CASCADE REACTIONS TO ACCESS BIOACTIVE SCAFFOLDS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

In partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

by

STEVEN C. SCHLITZER

Norman, Oklahoma

2020
CASCADE REACTIONS TO ACCESS BIOACTIVE SCAFFOLDS

A DISSERTATION APPROVED FOR THE
DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

BY THE COMMITTEE CONSISTING OF

Dr. Indrajeet Sharma, Chair

Dr. Eric R. I. Abraham

Dr. Daniel T. Glatzhofer

Dr. Adam S. Duerfeldt

Dr. George B. Richter-Addo
I dedicate this dissertation to my wife Bre Schlitzer for her unending support and optimism throughout our journey in Oklahoma.

A man who fears will suffer twice.
ABSTRACT

In the recent decade there has been a shift in drug development to favor planar, aromatic small molecules with easy synthetic access, despite centuries of research in bioactive natural products, which are often highly rigid, three-dimensional structures like spirocycles. These scaffolds remain underexplored in drug development efforts, predominantly due to the challenges associated with their synthesis, and lack of a general, convergent methodology.

To address these challenges, we have designed an O–H Insertion/Conia-ene reaction cascade between homopropargylic alcohols and acceptor/acceptor diazo compounds, which uses dual Rh/Au$^+\,$ catalytic system. This cascade occurs instantly at room temperature, and has been applied towards the synthesis of substituted tetrahydrofurans when linear diazo compounds are used. Thus far, the cascade accommodates a variety of substituted diazo compounds with carboxylic acids/alcohols to provide functionalized tetrahydrofurans, and γ-butyrolactones, with a high degree of regio- and stereo-selectivity.

Next, we were able to extend the utility of our O–H Insertion/Conia-ene reaction cascade towards the synthesis of spiroheterocycles by employing cyclic diazo substrates with propargylic alcohols. This convergent approach furnishes an array of spiroheterocycles by employing the same dual Rh/Au$^+$ catalytic system in refluxing dichloromethane. This approach has proven general, and was used to synthesize a substrate scope of twenty-four substrates based on natural product scaffolds, including spirobarbituates, spiromeldrum’s acids, spiroxindoles, and the spirocyclic core of the pseurotin natural products.
Lastly, we have extended our X–H Insertion/Conia-ene strategy towards uncommon nucleophiles, for the synthesis of sulfur- and all-carbon spirocycles. When propargylic thiols are employed as substrates with linear diazos, we have found that the S-H insertion reaction proceeds in high yield, and Conia-ene cyclization can be promoted when the reaction is conducted in a stepwise fashion. However, when the reaction is conducted in a single pot, we isolated a new, thiofuranofuran compound, which we expect forms via undesired 5-endo-dig cyclization of the propargylic thiol, followed by cyclopropanation and subsequent ring opening. Additionally, by changing our retrosynthetic approach to an intramolecular disconnection, we were able to synthesize an all-carbon spirocycle through a benzylic C-H Insertion/Conia-ene cascade, by using a catalytic mixture consisting of Rh$_2$(HFB)$_4$, ClAuPPh$_3$, and CuOTf in refluxing dichloromethane.

In an orthogonal research effort, we have also developed a metal-free cascade for the synthesis of aromatic heterocycles. This cascade uses precursors synthesized from readily accessible 2’-hydroxy/aminochalcones, and commences with a DBU-mediated intramolecular aldol condensation, which occurs within 90 minutes at room temperature, to generate a 1,3,5-triene. This triene is heated overnight (80 – 120 °C) to promote a 6π-electrocyclization, and oxidative aromatization to generate a new aromatic ring. This cascade has proven general, and has been applied towards the synthesis of benzo[c]coumarins, phenanthradinones, dibenzofurans, and carbazoles, up to a 1-gram scale.

The cascade reactions developed throughout the course of this dissertation research provide new retrosynthetic strategies for the formation of natural product cores, which could be used to expand the chemical space in drug discovery.
First, I would like to thank my loving wife Bre Schlitzer. I want to thank you for always believing in me, even in the times when I did not believe in myself. I could not have accomplished this feat without you; you are my drive to succeed and a constant source of inspiration, every day. I would like to thank my family, Carla Rauschenplat, Marlene ‘Oma’ Rauschenplat, and Manny Maldonado. Including but not limited to generous funding throughout my ‘roaring twenties,’ I am so thankful for the love and support that you have provided for the last ten years of my academic tenure. It is through you all that I have learned what family is, and guides what I am working towards with Bre.

Next, I would like to thank my undergraduate research adviser, Dr. Benjamin Gung, and the amazing young chemists that I had the pleasure of growing with at Miami University – Ethan Miller, John F. Manganaro, and Seth Filbrun. I would also like to thank my “batchmates,” who started the Ph. D. program with me at OU – Eric Gardner, Jessi Gardner, and Quentin Avila. I could not have gotten to where I am today without your friendship and support. I cannot wait to see what our futures hold as STEM leaders, and I hope our paths converge once more.

Lastly, I would like to thank the University of Oklahoma and the Department of Chemistry and Biochemistry for providing a supportive venue to pursue my doctoral studies. I would like to thank my Ph. D. adviser and graduate committee chair, Dr. Indrajeet ‘Inder’ Sharma. Your unparalleled skills as a mentor and never-ending flow of ideas have given me a goalpost for what I would like to someday achieve not only as a scientist, but an educator. I would also like to thank my fellow Sharma lab teammates - senior students Dr. Arianne Hunter and Dr. Nick Massaro, and
junior students Joe Stevens, Anae Bain and Adam Alber. I would also like to thank undergraduate students Bilal Almutwalli and Katelyn Stevens for their contributions and providing opportunities to develop my skills as a mentor. I would also like to thank the post-docs who have helped guide my success along the way – Dr. Kiran Chinthpally, Dr. Dhanarajan ‘Arun’ Arunprasah and Dr. Santosh Rao. I would also like to thank the members of my graduate committee, Dr. Adam Duerfeldt, Dr. Daniel Glatzhofer, Dr. George Richter-Addo, and Dr. Eric Abraham; you have provided the fundamental education, support, and valuable feedback that helped guide me through my five years at OU. Finally, I would like to thank the amazing research support staff who have helped me on a near-daily basis – Dr. Susan Nimmo (NMR Spectroscopy), Dr. Steven Foster (HRMS), and Dr. Doug Powell (X-Ray Crystallography).
TABLE OF CONTENTS

Dedication ... iv

Abstract ... v

Acknowledgements ... vii

Table of Contents .. ix

List of Figures .. xiv

List of Schemes .. xvi

List of Tables .. xxi

List of Abbreviations .. xxii

CHAPTER 1 1

Cascade reactions: The Key to Molecular Complexity in Drug Development

1.1 Introduction .. 1

1.2 Cascade reactions in Total Synthesis .. 4

1.3 Spiro cyclic Natural Product Synthesis .. 8
 1.3.1 Synthesis of (±)-Berkeleyamide D and Natural (−)-Berkeleyamide D 9
 1.3.2 Synthesis of Indole Alkaloid (−)-Spirotryprostatin B ... 12
 1.3.3 Synthesis of Clinically Advanced Spirolactone (+)-Griseofulvin 13

1.4 Electrocyclic Reactions and Applications in Total Synthesis .. 16

1.5 Objective of Research .. 18
CHAPTER 2

Catalytic Cascade Approach to Tetrahydrofurans Bearing a Quaternary Chiral Center

Application of Dual-Catalytic System to the Synthesis of Spiro-γ-Lactams

2.1 Introduction.. 23
2.2 Synthesis and Reactivity of the Diazo Functional Group ... 25
2.3 Trapping of Zwitterionic Intermediate – The Conia-Ene Reaction 30
2.4 Carbenoid Cascade for the Formation of Substituted Tetrahydrofurans and
 γ-Butyrolactones... 31
 2.4.1 Synthesis of γ-Lactones through Acid OH Insertion/Conie-Ene Cascade........ 33
 2.4.2 Synthesis of Tetrahydrofurans via Alcohol O–H Insertion/Conia-Ene Cascade.. 34
2.5 Reaction Design – Accessing the Spiro-γ-lactam Core of Berkeleyamide D 36
 2.5.1 Synthesis of γ-Lactam Diazos.. 38
 2.5.2 Reaction Optimization... 39
 2.5.3 Determining Absolute Configurations of Spiro-γ-lactam 13 41
 2.5.4 Spiro-γ-Lactam Substrate Scope.. 43
 2.5.5 Computational Insights on Diastereoselectivity of Spirocenter Formation....... 44
2.6 Role of Chiral Alcohols on Spirocenter Formation... 45
2.7 Application of Reaction Cascade to N,N-Dimethylbarbituate Diazos
and Oxindole Diazos

2.8 Summary & Future Directions

2.9 References for Chapter 3

2.10 Experimental Section

APPENDIX I

Spectra Relevant to Chapter 2

CHAPTER 3

Method Development for the Synthesis of Spirothiophurans and All-Carbon Spirocycles

3.1 Introduction

3.1.1 S-H Insertion to Diazo-Derived Carbenes

3.1.2 S-R Insertion to Carbenes & Rearrangement Reactions

3.1.3 C–H Insertion to Diazo-Derived Carbenes: Reactivity & Mechanism

3.2 Divergent S-H Insertion/Conia-ene Cascade Approach to Spirothiophenenes

3.2.1 Synthesis of Secondary Mercaptynge Precursors

3.2.2 Stepwise Approach to Spirothiophenenes

3.2.3 One-Pot Approach to Thiofuranofurans

3.3 sp³ C-H Insertion Approach to All-Carbon Spirocycles
4.4 Aryl-Electrocyclization ... 180

4.4.1 Substrate Synthesis ... 181

4.4.2 Substrate Scope and Limitations ... 182

4.5 Synthesis of Dibenzofurans and Carbazoles 183

4.6 Attempted Formal Synthesis of Cannabinol 184

4.7 Summary & Future Directions .. 187

4.8 References for Chapter 4 .. 188

4.9 Experimental Section .. 194

APPENDIX III .. 232

Spectra Relevant to Chapter 4

CHAPTER 5

Conclusions ... 276

AUTOBIOGRAPHICAL STATEMENT .. 279
LIST OF FIGURES

CHAPTER 1

Figure 1.1 Spiro-γ-lactam natural products ... 9

CHAPTER 2

Figure 2.1 a.) Common Strategies Towards Spirocycles b.) Natural Products Bearing a Spiroether Core ... 24

Figure 2.2 a.) General convergent approach to spirocycles b.) Carbene O–H Insertion/Conia-ene Approach to Spiroethers ... 25

Figure 2.3 a.) Resonance forms of the diazo functional group b.) Classification of diazo compounds. c.) Inverse stability of diazo-derived carbenes 26

Figure 2.4 Retrosynthesis and Cascade Approach to the Berkeleyamide D Core 37

Figure 2.5 a.) Diastereomer options for spiro-γ-lactam 32b. b.) nOe experiment hypothesis ... 41

Figure 2.6 a.) nOe correlations between C8 H and olefin H. Signal suppression has been applied to irradiated protons for clarity. b.) Single crystal X-Ray results of $13c$ and its enantiomer ... 42

Figure 2.7 Transition State Calculation for Simplified Reaction Cascade Substrates 44
CHAPTER 4

Figure 4.1 Impact of ring size on rate of intramolecular lactonization 170

Figure 4.2 Fused Aromatic Heterocycles in Natural Products 172
LIST OF SCHEMES

CHAPTER 1

Scheme 1.1 a.) Representative example of nucleophilic cascade reactions

 b.) Representative example of electrophilic cascade reactions 6

Scheme 1.2 Representative example of radical cascade reactions 6

Scheme 1.3 Representative example of pericyclic cascade reactions 7

Scheme 1.4 Representative example of transition-metal mediated

 Cascade reactions .. 8

Scheme 1.5 Tsubaki et. al’s first reported synthesis of (±)-Berkeleyamide D 10

Scheme 1.6 Shen et. al’s asymmetric Darzens reaction to access

 (−)-Berkeleyamide D .. 11

Scheme 1.7 Meyers and Carreira’s Synthesis of (−)-Spirotryprostatin B 13

Scheme 1.8 Pirrung et al.’s asymmetric synthesis of (+)-Griseofulvin 14

 Scheme 1.9 Generalized electrocyclization reactions in a.) 2π systems b.) 4 π systems c.)

 6 π systems d.) 8π systems .. 16

Scheme 1.10 Generalized reactivity of a.) oxo-electrocyclization

 b.) aza-electrocyclization ... 17
Scheme 1.11 a.) Cascade approach towards spirocycles

b.) cascade approach towards aromatic heterocycles .. 18

CHAPTER 2

Scheme 2.1 Synthesis of diazo compounds by Regitz diazo transfer 28

Scheme 2.2 Deformylative/Deacylative/Debenzoylative Diazo Transfer Reaction 28

Scheme 2.3 Diaz formation through reduction of sulfonyl hydrazones 29

Scheme 2.4 a.) Conia’s Thermal Ene Cyclization b.) Toste et. al.’s Au+ Promoted

Conia–Ene Cyclization ... 30

Scheme 2.5 a.) Sharma and Hunter’s Carboxylic acid O–H Insertion to A/A Diazos b.)

Mechanism of Carboxylic Acid O–H Insertion ... 32

Scheme 2.6 a.) Lewis acid screening to promote intramolecular Conia-ene reaction

b.) Carbene O–H Insertion/Conia-ene Cascade for γ–Lactones.................................... 34

Scheme 2.7 O–H Insertion/Conia-ene Cascade Approach to Tetrahydrofurans 35

Scheme 2.8 Insertion of chiral Primary and Secondary Alcohols to Probe

Diastereoselectivity .. 36

Scheme 2.9 Synthetic route to γ–Lactam diazo 7 ... 38

Scheme 2.10 Scope of γ-lactam Diazos Employed ... 43
Scheme 2.11 Role of Alcohol Chirality on Reaction Cascade .. 45

Scheme 2.12 Cascade Approach to Spirobarbituates and Spiromedrum’s Acids 47

CHAPTER 3

Scheme 3.1 a.) Rationale for carbene S–H insertion/Conia-ene cascade

b.) Modified retrosynthetic disconnection for sp\(^3\) C–H insertion/

Conia-ene cascade ... 128

Scheme 3.2 a.) General mechanism for carbene O–H insertion b.) Analogous reaction

mechanism for S–H insertion.. 129

Scheme 3.3 a.) 1,2-Stevens rearrangement of sulfur ylide intermediates

b.) Doyle-Kirmse rearrangement of sulfur ylide intermediates 130

Scheme 3.4 a.) Doyle’s proposed mechanism for C–H insertion to rhodium carbenoids.

b.) general mechanism for sp\(^2\) C–H activation by metal(III) catalysts 132

Scheme 3.5 Teyssie’s survey on selectivity in intermolecular C–H insertion to

ethyl diazoacetate... 133

Scheme 3.6 a.) Davies’ study towards the reaction rates of C-H substrates

towards insertion. b.) Survey of reactivity for allylic and benzylic substrates

towards with aryldiazo acetates ... 134
Scheme 3.7 Synthesis of secondary mercaptynene 2 .. 135

Scheme 3.8 Stepwise S-H insertion/Conia-ene sequence to hydrothioufuran 4 136

Scheme 3.9 One-pot S-H insertion/Conia-Ene trial .. 137

Scheme 3.10 Proposed mechanism for thiofuranofuran formation 137

Scheme 3.11 Hunter et. al’s sp^2 C–H Insertion/Conia-ene cascade to
synthesize spirocarbocycles .. 139

Scheme 3.12 Synthetic approach to C–H insertion precursor 6 .. 140

Scheme 3.13 Synthesis of diazos 7 and 8 through acyl substitution of
Benzotriazoleamides .. 141

Scheme 3.14 Proof-of-concept study: stepwise Benzylic sp^3
C-H Insertion/Conia-ene of 5 .. 142

Scheme 3.15 a.) One-pot cascade trial using Rh_2.esp_4 b.) One-pot cascade
trial using Rh_2HFB_4 ... 142

Scheme 3.16 a.) Stepwise-approach to five-membered carbocycles
b.) Stepwise-approach to seven-membered carbocycles 143

CHAPTER 4

Scheme 4.1 a.) Cascade approach to 10-membered oxacycles
b.) Observed formation of Benzo[c]coumarins .. 171

Scheme 4.2 Synthesis of Croconate esters 1.. 173

Scheme 4.3 Cascade approach to benzo[c]coumarins – Substrate scope............... 176

Scheme 4.4 Synthesis of N-methylcrotonamides 6... 178

Scheme 4.5 Scope of Phenanthradin-6(5H)-one substrates prepared 179

Scheme 4.6 a.) Synthesis of Heteroarylbenzo[c]coumarin Precursors

b.) Synthesis of Heteroarylphenanthradin-6(5H)-one Precursors.............. 181

Scheme 4.7 Substrate Scope for Aryl-Electrocyclization Cascade 182

Scheme 4.8 Cascade approach to dibenzofurans and carbazoles 183

Scheme 4.9 Planned formal synthesis of Cannabinol, using methods from Teske et. al. 184

Scheme 4.10 Synthesis of precursor A and exposure to cascade conditions 185
LIST OF TABLES

CHAPTER 1

Table 1.1 Summary of Woodward-Hoffman Rules for Electrocyclizations ... 17

CHAPTER 2

Table 2.1 Reaction optimization for spiro–γ–lactam synthesis .. 39

CHAPTER 4

Table 4.1 Reaction optimization for aldol elimination/electrocyclization sequence. All optimization reactions were performed by adding base at room temperature to a solution of 1 in DMSO (0.15 M). The reaction vessel was sealed and heated at the indicated temperature for 16 hours. \(^b\)The percent ratio of 2 and 3 was determined by crude \(^1\)H NMR integration. \(^c\)Isolated yield of 3 obtained after column chromatography. .. 174
LIST OF ABBREVIATIONS

Å Angstrom
A/A Acceptor/Acceptor
[α]_D specific rotation at wavelength of sodium D line
Ac acetyl
acac acetylacetonate
Aq. aqueous
Ar aryl
atm atmosphere
BF₄ tetrafluoroborate
Bn benzyl
Boc tert-butyloxycarbonyl
bp boiling point
br broad
brsm based on recovered starting material
Bu butyl
n-Bu n-butyl
t-Bu tert-butyl
bz benzoyl
c concentration for specific rotation measurements
°C degrees Celsius (centigrade)
calc’d calculated
cat. Catalytic
CCDC Cambridge Crystallographic Data Centre
CDCl₃ deuterated chloroform
Cl chemical ionization
CM complex mixture
CSA camphorsulfonic acid
Cy cyclohexyl
Δ Reflux temperature
d doublet
dba dibenzylideneacetone
D/A Donor/Acceptor
DBU 1,8-diazobicyclo[5.4.0]undec-7-ene
DCE 1,2-dichloroethane
DCM dichloromethane
dec. decomposition
DMAP 4-methylaminopyridine
DMB 2,4-dimethoxybenzyl
DMF N,N-dimethylformamide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>d.r.</td>
<td>diastereomeric ratio</td>
</tr>
<tr>
<td>E</td>
<td>entgegen (opposite)</td>
</tr>
<tr>
<td>E+</td>
<td>electrophile</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-ethyl-3-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>EDG</td>
<td>electron donating group</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>E/H</td>
<td>ethyl acetate in hexanes</td>
</tr>
<tr>
<td>El</td>
<td>electron impact</td>
</tr>
<tr>
<td>equiv.</td>
<td>equivalent</td>
</tr>
<tr>
<td>en</td>
<td>1,2-ethylenediamine</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>(esp)</td>
<td>$\alpha,\alpha,\alpha',\alpha'$-tetramethyl-1,3-benzenedipropionic acid</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>Et$_3$N</td>
<td>triethylamine</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>EWG</td>
<td>electron withdrawing group</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>HFB</td>
<td>heptafluorobutyrate</td>
</tr>
<tr>
<td>HMDS</td>
<td>1,1,1,3,3,3-hexamethyldisilazane</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoramide</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>hr</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HRMS</td>
<td>high-resolution mass spectrometry</td>
</tr>
<tr>
<td>hv</td>
<td>light</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>iPr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>IR</td>
<td>infrared (spectroscopy)</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>LG</td>
<td>leaving group</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>L$_n$</td>
<td>ligand</td>
</tr>
<tr>
<td>m</td>
<td>multiplet or milli</td>
</tr>
<tr>
<td>m-</td>
<td>meta</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
</tr>
<tr>
<td>M</td>
<td>metal or molar</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MeCN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
</tbody>
</table>
mol mole(s)
mp melting point
MS molecular sieves
n nano
N normal (normality)
NMR nuclear magnetic resonance
nOe nuclear Overhauser effect
NR no reaction
Nu nucleophile
o- ortho
p- para
Ph phenyl
pH hydrogen ion concentration in aqueous solution
piv pivaloyl
ppm parts per million
i-Pr isopropyl
p-ABSA 4-acetamidobenzenesulfonylazide
p-TSA para-toluenesulfonic acid
Pyr pyridine
q quartet
ref reference
Rf retention factor
rt room temperature
s singlet
SAR structure-activity relationship
sat. saturated
t triplet
TBAF tetrabutylammonium fluoride
TBS tert-butyldimethylsilyl
temp. temperature
Tf trifluoromethanesulfonyl (triflate)
TFA trifluoroacetic acid
THF tetrahydrofuran
TIPS Triisopropylsilyl
TLC thin layer chromatography
TMS trimethylsilyl
Ts p-toluenesulfonyl (tosyl)
X anionic ligand or halide
Z zusamman (together)
CHAPTER 1

Cascade Reactions: The Key to Molecular Complexity in Drug Development

1.1 Introduction

The rising cost of therapeutics has been a topic of great debate in the last decade, and this topic strikes at a core issue in America – public health. With the current outbreak of the novel COVID-19 virus, public health is at the forefront of public consideration, on a global scale. This attention has spurred an urgent need for the development of new bioactive entities for the treatment of diseases, novel or otherwise. The rising cost of therapeutics is caused by a number of factors, including but not limited to their development time, average success rate, and method
of their synthesis. Innovation in the field of synthetic methodologies can contribute to reducing these development costs.

