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Abstract 

      Neurodegenerative disorders, such as Alzheimer’s disease (AD), have an enormous 

impact on the quality of life in millions of aging adults and bring a daunting financial burden to 

the society. Towards understanding the mechanism of AD, recent studies have emphasized the 

changes in large-scale brain networks related to healthy aging, with the ultimate purpose to aid in 

differentiating normal neurocognitive aging from neurodegenerative disorders that also arise with 

age. In this dissertation, my work aimed to establish a neuroimaging-based biomarker that can 

indicate the episodic memory performance in humans, which in the long term can be a tool to 

monitor the memory decline in the normal aging process early stage of Alzheimer’s disease. In 

particular, my work focused on using wearable neural technology, i.e., electroencephalography 

(EEG) and functional near-infrared spectroscopy (fNIRS), to investigate the association of 

memory and brain connectivity pattern of default mode network (DMN). 

Chapter 2 of my dissertation showed that higher brain connectivity in the posterior cingulate 

/ precuneus area of DMN was associated with lower performance on an episodic memory task. 

The findings demonstrate the feasibility of using electrophysiological imaging to characterize 

large-scale brain networks and suggest that network connectivity changes are associated with 

normal aging. 

Furthermore, Chapter 3 of my dissertation investigated the confounding effect of vigilance on 

brain network connectivity at awake resting state. I examined the characteristics of the global 

signal by using fNIRS and correlated the amplitude of the fNIRS global signal with vigilance 

measured by EEG. Results found that body positions' factor significantly affected the amplitude 

of the resting-state fNIRS global signal, prominently in the frequency range of 0.05 Hz - 0.1 Hz 

but only marginally in the very-low-frequency range of less than 0.05 Hz. More importantly, the 
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amplitude of the global signal in the very-low-frequency range of less than 0.05 Hz exhibited a 

significant negative correlation with EEG vigilance measures. For the first time, our study revealed 

that vigilance as a neurophysiological factor modulates the resting-state dynamics of fNIRS, which 

have important implications for understanding the noises and neural origins in fNIRS and possibly 

in fMRI signals. 

In Chapter 4, my work continues to search for approaches that can minimize the confounding 

effect of vigilance other than regress the entire vigilance, which contains physiological noise and 

the neuronal component. By implementing new connectivity metrics, the significant association 

between memory and brain connectivity is consistent with our previous finding. More importantly, 

the new metrics improved the significance of the difference between two age groups and the 

association between age and brain connectivity. The approach of removing the confounding part 

of vigilance measure will increase the accuracy and sensitivity of EEG brain connectivity and 

indicate broad application prospects in normal and abnormal aging studies. 

In summary, my dissertation systematically demonstrates the current application of portable 

non-invasive neuroimaging tools in the field of aging and Alzheimer’s study. My work has also 

examined the confounding effect of vigilance on network connectivity, and further proposed a 

solution of calibrated network connectivity towards a more accurate neuroimaging biomarker for 

memory. Our results suggest that EEG would be an effective, sensitive neuroimaging tool to 

characterize electrophysiological features of normal aging in the human brain's large-scale 

networks. My findings based on multimodal neuroimaging also provide important implications in 

understanding the neuroimaging literature on memory and aging. 
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Chapter 1: Introduction 

 

1.1 Motivation and Significance of the Study 

1.1.1 State-of-the-Art in Aging and Alzheimer’s Disease Study 

According to a report published by Alzheimer’s Association in 2020, 5.8 million 

Americans live with Alzheimer’s disease (AD) (Hebert et al., 2013; 2020). Among the population 

of above 65 years old, almost one of ten people are affecting by AD (Hebert et al., 2013; 2020). 

With the old population keeping increasing, the aging society will aggravate the prevalence of AD 

nationally.  

Dementia is the overall term of diseases that showed cognitive function impairment 

symptoms, including memory loss, language problem and problem-solving ability (2020). As a 

major common cause of dementia, AD accounts for 60% to 80% of the total cases. Nowadays, we 

are capable of gaining the knowledge that major brain changes are associated with AD except the 

outward behavioral manifestation. While the healthy people own more than 100 billion neurons 

working in the brain and 100 trillion synapses performing the role of a connection between 

adjacent neurons, the beta-amyloid accumulations are impeding the communications from the 

outside of neuron, and an abnormal form of a protein called tau tangles are hindering the nutrient 

transportation from the inside of neurons in the brain of patients with AD (Sato et al., 2018; 

Hanseeuw et al., 2019). The internal and external damage caused the outcome of neuron death and 

the consequence of other brain alterations, inflammation, and atrophy.  

AD was not developed in a day, nor a year. This gradual process of neurodegeneration is 

slow at the early stages and lasting more than several decades. For some AD patients with a special 

gene that is widely believed to contribute significantly to this process, the significantly increased 
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beta-amyloid level could precede the first symptom manifestation 22 years long (Gordon et al., 

2018). The very begging phase of AD is preclinical Alzheimer’s. During this phase, there will 

have no obvious symptoms showed as compared to normal aging people. However, the subtle 

brain changes, mainly focus on neurobiochemical biomarkers (the levels of beta-amyloid or the 

glucose metabolism), can be detected by the scans of positron emission tomography or the analysis 

of cerebrospinal fluid. Beyond this, the possible deterioration of brain function could be enveloped 

by normal-appearing brain connectivity and cannot be sensitively captured by modern 

neuroimaging technology. Cabeze et al. provided a detailed explanation of metabolic and 

physiological mechanisms for brain maintenance, reserve, and compensation (Cabeza et al., 2018). 

Genetic and environmental factors, such as education length, physical activity, bilingualism, and 

so forth, endow the brain with more sources to repair impairments, resist and compensate for 

memory decline, as some older people perform memory tests similar to young adults. 

For Alzheimer’s dementia, unfortunately, there have no pharmacologic treatments 

approved by the U.S. Food and Drug Administration to cure or treat behavioral and psychiatric 

symptoms despite decades of researches on AD. Along with the difficulties of recruiting enough 

participation of patients and longtime observation for an investigational treatment, the most 

difficult problem is from the technical and pathological aspects as the biological process, and 

molecular changes relevant to AD is still ambiguous. Many researchers believed the trend of future 

treatment and intervention would be mainly focusing on the phases before the onsite of AD. This 

is also the starting point of my projects, though out my whole doctoral program. I devoted myself 

to looking for an effective and novel biomarker that would ultimately be beneficial for 1) 

increasing accuracy and specificity of the early diagnosis of AD, and 2) critical for monitoring the 

effect of investigational treatments. 



3 

1.1.2 How Aging in Adults Is Related to Alzheimer’s Disease 

Aging is not sufficient for the onset of Alzheimer’s, and Alzheimer’s is not an inevitable 

outcome of aging (Nelson et al., 2011). Under this premise, aging is among the greatest risk factors 

for AD (Hebert et al., 2010; Hebert et al., 2013). While the morbidity of AD among the population 

of age 65-74 is around 3%, the numbers among the age groups of 75-84 and 85 or older are 17% 

and 32%, respectively (Hebert et al., 2013).  

Aging studies and AD studies are two different fields of research but have many intrinsic 

links. The findings and knowledge in one field can inspire the research in another one. Xia et al. 

summarized evidences in both fields based on the existing studies at the molecular, cellular and 

system-level (Xia et al., 2018). At the molecular level, the gene of apolipoprotein E (APOE) played 

a great role in AD and normal aging. Two of the three most common alleles of APOE found to 

have the same effect on AD and aging process (Strittmatter et al., 1993b; Seripa et al., 2006). 

Besides, another common pathology among both AD and aging is chronic inflammation. The 

intrinsic and extrinsic factors to keep the complicated balance between anti- and pro-inflammation 

are the key knowledge for the development and trials of AD (Shaw et al., 2013; Franceschi et al., 

2017). The findings in AD research could be a benefit for the aging study and vice versa. Future 

more, sleep, including normal Non-rapid Eye Movement Sleep and insomnia, is the most important 

lifestyle with a close relationship with AD and aging (Prinz et al., 1982; Liguori et al., 2014). 

However, some systematic alteration, like neuron loss, happened in AD (Scheff and Price, 2006), 

and less likely in the process of normal aging. 

The complex association between AD and aging prompts the development in studies of 

either AD or aging but, sometimes, confuses the investigations of AD, which mainly based on 
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previous aging studies and knowledge or vice versa. It is essential to understand better the different 

underlying mechanisms and the blurring boundaries between AD and aging.  

1.1.3 How Aging Study Will Inform Intervention and Prevention Trial 

The most challenging scientific problem toward AD is to figure out what its etiology is. 

Without a clear understanding of its pathology, it is impossible to develop effective interventions 

available for all AD patients. AD presents a plethora of cognitive function deteriorations. Current 

studies focus on the direct pathogenic factors, amyloid-beta, and tau deposition. Korczyn (2012) 

challenged the modern investigation to only focus on single etiology. Including the biochemical 

biomarkers of amyloid-beta and tau tangle, the factors as age, genetics, family history, and other 

mild cognitive disorder or dementia contribute to the diagnosis of AD, but none of them is an 

essential condition for the clinical diagnosis of AD (Korczyn et al., 2012). APOE ε4 is one of the 

common alleles of APOE shown that can increase the risk of AD (Strittmatter et al., 1993a), but 

the frequency of the presence of ε4 allele in patients with AD is only 40% (Liu et al., 2013). 

Especially, a newly approved AD treatment based on the “brain-gut axis” circulatory system 

(Wang et al., 2019) provides more possibilities and guess on the accurate etiology. 

There is no doubt that the advance of aging study could benefit future investigation from 

pathological to clinical treatment development. First, the advances of normal aging study will 

boost the understanding of the gap among the transition from the normal aging process in middle-

age adults to pre-clinical phases. Most researchers believe future treatment and intervention would 

be more effective when applied to the early stage of AD. Second, more normal aging studies would 

provide a more theoretical foundation to identify the abnormal process, which could increase the 

risk of developing AD and other dementias. Third, an aging study provides more biomarkers 

available for the participation screen of AD. Different biomarkers would cluster the participants 
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into elaborated test groups. Furthermore, this would make the clinical trials of treatments more 

specific, efficient, and accurate for different AD phases.  

1.2 State-of-the-Art in Neuroimaging of Aging and Alzheimer’s Disease 

1.2.1 Significance of RSFC in Neuroimaging Studies 

Resting-State Functional connectivity (RSFC) is defined as the correlation between distinct 

brain areas responsible for various functions in the temporal domain (Chen et al., 2020). This 

technology term usually refers to the interaction between different brain regions based on the 

measurement of the blood-oxygen-level-dependent (BOLD) in fMRI. The task activation requests 

the corresponding brain area to perform a special response to external stimuli or order. Moreover, 

this leads to the firing of plenty of neurons and followed by the increased consumption of oxygen, 

which leads to a decrease of deoxyhemoglobin. Brain activation, thus, can be captured by fMRI as 

localized increased signal intensity among single voxel. The coherence of brain activity between 

different brains is termed as functional brain connectivity. Furthermore, RSFC is the brain 

functional connectivity under the circumstance without any external stimuli. 

After decades of investigation, researchers have found the RSFC within the primary 

sensorimotor cortex (Biswal et al., 1995b), auditory cortex, visual cortex (Hampson et al., 2002), 

motor and association cortices (Xiong et al., 1999; Zang et al., 2004), anterior and posterior 

cingulate cortex (Greicius et al., 2004b). Among all previous RSFC studies, data analysis is 

primarily focused on time-domain (seed-based correlation (Biswal et al., 1995b)), Kendall’s 

correlation (Zang et al., 2004), principal component analysis (Huettel et al., 2004), independent 

component analysis (Beckmann et al., 2005b), and frequency-domain (Amplitude of low 

frequency fluctuations (ALFF) (Zou et al., 2008a; Zuo et al., 2010)) to dig the property of BOLD 

signal and association between RSFC and psychological or psychiatric disorders. In the data 
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analysis of my dissertation, the common methods in time-domain are employed, like seed-based 

correlation is designated to investigate the neuronal relationship between two distinct brain regions 

by selecting a cluster of brain source points as the representatives. Also, the independent 

component analysis is used to decompose the signal into several spatial-temporal patterns to map 

different outstanding brain functions.  

1.2.2 fMRI Study of Aging/AD and Limitations 

fMRI is one of the most advanced functional neuroimaging technologies (Pinti et al., 2020). 

This non-invasive modality allows researchers to acquire relatively high spatial resolution imaging 

of the human brain. Especially the RSFC in fMRI provides a reliable way to distinguish the age-

related difference. Many fMRI studies demonstrated that older adults' activation is greater than the 

younger counterparts (Grady et al., 1995; Rypma and D'Esposito, 2000; Rypma et al., 2001; 

Cabeza, 2002; Satterthwaite et al., 2013). Besides, fMRI is a powerful tool in AD studies. Greicius 

et al. reported that the decreased hippocampal involvement was observed in a group of patients 

with AD compared to healthy older adults’ group (Greicius et al., 2004b).  

However, the tightly restrained environment limits fMRI to carry out the study of atypical 

development. Furthermore, it is challenging to perform cognitive tasks related to our daily lives in 

a narrow and noisy MRI scanner. Besides, the global signal, which is the averaged time series of 

the BOLD signal across all voxels, represents a time-varying of spatial homogeneity, including 

the effect of physiological noise (Liu et al., 2017b). However, the most common pre-processing 

methods, global signal removal or regression, in fMRI studies would remove neuronal components 

at the same time (Murphy et al., 2009; Wong et al., 2013). Moreover, this could confound some 

significant functional correlation and arbitrary significance (Murphy et al., 2009). 
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1.2.3 EEG Study of Aging/AD and Limitations 

Electroencephalography (EEG) is another important neuroimaging tool. Its outstanding 

characteristic of high temporal resolution makes EEG become a promising tool for investigating 

the temporal dynamics. Previous studies indicated the universality of EEG rhythmic activity ( delta 

band: 1-4 Hz, theta band: 4-8Hz, alpha band: 8-12Hz and beta band:12-30Hz) from early 

childhood (Marshall et al., 2002), to adolescents (Cragg et al., 2011), and up to advanced elderly 

(Mizukami and Katada, 2018). 

However, the major limitation of the EEG signal is the property of relatively low spatial 

resolution. The current experimental level EEG devices usually contain tens of electrodes and up 

to 256 electrodes on a whole-head coverage. Even though the temporal domain EEG signal still 

has the issue of difficult to track the original neuronal source. One of the most advanced methods 

to solve this problem is to apply a reasonable prior constraint acquired from either fMRI or fNIRS 

signal and solve the so-called “inverse problem” to localize the accurate source location of the 

signal at every moment (Michel et al., 2004). Li et al. developed an algorithm using simultaneous 

fNIRS data as the spatial constraints to reconstruct the EEG signal from the temporal domain to 

the source level (Li et al., 2019). Besides, they applied this algorithm on the analysis of the 

comparison between healthy old adult and mild-AD patients.  

1.2.4 fNIRS Study of Aging/AD and Limitations 

fNIRS is the best alternative hemodynamic-based neuroimaging tool of fMRI. Possessing 

with both high temporal resolution and spatial resolution, fNIRS can substitute fMRI in most 

resting-state function connectivity studies. Its tolerance to head motion is favored by studies that 

are interested in the brain early development. In both typical and atypical early brain research, the 

head motions are uncontrolled during infants or children walk around, play with toys, or interact 
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with other individuals. Besides, fNIRS can involve a variety of elderly subjects to participant in 

the research of age-related effects on cortical hemodynamics during a cognitive task. Sahar et al. 

claim that fNIRS can robustly measure brain activity during memory encoding and retrieval in 

healthy subjects (Jahani et al., 2017). The significant activation was observed in the left 

dorsolateral prefrontal cortex during the coding, while the retrieval process resulted in activation 

in the dorsolateral prefrontal cortex bilaterally. This finding is consistent with previous fMRI and 

PET literature. Moreover, fNIRS is available on the elder adults with a variety of metal implants, 

pacemakers, and artificial cochleae. The novel AD biomarker with fNIRS could make clinical 

screening more affordable for the public. 

Although fNIRS is an emerging modality as a neuroimaging tool in neuroscience, a clear 

consensus about the pre-processing procedure on fNIRS data has not yet be reached. Large 

heterogeneity in the analysis procedures is reported by Pinti and his colleagues (Pinti et al., 2019). 

Their systematic review summarized the pre-processing steps in 110 papers published in 2016. 

Except for those who did not report all the important information, there is still inconsistent opinion 

on almost every step in the pre-processing procedure. More than ten types of the different filters 

were used to filter the fNIRS data, and more than 20 different range selections were used for those 

bandpass filters. It is imperative to standardize the pre-processing guideline for ongoing and future 

fNIRS studies to avoid the confound inconsistency of results across different studies caused by the 

different pre-processing pipeline.  

1.2.5 Complementary Features of Multimodal Neuroimaging 

In Section 1.2, three popular neuroimaging tools were introduced separately. In practice, 

the multimodal study is a future trend for the studies relevant to the human brain. That is because 

the human brain is a 3-dimensional complex of brain regions. To better investigate the underlying 



9 

mechanism of normal and abnormal brain development, it is significant to capture transient 

temporal and accurate spatial information. Figure 1 showed the temporal and spatial parameters 

for EEG, fNIRS, and fMRI. Although some mathematical approaches can be used to make up its 

disadvantage, for example, source analysis can largely increase the spatial resolution of EEG, it 

still needs either fNIRS or fMRI signal to provide the priori constraints. 

 

Figure 1 Comparison of features in different modalities. 

 

Table 1 expands the comparison among EEG, fMRI, and fNIRS to every prospective. It is easy to 

find out that EEG and fNIRS have several places in common. Both are silent, mobile, and non-

invasive neuroimaging tools. Especially the property of moderate tolerant ability to movement and 

permitting ferromagnetic implants make the simultaneous EEG/fNIRS modality look promising 

in aging and AD studies by accommodating the major restrictions for the old participants.  
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Table 1 Comparison of features in EEG, fNIRS, and fMRI. 

 
EEG fNIRS fMRI 

Costs Low Moderate High 

Portability Yes Yes No 

Temporal 

Resolution 

High (millisec.) High (millisec.) Low (sec.) 

