will become increasingly important (Griffin et al., 2012). 

Workers now assume more responsibility for managing their roles, and fewer organizations offer 

well-defined career progressions or guarantee health or retirement benefits (Zaber, Karoly, & 

Whipkey, 2019). Information technology has transformed how people obtain and share 

knowledge, increasing the importance of complex skills for integrating information and solving 

problems (Autor et al., 2003; Frey & Osborne, 2017). Results from large-scale international 

assessments have prompted concern about people who seem unprepared for roles in the changing 

economy (Tout et al., 2017). The workplace is becoming polarized, such that lower-skilled 

workers are increasingly vulnerable to unemployment. These trends have captured the attention 

of policymakers and raised concerns about the effectiveness of educational and vocational 

training institutions (Redmer & Dannath, 2019). Results from large-scale international 

assessments suggest that many adults lack basic literacy and numeracy skills, let alone the more 

complex skills necessary for adapting to the modern workplace. 

Numeracy, in particular, has gained attention as an essential skill for making sense of 

quantitative information in an increasingly data-driven and technological world (Grotlüschen et 

al., 2019). Contrary to the abstract mathematics taught in school curriculums, numeracy often 

refers to practical applications of mathematics in real-world contexts (Geiger et al., 2015). 

Policymakers have cited innumeracy as a risk factor for unemployment and advocated for 

resources devoted to workplace numeracy training for adults (Tout et al., 2017). However, 

determining how to improve numeracy skills as they are practiced on the job can be challenging. 
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Job analyses have demonstrated that the use of numeracy is not always identified as such (Black 

et al., 2015). Dealing with quantitative information is deeply embedded in technology or tasks. 

Some workers refute that they are applying numeracy skills when making decisions, and may 

instead insist that it is “common sense” (Keogh et al., 2014). However, given the current state of 

the literature, identifying training needs will likely require a more detailed account of the 

linkages between numeracy skills and workplace practices. 

Recent advances in the study of judgment and decision making offer a potential avenue 

for addressing the “invisibility” of numeracy in the workplace. A growing body of research has 

identified numeracy, or more specifically a subset of skills associated with statistical numeracy 

(e.g., practical probabilistic and inductive reasoning skills), as a proxy of general decision-

making skill (Cokely et al., 2018). Provided that decisions are made under risk and uncertainty 

(e.g., one cannot logically deduce a certain solution), there are advantages to being able to 

evaluate outcomes in terms of magnitudes, distributions, contingencies, and likelihoods. 

Although it is well-known that people systematically deviate from normative standards for 

optimal decision-making, there remain individual differences in the ability to do so (Stanovich et 

al., 2016). Moreover, assessments of decision-making skills have been shown to predict 

meaningful life outcomes (Bruine de Bruin et al., 2007). To the extent that numeracy reflects the 

ability to make good decisions in general, there is precedent for linking it to more complex skills 

and competencies demanded in the modern workplace. This may suggest valuable and currently 

neglected opportunities for pre-employment testing and needs analysis. 

However, there already exists well-established practices for using tests to predict 

workplace outcomes. Even if numeracy tests are strong predictors of decision-making quality, 

they may be redundant with existing assessments used in generalized contexts (Blacksmith et al., 
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2019; Schmidt & Hunter, 1998). Traditionally, decision-making skills have been attributed to 

cognitive ability, which has been defined many ways, such as the ability to learn and make sense 

of complex information (Hunt, 2010; Neisser et al., 1996). Theories suggest that people with 

higher cognitive ability are capable of processing larger amounts of information more efficiently, 

which is reflected in higher levels of professional competence, such as numeracy and decision-

making skills. Over a century of research has shown that performance on cognitive tasks is often 

correlated, reflecting a common factor (Jensen, 1998; Spearman, 1904). However, decision 

making is inherently multidimensional, indicating that different cognitive processes may be 

involved across different types of decisions (Ceschi et al., 2019; Teovanović et al., 2015). This 

also aligns with calls for research on specific abilities within the scope of general cognitive 

ability (Scherbaum et al., 2012). 

The extent to which numeracy, in a sample of young adults, predicts normative decision-

making uniquely from commonly used tests of cognitive ability may justify related applications 

for industrial and organizational (I/O) psychologists seeking to improve the quality of decisions 

in organizations. The purpose of this dissertation is to test whether individual differences in 

statistical numeracy offer unique criterion-related validity for normative decision making tasks, 

beyond that of other cognitive abilities, in a sample of young educated adults who are preparing 

for a diverse range of professional careers in science, business, engineering, etc. In the present 

study, normatively superior decision making is operationalized as a multidimensional 

performance construct measured by the Adult Decision-Making Competence (A-DMC) scales 

(Bruine de Bruin et al., 2007). Building on previous studies demonstrating incremental validity 

of numeracy over individual tests of cognitive ability (e.g., Del Missier et al., 2012; Peters et al., 

2006), the present study compared numeracy to cognitive abilities: specifically, crystallized and 
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fluid ability. Dominance analysis was used to evaluate the relative contributions of each 

construct to explained variance in the criterion (Nimon & Oswald, 2013). Competing hypotheses 

tested the relative importance of numeracy for predicting overall decision-making and the extent 

to which its importance varies across dimensions of decision-making competence. To the extent 

that numeracy predicts decision-making uniquely from cognitive ability, there may be 

considerable opportunities for using numeracy tests in personnel selection and placement for jobs 

that require these general decision-making skills.  

Numeracy in the Workplace 

The importance of mathematical reasoning has long been acknowledged as an important 

factor for desirable outcomes in work and life (Paulos, 1988). Since the earliest humans started 

using numbers to count, mathematics has developed into a driving force behind human 

innovation (Dantzig & Mazur, 2007; Everett, 2019). While mathematics remains the foundation 

for science, engineering, and technology, there remains the question of its usefulness in domains 

that are less frequently associated with explicit quantities. Policymakers’ interest in mathematics 

for the workplace can be traced to the “Crowther Report” on education in 1959. The United 

Kingdom’s Ministry of Education (1959) coined the word “numeracy,” which was used to 

distinguish applied mathematics from the abstract mathematics performed in classrooms. 

Numeracy is sometimes referred to as “quantitative literacy” or “mathematical literacy.” The 

Organization for Cooperation and Economic Development defines numeracy as “ability to 

access, use, interpret and communicate mathematical information and ideas in order to engage in 

and manage the mathematical demands of a range of situations in adult life,” (OECD, 2013). 

Precise definitions vary between reports. Generally, numeracy encompasses the skills for using 

mathematics in real-world contexts. 
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Numeracy has been incorporated into large-scale assessments used for evaluating 

education and vocational training institutions across nations (Tout et al., 2017). Many people 

have deficits in numeracy, including highly-educated professionals (Paulos, 1988; Schwartz et 

al., 1997). According to the standards on the OECD’s Programme for the International 

Assessment of Adult Competencies (PIAAC), one in five adults have poor numeracy skills. The 

National Adult Literacy Survey (NALS) indicated that almost half of the U.S. population 

struggles with simple tasks like calculating discounted prices (Kirsch et al., 1993). Similar 

studies have also been conducted on children with similar results (PISA, 2019). These findings 

inspired streams of research on numeracy as it relates to economic outcomes, with the 

assumption that numeracy skills are directly related to job productivity (Black et al., 2015; 

Keogh et al., 2014). Research on numeracy practices in the workplace has shed some light on 

these relationships, but the tacit nature of many contemporary job skills makes it difficult to draw 

one-to-one linkages between numeracy and work performance. 

A growing body of research has shown that numeracy is a robust predictor of decision-

making performance (Cokely et al., 2018; Reyna et al., 2009). Many numeracy tests with 

emphasis on probability and ratios have been developed for the purpose of predicting the ability 

to interpret and understand risk (e.g., risk literacy) and general decision-making quality. Early 

research demonstrated that numeracy tends to be important for comprehending medical risks 

(Lipkus, Samsa, & Rimer, 2001; Schwartz, Woloshin, Black, & Welch, 1997), and has since 

generalized to other naturalistic domains (e.g., finance, safety; Grounds & Joslyn, 2018; Lusardi, 

2012). Recently, attempts at eliciting mechanisms underlying the relationship between numeracy 

and decision-making have identified strong effects on performance across many decision-making 
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tasks, even after controlling for tests of cognitive ability (Cokely et al. 2012; 2018; Ghazal et al., 

2014; Peters et al., 2006; Reyna & Brainerd, 2008).  

In the past decade, a handful of narrative reviews of the relationship between numeracy 

and decision making have been published (Cokely et al., 2018; Garcia-Retamero et al., 2019; 

Peters, 2012; Reyna et al., 2009), including integrative reviews and theoretical accounts of the 

cognitive processes underlying numeracy-decision-making relationships. That numeracy 

sometimes has incremental validity over cognitive ability indicates that performance on decision-

making tasks may involve individual differences beyond basic information-processing 

capabilities (e.g., Liberali et al., 2012; Peters et al., 2006). Most notably, these theories propose 

that numeracy’s predictive power not only follows from differences in logical mathematical 

processes (e.g., comprehending numerical information or calculating expected values). Rather, 

many causal explanations for numeracy effects have emphasized the role of factors such as the 

intuitive recognition of relevant quantities, more precise psychophysical mapping between 

affective and numerical responses, and more personalized metacognitive knowledge and 

strategies for contextualizing a decision problem (Ghazal et al., 2014; Peters & Bjalkebring, 

2015). That is, the cognitive skills involved in statistical numeracy are expected to transfer to a 

broad range of decision environments. 

Skilled decision theory provides a theoretical account of the primary cognitive 

mechanisms that generally give rise to superior decision making in experts and non-experts 

(Cokely et al., 2018). Accordingly, general decision-making skill and risk literacy are 

distinguished from expert decision-making, which is specific to a domain of expertise. General 

decision-making skill, as reflected by correlations among decision-making tasks, is said to 

primarily reflect differences in (1) skilled use of deliberative heuristics (e.g., adaptive strategies 
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used to explore, interpret, and evaluate relevant information) and (2) representative 

understanding (e.g., highly contextualized and integrated understanding of how the decision 

problem relates to one’s own values, resources, and responsibilities). Traditionally, these 

conditions have been conflated with complexity in general, in which cognitive ability is thought 

to enable quick and efficient processing of information (e.g., cold, logical calculation). 

According to skilled decision theory, however, numeracy skills may tend to be associated with 

superior decision making via the use of adaptive strategies like “early selection” cognitive 

control, that allow a decision-maker to overcome processing limitations by pre-emptively 

narrowing the decision space in alignment with personal goals and values, and thus 

circumventing capacity limitations of cognitive ability and memory (Cokely et al., 2018). Data 

from direct tests of these explanations are scarce, and much remains to be learned about how to 

evaluate decision-making as a criterion. 

To date, there are few papers that connect numeracy to workplace decision making. Prior 

to understanding how numeracy influences decisions, it is necessary to specify what makes a 

good decision and the relevant contexts. 

Decision Quality 

 Research on decision quality as a performance criterion remains a neglected topic in I/O 

psychology (Dalal et al., 2010; Zhang & Highhouse, 2018). Instead, studies of organizational 

behavior tend to emphasize work performance as the “ultimate criterion” with which to evaluate 

the importance of other variables (Campbell & Wiernik, 2015). Performance is a 

multidimensional construct including dimensions such as productivity, rule compliance, and 

helping behaviors. Many performance taxonomies exist, yet few explicitly highlight decision 

quality as an outcome. Indeed, some frameworks imply the importance of decision criteria, 
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particularly those highlighting adaptability and planning (Griffin et al., 2007). Decision-making, 

or the choice of a course of action based on judgments of values, preferences, and other 

situational factors, can be thought of as a precursor to many kinds of performance in the 

workplace. After all, one must decide to perform. Decision quality also has implications beyond 

immediate performance, such as its role in safety behavior and setting organizational goals. 

Effective decision-making is essential for achieving desirable outcomes in organizations.  

Evaluating decisions can be done with respect to the quality of outcomes or processes. 

Yates (1990) defines a successful decision as one that produces an outcome at least as satisfying 

as that which would have been obtained had one chosen a different option. However, uncertainty 

makes it impossible to perfectly evaluate the quality of a decision. For example, a Poker player 

might lose a hand due to being unlucky, despite playing in a way that ought to have produced the 

highest likelihood of winning given the circumstances. For this reason, much of the research on 

judgment and decision-making refers to standards for the best processes. Leading standards are 

grounded in Bayesian probability and expected utility theory, which are arguably the best tools 

available for formally dealing with risk and uncertainty (Edwards, 1954; Savage, 1972).  

Hundreds of studies have shown how decision-makers adopt heuristics and biases that 

systematically deviate from normative standards (Kahneman, 2003; Tversky & Kahneman, 

1974). One of the central tenants of decision theory is that it is rational for people to make 

decisions in their own best interest (e.g., in accord with well-formed stable, ordered preferences). 

However, the world is simply too complex to always calculate an optimal response. A limited 

capacity for processing information requires simpler representations of events, which might lack 

necessary considerations or be too simplistic overall (Simon, 1947). Much of the earlier research 
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on decision-making has involved cataloging the ways in which people deviate from normative 

standards and the cognitive processes involved. 

Part of the challenge is that decision-making is inherently multidimensional and involves 

multiple cognitive processes (Yates & Tschirhart, 2006). Not all decision-making contexts are 

the same, meaning that situations might call for different modes of processing. According to 

dual-process theories of decision-making, decision quality is a function of the tradeoff between 

automated and controlled modes of thinking (Kahneman, 2013). Automated processes are fast 

and intuitive, whereas controlled processes are slow and analytical. The earliest forms of dual-

process theories, named default-interventionist theories, propose that decision quality stems from 

individuals’ ability to override intuitions with analytical processing (Frederick, 2005). More 

recent models have acknowledged that intuitive processes can sometimes result in superior 

decisions (Bago & De Neys, 2020; Kahneman & Klein, 2009). 

To date, one of the most comprehensive dual-process frameworks of human decision-

making is Stanovich West, and Toplak's (2016) tripartite model of rationality. Stanovich et al. 

(2016) proposed an “algorithmic” process that operates between pure intuition and reflection. 

According to this framework, decision tasks can be characterized by their degree of process-

dependence and knowledge-dependence. When prompted with a decision, the effectiveness of 

the decision-maker’s intuitive response is a function of their knowledge and its suitability for 

dealing with the decision. If the intuitive response is not sufficient, the decision-maker must (1) 

detect that an override is necessary and (2) carry out the override. In this case, the decision-

maker might algorithmically employ a learned strategy. Provided that a strategy is not readily 

available, dependence on information processing is at its highest. The decision-maker must 
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allocate substantial effort toward reflecting on the appropriate response. This introduces many 

ways in which individuals can differ in their ability to make good decisions. 

Decision-Making Competence 

 Similar to Stanovich and West’s (1999) conceptualization of a general decision-making 

skill (i.e., rationality), Parker and Fischhoff (2005) developed a battery of tests explicitly for 

measuring decision-making competence relevant for real-world applications. Rather than pulling 

tasks directly from previous laboratory studies, Parker and Fischhoff (2005) drew on standards 

for psychological assessment, such as using multiple indicators to measure a single construct 

(AERA et al., 2014). Bruine de Bruin et al. (2007) improved the original test, resulting in the 

Adult Decision-Making Competence (A-DMC) scales. In terms of published construct validation 

evidence, this is the most well-developed measure of general decision-making skill. It is more 

reliable than other batteries of heuristics and biases and correlates with some real-world 

outcomes (Parker et al., 2017). Although a single factor accounts for 25% to 30% of the variance 

in scores on heuristics and biases as measured by the A-DMC (Bruine de Bruin et al., 2007; 

Parker & Fischhoff, 2005), correlations between individual tasks are reported as low as .12. The 

following section breaks down each of the A-DMC scales from a workplace perspective. 

Resistance to Framing 

Whether communicating or receiving information, the context in which it occurs 

highlights different aspects of the content without changing the underlying message. The framing 

effect is the empirical observation that people systematically respond differently to otherwise 

equivalent information framed in different ways. Sometimes people use framing as a tactic for 

guiding decisions, like intentionally choosing discourse that promotes a particular vision of 

organizational culture (Werner & Cornelissen, 2014). Other times, framing can occur in less 
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obvious ways. In a laboratory study, Beck et al., (2017) found that subtle cues related to 

improving efficiency encouraged people to use shortcut behaviors with additional risks. 

There are varying degrees of framing effects, ranging from loose to strict definitions 

(Keren, 2011; Kuhberger, 2017). Toward the “looser” end, the part of the information that makes 

it equivalent across different linguistic representations is left ambiguous. Druckman (2001) 

distinguished between framing in mind and communication. Framing in mind refers to the 

mental representations that influence the interpretation of information, such as the case of 

political ideology. Framing in communication refers instead to varying linguistic representations 

of the same information. A message could be framed in terms of emphasis, in which particular 

aspects of the message are highlighted over others. It could also be framed in terms of logical 

equivalence, which is the “strict” definition. This refers to frames that differ in description, but 

are logically equivalent, as defined by mathematics, for example. 

Most empirical research is based on the “strict” definition of framing, in which the 

framing effect is operationalized as the difference in people’s average responses between two or 

more frames of logically equivalent information. Of these, a majority of studies manipulate 

framing on the basis of valence, i.e., framing information positively or negatively. Hundreds of 

studies have examined the framing effect and its many variations (Kuhberger et al., 1998; Steiger 

& Kuhberger, 2018). Framing has been investigated in laboratory settings as well as situations in 

which decisions had real-world stakes (Kuhberger, 2002). The common finding that individuals’ 

responses systematically differ between frames is often taken as evidence for human irrationality 

(Kahneman, 2000). According to normative theory, responses to equivalent frames ought not 

differ on the account of irrelevant information. It is worth noting that no pair of frames can ever 

be considered truly equivalent in terms of the information they communicate (Sher & McKenzie, 
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2011). Even logically equivalent frames may carry tacit implications that are detected by the 

recipient. Due to the challenge of effectively defining a complex concept such as framing, 

researchers have relied on typologies to understand the phenomena. Perhaps the most 

comprehensive of these was by Levin et al. (1998), who distinguished risky-choice, attribute, and 

goal framing. 

Risky choice framing 

Aside from earlier literature on communication, nearly all of the research on framing and 

decision making is influenced by Amos Tversky and Daniel Kahneman’s work in the late 1900s. 

They established the dominant paradigm for understanding decision making under risk, in which 

framing exemplifies the malleability of human decision making. Risky choice framing is a 

scenario in which the decision-maker chooses between two options: one option offers a certain or 

“sure-thing” outcome, whereas the other offers the probability of an outcome. The latter is the 

risky option. Each pair of options can be framed either positively or negatively. A quintessential 

example of risky choice framing is Tversky and Kahneman’s (1981) Asian Disease Problem, 

which consists of the following prompt: 

Imagine that the U.S. is preparing for the outbreak of an unusual Asian disease, which is 
 expected to kill 600 people. Two alternative programs to combat the disease have been 
 proposed. Assume that the exact scientific estimate of the consequences of the programs 
 are as follows: 

 
Participants were randomly assigned to one of two conditions, each with a different pair of 

options. Those presented with the positive frame chose between options A and B: 

• If Program A is adopted, 200 people will be saved. 
• If Program B is adopted, there is a 1/3 probability that 600 people will be saved, and 2/3 

probability that no people will be saved. 
 

Those presented with the negative frame chose between options C and D: 

• If Program C is adopted 400 people will die. 
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• If Program D is adopted there is a 1/3 probability that nobody will die, and 2/3 
probability that 600 people will die. 
 
The options are logically equivalent in both conditions. A 1 out of 3 probability of 600 

people either surviving or dying corresponds to an expected value of .33 × 600 = 400 people. 