A recent study published in the Journal of Health Economics has reported the cost of developing a new prescription medication is $2.6 billion, which has raised from $802 million in 2003.1 These rising costs have several contributing factors, including the increased timeline of drug development and approval process in the 2010’s, often lasting a decade or more. And it is best not forgotten that development costs are high for entities that do not receive FDA approval – placing a higher burden of cost on drugs that are approved. The majority of these compounds fail during phase II or III clinical trials, which are often 3.5-7 years into the development timeline, after submission of an Investigational New Drug Application (IND) with the FDA. To recoup development costs, many compounds that do not receive FDA approval for their initial treatment goals are screened for treating other diseases.

Even for drug compounds that are approved for production, one key factor contributing to the cost of their development is the number of steps associated with their synthesis. Currently the desire to minimize the number of synthetic steps in drug development, and the effort to prioritize combinatorial chemistry, the practice of high-throughput synthesis of compounds, has resulted in a number of blockbuster drugs however these compounds are primarily achiral, saturated, aromatic molecules.2

These features have severely limited the chemical space explored in current drug development efforts. Chemical space provides a representation of all possible carbon-based molecules than can be created.3 Just like the number of planets, solar systems, and galaxies is
vast on a universal macroscale, the number of small molecules in chemical space is equally vast on the atomic microscale. By focusing modern drug development efforts on planar, aromatic molecules like those prepared in combinatorial chemistry, an entire realm of chemical space is being ignored, which could hold the key to highly potent, selective drug entities. Structurally complex, biologically relevant spirocycles, meanwhile, recently have been classified and their role in chemical space comprehensively mapped.\(^{3b-e}\)

One area of chemical space that has been explored in drug development is the field of natural products. Natural products are generated as either primary or secondary metabolites of all living plants, animals, and marine organisms, and boast a high degree of structural complexity underexplored in chemical space. The enzymes responsible for the biosynthesis of these compounds are the ultimate chiral environment, often installing functional groups with a degree of stereocontrol that is unprecedented in synthetic chemistry. Natural products and their analogues had been a boon for pharmaceuticals throughout the 20\(^{th}\) century, until the expansion of synthetic medicinal chemistry in the 1990’s shifted attention away from structurally complex molecules towards smaller molecules with short, straightforward synthetic routes, which could be easily screened in a high-throughput fashion from a library of compounds.\(^{4}\)

Indeed, a survey on four databases consisting of over 10,000 drugs and 3,000 natural products and has served to quantify the structural complexity lacking in modern pharmaceuticals. Namely, natural products typically contain more atoms (avg. M.W. 414 g/mol vs 340 g/mol), chiral centers (6.2 vs. 2.3), and H-Bond donors/acceptors. Likewise, successful drugs have more in common with compounds synthesized via combinatorial chemistry – these compounds have
an average molecular weight of 393 g/mol, 0.4 chiral centers per compound, and fewer H-Bond donors/acceptors.

The inherent disadvantage of pursuing natural products as drug candidates is that the methods to obtain large quantities needed for mass production rely on long total synthesis, often on the magnitude of 20 to 40 steps, or unsustainable depletion of their source material. Therefore, there is a great need to harness the structural complexity found in natural products, which breeds target binding specificity, while minimizing the number of steps required to install said complexity from readily available starting materials. To circumvent the lengthy synthesis required to prepare complex natural product structures, one can install a high degree of complexity using cascade reactions, in which two or more transformations occur in a single reaction vessel.

1.2 CASCADE REACTIONS IN TOTAL SYNTHESIS

In traditional organic synthesis, a multi-step reaction scheme is conducted by isolating the product of each individual reaction – this approach can be marred by time, characterization, and purification costs, especially when chromatographic purification is required. Ideally, one would perform multiple reactions without isolating intermediate products, in a process known as a reaction cascade. An ideal reaction cascade has to assure that the individual components are only involved in the reaction when they are required to do so, else byproducts arising from undesired reactivity pathways can result in a reduced yield. The literature contains many terms, used somewhat interchangeably, for the process of performing multiple reactions in a one-pot fashion, including cascade, domino, and tandem. For the purpose of this section, we will consider
cascade reactions only where all catalysts and reagents are present from the start of the reaction, and no additional additives are added throughout the course of the reaction.

The application of a reaction cascade lies at the pinnacle of synthetic design – generally producing complex, rigid scaffolds from simple starting materials. Because of their ability to install molecular complexity, cascade reactions have been a valuable tool in natural product total synthesis for decades, with R. Robinson’s 1917 total synthesis of tropinone considered the seminal work in the field.5-6

Because the field of cascade reactions broadly encompasses all chemical transformations, classification of the cascades can be difficult; In a recent review of cascade reactions, K. C. Nicolaou and coworkers separated the field into five classes.5c Nicolaou et. al. classified a litany of cascade reactions used in total synthesis by their principal component reactivity – nucleophilic, electrophilic, radical-mediated, pericyclic, and transition-metal mediated processes. Notably, these classifications are restricted to the synthetic transformations of small molecules using organic reagents and transition-metal catalysts, and does not cover the wealth of advances made in enzymatic catalysis.

Nucleophilic cascade reactions generally employ the use of a base to generate the active nucleophile, or commence from pre-formed organometallic nucleophiles; this approach is exemplified in Sorenson’s 2004 synthesis of (+)-harziphilone (Scheme 1.1a).7a Likewise, their electrophilic cascade counterparts use acid to increase the electrophilicity of pre-existing functional groups, or utilize traditional electrophilic reagents (e.g. BF3·OEt2, organosilanes, organoselenates, etc.), as seen in Padwa et. al’s 2002 synthesis of racemic jamine (Scheme
1.1b) In both cases, thermodynamic or photochemical conditions may need be employed to promote desired reactivity.

Scheme 1.1

a.) Representative example of nucleophilic cascade reactions

b.) Representative example of electrophilic cascade reactions

Because organic radicals are, by definition, a highly reactive species, they represent the ideal candidate for cascade transformations. In many cases, an organic radical will break a pre-existing or create a new σ-bond, generating a new radical intermediate capable of continuing the cascade, until the radical is ultimately trapped or scavenged. Parker and Fokas’ synthesis of morphine utilizes a radical cyclization cascade to form the compound’s core (Scheme 1.2).

Scheme 1.2 Representative example of radical cascade reactions

Pericyclic reactions have also been used in cascades, and are perhaps the most common processes encountered in cascade reactions. Because pericyclic reactions typically only
require thermal or photochemical input to proceed, this reaction class boasts a high degree of functional group tolerance which is ideal in cascade methodology. This class broadly includes cycloadditions, sigmatropic rearrangements and electrocyclic reactions. Due to the concerted nature of their reaction mechanisms, pericyclic reactions often generate complex scaffolds with a high degree of stereocontrol. One key example of a pericyclic reaction cascade is Boger et. al’s 2006 synthesis of vindorosine, in which a δ-lactone core is generated through a Diels-Alder reaction of an 1,3,4-oxadiazole, followed by intramolecular [3+2] cycloaddition (Scheme 1.3).7d

$$\text{Diels-Alder reaction} \rightarrow \begin{array}{c} \text{Irisopropylbenzene} \\ 0.1 \text{mM H}_2 \\ 23^\circ \text{C} \end{array} \rightarrow \begin{array}{c} \text{[3+2] cycloaddition} \end{array}$$

(-)-vindorosine

\textbf{Scheme 1.3} Representative example of pericyclic cascade reactions

Lastly, the advances in transition metal catalysis has resulted in a wealth of examples in the development of multi-step cascade reactions; In recent years, development of chiral ligands for metal catalysts provides potential for cascades with a high degree of enantioselectivity. Palladium catalysis has provided a wealth of transformations for the synthetic chemist’s toolbox in the past 50 years, and its catalytic cycle could be considered a reaction cascade in its own regard. Amongst the palladium-catalyzed C-C bond coupling reactions, the Heck reaction has found numerous applications in cascade development. This principle is
exemplified in Keay et al.'s total synthesis of (+)-xestoquinone, in which a palladium (0) catalyst paired with a chiral BINAP ligand, promotes multiple 1,2-additions of palladium (II) intermediates to olefins, and terminates through β-hydride elimination (Scheme 1.4).7e

![Scheme 1.4 Representative example of transition-metal mediated cascade reactions](image)

Cascade reactions have been shown to generate complex scaffolds with a high degree of selectivity in a single step. This strategy has been applied to the total synthesis of several natural products, and can be an asset in drug discovery to reduce the cost of generating bioactive scaffolds in multi-step schemes. Despite significant advances in the field of cascade reactions, further development is needed to access underexplored scaffolds like spirocycles.

1.3 SPIROCYCLIC NATURAL PRODUCT SYNTHESIS

Spirocycles are valuable targets in drug discovery because their rigid scaffolds are capable of directing their substituents in a precise, 3D fashion. Although they are valuable targets, methodology remains limited for the convergent construction of spirocycles. This section will highlight some key spirocyclic natural products, and a recent example of their synthesis. Several of these syntheses utilize α-diazocarbonyls to generate carbenoids, but their ambiphilic reactivity is not exploited to generate the full spirocenter, with several additional steps needed to form the second ring. Examples such as these however have inspired our approach – designing a new reaction cascade, utilizing substrates containing a nucleophile and electrophile, in
combination with diazo compounds such as those explored in this section to generate spiropertubes in a single step with a high degree of selectivity.

1.3.1 SYNTHESIS OF (±)-BERKELEYAMIDE D AND NATURAL (–)-BERKELEYAMIDE D

The spirocyclic γ-lactam natural product Berkeleyamide D was originally isolated by Stierle, et al. in 2008 from the acid lake fungus Penicillium rubrum from Berkeley Pit Lake in Butte, Montana. This potent natural product was found to inhibit MMP3 and caspase-1. Berkeleyamide belongs to a family of related α-spiro-γ-lactam natural products including the Pseudotin family and Azaspirene (Fig. 1.1).

![Berkeleyamide D](image1.png)
![Pseudotin A](image2.png)
![Azaspirene](image3.png)

Figure 1.1. Spiro-γ-lactam natural products

While the absolute configuration of spiro-γ-lactams Pseudotin A and Azaspirene were able to be determined by extensive NMR characterization and X-Ray crystallography, the absolute configuration of Berkeleyamide D at C5 and relationship between substituents at C8 and C9 remained unknown until the first racemic synthesis was reported in 2014 by Tsubaki et al. The prepared racemate with separated by chiral HPLC gave both (+)- and (–)-enantiomers of Berkeleyamide D, with specific rotation values of \([\alpha]^{17}_{D} = +84.6\) and \(-85.7\) respectively; the specific rotation of natural Berkeleyamide D was reported to be \([\alpha]^{25}_{D} = -55.9\), which confirms the natural source as the (–)-enantiomer.12
The 2014 Tsubaki racemic synthesis of Berkeleyamide D was accomplished in four synthetic steps and relies on a Darzens reaction to form an \(\alpha,\beta \)-epoxy-\(\gamma \)-lactam, a central structure of several natural products, followed by formation of the spirocenter through C-acylation. (Scheme 1.5).

Scheme 1.5. Tsubaki et. al’s first reported synthesis of (\(\pm \))-Berkeleyamide D

Starting from an \(\alpha \)-bromoketoamide, the authors developed a Darzens reaction using isobutyl glyoxyl to prepare an \(\alpha,\beta \)-epoxy-\(\gamma \)-lactam in modest yield. This was treated with camphorsulfonic acid and exposed to triisopropyl orthoformate to generate the isopropyl ether as a single diastereomer; it is proposed that the nucleophile trajectory was dictated by the stearic bulk of the neighboring epoxide functionality. A lithium enolate of this ether was generated by exposure to LiHMDS which was quenched with phenylacetyl chloride to prepare the desired spirolactam A, along with the undesired homodimer B. Unfortunately, screening of alternative bases and additives were unable to improve the yield of A. Finally, hydrolysis of A using para-toluenesulfonic acid afforded racemic Berkeleyamide D.
The first asymmetric synthesis of Berkeleyamide D was recently completed in 2019, due to methodology developed by Shen, et al.13 They describe a new asymmetric Darzens reaction to produce optically pure α,β-epoxy-γ-lactams (Scheme 1.6).

\begin{equation}
\begin{array}{ccc}
\text{Yb(OTf)}_3/L-\text{PePr}_2 & \text{Yb(OTf)}_3/L-\text{PePr}_2 \\
(1:1, 10 \text{ mol}\% & \text{THF/HCHO (aq.)} & 3 \text{A mol. sieves (20 mg)} \\
& \text{KCO}_3 (1.0 \text{ eq.}) & 20 ^\circ\text{C}, 48 \text{ h} \\
& & 55\% \text{ yield, 82\% ee}
\end{array}
\end{equation}

Scheme 1.6. Shen et. al’s asymmetric Darzens reaction to access (–)-Berkeleyamide D

Shen’s formal synthesis utilized a new method developed in their group for the asymmetric synthesis of α,β-epoxy-γ-lactams with a chiral Ytterbium (III) catalyst, generated \textit{in situ} via the reaction between Yb(OTf)$_3$ and the chiral N,N'-dioxide ligand L-\text{PePr}_2. While both chiral organocatalysis and Lewis acid catalysis have been successfully employed for enantioselective Darzens reactions, the nucleophile had been limited to α-halo carbonyls, chloroacetonitrile, chloromethylsulfones, and 2-halo-1-indanones until this point. The authors describe challenges in the desired asymmetric Darzens cascade including the steric hindrance of the new α-bromo-β-ketoamide nucleophile hampering the S$_{N}$2 cyclization processes. Also, the diastereoselectivity of the aldol addition is directly related to the subsequent formation of the epoxide and lactam due to stereochemistry requirements, and the potential of a retro-aldol
process could reduce the enantioselectivity of the reaction. Nevertheless, using the new Yb-catalyzed conditions, the α,β-epoxy-γ-lactam was formed in good yields with excellent enantioselectivity, and the authors were then able to complete the synthesis of (−)-Berkleyamide D following the remaining steps as outlined by Tsubaki et al.

1.3.2 SYNTHESIS OF INDOLE ALKALOID (−)-SPIROTRYPROSTATIN B

(−)-Spirotryprostatin B is a natural product classified as an indole alkaloid which was isolated in 1996 by Osada et al. from the fermentation broth of *Aspergillus fumigatus* BM939.\(^8\) The compound, which can only be isolated in trace amounts (11 mg/400 mL fermentation broth), is known to inhibit the cell cycle in the G2/M phase and shows cytotoxic activity against the growth of human leukemia cell lines. While the first total synthesis of (−)-Spirotryprostatin B was reported in 2000,\(^8b\) a total synthesis of the compound was reported by Meyers and Carreira in 2003 which utilizes cyclopropane formation from 3-diazooxindole (Scheme 1.7).\(^8\) While this approach to (−)-Spirotryprostatin B is elegant in its own regard, it relies on multiple steps to generate the spirocenter, which could be reduced to a single step via novel cascade methodology.
The first step in Carreira’s synthesis involved a rhodium-catalyzed cyclopropanation between 3-diazooxindole and piperylene, which was achieved in good yields but no diastereoselectivity. The spirocyclic piperidine ring was then formed by MgI₂-mediated ring expansion of the resultant vinylcyclopropane in good yields, and with a 6:1 diastereomeric ratio favoring the desired stereoisomer. After cleavage of the N-allylic protecting group through palladium catalysis, the authors were then able to achieve asymmetry through coupling to the N-Boc-L-proline acid chloride, which generated a separable mixture of diastereomers and was incorporated in the final natural product structure.

1.3.3 SYNTHESIS OF CLINICALLY ADVANCED SPIROLACTONE (+)-GRISEOFULVIN

One of the most clinically relevant spirocyclic natural products is griseofulvin, who’s development and chemistry dates back to the early 1940’s which was recently reviewed. The compound was first isolated from the mushroom *Penicillium griseofulvum* in 1939 by Oxford and coworkers. Efforts to elucidate the structure of griseofulvin were attempted by several groups over the next decade, until the absolute configuration was determined through single crystal X-
The compound has impressive biological activity – it was found in 2001 that it can potentiate the antitumorogenesis of nocodazole and induce apoptosis in cancer cell lines at concentrations as low as 1 μM. Notably, the compound was launched in 1959 in the U.K. under the name “Grisovin” and in the U.S. as “Fulcin” for the treatment of ringworm in animals and humans. Several racemic total syntheses of griseofulvin have been reported as early as 1960, with only one asymmetric synthesis reported in 1991 by Pirrung et al. that utilizes a key intramolecular Rh-catalyzed O-R insertion/sigmatropic rearrangement sequence to form the vital spirocenter (Scheme 1.8). This sequence is carried out in multiple steps however, and a reaction cascade could be considered to generate the full spirocycle in a single step.

Scheme 1.8 Pirrung et al.’s asymmetric synthesis of (+)-Griseofulvin

Pirrung’s synthesis began with a commercially available dimethoxyphenol, which was subjected to chlorination, acylation, and phenolic addition to (R)-pent-3-en-2-ol. This intermediate was condensed with Mandel’s reagent to provide a ketoester intermediate, which was then subjected to diazo transfer to give an Acceptor/Acceptor diazo. Carbenoid generation was conducted using Rh₂(piv)₄ to form the crucial spiro-junction in good yields, with complete diastereoselectivity. The synthesis was completed by conversion of the methyl ester to the
corresponding methyl ketone, followed by Diekmann cyclization and subsequent ether formation to furnish (+)-Griseofulvin in 5% yield over 10 steps.
1.4 ELECTROCYCLIC REACTIONS AND APPLICATIONS IN CASCADE REACTIONS

Electrocyclic reactions are a valuable tool in synthetic chemistry due to the convenient accessibility of their polyene precursors, high degree of selectivity, and atom economy, and have been utilized as key reactions in numerous natural product total synthesis in recent years. Not only this, but they are ideal candidates for cascade reactions, as they require only thermal input, with no additional reagents, to proceed – this overcomes functional group, reagent, and catalyst compatibility issues that are often encountered when designing new cascade reactions. The electrocyclic reaction is a subset of pericyclic reactions, in which electrons from multiple pi bonds interact in order to generate a new sigma bond, and a rearranged pi system (Scheme 1.9).

This process generally results in a high degree of stereocontrol, because of the principle of the conservation of orbital symmetry applies, as dictated by the Woodward-Hoffmann rules. These rules allow one to predict the stereochemical outcome of an electrocyclic reaction, by understanding whether the orbitals involved in bond formation are both rotating in the same direction (conrotatory), or opposite directions (disrotatory). Electrocyclization reactions are generally classified by the number of pi electrons interacting in a...
given system – \(2\pi\), \(4\pi\), \(6\pi\), and \(8\pi\) electrocyclizations have all been well documented. These reactions can be generated either under thermal or photochemical conditions, and the Woodward-Hoffman rules summarize the impact of number of participating pi bonds and reaction conditions on the resulting product stereochemistry (Table 1).

<table>
<thead>
<tr>
<th>Electrocyclization Classification</th>
<th>Number of (\pi) -bonds</th>
<th>Thermal Outcome</th>
<th>Photochemical Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\pi)</td>
<td>1</td>
<td>Conrotatory</td>
<td>Disrotatory</td>
</tr>
<tr>
<td>(4\pi)</td>
<td>2</td>
<td>Disrotatory</td>
<td>Conrotatory</td>
</tr>
<tr>
<td>(6\pi)</td>
<td>3</td>
<td>Conrotatory</td>
<td>Disrotatory</td>
</tr>
<tr>
<td>(8\pi)</td>
<td>4</td>
<td>Disrotatory</td>
<td>Conrotatory</td>
</tr>
</tbody>
</table>

Table 1.1 Summary of Woodward-Hoffman Rules for Electrocyclizations

It should be noted however that the 1,3,5,7-cyclooctatrienes, generated through \(8\pi\) electrocyclization, are rarely isolated, and can undergo a subsequent \(6\pi\) electrocyclization to yield bicyclo[4.2.0]octadienes (Scheme 1.9d).

In addition, oxo- and aza- variants of electrocyclization reactions are known and have been used to generate new heterocycles.\(^{14b}\) This is most often exemplified in \(6\pi\) electrocyclic substrates, whereby aldehydes and ketones are used to generate \(\alpha\)-pyrans, and imines generate dihydropyridines, which are readily oxidized to their pyridine counterpart (Scheme 1.10).