Spatial Resolution Low (cm) High (mm) High (mm) 

Noise Low Low High 

Movement 

Tolerance 

Good Good Poor 

Use in People 

with 

Ferromagnetic 

Implants 

Yes Yes No 

 

1.3 Organization of the Dissertation 

Chapter 1 gives a brief introduction to the background of current development in Alzheimer’s 

dementia and research. The unsuccessful clinical trials of medical treatments motivate my research 

from neuroimaging to assist the early diagnosis of AD in the future. Three popular neuroimaging 

tools are introduced to give the big picture of advantage/disadvantage comparison and why we 

used multimodal imaging tools. 
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Chapter 2 applies the EEG source analysis algorithm on our normal aging study. It reliably 

captures the changes of individual brain connectivity and demonstrates the significant association 

between brain connectivity and episodic memory. Besides, the significant relationship between 

brain connectivity and age is also revealed. 

Chapter 3 aims to investigate the potential vigilance effect on brain connectivity measures. 

The simultaneous EEG/fNIRS data were acquired from 22 subjects. fNIRS-based Global signal 

metrics and EEG-based vigilance metrics are calculated. The frequency-domain analysis is used 

to determine the frequency band of interest. Well-designed statistical analysis is performed for two 

major factors: eye conditions (eyes-open, eyes-closed) and body positions (sitting, standing, 

supine). The relationship between global signal amplitude and vigilance measurements is 

significant. 

Chapter 4 investigates the dynamic correlation between global signal amplitude and vigilance 

measurement at epoch-level. Long recordings of simultaneous EEG and fNIRS are divided into 

non-overlap 30 seconds epochs. Furthermore, the significant relationship at the individual-level 

continues to show up at the epoch-level. Besides, it investigates the association of brain 

connectivity and memory after diminishing the confounding effect of vigilance. 

Chapter 5 presents the conclusion and recommendations for future investigation. 

Chapter 6 summarizes all products of this work, including the presentation, publication, and 

manuscripts under review. 
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Chapter 2: Electrophysiological Resting State Brain Network and Episodic 

Memory in Healthy Aging Adults 

2.1 Background 

2.1.1 Human Memory and Brain Networks 

The human brain is perhaps the most precise machine in the universe. About 100 billion 

neurons mass together in an organ to generate 1000 trillion synaptic joints allow us to perform 

extremely complicated tasks. Memory is exactly one of the most complicated tasks that human 

beings can excel in other mammals on earth.  

In 1968, Richard Atkinson and Richard Shiffrin developed the classic memory model for 

posterity (Atkinson and Shiffrin, 1968). The multi-layer model categorized the memory by stages 

(sensory memory, Short-term memory (STM) and Long-term memory (LTM)) and types (explicit 

memory and implicit memory).  

One major way to understand the memory is to separate them based on the stages or length 

of duration that memory segments could stay in our minds. This progressive relationship starting 

from the ephemeral sensory memory to the STM and then to the long-lasting LTM. In its literal 

meaning, sensory memory is the memory that humans used to sense the outside world. To avoid 

our memory contains only broken stream and incoherent pieces, sensory memory serves as a 

"cache" in the computer to allow the brain to have sufficient time to process whirlwind sensory 

inputs, including but not limited to auditory and visual sensory memories.  

Compared to the sensory memory that could last no more than 1 second, STM could be 

held for several seconds and even one minute (Baddeley, 1990). Briefly, the sensory memory that 

we notice and pay attention shortly transformed to STM. Moreover, some of them will eventually 

be encoded to form LTM, which could last days, months, or years. In contrast, the sensory memory, 
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which did not gain attention, will be lost like a secret wind passing. Notably, the processes which 

we sense, explain and store information in STM are known as working memory.  

Another popular way of understanding memory is in terms of the types of memory: explicit 

memory and implicit memory. Both are under the stage of LTM because of the relatively long-

existing time and capability of being recalled. Whether the memory can be consciously 

remembered or not is the gold standard to distinguish explicit and implicit memory. The implicit 

memory is the memory we do not know how to explain why we do this or that. Thus, the major 

component of the implicit memory is procedural memory, such as the infants' ability to crawl and 

the teen's ability to ride a bicycle. Those are the memory we do not dedicate to explaining but 

learning by ourselves.  

All those memories we can consciously and logically remember and recalled are called 

"explicit memory." Explicit memory, in my mind, is the way we understand and embrace the 

external world and environment. Semantic memory and episodic memory are the two major 

components. The former refers to the memory we remember about the facts and concepts, like the 

mathematical theorem and language. This is the way for us to communicate with others and do 

routine work better; the latter is our subjective experience. For example, sweet moments spent on 

New Year's Eve with family in a fantastic city. We usually need to remember several key 

components, when, where, who and doing what to tell a logic story. Exactly because of the 

characteristics of objectivity of episodic memory, distinguished people groups, especially between 

young and old adults (Damoiseaux et al., 2007), normal aging and Alzheimer disease (Tromp et 

al., 2015a), would perform significantly different. More details will be discussed in the next section.  

As we discussed above, the term "memory" is divided and subdivided into many detailed 

concepts. Moreover, different brain function areas are responsible for divided memory functions. 
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Among those cortical cortexes, the prefrontal cortex is the main area covered for working memory, 

and procedural memory is replied on the striatum, etc. In particular, the posterior cingulate cortex 

and its attributive network, the Default Mode Network (DMN), responsible for episodic memory, 

are the interest region of our study. DMN includes a set of cortical regions, the inferior parietal 

lobule, the medial prefrontal cortex, the hippocampus and the posterior cingulate cortex/precuneus 

that act to be active during resting state (Raichle et al., 2001; Buckner et al., 2008). 

There has emerging evidence illustrates that brain connectivity within specific brain 

networks, especially the DMN, demonstrates patterns that characterize the trajectory of aging and 

distinguish healthy aging from Alzheimer's disease in both task-specific and task-free fMRI 

models (Greicius et al., 2004a; Buckner et al., 2005). DMN is composed of several regions that 

are known to be associated with various cognitive functioning (Buckner et al., 2008; Mevel et al., 

2011)(Buckner et al., 2008; Mevel et al., 2011). Posterior cingulate cortex is associated with 

episodic memory encoding (Natu et al., 2019), the medial prefrontal cortex is linked with social 

cognition (Amodio and Frith, 2006), the medial temporal lobe is reported to contribute to episodic 

memory and episodic future thinking (Race et al., 2011), and the parietal cortex is associated with 

attention function (Behrmann et al., 2004). Notably, amyloid-beta plaque, one of Alzheimer's 

disease pathologies, is initially deposited in DMN subsets, such as posterior cingulate cortex and 

hippocampus (Buckner et al., 2008; Ferreira and Busatto, 2013). Furthermore, disruptive 

alterations in the large-scale brain systems that support high-level cognition accompany cognitive 

decline at the behavior level, which is commonly observed in aging even in the absence of disease 

(Andrews-Hanna et al., 2007; Damoiseaux et al., 2007). Thus, the default mode network (DMN) 

is undoubtedly the most important area in most recent studies and aging-related studies.   
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2.1.2 Episodic Memory and Neurodegenerative Diseases 

Episodic memory covers the personal event as well as experience in our daily life. It reflects 

the process of receiving, adapting, and storing information within an individual’s communication 

with the outward environment. However, the performance of individuals could be disrupted largely 

by neurodegenerative diseases. The neurodegenerative diseases, including Alzheimer’s disease 

(AD), Parkinson’s disease, and other progressive diseases caused by degeneration or death of nerve 

cells (Fu et al., 2018). The loss of a fundamental unit of the nervous system, nerve cells, results in 

the incurable and irreversible characteristics of those neurodegenerative diseases. 

One of the most common symptoms of neurodegenerative diseases is the loss of memory 

or so-called “amentia.” Tracing back to the 18th century, Theodore Ribot reported the memory 

loss of distant events as the first characteristic of amentia among patients with dementia (Ribot, 

1891). With a relentless effort of studying chronic amnesia, Alois Alzheimer founded one 51 years 

old patient who died after a long struggle with progressive memory loss and personality and 

behavior abnormalities. This case is later named “Alzheimer’s disease’ by his colleague Emil 

Kraepelin (Psychiatrie 8th edition). 

Alzheimer’s disease, as one of the most prevalent neurodegenerative disease, surpassed 

diabetes becomes the 6th leading cause of death in the US. Over 5.8 million Americans live with 

AD now, and this number will escalate to almost 14 million by 2050 (Alzheimer's Association, 

2020). However, only 45% of people with Alzheimer’s are told of their diagnosis, and 35% of 

those diagnosed patients were misdiagnosed as having Alzheimer’s disease because of the 

moderate specificity of purely clinical grounded diagnosis procedure ( Alzheimer's Association, 

2020). Despite decades of research, we still have no cure, and we even have no way to prevent or 

slow down the disease after symptoms manifest. The symptoms manifestation, along with 
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dementia rate, neurodegeneration and abnormal amyloid deposition, are usually regarded as the 

onsite of the clinical stage of AD (Brier et al., 2014). While AD progresses slowly over a few 

decades, the relevant pathophysiological biomarkers typically precede symptomatic clinical 

phases over one to two decades (Gallagher and Koh, 2011; Sperling et al., 2011; Brier et al., 2014). 

If effective biomarkers could be identified for Alzheimer’s to enable early detection of the disease, 

millions of patients would be able to receive early intervention or enroll in a beneficial clinical 

trial, and the quality of their lives could be dramatically improved. 

Notwithstanding the end stage of AD is distinguishable, the earliest stage is often dismissed 

as the cognitive function degeneration of normal aging. The current diagnostic criteria of defining 

the early boundary of AD combines the feature of episodic memory decay with pathophysiological 

biomarkers of AD in the brain. Thus, it is clear that episodic memory played a significant role in 

the early diagnosis procedure of AD as well as other neurodegenerative diseases. Moreover, we 

focus on specifically the indivisible relationship between episodic memory and AD deterioration 

among neuroimaging features.  

2.1.3 Episodic Memory and Age 

According to Tromp’s review on aging studies, age affects episodic memory from its all 

three phases, encoding, consolidation and retrieval (Tromp et al., 2015a). As an indispensable part 

of memory function, episodic memory integrated medial temporal lobe (MTL), hippocampus, and 

other cortical areas to enable individuals to experience external stimuli via visual, auditory, 

perceptual, or other ways. The large-scale brain networks are typically not uniformly affected by 

normal aging (Tromp et al., 2015a; Fu et al., 2018). Thus, it would be essential to laser focus on 

specific cortical areas, and brain networks to distinguish the subtle degeneration among age 

groups. 
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Encoding represents the general operations of transforming the external sensory, auditory, 

visual, and perceptual information in the arrangement of mental representation. The information 

and their mental representation could be an index to guide for future memory recovery and 

retrieval. The encoding activity involves all sensory cortices to be capable of sensing stimuli, as 

well as the prefrontal cortex and MTL, where the peripheral cortex, the lateral entorhinal area, and 

the hippocampal cortex (Tromp et al., 2015a). 

Following the phase of encoding, memory storage or called “consolidation” process used to 

maintain the sensory content and rearrange them in the form of LTM. During this process, the 

neocortex and hippocampus played a big role. Especially, previous researchers found that when 

the contextual information is recalled, the hippocampus is always engaged actively (Piolino et al., 

2008; Hoscheidt et al., 2010; Winocur et al., 2010). 

The last phase of episodic memory is retrieval, which recalled the inactive LTM after days, 

months or even years since the LTM is consolidated. This could be the most significant process 

for the aging study, along with AD studies. During the retrieval process, the function network is 

located not only at the MTL, which involves the encoding process, but also the medial prefrontal 

cortex, poster cingulate cortex, and angular gyrus. 

According to previous behavioral data, both encoding and retrieval processes of episodic 

memory displayed group-level decay when comparing older individuals with middle-age ones 

(Giffard et al., 2001; Gutchess et al., 2007). Nevertheless, different tasks could obscure the process 

of understanding the memory deficit among older adults. According to the study of Sauzéon et al., 

the performance of free recall right after the learning phase of healthy elderly (n=23, mean age 

=73.6 years old) was shown to be inferior to the performance of younger group (n=23, mean age 

= 22.2 years old). However, the age effect was largely diminished when comparing the results of 
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a yes/no recognition task, which performed 10 minutes after the learning phase (Sauzéon et al., 

2016). Therefore, to benchmark the aging effect among healthy adults of different age groups is 

crucial for investigating the pathophysiological deterioration from healthy conditions to AD. 

2.2 Motivations for This Project 

With advances in medical science and health care, the world is changing into a rapidly aging 

society (Beard et al., 2016). Neurodegenerative disorders, such as Alzheimer’s disease (AD), have 

an enormous impact on the quality of life in millions of aging adults and bring a daunting financial 

burden to the society. Although several hypotheses are currently being pursued (Ittner and Götz, 

2011; Karran et al., 2011; Du et al., 2018), the lack of accurate clinical biomarkers for 

differentiating these disorders from normal aging has slowed the progress in establishing 

treatments that can be delivered early in the disease process (Golde et al., 2011; Sperling et al., 

2014; Cummings et al., 2016; Crous-Bou et al., 2017).  

Cognitive decline is commonly observed in aging even in the absence of diseases, affecting 

the functions of memory, execution, and attention (Hedden and Gabrieli, 2004; Whalley et al., 

2004; Peters, 2006; Ferreira and Busatto, 2013). However, because the aging-related cognitive 

declines at non-pathological stage overlap with early symptom of cognitive deficit at preclinical 

or prodromal stage of AD (Ferreira and Busatto, 2013), early diagnosis of Alzheimer’s disease is 

difficult to reach (Sperling et al., 2011; Fiandaca et al., 2014; Dubois et al., 2016). Therefore, in 

order to elucidate the pathogenesis of Alzheimer’s disease, an augmenting attention has been 

raised to understanding normal aging (Ferreira and Busatto, 2013; Cavedo et al., 2014).  

One of the first critical steps is to devise screens capable of differentiating age-related 

neurocognitive declines from cognitive deficits seen at preclinical or prodromal stages of a 

neurodegenerative disorder (Sperling et al., 2014; Cummings et al., 2016). Well-designed 
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experimental tasks and clinical batteries are widely deployed to detect the age-related differences 

in cognitive function (Donohue et al., 2014b). In addition, cognitive deficits have been observed 

in fMRI studies of cognitive tasks tapping into wide-ranging domains of episodic memory (Tromp 

et al., 2015b), working memory (Luo and Craik, 2008), attention (Madden, 1990), and executive 

task-switching (Cepeda et al., 2001). Nevertheless, the interpretation of task-based fMRI responses 

can be confounded by differences in task performance (Sheline and Raichle, 2013). Furthermore, 

task-based assessment of cognitive function may be biased by a number of factors that are bonded 

to the task design yet beyond the cognitive domains of interest (Healey et al., 2008; Grady, 2012). 

For example, older adults are recognized to be more susceptible to the effects of distracting 

interference during memory tasks (Healey et al., 2008; Grady, 2012), which suggest that a task-

free strategy may be able to provide new insights. 

Modern functional neuroimaging tools have dramatically shaped our knowledge of age-

related changes in cognitive function. Recently, the use of task-free, resting-state functional 

connectivity imaging has resulted in rapidly growing literature on the nature and extent of network 

disruptions, which suggest the potential utility of functional connectivity as a biomarker for disease 

diagnosis, prognosis, and risks (Sperling, 2011; Sheline and Raichle, 2013; Brier et al., 2014). In 

particular, emerging evidence illustrates that brain connectivity within specific brain networks, 

especially the default mode network (DMN), demonstrates patterns that characterize the trajectory 

of aging and distinguish healthy aging from Alzheimer’s disease in both task-specific and task-

free fMRI models (Greicius et al., 2004a; Buckner et al., 2005).  

DMN is composed of several regions which are known to be associated with various 

cognitive functioning (Buckner et al., 2008; Mevel et al., 2011): posterior cingulate cortex is 

associated with episodic memory encoding (Natu et al., 2019), the medial prefrontal cortex is 
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linked with social cognition (Amodio and Frith, 2006), the medial temporal lobe is reported to 

contribute to episodic memory and episodic future thinking (Race et al., 2011), and the parietal 

cortex is associated with attention function (Behrmann et al., 2004). Notably, amyloid-beta 

plaques, one of Alzheimer’s disease pathologies, are initially deposited in DMN subsets, such as 

posterior cingulate cortex and hippocampus (Buckner et al., 2005). Furthermore, disruptive 

alterations in the large-scale brain networks that support high-level cognition are shown to 

accompany cognitive decline at the behavior level, which is commonly observed in aging even in 

the absence of disease (Andrews-Hanna et al., 2007; Damoiseaux et al., 2007).  

Although functional connectivity of DMN has been suggested as a biomarker for disease diagnosis 

and risks, fundamental limitations exist regarding the use of magnetic resonance imaging. The 

blood-oxygenation-level-dependent (BOLD) signal measured by fMRI is not a direct measurement 

of neuronal activities (Logothetis, 2008). Therefore, the interpretation of fMRI outcomes is 

confounded by non-neural cerebrovascular alterations associated with the disease (D'Esposito et 

al., 2003; Chen, 2019). Furthermore, fMRI imaging incurs high cost and has limited accessibility. 

However, understanding the early pathological process related to AD, especially in the preclinical 

stage, requires that a large population be studied. Power analysis for the prevention trials in 

Alzheimer’s Disease usually yielded more than 1,000 individuals are needed (Hsu and Marshall, 

2017). Therefore, a more economic option for assessing the integrity of cognitive function via 

neuroimaging is demanded to enable more studies in large populations (Cavedo et al., 2014).  

Electroencephalography (EEG), in contrast, measures neuronal activity of neural 

ensembles at hundreds of Hz, which is a significantly higher temporal resolution than fMRI. 