When presented with the positive frame, 72% chose the Program A, whereas 22% chose the 

certain option when framed negatively. Under the risky choice paradigm, people have been 

shown to be systematically risk averse in the domain of losses and risk seeking in the domain of 

gains. The most dominant explanation of the framing effect is drawn from this finding. 

Prior to publishing the Asian Disease Problem, Kahneman and Tversky (1971; 1974) 

conducted similar studies with gambling tasks. In these earlier studies, risky choices were also 

framed in terms of gains and losses, but were strictly gambles without narrative explanations, 

and sometimes involved more than one probabilistic option. Moreover, participants responded to 

a collection of choice tasks, many of which were intentionally non-equivalent. This was some of 

the earliest research that formally described how people deviate from expected utility theory. 

Expected utility theory (Bernoulli, 1954) proposes that individuals calculate the expected values 

of alternatives under risk. Kahneman and Tversky (1979) specified prospect theory as the 

successor to expected utility theory. It re-specified the utility function to be nonlinear, such that 

utility is convex in the domain of gains and concave in the domain of losses. This explains the 

finding that people often select a gamble with lower expected value when it is framed as a loss. 

In the decades since the original formulation of prospect theory, the framing effect has 

replicated under many conditions (Kuhberger, 1998). However, there are many variations in 

observations in risky choice. One important distinction is between choice reversal and choice 

shift. The former is when the majority response between a pair of options reverses as a function 

of the frame, as was the case with Kahneman and Tversky’s (1981) original finding. Choice 
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reversal implies both risk aversion for gains and risk-seeking for losses. Later research found that 

bidirectional effects sometimes do not replicate (Kuhberger, 1998). Rather, choices shift, such 

that a framing effect is present for one condition, but not the other. For example, losses might 

loom larger while the difference certain vs. risky choice is negligible for gains. 

Attribute framing 

Levin et al. (1998) proposed that attribute framing is the “purest” form of the framing 

effect. It offers perhaps the greatest insight into the influence of descriptive valence because of 

its sheer simplicity. Attribute framing involves reframing aspects of the same information either 

a positive or negative light, after which the recipient makes an evaluation, usually scored with a 

Likert scale. In the earliest example of attribute framing, Levin and Gaeth (1988) found that 

perceptions of the quality of ground beef were influenced by whether it was labeled as 75% lean 

or 25% fat, which correspond to positive and negative frames, respectively. In addition to being 

simpler, attribute framing is perhaps the most representative of tasks encountered in the real 

world. Many people build careers as marketers and advertisers figuring out the most effective 

frames for influencing consumer decisions. 

Many accounts have been proposed to explain the attribute framing effect, all of which 

share a similar theme. Levin et al. (1998) suggested that information processing is at the root, in 

that positive and negative labels elicit favorable and unfavorable associations in memory, 

respectively. This explanation, applicable to valence frames of all sorts, subsumes prospect 

theory, which is specific to decisions under risk. Framing a choice in terms of gains or losses is 

sometimes considered analogous to framing it positively or negatively (e.g., Peters & Levin, 

2008). In attribute framing, the effect is almost always described in terms of a choice shift, as 

opposed to the choice reversal sometimes observed in risky choice.  
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Research has identified a number of boundary conditions for each of the different types 

of framing effects. People are sensitive to changes in language, which can be modified to 

moderate the size of framing effects. Mandel (2014) conducted a series of experiments in which 

the Asian Disease Problem frames were manipulated to be “exact,” (i.e., “exactly 200 people will 

be saved”) or qualified with “at least” (i.e., “at least 200 people will be saved”). Framing effects 

disappear in the former case, but are apparent in the latter, suggesting that framing can be 

attributed to how people represent magnitude by default. Mandel (2014) argued that framing bias 

is evidence for human irrationality rests on the assumption that numbers used to represent 

expected values of options are interpreted as exact values. 

Indeed, a large part of the framing effect is attributed to how individuals make sense of 

the numbers. Multiple studies have found that people with higher numeracy exhibit smaller 

framing effects (Peters et al., 2006; Peters & Levin, 2008). Similar explanations have been 

offered for attribute and risky choice framing, in which highly numerate people are thought to 

transform framed magnitudes into their normative equivalents (Peters, 2012) and by being more 

likely to draw meaning from number comparisons in judgments (Peters et al., 2006). Less 

numerate people, on the other hand, appear to integrate fewer pieces of information and are more 

heavily influenced by non-numeric information sources, such as mood. Likewise, cognitive 

ability is thought to suppress the framing effect for similar reasons (Simon et al., 2004; 

Stanovich & West, 1998). People with a higher capacity for processing information are more 

likely to reflect on the task and draw normative conclusions (cf. Corbin et al., 2010).  

Recognizing Social Norms 

When making decisions, people often attempt to integrate the many viewpoints of others 

affected by the decision (Mumford et al., 2008). Organizations develop cultures and routines that 



 
 

16 
 

determine the acceptable criteria for everyday decisions. Social norms, defined as shared 

perceptions of how one should behave and make decisions, are important criteria for social 

environments. Some definitions of decision quality emphasize the role of accountability, such 

that a “good” decision is one perceived by others to have considered the appropriate cues and 

maintain consistency with processes that were determined by the group (Lerner & Tetlock, 

1999). Social norms are discussed frequently in the study of occupational health and safety 

(Fugas et al., 2011; Hammer et al., 2004). Perceived social norms can determine when someone 

decides to follow a procedure as it is written, or take shortcut behaviors that save time while 

increasing risk of injury. Making decisions that correspond to social norms requires assessing 

them accurately. Productivity is determined in part by how quickly and effectively newcomers 

can identify these norms and socialize into new organizations (Chao et al., 1994). 

Under/Overconfidence 

People often believe they are more competent, intelligent, and rational than reality 

suggests. Such overconfidence is often attributed as the cause of many decision-making errors, 

including highly influential disasters such as the British Petroleum Deepwater Horizon explosion 

in 2010 (Sylves & Comfort, 2012). Daniel Kahneman (2013), who won the Nobel Memorial 

Prize in Economics for his research on thinking errors, quipped that overconfidence (specifically, 

optimism bias) is the most significant error of them all. People who are overconfident might take 

on projects that are beyond their abilities, allocate less effort toward learning, or mislead 

coworkers toward believing outcomes are guaranteed when the reality is uncertain (Meikle et al., 

2016; Vancouver & Kendall, 2006). Likewise, under-confidence can lead to maladjustment in 

the workplace, leading one to miss out on opportunities or exhibit indecisiveness at critical 

stages during a project (Potworowski, 2010). Although confidence itself can be an important and 
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positive influence on motivation and interpersonal relationships, it is the proper calibration of 

confidence regarding one’s judgments that is a critical decision-making skill. 

Overconfidence can manifest itself in a variety of ways. Moore and Healy (2008) 

classified three ways in which confidence is over/under-estimation, over/under-placement, and 

over/under-precision. Overestimation refers to inflated perceptions of one’s ability, how well 

they are performing, and the likelihood of achieving outcomes. This is related to optimism bias, 

which is often attributed to projects that fail to meet expectations (Lovallo & Kahneman, 2003). 

Overplacement is when one perceives themselves to be more competent or likely to achieve an 

outcome relative to others, as illustrated by the “better-than-average” effect, which describes 

how people perceive themselves to be better decision-makers than others (Pronin et al., 2002). 

Lastly, overprecision refers to being more certain about beliefs than is warranted by the available 

information. 

Some people are better at calibrating their judgments than others. Kruger and Dunning 

(1999) coined the “unskilled and unaware” phenomenon, in which the people lower competence 

are the most overconfident in terms of calibration. On the contrary, those who are the most 

competent tend to be well-calibrated, if not slightly underconfident in their abilities. People with 

higher cognitive ability are more likely to acquire knowledge and skill at a faster rate 

(Ackerman, 1988). Following this reasoning, workers with higher cognitive ability are expected 

to be more accurate in their self-judgments on account of being more skilled. However, cognitive 

ability is not always a useful proxy of acquired knowledge and skill. Studies that directly 

compared ability test scores to judgment calibration found a negligible relationship between 

them (West et al., 2012). 
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Skilled decision theory proposes that numeracy reflects a level of metacognitive savvy, in 

which people are more likely to deliberate and calibrate their judgments (Cokely et al., 2018). 

Ghazal et al., (2014) reported data a large sample of highly educated people who evaluated their 

confidence in their judgments on a handful of paradigmatic decision-making tasks. In both 

samples, relationship between numeracy and confidence judgments of accuracy was curvilinear, 

indicating those with the highest and lowest numeracy were more calibrated in judging their 

accuracy. The correlation between judgmental accuracy and confidence was moderated by 

numeracy, such that those with higher numeracy were better calibrated.  

Applying Decision Rules 

When making choices among options with multiple criteria, there are normative 

standards for choosing options with the optimal value across all the attributes. The field of 

operations management is devoted to applying computer models for optimally solving 

organizational problems (Tillman & Cassone, 2012). For example, one might rely on a tool to 

optimize the trade-off between the quality of a production line and the time required to produce a 

set quantity. On the other hand, people left to their own devices tend to rely on simple rules that 

enable them to make decisions more quickly, especially under constraints such as time pressure. 

Although these strategies reduce effort, they can produce suboptimal results. Payne et al. (1993) 

provide many examples of decision rules, some of which were used for the development of the 

A-DMC. The “equal weights” rule involves choosing the option with the overall highest quality 

across all of its attributes. The “elimination by aspects” rule involves selecting the option that 

meets a minimum threshold for the most important attribute. When two options share the same 

value of the most important attribute, the same rule is applied to the next attribute, and so on 

until one option’s attribute has a higher value than the other. 
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One notable example of applying decision rules in organizations is deciding how to 

decide. In the 2015 letter to Amazon.com shareholders, Jeff Bezos described some of the 

company’s heuristics for making decisions in a fast-paced, competitive environment. Always 

deliberating on decisions and waiting until one has acquired enough information to make the 

rational choice can be slow, costly, and ineffective. One way to decide whether to invest 

additional effort into a decision is by classifying it as a “one-door” or “two-door” decision. One-

door decisions are irreversible, consequential, and thus require careful consideration. In contrast, 

two-door decisions are reversible, have short-lived consequences, and can be reconsidered later 

on. By making this distinction, Amazon’s board attempts to maintain the adaptability of a startup 

despite being one of the world’s largest employers. 

Among normatively superior decision-makers, one possibility is that higher cognitive 

ability enables faster and more efficient computation of expected values and axiomatic 

principles. In this case, better decision-makers are less likely to rely on simple strategies. Cokely 

and Kelley (2009) tested this proposition by collecting think-aloud responses from university 

students making a series of risky choices in the laboratory. Contrary to the prior suggestion, only 

a small minority of participants explicitly calculated the optimal response. Indeed, the higher 

performers deliberated for longer, but the nature of deliberation involved personalized heuristic 

strategies (e.g., imagining what the payoff would be like) instead of multi-attribute optimization. 

Cokely and Kelley (2009) proposed that people with higher cognitive ability (or numeracy) are 

better at narrowing the search space of possible options early in the process of making a choice, 

which eliminates the need for effortful computation. 

Although simple rules are often cited for leading to suboptimal choices, research on real-

world decision-making outside of the laboratory has shown that simple rules sometimes out 
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perform more complex ones, even computerized algorithms (Gigerenzer, 2008). This perspective 

draws from the methods for predicting out-of-sample events beyond the available information, in 

contrast to traditional statistical modeling, which tries to find the optimal fit to existing data. To 

date, Cokely and Kelley’s (2009) finding is one of the strongest pieces of evidence for skilled 

decision theory because it provides explicit evidence of individual differences in the cognitive 

processes involved in risky choice. 

Consistency in Risk Perception 

Making decisions requires judging the probabilities of events that might occur. Risk 

perception is a necessary antecedent to the implementation of decisions because one cannot 

respond to risks that are not recognized. For this reason, risk perceptions are frequently studied 

in the context of project planning (Zhang et al., 2015). When a decision-maker is able to 

accurately assess risks (e.g., potential safety concerns), they can anticipate and take 

precautionary action. Workers who perceive risks to be higher are more likely to engage in safety 

compliance behaviors (Xia et al., 2017). Many characteristics of the individual and the 

environment can influence the extent to which actions are perceived as risky. For example, 

catastrophic risks (e.g., caustic burn) tend to be perceived as more severe than chronic risks (e.g., 

long-term effects of radiation exposure). 

Normative decision theory posits that risk perceptions (i.e., probability judgments) should 

be consistent with logical rules. Many people have inaccurate or inconsistent perceptions of risk 

relative to objective reality (Fischhoff et al., 1978). First, risk perceptions must have temporal 

reliability (i.e., risk of event happening over longer period of time is greater than risk of the event 

happening in a shorter span of time). Second, risk perceptions must follow principles of set 

theory (i.e., risk of any event from a set of events is greater than for any subset of that set). 
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Lastly, elicited probabilities of complementary events (e.g., “A” and “not A”) must sum to 

100%. 

Resistance to Sunk Cost 

One of the tenants of decision theory is that people ought to make decisions based on 

future outcomes, regardless of what happened in the past. This contrasts with decision-making 

behavior named the sunk cost effect, in which one decides to follow through with an investment 

once it loses its value (Arkes & Blumer, 1985; Roth et al., 2015). What is now recognized as 

sunk cost was originally named the “Concorde fallacy” by Dawkins and Carlisle (1976) after an 

incident in which British and French governments continued to fund development of the 

Concorde supersonic jet after it was apparent that doing so was not economically viable. Arkes 

and Blumer (1985) demonstrated that the phenomenon generalized across many situations. In 

their experiments, people who spent more on movie tickets attended more shows, opted for a less 

desirable vacation that cost more, and reported greater willingness to continue prior investments 

in failing projects. 

The sunk cost is thought to appear frequently in the daily operations of organizations. 

One might find that a project is no longer relevant to an organization’s goals yet follow through 

with putting time into it since the financial costs were already paid for. The sunk cost effect is a 

precursor to escalation of commitment, which is when one decides to invest additional resources 

into an investment that lost its value (Woods, 2015). Although most frequently studied in 

financial scenarios (in which traders can sink their money into high-risk investments), sunk costs 

are also studied in the context of project management, in which the time and resources needs to 

be allocated wisely. Many anecdotal examples of sunk cost have been reported in articles about 

project management decisions. For example, the City of Denver continued to maintain an 
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automated baggage handling system throughout the 1990s and early 2000s despite failed tests 

and airlines opting to use their own processes (Shore, 2008). When the system was finally 

abandoned, stakeholders in the project were still liable for $1.5 billion. 

Who Makes Good Decisions? 

An important concern for personnel selection and assessment is eliciting the knowledge, 

skills, abilities, and other characteristics that comprise superior decision making. Although the 

differential psychology of decision making is rather new, more than a century of research on 

individual differences offers a starting point for building theoretical foundations. Much of the 

recent literature has asked whether foundational cognitive abilities are sufficient for explaining 

individual differences in decision making (Bruine de Bruin et al., 2020; Stanovich, 2009). By 

examining the statistical organization of test scores, we can make inferences about the abilities 

underlying those test scores, which provide a measurement of thinking skills relative to others. 

A person who generally makes good decisions may be described as “intelligent” or 

“rational.” Intelligence generally refers to the ability to successfully accomplish one’s goals in a 

given environment (Mackintosh, 2011).  However, despite scholars writing about intelligence for 

centuries, there is considerable debate about the “best” definition of the construct and about the 

underlying causes and mechanisms that explain individual differences. For example, some 

researchers emphasis differences in the mechanisms of intelligence in terms of the 

neurophysiology responsible for processing information (Jung & Haier, 2007). Intelligence has 

also been described as “the ability to deal with […] complex information” (Gottfredson, 1997, p. 

79) and “the ability to learn” (Schmidt, 2002, p. 188). Boring (1923) went as far to assert that 

“intelligence is what the tests test,” (p. 23). There appears to be at least a kernel of truth to this 

last definition: Judgments about one’s intelligence are generally based on their scores on mental 
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tests. Perhaps in part because of these and related debates, many researchers refer to “cognitive 

ability” instead of “intelligence” when describing the broad domain of thinking skills reflected in 

these assessments. 

Over a century of research has demonstrated that scores on tests involving problem-

solving and reasoning are strongly correlated with each other, indicating that an underlying 

factor may be the common cause of many desirable outcomes in work and life (Jensen, 1998; 

Spearman, 1904). This factor, when expressed as the first principal component of a factor 

analysis, is often called “g.” General mental ability (GMA) is another phrase used to describe the 

common underlying factor derived from a set of mental tests, without strict requirements on how 

that factor is derived. For example, a single test might be described as an indicator of GMA. In 

this view, test scores are solely comprised of variance attributed to GMA and variance specific to 

the test. Volumes of research have contrasted models in which GMA is a common cause of test 

scores versus those in which each test (or set of tests) represents a unique ability independent of 

shared variance with other abilities (Schneider & McGrew, 2012; Thurstone, 1938).  

Developments in latent variable modeling allowed for compromises between the different 

perspectives of cognitive ability (Gustafsson & Balke, 1993). Hierarchical and bifactor models of 

mental test scores include both general and specific ability factors. To date, perhaps the most 

comprehensive structure of cognitive abilities is the Cattell-Horn-Carroll (CHC) model 

(Schneider & McGrew, 2012). This model is an extension of Cattell’s (1941) distinction between 

fluid (Gf) and crystallized ability (Gc), in which cognitive ability tests are distinguished by the 

extent to which they measure information-processing capabilities versus acculturated knowledge. 

Carroll (1993) later expanded the model to incorporate over a dozen abilities subordinate to 

GMA, although fluid and crystallized ability remain the dominant factors. 
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Fluid ability is defined as the general capacity to solve novel problems, encompassing 

deductive and inductive reasoning. Descriptions of fluid ability are similar to those of GMA, 

enough so that some researchers consider them to be the same. Indeed, Gustafsson and 

colleagues’ models demonstrated that fluid ability loads more strongly on GMA than any other 

abilities (Gustafsson, 1984; Undheim & Gustaffson, 1987). One of the key tenants of fluid ability 

is that it is considered to be “culture-free.” That is, it is thought to capture an information-

processing capability that is independent of knowledge. Stanovich (2012) described fluid ability 

as the “algorithmic” mind that is responsible for decoupling elements of the decision scenario, 

allowing one to perform mental simulations of potential outcomes. It can also be considered part 

of the “reflective” mind, which encompasses attention and executive functions. Fluid ability is 

strongly correlated with tests of attentional and working memory processes. 

Carroll’s (1993) model partitioned fluid ability into deductive, inductive, and quantitative 

reasoning factors. Reviewing test items used as indicators of quantitative reasoning, many can be 

classified as conventional numeracy, which includes foundational arithmetic, algebra, and 

geometry (Ghazal, 2014). This differs from the aforementioned research that measured statistical 

numeracy: probabilistic reasoning and mathematical operations (e.g., converting decimals to 

fractions). Cokely et al. (2018) pointed out that “inductive reasoning” as used to describe fluid 

ability tests is different from “inductive logic” used to describe decision making under 

uncertainty. Tests like Raven’s Progressive Matrices are considered tests of inductive reasoning, 

but one can ultimately deduce the single, correct answer.  

Crystallized ability reflects broad acculturated knowledge that is acquired in formal 

education and over the course of a lifetime. Carroll (1993) identified many facets of crystallized 

ability including verbal reasoning, reading comprehension, spelling, grammar, communication, 
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lexical knowledge, phonetic coding, and cloze abilities (i.e., inferring the missing word in a 

sentence or paragraph). Decision-making competence may be considered a special case of 

crystallized ability, reflecting specific knowledge that had been gained through learning and 

experience. Stanovich (2012) describes crystallized ability as part of the “autonomous” mind, 

which reflects a set of rules and procedures that individuals are capable of intuitively applying in 

decision situations. Nevertheless, Stanovich (2012) asserts that crystallized (and fluid) ability 

tests fail to capture the full range of knowledge structures relevant to decision-making. 