Scheme 1.10 Generalized reactivity of a.) oxo-electrocyclization b.) aza-electrocyclization
1.5 **OBJECTIVE OF RESEARCH**

The primary objective of this dissertation research is to develop new cascade reactions for the synthesis of bioactive scaffolds for drug discovery. Spirocyclic compounds, including those derived from natural products, represent a promising synthetic challenge because of their unique biological activities, arising from their 3-dimensional structure presenting functional groups in a well-defined manner to their protein targets. While many linear sequences have been successfully employed for the synthesis of spirocyclic compounds, our cascade approach provides a general, convergent method to generate these in a step-efficient fashion.

Cascade reactions have been utilized in numerous creative total synthesis in the last decade, exploiting cationic, anionic, electrocyclic, and radical reactivity. Because cascades employ multiple reactions in one pot without isolation of any intermediates, they have been valuable synthetic tools to address atom economy, reagent, and purification costs. In order to expand chemical space in the drug development process, we seek to develop a new retrosynthetic approach to spirocycles, bisecting the molecule at the quaternary spirocenter, which exploits the reactivity of diazo-derived metal carbenoids. In addition, we envision a new cascade approach to aromatic heterocycles, exploiting electrocyclic reactivity of triene intermediates to bisect the traditionally unreactive aromatic ring.

![Scheme 1.11](image)

Scheme 1.11 a.) cascade approach towards spirocycles
b.) cascade approach towards aromatic heterocycles
1.6 REFERENCES FOR CHAPTER 1

CHAPTER 2

Catalytic Cascade Approach to Tetrahydrofurans, \(\gamma \)-Butyrolactones, and Spiroethers

2.1 INTRODUCTION

The synthesis of small molecules containing a spirocenter continues to be a major challenge in organic synthesis, primarily because it involves the formation of a quaternary center. Quaternary centers, which are defined as one atom connected to four other atoms that are not hydrogen, are often chiral centers, which are difficult to form with a high degree of selectivity. This selectivity challenge stems from the geometry of the spirocyclic precursor – which is often a
functional group that sp² hybridized, or in a trigonal planar geometry. When an oncoming nucleophile reacts with a trigonal planar functional group to generate a chiral center, there is rarely any outside interference dictating its facial trajectory, resulting in the formation of a racemic stereocenter.

Figure 2.1. a.) Common Strategies Towards Spirocycles b.) Natural Products Bearing a Spiroether Core

Synthetic strategies have been developed to form spirocenters with a modest degree of stereocontrol, including alkylation, rearrangement, ring closure, cycloaddition, and radical cyclization, but these methods are all met with their own limitations (Figure 2.1a).¹⁰ Spirocycles comprise the core of numerous bioactive natural products, including the pseurotin family, Berkeleyamide D, azaspirene, and griseofulvin – which is on the World Health Organization’s list of essential medicines (Figure 2.2b).¹¹⁻¹⁶

With the abundance of bioactive natural products featuring a spirocyclic core, these scaffolds show promise as future drug leads. However, there does not appear to be a general route for spirocycle formation based on the intermolecular connection at the quaternary center.
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

with high stereocontrol. Developing a general method would allow for the convenient construction of a diverse library of spirocycles. To this end, we have developed a convergent approach to spirocycle formation harnessing the ambiphilic reactivity of diazo-derived metal carbenoids in multi-step cascade reactions (Figure 2.2a).

Figure 2.2.

A Synthetic Rationale

![Synthetic Rationale Diagram](image)

B Our Approach

![Our Approach Diagram](image)

We have developed an intermolecular reaction cascade which uses a two-component approach to spirocycles through cascade reactivity (Figure 2.2b). Our innovative approach first exploits the electrophilic reactivity of carbenoid intermediates in a carbene O–H insertion reaction. Then, 1,2-proton transfer of the zwitterionic intermediate is bypassed in favor of a Conia-ene cyclization, generating a new carbon-carbon bond. This convergent approach benefits from readily accessible diazo and alkynol precursors (generally one-step), and does not rely on forming highly functionalized linear precursors.

2.2 SYNTHESIS AND REACTIVITY OF THE DIAZO FUNCTIONAL GROUP

The diazo functional group is one that has been exploited for numerous creative transformations since their discovery in 1858. Diazo compounds bear diatomic nitrogen gas
bonded to a single carbon atom, and have several resonance forms contributing to their reactivity
(Figure 2.3a)3a.

\textbf{Figure 2.3.} a.) Resonance forms of the diazo functional group b.) Classification of diazo compounds. c.) Inverse stability of diazo-derived carbenes

Diazo compounds can be sorted into three classifications, denoted by the presence of adjacent stabilizing or destabilizing functional groups (Figure 2.3b). The first and most stable diazo class is the Acceptor/Acceptor (A/A) diazo, which bears two electron withdrawing substituents stabilizing the carbanion resonance form. While azides and diazo compounds have a reputation for dangerous decomposition, many A/A diazos are benchtop stable, and can be stored in gram-quantities for months. A general guideline to assess azide and diazo reactivity has
been established, and is commonly known as the “rule of six.” The rule of six states that six carbon
(or other atoms of about the same size) per energetic functional group should provide enough
dilution to render the compound safe to work with.\(^3\)\(^b\) Another method of generalizing diazo/azide
reactivity is to assess their carbon-to-nitrogen ratio – if the sum of carbon and oxygen atoms in
the molecule, divided by the number of nitrogen atoms exceeds 3, then the diazo is likely stable

ever to isolate in large quantities.\(^3\)\(^c\)

The next diazo classification is the moderately stable acceptor-only diazo, which bears
only one stabilizing electron-withdrawing substituent, with either a hydrogen or alkyl
substituent. One of the most classical acceptor-only diazos, ethyl diazoacetate (EDA), is
commercially available as a dilute solution in either toluene or dichloroethane. EDA has been
widely studied in the field of diazo chemistry, in part due to its convenient availability, reactivity,
and utility as a synthon in late-stage functionalization. The final diazo classification is the least
stable Donor/Acceptor (D/A) diazo, which bears one stabilizing electron-withdrawing group and
one destabilizing electron donating group; these electron-donating groups are most often
alkynyl, alkenyl, or aryl substituents.

When a diazo compound is exposed to an appropriate metal catalyst, often using Rh,
Cu, Ru, and recently Fe, \(N_2\) gas is expelled to generate a metal-stabilized carbene. These reactive
intermediates follow an inverse stability trend to their diazo precursors – the highly stable A/A
diazo compounds generate the most reactive, highly electrophilic, carbenoids (Figure 2.2c).

Several methods are known for synthesizing stabilized diazo compounds – two of the
most common utilize a methylene or ketone precursor (Scheme 2.1).
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

Scheme 2.1 Synthesis of diazo compounds by Regitz diazo transfer

By far, the most common method for synthesizing A/A diazo compounds is the diazo transfer reaction, also referred to as the Regitz diazo transfer. This named reaction, reported in 1964, employs the enolization of an active methylene compound, which then interacts with a sulfonyl azide reagent to transfer dinitrogen from the azide component. The method uses common sulfonyl azides like methanesulfonyl-, p-tolylsulfonyl-, and more recently the solid p-actamidobenzenesulfonyl azide (p-ABSA), which are generated via anion exchange between the corresponding sulfonyl chloride and sodium azide. Because the methylene precursors are typically quite acidic, mild organic bases like triethylamine and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) are sufficient for the formation of most A/A diazo compounds. These diazos are conveniently isolated after chromatographic purification, simplified further by filtration of the sulfonamide byproduct.

A modification of the Regitz diazo transfer reaction was reported by Regitz and Menz in 1968 which extends its utility to a new classification of diazo compounds (Scheme 2.2).

Scheme 2.2 Deformylative/Deacylative/Debenzoylative Diazo Transfer Reaction
Regitz originally reported α-formylketones can be exposed to diazo transfer conditions to generate acceptor–only diazo compounds, alongside the formation of an N-acylsulfonamide byproduct instead of the sulfonamide from standard diazo transfer conditions.\(^4b\)

In the same year, Hendrickson and Wolf independently reported the deacylative diazo transfer reaction, whereby diazo compounds were synthesized through diacylation, as opposed to deformylation\(^4c\). These discoveries were groundbreaking in the study of diazo compounds, as it allowed for the formation of stabilized diazos from scaffolds other than malonates and ketoesters. In the subsequent decades, Taber et. al reported an improved variation of Regitz’ deformylative diazo transfer reaction utilizing a benzoyl leaving group.\(^4d\)

Diazo transfer reactions can also be used to synthesize donor–acceptor diazo compounds, depending on the effect of surrounding substituents on the active methylene acidity; generally, a stronger organic base like DBU is required in these circumstances. In situations where diazo transfer is not suitable for diazo preparation, aryldiazos can also be generated in a two-step sequence from a ketones, α-ketoamides, and α-ketoesters, in a variation of the Bamford-Stevens reaction (Scheme 2.3)\(^5\).

![Scheme 2.3 Diazo formation through reduction of sulfonyl hydrazones.](image-url)
2.3 TRAPPING OF ZWITTERIONIC INTERMEDIATE – THE CONIA–ENE REACTION

Broadly, an ene reaction can be classified as the concerted reaction between an alkene bearing an allylic hydrogen with a double- or triple-bond. These components are known as the “ene” and the “enophile,” respectively. Such a rearrangement benefits from high atom economy – as all atoms present in the starting material are incorporated in the final product. Variants of the ene reaction are known; replacing the ‘ene’ portion of an ene reaction with an enol is known as a Conia-ene reaction. This reaction was first reported in 1966 by J. M. Conia, who performed numerous studies on the thermal cyclization of unsaturated ketones at temperatures often exceeding 300 °C (Scheme 2.4a). In the subsequent years since its report, numerous authors have reported the addition of particular Lewis acids can promote the reaction at milder reaction conditions, either by increasing the amount of the nucleophile in the enol form, or by polarizing the electrophilic pi-system.

Scheme 2.4 a.) Conia’s Thermal Ene Cyclization b.) Toste et al.’s Au+ Promoted Conia–Ene Cyclization

\[\begin{align*}
\text{A} & \quad \overset{\text{260 °C}}{\longrightarrow} \\
\text{B} & \quad \overset{\text{DCM, rt}}{\longrightarrow}
\end{align*} \]

Lewis Acid (% conversion):
- \(\text{PPh}_3\text{AuCl} (18\%) \)
- \(\text{AgOTf} (50\%) \)
- \(\text{PPh}_3\text{AuCl+AgOTf (>95\%)} \)

15 examples
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

In 2004 Toste et. al. reported a method for inducing a Conia-ene cyclization under much more mild reaction conditions than previously reported (Scheme 2.4b). After a screening of common Lewis acids and combinations thereof, Toste et. al. discovered that terminal alkynes could be polarized by cationic gold, generated via in situ reaction with various silver salts, and subsequently trapped intramolecularly with a large number of β-ketoesters. This report has guided our design for a new method of trapping zwitterionic intermediates, generated through carbene heteroatom–insertion chemistry.

2.4 CARBENOID CASCADE FOR THE FORMATION OF SUBSTITUTED TETRAHYDROFURANS AND γ-BUTYROLACTONES

In 2016 Hunter and Sharma reported a remarkable new method for the insertion of the carboxylic acid O–H bond into acceptor–acceptor diazo compounds, under mild conditions with an unprecedented reaction rate (Scheme 2.5a). This new method utilizes the catalyst Bis[rhodium]α,α,α′,α′-tetramethyl-1,3-benzenedipropionic acid) (Rh₂(esp)₂) to generate a reactive electrophilic carbenoid which reacts with carboxylic acids with reaction times of less than 10 minutes.
Scheme 2.5. a.) Sharma and Hunter’s Carboxylic acid O–H Insertion to A/A Diazos b.) Mechanism of Carboxylic Acid O–H Insertion

The method reported by Sharma and Hunter displayed excellent chemoselectivity, favoring the acid O–H insertion over other known carbenoid–mediated processes such as olefin cyclopropanation, alkyne cyclopropenation, alcohol O–H insertion, and aryl sp² C–H activation. When exposed to the rhodium catalyst, diazo A extrudes nitrogen gas to generate the electrophilic carbenoid intermediate B. The carboxylic acid then attacks the carbenoid, generating zwitterionic intermediate C. Finally, a 1,2-proton transfer regenerates the rhodium catalyst, resulting in the formation of insertion product D (Scheme 2.5b). This method has proven to be general, with a substrate scope of over 20 insertion compounds having yields ranging from good to excellent.
2.4.1 SYNTHESIS OF γ-LACTONES THROUGH CARBENE O–H INSERTION/CONIA–ENE CASCADE

Expanding off of our earlier 2016 work, we hypothesized that the zwitterionic intermediate, generated in the process of acid O–H insertion, could be intercepted by a strong electrophile before 1,2-proton transfer occurs, to generate a new ring containing a quaternary center. Inspired by Toste’s 2004 work in the cationic-gold catalyzed Conia-ene reaction, Hunter and Sharma envisioned that a properly activated alkynoic acid would be capable of undergoing an intermolecular carbene O–H insertion/Conia-ene cascade to furnish substituted lactones. By exposing insertion compound 3 to a variety of Lewis acid catalysts, they found that cationic gold, generated through in situ formation of AgCl using a silver salt bearing a weakly–coordinating anion, could indeed induce annulation to the corresponding γ-lactone 4 efficiently at room temperature, whereas heating and a longer reaction time was needed for the only other successful Lewis Acid, copper (I) triflate (Scheme 2.6a).
Moreso, they found that butynoic acids are indeed capable of undergoing the desired reaction cascade in a one-pot fashion using a mixture of rhodium, gold, and silver catalysts with no trace of insertion products detected. This one-pot cascade approach was applied towards the synthesis of six different \(\gamma \)-lactones, with yields ranging from good to excellent (Scheme 2.7b).

2.4.2 SYNTHESIS OF TETRAHYDROFURANS VIA ALCOHOL O–H INSERTION/CONIA–ENE CASCADE

Inspired by the results of Hunter and Sharma, we turned our attention towards harnessing alternative nucleophiles for the O–H insertion portion of the reaction cascade. While there is literature precedent for the O–H insertion of alcohols to diazo–derived carbenoids, an alcohol O–H insertion/Conia-Ene cascade would be a novel route to substituted
tetrahydrofurans. Indeed, when butynoic acid was replaced with commercially available 3-butyn-1-ol, the O–H insertion/Conia-ene reaction cascade was successful with a range of diazo compounds (Scheme 2.7).8b

Scheme 2.7. O–H Insertion/Conia-ene Cascade Approach to Tetrahydrofurans

The reaction was successful with three different α-diazoketoesters, resulting in tetrahydrofurans 6a-6c, bearing methyl, tert-butyl, and ethyl esters. The reaction cascade was also successful using diazo compounds derived from malonates; the methylmalonate diazo cleanly afforded diazo 6d in good yields. Finally, we looked to the scope of the alcohol component – The cascade was successful with an unsubstituted primary alkynol but would the additional steric factors of a secondary dissuade O–H insertion? Fortunately, when racemic 1-phenyl-3-butyn-1-ol was exposed to the Rh/Au+ reaction conditions, tetrahydrofuran 6e was formed and isolated in good yields. Since a new chiral center is formed throughout the course of this reaction cascade, we then prepared a number of chiral primary and secondary alkynols to probe the diastereoselectivity of the transformation (Scheme 2.8).
To our delight, all prepared chiral primary and secondary alcohols withstood the reaction conditions well resulting in good yields of the corresponding furans. In the case of substituted primary alcohols, the reaction condition produced furan 6f with excellent diastereoselectivity, as determined by 1H NMR analysis. Next, a chiral secondary alcohol was employed to generate furan 6g, also with excellent diastereoselectivity. Finally, an enantiomeric pair of substituted primary alcohols were exposed to the optimized reaction conditions in two parallel trials, and again we saw complete diastereoselectivity for compounds 6h and 6i. These products also had equal and opposite optical rotation values, as expected for a pair of enantiomers.

2.5 REACTION DESIGN – ACCESSING THE SPIRO-γ-LACTAM CORE OF BERKELEYAMIDE D

With the development of this successful reaction cascade we turned our attention toward our initial goal – The convergent formation of spirocycles. We targeted the core of Berkeleyamide D, as this would provide a similar route to the family of related α-spiro-γ-lactams.
We began our substrate design by analyzing a truncated form of Berkeleyamide D, and bisecting the molecule down the spiro junction (Figure 2.4).

Figure 2.4. Retrosynthesis and Cascade Approach to the Berkeleyamide D Core

We envisioned that the truncated Berkeleyamide D core could be accessed via our O–H Insertion/Conia-ene cascade using secondary butynol 7 and γ-lactam diazo 8. After forming the spirocore of Berkeleyamide D, we expect the remaining functionality could be installed through reduction and elimination of the ketone, dihydroxylation, oxidative cleavage of exo-olefin, and subsequent enolization/oxidation sequence to add unsaturation to the furan ring. With this strategy in hand, we pursued the synthesis of γ-lactam diazo 7.
2.5.1 SYNTHESIS of γ-LACTAM DIAZOS

All γ-lactam diazos were synthesized using a modified procedure originally reported by Wood et. al (Scheme 2.9).10

Scheme 2.9. Synthetic route to γ-Lactam diazo 7

We began our synthesis using benzyl-protected γ-lactam diazo 7 as a model substrate. First, amino acid methyl ester hydrochlorides 9 were exposed to reductive amination conditions with benzaldehyde to furnish N-benzyl protected amines 10. This secondary amine was coupled to ethyl hydrogen malonate using carbodiimide coupling conditions to furnish amides 11. Next, the amides were exposed to Dieckmann cyclization conditions using \textit{in situ} generated sodium ethoxide, followed by a hydrolysis/decarboxylation sequence to furnish γ-lactams 12. Finally, lactams 12 were exposed to Regitz diazo transfer conditions to furnish desired diazos 7. This
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, \(\gamma \)-Butyrolactones, and Spiroethers

The synthetic route provides a useful handle for substrate diversification – Altering amino acid 9 would affect the \(\gamma \)-alkyl substituent, and using leucine provides the exact alkyl chain present in natural Berkeleyamide D.

2.5.2 REACTION OPTIMIZATION

With a synthetic route to lactam diazos accomplished, we then turned our attention towards reaction condition optimization (Table 2.1).

![Reactions Diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>P.G.</th>
<th>Catalyst A</th>
<th>Catalyst B</th>
<th>d.r.</th>
<th>Isolated Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>Bn</td>
<td>Rh(_2)(esp)_2 (2 mol %)</td>
<td>–</td>
<td>2.5:1.0</td>
<td>14%</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>Bn</td>
<td>Rh(_2)(esp)_2 (2 mol %)</td>
<td>PPh(_3)AuCl (10 mol %) AgOTf (10 mol %)</td>
<td>2.5:1.0</td>
<td>53% yield</td>
</tr>
<tr>
<td>3</td>
<td>(i)Bu</td>
<td>Bn</td>
<td>Rh(_2)(esp)_2 (2 mol %)</td>
<td>PPh(_3)AuCl (10 mol %) AgOTf (10 mol %)</td>
<td>10:1.0</td>
<td>58% yield</td>
</tr>
<tr>
<td>4</td>
<td>(i)Bu</td>
<td>DMB</td>
<td>Rh(_2)(esp)_2 (2 mol %)</td>
<td>PPh(_3)AuCl (10 mol %) AgOTf (10 mol %)</td>
<td>>20:1.0</td>
<td>54% yield</td>
</tr>
<tr>
<td>5</td>
<td>(i)Bu</td>
<td>DMB</td>
<td>Rh(_2)(esp)_2 (2 mol %)</td>
<td>PPh(_3)AuCl (10 mol %) AgSbF(_6) (10 mol %)</td>
<td>>20:1.0</td>
<td>68% yield</td>
</tr>
</tbody>
</table>

Table 2.1 Reaction optimization for spiro-\(\gamma \)-lactam synthesis

Alanine-derived diazo 7a was first exposed to Rh\(_2\)(esp)_2, which has proven successful for acid and alcohol O–H insertion to A/A carbenoids. We observed no reaction initially at room temperature, so the temperature was increased to DCM reflux. To our delight, rhodium alone produced desired spirocycle 13, with no trace of insertion byproduct, albeit with a low yield and almost no
diastereoselectivity (entry 1). We hypothesized that the addition of cationic gold would increase the electrophilicity of the alkyne component, as was the case in our tetrahydrofuran synthesis. The addition of 10 mol % of PPh\textsubscript{3}AuCl and AgOTf improved the yield of desired spirocycle 13\textsubscript{a} to 53%, albeit with no major improvement in diastereoselectivity (entry 2). We then hypothesized that increasing the bulk on the alkyl component of diazo 7 would direct the trajectory of the incoming nucleophile better than a methyl substituent. In the case of leucine-derived diazo 7\textsubscript{b} (R = iBu), the reaction conditions cleanly afforded spirocycle 13\textsubscript{b} in good yields, with a marked increase in diastereoselectivity (entry 3). We then turned our attention towards affecting the stearic bulk of the amide protecting group (PG). When the standard benzyl protecting group was changed to the bulkier 2,4-dimethoxybenzyl protecting group, the diastereoselectivity of the transformation improved to >20:1, the greatest that can be determined by NMR integration (entry 4). Finally, we turned our attention towards the role of the counter anion, paired with the gold catalyst. Since the active catalyst is cationic gold, effectively PPh\textsubscript{3}Au+, we hypothesized that a weakly coordinating anion would improve the yield of the overall Conia-ene reaction. We screened a variety of silver salts bearing weakly coordinating anions (OAc−, OTf−, BF\textsubscript{4}−, PF\textsubscript{6}−, SbF\textsubscript{6}−), and found a slight increase in yield using a silver salt bearing a hexafluoroantimonate (SbF\textsubscript{6}−) counter ion (entry 5). With optimized reaction conditions, we turned our attention toward determining the absolute configuration of the spirocenter formed during this reaction cascade.
2.5.3 DETERMINING THE ABSOLUTE CONFIGURATION OF SPIRO-γ-LACTAMS

We had hypothesized that the stearic bulk of the lactam γ-alkyl group would dictate the trajectory of the oncoming nucleophile to attack from the opposite face of the ring, after formation of the trigonal planar carbenoid intermediate. If this were indeed the case, the resulting product would have an S-configuration at the C5 spirocenter, while its diastereomer would have an R-configuration at the spirocenter (Figure 2.5a). We then performed Nuclear Overhauser effect (nOe) NMR experiments, which analyze through-space interactions of nearby protons, to glean insight into the configuration of this compound.