Recent studies from our group (Yuan et al., 2012; Yuan et al., 2013; Yuan et al., 2014; Yuan et 

al., 2016; O'Keeffe et al., 2017; Li et al., 2018; Yuan et al., 2018; Chen et al., 2019) and others 
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(Custo et al., 2017; Liu et al., 2017a) have demonstrated that network-level analysis of high-

density EEG signals reveals the functional connectivity of large-scale brain networks, including 

the default mode network. Our previous work has developed a method to reconstruct resting state 

brain networks by combining a high-resolution cortical model, electrophysiological source 

imaging, and analysis of the temporally independent EEG microstates (Yuan et al., 2016). Such 

EEG-derived DMNs have been validated with the fMRI resting state networks via simultaneous 

EEG and fMRI in human participants (Yuan et al., 2016; Yuan et al., 2018; Chen et al., 2019). 

Furthermore, the large-scale networks reconstructed from EEG have been shown to detect the 

disease-modifying connectivity changes induced by a brain stimulation intervention (Li et al., 

2018; Chen et al., 2019). Because EEG directly samples electrical neural activity, connectivity 

derived from EEG will not be subject to vascular coupling. Thus, the neural contribution to the 

fMRI derive network connectivity can be delineated separately from the vascular contribution 

using our EEG techniques.  

In addition, as compared with fMRI, EEG provides supplementary features of economic 

efficiency, broad accessibility, and compatibility. Therefore, the current study aimed to examine 

age-related alterations in DMN in normal aging adults, towards the long-term goal of establishing 

an effective and economical biomarker to empower prevention studies. In our investigations, we 

tested the feasibility of reconstructing electrophysiological default mode network based on high-

density EEG data recorded from the participants at an eyes-open resting state. Next, we compared 

the connectivity derived from the posterior cingulate/precuneus region of DMN with memory 

performance assessed by a standard cognitive battery. Our analysis tested the feasibility of creating 

a neuroimaging algorithm based on brain connectivity to assess the risk of pathological cognitive 
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decline during normal aging, which may pave the way towards an objective, low-cost and 

accessible technology to detect cognitive impairment at an early phase. 

2.3 Hypotheses to Be Tested 

The current study examines age-related alterations in DMN to establish an effective and 

economical biomarker to empower future longitudinal studies to advance understanding of the 

normal and abnormal aging process in the human brain. First, we tested the feasibility of 

reconstructing the electrophysiological default mode network based on high-density EEG data 

recorded from the participants at an eyes-open resting state. We compared the connectivity derived 

from the posterior cingulate/precuneus region of DMN with memory performance assessed by a 

standard cognitive battery. Then, we explored the feasibility of creating a neuroimaging algorithm 

based on brain connectivity to assess the risk of pathological cognitive decline during normal 

aging, which will pave the way for detecting cognitive impairment at an early phase. 

2.4 Experimental Paradigm 

The study protocol (shown in Figure 2) was approved by the Institutional Review Board at 

the University of Oklahoma Health Sciences Center.  Middle aged and older adults were recruited 

from the local university community.  All were initially screened by telephone screen to excluded 

persons with significant neurological, neuropsychiatric, sleep, substance abuse, or 

cardiopulmonary disorders.  After obtaining their written informed consent, they next underwent 

a physical examination (i.e. blood pressure, temperature, pulse oximetry, heart rate) and 

neurophysiological assessments administrated by an advanced practice registered nurse to ensure 

that they were cognitively intact and with no significant chronic disease.  



23 

 

Figure 2 Experimental procedure. 

As shown in Figure 3, the CONSORT (Consolidated Standards of Reporting Trials) flow 

diagram describes the progress of all participants through the trial. Briefly summarized, 190 were 

screened by telephone, 32 underwent clinical screening. Of the 30 met our eligibility criteria, all 

of them were recruited and completed the study procedure, including a battery of cognitive tests 

and EEG recording.  Data from 1 subject was removed due to the poor quality of the neuroimaging 

data, resulting a final sample size of twenty-nine subjects. The resulting groups consisted of 15 

middle-age adults (9F/6M, 33.5 ± 4.9 years old, and range 28-46 years old) and 14 older adults 

(12F/2M, 55.3 ± 4.8 years old, range 48-62 years old). 
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Figure 3 The porject flow chart. 

All subjects completed a standardized battery of clinical neurocognitive tests, which 

included both subscales of the immediate and delayed memory recall subscales of the Wechsler 

Logical Memory Test (Wechsler, 1987), the Symbol-Digit Modalities Test (Smith, 1982) , North 

American Reading Test (Uttl, 2002), Stroop Color-Word Test (Stroop, 1935), Clock-Drawing Test 

(CLOX 1) (Royall et al., 1998; Royall et al., 2000), and the Free and Cued Selective Reminding 

Test (Wenger et al., 2010). During the cognitive tests, the subjects sat still on a recliner in a quiet, 

well-lit experiment room and the recliner was put in the upright position. A voice recorder was put 

30 cm in front of subjects and turned on to record all answers from subjects for future scoring. The 

experimenters sat alongside the subjects to instruct them to complete the memory task and recall 
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sessions. The test battery was administered by a trained experimenter under a standard protocol to 

ensure both the consistency and accuracy of test administration and scoring. We employed the 

Immediate Recall score on the Logical Memory II from the Wechsler Memory Scale Fourth 

Edition (Wechsler, 1987) as the main score to assess the episodic memory performance, which has 

been well established to detect decline in prodromal dementia (Rabin et al., 2009) and detect early 

decline in the preclinical stages (Donohue et al., 2014a). 

2.5 Data Acquisition and Preprocessing 

Upon completing the clinical cognitive test batteries, a 64-channel whole-brain EEG cap 

based on the international 10-5 system was applied to the head of the participant. Subjects were 

instructed to keep still and allowed to fall asleep during the 45-min recording. The distance 

between the edge of EEG cap and each subject’s eyebrow were measured twice to verify the cap 

position, once before the pre-nap recording and another time after post-nap recording. The EEG 

montage covered from forehead to occipital and was centered at Cz. Conductive gel was added to 

all electrodes to reduce the impedance below 20 kΩ throughout the recording session.  In ensure a 

consistent fit, the front edge of the EEG cap was taped to the forehead and the distance between 

the edge of EEG cap and each subject’s eyebrow were measured twice to verify the cap position 

and checked at the start and end of the recording.  

The 45 minutes recordings were done with subjects lying supine in an adjustable recliner. 

The recording began and ended with bio-calibration, which we used to identify artifact in the EEG 

record.  These bio-calibration were done in a standard order and involve asking them to (Oken et 

al.) open and close their eyes, (Oken et al.) blinks, (3) perform lateral eye movements, (Oken et 

al.) take deep breaths, (Oken et al.) clench their teeth, and to (Oken et al.) speak.  
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EEG data were recorded using a 64-channel ActiCHamp recording system (Brain Products, 

Munich, Germany), which consisted of two 32-channel amplifiers powered by a rechargeable 

battery unit. All the EEG datasets were digitized at a sampling rate of 500 Hz with a band-pass 

filtering of 0.1 Hz - 250 Hz. The onset and offset of the rest period were marked on the raw EEG 

for later truncating of the recorded signals. 

The 45-minute recording was reviewed and manually scored by an certified expert with over 

20 years of experience in scoring EEG sleep records, and using standard scoring criteria set by the 

American Academy of Sleep Medicine (AASM) (Berry et al., 2017). Briefly, the EEG data were 

first segmented into epochs of 30-second length and then assigned a state.  Based on the frequency 

and amplitude of the signal, each segment was assigned of score of either awake, non-rapid eye 

movement sleep (Stage 1 NREM, Stage 2 NREM), Slow Wave Sleep (Stage 3 & 4 NREM), or 

rapid eye movement sleep (Donohue et al.). Only one person remained awake for the entire 45 

minutes.  In the remaining 28 subjects, all had periods of wakefulness interspersed with sleep.  In 

order to not confuse mechanistic differences in falling and awakening from sleep, we only selected 

segments of the subject recording that reflected a period of wake before the onset of sleep 

(regardless of where and how many times this occurred in the recoding).  We used these multiple 

segments of wakefulness within the same recording, on the same individual, to verify the reliability 

of the EEG-derived networks. 

Preprocessing (shown in Figure 4) was performed with BrainVision Analyzer 2.0 (Brain 

Products, Munich, Germany) and MATLAB® 2015a (Mathworks, Inc., Natick, Massachusetts, 

United States). Bad channels and segments were removed based on impedance checks and visual 

inspection. The resulting recording lengths for all subjects ranged from 35 s to 180 s (mean ± std 

= 169.1 ± 30.5 s).   
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Figure 4 The schematic diagram for data processing. 

Based on the sleep staging, we truncated 3-minute resting-state recording of wakefulness 

before any sleep onset in each subject. Five subjects fell asleep in less than 3 minutes and all 

recordings before sleep onset was kept. Next, the EEG data was re-referenced to the common-

average reference. The continuous EEG data in each channel were band-pass filtered from 0.1 Hz 

to 70 Hz with an extra notch filter at 60 Hz to eliminate powerline noise. Lastly, Independent 

Component Analysis (ICA) was applied to remove physiological artifacts, including vertical and 

horizontal ocular artifacts and muscle activity.  These sources of artifact were further verified by 

comparing the recordings against the bio-calibration records. 

2.6 Electrophysiological Source Imaging. 

Preprocessed EEG data were subjected to reconstruction of electrophysiological sources 

using a high-resolution cortical current source model. A template brain model in the MNI305 space 

was used as a common brain model for all subjects. The full segmentation and surface 



28 

reconstruction of structural MRI was performed using the Freesurfer suite 

(https://surfer.nmr.mgh.harvard.edu/), resulting in a high-definition cortical layer and the brain, 

skull, and scalp boundary surfaces. These surfaces were then used to construct a three-

compartment Boundary Element Method (BEM) model. Conductivity values were assigned to 

each compartment (Zhang et al., 2006). A standard profile of electrode positions in the 64-channel 

montage was digitized and co-registered to the fiducial points on the template brain. The high-

density cortical layer mesh was down-sampled to 10,240 vertices per hemisphere and used as the 

source space. Each vertex corresponded to a dipole source oriented perpendicular to the surface. 

A lead-field matrix was then computed via a forward calculation using the cortical source space 

and the 3-layer BEM model. The calculation of source imaging returned the source matrix of Nsource 

x Nsample, where the Nsource is the number of dipole source points and Nsample is number of data 

points in time domain. The minimum norm method (Dale and Sereno, 1993; Hämäläinen and 

Ilmoniemi, 1994) was used to solve the inverse problem. 

2.7 Resting State Network and Connectivity 

Based on the reconstructed source images, electrophysiological resting state networks were 

derived using the method established in Yuan et al. (2016). Considering that the participants 

enrolled in the study span across middle-age (28-46 years) and older age range (48-63 years), the 

electrophysiological network was derived in each individual prior to group-level analysis. 

Specifically, source images of each individual at the down-sampled EEG microstates (Lehmann 

et al., 1987) were temporally concatenated. Afterwards, ICA was utilized to decompose the 

absolute values of source-level data into 25 independent components (ICs) for every subject, with 

each IC representing one distinctive brain network of the corresponding subject. The time courses 

of brain networks were back-projected from the ICs, resulting in an activity matrix of Nsample x NIC, 
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where the Nsample is number of data points in time and NIC is the number of source-level ICs. After 

calculating the source matrix and activity matrix, we further calculated the Pearson correlation 

coefficients between source matrix and activity matrix, resulting a matrix of Nsource x NIC. The 

connectivity value of brain networks was defined as the z-transformed correlation coefficient 

matrix.  

For all 25 ICs, we depicted the source points on a standard brain model. Assuming each 

source-level IC represents one brain network, we focused on the DMN by searching for the best 

matched IC with a pre-defined DMN template. Specifically, the match was selected based on the 

spatial correlation calculated between the un-thresholded connectivity values of an EEG-derived 

network and the un-thresholded connectivity values of the template DMN derived from fMRI data 

in a separate group of healthy subjects (Yuan et al., 2016). One best match IC of highest spatial 

correlation coefficient was selected for every subject, which we referred as the individual-level 

DMN derived from EEG.  

For group-level analysis, individually derived network was smoothed before averaging to 

mitigate the anatomical discrepancy among individuals. Connectivity values of the network 

matched to DMN were smoothed by employing a Gaussian filter with Full Width Half Maximum 

of 9 mm in FreeSurfer software. Then, the one sample t-test was used to determine the significance 

of DMN at the group level. Bonferroni correction was employed to control for multiple 

comparisons. 

2.8 Association Between EEG Network Connectivity and Memory/Age 

To assess the association between network connectivity and memory function, a region of 

interest (ROI) analysis was used. In brief, the ROI was drawn by an intersection of the group-level 

EEG DMN and the Yeo template of DMN (Yeo et al., 2011). Specifically, at first, the group-level 
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EEG DMN was obtained by performing a one sample t-test on all subjects for every single dipole 

source point, as described above. In addition, the output pattern of aforementioned one sample t-

test was corrected by applying Bonferroni correction. The corrected EEG pattern was finally 

controlled by intersection with a well-established template by Yeo et al. based on fMRI data from 

1,000 subjects (2011).  

Episodic memory performance was quantified as the ratio of the number of first-immediate 

recalled items from the Wechsler Logical Memory test over the total item number during 

immediate recall from that same test. The Immediate Logical Memory Subscale is a standardized 

test that generates three scores based on the recall of two short stories.  The stories involve the 

Anna (story 1) and Joe (story 2), each of which are divided into 25 phrases. Each story is read 

aloud and immediately afterwards, the subject is asked to repeat as much of the story as possible.  

The second story also serves as a distraction for the first, and so, after the second story about Joe, 

the subject is then asked to state as much as they can about the first story (Anna’s Story).  The sum 

of the three recalls is used to generate the total immediate memory score.  Due to its demonstrated 

sensitivity for detecting prodromal dementia (Donohue et al., 2014; Rabin et al., 2009), we used 

the scores from the first administration of Story 1 (Anna) and to total immediate memory score to 

derive a measure of episodic memory performance. 

Then, the EEG network connectivity averaged within the ROI was compared to the 

corresponding logical memory score across all subjects. The partial correlation coefficient between 

connectivity values and memory scores was calculated. Furthermore, the network connectivity was 

compared with participants’ age. The Pearson correlation coefficient between averaged 

connectivity values in the DMN ROI and ages was calculated. 
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2.9 Results 

 

 

 

Table 2 summarizes the demographic characteristics and performance on the cognitive battery. 

Subjects were assigned into two groups, a middle-aged group (range from 28 to 46 years old) and 

an older group (range from 48 to 63 years old). The WMS Logical Memory score as the primary 

memory function performance did not differ significantly between the middle-aged and the older 

adults, although the older group was associated with marginally lower memory performance (t 

(27) = 1.88, p = 0.07). Other cognitive scores did not differ between the age groups. The digital 

symbol modality as a primary assessment of working memory marginally differed among two 

groups (t (27) = 1.81, p = 0.08). Therefore, our later analysis of the brain network has consolidated 

the two age groups as one group.  

The electrophysiological DMN obtained from all the middle-aged and older subjects is shown in 

Figure 5. The averaged and un-thresholded brain connectivity maps of two different resting-state 

segments, designated as test and re-test data, are depicted in Figure 5 (B) and (C), respectively. 

After thresholding and correcting for multiple comparison on the total number of source points, 

the EEG DMN identified the posterior cingulate / precuneus area and the inferior parietal lobule 

(shown in Figure 5 (D) and (E)), which are part of the key regions of DMN (shown in Figure 5 

A). Notably, the posterior region of EEG DMN presents stronger connectivity than the anterior 

regions. In addition, the un-thresholded maps of the EEG DMN showed that connectivity pattern 

extends to regions in the medial prefrontal cortex yet did not reach a group-level significance 

(Figure 5 B). 
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Table 2 Participant demographics and performance variables 
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Figure 5 Group-level average of the default mode network obtained from electro-physiological 

source images. (A) shows the template DMN parcellation from Yeo et al., 2011. (B) and (D) 

show maps of EEG DMN connectivity averaged across all subjects in (B) un-thresholded and 

(D) thresholded manner by one sample two-sided t test, corrected for multiple comparison. 

Similarly, (C) and (E) show maps of EEG DMN connectivity averaged across all subjects in (C) 

un-thresholded and (E) thresholded manner for re-test data. 

The maps of EEG DMN are consistent between the test and re-test data, as shown in Figure 

6. The un-thresholded maps from test and re-test data yielded a spatial correlation coefficient of r 

= 0.84. The connectivity values from ROI were also consistent between the test and re-test data (r 

= 0.62, p < 0.001, Figure 6, Right Panel).  



34 

 

Figure 6 Test-retest reliability in EEG network. A separate EEG dataset was extracted and the 

network analysis and repeated. Un-thresholded EEG network maps are plotted for Test and Re-

Test dataset in (A) and (B). The ROIs for test and retest data were defined by the source points of 

significance by one-sample two-sided t test on all subjects after multiple comparison correction. 

The Yeo template was further applied in conjunction to define the ROI. Then brain connectivity 

values averaged within corresponding ROI were extracted and plotted in (C). The correlation 

between all individuals’ test and retest data is 0.62 (p < 0.001). 

Furthermore, Figure 7 shows the separately reconstructed consistent maps of DMN from 

the sub-group of older adults and the sub-group of middle-aged adults, which yielded a spatial 

correlation coefficient of r=0.66. The comparison of the connectivity patterns between the two age 

groups did not identify any regions with significant difference, which supports our analysis 

strategy of combining the two age groups as one group. 
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Figure 7 The un-thresholded brain connectivity averaged separately in (A) all, (B) middle-aged 

subjects, and (C) older subjects. 