To date, Allan (2018) conducted one of the most comprehensive studies of cognitive 

abilities and decision making. Part of her study was an exploratory factor analysis of test scores 

from participants who completed five hours of assessments. This analysis revealed that scores on 

numeracy and decision-making tests loaded together on a single factor that was correlated, but 

distinct from other cognitive abilities. One reason that numeracy has been repeatedly shown to 

have incremental validity over cognitive ability is that it represents an important part of the 

construct domain that is often neglected in commonly used assessments. To the extent that 

making decisions under risk and uncertainty are unique from the processes tapped by cognitive 

ability tests, there are opportunities for expanding assessment systems. 

Purpose 

The present study offers insight into the use of numeracy tests in the workplace by 

integrating concepts from I/O psychology and judgment and decision making. Studies have 

repeatedly demonstrated evidence of numeracy as a predictor of normatively superior decision 

making even after statistically controlling for cognitive ability (Cokely et al., 2018). While the 

evidence of incremental validity is suggestive, there are several unanswered questions. The 

purpose of the present study is to provide a direct test of the relative importance of numeracy for 
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decision-making competence, as compared to other cognitive abilities (specifically, crystallized 

and fluid ability), and to examine the extent to which the relations between numeracy and 

performance differs across the multiple dimensions of decision-making competence. Drawing on 

different perspectives of GMA, this dissertation tests competing hypotheses of numeracy as a 

unique vs. redundant predictor of decision-making. In doing so, it addresses the following 

research questions: 

Research Question 1: What is the relative importance of numeracy and cognitive abilities 
 for predicting decision-making competence? 

 
Research Question 2: Does the relative importance of numeracy and cognitive abilities 

 vary across dimensions of decision-making competence? 
 
When considering a new predictor for workplace applications, best practices involve 

assessing its validity relative to existing tools (Van Iddekinge & Ployhart, 2008). The use of 

cognitive ability tests for assessing a broad range of thinking skills across jobs is already well-

established in I/O psychology (Dilchert, 2018). Their widespread use is guided by two 

theoretical principles: (1) that various ability tests measure the same underlying construct of 

GMA and (2) that the predictive validity of GMA is similar across jobs (Schmidt & Hunter, 

1998). The first principle is supported by volumes of research adopting the unidimensional view 

of GMA as the root cause of performance across various problem-solving tasks (Ree et al., 1994; 

Ree & Earles, 1991). This means that scores on any cognitive task measure the same “g” 

regardless of domain (i.e., “indifferent to the indicator.”). The second principle is that higher 

GMA is generally advantageous regardless of the job, as demonstrated by it being a robust 

predictor of job performance (Schmidt & Hunter, 1998). 

Given these principles of cognitive ability testing, researchers have raised concern about 

construct proliferation, defined as the use of multiple terms or measures for the same underlying 
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construct (Shaffer et al., 2016). One of the major contributions of Schmidt and Hunter’s (1998) 

meta-analysis was that it contrasted with previous studies that insisted on developing unique tests 

for each job. There is little debate that tests of job-relevant knowledge and skill are stronger 

predictors than cognitive ability in practice (Sackett et al., 2017), but they are less generalizable 

by definition. For example, numeracy might outperform an ability test for predicting 

performance in jobs that involve mathematics (e.g., accountant, engineer), but is less likely to be 

as useful for jobs that do not (e.g., dental hygienist, writer).  

Researchers need to make informed decisions about the trade-off between 

generalizability and specificity in assessment. Conceptually, numeracy is a skill that can be 

developed, yet numeracy test scores are likely to reflect levels of cognitive ability as well. 

Indeed, numeracy test scores are correlated with scores on ability tests (e.g., Brooks & Pui, 

2010). Theoretically, people with higher cognitive ability are more likely to attain higher levels 

of knowledge and skill over time, which subsequently results in better performance across tasks 

(Ackerman, 1988; Hunter, 1986). This investment theory proposes that foundational mental 

capacities such as fluid ability correspond to limited resources that are invested more or less into 

cognitive development. If variance in decision-making competence attributable to numeracy is 

largely shared with cognitive ability, it would be evidence that numeracy tests are redundant with 

the ability tests already used in many organizations.  

From a theoretical perspective, high levels of shared variance would point to the potential 

value of g-theory interpretations of decision making. Blacksmith et al. (2019) adopted a g-theory 

approach to validating the A-DMC by including it within a broader factor analysis of cognitive 

ability measures. Blacksmith et al. (2019) tested competing models in which decision-making 

competence was constrained under the common factor model or as distinct, yet correlated with 
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cognitive ability. The latter was a better fit to the data, but the correlation between cognitive 

ability and decision-making competence was .96 after correcting for measurement error. Note 

that Blacksmith et al. (2019) included numeracy as an indicator of cognitive ability in their 

model. Ree and colleagues emphasize the importance of g for interpreting results from 

incremental validation studies (Ree et al., 1994; Ree & Earles, 1991). If numeracy is just one 

indicator of a broader construct, then its usefulness as a distinct part in assessment batteries is 

limited. Whatever construct-relevant variance is captured by numeracy tests may be the same as 

that captured by ability tests already being widely used. Accordingly, and with respect to 

Research Question 1, I examined the following hypothesis. 

Hypothesis 1: Numeracy is not relatively important for predicting decision-making 
 competence compared to crystallized and fluid ability. 

 
Many studies have already demonstrated the incremental validity of numeracy over 

cognitive ability for predicting performance on decision-making tasks (Allan, 2018; Del Missier 

et al., 2012; Peters et al., 2006). However, these small increments in criterion-related validity 

might not represent the relative importance of numeracy for prediction per se (LeBreton et al., 

2007; Nathans et al., 2012). Although numeracy can be encompassed in the measurement 

structure of broader cognitive abilities, recent studies on the use of specific ability tests suggests 

they may be underutilized in practice. Lang et al. (2010) demonstrated how shared variance 

between predictors in incremental validation studies is always attributed to those entered first in 

the model. GMA can appear to be the most important predictor in incremental validation studies 

while specific abilities are the strongest single predictors, as demonstrated by relative importance 

analysis. Using one variation of this approach named dominance analysis, Lang and Kell (2019) 

showed that each specific ability is a unique predictor of job income whereas hierarchical 

regression showed negligible incremental validity over GMA. 
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Previous research has already demonstrated that numeracy has incremental validity over 

cognitive ability for predicting decision making, indicating that numeracy tests are at least not 

fully redundant with existing measures (Allan, 2018; Del Missier et al., 2012; Peters et al., 

2006). Allan (2018) analyzed a broad array of cognitive abilities and decision-making tasks. 

Aggregating all the variables, she observed that numeracy and decision-making performance 

corresponded to a factor distinct from other cognitive abilities (specifically fluid and crystallized 

ability). Contrary to Blacksmith et al., (2019), Allan (2018) emphasized numeracy as a proxy of 

decision-making skill underrepresented by traditional ability tests. 

Few studies have examined decision-making skills in the workplace (cf. Ceschi, 

Costantini, et al., 2017; Ceschi, Demerouti, et al., 2017), let alone validated measures of 

decision-making skills against established workplace criteria. To the extent that numeracy 

uniquely accounts for variance in decision-making competence beyond cognitive ability, it may 

serve as a proxy for assessing decision-making in the workplace. Whereas interventions targeted 

at improving cognitive abilities are largely ineffective (Melby-Lervåg et al., 2016), numeracy 

deficits can be mitigated using well-designed visual aids and risk communications (Garcia-

Retamero & Cokely, 2017). Numeracy tests might serve as useful tools in place of or in 

combination with cognitive ability tests for identifying individuals and groups at risk of making 

poor decisions in the realms of work performance, safety, and other organizational behaviors. 

Numeracy tests require only half the time to administer relative to ability tests like the Wonderlic 

(Cokely et al., 2012). At the very least, unique variance in the criterion attributable to numeracy 

would be evidence of its usefulness in selection beyond tests of cognitive ability. Accordingly, 

and with respect to Research Question 1, I examined the following hypothesis. 

Hypothesis 2: Numeracy is relatively important for predicting decision-making 
 competence compared to crystallized and fluid ability. 
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Just as the multidimensional nature of cognitive abilities needs to be considered for 

assessment, so does that of the performance criterion (Murphy & Shiarella, 1997). The A-DMC 

was intended to be multidimensional, although its dimensions were not organized the way in 

which the authors expected (Bruine de Bruine et al., 2007; Parker & Fischhoff, 2005). Studies of 

individual differences in decision-making tend to emphasize the shared variance between 

dimensions, thus modeling decision-making competence as a unidimensional construct. 

Although the general factor model provides a better fit to the data than alternative measurement 

models, other evidence for the unidimensionality of decision-making competence is weak. Low 

correlations between the A-DMC subscales and indicate meaningful differences between the 

components, even if they share lots in common. 

Stanovich et al.’s (2016) framework for organizing the cognitive processes involved in 

decision making can be used to form expectations of the processes involved in decision-making 

competence. In their broader assessment of decision-making performance (named the 

Comprehensive Assessment of Rational Thinking (CART), Stanovich et al. (2016) distinguished 

between knowledge- and process-dependence. Decision tasks with high knowledge-dependence 

can be performed quickly and accurately having learned the necessary information (with the 

exception of cases in which the decision maker one has “contaminated” information, e.g., false 

beliefs). Decisions with high process-dependence require higher levels of cognitive processing to 

integrate multiple sources of information and exert control over intuitive errors. 

Although Stanovich et al. (2016) did not collect any data on the A-DMC, they described 

how they would expect the A-DMC scales to align with these dimensions, and made connections 

to their own assessment when possible (e.g., the CART includes a measure of sunk cost, but not 

social norms). One apparent feature of this framework is that knowledge- and process- 
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dependence are not mutually exclusive. As part of assessing the relative importance of numeracy 

and cognitive ability for predicting decision-making competence and its dimensions, the present 

study will estimate the attributable variance that is either shared or unique to each of the 

predictors. Dimensions with high knowledge- and process-dependence (e.g., Consistency in Risk 

Perception) may be expected to be attributable to greater proportions of shared variance than 

dimensions with high demands along one of the continua. 

Fewer studies have examined how the criterion-related validity of cognitive abilities vary 

across the dimensions of decision-making competence. To understand how decision-making 

changes with aging, researchers have distinguished between decisions that rely on fluid and 

crystallized ability (Finucane & Gullion, 2010; Li et al., 2013). Scores on tests of fluid ability 

tend to peak around the age of 20 years, after which they decline as people get older (Staff et al., 

2014). In contrast, crystallized ability tends to increase with age, although the rate can slow with 

time and potentially reach an asymptote (Beier & Ackerman, 2005). These patterns have been 

used to explain why older adults tend to perform better on some decision-making tasks and 

worse on others. For example, Applying Decision Rules can require sustained attention and 

processing of alternatives, which can become more difficult with age. Crystallized ability can 

compensate for declines in fluid ability via decision rules retrieved from memory. These 

differences have implications for choosing which predictors to use in workplace assessment. The 

multidimensionality of performance criteria has been discussed at length in the literature on 

assessment in organizations (Edwards, 2001; LeBreton et al., 2007). That performance (and 

decision making) encompasses a broad range of dimensions is justification for using multiple 

predictors in assessment, which may be weighted corresponding to assessment goals. It is 

possible that the proportions of unique and shared variance attributable to numeracy and 
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cognitive ability varies across dimensions of decision-making competence. If so, this would offer 

insight into differences in cognitive processes involved in decision-making tasks, which could 

inform ways of optimally predicting decision-making under different weighting schemes. 

How the relative importance of numeracy differs across dimensions of decision-making 

competence provides insight into the generalizability of numeracy tests. Many conventional tests 

of decision-making, including some of those in the A-DMC, explicitly rely on quantitative 

reasoning. For example, resistance to framing involves basic transformation of numbers, such as 

realizing that losing 20% is the same as keeping 80%. To this extent, transfer of identical 

elements is expected, and often considered for jobs where direct assessment of knowledge and 

skills are recommended. One of the assertions of skilled decision theory is that numeracy 

encompasses self-regulatory skills that are relatively unassessed by cognitive ability tests 

(Cokely et al., 2018). Various studies have begun to elicit the self-regulatory skills tied to 

numeracy, but rarely distinguish how these are unique from those reflected in cognitive ability 

(Ashby, 2017; Ghazal et al., 2014). Research Question 2 addresses the generalizability of 

numeracy for predicting different dimensions of decision-making. Accordingly, and with respect 

to Research Question 2, I examined the following hypothesis. 

Hypothesis 3: Numeracy is relatively important for predicting decision-making 
 competence compared to crystallized and fluid ability, but its importance varies across 
 dimensions of decision-making competence. 

 
Research on aging set a precedent for the relative importance of fluid and crystallized 

ability to vary across dimensions of decision-making competence (Bruine de Bruin et al., 2014). 

Whether this variability is consistent within a cross-sectional sample of young adults has yet to 

be determined. More importantly, it remains unknown how numeracy functions relative to these 

cognitive abilities. Should numeracy account for a proportion of variance in A-DMC scales that 
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are not explicitly mathematical, it would provide support for recommendations about the utility 

of numeracy as a predictor of decision quality in performance domains where mathematics does 

not figure prominently (Cokely et al., 2018). 

Method 

Participants 

Data were collected as part of a larger research effort. The present study aggregated data 

from two samples: 309 undergraduate (63.7% female) students from the University of Oklahoma 

(OU) (Allan, 2018) and 46 (28.3% female) undergraduate students from Michigan Technological 

University (MTU). Both samples were recruited from the subject pools at their corresponding 

universities. Each participant received credit toward a psychology course for their participation. 

Both studies involved a sequence of online assessments including tests of numeracy, cognitive 

ability, and decision making. Scores were aggregated into a total sample of 355 participants. 

Demographically, the total sample contained 22 (6%) Hispanic, 17 (5%) American Indian or 

Alaska Native, 33 (9%) Asian, 25 (7%) Black or African American, and 15 (4%) Other. 

Measures 

Crystallized ability. The Wonderlic Personnel Test (WPT) is a well-established reasoning 

test designed explicitly for personnel selection (Wonderlic, 2007; Wonderlic & Hovland, 1939). 

Although the WPT is frequently considered a direct test of GMA, its content (e.g., analogical, 

logical, mathematical, and verbal reasoning) is representative and more strongly correlated with 

reading comprehension and acculturated knowledge (Hicks et al., 2015; Matthews & Lassiter, 

2007). Participants were allowed 12 minutes to answer 50 items correctly. 

Fluid ability. Participants completed Bors and Stokes' (1998) abbreviated version 

ofRaven's (1936) Advanced Progressive Matrices (APM). The APM is considered among the 

best measures of fluid ability and one of the most representative tests of GMA (Carroll, 1993; 
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Gustafsson, 1984). One reason that APM is effective at measuring fluid ability is that it excludes 

content that would otherwise introduce test score variance attributable to language and 

acculturated knowledge. The test comprised of 12 items in multiple choice format. Participants 

were prompted to select one figure from a list of six options that completes a pattern in which 

one of the pieces is missing. Items were presented in order of increasing difficulty. 

Numeracy. The Berlin Numeracy Test-Schwartz (BNT-S) combines three items from 

Schwartz et al.'s (1997) numeracy test and four items from Cokely, Galesic, Schulz, Ghazal, & 

Garcia-Retamero's (2012) Berlin Numeracy Test developed for general and highly education 

populations, respectively. Together, these 7 items allow for discriminability across the full range 

of numeracy in the general population. Test items cover probability and statistics like judging 

proportions, comparing fractions, and estimating conditional probabilities. For example: 

In a forest 20% of mushrooms are red, 50% brown and 30% white. A red mushroom is 
 poisonous with a probability of 20%. A mushroom that is not red is poisonous with a 
 probability of 5%. What is the probability that a poisonous mushroom in the forest is 
 red? 

 
Decision-making competence. The A-DMC comprises six scales: Resistance to Framing, 

Recognizing Social Norms, Under/Overconfidence, Applying Decision Rules, Consistency in 

Risk Perception, and Resistance to Sunk Costs. Bruine de Bruin et al.'s (2007) original validation 

study included a 7th scale named Path Independence, which was excluded from subsequent 

research due to poor reliability and validity (e.g., Del Missier et al., 2010). The A-DMC items 

are publicly available from the Society for Judgment and Decision Making. Total A-DMC scores 

were calculated as the arithmetic mean of the 6 standardized subscale scores. Reports of the A-

DMC’s internal consistency range from .39 to .77 as measured by Cronbach’s alpha. In the 

following section, internal consistency (α) and test-retest reliability (rtt) coefficients are the 

values reported by Bruine de Bruin et al. (2007). 
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Resistance to Framing (α = .62; rtt = .58) is comprised of 14 items that described a 

situation and prompted participants to judge their relative preference between two options on a 

scale of 1 (i.e., definitely the first option) to 6 (definitely the second option). Seven of the items 

were risky choice frames in which participants chose between a certain and risky option that 

were framed in terms of gains or losses (e.g., the Asian Disease Problem described earlier). 

Seven of the items were attribute frames in which participants evaluated positively and 

negatively framed versions of the same items (e.g., quality of ground beef described as 80% lean 

or 20% fat). Sets of positive and negative frames were presented separately, with other A-DMC 

tasks between them. Scores were calculated as the mean absolute difference between ratings for 

the positive and negative frames of each item. 

Recognizing Social Norms (α = .64; rtt = .46) is comprised of 16 pairs of items 

corresponding to a set of behaviors (e.g., “Do you think it is sometimes OK to not be on time for 

appointments?”). Participants self-reported whether they engage in each of the behaviors, 

followed by estimating the proportion of the population they believed do so (e.g., “Out of 100 

people your age, how many would say it is sometimes OK to not be on time for appointments?”). 

The normative proportion was specified as the proportion of people in the sample who reported 

engaging in the behavior. Each participant’s score was the rank-order correlation between their 

estimates of the population proportion and the actual proportions derived from the sample. 

Under/Overconfidence (α = .77; rtt  = .47) was measured with 34 true or false statements 

derived from reference guides to a variety of topics (e.g., “Stress makes it easier to form bad 

habits,” “Self-employed people pay the same amount of taxes as people who work for an 

employer.”) After specifying whether a statement was true or false, participants rated their 

confidence in their answer on a scale from 50% (just guessing) to 100% (absolutely sure). Scores 
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were calculated as 1 minus the absolute difference between mean confidence rating and 

percentage correct, such that higher scores reflect more calibrated performance. 

Applying Decision Rules (α = .73; rtt = .77) comprised of 10 items measuring the ability 

to follow the appropriate rule when choosing among options with multiple features (e.g., 

elimination by aspects, satisficing, lexicographic, and equal weights rules). For example, 

participants were told that a hypothetical person is buying a DVD player. There were 5 choices 

involving DVD players with various features. Scores are the number of correct responses. For 

example: 

    Features   

  Picture 
Quality 

Sound 
Quality 

Programming 
Options 

Reliability of 
Brand 

Price 

 A 5 3 5 5 $369 
 B 2 5 4 1 $369 

DVD C 4 5 2 3 $369 
 D 3 5 3 1 $369 
 E 3 5 3 4 $369 

 

Andy wants the DVD player with the highest average rating he can get while still making 
 sure to keep the best rating on Sound Quality.  

 
Which one of the presented DVD players would Andy prefer? 
 
In this example, DVD player A is eliminated because it fails to meet the criterion of best 

rating on sound quality. Among the remaining DVD players, E is the correct response because it 

is the one with the highest average rating across each of the features. Each participant’s score 

was computed as the proportion of items in which the correct DVD player was selected 

according to the specified decision rule. 