![Figure 2.5. a.) Diastereomer options for spiro-γ-lactam 32b. b.) nOe experiment hypothesis](image)

We envisioned that irradiating the chiral proton at C8 would provide valuable information into the orientation of the neighboring tetrahydrofuran ring. If the spirocenter was of the R-configuration, it may weakly couple to the olefin protons on the furan ring. Meanwhile, if the spirocenter was of the S-configuration, the olefin would lie on the same face of the C8 alkyl component, no such coupling would be present (Figure 2.5b). When these NMR experiments were performed however, we did indeed observe coupling between olefin protons and the chiral proton set at C8 (Figure 2.6a). These results serve to refute our initial hypothesis, and lead us to conclude that the configuration of the spirocenter at C5 is not dictated by the trajectory of the
incoming alcohol nucleophile, but rather the stearic bulk of the resulting olefin after Conia-ene cyclization.

Figure 2.6. a.) nOe correlations between C8 H and olefin H. Signal suppression has been applied to irradiated protons for clarity. b.) Single crystal X-Ray results of 13c and its enantiomer.

Finally, in order to support the new hypothesis, we pursued crystal growth for spirolactam 13c and its enantiomer; fortunately, we were able to accomplish crystal growth by slow evaporation of the pure material in acetonitrile. The single crystal X-ray structure of 13c and 13d...
its enantiomer supported our conclusion from the NMR experiments – when the diazo alkyl component is of the S- configuration, the resulting spirocenter will be the R- configuration. (Figure 2.6b). With this knowledge in hand, we explored the scope of diazos for this transformation.

2.5.4 SPIRO-γ-LACTAM SUBSTRATE SCOPE

The reaction conditions proved general with a range of N-Benzyl and N-dimethoxybenzyl protected diazo substrates (Scheme 2.10).

As discovered during optimization studies, N-benzyl protected substrates 13a and 13b could be prepared in modest yields, albeit with fair diastereoselectivity at best. Fortunately, when the protecting group was changed to N-dimethoxybenzyl, the analogous substrates could be prepared in similar yields with complete diastereoselectivity (13f and 13c). The reaction was also conducted with the enantiomer of leucine-derived diazo 7, and we were able to isolate 13d in good yields, which had an equal and opposite optical rotation to 13c, which is expected for
enantiomers. Lastly, incorporation of a bulky benzyl alkyl group did not greatly impact overall yields or diastereoselectivities (13e).

2.5.5 COMPUTATIONAL INSIGHTS ON SELECTIVITY OF SPIROCENTER FORMATION

Next, we turned to computational collaborators at the University of Pittsburgh (Prof. Peng Liu) for computational insights into the energetics of spirocycle formation for our reaction cascade (Figure 2.7).

![Figure 2.7. Transition State Calculation for Simplified Reaction Cascade Substrates](image)

Ground state energy level calculations were performed using the B3LYP density functional and a mixed basis set of 6-31G(d) and SDD was used for Rh, Au, and non-metal atoms. To reduce computational resource strain, a simplified version of catalysts and substrates were used – Rh$_2$(esp)$_2$ ligands were simplified to acetate ligands, PPh$_3$AuCl truncated to PH$_3$AuOTf, and the alanine-derived diazo was used. Geometry optimizations were employed to determine the ground state energy level for starting materials and products, and transition state calculations were used to determine the energy of the transition states leading to the major and minor
diastereomers. Even in the case of this simplified model system, we observe a 2.8 kcal/mol difference in energy between the O–H nucleophile attacking from the same face as the diazo methyl groups versus the opposite face.

2.6 ROLE OF CHIRAL ALCOHOLS ON SPIROCENTER FORMATION

With the reaction cascade proving to be robust with respect to the γ-lactam diazo substrate, we then performed a series of experiments to probe the effect of pre-existing chirality of the O–H nucleophile on the resulting spirocenter formation (Scheme 2.11). Our previous success using chiral alcohols with linear diazos led us to hypothesize that chiral alcohols would not have a major impact on the success of the reaction cascade. γ-lactam diazos however, also contain a pre-existing chiral center, which was not a factor in linear diazos 1.

Scheme 2.11 Role of Alcohol Chirality on Reaction Cascade

In the case of secondary alkynol 5b bearing the S-absolute configuration, which matched the S-configuration of diazo 7c, the reaction proceeded cleanly and in good yields to provide a single diastereomer of spirocycle 13g. When the absolute configuration of the secondary alcohol was changed
to R-, however, we observed a sluggish reaction overall and alcohol $5c$ was not fully consumed. Indeed, in the mismatched case the reaction was sluggish and low yielding, resulting in poor diastereoselectivity for formation of spirocycle $13h$. Next, we hypothesized that adding a linker CH$_2$ to the mismatched secondary alcohol would result in a less-crowded transition state, leading to a higher diastereomeric ratio. In addition, Berkeleyamide D is substituted with a benzyl group at the C2 position. Indeed, when benzyl-substituted secondary alcohol $5d$ was employed as a substrate, we observed an increase in yield and a modest increase in diastereoselectivity compared to its fellow mismatched substrate $13h$. Ultimately, if a full synthesis for Berkeleyamide D were to be pursued, the S-enantiomer of secondary alcohol $8d$ should be employed, which would result in good diastereoselectivity in the formation of the C5 spirocenter; since Berkeleyamide D features unsaturation between the C2 and C3 position, the preceding configuration at C2 would be inconsequential.
2.7 APPLICATION OF REACTION CASCADE TO N,N-DIMETHYLBARBITUATE AND MELDRUM’S ACID SYSTEMS

Lastly, we wanted to extend our application to other cyclic diazo substrates, to probe its utility in the synthesis of alternative spiroethers (Scheme 2.12).

![Scheme 2.12 Cascade Approach to Spirobarbituates and Spiromedrum’s Acids](image)

To our delight, known Meldrum’s acid and N,N-dimethyl barbiturate diazos tolerated reaction conditions to afford the corresponding spiroethers in moderate to good yields. Lower yields were obtained broadly for spiromedrum’s acids 15a-15c, presumably due to their tendency to undergo fragmentation in the presence of Lewis Acids.11
2.8 SUMMARY & FUTURE DIRECTIONS

Completion of this research program has afforded a convergent cascade approach to substituted tetrahydrofuran, γ-butyrolactone, spiro-γ-lactam, and general spiroether scaffolds. This intermolecular reaction cascade employs the formation of an electrophilic carbenoid through the rhodium-catalyzed decomposition of stable A/A diazo compounds, followed by the O–H insertion reaction of alkynols and finally intramolecular trapping of the generated ylide with cationic gold-activated alkynes. The cascade has proven to be quite general in terms of reagent tolerance, with A/A diazos able to react with primary and secondary alkynols, resulting in a substrate scope of nine different tetrahydrofurans and over ten spirocycles prepared. Currently, the X-H Insertion/Conia-ene cascade has been successfully applied to O–H, N–H, and sp² C–H insertion substrates to produce a diverse set of spiroheterocycles; further developments to this cascade include harnessing S–H, sp³ C–H, and Si–H reactivity to produce uncommon heterocyclic and spiroheterocyclic frameworks. While the reactivity of the X–H insertion reaction to carbenes is well developed, trapping their reactive intermediates with electrophiles in cascade reactions is still in its infancy – Our group has successfully utilized activated-alkynes and ketone electrophiles, however other electrophilic trapping agents can be explored, such as electron-deficient esters, cobalt acetylides, and silanes.
2.9 REFERENCES FOR CHAPTER 2

Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

12. a.) Miller, D. J.; Moody, C. J. “Synthetic Applications of the O–H Insertion Reactions of Carbenes and Carbenoids Derived from Diazocarbonyl and Related Diazocompounds.”
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, \(\gamma\)-Butyrolactones, and Spiroethers

2.10 EXPERIMENTAL SECTION

PUBLICATION AND CONTRIBUTION STATEMENT

The research presented in this chapter were published in the Chemistry – A European Journal (DOI: 10.1002/chem.201603934) and the Journal of Organic Chemistry (DOI: 10.1021/acs.joc.7b03196). Dr. Indrajeet Sharma and Arianne Hunter contributed with assistance in project design, manuscript writing, and editing. The examples presented in Schemes 2.7, 2.10, 2.11, and examples 15d – 15g were contributed by Steven Schlitzer, with starting material preparation assistance by co-author Bilal Almutwalli. Examples 15a – 15b were contributed by co-author Arianne Hunter. The examples presented in Scheme 2.8 were contributed equally by Steven Schlitzer and Arianne Hunter.

MATERIALS AND METHODS

Reagents

Reagents and solvents were obtained from Sigma-Aldrich (www.sigma-aldrich.com), ChemImpex (www.chemimpex.com) or Acros Organics (www.fishersci.com) and used without further purification unless otherwise indicated. Dry solvents (acetonitrile) were obtained from Acros Organics (www.fishersci.com), and dichloromethane was distilled over CaH$_2$ under N$_2$ unless otherwise indicated. THF purchased from Sigma-Aldrich was distilled over Na metal with benzophenone indicator. Diaz compounds were stored as a dilute solution frozen in benzene for periods longer than 24 hours.

Reactions
All reactions were performed in flame-dried glassware under positive \(\text{N}_2 \) pressure with magnetic stirring unless otherwise noted. Liquid reagents and solutions were transferred thru rubber septa via syringes flushed with \(\text{N}_2 \) prior to use. Cold baths were generated as follows: 0 °C with wet ice/water and −78 °C with dry ice/acetone. Syringe pump addition reactions were conducted using a CMA/100 microinjection pump.

Chromatography

TLC was performed on 0.25 mm E. Merck silica gel 60 F254 plates and visualized under UV light (254 nm) or by staining with potassium permanganate (\(\text{KMnO}_4 \)), cerium ammonium molybdenate (CAM), phosphomolybdic acid (PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230–400 mesh silica gel 60.

Analytical Instrumentation

IR spectra were recorded on a Shimadzu IRAffinity-1 FTIR or a Nicolet 6700 FTIR spectrometer with peaks reported in \(\text{cm}^{-1} \). NMR spectra were recorded on a Varian VNMRS 400, 500 and 600 MHz NMR spectrometer in CDCl\(_3\) unless otherwise indicated. Chemical shifts are expressed in ppm relative to solvent signals: CDCl\(_3\) (\(^1\text{H} \), 7.26 ppm, \(^{13}\text{C} \), 77.0 ppm); coupling constants are expressed in Hz. NMR spectra were processed using Mnova (www.mestrelab.com/software/mnova-nmr). Mass spectra were obtained at the OU Analytical Core Facility on an Agilent 6538 High-Mass-Resolution QTOF Mass Spectrometer and an Agilent 1290 UPLC. X-ray crystallography analysis was carried out at the University of Oklahoma using a Bruker APEX ccd area detector and graphite-monochromated Mo K\(\alpha \) radiation (\(\lambda = 0.71073 \ \text{Å} \)) source and a D8 Quest diffractometer with a Bruker Photon II cmos area detector and an Incoatec
μs microfocus Mo Kα source (λ = 0.71073 Å). Crystal structures were visualized using CCDC Mercury software (http://www.ccdc.cam.ac.uk/products/mercury/).

Nomenclature

N.B.: Atom numbers shown in chemical structures herein correspond to IUPAC nomenclature, which was used to name each compound.

3-butyne-1-ol is commercially available from Chem. Impex. and was used without further purification.

(S)-1-phenylbut-3-yn-1-ol 5b and (R)-1-phenylbut-3-yn-1-ol 5c were synthesized in a four-step procedure as reported by Sandgren et al.12a.

(R)-1-phenylpent-4-yn-2-ol 5d was synthesized in a four-step procedure as reported by Montagnat et al.12b.
2.1.0.1 GENERAL PROCEDURE FOR THE SYNTHESIS OF TETRAHYDROFURANS (GP1)

Alkynol (1 equiv.), Rh$_2$((esp))$_2$ (1 mol%), AgOTf (10 mol%), PPh$_3$AuCl (10 mol%), and activated 4Å molecular sieves (36 mg per mL of solvent) were added to a round bottom flask, dissolved in anhydrous dichloromethane (0.2 M), and allowed to pre-mix for 5 minutes. The diazo (1.2 equiv.) was dissolved in anhydrous dichloromethane (0.2 M making a total 0.1 M solution for the reaction) was then added dropwise via syringe over a span of 2 minutes. Once the release of N$_2$ gas ceased, reaction was observed to be complete by TLC. After completion, reaction mixture was filtered through a pad of celite and concentrated by rotary evaporation to provide the crude compound. Purification by flash chromatography (EtOAc/Hex) afforded pure tetrahydrofurans 29.

Methyl 2–benzoyl–3–methylenetetrahydrofuran–2–carboxylate (6a). Prepared from methyl 2–diazo–3–oxo–3–phenylpropanoate and 3–butyn–1–ol using general procedure GP1. Yellow liquid (52 mg, 86%). 1H NMR (400 MHz) δ 8.05–7.99 (m, 2H), 7.57–7.51 (m, 1H), 7.46–7.39 (m, 2H), 5.50 (t, $J = 2.1$ Hz, 1H), 5.41 (t, $J = 2.3$ Hz, 1H), 4.21 (q, $J = 7.8$ Hz, 1H), 4.08 (dt, $J = 8.3$, 6.4 Hz, 1H), 3.74 (s, 3H), 2.73 (ddt, $J = 7.5$, 4.4, 1.4 Hz, 2H). 13C NMR (101 MHz) δ 191.2, 170.0, 143.8, 134.3, 133.2, 129.7 (2C), 128.4 (2C), 112.6, 90.2, 68.9, 53.0, 32.9.

Yellow oil (47 mg, 80%). **TLC:** *Rf* 0.5 (4:1 hexanes/EtOAc). **IR** (NaCl) ν_{max}: 2958, 2924, 2854, 2127, 1722, 1598, 1583 cm⁻¹. **¹H NMR** (400 MHz) δ 8.07–8.03 (m, 2H), 7.57–7.50 (m, 1H), 7.47–7.39 (m, 2H), 5.50 (t, *J* = 2.1 Hz, 1H), 5.41 (t, *J* = 2.2 Hz, 1H), 4.23 (q, *J* = 7.8 Hz, 1H), 4.07 (dt, *J* = 8.2, 6.3 Hz, 1H), 2.73 (ddt, *J* = 8.3, 4.4, 1.7 Hz, 2H), 1.32 (s, 9H). **¹³C NMR** (101 MHz) δ 191.3, 168.5, 144.3, 134.8, 132.9, 129.6 (2C), 128.3 (2C), 111.9, 90.1, 83.1, 68.8, 33.2, 29.7, 27.6. **ESI–MS** *m/z* calcd for C₁₇H₂₀O₄ ([M+Na]⁺) 311.1; found 311.1.

Ethyl 2–acetyl–3–methylene tetrahydrofuran–2–carboxylate (6c). Prepared from ethyl 2–diazo–3–oxobutanoate and 3–butyn–1–ol using general procedure **GP1.** Yellow oil (45 mg, 64%). **TLC:** *Rf* 0.60 (7:3 hexanes/EtOAc). **IR** (NaCl) ν_{max}: 2963, 2925, 1745, 1662 cm⁻¹. **¹H NMR** (400 MHz) δ 5.32 (t, *J* = 2.4 Hz, 1H), 5.30 (t, *J* = 2.2 Hz, 1H), 4.17 (qd, *J* = 7.1, 2.9 Hz, 2H), 4.09–3.97 (m, 2H), 2.70–2.59 (m, 2H), 2.17 (s, 3H). **¹³C NMR** (101 MHz) δ 201.6, 168.1, 143.3, 112.0, 90.2, 68.4, 61.9, 32.7, 30.8, 25.4, 13.9. **HRMS** (ESI) *m/z* calcd for C₁₀H₁₄O₄ ([M+Na]⁺) 221.0790; found 221.0784.

1,1′–(3–Methylene tetrahydrofuran–2,2–diyl)bis(ethan–1–one) (6d). Prepared from 3–diazopentane–2,4–dione and 3–butyn–1–ol using general procedure **GP1.** Orange oil (52 mg, 78%). **¹H NMR** (400 MHz) δ 5.34 (t, *J* = 2.2 Hz, 1H), 5.30 (t, *J* = 2.4 Hz, 1H), 4.08 (t, *J* = 7.1 Hz, 2H), 2.67 (ddd, *J* = 7.1, 4.9, 2.3 Hz, 2H), 2.23 (s, 6H). **¹³C NMR** (101 MHz) δ 198.8, 178.9, 144.7, 112.9, 95.5, 42.3, 25.9.
1,1’–(3–Methylene–5–phenyltetrahydrofuran–2,2–diyl)bis(ethan–1–one) (6e). Prepared from 3– diazopentane–2,4–dione and 1–phenylbut–3–yn–1–ol using general procedure **GP1.** Yellow oil (72mg, 72%). **TLC:** *Rf* 0.63 (7:3 hexanes/EtOAc). **\(^{1}H\) NMR** (400 MHz) δ 7.46–7.30 (m, 5H), 5.37 (dd, *J* = 2.8, 1.6 Hz, 1H), 5.34 (dd, *J* = 3.0, 1.6 Hz, 1H), 5.07 (dd, *J* = 10.3, 6.1 Hz, 1H), 3.03 (ddt, *J* = 15.7, 6.1, 1.6 Hz, 1H), 2.65 (ddt, *J* = 15.8, 10.3, 2.9 Hz, 1H), 2.31 (d, *J* = 5.4 Hz, 6H). **\(^{13}C\) NMR** (101 MHz) δ 203.3, 202.6, 142.6, 139.9, 128.7 (2C), 128.3 (2C), 126.1, 111.9, 81.4, 41.2, 26.3, 26.0. **HRMS** (ESI) *m/z* calcd for C\(_{15}\)H\(_{16}\)O\(_{3}\) ([M+Na]\(^{+}\)) 267.0997; found 267.0993.

Methyl (2S,4S)–2–benzoyl–3–methylene–4–phenyltetrahydrofuran–2–carboxylate (6f). Prepared from methyl 2–diazo–3–oxo–3–phenylpropanoate and 2–phenylbut–3–yn–1–ol using general procedure **GP1.** Clear oil (47 mg, 77%). **TLC:** *Rf* 0.65 (4:1 hexanes/EtOAc). **\(^{1}H\) NMR** (400 MHz) δ 8.14–8.02 (m, 2H), 7.63–7.53 (m, 1H), 7.52–7.37 (m, 2H), 7.40–7.15 (m, 5H), 5.55 (d, *J* = 3.0 Hz, 1H), 5.13 (d, *J* = 2.7 Hz, 1H), 4.47 (t, *J* = 8.2 Hz, 1H), 4.27 (dd, *J* = 10.1, 8.3 Hz, 1H), 3.97 (ddt, *J* = 10.7, 8.1, 2.8 Hz, 1H), 3.80 (s, 3H). **\(^{13}C\) NMR** (101 MHz) δ 190.6, 170.2, 148.7, 138.5, 134.2, 133.4, 129.8 (2C), 128.9 (2C), 128.7 (2C), 128.5 (2C), 127.3, 114.4, 91.4, 76.1, 53.1, 50.6.

general procedure **GP1.** Clear oil (52 mg, 77%). **TLC:** Rf 0.64 (7:3 hexanes/EtOAc). **1H NMR** (400 MHz) δ 8.16–8.03 (m, 4H), 7.60–7.50 (m, 1H), 7.48–7.39 (m, 1H), 7.37–7.19 (m, 4H), 5.53 (dd, J = 2.8, 1.3 Hz, 1H), 5.46 (dd, J = 3.1, 1.2 Hz, 1H), 5.42 (dd, J = 10.8, 5.6 Hz, 1H), 3.77 (s, 3H), 3.04 (ddt, J = 15.2, 5.7, 1.3 Hz, 1H), 2.67 (ddt, J = 15.1, 10.8, 2.9 Hz, 1H). **13C NMR** (101 MHz) δ 190.8, 170.3, 144.2, 140.0, 134.4, 133.2, 129.9 (2C), 128.4 (2C), 128.3 (2C), 127.9, 125.9, 112.6, 82.2, 52.9, 41.9. **HRMS** (ESI) m/z calcd for C$_{20}$H$_{18}$O$_4$ ([M+Na]$^+$) 345.1095; found 345.1102.