Figure 8 shows the ROI analysis comparing subjects’ brain connectivity values and their 

memory performance. The insert plot of Figure 8 illustrates the ROI identified by a conjunction 

analysis of the group-level EEG DMN and the Yeo template, i.e. the conjunction of Figure 5 (A) 

and (D). The ROI primarily includes posterior cingulate area, while part of it extends to the 

precuneus area. After extracting the connectivity values from the ROI, a significant negative 

correlation was identified between the connectivity averaged from ROI and the WMSI scores 

among all individuals (r = -0.47, p = 0.01). This finding indicated that subjects who had a better 

score of episodic immediate memory recall are associated with lower connectivity in the posterior 

DMN areas. Since the memory performance did not reveal significant difference between the 

middle-aged and older adults, all subjects were pooled in the correlational analysis. Considering 

that ages could also contribute to the association, we adopted a partial correlation analysis and 

results revealed a significant correlation between memory and network connectivity (r=-0.42, 

p=0.02), after controlling the age factor. 
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Figure 8 Functional brain connectivity is correlated with memory performance across all 

subjects. The insert shows ROI regions defined from EEG DMN analysis. Brain connectivity 

values are calculated as the z-transformed correlation coefficients between individual’s source 

time course and IC time course, averaged within the ROI. Each dot represents one individual’s 

brain connectivity and the corresponding Wechsler Memory Scale Immediate Recall score. Red 

dots indicate middle-aged subjects and blue dots indicate older adults. Black trendline represents 

linear relationship between these two variables among all pooled subjects (r = -0.47, p = 0.01). 

In addition, we assessed the relationship between brain connectivity and the age (shown in 

Figure 9). Interestingly, older aged subjects tend to show greater connectivity in the ROI of 

posterior DMN. However, the association was not significant across all subjects (ages ranging 

from 28 to 63 years old, r = 0.22, p > 0.1). Only in the older adults’ group, we found a significant 

correlation between the age and network connectivity in the ROI of posterior DMN (r = 0.55, p = 

0.04, shown in Figure 9).  
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Figure 9 Functional brain connectivity is correlated with age in older adults. The insert shows 

ROI regions defined from EEG DMN analysis. Brain connectivity values are calculated as the z-

transformed correlation coefficients between individual’s source matrix and activity matrix, 

averaged from ROI. Each black dot represents one individual’s brain connectivity and the 

corresponding age of years. Orange trendline represents linear relationship between these two 

variables (r = 0.55, p = 0.04). 

The Figure 10 shows the connectivity-memory relationship in the subset of older adults 

only. A similar and slightly stronger negative correlation was found in the subset of older adults (r 

= -0.74, p = 0.003), indicating that in the sub-group of older adults (ranging from 48 to 63 years 

old), better memory performance was associated with a lower connectivity in the posterior DMN 

ROI. 



38 

 

Figure 10 Functional brain connectivity is correlated with memory performance in older adults. 

The insert shows ROI regions defined from EEG DMN analysis. Brain connectivity values are 

calculated as the z-transformed correlation coefficients between individual’s source matrix and 

activity matrix, averaged from ROI. Each black dot represents one individual’s brain 

connectivity and the corresponding Wechsler Memory Scale Immediate Recall score. Orange 

trendline represents linear relationship between these two variables (r = -0.74, p = 0.003). 

2.10 Discussions and Conclusions 

The current study utilized EEG to investigate the association between functional 

connectivity of resting state brain network and memory performance across normal healthy 

subjects in middle-aged and older age range. Our results demonstrated that the default mode 

network (DMN) can be reconstructed from the cortical source images derived from EEG at rest, 

including regions of the precuneus, posterior cingulate cortex, and the inferior parietal lobule. 
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Furthermore, we found that network connectivity values within the ROI in posterior DMN were 

negatively correlated with episodic memory performance across healthy individuals ranging from 

middle-age to older-age. Meanwhile, in the sub-group of older adults, individuals’ age was 

positively correlated with the connectivity from the same area in posterior DMN. The findings in 

this study reinforce our knowledge of the brain connectivity in DMN associated with advancing 

age. More importantly, brain connectivity assessed by this novel EEG-based neuroimaging 

technology is feasible to relate to many clinical batteries to benchmark normal aging. This can 

potentially serve as an early biomarker of neurodegenerative disorders. 

To date, DMN is one of the most important brain networks in fMRI studies on aging (for a 

review, see (Brier et al., 2014)). A number of studies have documented that resting-state functional 

connectivity in the  DMN is sensitive to changes among groups of individuals with AD (Greicius 

et al., 2004a; Wang et al., 2007; Zhang et al., 2009a), prodromal AD including mild cognitive 

impairment (Sorg et al., 2007; Bai et al., 2009; Petrella et al., 2011), and healthy aging (Andrews-

Hanna et al., 2007; Damoiseaux et al., 2007). Earlier studies of AD have consistently reported 

deterioration of connectivity in DMN, as compared with the healthy elders (Greicius et al., 2004a; 

Wang et al., 2007; Zhang et al., 2009a) . Importantly, at the prodromal stage of AD (mild cognitive 

impairment), DMN connectivity was found to be abnormally impaired (Bai et al., 2008) and even 

associated with the risk of converting to AD-related dementia (Sorg et al., 2007). The metabolism 

hypothesis suggests that pathological changes in the DMN stimulate an activity-dependent or 

metabolism-dependent cascade that are spatially consistent with amyloid aggregations and tau 

pathology and, moreover, precedes and promotes the development of these AD pathology 

(Buckner et al., 2005), which is an important area being researched for developing intervention 

options. Therefore, identification of abnormal disruption of human brain networks, including 
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DMN and other cognitively relevant network, appears to be essential in characterizing normal 

aging. Such characterization is also critical for identification of early pre-clinical stages in AD and 

early prevention in conjunction with pharmaceutical intervention (Sperling, 2011). 

Recently, an increasing number of studies have extended the investigation of DMN in 

normal healthy individuals across the age range from elders to younger adults, with the purpose 

that establishing a normal aging trajectory will aid in the early diagnostics of preclinical stages in 

AD (Andrews-Hanna et al., 2007; Damoiseaux et al., 2007; Sambataro et al., 2010; Ferreira et al., 

2016). Consensus emerges that the connectivity within DMN was lower in the advanced elderly 

population (65+ years) as compared to the young adult population (Andrews-Hanna et al., 2007; 

Damoiseaux et al., 2007). However, literature have shown a discrepancy about the association 

between age and DMN across a spectrum of ages, i.e. whether positive or negative association 

between age and connectivity values were observed (Andrews-Hanna et al., 2007; Damoiseaux et 

al., 2007; Jones et al., 2011; Jockwitz et al., 2017; Zonneveld et al., 2019). Several methodological 

issues have been indicated to complicate the findings, including identification of subnetworks of 

DMN, the age range, pre-processing step such as whether or not to apply global signal regression, 

etc. Several of aforementioned studies (Jones et al., 2011; Zonneveld et al., 2019) applied a data-

driven approach to parcellate the whole brain into units of functional networks prior to compare 

brain connectivity with the ages. Instead of masking out the whole DMN, the well-known resting-

state network was further delineated into the anterior DMN and posterior DMN. Even though they 

are two subsets of DMN, each sub-network features age-related changes in both posterior and 

anterior areas of DMN, sometime even an opposite effect. Several studies agreed on negative 

association regarding anterior DMN - lower connectivity with older age (Damoiseaux et al., 2007; 

Jones et al., 2011; Zonneveld et al., 2019), whereas conflict findings are reported in the posterior 
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DMN areas. For example, Jones et al. (2011) in a study of 341 subjects aged between 64 and 91 

years reported age-related increase of connectivity in the retrosplenial posterior cingulate cortex 

as well as age-associated decrease the medial prefrontal cortex, as part of the anterior sub-network. 

In addition, a much smaller increase in connectivity at the edge with cunes and lingual gyrus, 

mixed with predominant decrease of connectivity in the posterior cingulate cortex and precuneus, 

was also observed for the posterior sub-network in Jones et al. (2011). Furthermore, the age-group 

difference was found to be more prominent in the anterior regions than in posterior regions 

(Davidson and Guthrie, 2017). Likewise, another study of a large population by Zonneveld et al. 

(2019) (50.5 - 95.2 years of age) has employed a much finer segregation of subnetworks and 

concurred in a negative association with age observed in the anterior subnetwork of DMN. 

However, Zonneveld et al (2019) reported a contradictory finding regarding posterior DMN, i.e. 

an age-related increase in the retrosplenial posterior cingulate cortex. Meanwhile, a population-

based study of 711 older adults (55–85 years of age) found no age-related changes in the DMN 

(Jockwitz et al., 2017). Importantly, in that study, the DMN was not divided into its anterior and 

posterior subsystems, indicating the potential relevance of investigating DMN at different scales 

of functional organization. 

To our knowledge, our study provide the first electrophysioglocial evidence of aging effect 

on a large-scale brain network, the default mode network. In comparing our results with the 

abovementioned studies, a key methodological difference should be noted. We employed 

electrophysiological measurements to investigate the age-related effect in DMN, while the 

functional MRI studies are based on hemodynamic measurements (e.g. blood-oxygenation-level-

dependent contrast), which are secondary signals that involves blood flow and oxygenation in 

brain tissues (Logothetis et al. 2008). Thus, the age-group differences as documented by fMRI 
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studies could be attritued to three possible origins - the neurons, the vasculature, or the 

neurovascular coupling unit (D'Esposito et al., 2003; Sweeney et al., 2018). Nonetheless, our 

findings based on electrophysiolgocial recordings provide direct evidence supporting the age-

related changes in neuronal activities,  especially at the network-level connectivtiy.  

Notably, our study has employed a data-driven approach to identify the 

electrophysiological form of resting state brain networks and the age-association in the network 

connectivity, which is similar to the data-driven identification of brain networks in fMRI studies. 

The template that our study employed to identify the DMN should be considered as posterior DMN 

rather than anteriror DMN, because of the predominant coposition in the posterior cingulate cortex 

and precuneus, which agrees with the posterior DMN examined in Zonneveld et al. (2019) and 

Jones et al. (2011). Our findings (in Figure 9) revealed the association of age-related increase in 

the posterior cingulate cortex, which is similar with the positive association in posterior DMN 

identified by Zonneveld et al. (2019). Also, the areas of age-associated increase revealed in our 

restuls included additional precueus area that extends to the margin with cunes, which is partially 

consistent with the finding by Jones et al. (2011), i.e. an age-associated increase in the edge of 

cunes as part of the posterior DMN. However, Jones et al. (2011) also reported an adjacent yet 

predominant age-associated decrease in posterior cingulate cortex as part of the posterior DMN, 

which was not observed in our study. The reason of not seeing a age-related decrease could be due 

to the different age-range examined in our study (elaborated below), or due to a discrepency on 

the vascular contributions. 

It is important to note a wide age range differs among these studies, which could explain 

their discrepancy in across-group findings. Recent studies have shifted the age inclusion towards 

younger range, for the purpose to establish a normal aging trajectory that will aid in the early 
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diagnostics of preclinical stages in AD. For example, the mean age in the study by Zonneveld et 

al. (2019) is 66.9 years old (ranging from 50.5 to 95.2 years), whereas the median age of the study 

by Jones et al. (2011) is 82 years old (ranging from 64 to 90 years). However, the age span is 

critical in revealing any age-related effect. In the longitudinal study by Damoiseaux et al. 

(Damoiseaux et al., 2012), key nodes of DMN, such as posterior cingulate cortex, did not reveal 

significant changes at the group level, possibly due to the short duration of follow-up (on average 

about three years). In comparison, our study investigated both middle-aged and older adults, which 

collectively ranged from 28 years to 63 years. Notably, the subgroup of older adults in our study 

(ranging from 48 to 63 years) overlaps with the age range in Zonneveld et al (2019). Likewise, a 

positive age-association in the posterior DMN was consistently observed in the subgroup of older 

adults in our study, although in a much smaller sample (N=14) than the large cohort studied in 

Zonneveld et al. (2019) (N = 2878). Furthremore, it is worthy to note that the younger sub-group 

in our study (ranging from 28 to 46 years) covers the middle-aged range and did not overlap with 

other age ranges in the above mentioned studies. It is older than the young-adult range (as in 

Andrews-Hanna et al., 2007 and Sperling et al., 2009), yet much younger than the elderly range 

(as in Jones et al., 2011 and Zonneveld et al. 2019). Our results revealed that the age-association 

effect in this middle-age range did not follow the trend observed in the older-adult range. Similarly, 

such dis-association of age-effect in the younger age range has been observed in the other studies 

that attempted such investigation in the adults younger than 30 years old (Andrews-Hanna et al., 

2007; Sperling et al., 2009). Importantly, our investigation has extended the finding of age-

disassociation to the middle-age range. 

In addition to the age association, our findings stressed a functional role of PCC. Memory 

function has been well described as a distributed process (Mesulam, 1990), and the brain substrates 
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and modifiers of this process are highly variable, particularly in a cognitive aging context 

(Verhaeghen et al., 1993; Raz and Rodrigue, 2006; Head et al., 2008; Braskie et al., 2010). As part 

of a well-connected neural network underlying the memory function, PCC is involved in episodic 

memory encoding (Natu et al., 2019) and also is one of the most vulnerable area prone to amyloid-

beta deposition (Buckner et al., 2008; Ferreira and Busatto, 2013). By defining the ROI mainly in 

PCC (Figure 8), our results have shown a significant negative correlation with memory 

performance on the averaged brain connectivity, which is exactly reversed to the age-association 

seen in our cohort. Notably, the memory-association was robust in the participant ensemble, 

although the memory performance did not differ significantly between two age sub-groups. Higher 

performance of immediate memory recall was associated with lower functional connectivity in the 

posterior DMN, significantly seen in the entire group (28 to 63 years old, r = -0.47 and p = 0.01) 

as well as in the sub-group of older adults (48 to 63 years old, r = -0.74 and p = 0.003). Previous 

study has suggested that different subsets of DMN were not simultaneous activated (Sestieri et al., 

2011). They found the PCC / precuneus were significantly activated during memory retrieval, 

whereas the anterior DMN is deactivated, which points out that the functional association in 

posterior DMN should be delineated separately from the anterior DMN. Nonetheless, the key 

regions of DMN at task-less, resting state exhibit fluctuations that are coherently synchronized, 

which are characterized as resting state functional connectivity. Furthermore, the intrinsic 

connectivity of resting state brain networks, especially DMN, have been found to be associated 

with memory performance. The association of a steady-state functional connectivity in the default 

mode network with memory function is observed in both cognitively intact individuals (Wang et 

al., 2010; Newton et al., 2011) and diseased populations (Bai et al., 2009; Mormino et al., 2011). 

Notably, in these studies the resting state scans are acquired either subsequently or prior to the 



45 

function-probing tasks. It has been suggested that such changes in network-level connectivity 

observed in the normal aging stage occur because of insult brought by the amyloid accumulation 

happening at the preclinical AD-Stage (Sheline and Raichle, 2013). Thus, abnormalities in resting 

state functional connectivity can be detected in companion with or even before structural damage 

is manifested as atrophy and furthermore before cognitive decline produces clinical deterioration. 

In line with the model of progression events (Sheline and Raichle, 2013), our study demonstrated 

that reconstructed EEG source brain connectivity can reliably reveal aging effect in cognitively 

normal adults. Even though our EEG data was not recorded during the memory task, we observed 

negative association with episodic memory functioning. The finding that the greater brain 

connectivity is associate with worse episodic memory performance suggests a compensatory 

mechanism in these overall cognitively normal individuals, which is similarly observed in 

individuals at preclinical stage (Filippini et al., 2009) or at amnestic mild cognitive impairment 

stage (Qi et al., 2010). Our findings again stressed the importance of PCC as part of DMN in future 

aging studies to establish a full trajectory spanning normal aging, preclinical and clinical stages.  

In addition, it is worthy to mention that our innovative approach of using EEG to 

characterize the brain networks exempted our investigation from a few controversial issues 

encountered in fMRI studies. With respect to the measure of neural activity, the fMRI BOLD 

signal is an indirect estimate whereas EEG potential is a direct estimate of neuronal activity. It is 

well known that BOLD signal depends on neurovascular coupling, while the latter is susceptible 

to aging and age-related changes (Ferreira and Busatto, 2013; Liu, 2013). Besides, regional, age-

specific differences were reflected in vascular reactivity. Thus, it has been suggested that fMRI 

studies comparing different age groups should be carefully interpreted (Ferreira and Busatto, 

2013). In addition, heterogeneous findings of aging effect on the fMRI connectivity might be 
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attributed to differences in pre-processing, i.e. whether removing the global signal. Global signal 

regression has been widely utilized to attenuate physiological nuisances and increase specificity 

of connectivity in most of fMRI studies (Fox et al., 2009; Jones et al., 2011). However, emerging 

evidences indicated that the removal global signal in the preprocessing of fMRI data might lead to 

spurious RSFC pattern (Murphy et al., 2009), as it may result in distance-dependent artifacts. In 

the study by Zonneveld et al. (2019), an ICA-based method with a high dimension of components 

was used to remove the noises instead of global signal regression. Likewise, in our study, we did 

not employ a global signal regression either; the connectivity patterns in the reconstructed EEG 

sources images were subject to data-driven ICA for the network analysis. Furthermore, another 

confounding methodological issue in fMRI studies is whether or not applying a voxel-wise gray 

matter correction, which has been demonstrated to alter the discovery of functional changes in 

fMRI, especially the aging-associated changes. As direct measurement of neural activity, our 

findings from EEG provide insights to cross-validate some of fMRI findings regarding the 

functional connectivity associated with advancing age. 

Nonetheless, several limitations in our study should be acknowledged. First, some older 

adults outperformed middle-age adults in cognitive tests. It is also noted that a few adults recruited 

in the older subgroup were higher-educated than some in the middle-aged subgroup, although all 

participants have completed education of high-school or above. They present substantial variance 

of education history ranging from high school to postgraduate degrees, given a small sample 

recruited in our study. Another limitation is that we did not include structural measurement of 

volume gray matter and white matter to assess the factor of aging-related atrophy, which might 

contribute to the observed performance changes of memory function. 
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In summary, we used EEG resting state recordings to characterize the functional connectivity 

alteration during normal aging process. Our findings indicate that the reconstructed EEG data at 

source level could reflect the neuronal activity in a part of default mode network (DMN) reliably. 

More importantly, the reconstructed tridimensional source cortical level EEG connectivity was 

correlated to ages and memory performance assessed by clinical cognitive batteries. Our results 

indicate that EEG source imaging technology can be used in detecting brain connectivity and 

cognitive function alteration in healthy adults during normal aging. This pilot evidence further 

suggests the use of EEG-network based neuroimaging in the study of aging and Alzheimer’s 

disease related dementia. 
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Chapter 3: Resting State Brain Network is Affected by Vigilance  

In this chapter of my dissertation, I have investigated the effect of vigilance on resting-state 

brain networks, measured by multiple neuroimaging modalities. I focused my investigations using 

fNIRS and EEG. My findings are also relevant and have important implications for other studies 

using fMRI or EEG. 