Consistency in Risk Perception (α = .72; rtt = .51) comprised of 20 items in which 

participants rated the probability of an event happening to them on a scale of 0% (no chance) to 

100% (certain). Ten pairs of items corresponded to the same event occurring in either the next 



 
 

37 
 

year or the next 5 years. For example, participants were asked, “What is the probability that you 

will get into a car accident while driving in the next year?” and “What is the probability that you 

will get in a car accident while driving during the next 5 years?” These pairs of items were 

scored as correct if the probability of the event occurring in the next year was less than that of 

the event occurring in the next 5 years. Next, three pairs of items presented nested subset and 

superset events. For example, participants were asked, “What is the probability that someone will 

steal something from you in the next 5 years?” and “What is the probability that someone will 

break into your home and steal something from you in the next 5 years?” These pairs of items 

were scored correct if the probability of the subset event was rated lower than that of the superset 

event. Lastly, two pairs of items were complementary, such that the combined probability of 

both events ought to equal 100%. For example, participants were asked, “What is the probability 

that you will move your permanent address to another state sometime in the next year?” and 

“What is the probability that you will keep your permanent address in the same state during next 

year?” These pairs of items were scored as correct if the participants ratings on each item within 

a pair summed to 100%. Each participant’s total score was calculated as the proportion of correct 

responses across the pairs of items (i.e., 10 timeframe pairs, 6 subset-superset pairs, and 4 

complementary pairs). 

Resistance to Sunk Cost (α = .54; rtt = .61) comprised 10 items, each of which described a 

situation in which a previous investment is no longer providing value. Participants rated on a 6-

point Likert scale their preference for continuing or discontinuing the investment. For example: 

You are in a hotel room for one night and you have paid $6.95 to watch a movie on pay 
 TV. Then you discover that there is a movie you would much rather like to see on one of 
 the free cable TV channels.  You only have time to watch one of the two movies. Would 
 you be more likely to watch the movie on pay TV or on the free cable channel? 
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The scale for this question ranges from 1 (most likely to watch pay TV) to 6 (most likely to 

watch free cable). Scores were calculated as the mean rating across the 10 items.   

Principal Analyses 

The purpose of this analysis is to examine the relative importance of numeracy and 

cognitive abilities for predicting decision-making competence in a group of young adults who 

are preparing for diverse professional careers. Relative importance is defined as “the 

proportionate contribution each predictor makes to R2, considering both its direct effect (i.e., its 

correlation with the criterion) and its effect when combined with the other variables in the 

regression equation,” (Johnson & LeBreton, 2004, p. 240). Previous research on decision-making 

competence used multiple regression in which results are described in terms of zero-order 

correlations and standardized regression coefficients. These estimates can only be used to 

measure relative importance when predictors are uncorrelated, which is rarely true for mental test 

scores (Lang et al., 2010). When predictors are uncorrelated, correlations and regression 

coefficients are equivalent and represent proportionate contributions to the variance predicted by 

the model. Under multicollinearity, these estimates are interpreted differently. Correlations 

describe the relationship between each predictor and the criterion by itself, whereas regression 

coefficients describe the contribution of one predictor when combined with other predictors. 

Different methods are required to accurately represent how well one predictor contributes to the 

model when compared to all the combinations of others under multicollinearity. 

Several methods have been proposed for estimating relative importance (Nimon & 

Oswald, 2013). Two of the most commonly used methods in organizational research are (1) 

relative weights and (2) dominance analysis. Both have been used to examine the relative 

importance of cognitive abilities in personnel selection (Lang et al., 2010; Lang & Kell, 2019). 
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Relative weights analysis derives orthogonal variables that are maximally correlated with each of 

the predictors (Johnson, 2000). These coefficients are combined with coefficients derived from 

regressing the criterion on the transformed variables, hence producing a robust estimate of 

relative importance. Dominance analysis follows the logic of estimating regression models with 

all possible subsets of predictors and making pairwise comparisons between each predictor’s 

incremental contribution to predicted variance in the criterion (Budescu, 1993). Despite relying 

on different algorithms, relative weights and dominance tend to generate equivalent results 

(LeBreton et al., 2004). That said, subtle differences between the methods can matter for 

interpretation. 

There are several features unique to dominance analysis make it the preferred approach 

for the present study. Dominance analysis is theoretically grounded in normative decision theory, 

specifically the principle of (weak) dominance (Budescu & Azen, 2004). This principle states 

that one option should be preferred over another if (1) all of its characteristics are at least as good 

as those of the other and (2) at least one characteristic is better than that of the other. Dominance 

has been described as “perhaps the most obvious principle of rational choice,” (Kahneman & 

Tversky, 1986). That personnel selection itself is an application of rational decision theory 

makes this approach conceptually appealing. Dominance analysis is also unique in that it 

provides multiple frames of reference for estimating relative importance. These frames allow for 

multiple degrees of support for each of the study hypotheses. Specifically, Azen and Budescu 

(2003) described three levels of relative importance: complete dominance, conditional 

dominance, and general dominance. These levels are hierarchically organized with complete 

dominance as the highest level. Complete dominance encompasses conditional dominance, 
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which encompasses general dominance. Dominance is specified in reference to each pair of 

predictors. 

One predictor is completely dominant over another when its incremental contribution to 

each subset model is greater than that of the other predictor. The strongest support for 

Hypothesis 1 would be complete dominance of crystallized or fluid ability over numeracy for 

predicting decision-making competence. This result would indicate that cognitive ability 

contributes more toward prediction than numeracy in each combination of predictors. Likewise, 

a result in which numeracy is completely dominant over both cognitive abilities would be the 

strongest support for Hypothesis 2. Another possible result involving complete dominance is if 

either crystallized or fluid ability is completely dominant over the other. Although the focus of 

this study is on numeracy, information on the relative importance of crystallized and fluid ability 

could provide additional insight into the cognitive abilities required for normatively superior 

decision making. 

The requirements for complete dominance are strict. All it takes is numeracy contributing 

more toward prediction than a cognitive ability in one subset model to reject complete 

dominance. Seeing that a predictor could be dominant over another under different conditions, 

Azen and Budescu (2003) termed conditional dominance for describing relative importance for 

sub-models with different numbers of predictors included. For example, numeracy could be the 

best single predictor of decision-making competence while crystallized ability is the strongest 

predictor in models involving any pair of the three predictors. Note that estimates of complete 

and conditional dominance are the same in models with only three predictors.  

Lastly, general dominance is the least strict and most intuitive way of grasping the 

relative importance of predictors. General dominance refers to the average incremental 
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contribution of each predictor over all of the subset models. The sum of general dominance 

weights adds up to R2, hence each weight corresponds to a predictor’s proportional contribution 

to prediction. These estimates are comparable to those derived from relative weights analysis 

(Johnson, 2000). General dominance weights provide an intuitive way of rank ordering the 

relative importance of variables and making comparisons across different criteria. For example, 

numeracy could make a larger contribution toward predicting Resistance to Framing than fluid 

ability while the reverse pattern is true for predicting Applying Decision Rules. 

Although the estimates computed by dominance analysis are robust to multicollinearity, 

they are sensitive to the reliability of the measures being used (Braun et al., 2019). Measurement 

error can distort the relationships between constructs by attenuating correlations between 

variables (Nunnally & Bernstein, 1994). To account for measurement error in the dominance 

analysis, I applied Spearman’s correction for attenuation:  
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where rxy is the observed correlation between two variables and rxx’ and ryy’ are the internal 

consistency coefficients for each variable, estimated with Cronbach’s alpha. However, correcting 

for measurement error comes with the cost of greater uncertainty in the point estimates (Schmidt 

& Hunter, 2014). To assess the generalizability of the dominance weights, bootstrapping was 

applied to estimate confidence intervals (Efron & Tibshirani, 1994). 

Dominance analysis was conducted with the yhat package in R (Nimon & Oswald, 2013). 

I conducted a univariate dominance analysis of composite A-DMC scores regressed on 

numeracy, crystallized, and fluid ability. In addition, I conducted a univariate dominance 

analysis for each of the A-DMC subscale scores. The analysis produces 23 – 1 = 7 subset models 

spanning every combination of the three predictors. For comparison, I also conducted 
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hierarchical regressions by regressing composite A-DMC scores and each of the A-DMC 

dimensions on the set of predictors in two sets of models that differ with respect to the order of 

the predictors entered. In one set, I examined the incremental validity of numeracy over 

cognitive abilities by entering fluid and crystallized ability into the model first, followed by 

numeracy. In the second set, I examined the incremental validity of cognitive abilities over 

numeracy by entering numeracy into the model first, followed by fluid and crystallized ability. 

Results 

Descriptive statistics are displayed in Table 1. Score distributions and reliability 

coefficients were consistent with prior research on the A-DMC (Blacksmith et al., 2019; Bruine 

de Bruin et al., 2007; Del Missier et al., 2012). Internal consistency for DMC was acceptable (a 

= .79), though it should be noted that this estimate corresponds to a model in which each of the 

A-DMC items loaded on a general factor. An alternative model in which sub-scale scores were 

the indicator variables had much lower internal consistency (a  = .39).  

Correlations between the study variables are displayed in Table 2. All predictors were 

significantly correlated with the A-DMC and each of its subscales, with two exceptions. Fluid 

ability was not significantly correlated with Consistency in Risk Perception or Resistance to 

Sunk Cost.  

Measurement Models  

Measurement models for each predictor and criterion were examined via confirmatory 

factor analysis (CFA) with the lavaan package in R version 4.0 (Rosseel, 2012). Model fit was 

evaluated using variety of fit indices based on Hu and Bentler's (1999) recommendations. The 

chi-square goodness of fit test estimates the difference between observed and expected 

covariance matrices. Conventionally, a chi-square statistic with a p-value less than .05 is 
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considered acceptable fit, but this estimate is sensitive to sample size. The comparative fit index 

(CFI) compares the specified model to a null model and is less sensitive to sample size. CFI 

values above .90 are considered acceptable fit (Hu & Bentler, 1999). Both the standardized root 

mean square residual (SRMR) and root mean square error of approximation (RMSEA) are 

variations of evaluating how well the specified model represents the observed variance–

covariance matrix. Hu and Bentler (1999) recommended cut-off values of ≤ .06 for SRMR and 

≤ .08 for RMSEA to indicate acceptable fit. Note that many alternative recommendations for 

interpreting fit statistics are available, and that model fit is only one consideration in model 

evaluation (Loehlin & Beaujean, 2017). Hu and Bentler’s (1999) recommendations were chosen 

because they are commonly used in the psychological literature. 

Although the present study is focused on the criterion-related validity of numeracy, 

measurement invariance is important to consider when evaluating measures for use in personnel 

selection. Measurement invariance is the characteristic of a measure that has the same 

psychometric structure between subgroups. Variation in this structure can undermine inferences 

about subgroup differences on the underlying construct. To test measurement invariance across 

gender for each of the variables, I followed the stepwise procedure described by Widaman and 

Reise (1997). In order, I tested for configural, metric, scalar, and strict invariance, which 

correspond to equal factor structure, factor loadings, intercepts, and residual variances, 

respectively. Ideally, tests of measurement invariance would also be conducted between the 

samples and racial and ethnic subgroups. However, with the exception of gender, the sample 

sizes of these subgroups (e.g., 24 participants who self-reported as Black or African American, 

46 participants from the MTU sample) were too small to make meaningful inferences (Meade & 

Bauer, 2007). 
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Numeracy and cognitive abilities 

Single-factor models were a good fit for crystallized ability (Table 3) and numeracy 

(Table 5) according to each of the fit indices. The measurement model of fluid ability was a good 

fit to the data according to the RMSEA and SRMR, but not the CFI (Table 4). Prior to estimating 

the measurement model of crystallized ability, some modifications were required for the model 

to be properly specified. First, responses to three items were excluded because none of the 

participants answered them correctly (i.e., the variance was zero). Next, the remaining 47 items 

were aggregated into 10 parcels of 4-5 items each using an item-to-construct balancing approach 

(Little et al. (2002). Parceling is recommended for scales with large numbers of items, which can 

otherwise cause estimation problems. Metric invariance held for both numeracy and crystallized 

ability, but not scalar invariance (Tables 3, 5). Only configural variance held for fluid ability 

(Table 4). 

Decision making competence 

The one-factor model of DMC was estimated with each of the sub-scale scores as 

indicators. This model was an acceptable fit to the data according to the RMSEA and SRMR, but 

not the CFI (Table 6). Nevertheless, it passed all tests of measurement invariance. One-factor 

models were estimated for each of the A-DMC dimensions except for Recognizing Social 

Norms, which due to its unique scoring approach, does not lend itself to factor analysis. 

Applying Decision Rules was the only model with good fit according to each of the indices and 

passed all tests of measurement invariance (Table 9).  Resistance to Framing (Table 7) and 

Under/Overconfidence (Table 8) demonstrated less than optimal model fit according to the CFI, 

but acceptable fit according to the RMSEA and SRMR. Neither of these two measures passed 

tests of configural invariance. Consistency in Risk Perception had poor fit according to each of 
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the fit indices and failed the test of configural invariance. The model for Resistance to Sunk Cost 

did not converge, presumably due to its especially low internal consistency.  

A common theme among most of the measurement models was acceptable fit according 

to the RMSEA and SRMR, but poor fit according to the CFI. There are multiple potential 

explanations for this discrepancy, in which a full investigation is beyond the scope of this study. 

One likely reason is due to low correlations among the indicator variables, which is apparent in 

many of the A-DMC subscales. See Lai and Green (2016) for a discussion of inconsistencies 

between fit indices in CFA models. 

Dominance Analyses 

To address the research questions and hypotheses, I estimated the relative importance of 

numeracy, crystalized, and fluid ability for predicting decision making competence and each of 

its dimensions. I conducted univariate dominance analyses on the correlations corrected for 

measurement error (see Appendix A for analyses on the observed correlations). Levels of 

dominance were inferred from the point estimates (Azen & Budescu, 2003). However, 

bootstrapping results provide additional information on estimate precision (Braun et al., 2019). 

Both sets of dominance analysis results are displayed for each of the criteria in Tables 11-24. 

Odd-numbered tables display the R2 of each submodel and the incremental R2 of each predictor 

to that submodel. These tables also report the general dominance weights, which are re-scaled as 

percentages of the total variance explained (R2) by the model with all predictors. The even-

numbered tables display the dominance levels for each pair of predictors and their accompanying 

bootstrap results. The following section describes the highest level of dominance observed for 

each predictor across the dimensions of decision-making competence. Hypothesis 1 and 2 

predicted a consistent pattern of relative importance across each of the dimensions, whereas 
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Hypothesis 3 predicted a varying pattern. Provided that many studies report only the general 

dominance weights (e.g., Lang & Kell, 2019), these estimates will be the basis for testing the 

hypotheses. That being said, the higher levels of dominance and bootstrapped confidence 

intervals provide additional information regarding the strength of support. 

For overall decision-making competence, that is, the unit-weighted average of scores on 

the six A-DMC subscales, the predictors accounted for 27% of the variance (Table 11). 

Numeracy and crystallized ability each accounted for 40% of the model-explained variance, 

while fluid ability accounted for the remaining 20%. Both numeracy and crystallized ability were 

completely dominant over fluid ability (Table 12). Numeracy was also generally dominant over 

crystallized ability. Hypothesis 1 predicted that numeracy is not relatively important for 

predicting decision-making competence compared to crystallized and fluid ability, whereas 

Hypothesis 2 stated the numeracy is relatively important. That numeracy was at least generally 

dominant over both cognitive abilities in this analysis supports Hypothesis 2. However, note that 

the general dominance of numeracy over crystalized ability replicated in only 54% of the 

bootstrapped samples (Table 12). By this measure, numeracy and crystallized ability seem to 

make approximately equal contributions to overall decision-making competence. Nevertheless, 

the point estimates of relative importance support Hypothesis 2 over Hypothesis 1, showing that 

numeracy is relatively important for predicting decision-making competence compared to 

crystallized and fluid ability. 

Total explained variance and the relative importance of each predictor varied across each 

of the dimensions of decision-making competence. Altogether, the predictors accounted for 25% 

of the variance in Resistance to Framing (Table 13). Numeracy accounted for 56% of the model-

explained variance, followed by 32% and 13% corresponding to fluid and crystallized ability, 
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respectively. Numeracy was completely dominant over crystallized and fluid ability for 

predicting Resistance to Framing, which was observed in 100% and 89% of the bootstrapped 

samples, respectively (Table 14). Moreover, fluid ability was completely dominant over 

crystallized ability in almost 100% of the bootstrapped samples. 

Of the small amount of variance (R2 = .04) in Recognizing Social Norms explained by the 

predictors, numeracy and crystallized ability each accounted for approximately 47% and 39% 

respectively. The remaining 14% was accounted for by fluid ability (Table 15). Crystallized 

ability was completely dominant over numeracy and fluid ability for predicting Recognizing 

Social Norms (Table 16). Also, numeracy was completely dominant over fluid ability. 

Together, the predictors accounted for 13% of the variance in Under/Overconfidence, a 

majority of which (78%) was explained by crystallized ability (Table 17). Numeracy and fluid 

ability accounted for 15% and 7% of this variance, respectively. Crystallized ability was 

completely dominant over numeracy and fluid ability for predicting Under/Overconfidence 

(Table 18). This result occurred in 100% of the bootstrapped samples. Again, numeracy was 

completely dominant over fluid ability (Table 18). 

The predictors accounted for 61% of the model-explained variance in Applying Decision 

Rules—the most of any of the dimensions (Table 19). Numeracy accounted for 36% of this 

variance while crystallized and fluid ability accounted for 31% and 33%, respectively. Numeracy 

was completely dominant over crystalized ability for predicting Applying Decision Rules, which 

occurred in 57% of the bootstrapped samples (Table 20). Numeracy and crystallized ability were 

both generally dominant over fluid ability. The general dominance of numeracy over both 

cognitive abilities occurred in more than 80% of the bootstrapped samples. 
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The predictors accounted for 7% of the variance in Consistency in Risk Perception, 57% 

of which was attributed to crystallized ability (Table 21). Numeracy and fluid ability accounted 

for the remaining 29% and 14%, respectively. For predicting Consistency in Risk Perception, 

Numeracy was completely dominant over fluid ability, whereas crystallized ability was 

completely dominant over fluid ability and numeracy (Table 22). The complete dominance of 

crystallized ability over numeracy occurred in 80% of the bootstrapped samples. 

The predictors also accounted for 7% of the variance in Resistance to Sunk Cost (Table 

23). Numeracy accounted for 57% of the model-explained variance, followed by crystallized and 

fluid ability, with 29% and 14% respectively. Numeracy was completely dominant over 

crystallized and fluid ability, and crystallized ability was completely dominant over fluid ability 

(Table 24). The complete dominance of numeracy over crystallized ability occurred in 69% of 

the bootstrapped samples and that over fluid ability occurred in 93%. 

In accord with what was previously mentioned with respect to overall decision-making 

competence, taken together all the dominance analyses results clearly refuted Hypothesis 1, 

which stated that numeracy is not relatively important for predicting decision-making 

competence compared to crystallized and fluid ability. Rather, the results were supportive of 

Hypothesis 2, which stated that numeracy is relatively important over cognitive abilities for 

predicting decision-making competence. Ultimately, however, the dominance analyses showed 

support for Hypotheses 3, which stated that the relative importance of numeracy over cognitive 

abilities varies across different dimensions of decision-making competence. While numeracy 

consistently outperformed fluid ability in almost every model, the importance of numeracy 

relative to crystallized ability varied across dimensions. Numeracy was completely dominant 

over crystallized ability for predicting Resistance to Framing, Applying Decision Rules, and 
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Resistance to Sunk Cost. The opposite pattern was observed for Recognizing Social Norms, 

Under/Overconfidence, and Consistency in Risk Perception. A summary of the levels of 

dominance is displayed in Table 25 and a summary of the rescaled general dominance weights 

(percentage of variance explained in the criterion explained by each predictor) is displayed in 

Figures 1 and 2. 