Methyl (2R,5R)–2–benzoyl–5–((benzyloxy)methyl)–3–methylenetetrahydrofuran–2–carboxylate (6h). Prepared from methyl 2–diazo–3–oxo–3–phenylpropanoate and (R)–1–(benzyloxy)pent–4–yn–2–ol using general procedure **GP1.** Clear oil (62 mg, 64%): $\alpha$$_{21}^D$ +22.8 (c = 1, CHCl3). **TLC:** Rf 0.52 (7:3 hexanes/EtOAc). **1H NMR** (400 MHz) δ 8.13–8.00 (m, 2H), 7.40 (t, J = 7.8 Hz, 3H), 7.23 (dd, J = 5.2, 1.7 Hz, 3H), 7.16 (dd, J = 6.9, 2.8 Hz, 2H), 5.48 (dd, J = 2.7, 1.6 Hz, 1H), 5.40 (dd, J = 2.9, 1.6 Hz, 1H), 4.43 (s, 2H), 3.75 (s, 3H), 3.66 (ddd, J = 14.6, 4.8, 2.4 Hz, 1H), 3.53 (t, J = 4.3 Hz, 2H), 2.84 – 2.72 (m, 1H), 2.68 (ddt, J = 8.9, 5.9, 2.7 Hz, 1H). **13C NMR** (101 MHz) δ 191.3, 170.2, 143.8, 138.0, 134.4, 133.1, 129.9, 129.3, 128.6, 128.3, 123.8, 123.2, 127.5, 127.4, 112.8, 90.9, 79.9, 77.3, 73.2, 71.1, 53.0, 35.2. **HRMS** (ESI) m/z calcd for C$_{22}$H$_{22}$O$_5$ ([M+Na]$^+$) 389.1357; found 389.1365.

Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

(benzyloxy)pent–4–yn–2–ol using general procedure GP1. Clear oil (47 mg, 75%): [α]^{21}\text{D} –22.8 (c = 1, CHCl\text{3}). TLC: Rf 0.52 (7:3 hexanes/EtOAc). {1H NMR} (400 MHz) δ 8.13–8.00 (m, 2H), 7.40 (t, J = 7.8 Hz, 3H), 7.23 (dd, J = 5.2, 1.7 Hz, 3H), 7.16 (dd, J = 6.9, 2.8 Hz, 2H), 5.48 (dd, J = 2.7, 1.6 Hz, 1H), 5.40 (dd, J = 2.9, 1.6 Hz, 1H), 4.43 (s, 2H), 3.75 (s, 3H), 3.66 (ddd, J = 14.6, 4.8, 2.4 Hz, 1H), 3.53 (t, J = 4.3 Hz, 2H), 2.84 – 2.72 (m, 1H), 2.68 (ddt, J = 8.9, 5.9, 2.7 Hz, 1H). {13C NMR} (101 MHz) δ 191.3, 170.2, 143.8, 138.0, 134.4, 133.1, 129.9, 129.3, 128.6 (2C), 128.3, 128.2, 127.5, 127.4, 112.8, 90.9, 79.9, 77.3, 73.2, 71.1, 53.0, 35.2. HRMS (ESI) m/z calcd for C\textsubscript{22}H\textsubscript{22}O\textsubscript{5} ([M+Na]+) 389.1357; found 389.1365.

2.10.3 GENERAL PROCEDURE FOR THE SYNTHESIS OF DIAZO COMPOUNDS (GP2)

To a flame dried round bottom flask equipped with a magnetic stir bar was added A prepared solution of lactam precursor in acetonitrile (0.2M, 1.0 equiv) and p–acetamidobenzenesulfonyl azide (1.2 equiv). The reaction mixture was cooled to 0 ºC and triethylamine (3.0 equiv) was added dropwise by hand. The reaction mixture was monitored via TLC until complete lactam consumption was observed. The reaction mixture was then diluted with ethyl acetate, and washed with a saturated solution of ammonium chloride. The aqueous layer was extracted with additional ethyl acetate, and combined organics were dried over sodium sulfate, filtered, and concentrated. The crude mixture was then purified via flash silica gel chromatography to furnish diazo compounds 31.
(S)-3-diazo-1-(2,4-dimethoxybenzyl)-5-isobutylpyrrolidine-2,4-dione (7c). Prepared using (S)-1-(2,4-dimethoxybenzyl)-5-isobutylpyrrolidine-2,4-dione and general procedure E. Bright yellow oil (600 mg, 77%). $[\alpha]_{D}^{21} = -85.5$ (c = 0.023, CHCl$_3$). TLC: R_f 0.51 (40% Ethyl acetate in hexanes). IR (NaCl) ν_{max}: 2999, 2957, 2872, 2839, 2360, 2335, 2123, 1762, 1689, 1612, 1508, 1402, 1363, 1209, 1157, 1122, 1037, 835 cm$^{-1}$. 1H NMR (500 MHz) δ 7.22 (d, J = 8.1 Hz, 1H), 6.48–6.42 (m, 2H), 4.99 (d, J = 14.8 Hz, 1H), 4.13 (d, J = 14.8 Hz, 1H), 3.80 (d, J = 1.0 Hz, 6H), 3.76 (dd, J = 7.5, 3.9 Hz, 1H), 1.89 (m, J = 13.4, 6.6, 5.4, 1.7 Hz, 1H), 1.78–1.65 (m, 2H), 0.92 (d, J = 6.7 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H). 13C NMR (126 MHz) δ 190.3, 161.6, 160.9, 158.4, 131.6, 128.3, 116.3, 104.4, 98.5, 62.7, 55.41, 55.4, 38.9, 38.1, 23.9, 23.6, 22.5. LRMS (ESI) m/z calcd for C$_{17}$H$_{24}$N$_3$O$_4$Na ([M+Na]$^+$) 354.4; found 353.9.

(R)-3-diazo-1-(2,4-dimethoxybenzyl)-5-isobutylpyrrolidine-2,4-dione (7d). Prepared using (R)-1-(2,4-dimethoxybenzyl)-5-isobutylpyrrolidine-2,4-dione and general procedure E. Bright yellow oil (255 mg, 71%). $[\alpha]_{D}^{21} = +85.3$ (c = 0.017, CHCl$_3$). TLC: R_f 0.51 (40% Ethyl acetate in hexanes). IR (NaCl) ν_{max}: 2957, 2870, 2396, 2388, 2123, 1683, 1614, 1589, 1506, 1404, 1361, 1209, 1157, 1122, 1035, 858 cm$^{-1}$. 1H NMR (500 MHz) δ 7.23 (d, J = 8.1 Hz, 1H), 6.52–6.41 (m, 2H), 5.00 (d, J = 14.8 Hz, 1H), 4.14 (d, J = 14.8 Hz,
1H), 3.81 (s, 6H), 3.77 (dd, J = 7.6, 3.9 Hz, 1H), 1.96 – 1.84 (m, 1H), 1.73 (m, 2H), 0.93 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.5 Hz, 3H). 13C NMR (101 MHz) δ 190.2, 161.6, 160.8, 158.3, 131.5, 128.3, 116.1, 104.3, 98.3, 62.6, 55.3, 55.3, 38.8, 38.0, 23.8, 23.6, 22.4. LRMS (ESI) m/z calcd for C$_{17}$H$_{26}$N$_3$O$_4$Na ([M+Na]$^+$) 354.4; found 353.9.

(S)–5–benzyl–3–diazo–1–(2,4–dimethoxybenzyl)pyrrolidine–2,4–dione (7e). Prepared using (S)–5–benzyl–1–(2,4–dimethoxybenzyl)pyrrolidine–2,4–dione and general procedure E. Bright yellow oil (126 mg, 47%). [α]$^{21}_D$ –40.2 (c = 0.024, CHCl$_3$). TLC: R_f 0.62 (50% Ethyl acetate in hexanes). IR (NaCl) ν_{\max}: 3028, 3001, 2937, 2360, 2335, 1768, 1695, 1612, 1506, 1456, 1415, 1259, 1207, 1157, 1122, 1035, 925, 833 cm$^{-1}$. 1H NMR (400 MHz) δ 7.36 (s, 2H), 7.31–7.22 (m, 3H), 7.17 (d, J = 9.0 Hz, 1H), 7.12 (m, 2H), 6.49 – 6.42 (m, 2H), 5.03 (d, J = 14.6 Hz, 1H), 4.24 (d, J = 14.6 Hz, 1H), 4.02 (t, J = 4.4 Hz, 1H), 3.81 (d, J = 5.7 Hz, 6H), 3.19 (t, J = 4.8 Hz, 2H). 13C NMR (126 MHz) δ 189.3, 161.8, 161.0, 158.5, 134.5, 131.8, 129.7 (2C), 128.5(2C), 128.3 (2C), 127.2, 116.1, 104.5, 98.5, 64.6, 55.4, 39.4, 34.8. LRMS (ESI) m/z calcd for C$_{20}$H$_{19}$N$_3$O$_4$Na ([M+Na]$^+$) 388.4; found 387.9.
(S)-3-diazo-1-(2,4-dimethoxybenzyl)-5-methylpyrrolidine-2,4-dione (7f). Prepared using (S)-1-(2,4-dimethoxybenzyl)-5-methylpyrrolidine-2,4-dione and general procedure E. Faint yellow oil (499 mg, 93%). \([\alpha]^{21}_D = -162.2 \ (c = 0.024, \text{CHCl}_3)\). \text{TLC: } R_f 0.63 (50% Ethyl acetate in hexanes). \text{IR (NaCl) } \nu_{\text{max}}: 2939, 2837, 2360, 2335, 2214, 1664, 1612, 1508, 1462, 1265, 1213, 1157, 1122, 1037, 974, 935, 835 \text{ cm}^{-1}.

\text{^1H NMR (400 MHz) } \delta 7.22–7.15 (m, 1H), 6.42 (d, \(J = 6.8 \text{ Hz}, 2H\)), 4.92 (d, \(J = 14.8 \text{ Hz}, 1H\)), 4.15 (d, \(J = 14.8 \text{ Hz}, 1H\)), 3.77 (d, \(J = 7.4 \text{ Hz}, 6H\)), 3.73 (q, 1H), 1.36 (d, \(J = 6.9 \text{ Hz}, 3H\)). \text{^13C NMR (101 MHz) } \delta 190.2, 161.0, 160.9, 158.4, 131.4, 116.3, 104.5, 98.4, 60.1, 55.4, 55.4, 43.5, 38.6, 15.3. \text{LRMS (ESI) } m/z \text{ calcd for } C_{14}H_{15}N_3O_4Na ([M+Na]^+) 312.3; \text{ found 311.9.}

2.10.3 GENERAL PROCEDURE FOR THE SYNTHESIS OF SPIRO-\(\gamma\)-LACTAMS (GP3)

To a 4.0 mL vial equipped with a magnetic stir bar was added powdered 4Å molecular sieves (70 mg/ mL solvent). The molecular sieves were activated via heat and allowed to cool to room temperature under vacuum. Rh\(_2((esp))_2\) (1 mol %), AuClPPh\(_3\) (10 mol %), and AgSbF\(_6\) (10 mol %) were then measured directly into the reaction vessel. A solution of alkynol (1.2 equiv.) and diazo (1.0 equiv.) in dichloromethane (0.3M) was added, and the mixture was sonicated for 30 seconds. The reaction vessel was sealed, and heated to reflux. The reaction was monitored by TLC until complete consumption of diazo was observed (between 30 minutes – 5 h). The crude reaction mixture was then cooled to room temperature, filtered through a pad of celite, concentrated, and analyzed via \(^1H\) NMR. The crude mixture was then purified via flash chromatography to furnish spirocyclic compounds.
6,9–dione (13c). Prepared from (S)–3–diazo–1–(2,4–dimethoxybenzyl)–5–isobutylpyrrolidine–
2,4–dione and but–3–yn–1–ol using general procedure GP3 (Conversion of Diazo observed in 1
hour). Yellow–orange crystalline solid (38 mg, 68%). m.p. 128–136 ºC. [α]$_{21}$D = −22.5 (c = 0.006,
CHCl$_3$). TLC : R_f 0.30 (40% Ethyl acetate in hexanes). IR (NaCl) ν_{max}: 2956, 2929, 2973, 2360,
2335, 1772, 1702, 1589, 1508, 1463, 1438, 1413, 1365, 1294, 1267, 1209, 1159, 1126, 1035,
914, 833, 786 cm$^{-1}$. 1H NMR (500 MHz) δ 7.29 (m, 1H), 6.47 (m, 2H), 5.19 (d, J = 14.3 Hz, 1H), 5.10
(s, 1H), 4.59 (s, 1H), 4.33 (t, J = 7.1 Hz, 2H), 4.11 (d, J = 14.4 Hz, 1H), 3.88 (t, J = 5.3 Hz, 1H), 3.81
(d, J = 3.3 Hz, 6H), 2.78 (m, 2H), 1.90 – 1.72 (m, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.80 (d, J = 6.2 Hz,
3H). 13C NMR (126 MHz) δ 208.0, 170.1, 161.0, 158.5, 148.0, 132.2, 116.0, 107.9, 104.4, 98.5,
83.2, 70.1, 61.1, 55.4, 55.3, 38.7, 37.1, 33.2, 24.3, 23.6, 22.5. HRMS (ESI) m/z calcd for
C$_{21}$H$_{27}$NO$_5$Na ([M+Na]$^+$) 396.1787; found 396.1783.

6,9–dione (13d). Prepared from (R)–3–diazo–1–(2,4–dimethoxybenzyl)–5–isobutylpyrrolidine–
2,4–dione and but–3–yn–1–ol using general procedure GP3 (Conversion of Diazo observed in 1
hour). Yellow crystalline solid (37 mg, 66%). m.p. 127–139 ºC. [α]$_{21}$D = +22.9 (c = 0.011, CHCl$_3$). TLC
: R_f 0.30 (40% Ethyl acetate in hexanes). IR (NaCl) ν_{max}: 2956, 2875, 2841, 2360, 2335, 1772, 1703,
1612, 1587, 1508, 1462, 1413, 1294, 1267, 1209, 1159, 1128, 1089, 1033, 910, 833 cm$^{-1}$. 1H NMR
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

(500 MHz) δ 7.29 (m, 1H), 6.49 – 6.45 (m, 2H), 5.19 (d, J = 14.4 Hz, 1H), 5.10 (s, 1H), 4.58 (s, 1H), 4.33 (t, J = 7.8, 2H), 4.11 (d, J = 14.4 Hz, 1H), 3.88 (t, J = 5.3 Hz, 1H), 3.81 (d, J = 3.2 Hz, 6H), 2.86 – 2.73 (m, 2H), 1.89 – 1.72 (m, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.79 (d, J = 6.2 Hz, 3H). 13C NMR (126 MHz) δ 208.0, 170.1, 161.0, 158.5, 148.0, 132.2, 116.0, 107.9, 104.4, 98.4, 83.2, 70.1, 61.3, 55.4, 55.3, 38.7, 37.1, 33.2, 24.3, 23.6, 22.5. HRMS (ESI) m/z calcd for C_{21}H_{27}NO_{5}Na ([M+Na]+) 396.1787; found 396.1787.

(5R,8S)–8–benzyl–7–(2,4–dimethoxybenzyl)–4–methylene–1–oxa–7–azaspiro[4.4]nonane–6,9–dione (13e). Prepared from (S)–5–benzyl–3–diazo–1–(2,4–dimethoxybenzyl)pyrrolidine–2,4–dione and but–3–yn–1–ol using general procedure GP3 (Conversion of Diazo observed in 30 minutes). Vibrant yellow oil (23 mg, 64%). [α]_{D}^{21} –37.8 (c = 0.017, CHCl_{3}). TLC : R_{f} 0.33 (50% Ethyl acetate in hexanes). IR (NaCl) ν_{max}: 3294, 3076, 2958, 2872, 2841, 2360, 2335, 1772, 1703, 1612, 1589, 1508, 1462, 1413, 1294, 1267, 1209, 1126, 1035, 916, 833, 732 cm^{-1}. 1H NMR (400 MHz) δ 7.32 – 7.18 (m, 4H), 7.13 – 7.09 (m, 2H), 6.51 – 6.43 (m, 2H), 5.14 (d, J = 14.4 Hz, 1H), 5.06 (s, 1H), 4.54 (s, 1H), 4.28 – 4.23 (m, 2H), 4.21 – 4.15 (m, 2H), 3.81 (d, J = 2.1 Hz, 6H), 3.30 (dd, J = 14.7, 3.4 Hz, 1H), 3.17 (dd, J = 14.7, 6.4 Hz, 1H), 2.72 (m, 2H). 13C NMR (101 MHz) δ 207.2, 170.0, 161.0, 158.5, 147.9, 135.1, 132.3, 129.57 (2C), 128.6 (2C), 127.1, 115.9, 108.0, 104.5, 98.5, 83.2, 70.0, 63.2, 55.4, 55.4, 39.1, 34.5, 33.1. HRMS (ESI) m/z calcd for C_{24}H_{25}NO_{5}Na ([M+Na]+) 430.1630; found 430.1635.
(5R,8S)–7–(2,4–dimethoxybenzyl)–8–methyl–4–methylene–1–oxa–7–azaspiro[4.4]nonane–6,9–dione (13f). Prepared from (S)–3–diazo–1–(2,4–dimethoxybenzyl)–5–methylpyrrolidine–2,4–dione and but–3–yn–1–ol using general procedure GP3 (Conversion of Diazob observed in 1 hour). Faint yellow oil (32 mg, 63%). [α]$_{21}^{D}$ –68.0 (c = 0.011, CHCl$_3$). TLC : R_f 0.28 (50% Ethyl acetate in hexanes). IR (NaCl) ν_{max}: 2956, 2873, 2841, 2360, 2335, 2125, 2096, 1772, 1701, 1612, 1508, 1462, 1413, 1367, 1294, 1207, 1161, 1126, 1089, 1035, 833 cm$^{-1}$. 1H NMR (500 MHz) δ 7.33 – 7.25 (m, 1H), 6.47 (m, 2H), 5.20 (d, J = 14.5 Hz, 1H), 5.12 (s, 1H), 4.63 (s, 1H), 4.34 (t, J = 7.0 Hz, 2H), 4.11 (d, J = 14.5 Hz, 1H), 3.90 (q, J = 6.8 Hz, 1H), 3.82 (s, 6H), 2.84 – 2.73 (m, 2H), 1.41 (d, J = 6.7 Hz, 3H). 13C NMR (126 MHz) δ 207.2, 169.4, 161.0, 158.5, 147.5, 132.1, 116.0, 108.0, 104.5, 98.5, 83.6, 70.0, 58.1, 55.4, 55.4, 38.3, 33.0, 14.3. HRMS (ESI) m/z calcd for C$_{18}$H$_{21}$NO$_5$Na ([M+Na]$^+$) 354.1317; found 354.1299.

5-isobutylpyrrolidine–2,4-dione and (S)–1–phenylbut–3–yn–1–ol using general procedure GP3 (Conversion of Diazo observed in 45 minutes). Vibrant yellow oil (16 mg, 65%). \([\alpha]^{21}_D -72.4 \) (c = 0.006, CHCl\(_3\)). TLC: \(R_f 0.61 \) (40% Ethyl acetate in hexanes). IR (NaCl) \(\nu_{\text{max}} \): 3001, 2958, 2933, 2870, 2358, 2341, 2123, 1770, 1699, 1614, 1587, 1506, 1456, 1409, 1294, 1265, 1209, 1157, 1128, 1089, 1033, 918, 835, 754, 736, 700 cm\(^{-1}\). \(^1\)H NMR (500 MHz) \(\delta \): 7.54 – 7.51 (m, 2H), 7.39 – 7.28 (m, 4H), 6.50 – 6.45 (m, 2H), 5.45 (dd, \(J = 10.6, 5.6 \) Hz, 1H), 5.19 (d, \(J = 14.4 \) Hz, 1H), 5.09 (s, 1H), 4.62 (s, 1H), 4.14 (d, \(J = 14.4 \) Hz, 1H), 3.96 (t, \(J = 7.2 \) Hz, 1H), 3.82 (d, \(J = 3.1 \) Hz, 6H), 3.01 (m, 1H), 2.75 (m, 1H), 1.94 – 1.83 (m, 1H), 1.82 – 1.77 (m, 2H), 0.95 (d, \(J = 6.6 \) Hz, 3H), 0.81 (d, \(J = 6.5 \) Hz, 3H). \(^{13}\)C NMR (126 MHz) \(\delta \): 206.9, 170.5, 161.0, 158.4, 147.7, 140.5, 132.4, 128.4 (2C), 128.1, 126.6, 116.1, 108.1, 104.5, 98.5, 84.0, 82.9, 61.0, 55.4, 55.3, 42.1, 38.7, 37.3, 24.3, 23.7, 22.4, 20.8. HRMS (ESI) m/z calcd for C\(_{27}\)H\(_{33}\)NO\(_5\)Na ([M+Na]\(^+\)) 472.2100; found 472.2099.

In this mismatch diazo/alcohol case, the reaction became sluggish after 5 hours and full consumption of alcohol compound was not observed. The overall yields based on recovered alcohol starting material 28c was 68%.