Recently, fNIRS has been utilized to image the hemodynamic activities in the human brain. 

With the advantage of economic efficiency, portability, and fewer physical constraints on the 

participant, fNIRS enables studying of a large-scale network in the resting-state human brain at 

the versatile environment and various body positions, including at bed-side or during exercise, 

which complements the use of fMRI in monitoring the human brain. However, like fMRI, fNIRS 

imaging of functional connectivity can be influenced by a strong global component. However, the 

nature of the global fNIRS signal has not been established. In this study, we aimed to investigate 

the neurophysiological origin of the global signal using simultaneous recordings of fNIRS and 

electroencephalogram (EEG) signals in healthy human subjects at eyes-open (EO) and eyes-closed 

(EC) resting conditions and at three different body positions (i.e., standing, sitting and supine). We 

assessed the impact of body positions on the resting-state fNIRS global signal and the relationship 

between the fNIRS global signal and EEG measures of vigilance in healthy human participants. 

As a control, we also evaluated the impact of body positions on the task-induced responses of 

fNIRS and EEG to auditory stimuli. Results found that the factor of body positions significantly 

affected the amplitude of the resting-state global signal (defined as the standard deviation of the 

global signal), prominently in the frequency range of 0.05 Hz - 0.1 Hz but only marginally in the 

very-low-frequency range of less than 0.05 Hz. However, the task-induced fNIRS or EEG 

responses did not differ across body positions. More importantly, the amplitude of the global 
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signal in the very-low-frequency range of less than 0.05 Hz exhibited a significant negative 

correlation with EEG vigilance measures in the EO state, which suggests that vigilance as a 

neurophysiological factor modulates the resting-state dynamics of fNIRS. This study is the first to 

investigate the relationship of resting-state fNIRS signal and EEG across body positions and 

revealed the neurological basis of low-frequency fNIRS global signal. Our results will have 

important implications for understanding the noises and neural origins in fNIRS signals, which are 

also relevant to the understanding of fMRI.  

3.1 Background 

3.1.1 Global Signal in Neuroimaging Research 

The global signal was defined as the time course of fMRI blood-oxygenation-level 

dependent (BOLD) averaged across all voxels first by Zarahn et al. in 1997 (Zarahn et al., 1997). 

Regarded as a composition of various nuisance components, the global signal was removed either 

as a preprocessing step or a noise regressor in the analysis of general linear model. It was 2009 in 

a paper of Murphy et al. (2009) the first time to argue that some inspiring anti-correlated 

observations in a Fox et al. (2005) paper could be artifactual by introducing global signal removal 

(GSR). Since then, the discussion about the concern of using GSR never stops. Some studies 

underpin the findings in Murphy et al. (2009) with either simulation or mathematical approach 

(Weissenbacher et al., 2009; Saad et al., 2012). 

Although the global signal is a concise concept, the arguments and investigation are 

keeping growing until now. According to a review of the global signal in fMRI studies, Liu et al. 

viewed the global signal as a time-varying measure of spatial homogeneity in the brain (Liu et al., 

2017b). It does represent a combination of nuisance components that could hamper the significant 

findings. However, the nature of global signal itself is still unclear. For example, a previous study 
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compared the global signal time series which computed after different routines of regression 

(Wong et al., 2013). The minimal preprocessing routine was set as the baseline and the different 

global signal time series were divided by the one by applying minimal preprocessing routine to 

get a mean percent variance explained by each set of regressors (Liu et al., 2017b). They concluded 

that the global signal was explained 48% by Legendre polynomial and motion regressors, 31% by 

physiological noise regressor, and additional 14% by white matter and cerebrospinal fluid 

regressors. There still have 7% remaining component of global signal cannot be explained.     

The global signal is treated as a measure of spatial homogeneity. All spatially widespread 

components are potentially become the environmental or physiological sources of global signal. 

By finding out that low-frequency and gradient subsystem (Liu, 2016; Power et al., 2017), motion 

artifact (Power et al., 2015), cardiac rate (Shmueli et al., 2007), pulse pressure (Power et al., 2017)  

and vascular component (He et al., 2010) are contributed to BOLD signal or significantly 

correlated with the global signal, neuroelectric component is also a source of BOLD global 

component in a study by using local field potential (Scholvinck et al., 2010). Especially, Wong et 

al. (2013) found the anti-correlation between EEG vigilance measurement and the stand deviation 

of global signal in a simultaneous EEG/fMRI study. Besides, Falaphour et al. (2016) reported the 

negative correlation between EEG vigilance time course and the global signal time course.  

 Global signal removal or regression is not a controversial method in fMRI studies, but also 

in recent fNIRS studies. Although, some fNIRS studies used short source-detector separation 

sensor to minimize the effect of physiological noise from superficial cortical layer. However, the 

effect of regressing out short-distance channel from raw signal is still uncertain. Brigadoi and 

Cooper’s work give some recommendation to select the distance of electrode for infants and adults, 

~2 mm and ~8mm, respectively (Brigadoi and Cooper, 2015). The fix length short source-detector 
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separation sensor may induce residual when subtract 5 mm measurement from corresponding 33-

mm signal (Saager and Berger, 2008). Many fNIRS studies are applying different mathematical 

approaches to eliminate the effect of global signal. Principle component analysis, which have the 

highest correlation with global mean signal, is now popular method to regress first PC to lower the 

global effect and autocorrelation (Novi et al., 2016). Besides, partial correlation analysis is also 

proved to separate deep signal and shallow signal effectively without short source-detector 

separation sensor (Sakakibara et al., 2016). Currently, there is no advanced pre-processing routine 

in fNIRS studies. To minimize effect of the physiological signal with removing fNIRS global mean 

signal is also applied in fNIRS study (White et al., 2009). Therefore, to understand the 

physiological origin and potential neural component of resting-state fNIRS global signal is still 

very significant. 

3.1.2 Vigilance and Diseases 

Vigilance, as well as related terms like wakefulness, alertness, or arousal has been 

investigated more than decades (Jobert et al., 1994; Oken et al., 2006; Olbrich et al., 2009a). Liu 

and Falahpour (2020) summarized the employed vigilance metrics in previous studies, including 

mathematically calculation of the ratio of EEG power in the alpha band to the power in the delta 

and theta bands (Jobert et al. (1994), Larson-Prior et al. (2009), and Wong et al. (2013), or 

transformed by calculating the inverse of square root (Horovitz et al., 2008), and other metrics 

defined by Local field potential (Chang et al., 2016a), pupillometry (Schwalm and Rosales Jubal, 

2017), and Behavioral arousal index (Chang et al., 2016a).  

Many neurological disorders, such as autism, depression, and schizophrenia have been 

demonstrated tight association with dysregulation of arousal system (Sander et al., 2015; Jawinski 

et al., 2019). A recent study reported a significant correlation between the EEG-based vigilance 
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metrics and genetic indicator for depressive disorder, autism disorder, and Alzheimer’s disease 

(Jawinski et al., 2019). Besides, the major neurological disorder, like schizophrenia, has been 

proven to have disease-related distortion in fMRI connectivity and vigilance (Calhoun et al., 2012; 

Wang et al., 2015). More investigations are converging the findings that the decreased vigilance 

level is associated with schizophrenia (Boutros et al., 2008; Razavi et al., 2013). Meanwhile, Yang 

et al. (2014) found the variance of global signal is lower in healthy group compared to the group 

of patients with schizophrenia. Since a clear consensus about vigilance and major disorders has 

not yet emerged, the resting-sate connectivity needs to be interpreted carefully by addressing the 

effect of vigilance when investigating the disease-related effect.  

3.1.3 Effects of Body Positions on Measurements 

fNIRS can well adopted to several different body positions compared to only laying down 

on scanner bed in fMRI study. The priority of fNIRS is to be the best alternative neuroimaging 

tool by expanding its unique advantages. Although fMRI is the most widely used, non-invasive 

neuroimaging modality, it is limited by the scanner environment and constraints. The fNIRS has a 

myriad of advantages that outperform fMRI, most notably in high portability and less sensitivity 

to head motion. The development of fibreless and lighter weighted wearable fNIRS system allows 

subjects to move freely in a naturalistic environment and to complete complicated tasks without 

restricting constraints. Tachtsidis et al. (Tachtsidis et al., 2004), who compared effect of three 

different positions on cerebral blood pressure with fNIRS and stated that standing position has the 

highest mean blood pressure (MBP) and supine has the lowest MBP. Although very low frequency 

(0.02–0.04 Hz) did not reveal any significant impact of body position, they reported that the 

magnitude of low frequency oscillation in oxygenated hemoglobin in the resting brain shows a 

significant difference between different postures in 0.04-0.15Hz. Besides, Watanabe et al. reported 
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that prone, supine, and sitting have significantly different effect on autonomic regulation of 

cardiovascular function (Watanabe et al., 2007a). All these physiological measures which affected 

by body positions potentially contribute to fNIRS measures and global signal component.  

3.2 Motivations for This Project 

Functional near-infrared spectroscopy (fNIRS) is a noninvasive functional neuroimaging 

technique that can monitor concentration changes in oxygenated and deoxygenated hemoglobin 

(HbO and HbR) in the cerebral cortex. fNIRS measurement is based on the absorption of biological 

tissue to light in the 700 nm to 1000 nm near-infrared spectrum. Different chromophores, such as 

hemoglobin, myoglobin, and cytochrome aa3, have different absorptivity (Sood et al., 2015). With 

the advantage of low-cost, portability, and ease to co-register with other neural recording 

modalities, such as an electroencephalograph (EEG), fNIRS has become an attractive means for 

imaging and monitoring hemodynamic signals in the human brain, which complements the use of 

functional magnetic resonance imaging (fMRI) in versatile environment. fNIRS has been widely 

applied in functional neuroimaging (Torricelli et al., 2014), cerebral monitoring in neonates (Sood 

et al., 2015) and brain-computer interface (Shin et al., 2017). Unlike fMRI constraining subjects 

to lying down on a scanner bed, fNIRS poses fewer physical constraints on the participants, thereby 

permitting them to be studied at different body positions during recordings.  

Particularly, imaging of resting-state functional connectivity (RSFC) in the human brain has 

been a recent focus for neuroimaging studies, including fNIRS (Mohammadi-Nejad et al., 2018; 

Pinti et al., 2018). The activity of the resting brain exhibits spontaneous and large-amplitude 

fluctuations, which have been observed in a number of imaging modalities such as fMRI (Biswal 

et al., 1995a), positron emission tomography (Raichle et al., 2001; Watabe and Hatazawa, 2019), 

and direct measures of neuronal activity with electro- or magneto-encephalography (EEG or MEG) 
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(Goldman et al., 2002; Mantini et al., 2007; Brookes et al., 2011; Yuan et al., 2012; Yuan et al., 

2016). The measures of resting-state cerebral hemodynamics, mostly using fMRI based on the 

blood-oxygenation-level dependent (BOLD) contrast, show fluctuations predominantly at a low 

frequency band of < 0.1 Hz (Cordes et al., 2001). The temporal synchrony across brain regions 

have been revealed (Beckmann et al., 2005a; Damoiseaux et al., 2006), and demonstrated to be 

important biomarkers for the brain at diseased conditions (Zhang and Raichle, 2010). Prior studies 

of RSFC in both healthy and diseased conditions can be influenced by the presence of a strong 

global component, which is usually observed throughout sampled voxels or sensors, thereby 

dominating the RSFC (Greicius et al., 2003; Fox et al., 2005; Fox et al., 2009). However, the 

approach of removing global signal has recently been shown to induce systematic biases and the 

anti-correlation enhanced by global signal regression (GSR) becomes the main concern (Fox et al., 

2009; Murphy et al., 2009). Furthermore, evidences show that a neural component (Scholvinck et 

al., 2010; Wong et al., 2013; Wong et al., 2016) and even diagnostic information (Hahamy et al., 

2014; Murphy and Fox, 2017; Yang et al., 2017) exist in the global signal, which challenges the 

assumption of removing it in the first place. 

Like fMRI signals, fNIRS also offers the potential to examine the human brain at resting state by 

measuring concentration changes of HbO and HbR in the vasculature of the cortical tissues below 

sensing channels (Obrig and Villringer, 2003; Scholkmann et al., 2014). fNIRS has been 

effectively employed to characterize the resting-state brain in adults (Obrig et al., 2000; White et 

al., 2009; Lu et al., 2010; Mesquita et al., 2010; Zhang et al., 2010; Sasai et al., 2011) and infants 

(Homae et al., 2010; White et al., 2012; Molavi et al., 2013; Watanabe et al., 2017), and to assess 

differences between experimental groups (Keehn et al., 2013). The most common RSFC analysis 

of fNIRS data involves evaluating the temporal relationship between time series of the 



55 

preprocessed data from recording units, for example, through the Pearson’s correlation. A global 

component has been observed in fNIRS measurements and commonly removed for the purpose of 

attenuating systematic noises at the resting state (White et al., 2009; Mesquita et al., 2010; 

Eggebrecht et al., 2014; Tachtsidis and Scholkmann, 2016; Duan et al., 2018). Whereas removing 

superficial contributions from short-distanced channels to fNIRS is increasingly employed to 

attenuate the systematic noises (Saager and Berger, 2005; Gagnon et al., 2011), data from both 

long-distanced and short-distanced channels commonly suggest a global component exist in fNIRS 

measurements and distribute across wide regions (Zhang et al., 2005; Kohno et al., 2007; Zhang 

et al., 2007; Zhang et al., 2009b; Tong and Frederick, 2010; Novi et al., 2016; Sato et al., 2016). 

However, the physiological nature of the fNIRS global signal has not been fully established, since 

the neurophysiological components in the resting-state global fNIRS signal have not been 

systematically investigated. Therefore, whether or not to remove the global signal in fNIRS-based 

RSFC analysis remains not clear. 

3.3 Hypotheses to Be Tested 

This study aimed to investigate the physiological underpinning of resting-state fNIRS global 

signal by concurrently acquiring fNIRS and EEG in whole-brain, high-density coverage. Previous 

studies have examined the global signal of resting-state BOLD fMRI and revealed a negative 

relationship between the amplitude of resting state fMRI global signal and EEG vigilance level 

(Wong et al., 2013; Chang et al., 2016a; Falahpour et al., 2018). Using simultaneous EEG-fMRI 

measures in human subjects, these studies have shown that higher vigilance states are characterized 

by lower global signal amplitudes, indicating that neurophysiological components exist in the 

global signal. Moreover, the EEG vigilance level has been linked to the fluctuations of activities 

in regions constituting the default mode network (Olbrich et al., 2009b), suggesting that regressing 
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out the resting-state global signal could potentially impact the connectivity in resting state 

networks. Based on the prior studies using BOLD fMRI, in the current study we hypothesize that 

the fNIRS global signal has a neurological component and is related to the EEG vigilance. 

Furthermore, considering that fNIRS is a promising technology for imaging the human brain at 

versatile body positions, the current study examined the impact of body positions on the fNIRS 

global signal at resting state conditions. In addition, as a control, the impact of body positions on 

evoked activities to auditory stimuli were studied. 

3.4 Data Acquisition and Preprocessing 

Study procedures were completed according to the Declaration of Helsinki guidelines and 

approved by the Institutional Review Board at the University of Oklahoma Health Sciences Center. 

Twenty-four healthy subjects were recruited after giving informed consent. All subjects were right-

handed. Two subjects were excluded due to bad signal quality caused by excessive movement. 

Thus, 22 subjects’ data were included in the analysis (14 males and 8 females, aged 19 to 55 years 

old, average age ± STD = 30.5 ± 11.5 years). Each subject participated in two separate sessions, 

eyes-open (EO) and eyes-closed (EC), the order of which was randomized. For each subject, two 

sessions occurred on different days that were within a four-week period (mean interval ± STD = 

12.5 ± 14.9 days). Each session contained three recording blocks at different body positions: 

standing, sitting, and supine. The order of these blocks was randomized among all subjects but 

was kept the same for each subject at consecutive sessions. Each block contained a 10-minute 

resting-state part and an auditory task part that lasted 6 minutes and 30 seconds. In the resting-

state part, subjects were instructed to keep as still as possible and not fall asleep. Specifically, in 

EO resting condition, subjects were instructed to focus on a black cross on a white background. In 

the auditory task part, subjects were instructed to keep still and listen to the auditory stimuli from 
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a pair of earbuds. During each block, fNIRS and EEG signals were recorded simultaneously. Six 

datasets (2 eye conditions by 3 body positions) were obtained for each subject, yielding a total of 

132 datasets in the current study, which included concurrent EEG and fNIRS data of both resting 

state and task conditions.  

3.4.1 fNIRS Data Acquisition 

The fNIRS measurements were acquired with a NIRScout system (NIRX, New York, 

United States). 32 source probes and 32 detector probes were plugged into holders and arranged 

into a cap based on the international 10-5 system (Jasper, 1958). A total of 105 channels (i.e. 105 

pairs of sources and detectors) were defined, covering the areas from the forehead to the occipital 

lobe. The inter-optode distance varied between 25mm, 27 mm and 30mm, corresponding to three 

different sizes of caps (54cm, 58cm, and 60 cm). The intersection between the left and right tragus 

and the Nasion and Inion were the center of the cap, which was denoted by the Cz position. A dark 

black over-cap covered the cap to block external light luminance. The absorption of near-infrared 

light at 760 and 850 nm was measured with a sampling rate of 1.95 Hz.  

3.4.2 EEG Data Acquisition 

A 64-channel, fNIRS-compatible EEG system (BrainProducts, München, Germany) was 

utilized to record the EEG data. To couple the EEG signal with the fNIRS hemodynamic signal, 

the montage of the EEG electrodes was designed to match the fNIRS montage. Every EEG channel 

was crossed by an adjacent pair of light source and detector. 64 EEG electrodes were also mounted 

onto corresponding holders. The electrode at FCz position was selected as the reference point. Two 

32-channel amplifiers, which were powered by a rechargeable battery, were included in our EEG 

system. Electrically conductive gel was added to decrease the impedance between scalp and 
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electrodes. The impedances of EEG electrodes were kept under 50 kΩ throughout the recordings. 