Hierarchical Regression Analyses 

In comparison to the results for the dominance analyses, I examined the incremental 

validity of the numeracy beyond the cognitive ability test scores and demographic variables 

using multiple regression analyses on the correlations corrected for measurement error. 

Specifically, I estimated a hierarchical regression model for each criterion in which university 

sample, gender, crystallized, and fluid ability were included in the first step, and numeracy was 

added in the second step. A statistically significant change in variance explained (DR2) was 

interpreted as evidence for the incremental validity of numeracy. In addition, I estimated a set of 

models that tested the incremental validity of crystalized and fluid ability over numeracy. A 

statistically significant DR2 in these models signaled the incremental validity of cognitive 

abilities beyond numeracy for predicting each criterion. 

Hierarchical regression models of decision-making competence and its dimensions are 

reported in Tables 26-32. Numeracy demonstrated incremental validity over crystallized and 

fluid ability for predicting overall decision-making competence, Resistance to Framing, 

Applying Decision Rules, and Resistance to Sunk Cost. These results provided additional 

support for Hypothesis 3. The incremental validity of numeracy over cognitive abilities varied 

across dimensions of decision-making competence. Moreover, the pattern of incremental validity 

for crystallized and fluid ability varied across the dimensions. 
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Discussion 

 The purpose of the present study was to evaluate the relative importance of statistical 

numeracy for decision-making competence relative to crystallized and fluid ability. Competing 

hypotheses addressed a pair of research questions about (1) the extent to which numeracy is 

relatively important to cognitive abilities for making decisions and (2) the extent to which the 

relative importance of these constructs varies across dimensions of decision making. The results 

supported the overall conclusion that numeracy is relatively important over cognitive abilities, 

and that its relative importance varies across dimensions. Specifically, numeracy was at least 

generally dominant over crystallized and fluid ability for predicting decision-making 

competence. Numeracy also outperformed fluid ability across each of the dimensions of 

decision-making competence, although at different levels of dominance. The relative importance 

of numeracy over crystallized ability varied across the dimensions. These results provide insight 

into the roles of numeracy and cognitive abilities for explaining individual differences in 

decision-making competence. Each variable makes an important and unique contribution, which 

further illustrates the multidimensional nature of decision-making competence. 

These results are largely consistent with previous studies examining the roles of 

numeracy and cognitive abilities in decision making (e.g., Blacksmith et al., 2019; Cokely et al., 

2012; Del Missier et al., 2012). Building on this research, the present study offers several 

theoretical and practical contributions to the literature on decision making in the workplace. 

First, the present study leveraged statistical methods that address challenges associated with the 

multicollinearity of predictors. Scores on tests of numeracy and cognitive abilities like 

crystallized and fluid ability are strongly correlated with each other, which can complicate 

inferences regarding any specific variable. Dominance analysis with corrections for 

measurement error enabled the disentangling of predictors’ relative importance for predicting 
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decision-making competence. Moreover, I examined decision-making competence as a 

multidimensional construct by estimating separate models for each dimension. These dimensions 

reflect a broad range of criteria drawn from the psychology of decision-making, which 

correspond to different elements of workplace decisions. This is a key contribution this study, 

given that my literature search did not reveal any prior studies that examined the extent to which 

numeracy’s relative importance varied across specific dimensions of decision-making 

competence. 

The present study has practical implications for the use of assessment in personnel 

selection and job placement. Little research has tied the literature on judgment and decision 

making to that of I/O psychology, making this study a novel contribution to a small, but growing 

subdiscipline (Zhang & Highhouse, 2018). Making good decisions is an increasingly important 

competency as the workplace becomes more complex. These results demonstrated not only that 

traditional cognitive ability tests cannot fully account for decision-making competence, but also 

that numeracy tests are viable tools for assessment. Using these results as a foundation, further 

research can further specify the construct domain of decision-making competence and the 

knowledge, skills, and abilities that facilitate decision making. 

Theoretical Implications 

Numeracy was completely dominant over fluid ability for predicting decision-making 

competence and five out of six of its dimensions. The exception was Applying Decision Rules, 

for which numeracy was still generally dominant over fluid ability. This result is consistent with 

many studies in which numeracy was shown to have incremental validity over fluid ability in 

various decision-making tasks (e.g., Cokely et al., 2012; Peters et al., 2006). In contrast to 

research that emphasizes the role of information-processing capacities for decision making, these 
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results indicate that tests of fluid ability may be less useful in assessment contexts. Fluid ability 

tests are often weaker predictors relative to crystallized ability tests (Larson, 2019; Postlethwaite, 

2011). One explanation for this is Brunswik symmetry: the principle that constructs aligned in 

terms of breadth and specificity are more strongly related (Brunswik, 1955). Although fluid 

ability is theorized to be a critical part of developing crystallized ability and numeracy, it is a 

distal predictor whereas the latter constructs are more proximally related to decision making.  

 Determining the relative importance of numeracy over crystallized ability was more 

challenging, considering how these variables seem to share common sources of variance. Indeed, 

people who acquire higher levels of crystallized ability are likely to demonstrate higher 

numeracy as well. However, note that even highly educated professionals can demonstrate low 

numeracy (Cokely et al., 2012; Schwarz et al., 1993). Skilled decision theory describes the 

relationship between numeracy and decision making as mediated by risk literacy, or relevant 

knowledge to the decision context (Cokely et al., 2018; Gigerenzer, 2015). Numeracy is 

expected to facilitate a metacognitive savvy for decision-making scenarios beyond general 

knowledge. However, this savvy may be more or less important depending on the kinds of 

processes elicited by the decision situation or the values of the person making the decision. 

Of all the dimensions of decision-making competence, numeracy had the strongest 

estimates of relative importance for Resistance to Framing. This result is consistent with many 

studies on numeracy and decision making, which examined individual differences in framing 

effects (Gamliel et al., 2016; Gamliel & Kreiner, 2017; Peters et al., 2006; Peters & Levin, 

2008). Indeed, people with higher numeracy are less susceptible to framing effects, possibly due 

to assigning more affective meaning to numbers instead of irrelevant information. A key part of 

this explanation can be attributed to the transfer of identical elements. Items that comprise 
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Resistance to Framing the most explicit reference to numbers of all the A-DMC items. To earn a 

high score, one must recognize that ground beef with 20% fat is the same as that which is 80% 

lean, for example. Framing is ubiquitous in organizations, where information can be portrayed in 

ways that persuade or mislead, whether intentionally or not. Numeracy is a valued skill that 

enables one to recognize objective, quantitative aspects of communications. 

 In contrast, neither numeracy nor fluid ability appeared to be especially influential for 

predicting Under/Overconfidence. Crystallized ability outperformed the other variables by far 

when predicting this dimension. Judging by the assessment content, the Under/Overconfidence 

scale of the A-DMC is essentially a general knowledge test accompanied by subjective ratings of 

performance. Crystallized ability is a broad construct that corresponds to general knowledge that 

one acquires throughout their life. Volumes of scholarly papers have been written on the finding 

that people with greater competence are better at judging their competence (Kruger & Dunning, 

1999; Gignac & Zajenkowski, 2020). Previously, numeracy has been shown to be related to 

confidence calibration (Ghazal et al., 2014). Although this relationship may be attributed to the 

shared variance between numeracy and crystallized ability, the result is still consistent with 

skilled decision theory. In particular, people with a representative understanding of the 

information relevant to a decision are “risk literate” and likely to perform better across a variety 

of tasks that involve some degree of a risk-reward tradeoff (Cokely et al., 2018). 

 While Resistance to Framing and Under/Overconfidence were clearly predicted by one 

cognitive variable that was dominant over the others, Applying Decision Rules appeared to be 

the product of equal contributions from all three predictors. The combination of numeracy and 

crystallized and fluid ability contributed the largest R2 toward predicting Applying Decision 

Rules than any other dimension. Variance accounted for in the criterion was split equally among 
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each of the predictors according to the general dominance weights, indicating that numeracy, 

crystallized, and fluid ability each make important contributions toward choosing the best option 

from a set of alternatives in accordance with normative decision criteria. Individual differences 

in decision making are undoubtedly the result of many facets of knowledge, skills, and abilities. 

Rosi et al. (2019) also found unique contributions of information-processing and knowledge-

based predictors on Applying Decision Rules. In their study, age differences were attributed to 

age-related declines in attentional processes related to fluid ability. However, acquired general 

knowledge can compensate for lower fluid ability (Mata et al., 2012). Numeracy is another 

important piece of the construct domain, as it enables more efficient deliberation of decision 

rules (Cokely & Kelley, 2009). There is no single path toward making better decisions. That 

numeracy and cognitive abilities make unique contributions toward decision-making competence 

is consistent with the notion of equifinality—that multiple strategies can lead to similar outcomes 

(Cokely & Kelley, 2009; Cokely et al., 2006). 

Making inferences about the remaining three dimensions (i.e., Recognizing Social 

Norms, Consistency in Risk Perception, and Resistance to Sunk Cost) is more challenging 

considering that even the full set of predictors accounted for a negligible amount of variance in 

each criterion. Like overall decision-making competence, numeracy and crystallized ability 

accounted for most of the explained variability in these dimensions. One contribution of this 

dissertation was the examination of each of the dimensions of decision-making competence, 

which are usually examined either exclusively in aggregate or piecemeal. In the case of 

Recognizing Social Norms, Consistency in Risk Perception, and Resistance to Sunk Cost, two 

explanations seem likely for explaining these results. These factors may be attributed to 

personality or motivational variables beyond cognitively loaded variables like those in the 
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present study. Moreover, more reliable measurement of these constructs may be required to draw 

robust inferences. 

Of the small amount of variance explained in Recognizing Social Norms, crystallized 

ability was completely dominant over numeracy and fluid ability. This indicates that general 

acquired knowledge may be relatively important for making accurate perceptions of others’ 

attitudes and behaviors. Weaker relationships with numeracy and cognitive abilities have been 

observed for this dimension (Blacksmith et al., 2019; Del Missier et al., 2012). Recognizing 

Social Norms might be further influenced by broad personality traits such as agreeableness and 

social interests as classified by the RIASEC framework of vocational interests (Wille & De 

Fruyt, 2014) and more specific aspects of personality like self-monitoring (Snyder, 1974). People 

who are motivated to invest their knowledge, skills, and abilities into understanding social 

environments are likely better at detecting shared perceptions and subsequently making better 

decisions derived from those judgments (Ackerman & Heggestad, 1997). 

Crystallized ability was also completely dominant for predicting a small amount of 

variance in Consistency in Risk Perception. This dimension of decision-making competence 

reflects the ability to maintain risk perceptions consistent with normative decision theory (e.g., 

the risk of event A and B is less than event A or B). Contrary to these results, other studies have 

reported stronger relationships between cognitive abilities and Consistency in Risk Perception 

(Blacksmith et al., 2019; Del Missier et al., 2012). Del Missier et al. (2012) observed stronger 

relationships with tasks designed to explicitly assess memory and attentional processes. 

Although these constructs are strongly related to fluid ability, memory, attention, and executive 

functions more broadly may facilitate making judgments about risk (Ackerman et al., 2005). 
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Consistency in Risk Perception may also be influenced by general or domain-specific attitudes 

toward risk (Highhouse et al., 2017). 

Lastly, numeracy was completely dominant over cognitive abilities for predicting 

Resistance to Sunk Cost, albeit a small proportion of variance. The strength of relationships 

between cognitive abilities and this dimension varies across studies (Blacksmith et al., 2019; 

Bruine de Bruin et al. 2007). Age seems to be an influential variable to Resistance to Sunk Cost 

in a way that is weakly related to cognitive abilities (Del Missier et al., 2015; Strough et al., 

2016). Strough et al. (2016) suggested that individual differences in sunk cost effects might be 

attributed to one’s future orientation. Younger people are generally more likely to be optimistic 

about a plan’s outcomes and are thus more likely to assign value to past commitments. Given the 

adaptive nature of sunk costs, relationships with knowledge, skills, and abilities might be 

sensitive to interactions between the individual and organizational context. 

Practical Implications 

That numeracy emerged as a robust predictor across many of the models in this study 

supports the utility of numeracy tests for personnel selection and job placement. A growing 

literature in recent years has called for investigations into specific cognitive abilities (Scherbaum 

et al., 2012). This contrasts with a tradition among I/O psychologists to emphasize the utility of 

GMA over other predictors (e.g., Ree & Earles, 1991). As the workplace continues to increase in 

complexity, more nuanced assessment is necessary to adequately match potential employees to 

jobs in which they are most likely to succeed. The skills necessary to make decisions under risk 

and uncertainty will continue to be important for work performance. However, direct 

assessments of decision-making, including low-fidelity simulations and work samples, can be 

cumbersome, expensive to develop, and time consuming. The present results indicate that 
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numeracy, as measured by the 5-to-10-minute Berlin Numeracy Test is potentially an effective 

proxy of decision-making skill for assessment purposes.  

Numeracy can also be leveraged for personnel training systems (Fong et al., 1986; Fong 

& Nisbett, 1991; Gigerenzer, 2015). Whereas the cognitive ability is generally conceptualized as 

a rather stable disposition that stems from individual differences in early cognitive development, 

statistical numeracy is an acquired skill. As such, education and training can be leveraged to 

improve workers’ numeracy. Skilled decision theory asserts that numeracy training can transfer 

to better general decision making due to identical elements between cognitive processes for 

comprehending risk and uncertainty. In contrast, there is little evidence that training cognitive 

ability transfers beyond the tests practiced by trainees (Sala & Gobet, 2017; Sala et al., 2019; 

Simons et al., 2016). This dissertation speaks to the underlying causes and malleability of 

decision-making skills at work. 

This dissertation conceptually linked the dimensions of decision-making competence to 

the workplace environment. That numeracy was shown to uniquely predict decision-making 

competence suggests opportunities for context-specific applications in organizations. Synthetic 

validation is the process of estimating validity on the basis of similarities in job components and 

the required competences between jobs (Johnson & Carter, 2010; Scherbaum, 2005). Provided 

that jobs have similar decision-making environments, practitioners could generalize validation 

studies from one job to another. This process could determine the optimal weighting of 

numeracy and cognitive abilities used in assessment. The multidimensional nature of decision-

making competence can be used as a guiding post for job and task analyses aimed at eliciting the 

decision-making context and competencies for a given job. Links between numeracy and job 

demands might not be explicit (Black et al., 2015). Thus, targeting decision-making processes in 
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job or task analysis may have promise for detecting the links between job demands and predictor 

constructs, which in turn can inform how to best leverage numeracy in personnel selection 

systems and training programs. More generally, there is still lots of progress to be made with 

respect to squarely focusing on decision-making competence in the workplace. Many 

opportunities are available for integrating concepts and methods from I/O psychology and the 

psychology of judgment and decision making. 

Limitations and Future Directions 

There are limitations to consider when interpreting the results of the present study. Like 

many psychological studies, there are challenges associated with generalizing results from 

samples to the broader population. This dissertation aims to make inferences about working 

populations, yet the sample is comprised of undergraduate students. Nevertheless, many of these 

students are young adults who will move on to diverse professional careers. By combining a pair 

of samples from different universities, the results are slightly more representative of the 

heterogeneous population than if one sample was used. Due to insufficient sample size, I was 

unable to test measurement invariance between these samples. However, it is worth noting that in 

separate set of analyses excluding the 46 MTU students from the analysis the pattern of results 

was largely consistent with those in the combined sample.  

Perhaps the most difficult issue for this research is the criterion problem (Austin & 

Villanova, 1992). Although the A-DMC covers a broad span of the normative decision criterion 

domain, the nature of what makes a good decision is a complex matter that can vary substantially 

based on a person’s values or level of expertise (Gigerenzer, 1996; Yates, 2003). This study 

relied on the assessment of theoretically guided decision-making skills among undergraduate 

students. Little research on decision making constructs in the workplace has been conducted 
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from the perspective of assessment validation (Lake & Highhouse, 2013). Future research should 

acknowledge the domain-specific nature of skilled decision making by adopting job and task 

analysis of decision processes that are frequently encountered in the workplace. This research 

can help scope an ecologically valid criterion domain, which could subsequently be translated 

into situational judgment tests or work samples. Both low- and high-fidelity simulations could be 

used as criterion measures in future validation studies of numeracy tests (Arthur & Villado, 

2008; Van Iddekinge & Ployhart, 2008). 

 Additional insights could be gained by expanding the predictor construct domain as well. 

Crystallized and fluid ability are two of the broadest dimensions of Carroll’s (1993) model of 

cognitive abilities, which also includes specific abilities and domains of knowledge that could 

emerge as relatively important for decision making. Whereas the present study relied on fluid 

ability as the measure of general information-processing capabilities, other researchers have 

advocated for the use of working memory and executive function assessments (Bosco et al., 

2015). Whereas crystallized and fluid ability are theoretically broader, tests of numeracy 

correspond to narrower factors such as quantitative ability or even domain-specific knowledge. 

Moreover, additional research is needed on the composition of numeracy and how it relates to 

decision-making. Although this study used a well-established test of numerical abilities, we did 

not include any established measures explicitly used to assess quantitative reasoning as reflected 

in the Carroll’s (1993) model (e.g., number series).  

 Even the construct domain of numeracy comprises multiple dimensions beyond those 

included in the present study. The Berlin Numeracy Test is supported by a large corpus of 

validation evidence reported in the literature (Cokely et al. 2018). Statistical numeracy is the 

strongest single predictor of general decision-making skill, although other components of 
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numeracy (e.g., algebra, geometry, operations) may be relatively important for particular 

elements of decision making. Peters and Bjalkebring (2015) emphasized the roles of subjective 

numeracy and approximate number sense in addition to objective numeracy. Sobkow et al. 

(2020) conducted a study similar to this one, in which they assessed the relative importance of 

multiple numeric competencies and cognitive abilities on self-reported decision outcomes. 

Approximate number sense emerged as the strongest predictor, which emphasizes a different 

aspect of skilled decision theory. Extrapolating on Sobkow et al.’s (2020) results, people with a 

greater intuitive sense of discrepancies between quantities may be able to more quickly and 

effectively focus on decision-relevant information. 

 Rationality is conceptualized as a broad construct that spans motivational characteristics 

in addition to cognitive variables (Stanovich et al., 2016). One of the most frequently studied 

variables in the study of individual differences in decision making is cognitive reflection, defined 

as the tendency to override intuitive judgments. The cognitive reflection test (CRT) is 

cognitively loaded and strongly correlated with numeracy to such an extent that it remains 

unclear what distinct constructs are being measured by the CRT (Patel, 2017). Building on the 

present study, research is likely to draw further insights by simultaneously evaluating multiple 

domains of knowledge, skills, and abilities to understand decision-making. 

 Lastly, this dissertation made statistical inferences based on correlations corrected for 

attenuation. This approach is used by psychologists to identify the relationships between 

variables in a hypothetical world void of measurement error (e.g., Schmidt & Hunter, 1998). 

Although this approach enables the conceptual comparison of predictor validities, measurement 

error is the reality in application. Dominance analyses and hierarchical regression models based 

on the uncorrected correlations are reported in Appendix A and B, respectively. Patterns of 
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results are largely comparable when acknowledging uncertainty in the point estimates, though 

relative importance coefficients were larger for cognitive abilities without corrections, which 

also had larger reliability coefficients. Future work on the viability of numeracy assessments in 

the workplace should consider the operational validities for making personnel decisions. 