\((2R,5R,8S)–7–(2,4–\text{dimethoxybenzyl})–8–\text{isobutyl}–4–\text{methylene}–2–\text{phenyl}–1–\text{oxa}–7–\text{azaspiro[4.4]nonane}–6,9–\text{dione} \ (13h \ \text{major})\). Prepared from (S)–3–diazo–1–(2,4–dimethoxybenzyl)–5–isobutylpyrrolidine–2,4–dione and (R)–1–phenylbut–3–yn–1–ol using general procedure GP3 (Partial conversion of diazo observed in 5 hours). Vibrant yellow oil (14
mg, 23%) [α]^{21}_D −38.1 (c = 0.008, CHCl₃). **TLC:** R$_f$ 0.61 (40% Ethyl acetate in hexanes). **IR** (NaCl) ν$_{max}$: 3001, 2956, 2931, 2872, 2841, 2123, 1772, 1703, 1612, 1587, 1506, 1460, 1411, 1294, 1265, 1209, 1159, 1128, 1087, 1033, 1004, 918, 833, 754, 700 cm$^{-1}$. **1H NMR** (500 MHz) δ 7.60 – 7.56 (m, 2H), 7.40 – 7.33 (m, 2H), 7.32 – 7.28 (m, 2H), 6.48 (m, 2H), 5.47 (dd, J = 9.1, 6.6 Hz, 1H), 5.23 (d, J = 14.3 Hz, 1H), 5.11 (s, 1H), 4.62 (sm, 1H), 4.14 (d, J = 14.4 Hz, 1H), 3.90 – 3.86 (m, 1H), 3.82 (d, J = 2.8 Hz, 6H), 3.11 (m, 1H), 2.86 (m, 1H), 1.92 – 1.80 (m, 1H), 1.81 – 1.73 (m, 2H), 0.94 (d, J = 6.6 Hz, 3H), 0.81 (d, J = 6.4 Hz, 3H). **13C NMR** (101 MHz) δ 209.2, 169.4, 160.95, 158.5, 148.0, 140.8, 132.1, 128.4 (2C), 128.1 (2C), 126.5, 115.8, 108.0, 104.4, 98.4, 82.7, 61.3, 55.4, 55.3, 42.1, 38.8, 37.4, 29.7, 24.3, 23.7, 22.4. **HRMS** (ESI) m/z calcd for C$_{27}$H$_{31}$NO$_5$Na ([M+Na]$^+$) 472.2100; found 472.2107.

(2R,5S,8S)–7–(3,4–dimethylbenzyl)–8–isobutyl–4–methylene–2–phenyl–1–oxa–7–azaspiro[4.4]nonane–6,9–dione (13h minor). Prepared from (S)–3–diazo–1–(2,4–dimethoxybenzyl)–5–isobutylpyrrolidine–2,4–dione and (R)–1–phenylbut–3–yn–1–ol using general procedure **GP3** (Partial conversion of diazo observed in 5 hours). Yellow oil (7 mg, 11%) **1H NMR** (400 MHz, Chloroform–d) δ 7.54 – 7.48 (m, 2H), 7.40 – 7.28 (m, 5H), 6.47 (d, J = 2.2 Hz, 1H), 5.45 (dd, J = 10.6, 5.6 Hz, 1H), 5.19 (d, J = 14.4 Hz, 1H), 5.09 (d, J = 2.6 Hz, 1H), 4.61 (d, J = 2.9 Hz, 1H), 4.13 (d, J = 14.4 Hz, 1H), 3.96 (t, J = 5.5 Hz, 1H), 3.82 (d, J = 2.5 Hz, 6H), 3.01 (dd, J = 15.1, 5.4 Hz, 1H), 2.82 – 2.67 (m, 1H), 1.92 – 1.74 (m, 3H), 0.94 (d, J = 6.5 Hz, 2H), 0.81 (d, J = 6.4 Hz, 2H). **13C NMR** (101 MHz, cdcl$_3$) δ 206.9, 170.5, 161.0, 158.4, 147.7, 140.5, 132.3, 128.4 (2C), 128.1, 126.6, 125.6, 116.1, 108.0, 104.4, 98.5, 84.0, 82.9, 61.0, 55.3, 42.1, 38.7, 37.3, 29.7, 24.3, 23.6, 22.4. **HRMS** (ESI) m/z calcd for C$_{27}$H$_{32}$NO$_5$N ([M+H]$^+$) ; 450.2280; found 450.2281.
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

\[
\text{DMB} \quad \text{N} \quad \text{Ph}
\]

Minor

\[
\text{Major}
\]

(2S,5R,8S)–2–benzyl–7–(2,4–dimethoxybenzyl)–8–isobutyl–4–methylene–1–oxa–7–azaspiro[4.4]nonane–6,9–dione (13i major). Prepared from (S)–3–diazo–1–(2,4–dimethoxybenzyl)–5–isobutylpyrrolidine–2,4–dione and using general procedure GP3 (Conversion of Diazo observed in 4 hours). Vibrant yellow oil (41 mg, 49%). \([\alpha]^{21}_D – 63.5 (c = 0.012, \text{CHCl}_3)\). TLC : \(R_f 0.69\) (50% Ethyl acetate in hexanes). \(\text{IR (NaCl)} \nu_{\text{max}}: 3032, 3001, 2956, 2926, 2870, 2362, 2335, 2121, 1772, 1699, 1612, 1587, 1506, 1462, 1411, 1363, 1294, 1265, 1207, 1159, 1126, 1089, 1037, 918, 833, 756, 700 \text{cm}^{-1}\). \(^1\text{H NMR}\) (500 MHz) \(\delta 7.28 \text{ m, 2H), 7.26 – 7.18 (m, 4H), 6.45 (m, 2H), 5.16 (d, } J = 14.4 \text{ Hz, 1H), 5.01 (s, 1H), 4.78 – 4.68 (m, 1H), 4.53 (s, 1H), 4.10 (d, } J = 14.4 \text{ Hz, 1H), 3.89 – 3.86 (m, 1H), 3.80 (d, } J = 3.2 \text{ Hz, 6H), 3.23 (dd, } J = 13.6, 6.0 \text{ Hz, 1H), 2.84 (dd, } J = 13.6, 7.7 \text{ Hz, 1H), 2.69 (m, 1H), 2.52 – 2.44 (m, 1H), 1.84 (m, 1H), 1.77 (m, 2H), 0.95 (d, } J = 6.5 \text{ Hz, 3H), 0.80 (d, } J = 6.4 \text{ Hz, 3H).} \(^{13}\text{C NMR}\) (101 MHz) \(\delta 207.2, 170.4, 160.9, 158.4, 147.9, 137.7, 132.2, 129.3, 128.4 (2C), 126.4, 116.0, 108.1, 104.4, 98.4, 84.1, 82.2, 61.0, 55.4, 55.3, 41.8, 38.6, 37.2, 29.7, 24.3, 23.7, 22.4, 14.1. \(\text{HRMS (ESI)} m/z \text{ calcd for } C_{28}H_{33}NO_5\text{Na (}[\text{M+Na}]^+)) 486.2256; \text{found 486.2264.}

(2S,5S,8S)–2–benzyl–7–(3,4–dimethylbenzyl)–8–isobutyl–4–methylene–1–oxa–7–azaspiro[4.4]nonane–6,9–dione (13i minor). Prepared from (S)–3–diazo–1–(2,4–dimethoxybenzyl)–5–isobutylpyrrolidine–2,4–dione and using general procedure GP3 (Conversion of Diazo observed in 4 hours). Yellow oil (11 mg, 12%). \(^1\text{H NMR}\) (500 MHz, 69
Chloroform–d) δ 7.36 – 7.28 (m, 4H), 7.25 – 7.14 (m, 3H), 6.48 (d, J = 7.9 Hz, 2H), 5.21 (d, J = 14.4 Hz, 1H), 5.05 (d, J = 2.2 Hz, 1H), 4.72 (p, J = 6.8 Hz, 1H), 4.58 (d, J = 2.5 Hz, 1H), 4.14 (d, J = 14.4 Hz, 1H), 3.87 (t, J = 5.5 Hz, 1H), 3.82 (d, J = 4.1 Hz, 6H), 3.26 (dd, J = 13.6, 6.4 Hz, 1H), 2.86 (dd, J = 13.6, 7.7 Hz, 1H), 2.78 – 2.70 (m, 1H), 2.61 – 2.54 (m, 1H), 1.89 – 1.81 (m, 1H), 1.77 (dd, J = 7.5, 5.3 Hz, 2H), 0.95 (d, J = 6.6 Hz, 3H), 0.80 (d, J = 6.4 Hz, 3H). \(^{13}\)C NMR (126 MHz, cdcl\(_3\)) δ 206.9, 171.1, 158.5, 147.7, 132.3, 129.4 (2C), 128.4 (2C), 126.3, 116.0, 108.22, 104.4, 98.4, 82.1, 60.9, 55.4, 41.9, 38.8, 38.2, 37.3, 30.9, 29.7, 24.3, 23.7, 22.4. HRMS (ESI) m/z calcd for C\(_{28}\)H\(_{33}\)NO\(_5\) ([M+H]+) 464.2437 ; found 464.2427.
Appendix I

Spectra Relevant to Chapter 2
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

![Chemical Structures]

6c
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

6f
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

[Chemical structures and spectra images]

7a
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

[Chemical structure of 7b with NMR spectra]

[Chemical structure of 7b with NMR spectra]
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

7f
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

13b

[Chemical structures and NMR spectra]
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

13c
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

\[\text{DMB} \]

[Chemical structure image]

\[\text{H}_\text{a} \quad \text{H}_\text{b} \quad \text{H}_\text{c} \]
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

Compound: 13c (A colourless, block-shaped crystal of dimensions 0.20 x 0.28 x 0.32 mm)
Sample: SCS-2017-429
User: Steven Schlitzer
Formula: C_{21}H_{27}NO_{5}
CCDC 1572604

Comment
The displacement ellipsoids were drawn at the 50% probability level.
Table S1. Crystal data and structure refinement for SCS-2017-429.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{21}H_{27}N_{5}O_{5}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>373.43</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_{1}2_{1}2_{1}</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a=10.098(4) \text{ Å} \quad \alpha=90^\circ)</td>
</tr>
<tr>
<td></td>
<td>(b=13.103(5) \text{ Å} \quad \beta=90^\circ)</td>
</tr>
<tr>
<td></td>
<td>(c=14.443(5) \text{ Å} \quad \gamma=90^\circ)</td>
</tr>
<tr>
<td>Volume</td>
<td>1911.0(12) \text{ Å}^{3}</td>
</tr>
<tr>
<td>Z, Z'</td>
<td>4, 1</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.298 \text{ Mg/m}^{3}</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 \text{ Å}</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) \text{ K}</td>
</tr>
<tr>
<td>(F(000))</td>
<td>800</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.092 mm\text{-}1</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.099 to 25.993(^\circ)</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>29580</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3739 [R(int)=0.1052]</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3739 / 0 / 244</td>
</tr>
<tr>
<td>(wR(F^2 \text{ all data}))</td>
<td>(wR2=0.1478)</td>
</tr>
<tr>
<td>(R(F \text{ obsd data}))</td>
<td>(R1=0.0514)</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>1.027</td>
</tr>
<tr>
<td>Observed data [I > 2(\sigma(I))]</td>
<td>2537</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-0.6(10)</td>
</tr>
<tr>
<td>Largest and mean shift / s.u.</td>
<td>0.000 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.223 and -0.214 e/Å(^3)</td>
</tr>
</tbody>
</table>
Compound : 13d (A colourless, rod-shaped crystal of dimensions 0.05 x 0.15 x 0.41 mm)
Sample : SCS-2017-439
User : Steven Schlitzer
Formula : C₂₁H₂₇NO₅
CCDC 1572603

Comment
The displacement ellipsoids were drawn at the 50% probability level.
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

Table S2. Crystal data and structure refinement for SCS-2016-439.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>(\text{C}{21}\text{H}{27}\text{N}\text{O}_5)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>373.43</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>(\text{P2}_1\text{2}_1\text{2}_1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a=10.1147(7) \text{ Å}) (\alpha=90^\circ)</td>
</tr>
<tr>
<td></td>
<td>(b=13.1272(9) \text{ Å}) (\beta=90^\circ)</td>
</tr>
<tr>
<td></td>
<td>(c=14.4524(10) \text{ Å}) (\gamma=90^\circ)</td>
</tr>
<tr>
<td>Volume</td>
<td>1919.0(2) \text{ Å}^3</td>
</tr>
<tr>
<td>(Z, Z')</td>
<td>4, 1</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.293 \text{ Mg/m}^3</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>(F(000))</td>
<td>800</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.092 \text{ mm}^{-1}</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.995 and 0.963</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.096 to 27.498°</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>37767</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4407 [\text{R(int)=0.0354}]</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4407 / 0 / 244</td>
</tr>
<tr>
<td>(wR(F^2 \text{ all data}))</td>
<td>(wR^2=0.0794)</td>
</tr>
<tr>
<td>(R(F \text{ obsd data}))</td>
<td>(R_1=0.0302)</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>0.990</td>
</tr>
<tr>
<td>Observed data ([I > 2\sigma(I)])</td>
<td>4105</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.1(3)</td>
</tr>
<tr>
<td>Largest and mean shift / s.u.</td>
<td>0.000 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.229 and -0.179 \text{ e/Å}^3</td>
</tr>
</tbody>
</table>
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

13f
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers

[Diagram of molecular structure with labeled atoms and protons (Ha, Hb, Hc, Ph, DMB)].

114
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
Ch. 2 – Catalytic Cascade Approach to Tetrahydrofurans, γ-Butyrolactones, and Spiroethers
CHAPTER 3

Method Development for the Synthesis of Spirothiophenes and All-Carbon Spirocycles

3.1 INTRODUCTION

Our research team has had considerable success with combining carbene-insertion chemistry with Conia-ene electrophilic trapping chemistry to prepare a diverse library of heterocyclic scaffolds; so far, our methodology has successfully utilized carboxylic acid O–H, alcohol O–H, amine N–H, and sp² C–H insertion approaches to the corresponding heterocycle, and in all cases the cascade could be used to access spirocyclic scaffolds. We continue to explore
carbene-insertion chemistry of lesser-studied nucleophiles, namely the S-H insertion of thiols, and sp\(^3\) C-H insertion of alkanes (Scheme 3.1).

\[\text{Scheme 3.1 a.) Rationale for carbene S–H insertion/Conia-ene cascade b.) Modified retrosynthetic disconnection for sp}^3 \text{ C–H insertion/Conia-ene cascade} \]

In order to address the challenge of forming all-carbon spirocycles, we needed to adjust our strategic rationale from an intermolecular approach, to an intramolecular one (Scheme 3.1b). Site-selective reactivity remains a major challenge in the field of C-H insertion, and intramolecular variants have been the most successful substrates due to the reduced entropic factor, arising from the close proximity between nucleophile and carbenoid. Additionally, we expect that constraining our desired site of C-H insertion through ring constraint would improve the entropic driving force for the reaction.

Sulfur heterocycles have received attention in the field of medicinal chemistry, and are often used in bioisosteric replacement of the corresponding nitrogen- and oxygen-
heterocycles. While the field also includes scaffolds bearing nitrogen in addition to sulfur, like thiazoles, isothiazoles, and thiazolidines – 5-membered thiophenes and 6-membered thiopyrans all well represented in biologically active scaffolds.1a Additionally, all-carbon spirocycles are found in a number of synthetic and naturally-occurring compounds with unique biological activity.1b–1d Our innovative carbene cascade methodology seeks to provide new step- and atom-economic methods to provide such heterocycles.

3.1.1 S–H INSERTION TO DIAZO-DERIVED CARBENES

While the carbene O–H insertion reaction has been well studied for nearly a half-century, the reactivity of the isoelectronic sulfur S–H insertion reaction has only received moderate attention. These studies employed the use of reactive Donor/Acceptor diazo compounds, and predominantly benzylic/aromatic thiol substrates.2 Only a handful of somewhat dated reports exist, however, into the S-H insertion of Acceptor/Acceptor carbenoids.3

There are many similarities between the reactivity of O–H and S–H nucleophiles with carbenes, but one key difference leads to an entirely different reactive pathway for thiols (Scheme 3.2).

Scheme 3.2. a.) General mechanism for carbene O–H insertion b.) Analogous reaction mechanism for S–H insertion
In both cases, a suitable metal catalyst decomposes the diazo compound to generate the reactive carbenoid, which bonds to either the oxygen- or sulfur-lone pair electrons. In the case of O–H insertion, the zwitterionic intermediate then undergoes 1,2-proton transfer to give the corresponding insertion compound, but in the case of S–H insertion the metal is capable of dissociation to generate a stabilized ylide. 1,2-proton transfer of this intermediate then provides the S–H insertion product. In addition, this ylide intermediate is capable of undergoing a number of sigmatropic rearrangements if thioethers are employed as substrates in place of thiols.

3.1.2 S–R INSERTION TO CARBENES & REARRANGEMENT REACTIONS

Because they proceed through a somewhat stable ylide intermediate, thioethers are able to undergo a number of rearrangements, dependent on the identity of their substituent (Scheme 3.3).

Scheme 3.3.

a.) 1,2-Stevens rearrangement of sulfur ylide intermediates

b.) Doyle-Kirmse rearrangement of sulfur ylide intermediates

Generally, sulfur-ylide intermediates are capable of undergoing a 1,2-Stevens rearrangement, in which an alkyl migration occurs to provide a thioether product (Scheme 3.2a). These ylide intermediates have shown to be suitably stable for isolation, then photochemically
converted to the rearranged product.4d In the case of strongly electron deficient benzylic migrating groups, the related Sommelet-Hauser rearrangement is possible, in which the bond migration occurs to the ortho- ring position.

A similar rearrangement reaction, the Doyle-Kirmse rearrangement, occurs in the case of allylic thioethers under carbene-insertion conditions. (Scheme 3.3b). This concerted [2,3]-sigmatropic rearrangement is known to occur under thermodynamic or photochemical conditions, and in the case of propargylic thioethers, has produced isolable allene products. Notably, there have been developments in both earth abundant catalysis and asymmetric induction for the Doyle-Kirmse reaction.4e,4h Unlike the related S–H insertion reaction, S–R insertion has been well studied for Acceptor/Acceptor diazo substrates, and has even been used as a key step in several total synthesis.4a,4d

3.1.3 C–H INSERTION TO DIAZO-DERIVED CARBENES: REACTIVITY & MECHANISM

The C–H bond is ubiquitous in organic compounds, and selective utilization of this fundamentally inert functionality, remains a major challenge in organic synthesis. The field of C–H functionalization, which has received considerable attention in the last decade, has established several unique strategies to promote C–H reactivity. Such strategies have been comprehensively collected in a number of reviews.5

The process of C-H functionalization, broadly describing the cleavage of a C–H bond which then binds to a new functionality, includes two distinct strategies – C–H activation, and C–H insertion. C-H activation is classified by stepwise cleavage of a C–H bond by oxidative addition of an appropriate metal catalyst, followed by further functionalization using an organic substrate.
A representative example of this includes the common catalytic cycle of Rhodium(III) cylopentadienyl dimers (Scheme 3.4a).5a

\[
\text{[Cp}^*\text{MX}_2\text{]}_2 \quad \Leftrightarrow \quad 2\; \text{[Cp}^*\text{MX}_2]\]

Scheme 3.4. a.) Doyle’s proposed mechanism for C–H insertion to rhodium carbenoids. b.) general mechanism for sp^2 C–H activation by metal(III) catalysts.

In this C–H activation approach, the rhodium (III) catalyst undergoes oxidative addition to the sp^2 C–H bond of electron-rich arenes to generate a rhodium (II) intermediate, capable of decomposing diazo substrates. Migratory insertion of the carbenoid ultimately generates the C–H functionalized product.

C–H Insertion, meanwhile, can occur using carbenes generated with dirhodium(II) carboxylate dimers. C-H Insertion occurs through concerted homolysis the C-H bond, with simultaneous bond formation to the carbenoid (Scheme 3.4b).5f,5h
A major challenge in C–H functionalization is site-selectivity. Because the C–H bond is so prevalent, trying to promote reactivity commonly results in a complex mixture of products, especially in the case of intermolecular reactions. In fact, an early quote by diazo pioneer Mike Doyle states that “Intermolecular C–H insertion reactions... are not synthetically useful.” This challenge has been addressed, and predominantly overcome, in the subsequent decades through efforts by research teams of Davies, Teyssie, and Moody, among others. Early reports by the Teyssie group showcase the intramolecular C–H insertion reactivity of ethyl diazoacetate to unactivated alkanes, which was moderately tunable by altering the electronics of the accompanying dirhodium(II) carboxylate dimer (Scheme 3.5).5i,j

\textbf{Scheme 3.5.} Teyssie’s survey on selectivity in intermolecular C–H insertion to ethyl diazoacetate.