All the EEG datasets were digitized with a wide band of 0.1-250 Hz at a 500 Hz sampling rate.  

 

Figure 11 Flowchart of the data processing flowchart. (Left) fNIRS signal processing 

procedures, and (Right) EEG signal processing procedures. Dashed line circles the pre-

processing procedures. 

3.4.3 fNIRS and EEG Data Preprocessing 

Figure 11 shows the analysis flowchart of EEG and fNIRS data. EEGLAB (Delorme and 

Makeig, 2004) was used for pre-processing of EEG data. After loading the raw datasets, the data 

was re-referenced to the common average reference. A basic FIR bandpass filter from 0.1 Hz to 
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70 Hz was used to filter the data in addition to a notch filter of 60 Hz. Additional ocular and 

muscular artifacts were removed by the independent component analysis implemented in 

EEGLAB. The ocular components, muscle movement components, and other artifacts were 

manually inspected and removed (Chaumon et al., 2015). Preprocessed EEG data were down-

sampled to 250 Hz. 

fNIRS data was pre-processed in HOMER2 (Huppert et al., 2009). Channels consisted of a 

source electrode and adjacent detector electrodes. Montages were created according to the setup 

of sources and detectors. Preprocessing of fNIRS data included converting raw light intensity to 

optical density, PCA removal (Tak and Ye, 2014), and motion artifact detection and correction. 

The PCA algorithm we performed here is to filter out the first principal component (Novi et al., 

2016). Discontinuities and spikes existing in recordings were replaced by an average of its adjacent 

data segment. All channels were bandpass filtered from 0.01 to 0.2 Hz. The resulted time series 

were subject to hemodynamic computation via the modified Beer-Lambert law (Kocsis et al., 

2006), yielding relative changes in concentrations of Oxy-Hemoglobin (HbO) and Deoxy-

Hemoglobin (HbR). Differential Path Length Factor (DFP) was determined by the spectrum 

detected by Walter Gratzer (Med. Res. Council Labs, Hally Hill, London). 

3.5 EEG-Based Vigilance Metrics 

For EEG data, after removing artifacts, a spectrum was calculated by using Welch’s power 

spectral density estimate with segments of 10 seconds and 50% overlap for each EEG channel. 

Then the spectrum was normalized by its overall root mean square (RMS) amplitude, resulting in 

the relative amplitude spectrum. Three frequency bands (delta: 1–4 Hz, theta: 4–7 Hz, alpha: 7–

13 Hz) were delineated, and the RMS amplitudes were calculated separately for each band. A 
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measure of EEG vigilance was defined as the RMS amplitude in the alpha band divided by the 

sum of RMS amplitudes in the delta and theta bands. 

3.6 fNIRS-Based Global Signal Metrics 

After pre-processing, the fNIRS data became a measure of the relative concentration changes 

of Oxy-Hemoglobin and Deoxy-Hemoglobin in units of μM. Then the preprocessed fNIRS were 

separated into two frequency bands: the lower range of <0.05 Hz and the upper range of >0.05 Hz 

containing the Mayer wave, guided by inspection of power spectrum (Figure 13) and ANOVA 

tests. To calculate the global signal, the time series of relative changes in HbO or HbR were 

averaged across all channels covering the whole brain. Then, the amplitude of the global signal 

was defined by the standard deviation of the global signal time series.  

3.7 Statistical Analysis 

Firstly, in order to explore the effect of body position on neural recordings, as one of the 

main hypotheses to test in our investigation, ANOVA (standing/sitting/supine body positions) was 

applied on the EEG or fNIRS quantities obtained from 22 subjects, separately for the EO and EC 

conditions. More specifically, we performed the statistical test on each frequency bin along a 

continuous spectrum (Figure 13 and Figure 14), as we expected a possible frequency-dependent 

effect of body position. Based on the delineation of frequency-dependent effect (Figure 13), we 

segregated the quantities of the fNIRS global signal in two frequency bands: f < 0.05 Hz and f > 

0.05 Hz.  

Next, two-way repeated measures ANOVA (standing/sitting/supine body positions X 

EO/EC) was applied to assess if any main effect of body position or eye condition, or interaction 

between the body position and the eye condition, separately in the frequency range of <0.05 Hz 

and >0.05 Hz and separately for HbO and HbR. Likewise, two-way repeated measures ANOVA 
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(standing/sitting/supine body positions X EO/EC) was tested on the EEG vigilance scores. The 

dimension of metrics is 22*3*2 (the subject number * position number* eye condition number). 

Furthermore, post-hoc analysis assessed the difference between conditions using a paired, two-

sided t test. Bonferroni correction was used to correct the multiple comparison. 

Furthermore, the co-variation between the global signal amplitude of fNIRS and the EEG 

vigilances was calculated, across all subjects and all body positions. Particularly, the co-variation 

analysis has excluded the frequency band of greater than 0.05 Hz which is affected by Mayer wave 

(Julien, 2006). Also, for the purpose of determining whether vigilance variations underlie the 

fluctuations in fNIRS global signal, the co-variation was only examined in the experimental 

conditions in which the effect of body position was not significant. Therefore, one-way ANOVA 

of the body position effect was assessed separately for eyes-open and eyes-closed conditions. 

Likewise, one-way ANOVA of the body position effect was assessed on EEG vigilance scores 

separately for eye conditions. 

3.8 Results 

The aim of the study was to investigate the neurological basis of the fNIRS resting-state 

global signal, if any, and the impact of body positions on the resting-state signals. The results are 

organized as such: the frequency-dependent impact of body positions on fNIRS and EEG signals 

was explored, then the factors of body positions and eye conditions were assessed in fNIRS global 

signal in two delineated frequency bands, and finally, the co-variation in the amplitude of fNIRS 

global signal and EEG vigilance was analyzed. As control results, the fNIRS and EEG task 

responses to auditory stimuli were included. 

Firstly, spontaneous fluctuations were observed in the fNIRS global signal when subjects 

rested with their eyes open and closed, without any external stimuli. Representative single-session 
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traces of fNIRS global signals are shown in Figure 12, at an EC resting condition. Notably, the 

global signal at all three positions exhibit fluctuations with a peak frequency of ~ 0.02 Hz. 

Meanwhile, the data acquired from these body positions exhibited different patterns of fluctuations 

in the time domain, i.e. slower fluctuations are observed in the supine position and faster 

fluctuations in the sitting and standing positions. In terms of the amplitude, we noted that the power 

spectrum at the supine position showed a lowest amplitude in the frequency range of 0.05 – 0.1 

Hz than those at sitting and standing positions, in the representative subject. 

 

Figure 12 Representative EC single-session traces of fNIRS global signal derived from HbO  

signal at different positions (A) supine in grey color, (B) sitting in orange color, and (C) standing 

in blue color, exhibited different patterns of fluctuations in the time domain (left panel) and 

frequency domain (right panel). 

Furthermore, the position-dependent profile of the resting-state fNIRS global signal is also 

prominent at the group level. Figure 13 shows the grand average of the power spectrum of fNIRS 
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global signal at various resting state conditions. Notably, in the frequency range from 0.05 Hz to 

0.1 Hz, the spectrums at three different body positions show largely different amplitudes. The 

spectrum at the standing position appears to be of highest amplitudes in 0.05 Hz - 0.1 Hz, at both 

EO and EC conditions (Figure 13 A,B) in blue curves, whereas spectrum at supine are of lowest 

amplitudes (Figure 13 A,B) in grey curves. In order to delineate the frequency-dependent effect 

of body position, we performed one-way ANOVA on the amplitude of fNIRS global signal 

separately in each frequency bin. At the EO condition, between 0.05 and 0.09 Hz, the effect of 

body position was significant on HbO (p < 0.05, uncorrected). Similarly, at the EC condition, the 

effect of body position was significant in the range from 0.07 Hz to 0.09 Hz on HbO (p < 0.05, 

uncorrected). Since the fNIRS signal in the frequency range of 0.05 Hz - 0.1 Hz has been related 

to a physiological noise known as the Mayer wave (Julien, 2006), our later analysis of the fNIRS 

global signal then focused on two distinct frequency bands, i.e. f < 0.05 Hz and f > 0.05 Hz, in 

order to distinguish a position-dependent impact that may be attributed to physiological noises. In 

HbR, we used the same frequency bands as with HbO. Noteworthy, none of HbO or HbR data 

showed any significant effect of body positions in a frequency bin less than 0.05 Hz (p > 0.05, 

uncorrected). 
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Figure 13 The grand average of the power spectrum of fNIRS global signals at various resting-

state conditions, (A) and (B) shows HbO signal at EO and EC conditions. Similarly, (C) and (D) 

shows HbR signal at EO and EC conditions, respectively. The grey, orange, and blue curves 

represents supine, sitting, and standing (same in all panels). 

Likewise, in the resting-state EEG, our analysis explored whether a position-dependent 

profile exists on the spectrum. Figure 14 A and B show the grand average of the power spectrum 

at EC and EO conditions, respectively (Figure 14 A, B). ANOVA revealed that the body position 

was not significant in any of the frequency bins at either EO or EC conditions (p > 0.05, 

uncorrected). Notably, although the grand average at the EC conditions appears with different 

amplitudes for three different conditions, it did not reach a significance level (p = 0.067 at f = 10.8 

Hz, uncorrected). 
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Figure 14 The grand average of the power spectrum of EEG resting-state signals at (A) EO 

condition. (B) EC condition. The grey, orange, and blue curves represents supine, sitting, and 

standing (same in both of panels). 

Next, we aggregated the fNIRS and EEG quantities as the amplitude of global signal and 

vigilance scores, respectively. We averaged the amplitude of the fNIRS global signal (as root-

mean-square) in the range of f < 0.05 Hz, which excludes the Mayer wave, and then separately in 

the range of f > 0.05 Hz. Meanwhile, EEG vigilance scores were calculated based on the power 

spectrum of resting state EEG as the ratio of alpha-band RMS divided by the sum of delta- and 

theta-band RMS. Two-way Repeated Measures ANOVA (body positions *eye conditions) 

revealed a marginal effect of body positions on fNIRS global signal amplitude in the very low 

frequency range of f < 0.05 Hz (q = 0.10). Meanwhile, the effect of body position was significant 

on the fNIRS global signal in the range of f > 0.05 Hz (q < 0.001). Noteworthy, the interaction of 

body positions and eye condition was not significant in fNIRS global signal amplitude in either 

frequency range. 

Post-hoc comparison on HbO in the range of f > 0.05 Hz was then conducted to assess the 

difference between pairs of body positions (i.e. standing vs. supine, sitting vs. supine, and standing 
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vs. sitting) (Figure 15 B). Analysis showed that the amplitude of fNIRS global signal for the supine 

position was significantly lower than the sitting position (q < 0.01) and standing position (q < 

0.001), after multiple comparison correction. But amplitude of fNIRS global signal for sitting 

position did not differ from the standing position. Noteworthy, neither the eye factor nor the eye-

position interaction was significant in fNIRS HbO or HbR data. 

In terms of EEG vigilance scores (Figure 15 E), the two-way repeated measure ANOVA 

found that the effect of body position, the effect of eye condition and the eye-position interaction 

was all significant (q < 0.001). Post-hoc comparisons on the EEG vigilance scores were then 

conducted to assess the differences. Informed by the significant interaction factor, we performed 

separate ANOVA analysis on the effect of body positions at separate eye condition and performed 

separate t-test on pairs of body positions and eye conditions. Only under EC condition, the supine 

position had significant smaller EEG vigilance than sitting (q < 0.05) and standing position (q < 

0.001). Furthermore, regarding the eye factor (EO vs. EC), the EEG vigilance showed significance 

at both sitting (q < 0.01) and standing positions (q < 0.001), but not in the supine position. 

However, under EO condition, there was no significant effect of body position. 
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Figure 15 Statistical analysis reveals the major effects of body positions (supine, sitting, and 

standing) and eye conditions (EC and EO) on (A-D) fNIRS global signal amplitude and (E) EEG 

vigilance measurement. The amplitude of fNIRS global signal was averaged in the range of 

f<0.05Hz to exclude the influence of Mayer wave. A Two-way Repeated Measurement ANOVA 

was performed on (A) fNIRS HbO global signal amplitude, f<0.05 Hz amplitude, (B) fNIRS 

HbO global signal amplitude f>0.05 Hz, (C) fNIRS HbR global signal amplitude, f<0.05 Hz 

amplitude, (D) fNIRS HbR global signal amplitude f>0.05 Hz, and (E) EEG vigilance 

measurement. Error bars indicate standard error of the mean. Stars indicate significance level (* 

indicates q < 0.05, ** indicates q < 0.01, *** indicates q < 0.001). 

As a next step, we examined the co-variation relationship between the fNIRS global signal 

and the EEG at resting state. Particularly, we compared the amplitude of fNIRS global signal in 

the frequency range of f < 0.05 Hz against the EEG vigilance scores, only at EO state when either 
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fNIRS or EEG quantities were not impacted by the factor of body positions. Also, we pooled data 

from all body positions in evaluating the correlation, since the factor of body positions was not 

significant. Figure 16 shows the data of fNIRS and EEG and their correlations. Interestingly, a 

negative correlation was found between the HbO global signal of less than 0.05 Hz and EEG 

vigilance (HbO: r = -0.38, q < 0.01), while the factor of body position did not affect the EEG or 

fNIRS quantities. The individuals with higher global signal amplitudes were found to be with 

lower vigilance levels. Likewise, when subjects kept their eyes open, the correlation between the 

amplitude of HbR global signal (f < 0.05 Hz) and EEG vigilance was significant (HbR: r = -0.40, 

q < 0.01). Noteworthy, we did not compare fNIRS and EEG when subjects kept their eyes closed. 

Because EEG vigilance was significantly impacted by the three body positions at EO condition, 

covariation found between vigilance and fNIRS, if any, could be attributed to the position factor. 

  

Figure 16 Amplitude of fNIRS global signal less than 0.05 Hz is highly correlated with EEG-

based measure of vigilance.  (A) fNIRS global signal derived from HbO signal at EO is 

significantly correlated (r = -0.38) with EEG vigilance. (B) fNIRS global signal derived from 

HbR signal at EO is also significantly correlated (r = -0.40) with EEG vigilance. 

Furthermore, instead of pooling data across positions, we also examined the co-variation 

between fNIRS global signal and EEG per each body position as shown in Figure 17. Among all 
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body positions, results showed a consistent negative trend such that higher global signals are 

associated with lower vigilance states. In particular, both HbO and HbR at the standing position 

were significantly correlated with the EEG vigilance after multiple comparison correction (HbO: 

r = -0.63, q < 0.05; HbR: r = -0.58, q < 0.05). However, at other positions, the covariation did not 

reach significance, although a negative trend in the association was consistently noted. HbR at the 

supine position showed a significance-approaching correlation with EEG vigilance (r = -0.38, p = 

0.1) and HbO at the sitting position also approached significance (r = -0.35, p = 0.1). However, 

HbO at supine position (r = -0.12) and HbR at sitting position (r = -0.23) did not show a significant 

correlation with EEG vigilance. 

 

Figure 17 Amplitude of fNIRS global signal in the range of f < 0.05 Hz is correlated with EEG-

based measure of vigilance, when subjects rested in the standing position with their eyes open. 

fNIRS global signal amplitudes derived from HbO signal (A) and from HbR signal (B) are both 

significantly correlated with EEG vigilance after multiple comparison correction (HbO: r = -

0.58, q < 0.05, HbR: r = -0.63, q < 0.05). 
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3.9 Discussion 

Our study has investigated the neurophysiological nature of the global signal of fNIRS 

measured at resting state. The results for the first time have demonstrated that the amplitude of the 

fNIRS global signal, particularly in the frequency range of 0.01< f <0.05 Hz, is negatively 

correlated with EEG vigilance measures. The discovery of a neurological origin for fNIRS global 

signal has important implications for the processing of fNIRS signal acquired at resting state. 

One of the most fundamental and critical issue in analyzing neuroimaging data is how to 

handle the global signal, which is defined as the time series of intensity averaged across imaging 

units in PET (Fox et al., 1988; Friston et al., 1990) and fMRI (Desjardins et al., 2001; Macey et 

al., 2004), and more recently, in fNIRS (Franceschini et al., 2006; Zeff et al., 2007; White et al., 

2009; Mesquita et al., 2010). A strong presence of global signal in fMRI may lead to a massive 

and diffused activation pattern in task-based studies if the time series of the global signal is of 

similar profile with the task modulation (Kay et al., 2013; Power et al., 2015). Likewise, fNIRS 

studies of various tasks commonly removed a global component derived from the measurements 

to reveal focal activations, via linear regression and spatial filtering based on PCA/ICA 

decomposition (Zhang et al., 2005; Franceschini et al., 2006; Kohno et al., 2007; Zeff et al., 2007; 

Zhang et al., 2007; Eggebrecht et al., 2012; Eggebrecht et al., 2014; Sato et al., 2016; Zhang et al., 

2016). Nonetheless, the impact of global signal is more problematic in task-free, resting state 

studies, as the global signal may lead to a perfusive connectivity pattern that is attributed to the 

global signal, no matter whichever seed region of interest is selected. Because region-specific 

connectivity is more desirable and because non-neuronal sources can dominantly contribute to the 

global signal (Glover et al., 2000; Wise et al., 2004; Birn et al., 2006; Yuan et al., 2012; Yuan et 

al., 2013), the analysis of resting state fMRI data has commonly included steps to attenuate the 



71 

impact of a global signal. For example, GSR removes an averaged signal of all recording units 

from the time series through linear regression. This procedure was originally developed for and 

applied to task-based fMRI data (Zarahn et al., 1997; Aguirre et al., 1998; Macey et al., 2004). 