Conclusion 

 As the workplace grows in complexity, the knowledge, skills, and abilities required to 

make good decisions will continue to be vital. I/O psychology can benefit from the study of 

judgment and decision making by joining these concepts with those of personnel selection and 

assessment. The present study is a proof of concept that although many cognitive abilities are 

involved in decision making, numeracy is a well-defined and important predictor of decision-

making competence. Numeracy accounts for variability in decision-making competence that is 

unique from traditional tests of cognitive abilities. Organizations may benefit from assessing 

numeracy in the workplace, or perhaps more importantly, conducting job analyses and validation 

studies that reveal the numerical demands that are common to different kinds of workplace 

decisions. Numeracy tests are not guaranteed to substitute for cognitive ability tests, but could 

make up an important supplement to commonly used test batteries in selection systems for jobs 

that involve a high degree of decision making. 
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Figures 

Figure 1. General dominance weights for decision-making competence 

 

Note. Error bars are 95% confidence intervals. 
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Figure 2. General dominance weights for each dimension of decision-making competence 

   

   

 

Note. Error bars are 95% confidence intervals. 
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Tables 

Table 1. Descriptive Statistics 

 α Mean SD Min Max Skew Kurtosis 
Crystallized ability .73 24.2 4.99 1.00 38.00 –0.19 0.11 
Fluid ability .75 6.23 2.77 0.00 12.00 –0.07 –0.46 
Numeracy .61 3.32 1.62 0.00 7.00 0.40 –0.36 
Decision-making competence .79 0.00 0.52 –2.18 1.27 –0.56 0.88 
   Resistance to Framing .53 4.05 0.39 2.43 5.00 –0.51 0.61 
   Recognizing Social Norms .74 0.44 0.22 –0.37 0.88 –0.90 1.23 
   Under/Overconfidence .76 0.73 0.07 0.43 0.92 –0.29 0.68 
   Applying Decision Rules .71 0.51 0.22 0.00 0.91 –0.26 –0.76 
   Consistency in Risk Perception .76 0.78 0.15 0.00 1.00 –1.24 2.26 
   Resistance to Sunk Cost .39 4.07 0.66 1.80 6.00 0.14 0.26 
Note. Decision-making competence is the unit-weighted average of standardized scores on the six A-
DMC subscales. Cronbach’s alpha for Recognizing Social Norms is the average of the reliability 
coefficients for self and peer ratings (Bruine de Bruin et al., 2007). Cronbach’s alpha for 
Under/Overconfidence was calculated using 14 indicators representing the self-reported confidence-
weighted response to each dichotomous item. 
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Table 2. Correlations Among the Study Variables 

 1 2 3 4 5 6 7 8 9 10 
1. Crystallized ability .73 .50 .68 .57 .25 .19 .36 .66 .26 .22 
2. Fluid ability .37 .75 .60 .46 .40 .13 .15 .65 .12 .13 
3. Numeracy .46 .41 .61 .58 .46 .19 .21 .70 .22 .24 
4. Decision Making Competence .44 .35 .41 .79 .71 .68 .65 .83 .68 .85 
5. Resistance to Framing .16 .25 .26 .46 .53 .27 –.09 .38 .09 .10 
6. Recognizing Social Norms .14 .09 .12 .52 .17 .74 .17 .17 .10 .20 
7. Under/Overconfidence .26 .11 .14 .51 –.06 .13 .76 .32 .21 .18 
8. Applying Decision Rules .47 .47 .46 .62 .23 .12 .23 .71 .30 .22 
9. Consistency in Risk Perception .20 .09 .15 .53 .06 .07 .16 .22 .76 .19 
10. Resistance to Sunk Cost .12 .07 .12 .47 .04 .11 .10 .12 .11 .39 

Note. Diagonals are reliability coefficients. Observed correlations are below the diagonal and correlations corrected for measurement error are above the 

diagonal. r > |.10| = p < .05; r > |.14| = p < .01; r > |.18| = p < .05. 

 

  



 

86 
 

Table 3. Fit Statistics for Measurement Invariance of Crystallized Ability Across Gender 

        Model Comparison 
Model χ2 df CFI RMSEA 95% CI SRMR AIC Dχ2 Ddf 
Baseline 64.666 35 .942 .049 (.030, .067) .041 -2291.20   
Configural 106.736 70 .929 .054 (.032, .074) .050 -2291.50 42.070 35 
Metric 122.514 79 .916 .056 (.035, .074) .065 -2293.70 15.778 9 
Scalar 148.985 88 .882 .062 (.045, .079) .071 -2285.30 26.471** 9 
Strict 159.112 98 .881 .059 (.042, .076) .075 -2295.10 10.127 10 

Note. df = degrees of freedom; CFI = Comparative Fit Index, RMSEA = Root Mean Square of Approximation; SRMR = Standardized Root Mean Square 

Residual; AIC = Akaike Information Criterion. 

 

Table 4. Fit Statistics for Measurement Invariance of Fluid Ability Across Gender 

        Model Comparison 
Model χ2 df CFI RMSEA 95% CI SRMR AIC Dχ2 Ddf 
Baseline 135.394 54 .857 .065 (.052, .079) .052 4653.9   
Configural 180.884 108 .874 .062 (.046, .077) .060 4679.0 45.490 54 
Metric 203.677 119 .854 .063 (.048, .078) .073 4679.8 22.793** 11 
Scalar 215.432 130 .852 .061 (.046, .075) .075 4669.6 11.755 11 
Strict 225.745 142 .855 .058 (.043, .071) .074 4655.9 10.313 12 

Note. df = degrees of freedom; CFI = Comparative Fit Index, RMSEA = Root Mean Square of Approximation; SRMR = Standardized Root Mean Square 

Residual; AIC = Akaike Information Criterion. 
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Table 5. Fit Statistics for Measurement Invariance of Numeracy Across Gender 

        Model Comparison 
Model χ2 df CFI RMSEA 95% CI SRMR AIC Dχ2 Ddf 
Baseline 18.981 14 .977 .032 (.000, .064) .033 2492.7   
Configural 33.753 28 .969 .034 (.000, .070) .044 2413.4 14.772 14 
Metric 34.808 34 .996 .012 (.000, .056) .046 2402.5 1.056 6 
Scalar 54.194 40 .922 .045 (.000, .073) .061 2409.9 19.385** 6 
Strict 117.120 47 .617 .092 (.071, .113) .118 2458.8 62.927*** 7 

Note. df = degrees of freedom; CFI = Comparative Fit Index, RMSEA = Root Mean Square of Approximation; SRMR = Standardized Root Mean Square 

Residual; AIC = Akaike Information Criterion. 

 

Table 6. Fit Statistics for Measurement Invariance of Decision-Making Competence Across Gender 

        Model Comparison 
Model χ2 df CFI RMSEA 95% CI SRMR AIC Dχ2 Ddf 
Baseline 21.474 9 .843 .063 (.029, .098) .040 5865.2   
Configural 24.975 18 .906 .047 (.000, .088) .043 5880.5 3.501 9 
Metric 34.001 23 .852 .052 (.000, .087) .055 5879.6 9.025 5 
Scalar 37.891 28 .867 .045 (.000, .078) .059 5873.4 3.891 5 
Strict 38.384 34 .941 .027 (.000, .063) .060 5861.9 0.493 6 

Note. df = degrees of freedom; CFI = Comparative Fit Index, RMSEA = Root Mean Square of Approximation; SRMR = Standardized Root Mean Square 

Residual; AIC = Akaike Information Criterion. 
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Table 7. Fit Statistics for Measurement Invariance of Resistance to Framing Across Gender 

        Model Comparison 
Model χ2 df CFI RMSEA 95% CI SRMR AIC Dχ2 Ddf 
Baseline 137.765 77 .588 .049 (.035, .062) .055 13360.9   
Configural 270.087 154 .460 .067 (.054, .080) .075 13369.5 132.32*** 77 
Metric 299.360 167 .385 .069 (.056, .081) .082 13372.8 29.273** 13 
Scalar 318.843 180 .355 .068 (.056, .080) .085 13366.3 19.483 13 
Strict 339.166 194 .325 .067 (.055, .079) .090 13358.6 20.323 14 

Note. df = degrees of freedom; CFI = Comparative Fit Index, RMSEA = Root Mean Square of Approximation; SRMR = Standardized Root Mean Square 

Residual; AIC = Akaike Information Criterion. 

 

Table 8. Fit Statistics for Measurement Invariance of Under/Overconfidence Across Gender 

        Model Comparison 
Model χ2 df CFI RMSEA 95% CI SRMR AIC Dχ2 Ddf 
Baseline 783.849 527 .720 .038 (.032, .044) .055 -4163.7   
Configural 1464.09 1054 .632 .048 (.042, .054) .073 -4220.9 680.240*** 527 
Metric 1546.27 1087 .588 .050 (.044, .056) .083 -4204.8 82.175*** 33 
Scalar 1636.22 1120 .537 .053 (.047, .058) .085 -4180.8 89.950*** 33 
Strict 1721.47 1154 .491 .054 (.049, .060) .090 -4163.6 85.255*** 34 

Note. df = degrees of freedom; CFI = Comparative Fit Index, RMSEA = Root Mean Square of Approximation; SRMR = Standardized Root Mean Square 

Residual; AIC = Akaike Information Criterion. 
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Table 9. Fit Statistics for Measurement Invariance of Applying Decision Rules Across Gender 

        Model Comparison 
Model χ2 df CFI RMSEA 95% CI SRMR AIC Dχ2 Ddf 
Baseline 48.595 35 .964 .033 (.000, .054) .038 4183.7   
Configural 86.094 70 .956 .036 (.000, .059) .048 4210.1 37.500 35 
Metric 89.300 79 .972 .027 (.000, .052) .052 4195.3 3.205 9 
Scalar 101.428 88 .963 .029 (.000, .052) .056 4189.4 12.129 9 
Strict 114.580 98 .955 .031 (.000, .052) .064 4182.5 13.152 10 

Note. df = degrees of freedom; CFI = Comparative Fit Index, RMSEA = Root Mean Square of Approximation; SRMR = Standardized Root Mean Square 

Residual; AIC = Akaike Information Criterion. 

 

Table 10. Fit Statistics for Measurement Invariance of Consistency in Risk Perception across Gender 

        Model Comparison 
Model χ2 df CFI RMSEA 95% CI SRMR AIC Dχ2 Ddf 
Baseline 687.030 135 .524 .107 (.099, .115) .091 4026.2   
Configural 951.650 270 .475 .119 (.111, .128) .103 4079.6 264.62*** 135 
Metric 971.619 287 .472 .116 (.108, .124) .106 4065.5 19.969 17 
Scalar 982.827 304 .477 .112 (.104, .120) .106 4042.8 11.208 17 
Strict 1003.600 322 .475 .109 (.102, .117) .108 4027.5 20.773 18 

Note. df = degrees of freedom; CFI = Comparative Fit Index, RMSEA = Root Mean Square of Approximation; SRMR = Standardized Root Mean Square 

Residual; AIC = Akaike Information Criterion. 
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Table 11. Dominance Analysis of Overall Decision-Making Competence Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .33 (.25, .40) .21 (.13, .29) .34 (.26, .41) 
         
Crystal .33 (.25, .40)   .04 (.01, .08) .07 (.04, .11) 
Fluid .21 (.13, .29) .16 (.10, .22)   .15 (.09, .22) 
Numeracy .34 (.26, .41) .06 (.03, .10) .02 (.00, .05)   
k = 1 average   .11 (.07, .15) .03 (.01, .07) .11 (.07, .16) 
         
Crystallized & Fluid .37 (.28, .44)     .04 (.01, .08) 
Crystallized & Numeracy .40 (.32, .47)   .01 (.00, .04)   
Fluid & Numeracy 

.36 
(.28, .43) 

 .05 (.02, .09)     
k = 2 average   .05 (.02, .09) .01 (.00, .04) .04 (.01, .08) 
         
Crystallized & Fluid & Numeracy .41 (.33, .48)       
Overall average   .16 (.12, .21) .08 (.05, .13) .16 (.12, .21) 
         
% of R2 explained   40% (29-52%) 20% (12-31%) 40% (29-52%) 

Note. Analyses were conducted using correlations corrected for measurement error. R2
 is the criterion variance accounted for by the submodel that 

includes variables listed in each corresponding row. 
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Table 12. Bootstrap Results of Dominance Analysis for Decision-Making Competence 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .982 .109 .969 .006 .025 
 Crystallized Numeracy .5 .480 .442 .371 .411 .218 
 Fluid Numeracy 0 .050 .153 .002 .903 .095 
         
Conditional dominance 
 Crystallized Fluid 1 .982 .109 .969 .006 .025 
 Crystallized Numeracy .5 .480 .442 .371 .411 .218 
 Fluid Numeracy 0 .050 .153 .002 .903 .095 
         
General dominance 
 Crystallized Fluid 1 .988 .109 .988 .012 .000 
 Crystallized Numeracy 0 .461 .499 .461 .539 .000 
 Fluid Numeracy 0 .008 .089 .008 .992 .000 

Note. Analyses were conducted using correlations corrected for measurement error. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap 

samples; SE = standard error of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of 

bootstrap samples in which Xj dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined 

(i.e., Dij = .5). 
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Table 13. Dominance Analysis of Resistance to Framing Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .06 (.03, .12) .16 (.10, .24) .21 (.14, .29) 
         
Crystal .06 (.03, .12)   .10 (.05, .17) .15 (.10, .23) 
Fluid .16 (.10, .24) .00 (.00, .02)   .08 (.03, .14) 
Numeracy .21 (.14, .29) .01 (.00, .03) .02 (.00, .07)   
k = 1 average   .01 (.00, .02) .06 (.03, .12) .12 (.07, .17) 
         
Crystallized & Fluid .16 (.10, .25)     .08 (.04, .14) 
Crystallized & Numeracy .22 (.14, .30)   .03 (.01, .08)   
Fluid & Numeracy .24 (.16, .32) .01 (.00, .04)     
k = 2 average   .01 (.00, .04) .03 (.01, .08) .08 (.04, .14) 
         
Crystallized & Fluid & Numeracy .25 (.18, .33)       
Overall average   .03 (.02, .04) .08 (.04, .14) .14 (.09, .20) 
         
% of R2 explained   12% (7-14%) 32% (18-56%) 56% (34-79%) 

Note. Analyses were conducted using correlations corrected for measurement error. R2
 is the criterion variance accounted for by the submodel that 

includes variables listed in each corresponding row. 
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Table 14. Bootstrap Results of Dominance Analysis for Resistance to Framing 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 0 .072 .178 .001 .856 .143 
 Crystallized Numeracy 0 .000 .000 .000 1.000 .000 
 Fluid Numeracy 0 .115 .305 .097 .867 .036 
         
Conditional dominance 
 Crystallized Fluid 0 .072 .178 .001 .856 .143 
 Crystallized Numeracy 0 .000 .000 .000 1.000 .000 
 Fluid Numeracy 0 .115 .305 .097 .867 .036 
         
General dominance 
 Crystallized Fluid 0 .001 .032 .001 .999 .000 
 Crystallized Numeracy 0 .000 .000 .000 1.000 .000 
 Fluid Numeracy 0 .112 .316 .112 .888 .000 

Note. Analyses were conducted using correlations corrected for measurement error. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap 

samples; SE = standard error of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of 

bootstrap samples in which Xj dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined 

(i.e., Dij = .5). 
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Table 15. Dominance Analysis of Recognizing Social Norms Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .04 (.01, .09) .02 (.00, .05) .03 (.01, .08) 
         
Crystal .04 (.01, .09)   .00 (.00, .02) .01 (.00, .03) 
Fluid .02 (.00, .05) .02 (.00, .06)   .02 (.00, .06) 
Numeracy .03 (.01, .08) .01 (.00, .04) .00 (.00, .01)   
k = 1 average   .02 (.00, .05) .00 (.00, .01) .01 (.00, .04) 
         
Crystallized & Fluid .04 (.01, .09)     .00 (.00, .03) 
Crystallized & Numeracy .04 (.01, .10)   .00 (.00, .01)   
Fluid & Numeracy .03 (.01, .08) .01 (.00, .04)     
k = 2 average   .01 (.00, .04) .00 (.00, .01) .00 (.00, .03) 
         
Crystallized & Fluid & Numeracy .04 (.01, .10)       
Overall average   .02 (.00, .06) .01 (.00, .03) .02 (.00, .05) 
         
% of R2 explained   47% (9-100)% 14% (2-58%) 39% (9-100%) 

Note. Analyses were conducted using correlations corrected for measurement error. R2
 is the criterion variance accounted for by the submodel that 

includes variables listed in each corresponding row. 
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Table 16. Bootstrap Results of Dominance Analysis for Recognizing Social Norms 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .836 .328 .777 .105 .118 
 Crystallized Numeracy 1 .559 .484 .534 .415 .051 
 Fluid Numeracy 0 .180 .309 .075 .715 .210 
         
Conditional dominance 
 Crystallized Fluid 1 .836 .328 .777 .105 .118 
 Crystallized Numeracy 1 .559 .484 .534 .415 .051 
 Fluid Numeracy 0 .180 .309 .075 .715 .210 
         
General dominance 
 Crystallized Fluid 1 .879 .326 .879 .121 .000 
 Crystallized Numeracy 1 .555 .497 .555 .445 .000 
 Fluid Numeracy 0 .112 .316 .112 .888 .000 

Note. Analyses were conducted using correlations corrected for measurement error. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap 

samples; SE = standard error of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of 

bootstrap samples in which Xj dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined 

(i.e., Dij = .5). 
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Table 17. Dominance Analysis of Under/Overconfidence Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .13 (.07, .19) .02 (.00, .06) .04 (.01, .09) 
         
Crystal .13 (.07, .19)   .00 (.00, .01) .00 (.00, .02) 
Fluid .02 (.00, .06) .11 (.06, .17)   .02 (.00, .06) 
Numeracy .04 (.01, .09) .08 (.04, .15) .00 (.00, .01)   
k = 1 average   .09 (.05, .16) .00 (.00, .01) .01 (.00, .03) 
         
Crystallized & Fluid .13 (.07, .20)     .00 (.00, .01) 
Crystallized & Numeracy .13 (.07, .20)   .00 (.00, .01)   
Fluid & Numeracy .05 (.02, .09) .08 (.04, .14)     
k = 2 average   .08 (.04, .14) .00 (.00, .01) .00 (.00, .01) 
         
Crystallized & Fluid & Numeracy .13 (.07, .20)       
Overall average   .10 (.06, .16) .01 (.00, .02) .02 (.01, .04) 
         
% of R2 explained   78% (44-100%) 7% (2-19%) 15% (7-32%) 

Note. Analyses were conducted using correlations corrected for measurement error. R2
 is the criterion variance accounted for by the submodel that 

includes variables listed in each corresponding row. 
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Table 18. Bootstrap Results of Dominance Analysis for Under/Overconfidence 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 1.000 .000 1.000 .000 .000 
 Crystallized Numeracy 1 1.000 .000 1.000 .000 .000 
 Fluid Numeracy 0 0.265 .261 0.012 .482 .506 
         
Conditional dominance 
 Crystallized Fluid 1 1.000 .000 1.000 .000 .000 
 Crystallized Numeracy 1 1.000 .000 1.000 .000 .000 
 Fluid Numeracy 0 0.265 .261 0.012 .482 .506 
         
General dominance 
 Crystallized Fluid 1 1.000 .000 1.000 .000 .000 
 Crystallized Numeracy 1 1.000 .000 1.000 .000 .000 
 Fluid Numeracy 0 0.039 .194 0.039 .961 .000 

Note. Analyses were conducted using correlations corrected for measurement error. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap 

samples; SE = standard error of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of 

bootstrap samples in which Xj dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined 

(i.e., Dij = .5). 
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Table 19. Dominance Analysis of Applying Decision Rules Regressed on the Predictors 

  Additional contribution of: 
 R2YX Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .43 (.35, .50) .42 (.33, .50) .49 (.42, .56) 
         