As preliminarily shown by Teyssie’s bulky Rh\textsubscript{2}(9-trp)\textsubscript{4} catalyst results, further developments of dirhodium(II) carboxylate catalysts can help overcome the selectivity issues rampant in the field of C-H insertion. The group of Huw Davies disclosed a new bulky, chiral
dirhodium(II) catalyst in 1996 — tetrakis[(S)-(-)-N-(p-dodecylphenylsulfonyl)prolinato]dirhodium(II) (Rh$_2$(S-DOSP)$_4$). In the years to follow, Davies and coworkers would go on to showcase Rh$_2$(S-DOSP)$_4$’s excellent reactivity in the intermolecular C-H Insertion of donor-acceptor diazos into an array of C-H substrates (Scheme 3.6).5f

Scheme 3.6. a.) Davies’ study towards the reaction rates of C-H substrates towards insertion. b.) Survey of reactivity for allylic and benzylic substrates towards with aryldiazo acetates.

In a series of competition studies, Davies’ was able to observe a high reaction rate for substrates capable of stabilizing a positive charge (Scheme 3.6a). Namely, the allylic system and adjacent to a heteroatom. Interestingly, in the case of 1,3-cyclohexadiene, the rate of C–H insertion overcame the rate of cyclopropanation of styrene. Later, the group would determine a relative reactivity spectrum of allylic and benzylic systems (Scheme 3.6b). It was shown that allylic systems bearing conjugation to silyl ethers displayed remarkable reactivity. Electron-neutral and electron-rich benzylic substrates meanwhile produced moderate reaction rates, while not overcoming the rate of secondary allylic substrates. With insight towards harnessing C–H insertion reactivity, we designed a substrate which would employ benzylic C–H insertion in a cascade manner.
3.2 DIVERGENT S-H INSERTION/CONIA-ENE CASCADE APPROACH TO SPIROTHIOPHENES

In order to access a new realm of heterocycles and spiroheterocycles based on sulfur, we pursued the synthesis of mercaptyne substrates, capable of undergoing a S–H insertion/Conia-ene cascade.

3.2.1 SYNTHESIS OF SECONDARY MERCAPTYNE PRECURSORS

Thiols were prepared in a four-step sequence from commercially available styrene oxide (Scheme 3.7).

Scheme 3.7. Synthesis of secondary mercaptyne 2

First, styrene oxide was exposed to ring-opening conditions with lithium acetylide to produce racemic 2-phenylbutyn-1-ol. The alcohol was then converted to the corresponding tosylate, which was exposed to substitution conditions with \textit{in situ} generated potassium thioacetate. The material could be stored as the thioacetate for long periods of time, and is converted to corresponding thiol 2 through hydride reduction conditions. While the route could be used to synthesize primary 3-butyn-1-thiol, we had difficulties during thiol isolation,
predominantly due to the volatility of the compound under vacuum. For this reason, we proceeded using secondary thiol 2.

3.2.2 STEPWISE APPROACH TO SPIROTHIOPHENES

With a route established to the desired mercaptynye substrates, we turned our attention towards reaction optimization (Scheme 3.8). We began our optimization studied by using Rh$_2$(esp)$_2$, our previously established catalyst for O–H insertion. We had previously observed success in the stepwise Conia-ene cyclization of Acceptor/Acceptor O–H insertion products, so we envisioned being able to optimize the insertion and Conia-Ene steps individually, then proceed to a one-pot trial.

![Scheme 3.8 Stepwise S-H insertion/Conia-ene sequence to hydrothioufuran 4](image)

Scheme 3.8 Stepwise S-H insertion/Conia-ene sequence to hydrothioufuran 4

First, ketoester diazo 1 and secondary mercaptynye 2 were exposed to Rh$_2$(esp)$_2$, and we were able to isolate insertion compound 3 with a moderate yield in dichloromethane at room temperature. Characterization of 3 by 1H NMR was complication by the compound’s tendency to undergo keto-enol tautomerization, and the diastereotopic peaks arising from a racemic nucleophile. We next exposed insertion product 3 to cationic gold catalytic conditions. We did not observe any conversion at room temperature, but quickly achieved conversion of 3 after
Ch. 3 – Method Development for the Synthesis of Spriothiophenes and All-Carbon Spirocycles

elevating temperatures to reflux. To our delight, we were able to isolate desired hydrothiofuran 4, characterized by its diagnostic exo-olefin protons in 1H NMR.

3.2.3 ONE-POT APPROACH TO THIOFURANOFURANS

Encouraged by this stepwise trial, we next turned our attention to one-pot conditions (Scheme 3.9).

Scheme 3.9 One-pot S-H insertion/Conia-Ene trial

When diazo 1 and mercaptyne 2 were exposed to one-pot catalytic conditions, however, we did not observe any evidence of hydrothiophenes 4. Instead, we characterized a product distinctly lacking a ketone peak, and with 2 new olefin peaks observable on 13C NMR.

We rationalize the formation of thiofuranofuran 5 due to interaction between mercaptyne 2 and the cationic gold catalytic conditions (Scheme 3.10).

Scheme 3.10 Proposed mechanism for thiofuranofuran formation
We propose that, in the presence of cationic gold, mercaptyne 2 underwent a 5-endo-dig cyclization to produce thiophene A before diazo 1 was able to undergo S–H insertion. Instead, with the formation of a new olefin, thiophene 1 underwent carbenoid cyclopropanation to produce polarized cyclopropane B. C, a resonance form of B showcases the electrophilicity of the thiophene C2 once a polarized cyclopropane is generated. Lastly, the enolate resulting from ring opening underwent O-alkylation to quench the sulfonium ion, resulting in formation of thiofuranofuran 5.

While these preliminary results are not entirely encouraging, we have determined a novel new reactive pathway for secondary mercaptynes to generate a fused, heterocyclic scaffold. While these results may not bode well for a one-pot S–H insertion/Conia-ene approach to hydrothiophenes, reaction condition optimization may be able to circumvent the undesired 5-endo-dig cyclization of mercaptyne 2.

For example, we could utilize slow addition of the diazo and gold mixture to a mixture of mercaptyne 2 and rhodium, which may circumvent the undesired 5-endo-dig cyclization; generation of carbenoids from diazos through gold catalysis is a known process however and should be anticipated from this approach. In addition, screening other additives besides silver salt for the generation of cationic gold could mitigate the undesired annulation reactivity. Copper and zinc salts are also well-known to generate cationic gold from AuRCl pre-catalysts. Lastly, the coordination ability of the paired silver counterion could be tuned; typically, weakly coordinating anions like AgSbF$_6$ and OTf$^-$ produce highly cationic gold species, which were successful in cases where there were no chemoselectivity issues. It is possible that stronger anion coordination could affect the catalytic activity of the gold cation.
3.3 **sp³ C-H INSERTION APPROACH TO ALL-CARBON SPIROCYCLES**

Without being able to take advantage of the fundamental reactivity of functional groups, C–H insertion cascades represent a challenge in organic synthesis. The analogous all-carbon spirocenters required a new retrosynthetic disconnection from our previous X–H insertion/Conia-ene strategies, now reliant on intramolecular C–H insertion to minimize entropic driving force for the process.

3.3.1 HUNTER AND SHARMA’S **sp² C-H INSERTION/CONIA–ENE CASCADE FOR THE SYNTHESIS OF CARBOCYCLIC OXINDOLES**

In 2018, Hunter et. al. disclosed a new reaction cascade using an interrupted C–H insertion strategy for the synthesis of carbocyclic oxindoles (Scheme 3.11).\(^6\)

![Scheme 3.11](image)

Scheme 3.11. Hunter et. al’s sp² C–H Insertion/Conia-ene cascade to synthesize spirocarbocycles

In their report, the group discloses a successful intramolecular C–H insertion/Conia-ene reaction cascade using rhodium(II) carboxylate dimers, and gold-activated alkynes. The reaction conditions proved general for the formation of 5-, 6-, and 7-membered carbocycles, and was even suitable for the decomposition of acceptor-only diazos, with minor modifications of the optimized reaction conditions. This development led our hypothesis for the formation of a new
spirocyclic scaffolds – if a substrate could undergo ortho- sp\(^2\) C–H insertion and subsequent Cona-ene cyclization, could a substrate be designed to harness the analogous sp\(^3\) C–H insertion strategy? Guided by Davies’ survey of intermolecular sp\(^3\) C–H insertion, we suspected that a benzylic C–H bond would be the ideal site for our approach.

3.3.2 SYNTHESIS OF C-H INSERTION LINEAR PRECURSOR

![Scheme 3.12. Synthetic approach to C–H insertion precursor 6](image)

To access diazo 6, first 1,3-cyclohexandione was exposed to soft enolization conditions, and trapped with TMSOTf to generate the corresponding vinyl triflate. Next, the enolate of 2’-methylacetophenone was generated using LiHMDS, and quenched with the vinyl triflate, which undergoes ring opening to produce the desired methylene precursor.\(^7a\) Lastly, diazo transfer conditions to the active methylene using p-ABSA cleanly afforded parent diazo 6.

To access 5-membered and 7-membered precursors, an alternative synthesis was sought due to 1,3-cyclopananedione’s incompatibility in vinylogous triflate ring opening, and the high cost of 1,3-cycloheptanonedione (Scheme 3.13).
Scheme 3.13. Synthesis of diazos 7 and 8 through acyl substitution of benzotriazoleamides

In both cases the correspond alkynoic acid, readily accessible via Jones oxidation of the commercially available alkynol, was converted to the triazole amide via carbodiimide coupling conditions. Next, inspired by a recent report,7b 2'-methylacetophenone was exposed to soft enolization conditions in the presence of a Lewis acid to afford the resulting methylene precursors. Lastly, diazo transfer conditions using p-ABSA afforded desired diazos 7 and 8.

3.3.3 OPTIMIZATION STUDIES – BENZYLIC C–H INSERTION/CONIA-ENE CASCADE

Having established a convenient route to diazos 6-8, we turned our attention towards promoting the desired benzylic C–H reactivity. As was the case will acceptor/acceptor diazo substrates, we envisioned that we could optimize the insertion and Conia-ene processes sequentially, then combine these insights for a one pot approach (Scheme 3.14).
Scheme 3.14 Proof-of-concept study: stepwise Benzylic sp³ C-H Insertion/Conia-ene of 6

Using basic carboxylate dimer Rh₂OAc₄, diazo 6 cleanly underwent the desired sp³ C–H insertion to provide enol 9. The insertion compound then successfully underwent Conia-ene cyclization to produce carbocycle 10. The previously established Ag salt, used for in situ generation of Au⁺, needed to be switched to a Cu salt as was in the case in Hunter’s study, due to the propensity for these terminal alkynes to undergo hydrolysis to the resulting ketone.

Inspired by these stepwise results, we next attempted the cascade reactions in a one-pot fashion (Scheme 3.15).

Scheme 3.15 a.) One-pot cascade trial using Rh₂(esp)₄ b.) One-pot cascade trial using Rh₂(HFB)₄
When 6 was exposed to Rh/Au/Ag in a one pot fashion however, we observed only a small amount of 10, and the presence of byproduct X, we expect formed due to a competing cyclopropanation pathway due to activation of the alkyne. We hypothesized that altering the electrophilicity of the rhodium catalyst could affect the nucleophilicity of the generated Rhod-enolate, favoring the desired insertion/Conia-ene pathway over the undesired cyclopropanation. Indeed, when Rh$_2$(esp)$_2$ was replaced with the highly electron deficient dirhodium(II) heptafluorobutyrate (Rh$_2$(HFB)$_4$), we observed no trace of diagnostic cyclopropane peaks on the crude 1H NMR, and instead clean formation of 10, which was isolated in 70% yield.

Inspired by Hunter and Sharma’s success generating 5- and 7- membered rings through their sp2 C–H Insertion/Conia-ene cascades, we next evaluated diazos 7 and 8 towards stepwise C–H insertion and resulting Conia-ene (Scheme 3.16).

![Scheme 3.16](image)

Scheme 3.16 a.) Stepwise-approach to five-membered carbocycles b.) Stepwise-approach to seven-membered carbocycles

When diazo 7 was exposed to Rh$_2$HFB$_4$, we observed evidence of C–H insertion, but appears the substrate underwent further o-alkylation to produce exo-glycal 11. Hunter and Sharma also encountered this form of reactivity in their sp2 C–H Insertion/Conia-ene approach,
and cited the disfavored 5-enolendo-exo-dig cyclization encouraging undesired ketone alkylation. The authors were able to address this limitation by utilizing a donor/acceptor diazo without the reactive ketone, to circumvent its reactivity. When diazo 8 was exposed to Rh$_2$HFB$_4$ the reaction resulted in complete conversion to the C-H insertion compound 11. Then, when insertion product 12 was exposed to the Au$^+$ conditions, we did not observe any diagnostic exo-olefin protons indicative of successful Conia-ene cyclization, and recovered a complex mixture of products.

3.4 SUMMARY & FUTURE DIRECTIONS

In this chapter, we have described an extension of our insertion/Conia-ene cascade methodology to underutilized S–H and benzylic C–H bonds. Success in these cascade reactions generate hydrothiophenes and all-carbon spirocycles, which are valuable bioisosteres and are found in bioactive natural products. By applying secondary mercaptynes to Rh/Au$^+$ catalytic conditions, we were able to accomplish stepwise S–H insertion and Conia-ene cyclization to produce the desired hydrothiophenes. In a one-pot approach using the secondary mercaptyne and diazo substrates however, we obtained a thiofuranofuran product, which we expect formed by way of intramolecular 5-endo-dig cyclization of the mercaptyne in the presence of Au$^+$, before diazo addition. Employing our knowledge of sp3 C–H insertion reactivity, we also applied our Rh/Au$^+$ methodology for an intramolecular approach to 3-spiroindenones. While this approach has not proven as general as Hunter and Sharma’s previously disclosed method for generating 3-spirooxindoles, we were able to apply our method to form 6-membered spiroindenones through a Conia-ene reaction. Efforts in these pursuits are ongoing and warrant future study.
3.5 REFERENCES FOR CHAPTER 3

d.) Sultanova, R. M.; Khanova, M. D.; Zlotskii, S. S. “The Insertion Reaction of Diazocarbonyl Compounds at C–H Bonds...

3.6 EXPERIMENTAL SECTION

PUBLICATION AND CONTRIBUTION STATEMENT

The material presented in this chapter is unpublished and the sole contributor is Steven Schlitzer. Dr. Indrajeet Sharma contributed with assistance in project design and NMR analysis.

MATERIALS AND METHODS

Reagents

Reagents and solvents were obtained from Sigma-Aldrich (www.sigma-aldrich.com), ChemImpex (www.chemimpex.com) or Acros Organics (www.fishersci.com) and used without further purification unless otherwise indicated. Dry solvents (acetonitrile) were obtained from Acros Organics (www.fishersci.com), and dichloromethane was distilled over CaH$_2$ under N$_2$ unless otherwise indicated. THF purchased from Sigma-Aldrich was distilled over Na metal with benzophenone indicator. Diazo compounds were stored as a dilute solution frozen in benzene for periods longer than 24 hours.

Reactions

All reactions were performed in flame-dried glassware under positive N$_2$ pressure with magnetic stirring unless otherwise noted. Liquid reagents and solutions were transferred thru rubber septa via syringes flushed with N$_2$ prior to use. Cold baths were generated as follows: 0 °C with wet ice/water and −78 °C with dry ice/acetone. Syringe pump addition reactions were conducted using a CMA/100 microinjection pump.

Chromatography
TLC was performed on 0.25 mm E. Merck silica gel 60 F254 plates and visualized under UV light (254 nm) or by staining with potassium permanganate (KMnO₄), cerium ammonium molybdenate (CAM), phosphomolybdic acid (PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230–400 mesh silica gel 60.

Analytical Instrumentation

IR spectra were recorded on a Shimadzu IRAffinity-1 FTIR or a Nicolet 6700 FTIR spectrometer with peaks reported in cm⁻¹. NMR spectra were recorded on a Varian VNMRS 400, 500 and 600 MHz NMR spectrometer in CDCl₃ unless otherwise indicated. Chemical shifts are expressed in ppm relative to solvent signals: CDCl₃ (¹H, 7.26 ppm, ¹³C, 77.0 ppm); coupling constants are expressed in Hz. NMR spectra were processed using Mnova (www.mestrelab.com/software/mnova-nmr). Mass spectra were obtained at the OU Analytical Core Facility on an Agilent 6538 High-Mass-Resolution QTOF Mass Spectrometer and an Agilent 1290 UPLC. X-ray crystallography analysis was carried out at the University of Oklahoma using a Bruker APEX ccd area detector and graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) source and a D8 Quest diffractometer with a Bruker Photon II cmos area detector and an Incoatec Iµs microfocus Mo Kα source (λ = 0.71073 Å). Crystal structures were visualized using CCDC Mercury software (http://www.ccdc.cam.ac.uk/products/mercury/).

Nomenclature

N.B.: Atom numbers shown in chemical structures herein correspond to IUPAC nomenclature, which was used to name each compound.
3.6.1 SYNTHESIS OF SECONDARY MERCAPTYNE 2

1-Phenylbut-3-yne-1-thiol (2). To a suspension of LiAlH₄ (1.25 eq.) in anhydrous diethyl ether (0.4 M) was added a solution of 1-phenylbut-3-yn-1-yl ethanethioate in minimal diethyl ether under N₂. The mixture was heated to reflux with stirring for 3 hours, then cooled to 0 °C, whereby residual LiAlH₄ was destroyed by careful addition of acetone. The precipitate was dissolved by adding 1N HCl. The organic layer was separated, and aqueous layer extracted into Et₂O (3x). Combined organics were washed with 1N HCl (2x), water (2x), and brine, then concentrated by rotatory evaporating, using a water bath set no higher than 35 °C. The resulting thiol was used without further purification. Foul-smelling yellow liquid (368 mg, 99%). ¹H NMR (600 MHz, Chloroform-d) δ 7.39 – 7.24 (m, 5H), 4.23 (dt, J = 7.6, 5.5 Hz, 1H), 2.84 (m, J = 60 Hz, 2H), 2.40 (d, J = 5.2 Hz, 1H), 2.09 (s, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 142.2, 128.7 (2C), 127.8, 126.9 (2C), 81.4, 71.0, 42.8, 30.2.

3.6.2 REACTIVITY OF MERCAPTYNE 2 TOWARDS INSERTION AND CONIA-ENE CHEMISTRY

Methyl 3-oxo-3-phenyl-2-((1-phenylbut-3-yn-1-yl)thio)propanoate (3). To a solution of 1-phenylbut-3-yn-1-thiol (1.0 eq) in dichloromethane (0.2 M) was added Rh2(esp)2 (2 mol %). The system was degassed with N₂, followed by slow dropwise addition of a solution of 2-diazo-3-oxo-3-phenylpropanoate (1.2 eq.) in dichloromethane (0.2 M). The reaction mixture was stirred at
room temperature while monitoring by TLC. After complete conversion of thiol was observed, the reaction was passed through a short celite pad, eluting with excess dichloromethane. The organics were concentrated and purified by column chromatography to provide insertion product 3 as a diastereomeric mixture of keto and enol tautomers. 1H NMR (600 MHz, Chloroform-d) δ 13.81 (s, 1H), 7.84 – 7.79 (m, 2H), 7.70 – 7.65 (m, 2H), 7.58 – 7.52 (m, 2H), 7.48 – 7.45 (m, 2H), 7.44 – 7.27 (m, 24H), 7.22 – 7.17 (m, 4H), 6.97 (dd, $J = 6.7$, 3.0 Hz, 3H), 4.91 (s, 1H), 4.73 (s, 1H), 4.29 (s, 1H), 4.20 (s, 1H), 3.90 (s, 1H), 3.82 (s, 5H), 3.72 (s, 4H), 3.63 (s, 3H), 2.87 – 2.78 (m, 4H), 2.67 – 2.54 (m, 3H), 1.98 (dt, $J = 3.7$, 2.6 Hz, 2H), 1.88 (t, $J = 2.6$ Hz, 1H). 13C NMR (151 MHz, Chloroform-d) δ 190.5, 180.6, 174.2, 168.2, 168.0, 139.7, 133.8, 133.7, 130.1, 129.4, 128.9, 128.7, 128. 7, 128.6, 128.6, 128.2, 128.2, 128.1, 128.1, 128.0, 127.7, 127.4, 127.4, 81.3, 80.5, 80.3, 71.1, 70.1, 54.3, 53.4, 53.2, 52.8, 51.9, 48.6, 48.4, 26.6, 26.1, 24.8.

Methyl 2-benzoyl-3-methylene-5-phenyltetrahydrothiophene-2-carboxylate (4). To a stirred solution of AuClPPh$_3$ (10 mol%) and AgSbF$_6$ (10 mol %) in minimal dichloromethane was added a solution of insertion product 3 in dichloromethane (0.2 M) dropwise by syringe. The reaction was stirred at room temperature while monitoring by TLC, and after full conversion of 3 was observed, the reaction was diluted with excess dichloromethane. Organics were washed with sat. NaHCO$_3$ (2x), water (2x), and brine (1x), then dried over Na$_2$SO$_4$. Removal of solvent followed by purification by column chromatography furnished the title compound as a 5.2:1.0 mixture of diastereomers. Yellow oil (20 mg, 40%).
Methyl 2,5-diphenyl-3a,4,5,6a-tetrahydrothieno[2,3-b]furan-3-carboxylate (5). A solution of 1-phenylbut-3-yne-1-thiol (1.0 eq.), Rh$_2$(esp)$_2$, AuClPPh$_3$, and AgSbF$_6$ in dichloromethane (0.2 M) was prepared and degassed with N$_2$. The mixture was stirred at room temperature, while a solution of methyl 2-diazo-3-oxo-3-phenylpropanoate (1.2 eq.) was added dropwise by syringe. The reaction was stirred at room temperature while monitoring by TLC, and after full conversion of thiol was observed, the reaction was diluted with excess dichloromethane. Organics were washed with sat. NaHCO$_3$ (2x), water (2x), and brine (1x), then dried over Na$_2$SO$_4$. Removal of solvent followed by purification by column chromatography furnished the title compound. 1H NMR (600 MHz, Chloroform-d) δ 7.38 – 7.26 (m, 26H), 4.34 (s, 1H), 4.29 (s, 1H), 4.12 (dd, J = 8.1, 6.3 Hz, 1H), 3.78 – 3.72 (m, 2H), 3.71 (s, 3H), 3.58 (s, 4H), 2.79 – 2.68 (m, 6H), 1.99 (t, J = 2.6 Hz, 1H), 1.96 (t, J = 2.7 Hz, 1H). 13C NMR (151 MHz, Chloroform-d) δ 171.1, 170.6, 140.0, 136.0, 128.7, 128.6, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 80.6, 70.8, 52.7, 52.4, 51.6, 48.8, 48.1, 26.5, 26.3. Yellow oil (23 mg, 68%).