Later, most resting-state fMRI studies have adopted GSR as a pre-processing approach: the global 

signal component is regressed out of preprocessed BOLD signals prior to computation of 

connectivity measures and therefore regionally focused connectivity patterns are reported (Fox et 

al., 2009). Similarly, in recent fNIRS studies of resting state brain, a global component has been 

recognized in the measurements from regularly distanced optodes (White et al., 2009; Mesquita et 

al., 2010; Tong and Frederick, 2010; Eggebrecht et al., 2014; Tachtsidis and Scholkmann, 2016; 

Duan et al., 2018) and from short-distanced optodes (White et al., 2009; Mesquita et al., 2010; 

Eggebrecht et al., 2014; Tachtsidis and Scholkmann, 2016; Duan et al., 2018). Till so far, there is 

no well-established pre-processing routine in resting state fNIRS studies although multiple efforts 

are being made (Huppert et al., 2009; Ye et al., 2009; Xu et al., 2014; Santosa et al., 2018). 

Approaches such as GSR and spatial filtering via PCA and ICA decomposition that were used in 

task-based fNIRS studies are also commonly adapted in resting state fNIRS studies to remove the 

global component, yielding regionally focused connectivity pattern (Mesquita et al., 2010; Zhang 

et al., 2010; Zhang et al., 2011; Sakakibara et al., 2016). 

However, the removal of global signal in neuroimaging data has encountered controversial 

critiques, particularly in the studies of resting state functional connectivity. Because a global 

neurophysiological component may be present in direct neural recordings (Scholvinck et al., 2010; 

Wong et al., 2013; Wong et al., 2016), removing the global signal is shown to cause loss of such 

neural components, thereby confounding the resulted pattern of resting state functional 

connectivity. For example, Chen et al. (2012) found that the global signal is highly correlated with 
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default mode network (DMN) component. Further evidences indicated that the global signal 

resembles the resting-state fMRI time courses of the largest cluster when the level of global noise 

is low (Chen et al., 2012). Under such circumstances, GSR could mathematically mandate the 

presence of anti-correlation network in fMRI studies (Murphy et al., 2009). Other studies have 

further linked the fluctuations of global signals to the varying levels of vigilance or arousal (Chang 

et al., 2016a; Falahpour et al., 2018), which suggests that removing the global signal in those 

situations could remove an underlying behavioral factor. Therefore, the global signal regression 

should be very carefully applied when studying resting-state MRI (Murphy et al., 2009; Saad et 

al., 2012; Murphy and Fox, 2017). Until now, the nature of the fNIRS global signal has not been 

fully established since the neurophysiological components in the resting-state global fNIRS signal 

have not been systematically investigated. Our current study is the first of its kind to investigate 

the neuronal and non-neuronal sources in the fNIRS global signal by using concurrent fNIRS and 

EEG in whole-brain and high-density setup. Because both fNIRS and BOLD fMRI measure the 

cerebral hemodynamics, they carry similar substrates for neuronal activities while they also share 

common caveats due to non-neuronal sources, including respiration, cardiac pulsations, motion, 

etc. Like in the case of fMRI, removal of fNIRS global signal may lead to spurious results in the 

functional connectivity pattern, depending on whether or not there exists any neural component in 

the global signal of fNIRS and the amplitude level of global signal.  

In this study, we have shown that fNIRS global signals acquired from the resting human 

brain are periodical oscillations. As shown in Figure 12 and Figure 13 at respective individual 

and group level, the resting-state fNIRS global signal resides in three ranges: dominantly less than 

0.05 Hz with a peak component at ~0.02 Hz, a second peak between 0.05 and 0.1 Hz (also known 

as the Mayer wave) and greater than 0.1 Hz. Furthermore, our study extended investigations of the 
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fNIRS global signal at standing, sitting and supine positions. Indeed, periodic fluctuations were 

observed in the global signal at all body positions. The presence of a fluctuating fNIRS global 

signal with dominate activities of < 0.1 Hz suggests that the resting-state functional connectivity 

pattern may be affected by the global signal. Comparing with intracranial neural recordings 

(Leopold et al., 2003; He et al., 2008; Shmuel and Leopold, 2008), fNIRS global signal and 

spontaneous neural activities overlap their peaks in the range of < 0.1 Hz. Meanwhile, in 

comparison with fMRI, the fNIRS global signal shows a very similar spectral profile with those 

from BOLD fMRI. Especially, the spectrum of fNIRS at the supine position (Figure 13 A and B) 

for both EO and EC conditions are almost identical to those reported in fMRI (e.g. Figure 1 in 

(Biswal et al., 1995a). Since in our study the whole head fNIRS montage were sampled at 1.95 

Hz, which is a higher frequency than BOLD fMRI (usually 0.5 Hz), the spectrum of fNIRS global 

signal revealed a more accurate spectrum.  

Importantly, for the first time our study reported a negative correlation between the 

amplitude of fNIRS global signal in the range of < 0.05 Hz and the EEG vigilance based on the 

simultaneous recording (Figure 16 and Figure 17). The negative correlation between fNIRS 

global signal and EEG vigilance measurement was observed at eyes open condition, when neither 

EEG nor fNIRS was affected by body positions (HbO and HbR in Figure 16). Furthermore, in a 

single body position at eyes-open condition, such a negative correlation between fNIRS global 

signal amplitude and EEG vigilance was also confirmed (HbO and HbR in Figure 17). The 

selection of frequencies f < 0.05 Hz for fNIRS is critical: it is within the range of resting state 

fMRI data but distinctly narrower. Previous fMRI study has demonstrated that the functional 

connectivity in auditory, visual and sensorimotor cortices is characterized 90% by the low-

frequency band from 0 to 0.1 Hz (Cordes et al., 2001). Meanwhile, the fractional amplitude of 
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low-frequency fluctuation (fALFF) is defined as the ratio of power spectrum of 0.01 Hz - 0.08 Hz 

to that of the whole frequency band (Zou et al., 2008b). Noteworthy, one of the most studied 

network DMN has significantly higher fALFF than other brain regions, which indicates DMN has 

higher intensity of regional spontaneous brain activity in the range of 0.01 Hz - 0.08 Hz (Zou et 

al., 2008b). More importantly, our fNIRS signal was further narrowed to the range of < 0.05 Hz, 

in order to avoid the Mayor wave which is shown to depend on body positions. Because of a high 

sampling frequency, fNIRS was effective in preventing aliasing of high frequencies related to 

pulse and respiration into the range of < 0.05 Hz.  

In addition, our results revealed that the power spectrum of HbO global signal depends on 

body positions in the range between 0.05 Hz – 0.1 Hz, regardless eyes were opened and closed 

(shown in Figure 12 and Figure 13 at respective individual and group level). Data at the standing 

position show the largest amplitude than the others, while the supine position is associated with 

lowest amplitude. These findings are consistent with previous reports by Tachtsidis et al. 

(Tachtsidis et al., 2004), who compared three different positions’ effect on cerebral blood pressure 

with fNIRS. Their results showed that standing position has the highest mean blood pressure 

(MBP) and supine has the lowest MBP. They followed the Task Force of the European Society of 

Cardiology and the North American Society of Pacing and Electrophysiology (1994) to separate 

the frequency spectrum into 3 standard frequency bands: very low frequency (VLF: 0.02–0.04 

Hz), low frequency (LF: 0.04–0.15 Hz) and high frequency (HF: 0.15–0.4 Hz). Although VLF did 

not reveal any significant impact of body position, their results reported that the magnitude of low 

frequency oscillation in HbO in the resting brain shows a significant difference between different 

postures in LF. Coincidentally, Mayer wave, i.e. the cyclic changes in arterial blood pressure, fall 

into this LF range (Muller et al., 2003; Julien, 2006). Mayer wave appears to have a close 
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relationship with fNIRS global signal. It is observed as oscillations of arterial pressure at ~0.1 Hz 

in conscious humans (Julien, 2006). Besides, it is positively related with the strength of the 

corresponding sympathetic nervous activity and the mean level of sympathetic nerve activity 

(Furlan et al., 2000). More importantly, prone, supine, and sitting have significantly different effect 

on autonomic regulation of cardiovascular function (Watanabe et al., 2007b). One rational 

speculation is that different body positions, especially the up-tilt positions, significantly affect 

autonomic regulation includes SNA which set the level of sympathetic vasoconstrictor tone, hence 

contributing to sustain arterial pressure (Julien, 2006; Scholkmann et al., 2014; Mohammadi-Nejad 

et al., 2018). Therefore, we regarded position-dependent effect in the Mayer wave range to be of 

physiological origin and discarded them for correlational analysis with EEG. Aside from the 

Mayer wave range, our analysis further eliminated the factor of body positions and revealed a 

significant correlation between the EEG vigilance and fNIRS global signal in the frequency range 

of <0.05 Hz (HbO and HbR in Figure 16). Such EEG-fNIRS association for the first time revealed 

a neurophysiological contribution to the fluctuations of fNIRS global signal (due to EEG 

vigilance), rather than a physiological factor (due to body positions).  

There are abundant evidence supporting the phenomena that resting state hemodynamic 

signals in the range of < 0.05 Hz have neurophysiological origins. Intracortical recordings of 

electrical activities in human and animal studies have showed that fluctuations in the very low 

frequency range (including < 0.05 Hz) are widespread and coherently organized in the resting brain 

(Leopold et al., 2003; He et al., 2008). In addition, concurrent recordings of fMRI and 

electrophysiological data have shown a tight coupling relationship between the endogenous time 

courses of BOLD and field potentials in a resting state (Shmuel and Leopold, 2008). Previous 

studies show that MRI BOLD global signal amplitude is negatively correlated with EEG vigilance 
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measurement across the examined subjects (Wong et al., 2013; Wong et al., 2016). It was further 

shown that the moment-to-moment fluctuations of EEG vigilance, within individual subjects, were 

also negatively correlated to the amplitude of global signal in fMRI (Falahpour et al., 2018). 

However, so far, most fMRI studies of the resting-state brain have not carefully delineated the 

frequency bands due to an insufficient sampling frequency and also, the impact of body position 

was not investigated by fMRI due to the physical constrain. 

Noteworthy, the calculation of the fNIRS global signal amplitude in our study is a 

reasonable adaption from the definition of global signal amplitude in previous fMRI study (Wong 

et al., 2013). Considering that the fNIRS optical density is converted to relative changes of 

HbO/HbR concentration in the stage of hemodynamic computation, the normalization in fNIRS 

equates the normalization in fMRI analysis (i.e. divided by the mean of fMRI time course), the 

calculation of fNIRS global signal in our study followed exactly the same definition in Wong et 

al. (2013). Our findings are consistent with previous findings on the relationship between fMRI 

global signal and EEG vigilance (Wong et al., 2013; Wong et al., 2016). Such discovery of a 

neurological component in fNIRS global in our study is novel. Importantly, our investigation adds 

findings from a unique perspective by showing a correlation in a carefully constrained frequency 

range that has excluded the possible physiological noise of blood pressure regulation.  

Furthermore, our findings of a negative correlation between fNIRS global signal and EEG 

vigilance measures have important implications for the analysis and interpretation of fNIRS-based 

resting state functional connectivity. Due to such a negative correlation, removing the fNIRS 

global signal when studying the resting-state connectivity pattern may likely remove the vigilance 

signal, which could change the pattern of the resting state functional connectivity. Beyond that, 

Default Mode Network has been reported to be correlated with EEG vigilance scores (Olbrich et 
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al., 2009b). Removing fNIRS global signal therefore may attenuate activities of DMN that are 

correlated with vigilance fluctuations. Evidence has shown that the working memory plays a 

critical role in both visual rehearsal and vigilance performance (Baddeley et al., 1999). And age-

related alterations and disease-related decrements (such as Alzheimer’s disease) in DMN have 

significantly impacted working memory performance (Baddeley et al., 1999; Sambataro et al., 

2010). Global signal removal might be problematic if vigilance is relevant to a diseased brain state. 

Therefore, the fNIRS global signal should not be treated as non-neural confound, and its removal 

should be carefully considered via a frequency delineation.  

Last but not least, we conduct qualitative analysis and statistical analysis on auditory EEG 

and fNIRS responses. Our results did not observe the different body positions’ effect on AEP of 

EEG data or task-related average of fNIRS data, at both EO and EC conditions. This excludes the 

concerns of environmental and systematic biases, such as the quality of data recording when 

subjects were positioned differently. 

3.10 Conclusions 

With the advantage of economic efficiency and portability, fNIRS has been proposed as a 

complementary option to fMRI, especially to be used in populations with contraindications to MRI 

scanner and in challenged environment (such as brain monitoring at bed-side or during surgery). 

The current study for the first time revealed the negative relationship between fNIRS global signal 

amplitudes and EEG vigilance scores in human participants, based on concurrent EEG and fNIRS 

recordings at high-density and whole-head montage. Our results stressed the significant effect of 

body positions on the fNIRS resting-state global signal, primarily in the frequency range of greater 

than 0.05 Hz yet only marginally in the range of less than 0.05 Hz. The finding of neural 

component in global signal suggests that such global signal should not be removed as non-neural 
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physiological signal, especially in studies where vigilance and related brain networks are of 

interest.  
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Chapter 4: Calibrating the Effect of Vigilance on Resting State Brain Network 

Using Sleep State Measurements 

Since the confounding effect of vigilance and the global signal could weaken our findings 

with EEG-based brain connectivity measures, it would be essential to clarify and fully understand 

the influence of sleep stage changes on EEG and fNIRS measures. As we described previously, in 

order to eliminate the impact of widely distributed global signal component across the brain, many 

fMRI studies have adopted global signal regression (GSR) as a pre-processing approach, where 

the global signal component is removed as an artifact before computation of connectivity 

measures. However, the GSR procedure application is controversial; it may extract physiological 

relevant information about the brain's vigilance state. With more studies focus on brain 

connectivity dynamics, the temporal correlation between vigilance and the global signal is still not 

clear, especially in simultaneous EEG and fNIRS studies. Converging evidence has proven that 

the changes in vigilance can interfere with fMRI brain connectivity. Besides, the changes in 

vigilance could also affect the EEG measures of brain connectivity. In this study, we aimed to 

address the relevance of the global signal using a non-invasive neuroimaging technology, i.e., 

functional near-infrared spectroscopy (fNIRS). Like fMRI, fNIRS measures hemodynamic signals 

by probing local changes in oxygen consumption. We acquired simultaneous EEG and fNIRS 

signals, both in high-density configuration and whole-brain coverage, in healthy individuals at not 

only eye-closed resting state but also at different non-rapid eye movement (NREM) sleep stages. 

This is the first time to report the epoch-level temporal correlation between fNIRS global signal 

amplitude and EEG vigilance measurement. We deployed a novel approach by applying the 

subtraction of two different sleep stages to differentiate the brain connectivity alteration. We also 
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proposed that this method increases the sensitivity of EEG brain connectivity as a cognitive 

indicator for normal aging.  

4.1 Motivations for This Project 

Functional connectivity plays a significant role in the assessment of the resting-state brain 

network. Moreover, studies over an intrapersonal perspective are possible to analyze the 

significance of various sleep stages. In particular, the current study explores the comparison of an 

fNIRS-EEG simultaneous recording to understand better how an individuals’ resting-state 

networks vary from epoch-to-epoch. Indeed, noting the responses to stimuli in the Hemodynamic 

response function (HRF) within a singular subject, correlated with other intrapersonal data of other 

subjects, can incite further implications to be made without the constraints of age, average 

vigilance of the testing group, and global signal. Besides, we are looking for some approaches that 

can minimize the confounding effect of vigilance other than regressing the entire vigilance, which 

contains physiological noise along with the neuronal component. To eliminate the influence of 

vigilance will increase EEG brain connectivity's accuracy and sensitivity and indicate broad 

application prospects in normal and abnormal aging studies.  

4.2 Hypotheses to Be Tested 

This project tested whether vigilance's fluctuation could impact the functional connectivity 

of the resting state brain network in the awake condition. Furthermore, I explored a new strategy 

to characterize the network connectivity free of the vigilance influence, based on utilizing sleep 

states to create a calibrated form of network connectivity. I constructed images of the network at 

multiple sleep states. Then I determined a formula of sleep-states-calibrated network connectivity 

that was shown to be an indicator for episodic memory performance.  
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4.3 Data Acquisition and Preprocessing 

Same dataset was used here as we used before in Chapter 2. Based on some exclusion 

criteria, 19 healthy subjects were included in the analysis of moment-to-moment global signal and 

vigilance analysis (middle-aged adult group: 35.5 ± 7.2 years old, rang 28-46 years old, 4 females 

and 8 males; older adult group: 55.7± 6.0 years old, rang 50-63 years old, 6 females and 1 male) 

after excluding 10 subjects who fell asleep too quick.  

And 22 healthy subjects were included in the analysis of stage-difference-based brain 

connectivity analysis (middle-aged adult group: 32.2 ± 3.8 years old, rang 28-40 years old, 4 

females and 8 males; older adult group: 56.2 ± 4.9 years old, rang 50-63 years old, 9 females and 

1 male) after excluding 7 subjects do not have long enough sleep (less than 2 minutes). The room 

light was turned off, with blanket and neck supporter provided. During the nap, resting state fNIRS 

and EEG signals were recorded simultaneously. The pulse generated by EPRIME software was 

sent to EEG and fNIRS systems at the same time to align those simultaneous recordings. 

The fNIRS measurements were acquired with a NIRScout system (NIRX, New York, United 

States). A whole brain coverage of 32 sources and 32 detectors yields 105 pairs of sources and 

detectors, covering the areas from the forehead to the occipital lobe. The sampling rate was 1.95 

Hz.  

EEG data were recorded using a 64 channel fNIRS-compatible EEG system (BrainVision, 

North Carolina, United States). The system consisted of two 32-channel BrainVision amplifiers 

powered by a rechargeable battery unit. The device system was placed at the table behind the 

subject, which was connected using a 125 cm long cable to a BrainCap with 64 recording 

electrodes (BrainVision, North Carolina, United States). The EEG data were recorded at a 500 Hz 

sampling rate with a band of 0.1–250 Hz. Before each recording, the electrode impedances were 
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set below 50 kΩ, while the impedances of the reference and ground electrodes were set below 10 

kΩ. The montage of whole-brain coverage EEG/fNIRS system is shown in Figure 18. 