Crystal .43 (.35, .50)   .13 (.09, .19) .12 (.08, .17) 
Fluid .42 (.33, .50) .15 (.10, .21)   .15 (.11, .21) 
Numeracy .49 (.42, .56) .06 (.03, .09) .08 (.04, .13)   
k = 1 average   .10 (.07, .15) .11 (.07, .15) .14 (.10, .18) 
         
Crystallized & Fluid .57 (.49, .64)     .05 (.02, .08) 
Crystallized & Numeracy .55 (.48, .61)   .06 (.03, .1)   
Fluid & Numeracy .57 (.50, .64) .04 (.02, .07)     
k = 2 average   .04 (.02, .07) .06 (.03, .1) .05 (.02, .08) 
         
Crystallized & Fluid & Numeracy .61 (.55, .68)       
Overall average   .19 (.15, .23) .20 (.15, .24) .22 (.19, .26) 
         
% of R2 explained   31% (25-38%) 33% (24-40%) 36% (7-32%) 

Note. Analyses were conducted using correlations corrected for measurement error. R2
 is the criterion variance accounted for by the submodel that 

includes variables listed in each corresponding row. 
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Table 20. Bootstrap Results of Dominance Analysis for Applying Decision Rules 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid .5 .423 .375 .216 .370 .414 
 Crystallized Numeracy 0 .234 .290 .043 .574 .383 
 Fluid Numeracy .5 .389 .250 .039 .261 .700 
         
Conditional dominance 
 Crystallized Fluid .5 .423 .375 .216 .370 .414 
 Crystallized Numeracy 0 .234 .290 .043 .574 .383 
 Fluid Numeracy .5 .389 .250 .039 .261 .700 
         
General dominance 
 Crystallized Fluid 0 .476 .500 .476 .524 .000 
 Crystallized Numeracy 0 .133 .340 .133 .867 .000 
 Fluid Numeracy 0 .187 .390 .187 .813 .000 

Note. Analyses were conducted using correlations corrected for measurement error. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap 

samples; SE = standard error of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of 

bootstrap samples in which Xj dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined 

(i.e., Dij = .5). 
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Table 21. Dominance Analysis of Consistency in Risk Perception Regressed on the Predictors 

  Additional contribution of: 
 R2YX Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .07 (.03, .12) .01 (.00, .05) .05 (.01, .1) 
         
Crystal .07 (.03, .12)   .00 (.00, .01) .00 (.00, .03) 
Fluid .01 (.00, .05) .05 (.02, .11)   .03 (.01, .08) 
Numeracy .05 (.01, .1) .02 (.00, .07) .00 (.00, .01)   
k = 1 average   .04 (.01, .08) .00 (.00, .01) .02 (.00, .05) 
         
Crystallized & Fluid .07 (.03, .13)     .00 (.00, .03) 
Crystallized & Numeracy .07 (.03, .13)   .00 (.00, .02)   
Fluid & Numeracy .05 (.02, .10) .02 (.00, .07)     
k = 2 average   .02 (.00, .07) .00 (.00, .02) .00 (.00, .03) 
         
Crystallized & Fluid & Numeracy .07 (.03, .14)       
Overall average   .04 (.01, .09) .01 (.00, .02) .02 (.01, .06) 
         
% of R2 explained   57% (20-100%) 14% (3-26%) 29% (9-77%) 

Note. Analyses were conducted using correlations corrected for measurement error. R2
 is the criterion variance accounted for by the submodel that 

includes variables listed in each corresponding row. 
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Table 22. Bootstrap Results of Dominance Analysis for Consistency in Risk Perception 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .980 .101 .961 .001 .038 
 Crystallized Numeracy 1 .818 .378 .804 .169 .027 
 Fluid Numeracy 0 .166 .242 .006 .674 .320 
         
Conditional dominance 
 Crystallized Fluid 1 .980 .101 .961 .001 .038 
 Crystallized Numeracy 1 .818 .378 .804 .169 .027 
 Fluid Numeracy 0 .166 .242 .006 .674 .320 
         
General dominance 
 Crystallized Fluid 1 .996 .063 .996 .004 .000 
 Crystallized Numeracy 1 .820 .384 .820 .180 .000 
 Fluid Numeracy 0 .024 .153 .024 .976 .000 

Note. Analyses were conducted using correlations corrected for measurement error. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap 

samples; SE = standard error of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of 

bootstrap samples in which Xj dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined 

(i.e., Dij = .5). 

  



 

102 
 

Table 23. Dominance Analysis of Resistance to Sunk Cost Regressed on the Predictors 

  Additional contribution of: 
 R2YX Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .05 (.01, .10) .02 (.00, .05) .06 (.02, .12) 
         
Crystal .05 (.01, .10)   .00 (.00, .01) .02 (.00, .06) 
Fluid .02 (.00, .05) .03 (.01, .08)   .04 (.01, .09) 
Numeracy .06 (.02, .12) .01 (.00, .03) .00 (.00, .01)   
k = 1 average   .02 (.00, .05) .00 (.00, .01) .03 (.01, .07) 
         
Crystallized & Fluid .05 (.02, .10)     .02 (.00, .05) 
Crystallized & Numeracy .07 (.03, .12)   .00 (.00, .01)   
Fluid & Numeracy .06 (.02, .12) .01 (.00, .04)     
k = 2 average   .01 (.00, .04) .00 (.00, .01) .02 (.00, .05) 
         
Crystallized & Fluid & Numeracy .07 (.03, .13)       
Overall average   .02 (.01, .06) .01 (.00, .02) .04 (.01, .08) 
         
% of R2 explained   29% (11-92%) 14% (5-33%) 57% (17-100%) 

Note. Analyses were conducted using correlations corrected for measurement error. R2
 is the criterion variance accounted for by the submodel that 

includes variables listed in each corresponding row. 
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Table 24. Bootstrap Results of Dominance Analysis for Resistance to Sunk Cost 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .844 .257 .711 .024 .265 
 Crystallized Numeracy 0 .294 .446 .277 .690 .033 
 Fluid Numeracy 0 .037 .140 .005 .931 .064 
         
Conditional dominance 
 Crystallized Fluid 1 .844 .257 .711 .024 .265 
 Crystallized Numeracy 0 .294 .446 .277 .690 .033 
 Fluid Numeracy 0 .037 .140 .005 .931 .064 
         
General dominance 
 Crystallized Fluid 1 .962 .191 .962 .038 .000 
 Crystallized Numeracy 0 .293 .455 .293 .707 .000 
 Fluid Numeracy 0 .010 .100 .010 .990 .000 

Note. Analyses were conducted using correlations corrected for measurement error. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap 

samples; SE = standard error of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of 

bootstrap samples in which Xj dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined 

(i.e., Dij = .5). 
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Table 25. Summary of Dominance Analysis Results 

 DMC RF SN OC DR RP SC 
Complete dominance        
   Crystallized ability F  F, N F, N  F, N F 
   Fluid ability  C      
   Numeracy F C, F F F C F C, F 
Conditional dominance          
   Crystallized ability F  F, N F, N  F, N F 
   Fluid ability  C      
   Numeracy F C, F F F C F C, F 
General dominance        
   Crystallized ability F  F, N F, N  F, N F 
   Fluid ability  C   C   
   Numeracy C, F C, F F F C, F F C, F 
Note. Analyses were conducted using correlations corrected for measurement error. C = 
crystallized ability, F = fluid ability, N = numeracy, DMC = Decision Making Competence, RF = 
Resistance to Framing, SN = Recognizing Social Norms, OC = Under/Overconfidence, DR = 
Applying Decision Rules, RP = Consistency in Risk Perception, SC = Resistance to Sunk Cost. 
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Table 26. Hierarchical Regression Models of Overall Decision-Making Competence  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .39  350 -.15*** (-.23, -.06) 

  Gender    .02 (-.06, .11) 

  Crystallized ability    .44*** (.35, .54) 

  Fluid ability    .22*** (.13, .31) 

        
 2 University .43 .04*** 351 -.15*** (-.23, -.06) 

  Gender    -.08 (-.17, .01) 
  Crystallized ability    .28*** (.17, .39) 
  Fluid ability    .11* (.01, .21) 

  Numeracy    .33*** (.20, .47) 

        

2 1 University .38  349 -.16*** (-.25, -.08) 

  Gender    -.16*** (-.25, -.06) 

  Numeracy    .62*** (.53, .71) 

        

 2 University .43 .05*** 351 -.15*** (-.23, -.06) 

  Gender    -.08 (-.17, .01) 

  Numeracy    .33*** (.20, .47) 

  Crystallized ability    .28*** (.17, .39) 

  Fluid ability    .11* (.01, .21) 

Note. Analyses were conducted using correlations corrected for measurement error. University is 

coded 0 = MTU, 1 = OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = 
standardized beta coefficient.  
* p < .05; ** p < .01; *** p < .001. 
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Table 27. Hierarchical Regression Models of Resistance to Framing  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .18  350 -.03 (-.13, .07) 

  Gender    .12* (.02, .22) 

  Crystallized ability    .06 (-.05, .17) 

  Fluid ability    .36*** (.25, .47) 

        
 2 University .25 .07*** 351 -.03 (-.12, .07) 

  Gender    -.02 (-.12, .09) 
  Crystallized ability    -.15* (-.28, -.02) 
  Fluid ability    .21*** (.10, .33) 

  Numeracy    .44*** (.29, .59) 

        

2 1 University .21  349 -.02 (-.12, .07) 

  Gender    -.02 (-.13, .08) 

  Numeracy    .47*** (.36, .57) 

        

 2 University .25 .04*** 351 -.03 (-.12, .07) 

  Gender    -.02 (-.12, .09) 

  Numeracy    .44*** (.29, .59) 

  Crystallized ability    -.15* (-.28, -.02) 

  Fluid ability    .21*** (.10, .33) 

Note. Analyses were conducted using correlations corrected for measurement error. University is 

coded 0 = MTU, 1 = OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = 
standardized beta coefficient.  
* p < .05; ** p < .01; *** p < .001. 
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Table 28. Hierarchical Regression Models of Recognizing Social Norms  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .04  350 -.04 (-.15, .06) 

  Gender    -.02 (-.13, .09) 

  Crystallized ability    .17** (.05, .29) 

  Fluid ability    .04 (-.08, .16) 

        
 2 University .05 .01 351 -.04 (-.15, .06) 

  Gender    -.06 (-.18, .06) 
  Crystallized ability    .11 (-.04, .25) 
  Fluid ability    .00 (-.14, .13) 

  Numeracy    .13 (-.04, .31) 

        

2 1 University .04  349 -.05 (-.15, .06) 

  Gender    -.08 (-.20, .03) 

  Numeracy    .21*** (.10, .32) 

        

 2 University .05 .01 351 -.04 (-.15, .06) 

  Gender    -.06 (-.18, .06) 

  Numeracy    .13 (-.04, .31) 

  Crystallized ability    .11 (-.04, .25) 

  Fluid ability    .00 (-.14, .13) 

Note. Analyses were conducted using correlations corrected for measurement error. University is 

coded 0 = MTU, 1 = OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = 
standardized beta coefficient.  
* p < .05; ** p < .01; *** p < .001. 
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Table 29. Hierarchical Regression Models of Under/Overconfidence  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .15  350 -.13* (-.23, -.03) 

  Gender    .05 (-.05, .15) 

  Crystallized ability    .36*** (.24, .47) 

  Fluid ability    -.05 (-.16, .06) 

        
 2 University .16 .01 351 -.13* (-.23, -.03) 

  Gender    .09 (-.02, .20) 
  Crystallized ability    .42*** (.28, .56) 
  Fluid ability    -.01 (-.13, .12) 

  Numeracy    -.13 (-.29, .03) 

        

2 1 University .07  349 -.15** (-.26, -.05) 

  Gender    .01 (-.10, .12) 

  Numeracy    .18** (.07, .29) 

        

 2 University .16 .09*** 351 -.13* (-.23, -.03) 

  Gender    .09 (-.02, .20) 

  Numeracy    -.13 (-.29, .03) 

  Crystallized ability    .42*** (.28, .56) 

  Fluid ability    -.01 (-.13, .12) 

Note. Analyses were conducted using correlations corrected for measurement error. University is 

coded 0 = MTU, 1 = OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = 
standardized beta coefficient.  
* p < .05; ** p < .01; *** p < .001. 
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Table 30. Hierarchical Regression Models of Applying Decision Rules  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .57  350 -.02 (-.09, .06) 

  Gender    .06 (-.02, .13) 

  Crystallized ability    .44*** (.36, .52) 

  Fluid ability    .42*** (.34, .50) 

        
 2 University .61 .04*** 351 -.02 (-.08, .05) 

  Gender    -.05 (-.13, .02) 
  Crystallized ability    .27*** (.17, .36) 
  Fluid ability    .31*** (.22, .39) 

  Numeracy    .36*** (.24, .47) 

        

2 1 University .51  349 -.03 (-.11, .04) 

  Gender    -.16*** (-.24, -.08) 

  Numeracy    .76*** (.68, .84) 

        

 2 University .61 .10*** 351 -.02 (-.08, .05) 

  Gender    -.05 (-.13, .02) 

  Numeracy    .36*** (.24, .47) 

  Crystallized ability    .27*** (.17, .36) 

  Fluid ability    .31*** (.22, .39) 

Note. Analyses were conducted using correlations corrected for measurement error. University is 

coded 0 = MTU, 1 = OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = 
standardized beta coefficient.  
* p < .05; ** p < .01; *** p < .001. 
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Table 31. Hierarchical Regression Models of Consistency in Risk Perception  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .12  350 -.23*** (-.33, -.13) 

  Gender    -.08 (-.18, .02) 

  Crystallized ability    .25*** (.14, .36) 

  Fluid ability    -.02 (-.13, .10) 

        
 2 University .13 .01 351 -.23*** (-.33, -.13) 

  Gender    -.13* (-.24, -.01) 
  Crystallized ability    .18* (.04, .32) 
  Fluid ability    -.07 (-.19, .06) 

  Numeracy    .15 (-.01, .32) 

        

2 1 University .11  349 -.24*** (-.34, -.13) 

  Gender    -.15** (-.26, -.04) 

  Numeracy    .24*** (.13, .35) 

        

 2 University .13 .02* 351 -.23*** (-.33, -.13) 

  Gender    -.13* (-.24, -.01) 

  Numeracy    .15 (-.01, .32) 

  Crystallized ability    .18* (.04, .32) 

  Fluid ability    -.07 (-.19, .06) 

Note. Analyses were conducted using correlations corrected for measurement error. University is 

coded 0 = MTU, 1 = OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = 
standardized beta coefficient.  
* p < .05; ** p < .01; *** p < .001. 
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Table 32. Hierarchical Regression Models of Resistance to Sunk Cost  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .05  350 -.03 (-.13, .08) 

  Gender    -.05 (-.16, .06) 

  Crystallized ability    .21*** (.09, .33) 

  Fluid ability    .03 (-.09, .14) 

        
 2 University .08 .03*** 351 -.03 (-.13, .08) 

  Gender    -.14* (-.25, -.02) 
  Crystallized ability    .07 (-.07, .22) 
  Fluid ability    -.07 (-.19, .06) 

  Numeracy    .28** (.11, .45) 

        

2 1 University .08  349 -.03 (-.13, .07) 

  Gender    -.14* (-.25, -.03) 

  Numeracy    .29*** (.18, .40) 

        

 2 University .08 .00 351 -.03 (-.13, .08) 

  Gender    -.14* (-.25, -.02) 

  Numeracy    .28** (.11, .45) 

  Crystallized ability    .07 (-.07, .22) 

  Fluid ability    -.07 (-.19, .06) 

Note. Analyses were conducted using correlations corrected for measurement error. University is 

coded 0 = MTU, 1 = OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = 
standardized beta coefficient.  

* p < .05; ** p < .01; *** p < .001. 
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Appendix A: Dominance Analysis with Observed Correlations 

Table A1. Dominance Analysis of Decision-Making Competence Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .19 (.11, .27) .12 (.06, .19) .17 (.10, .23) 
         
Crystal .19 (.11, .27)   .04 (.01, .09) .05 (.02, .10) 
Fluid .12 (.06, .19) .11 (.05, .18)   .08 (.04, .14) 
Numeracy .17 (.10, .23) .08 (.03, .13) .04 (.01, .09)   
k = 1 average   .09 (.04, .15) .04 (.01, .09) .07 (.03, .12) 
         
Crystallized & Fluid .23 (.15, .32)     .03 (.01, .07) 
Crystallized & Numeracy .24 (.16, .33)   .02 (.00, .06)   
Fluid & Numeracy .21 (.14, .28) .06 (.02, .11)     
k = 2 average   .06 (.02, .11) .02 (.00, .06) .03 (.01, .07) 
         
Crystallized & Fluid & Numeracy .27 (.18, .36)       
Overall average   .11 (.06, .17) .06 (.03, .11) .09 (.05, .14) 
         
% of R2 explained   41% (22-66%) 22% (11-41%) 33% (18-53%) 

Note. Analyses were conducted using observed correlations. R2
 is the criterion variance accounted for by the submodel that includes variables listed in 

each corresponding row. 
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Table A2. Bootstrap Results of Dominance Analysis for Decision Making Competence 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .916 .260 .897 .065 .038 
 Crystallized Numeracy 1 .753 .409 .715 .209 .076 
 Fluid Numeracy 0 .220 .357 .131 .692 .177 
         
Conditional dominance 
 Crystallized Fluid 1 .916 .260 .897 .065 .038 
 Crystallized Numeracy 1 .753 .409 .715 .209 .076 
 Fluid Numeracy 0 .220 .357 .131 .692 .177 
         
General dominance 
 Crystallized Fluid 1 .924 .265 .924 .076 .000 
 Crystallized Numeracy 1 .749 .434 .749 .251 .000 
 Fluid Numeracy 0 .191 .393 .191 .809 .000 

Note. Analyses were conducted using observed correlations. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap samples; SE = standard error 
of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of bootstrap samples in which Xj 
dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined (i.e., Dij = .5). 
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Table A3. Dominance Analysis of Resistance to Framing Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .02 (.00, .06) .06 (.03, .12) .07 (.03, .12) 
         
Crystal .02 (.00, .06)   .04 (.01, .09) .05 (.01, .09) 
Fluid .06 (.03, .12) .00 (.00, .03)   .03 (.01, .07) 
Numeracy .07 (.03, .12) .00 (.00, .02) .03 (.00, .07)   
k = 1 average   .00 (.00, .02) .03 (.01, .08) .04 (.01, .08) 
         
Crystallized & Fluid .07 (.03, .13)     .03 (.00, .06) 
Crystallized & Numeracy .07 (.03, .12)   .02 (.00, .06)   
Fluid & Numeracy .09 (.05, .16) .00 (.00, .01)     
k = 2 average   .00 (.00, .01) .02 (.00, .06) .03 (.00, .06) 
         
Crystallized & Fluid & Numeracy .09 (.05, .16)       
Overall average   .01 (.00, .03) .04 (.01, .09) .04 (.02, .09) 
         
% of R2 explained   11% (3-34%) 44% (15-93%) 44% (17-91%) 

Note. Analyses were conducted using observed correlations. R2
 is the criterion variance accounted for by the submodel that includes variables listed in 

each corresponding row. 
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Table A4. Bootstrap Results of Dominance Analysis for Resistance to Framing 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 0 .042 .183 .029 .946 .025 
 Crystallized Numeracy 0 .036 .178 .030 .958 .012 
 Fluid Numeracy 0 .450 .486 .427 .528 .045 
         
Conditional dominance 
 Crystallized Fluid 0 .042 .183 .029 .946 .025 
 Crystallized Numeracy 0 .036 .178 .030 .958 .012 
 Fluid Numeracy 0 .450 .486 .427 .528 .045 
         
General dominance 
 Crystallized Fluid 0 .035 .184 .035 .965 .000 
 Crystallized Numeracy 0 .034 .181 .034 .966 .000 
 Fluid Numeracy 0 .450 .498 .450 .550 .000 