 

Figure 18 The montage of simultaneous EEG/fNIRS system. The green dots indicate EEG 

electrodes; red dots indicate fNIRS source optodes; blue dots indicate fNIRS detector optodes; 

purple lines indicate fNIRS channels. 

Analyzer 2 (BrainVision, North Carolina, United States) was used for pre-processing of 

EEG data. After loading the raw datasets, the channel locations based on the international 10-5 

standard electrode positions were utilized with the FCz position selected as the reference point. 

Therefore, the original topography is a circular map with its center at the reference point. The data 
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was re-referenced to the common average. A basic FIR bandpass filter from 0.1 Hz to 70 Hz was 

used to filter the data in addition of notch filter of 60 Hz. 

       The fNIRS data was pre-processed in HOMER2 (Huppert et al., 2009). Channels consisted of 

a source electrode and adjacent detector electrodes. Montages were created according to the setup 

of sources and detectors. Preprocessing of fNIRS data included converting raw light intensity to 

optical density, PCA removal, and motion artifact detection and correction. Discontinuities and 

spikes existing in recordings were replaced by an average of its adjacent data segment. All channels 

were bandpass filtered from 0.01 to 0.2 Hz. The resulted time series were subject to hemodynamic 

computation via the modified Beer-Lambert law (Kocsis et al., 2006), yielding relative changes in 

concentrations of Oxy-Hemoglobin (HbO) and Deoxy-Hemoglobin (HbR). Differential Path 

Length Factor (DFP) was determined by the spectrum detected by Walter Gratzer (Med. Res. 

Council Labs, Hally Hill, London). Hemodynamic computation allows us to relate the changes in 

light to changes in relative concentrations of hemoglobin through the modified Beer–Lambert law. 

Differential Path Length Factor (DFP) was determined by the spectrum detected by Walter Gratzer 

(Med. Res. Council Labs, Hally Hill, London). Finally, concentration change of hemoglobin will 

be calculated. 

4.4 Polysomnography Based on EEG 

Every data was segmented in tens of 30s epochs, starting from the EPRIME marker. All 

epochs were scored by a certified expert (B.W.C.) according to the American Academy of Sleep 

Medicine. Non-rapid eyes movement (NREM) stage 1, 2, and 3 indicate the deeper level of sleep 

status. Among the 29 subjects, 28 fell into sleep, 22 subjects fell into NREM stage 2, and 11 

subjects fell into slow wave sleep (NREM stage 3 and 4). 
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4.5 EEG-Based Vigilance Metrics 

To assess the epoch-to-epoch relationship between data from two independent modalities, 

we calculated the correlation between global signal amplitude and vigilance measurement per each 

30s epoch, and per each subject. The r value was z-transformed by fisher transform, then we ran a 

two-sided, t-test versus zero value per each stage for every subject. In the random effect model, 

the random factor of subjects was at different levels for four different stages. 

After pre-processing, the fNIRS data is a measure of the relative concentration changes of 

HbO and HbR in units of μM. The baseline for the concentration change is the mean of the absolute 

concentration plus noise offset. To calculate the global signal, the time series of relative changes 

in HbO or HbR were averaged across all channels covering the whole brain. Then, the amplitude 

of the global signal was defined by the standard deviation of the global signal time series. 

For EEG data, a spectrogram was calculated for each EEG channel with Welch’s power 

spectral estimate, and potentially motion-contaminated time points in the spectrogram were 

removed. For each remaining time point in the spectrogram, a relative amplitude spectrum was 

computed by normalizing the spectrum with its overall root mean square (rms) amplitude (square 

root of the sum of squares across all frequency bins). Relative EEG amplitudes were then computed 

as the rms amplitude in the following frequency bands (delta band: 1–4 Hz, theta band: 4–7 Hz, 

alpha band: 7–13 Hz). A measure of vigilance was defined as the rms amplitude in the alpha band 

divided by the rms amplitude in the delta and theta bands. 

4.6 Resting State Connectivity Metrics 

The resting-state connectivity is described in Section 2.7. We used the same procedure to 

calculate the brain connectivity pattern for N1, and N2 stages. Besides, two different ROI masks 

were defined by a conjunction analysis of the group-level EEG DMN pattern and the Yeo template. 
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The ROI masks of N1 and N2 are shown in Figure 23 A and B, respectively. We defined the new 

individual connectivity metrics by using two parts. The first part is to apply N1-ROI-mask on N1 

stage connectivity. And then apply N2-ROI-mask on N2 stage connectivity. The new metrics is 

defined by using the N1 ROI connectivity from N1-ROI-mask minus the N2 ROI connectivity 

from N2-ROI-mask.  

4.7 Statistical Analysis 

For each subject, we calculated the temporal correlation between global signal amplitudes 

and vigilance measurements using Pearson’s correlation coefficient across 30-s epochs. The 

coefficients were then transformed to z-scores, and subject to t-test to evaluate within- and inter- 

group differences. T test was performed on 30-s epoch level correlations between global signal 

amplitude and vigilance measurement, for all subjects, middle-age group, and older adult group. 

Furthermore, two-sample unpaired t-test was performed to compare middle-age and older groups. 

Bonferroni-corrections were used to minimize experiment-wise Type 1 error.  

4.8 Results 

Figure 19 demonstrates the fluctuation of fNIRS HbO global signal in one representative 

subject (black line). Each black dot indicates the global signal amplitude calculated from its 

corresponding 30-s epoch. The amplitude of the global signal varies from epoch to epoch. We 

further align the fluctuation with the sleep stage segmentation. As shown in the secondary axis 

(right y-axis), the sleep data was segmented into awake, NREM stage 1, 2, and 3.  The red squared 

curve shows the subject gradually fell into slow wave (deep) sleep and woke up at the end of the 

recording. The amplitude of the fNIRS global signal is higher when compared to NREM stages. 

The sleep stages will be quantitively assessed by vigilance level with EEG measurement later. 
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Figure 19 Moment-to-moment fluctuations of fNIRS HbO (black solid line) and HbR (gray solid 

line) global signal amplitude in one representative subject. Epochs of sleep scores are plotted in 

the red line. 

The representative relationship between fNIRS global signal amplitude and EEG vigilance 

measurement was shown in Figure 20.  The global signal amplitude calculated from HbO and HbR 

were displayed in Figure 20 A and B, respectively. Every dot represents the global signal amplitude 

and vigilance measurement of a 30-s epoch. The resting-state wakefulness cluster had a long range 

of the vigilance level. The result indicates that a negative correlation, i.e. higher fNIRS-derived 

global signal amplitudes are associated with lower EEG-derived vigilance states (less alertness). 

With the increased EEG vigilance measurement under wakefulness, the amplitude of global signal 

decreased. 
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Figure 20 The relationship between fNIRS global signal amplitude and EEG vigilance 

measurement in a representative subject, for (A) HbO (r = -0.24, p < 0.001) and  

(B) HbR (r = -0.45, p < 0.001).  

One-sample t-test results show the z-transformed correlation coefficients which derived 

from all subjects’ both HbO and HbR data are significant different from zero (HbO: t(17)= -2.88, 

q<0.05, HbR: t(17)= -2.96, q<0.05). We ran a two-sample unpaired t-test on middle-age and older 

groups, there is no significance between them for both HbO and HbR data (p>0.1 for both). 

 

Table 3 Group-level correlation between fNIRS global signal and vigilance 

 
** p < 0.05 after Bonferroni-corrections, * p < 0.05 before Bonferroni-corrections 

 

In Chapter 2, the relationships between Memory performance and memory/age are 

investigated. Figure 21 further demonstrated the trajectory of memory alterations with aging. 16. 
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Although the memory performance did NOT differ between middle-aged and older adults, their 

relationships between memory performance and age of years follow distinct trend. The two 

subgroups were separately fitted by lines. Blue line and red line represent the older group and the 

middle-aged group, respectively. WMSI scores stand for the Wechsler Memory Scale Immediate 

Recall score. Only in the older group, a significant negative relationship was found between the 

age and the memory performance scores (r = -0.75, p = 0.002).  

 

Figure 21 The relationship between memory performance and age of years differs in middle-

aged and older adults. The two subgroups were separately fitted by lines. Blue line and red line 

represent the older group and the middle-aged group, respectively. Only in the older group, a 

negative relationship was found between the age and the memory performance scores (r = -0.75, 

p = 0.002). WMSI scores stand for the Wechsler Memory Scale Immediate Recall score. 
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Besides, Figure 22 shows the temporal covariation between brain connectivity and 

vigilance. The wakefulness stages before first sleep onsite were selected and divided into many 

30s epochs. The brain connectivity calculated from every 30s-epoch and depicted as the orange 

curve in Figure 22 A. Meanwhile, the epoch-level vigilance assessed by EEG is shown as the blue 

curve. A significant co-variation was observed between time-course brain connectivity and 

vigilance (r= 0.54, p=0.003) as displayed in Figure 22 B. 
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Figure 22 (A) Temporal Covariation of brain connectivity and vigilance before sleep onsite 

within one representative subject. (B) The epoch-level brain connectivity is correlated with 

vigilance within one representative subject (r= 0.54, p=0.003). 

To examine this possibility, we investigated the relationship between brain connectivity 

based on the stage difference metrics and memory function assessed by WMS-D (delay recall) 

score. First, the ROI mask of N1 stage and N2 stage defined by the t-test versus 0 across 

corresponding available subjects are shown in Figure 23 A and B, respectively. The result in Figure 

23 C reveals a significant correlation between memory and brain connectivity (r=0.58, p=0.006).  

 

Figure 23 The ROI masks of (A) N1 stage and (B) N2 stage defined by the t-test versus 0 across 

corresponding available subjects. (C) Functional brain connectivity is correlated with memory 

performance in all adults. Each dot represents one individual’s brain connectivity and the 

corresponding Wechsler Memory Scale Delay Recall score. Red dots and blue dots represent 

middle-aged and older adult groups, respectively. Black trend line represents linear relationship 

between these two variables (r = -0.58, p = 0.006). 
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4.9 Conclusion and Discussion 

In this chapter, we found that when healthy subjects at wakeful rest, the moment-to-

moment dynamics of fNIRS global signal and vigilance are also negatively correlated, consistent 

with what we found at the individual level. Our findings suggest that vigilance fluctuations may 

be the physiological factor underlying the variations in resting-state global brain activities, 

measured by fNIRS hemodynamic signals. Thus, removing any global signal components in 

studies of functional connectivity dynamics should be interpreted with caution. Besides, the brain 

connectivity shows a significant association with memory after implementing new connectivity 

metrics to minimize the stand error of vigilance. This supports our previous finding and verifies 

that EEG brain connectivity is a sensitive biomarker for aging study.  

The BOLD global signal regression has been under debate for over a decade. While 

introduced to enhance the detection of system-specific correlations, it may affect the topography 

in functional connectivity (Fox et al., 2009; Murphy et al., 2009). In the past decade, the BOLD 

global signal fluctuation has been proved to correlate with arousal (Liu et al., 2018a), sleep depth 

(McAvoy et al., 2017), and especially vigilance negatively (Wong et al., 2013).  

 This study investigated the correlation between fNIRS global signal amplitude and EEG 

vigilance measurement by utilizing a simultaneous fNIRS and EEG system. Our result 

demonstrated a negative correlation based on the fNIRS HbO and EEG recording under an eyes-

closed resting state. This is consistent with the previous fMRI study (Wong et al., 2013) and our 

previous study (Yuxuan et al., 2017). Notably, we investigated this correlation on an epoch-level 

within each subject compared to all previous studies conducted on the subject level. Based on our 

knowledge, this is the first time to report the within-subject level correlation between fNIRS global 
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signal and vigilance with fNIRS. This is also the first time to investigate the global signal under 

Non-REM stages with fNIRS modality. 

           In our opinion, the global changes in cerebral blood flow and oxygen metabolism reflect 

the fluctuations in vigilance as a person transitions from lighter to deeper stages of sleep.  Studies 

with the Kety-Schmidt technique and positron emission tomography have found the global 

reduction in cerebral blood flow, oxygen metabolism and glucose metabolism from wakefulness 

to slow-wave sleep (Madsen et al., 1991a; Madsen et al., 1991b; Braun et al., 1997). A recent fMRI 

study also reported that the mean BOLD global signal increases with sleep depth in the gray matter  

(McAvoy et al., 2018). McAvoy et al. interpret their findings with the descent of 

deoxyhemoglobin. Our finding is consistent with their study to some extent. In the future, we can 

investigate changes in deoxyhemoglobin as well to testify their finding with fNIRS. 

Compared with previous studies that were only able to investigate the subject-level 

correlation between global signal amplitude and vigilance, this study emphasizes the fluctuations 

within and between subjects. This could provide us with a novel solution to pre-process fNIRS 

data, especially those studies with a sleep task. Overall, our study has the potential to facilitate the 

understanding of the human brain's lateralized organization, which changes during Non-REM 

sleep and has been mapped with the hemispherical differences in the global BOLD signal's 

spontaneous fluctuations (McAvoy et al., 2016; McAvoy et al., 2017). 

Regarding the influence of arousal level, previous studies demonstrated that resting-state 

fMRI signal varies with the changes of arousal or vigilance (Fukunaga et al., 2006; Horovitz et al., 

2008; Larson-Prior et al., 2009). Chang et al. proposed a time-varying spatial fMRI pattern to tract 

the fluctuation of the arousal level (Chang et al., 2016b). The spatial pattern was validated by 

electrophysiology and behavioral measure. Moreover, it was implemented to track the continuous 
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arousal changes and increase the sensitivity of fMRI. However, the regression of arousal 

fluctuation would be problematic in practice. One study published on Nature Communication 

reported that the basal forebrain's nucleus basalis is involved in arousal regulation, and the cortical 

activity measured by fMRI is associated with the changes of arousal level (Liu et al., 2018b). 

Instead of regressing out the whole vigilance fluctuation, we proposed a novel metrics of EEG 

brain connectivity under sleep to benchmark episodic memory function with normal aging. 

Notably, one previous study reported the electrophysiological evidence of DMN disassociation 

during deep sleep (Horovitz et al., 2009). The finding of brain connectivity between frontal and 

posterior regions are lost during deep sleep might be informative of the decreased level of 

consciousness characteristic of deep sleep. These findings support our hypothesis that vigilance 

contributes to the confounding effect of the widespread global component. With removing the 

confounding part of vigilance measure, the sensitivity of EEG brain connectivity gains 

improvement.  
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Chapter 5: Summary and Perspectives 

 In my dissertation, EEG and fNIRS are applied to a series of investigations surrounding 

fundamental scientific questions (the relationship between global signal and vigilance) and clinical 

diagnostic application (association between brain connectivity and age or episodic memory). 

Specifically, we used EEG resting-state recordings to characterize functional connectivity changes 

during the normal aging process. EEG source-based brain connectivity shows a significant 

association with age and episodic memory, one of the most important and promising cognitive 

function for aging and AD studies. This indicates the reconstructed EEG data at source level could 

reflect the neuronal activity in DMN reliably. EEG source imaging technology can be used in 

detecting brain connectivity and cognitive function alteration in healthy adults during normal 

aging. 

To better interpret our findings, my work continues to examine the confounding effect of 

vigilance by correlating vigilance level with a well-defined global signal, which presents a major 

mixture of physiological noise and a portion of the neuronal component. Since the vigilance is a 

confounding component for EEG acquisition, getting rid of vigilance could eliminate the 

interference and benefit for elaborating the significant findings. 

This work continues to investigate the relationship between fNIRS global signal and vigilance 

at the epoch level. Our result reveals that the moment-to-moment dynamics of fNIRS global signal 

and vigilance are still negatively correlated. This suggests that vigilance fluctuations may be the 

physiological factor underlying the variations in resting-state global brain activities, measured by 

fNIRS hemodynamic signals. Importantly, a calibrated formula based on varying sleep states was 

proposed and demonstrated to provide a more accurate characterization of memory function. 
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In summary, my dissertation systematically demonstrates the current application of portable 

non-invasive neuroimaging tools in the field of aging and Alzheimer’s study. My work has also 

examined the confounding effect of vigilance on network connectivity, and further proposed a 

solution of calibrated network connectivity towards a more accurate neuroimaging biomarker for 

memory. Our results suggest that EEG would be an effective, sensitive neuroimaging tool to 

characterize electrophysiological features of normal aging in large-scale networks of the human 

brain. My findings based on multimodal neuroimaging also provide important implications in 

understanding the neuroimaging literature on memory and aging. 

Future work will need to focus on understanding the deeper mechanism of modulation on 

cognitive functions during the transition from wakefulness to NREM sleep stages. EEG and fNIRS 

are effective bedside monitoring modalities for the sleep study. As taking advantage of portability 

and movement tolerance into account, they would be able to play a more significant role in the 

interdisciplinary study by combing sleep, aging, and human brain connectivity. Not only limited 

to DMN, but more specific large-scale brain networks could also be highlighted by the alteration 

of brain connectivity during the transition from high vigilance stages to low vigilance stages or 

reversely. The subtle changes of functional brain connectivity hidden behind the transient process 

of transition between distinct vigilance stages would largely increase the sensitivity of detecting 

abnormal functional brain development. Not limited to episodic memory, other cognitive 

functions, especially different forms of attention, could also be an effective biomarker in the future 

aging study. With reliable measures and preprocessing pipeline, fNIRS will be a promising 

neuroimaging tool to cross-validate the findings in EEG studies. The combination of EEG, fNIRS 

or other modality will provide more possibility to probe the underlying mechanism of aging and 

pathology of neurodegenerative disease.  
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Chapter 6: Products of This Work  

Peer-Review Publications 

1. [Under Review] Chen Y, Tang J, DeStefano LA, Wenger M, Ding L, Craft MA, Carlson 

BW, Yuan H: Electrophysiological Resting State Brain Network and Episodic Memory in 
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2. [Under Review] Chen Y, Tang J, Chen Y, Farrand J, Yuan H: Amplitude of fNIRS 

Resting-State Global Signal is Related to EEG Vigilance Measures: A Simultaneous fNIRS 

and EEG Study. Frontiers in Neuroscience. 
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4. [Under Review] Zhang F, Cheong D, Chen Y, Khan A, Ding L, Yuan H*: Correcting 
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Biomedical Engineering. 
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