Note. Analyses were conducted using observed correlations. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap samples; SE = standard error 
of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of bootstrap samples in which Xj 
dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined (i.e., Dij = .5). 
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Table A5. Dominance Analysis of Recognizing Social Norms Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .02 (.00, .07) .01 (.00, .04) .02 (.00, .05) 
         
Crystal .02 (.00, .07)   .00 (.00, .03) .00 (.00, .03) 
Fluid .01 (.00, .04) .01 (.00, .06)   .01 (.00, .04) 
Numeracy .02 (.00, .05) .01 (.00, .04) .00 (.00, .03)   
k = 1 average   .01 (.00, .05) .00 (.00, .03) .01 (.00, .03) 
         
Crystallized & Fluid .02 (.00, .07)     .00 (.00, .03) 
Crystallized & Numeracy .02 (.00, .07)   .00 (.00, .02)   
Fluid & Numeracy .02 (.00, .06) .01 (.00, .04)     
k = 2 average   .01 (.00, .04) .00 (.00, .02) .00 (.00, .03) 
         
Crystallized & Fluid & Numeracy .03 (.00, .08)       
Overall average   .01 (.00, .05) .00 (.00, .03) .01 (.00, .04) 
         
% of R2 explained   50% (4-100%) < 1% (0-100%) 50% (4-100%) 

Note. Analyses were conducted using observed correlations. R2
 is the criterion variance accounted for by the submodel that includes variables listed in 

each corresponding row. 
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Table A6. Bootstrap Results of Dominance Analysis for Recognizing Social Norms 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .750 .409 .710 .209 .081 
 Crystallized Numeracy 1 .626 .474 .606 .354 .040 
 Fluid Numeracy 0 .340 .440 .278 .598 .124 
         
Conditional dominance 
 Crystallized Fluid 1 .750 .409 .710 .209 .081 
 Crystallized Numeracy 1 .626 .474 .606 .354 .040 
 Fluid Numeracy 0 .340 .440 .278 .598 .124 
         
General dominance 
 Crystallized Fluid 1 .760 .427 .760 .240 .000 
 Crystallized Numeracy 1 .618 .486 .618 .382 .000 
 Fluid Numeracy 0 .314 .464 .314 .686 .000 

Note. Analyses were conducted using observed correlations. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap samples; SE = standard error 
of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of bootstrap samples in which Xj 
dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined (i.e., Dij = .5). 
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Table A7. Dominance Analysis of Under/Overconfidence Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .07 (.02, .15) .01 (.00, .05) .02 (.00, .06) 
         
Crystal .07 (.02, .15)   .00 (.00, .01) .00 (.00, .02) 
Fluid .01 (.00, .05) .06 (.02, .12)   .01 (.00, .04) 
Numeracy .02 (.00, .06) .05 (.01, .11) .00 (.00, .03)   
k = 1 average   .05 (.01, .12) .00 (.00, .02) .01 (.00, .03) 
         
Crystallized & Fluid .07 (.02, .15)     .00 (.00, .01) 
Crystallized & Numeracy .07 (.02, .15)   .00 (.00, .01)   
Fluid & Numeracy .02 (.00, .07) .05 (.01, .10)     
k = 2 average   .05 (.01, .10) .00 (.00, .01) .00 (.00, .01) 
         
Crystallized & Fluid & Numeracy .07 (.03, .15)       
Overall average   .06 (.02, .12) .00 (.00, .03) .01 (.00, .03) 
         
% of R2 explained   86% (23-100%) 0% (1-39%) 14% (3-45%) 

Note. Analyses were conducted using observed correlations. R2
 is the criterion variance accounted for by the submodel that includes variables listed in 

each corresponding row. 
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Table A8. Bootstrap Results of Dominance Analysis for Under/Overconfidence 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .994 .074 .993 .005 .002 
 Crystallized Numeracy 1 .982 .134 .981 .018 .001 
 Fluid Numeracy 0 .379 .373 .186 .428 .386 
         
Conditional dominance 
 Crystallized Fluid 1 .994 .074 .993 .005 .002 
 Crystallized Numeracy 1 .982 .134 .981 .018 .001 
 Fluid Numeracy 0 .379 .373 .186 .428 .386 
         
General dominance 
 Crystallized Fluid 1 .995 .071 .995 .005 .000 
 Crystallized Numeracy 1 .982 .133 .982 .018 .000 
 Fluid Numeracy 0 .272 .445 .272 .728 .000 

Note. Analyses were conducted using observed correlations. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap samples; SE = standard error 
of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of bootstrap samples in which Xj 
dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined (i.e., Dij = .5). 
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Table A9. Dominance Analysis of Applying Decision Rules Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .22 (.15, .30) .22 (.14, .31) .21 (.14, .29) 
         
Crystal .22 (.15, .30)   .10 (.05, .17) .08 (.03, .14) 
Fluid .22 (.14, .31) .10 (.05, .16)   .09 (.04, .14) 
Numeracy .21 (.14, .29) .09 (.04, .14) .10 (.05, .16)   
k = 1 average   .09 (.05, .15) .10 (.05, .16) .08 (.04, 013) 
         
Crystallized & Fluid .32 (.25, .40)     .04 (.01, .08) 
Crystallized & Numeracy .30 (.22, .38)   .06 (.03, .11)   
Fluid & Numeracy .31 (.23, .40) .05 (.02, .10)     
k = 2 average   .05 (.02, .10) .06 (.03, .11) .04 (.01, .08) 
         
Crystallized & Fluid & Numeracy .36 (.29, .44)       
Overall average   .12 (.07, .18) .13 (.07, .19) .11 (.07, .16) 
         
% of R2 explained   33% (20-51%) 36% (21-53%) 31% (18-46%) 

Note. Analyses were conducted using observed correlations. R2
 is the criterion variance accounted for by the submodel that includes variables listed in 

each corresponding row. 
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Table A10. Bootstrap Results of Dominance Analysis for Applying Decision Rules 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 0 .421 .457 .350 .508 .142 
 Crystallized Numeracy 1 .627 .452 .567 .313 .120 
 Fluid Numeracy 1 .692 .407 .595 .212 .193 
         
Conditional dominance 
 Crystallized Fluid 0 .421 .457 .350 .508 .142 
 Crystallized Numeracy 1 .627 .452 .567 .313 .120 
 Fluid Numeracy 1 .692 .407 .595 .212 .193 
         
General dominance 
 Crystallized Fluid 0 .423 .494 .423 .577 .000 
 Crystallized Numeracy 1 .614 .487 .614 .386 .000 
 Fluid Numeracy 1 .679 .467 .679 .321 .000 

Note. Analyses were conducted using observed correlations. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap samples; SE = standard error 
of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of bootstrap samples in which Xj 
dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined (i.e., Dij = .5). 
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Table A11. Dominance Analysis of Consistency in Risk Perception Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .04 (.01, .09) .01 (.00, .04) .02 (.00, .06) 
         
Crystal .04 (.01, .09)   .00 (.00, .02) .00 (.00, .03) 
Fluid .01 (.00, .04) .03 (.00, .07)   .02 (.00, .05) 
Numeracy .02 (.00, .06) .02 (.00, .06) .00 (.00, .02)   
k = 1 average   .03 (.00, .06) .00 (.00, .02) .01 (.00, .04) 
         
Crystallized & Fluid .04 (.01, .09)     .00 (.00, .03) 
Crystallized & Numeracy .04 (.01, .10)   .00 (.00, .01)   
Fluid & Numeracy .02 (.00, .07) .02 (.00, .05)     
k = 2 average   .02 (.00, .05) .00 (.00, .01) .00 (.00, .03) 
         
Crystallized & Fluid & Numeracy .04 (.01, .10)       
Overall average   .03 (.00, .07) .00 (.00, .02) .01 (.00, .04) 
         
% of R2 explained   75% (12-100%) 0% (2-51%) 25% (2-93%) 

Note. Analyses were conducted using observed correlations. R2
 is the criterion variance accounted for by the submodel that includes variables listed in 

each corresponding row. 
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Table A12. Bootstrap Results of Dominance Analysis for Consistency in Risk Perception 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .958 .190 .948 .033 .019 
 Crystallized Numeracy 1 .827 .374 .820 .166 .014 
 Fluid Numeracy 0 .221 .347 .117 .675 .208 
         
Conditional dominance 
 Crystallized Fluid 1 .958 .190 .948 .033 .019 
 Crystallized Numeracy 1 .827 .374 .820 .166 .014 
 Fluid Numeracy 0 .221 .347 .117 .675 .208 
         
General dominance 
 Crystallized Fluid 1 .963 .189 .963 .037 .000 
 Crystallized Numeracy 1 .822 .383 .822 .178 .000 
 Fluid Numeracy 0 .169 .375 .169 .831 .000 

Note. Analyses were conducted using observed correlations. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap samples; SE = standard error 
of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of bootstrap samples in which Xj 
dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined (i.e., Dij = .5). 
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Table A11. Dominance Analysis of Resistance to Sunk Cost Regressed on the Predictors 

  Additional contribution of: 
 R2 Crystallized Fluid Numeracy 
Submodel Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI 
Null & k = 0   .01 (.00, .05) .00 (.00, .03) .01 (.00, .05) 
         
Crystal .01 (.00, .05)   .00 (.00, .02) .01 (.00, .03) 
Fluid .00 (.00, .03) .01 (.00, .04)   .01 (.00, .04) 
Numeracy .01 (.00, .05) .01 (.00, .03) .00 (.00, .02)   
k = 1 average   .01 (.00, .03) .00 (.00, .02) .01 (.00, .03) 
         
Crystallized & Fluid .01 (.00, .06)     .00 (.00, .03) 
Crystallized & Numeracy .02 (.00, .06)   .00 (.00, .01)   
Fluid & Numeracy .01 (.00, .05) .00 (.00, .03)     
k = 2 average   .00 (.00, .03) .00 (.00, .01) .00 (.00, .03) 
         
Crystallized & Fluid & Numeracy .02 (.00, .06)       
Overall average   .01 (.00, .04) .00 (.00, .02) .01 (.00, .04) 
         
% of R2 explained   50% (5-100%) 0% (0-100%) 50% (5-100%) 

Note. Analyses were conducted using observed correlations. R2
 is the criterion variance accounted for by the submodel that includes variables listed in 

each corresponding row. 
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Table A12. Bootstrap Results of Dominance Analysis for Resistance to Sunk Cost 

 Xi Xj Dij Mean SE Pij Pji Pijno 
Complete dominance 
 Crystallized Fluid 1 .735 .400 .665 .195 .140 
 Crystallized Numeracy 0.5 .500 .494 .489 .488 .023 
 Fluid Numeracy 0 .248 .388 .176 .680 .144 
         
Conditional dominance 
 Crystallized Fluid 1 .735 .400 .665 .195 .140 
 Crystallized Numeracy 0.5 .500 .494 .489 .488 .023 
 Fluid Numeracy 0 .248 .388 .176 .680 .144 
         
General dominance 
 Crystallized Fluid 1 .758 .429 .758 .242 .000 
 Crystallized Numeracy 0 .500 .500 .500 .500 .000 
 Fluid Numeracy 0 .220 .414 .220 .780 .000 

Note. Analyses were conducted using observed correlations. Dij = 1 – Dji; Mean = average value of Dij over 1,000 bootstrap samples; SE = standard error 
of the Dij values over the samples; Pij = proportion of samples in which Xi dominated Xj (i.e., Dij = 1); Pji = proportion of bootstrap samples in which Xj 
dominated Xi (i.e., Dij = 0); Pijno = proportion of samples in which dominance between Xi and Xj could not be determined (i.e., Dij = .5) 
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Appendix B: Hierarchical Regression with Observed Correlations 

 

Table B1. Hierarchical Regression Models of Overall Decision-Making Competence 

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .25  350 -.14** (-.23, -.05) 

  Gender    .03 (-.06, .12) 

  Crystallized ability    .34*** (.24, .43) 

  Fluid ability    .21*** (.12, .31) 

        
 2 University .28 .03*** 351 -.14** (-.23, -.04) 

  Gender    -.02 (-.12, .07) 
  Crystallized ability    .27*** (.16, .37) 
  Fluid ability    .16** (.06, .26) 

  Numeracy    .21*** (.10, .32) 

        

2 1 University .19  349 -.16** (-.26, -.06) 

  Gender    -.05 (-.15, .05) 

  Numeracy    .40*** (.30, .50) 

        

 2 University .28 .09*** 351 -.14** (-.23, -.04) 

  Gender    -.02 (-.12, .07) 

  Numeracy    .21*** (.10, .32) 

  Crystallized ability    .27*** (.16, .37) 

  Fluid ability    .16** (.06, .26) 

Note. Analyses were conducted using observed correlations. University is coded 0 = MTU, 1 = 

OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = standardized beta 

coefficient.  

* p < .05; ** p < .01; *** p < .001. 
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Table B2. Hierarchical Regression Models of Resistance to Framing  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .08  350 -.02 (-.13, .08) 

  Gender    .09 (-.01, .20) 

  Crystallized ability    .07 (-.04, .17) 

  Fluid ability    .22*** (.11, .33) 

        
 2 University .10 .02** 351 -.02 (-.13, .08) 

  Gender    .05 (-.06, .16) 
  Crystallized ability    .01 (-.11, .12) 
  Fluid ability    .18** (.06, .29) 

  Numeracy    .17** (.05, .29) 

        

2 1 University .07  349 -.03 (-.13, .08) 

  Gender    .04 (-.07, .15) 

  Numeracy    .25*** (.14, .35) 

        

 2 University .10 .03** 351 -.02 (-.13, .08) 

  Gender    .05 (-.06, .16) 

  Numeracy    .17** (.05, .29) 

  Crystallized ability    .01 (-.11, .12) 

  Fluid ability    .18** (.06, .29) 

Note. Analyses were conducted using observed correlations. University is coded 0 = MTU, 1 = 

OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = standardized beta 

coefficient.  

* p < .05; ** p < .01; *** p < .001. 
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Table B3. Hierarchical Regression Models of Recognizing Social Norms  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .02  350 -.04 (-.15, .07) 

  Gender    -.02 (-.12, .09) 

  Crystallized ability    .12* (.01, .23) 

  Fluid ability    .05 (-.06, .16) 

        
 2 University .03 .00 351 -.04 (-.15, .07) 

  Gender    -.03 (-.15, .08) 
  Crystallized ability    .10 (-.02, .22) 
  Fluid ability    .03 (-.09, .14) 

  Numeracy    .08 (-.05, .20) 

        

2 1 University .02  349 -.05 (-.16, .06) 

  Gender    -.04 (-.15, .07) 

  Numeracy    .13* (.02, .24) 

        

 2 University .03 .01 351 -.04 (-.15, .07) 

  Gender    -.03 (-.15, .08) 

  Numeracy    .08 (-.05, .20) 

  Crystallized ability    .10 (-.02, .22) 

  Fluid ability    .03 (-.09, .14) 

Note. Analyses were conducted using observed correlations. University is coded 0 = MTU, 1 = 

OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = standardized beta 

coefficient.  

* p < .05; ** p < .01; *** p < .001. 
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Table B4. Hierarchical Regression Models of Under/Overconfidence  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .09  350 -.12* (-.22, -.02) 

  Gender    .05 (-.05, .15) 

  Crystallized ability    .24*** (.13, .35) 

  Fluid ability    .01 (-.10, .12) 

        
 2 University .09 .00 351 -.12* (-.22, -.02) 

  Gender    .05 (-.06, .16) 
  Crystallized ability    .24*** (.13, .36) 
  Fluid ability    .01 (-.10, .12) 

  Numeracy    .00 (-.12, .12) 

        

2 1 University .04  349 -.14* (-.24, -.03) 

  Gender    .03 (-.08, .15) 

  Numeracy    .12* (.01, .22) 

        

 2 University .09 .05*** 351 -.12* (-.22, -.02) 

  Gender    .05 (-.06, .16) 

  Numeracy    .00 (-.12, .12) 

  Crystallized ability    .24*** (.13, .36) 

  Fluid ability    .01 (-.10, .12) 

Note. Analyses were conducted using observed correlations. University is coded 0 = MTU, 1 = 

OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = standardized beta 

coefficient.  

* p < .05; ** p < .01; *** p < .001. 
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Table B5. Hierarchical Regression Models of Applying Decision Rules  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .33  350 -.02 (-.11, .07) 

  Gender    .06 (-.03, .15) 

  Crystallized ability    .34*** (.24, .43) 

  Fluid ability    .34*** (.25, .43) 

        
 2 University .36 .03*** 351 -.02 (-.11, .07) 

  Gender    .00 (-.09, .09) 
  Crystallized ability    .26*** (.16, .36) 
  Fluid ability    .28*** (.19, .38) 

  Numeracy    .22*** (.12, .33) 

        

2 1 University .21  349 -.05 (-.15, .05) 

  Gender    -.03 (-.13, .07) 

  Numeracy    .46*** (.37, .56) 

        

 2 University .36 .15*** 351 -.02 (-.11, .07) 

  Gender    .00 (-.09, .09) 

  Numeracy    .22*** (.12, .33) 

  Crystallized ability    .26*** (.16, .36) 

  Fluid ability    .28*** (.19, .38) 

Note. Analyses were conducted using observed correlations. University is coded 0 = MTU, 1 = 

OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = standardized beta 

coefficient.  

* p < .05; ** p < .01; *** p < .001. 
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Table B6. Hierarchical Regression Models of Consistency in Risk Perception  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .08  350 -.20*** (-.31, -.10) 

  Gender    -.06 (-.17, .04) 

  Crystallized ability    .17** (.06, .28) 

  Fluid ability    .02 (-.09, .13) 

        
 2 University .08 .00 351 -.20*** (-.31, -.10) 

  Gender    -.09 (-.20, .02) 
  Crystallized ability    .14* (.02, .26) 
  Fluid ability    -.01 (-.12, .11) 

  Numeracy    .09 (-.03, .21) 

        

2 1 University .07  349 -.21*** (-.32, -.11) 

  Gender    -.10 (-.20, .01) 

  Numeracy    .15** (.05, .26) 

        

 2 University .08 .01 351 -.20*** (-.31, -.1) 

  Gender    -.09 (-.20, .02) 

  Numeracy    .09 (-.03, .21) 

  Crystallized ability    .14* (.02, .26) 

  Fluid ability    -.01 (-.12, .11) 

Note. Analyses were conducted using observed correlations. University is coded 0 = MTU, 1 = 

OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = standardized beta 

coefficient.  

* p < .05; ** p < .01; *** p < .001. 
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Table B7. Hierarchical Regression Models of Resistance to Sunk Cost  

Model Step Variable R2 DR2 df b 95% CI 

1 1 University .02  350 -.02 (-.13, .09) 

  Gender    -.03 (-.14, .08) 

  Crystallized ability    .11 (-.01, .22) 

  Fluid ability    .03 (-.08, .14) 

        
 2 University .02 .00 351 -.02 (-.13, .09) 

  Gender    -.05 (-.17, .06) 
  Crystallized ability    .07 (-.05, .20) 
  Fluid ability    .01 (-.11, .12) 

  Numeracy    .10 (-.03, .22) 

        

2 1 University .02  349 -.03 (-.13, .08) 

  Gender    -.06 (-.17, .05) 

  Numeracy    .13 (.02, .24) 

        

 2 University .02 .00 351 -.02 (-.13, .09) 

  Gender    -.05 (-.17, .06) 

  Numeracy    .10 (-.03, .22) 

  Crystallized ability    .07 (-.05, .20) 

  Fluid ability    .01 (-.11, .12) 

Note. Analyses were conducted using observed correlations. University is coded 0 = MTU, 1 = 

OU, Gender is coded 0 = Female, 1 = Male, df = degrees of freedom; b = standardized beta 

coefficient.  

* p < .05; ** p < .01; *** p < .001. 

 