3.6.3 SYNTHESIS OF C-H ACTIVATION DIAZO SUBSTRATES 6-8

General Procedure A for Diazo Transfer: Diketone (1.0 eq.) and p-ABSA (1.2 eq.) were dissolved in anhydrous MeCN (0.2 M) and cooled to 0 °C. Et3N (1.5 eq.) was added dropwise by syringe, and after 15 minutes the reaction was allowed to warm to room temperature. The reaction was stirred at this temperature while monitoring by TLC. After full conversion of diketone was observed (Typically within 2 hours), the reaction mixture was diluted with excess diethyl ether.
The organic layer was washed with sat. NH₄Cl (2x), water (2x), and brine (1x), then dried over Na₂SO₄. Concentration of the organic layer followed by purification of the residue by column chromatography (EtOAc/Hex) furnished diazos 6-8.

2-Diazo-1-(o-tolyl)oct-7-yne-1,3-dione (6). Prepared from (Z)-1-hydroxy-1-(o-tolyl)oct-1-en-7-yn-3-one using General Procedure A. Yellow oil (476 mg, 50%). ¹H NMR (300 MHz, Chloroform-d) δ 7.43 – 7.27 (m, 4H), 3.05 (s, 2H), 2.40 (s, 3H), 2.31 (s, 2H), 1.98 (t, J = 2.6 Hz, 1H), 1.92 (t, J = 7.1 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 192.2, 186.7, 137.6, 135.4, 131.4, 131.0, 126.1, 126.0, 86.12, 83.5, 69.2, 40.0, 22.9, 19.03, 17.8.

2-Diazo-1-(o-tolyl)hept-6-yne-1,3-dione (7). Prepared from (Z)-1-hydroxy-1-(o-tolyl)hept-1-en-6-yn-3-one using general procedure A. Yellow oil (322 mg, 59%). ¹H NMR (300 MHz, Chloroform-d) δ 7.43 – 7.27 (m, 4H), 3.20 (t, J = 7.1 Hz, 2H), 2.59 (td, J = 7.1, 2.7 Hz, 2H), 2.40 (d, J = 0.6 Hz, 3H), 1.99 (t, J = 2.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 190.6, 186.4, 137.2, 135.4, 131.4, 131.0, 125.9, 125.9, 85.9, 82.7, 68.8, 40.0, 18.9, 13.1.
2-Diazo-1-(o-tolyl)non-8-yn-1,3-dione (8). Prepared from (Z)-1-hydroxy-1-(o-tolyl)non-1-en-8-yn-3-one using general procedure A. Yellow oil (138 mg, 62%). \(^1H \) NMR (300 MHz, Chloroform-\(d \)) \(\delta \) 7.41 – 7.27 (m, 3H), 7.25 (m, 1H), 2.93 (dd, \(J = 7.8, 6.9 \) Hz, 2H), 2.38 (s, 3H), 2.22 (td, \(J = 7.0, 2.7 \) Hz, 2H), 1.94 (t, \(J = 2.6 \) Hz, 1H), 1.85 – 1.71 (m, 2H), 1.65 – 1.51 (m, 2H). \(^13C \) NMR (75 MHz, Chloroform-\(d \)) \(\delta \) 192.6, 186.7, 137.6, 135.4, 131.4, 131.0, 126.0 (2C), 86.1, 84.0, 68.6, 40.7, 27.9, 23.3, 19.0, 18.3.

3.6.4 REACTIVITY OF DIAZOS 6-8 TOWARDS INSERTION AND CONIA-ENE CHEMISTRY

General Procedure B for C-H insertion: A solution of Rh\(_2 \)HFB\(_4 \) (2 mol%) in minimal dichloromethane was prepared and degassed using \(N_2 \). The system was heated to reflux, and a solution of diazo 6-8 (1.0 eq.) in dichloromethane (0.2 M) was added dropwise by syringe. The reaction progress was monitored by TLC, and after full conversion of starting material was observed, the reaction was filtered through a celite plug, eluting with excess dichloromethane. Concentration of the organic layer followed by purification of the residue by column chromatography furnished insertion compounds 9, 11 and 12.

1-(3-Hydroxy-1H-inden-2-yl)hex-5-yn-1-one (9). Prepared from 2-Diazo-1-(o-tolyl)oct-7-yn-1,3-dione 6 using General Procedure B. Yellow oil (32 mg, 95%). \(^1H \) NMR (500 MHz, Chloroform-\(d \)) \(\delta \)
Ch. 3 – Method Development for the Synthesis of Spirothiophenes and All-Carbon Spirocycles

7.83 (d, J = 7.7 Hz, 1H), 7.56 (td, J = 7.4, 1.2 Hz, 1H), 7.51 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 3.65 (s, 3H), 2.61 (t, J = 7.3 Hz, 2H), 2.32 (td, J = 6.8, 2.6 Hz, 2H), 2.03 (t, J = 2.6 Hz, 1H), 2.00 – 1.93 (m, 2H). \(^{13}\)C NMR (126 MHz, Chloroform-d) \(\delta\) 179.9, 147.5, 138.2, 135.4, 132.8, 127.7, 127.3, 125.7, 123.2, 83.5, 69.3, 33.2, 30.1, 24.3, 17.9.

1-(3-Hydroxy-1H-inden-2-yl)hept-6-yn-1-one (12). Prepared from 2-Diazo-1-(o-tolyl)non-8-yn-1,3-dione 7 using General Procedure B. Yellow oil (10 mg, 35%). \(^1\)H NMR (300 MHz, Chloroform-d) \(\delta\) 7.83 (dt, J = 7.7, 1.0 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.46 – 7.38 (m, 1H), 3.61 (s, 3H), 2.47 (t, J = 7.5 Hz, 2H), 2.31 – 2.21 (m, 2H), 2.02 (t, J = 2.6 Hz, 1H), 1.92 – 1.80 (m, 2H), 1.72 – 1.55 (m, 2H). \(^{13}\)C NMR (75 MHz, Chloroform-d) \(\delta\) 191.5, 147.5, 138.2, 132.8, 127.4, 125.7, 123.2, 110.2, 68.7, 61.2, 34.2, 30.2, 29.7, 28.0, 24.8, 18.2.

General Procedure C for Conia-ene Cyclization: A solution of AuClPPh\(_3\) (10 mol%) and (Cu(OTf))\(_2\)(C\(_6\)H\(_6\)) (10 mol %) in minimal dichloromethane was prepared and degassed using N\(_2\). The system was heated to reflux, and a solution of insertion product 9 (1.0 eq.) in dichloromethane (0.2 M) was added dropwise by syringe. The reaction progress was monitored by TLC, and after full conversion of starting material was observed, the reaction was filtered through a celite plug, eluting with excess dichloromethane. The organic solution was washed with sat. NaHCO\(_3\) (2x), water (2x), and brine, then dried over Na\(_2\)SO\(_4\). Concentration of the organic
layer followed by purification of the residue by column chromatography furnished insertion compounds 9, 11 and 12.

![Diagram of 2-Methylenespiro[cyclohexane-1,2'-indene]-1',6(3'H)-dione (10)](image)

2-Methylenespiro[cyclohexane-1,2'-indene]-1',6(3'H)-dione (10). Prepared from 1-(3-Hydroxy-1H-inden-2-yl)hex-5-yn-1-one 9 using General Procedure C. Yellow oil (22 mg, 75%). 1H NMR (600 MHz, Chloroform-\(d\)) δ 7.66 (d, $J = 7.7$ Hz, 1H), 7.60 (t, $J = 7.4$ Hz, 1H), 7.50 (d, $J = 7.7$ Hz, 1H), 7.35 (t, $J = 7.4$ Hz, 1H), 4.90 (s, 1H), 4.77 (s, 1H), 4.17 (d, $J = 17.5$ Hz, 1H), 3.26 (d, $J = 17.5$ Hz, 1H), 3.14 – 3.06 (m, 2H), 2.65 (d, 1H, $J = 14.4$ Hz, 1H), 2.50 (d, $J = 14.4$ Hz, 1H), 2.14 (m, 1H), 1.76 (m, $J = 13.1$ Hz, 1H). 13C NMR (151 MHz, Chloroform-\(d\)) δ 204.9, 199.1, 153.3, 145.8, 135.3, 132.2, 127.7, 126.0, 125.3, 109.7, 73.8, 39.8, 32.9, 31.8, 23.9, 14.1.
Appendix II

Spectra Relevant to Chapter 3
Ch. 3 – Method Development for the Synthesis of Spirothiophenes and All-Carbon Spirocycles
Ch. 3 – Method Development for the Synthesis of Spirothiophenes and All-Carbon Spirocycles

4

Mixture of Diastereomers
Ch. 3 – Method Development for the Synthesis of Spirothiophenes and All-Carbon Spirocycles
CHAPTER 4

Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

4.1 INTRODUCTION

The efficient formation of medium-sized rings, broadly classified as rings containing between 8-12 atoms, remains a challenge in organic synthesis. Medium-sized rings are represented in numerous bioactive scaffolds, and challenges in their formation result from high angular and torsional strain, associated with the preferred bond angle of sp3 hybridized carbons. A study towards the rate of intramolecular lactonization (k(intra)) showcases this unique trend (Figure 1);1 This report shows the relative stability of small rings, between 5-7 atoms, met with a marked decrease in reaction rate to generate medium sized rings. As the ring size extends past
12 atoms, the increased size allows for conformational flexibility of the atoms, and resulting stabilization.

Figure 4.1 Impact of ring size on rate of intramolecular lactonization

Recently, our group has developed a new method to access medium-sized rings, which utilizes carbene an X—H insertion/aldol/oxy-cope cascade.\(^2\) In continuing our interest in the formation of complex macrocyclic scaffolds, we initially designed a substrate that would lead to a metal-free approach to benzannulated oxacycles. We hypothesized that coupling readily accessible 2'-hydroxychalcones with crotonic acid would provide a substrate capable of enolization, intramolecular aldol addition, followed by an anionic oxy-cope rearrangement to access 10-membered Oxacycles (**Figure 4.1a**).
When crotonate 1 was exposed to base however, we observed the clean formation of a product that, after NMR analysis, completely lacked any aliphatic protons, as would be expected in the desired macrolactone product. Upon full characterization, we discovered that the product was instead aromatic benzo[c]coumarin 3, which had formed through a base-mediated aldol-elimination to generate 1,3,5-triene 2. This triene intermediate presumably underwent a thermal 6π-electrocyclization and subsequent aerial oxidation to form a new aromatic ring (Scheme 4.1b). After surveying the literature, this tricyclic aromatic scaffold and related scaffolds are the core structures of several notable natural products (Figure 4.1).
Alternariol and autumnariol both feature a benzo[c]coumarin core directly, and the natural product cannabinol was recently synthesized from a benzo[c]coumarin intermediate in three steps.4a-e Likewise, the lactam counterparts, Phenanthradin-6(5\textit{H})-ones, comprise the core scaffold of oxynitidine and N-methylcrinasiadine.4g-h Lastly, similar \textit{bis}-benzannulated scaffolds, dibenzofurans and carbazoles, are well represented in natural product cores, including karnatakafuran B and murrayacine.4i-j Although there are examples in literature of 6π-electrocyclization employed in the synthesis of biologically relevant natural products,5 this serendipitous cascade represents a unique retrosynthetic disconnection for the construction of benzannulated heterocycles that does not rely on modification of a pre-formed heterocyclic scaffold.6
4.2 CAScade approach to benzO[C]coumarins

4.2.1 SUBstrate SYNthesis

The desired crotonate ester starting materials can be accessed via a high-yielding two-step route from commercially available acetophenones and aryl aldehydes (Scheme 4.2). All reactions could be conveniently performed on a multi-gram scale.

\[\text{Condensation between 2'-hydroxycetophenone and benzaldehydes under Claisen-Schmidt conditions afford 2'-hydroxychalcones 4 in excellent yields; These products are easily purified by crystallization in ethanol. Next, carbodiimide coupling of 4 to crotonic acid produces desired ester 1 after acid/base purification. With desired crotonate ester in hand, we began searching for conditions that could encourage the desired intramolecular aldol addition/oxy-cope cascade.} \]
4.2.2 REACTION OPTIMIZATION

With our preliminary observation, we then directed our attention towards optimizing reaction conditions for the formation of benzo[c]coumarin 3 (Table 4.1).

\[
\begin{align*}
\text{Entry} & & \text{Base (eq.)} & \text{Solvent} & \text{Temperature} & \text{2:3} \\
1 & & K_2CO_3 (3.0) & \text{Acetone} & \text{Reflux} & \text{1:2 (23)}^c \\
2 & & \text{Et}_3\text{N} (3.0) & \text{DCM} & \text{Reflux} & \text{N.R.} \\
3 & & \text{DBU} (3.0) & \text{DCM} & \text{rt} & \text{95:5} \\
4 & & \text{DBU} (3.0) & \text{DMSO} & \text{rt} & \text{90:10} \\
5 & & \text{DBU} (3.0) & \text{DMSO} & \text{rt} \rightarrow 80 \, ^\circ\text{C} & \text{0:100 (82)}^c \\
6 & & \text{DBU} (2.0) & \text{DMSO} & \text{rt} \rightarrow 80 \, ^\circ\text{C} & \text{0:100 (64)}^c \\
7 & & \text{DBU} (1.0) & \text{DMSO} & \text{rt} \rightarrow 80 \, ^\circ\text{C} & \text{0:100 (45)}^c \\
8 & & \text{DBU} (0.1) & \text{DMSO} & \text{rt} \rightarrow 80 \, ^\circ\text{C} & \text{trace}
\end{align*}
\]

Table 4.1 Reaction optimization for aldol elimination/electrocyclization sequence. All optimization reactions were performed by adding base at room temperature to a solution of 1 in DMSO (0.15 M). The reaction vessel was sealed and heated at the indicated temperature for 16 hours. bThe percent ratio of 2 and 3 was determined by crude 1H NMR integration. cIsolated yield of 3 obtained after column chromatography.

When we exposed crotonate 1 to potassium carbonate in refluxing acetone, we observed full conversion to triene 2, with a 66% conversion to 3; these reaction conditions however were low yielding, so we explored using common organic bases. We observed no reaction between crotonate 1 in dichloromethane, even when the reaction temperature was elevated to reflux over 24 hours. When DBU was used as the base, we observed full conversion of 1 to triene 2, with partial conversion to 3; this suggested that the desired thermal
electrocyclization could proceed at room temperature, however elevated temperatures may be needed to encourage this reactivity. Inspired by recent reports into the 6\(\pi\)-electrocyclization of 1,3,5-triene systems,\(^6\) DMSO was then used as the reaction solvent and we observed a slight increase in the formation of 3 at room temperature. Finally, we elevated reaction temperatures to 80 °C, and full conversion of 2 to 3 was observed after heating for 16 hours, with an excellent isolated yield.

Lastly, we performed experiments to observe the effect on reducing base equivalency. Although reducing the amount of DBU still resulted in complete conversion of 1 to triene 2, and 2 to 3, we observed a marked decrease in isolated yield when compared to using 3.0 equivalents. When a catalytic amount of DBU was employed, we observed only trace conversion of 1 to 2.
4.2.3 BENZO[C]COUMARIN SUBSTRATE SCOPE

With optimized reaction conditions established, we then explored the effects of substituents on crotonate ester 1 (Scheme 4.3).

![Scheme 4.3 Cascade approach to benzo[c]coumarins – Substrate scope](image)

Scheme 4.3 Cascade approach to benzo[c]coumarins – Substrate scope

Parent crotonate ester 1 cleanly underwent optimized reaction conditions to give 3a in good yields. This reaction was also scaled-up to the 1-gram scale, with only a slight decrease in yield (76%). Aromatic bromination of acetophenone and subsequent coupling furnished ester 1b, which underwent cascade conditions cleanly, producing 2-bromobenzocoumarin 3b in excellent yield. 1b bears an aryl bromide functionality, which was converted to an additional phenyl substituent.
through palladium catalyzed coupling conditions. This substrate produced the corresponding benzocoumarin 3c in a good yield. Next, we examined the effects of altering the electronics of the chalcone functionality, conveniently accessed by using 4-substituted benzaldehyde starting materials. Overall, the reaction proceeded smoothly with electron-neutral and electron-donating substituents (3d – 3f), however strongly electron-withdrawing substituents resulted in diminished yield (3g). We also probed the effect of alternative heterocyclic scaffolds on the reactivity of crotonate 1; by condensing 2’-hydroxyacetophenone with 2-furaldehyde, 1g was cleanly prepared and withstood reaction conditions to furnish furan-substituted benzylcoumarin 3g in good yield. Lastly, we observed the effects on alkylation of the crotonate ester in the β-position. Compound 1i was prepared by coupling 2’-hydroxychalcone with 3-methyl-2-butenoic acid, and did successfully undergo the desired aldol/electrocyclization cascade, however we noticed the reaction became sluggish, and evidence of incomplete electrocyclization was observed.

4.3 SYNTHESIS OF PHENANTHRADIN-6(5H)-ONES

With a substrate scope of 9 substituted benzo[c]coumarins prepared, we then explored the possibility of utilizing the amide analogue of 1 in the reaction cascade, for the synthesis of phenanthradin-6(5H)-ones.
4.3.1 SUBSTRATE SYNTHESIS

Amide substrate 6 could be prepared in a three-step sequence beginning with 2’-aminoacetophenone (Scheme 4.4).

Scheme 4.4 Synthesis of N-methylcrotonamides 6

First, 2’-aminoacetophenone was mono-methylated using iodomethane in the presence of potassium carbonate in DMF. Mono-alkylation proved to be a challenge for this substrate, as the electron-deficient nature of the amine made reductive amination conditions unsuitable. Fortunately, the mono-methyl amine 4 could be separated from its bis-methyl counterpart and unreacted starting material by crystallization. Then, condensation with various aryl aldehydes provided 2’-methylaminochalcones 5 in good, reliable yields. Lastly, acyl substitution with crotonyl chloride produced desired N-methylcrotonylamide 6. Notably, 5 was unresponsive towards carbodiimide coupling conditions with crotonic acid, so the acyl chloride counterpart was used in its stead. With amide 5 in hand, we determined its efficacy in the reaction cascade.
4.3.2 PHENANTHRADIN-6(5H)-ONE SUBSTRATE SCOPE

To our delight, N-methyl-N-crotonylamide 6 withstood optimized conditions smoothly to cleanly afford the desired phenanthradin-6(5H)-one product. We then explored the substrate scope of this transformation with respect to crotonylamides 6 (Scheme 4.5).

![Scheme 4.5 Scope of Phenanthradin-6(5H)-one substrates prepared](image)

Parent N-Methyl-N-crotonylamide 6a cleanly underwent the desired aldol/electrocyclization cascade to give 7a in excellent yields. This reaction was amenable to a scale up to 1-gram, with negligible loss in yield (89%). The reaction conditions also withstood the N-Benzyl protecting group to give 7b in good yields. As in the case of benzo[c]coumarins, bromo-functionalized precursor also underwent the desired cascade to give 7c in good yields. We then
observed the effect of altering the electronics of the 1,3,5-triene intermediate, and isolated electron-neutral and electron-rich products 7d and 7e in good yields, with a slight decrease in yield for electron-poor 7f. Lastly, we explored linear substrates 6 bearing labile amide protecting groups. Unfortunately, the reaction conditions did not withstand the common electron-withdrawing protecting groups tert-butyl carbamate (boc) and 4-toluenesulfonate (Ts). In the case of boc-protected 6g, the reaction produced a complex mixture of products, resulting from cleavage of the boc- protecting group. There are several examples of boc-protected amines undergoing deprotection in the presence of DBU.\(^7\) In the case of tosyl-protected 6h, exposure to DBU resulted in cleavage of the crotonylamide resulting in clean recovery of N-Tosyl-2’-aminochalcone.

4.4 ARYL-ELECTROCYCLIZATION

We next explored the possibility of exchanging one olefin component of 1,3,5-trine intermediate 2 to an aromatic ring. 6p electrocyclizations including an aromatic ring have been documented.\(^8\) Generation of the requisite aryl-diene intermediate would rely on direct \(\alpha\)-enolization and attack of an active methylene precursor, as opposed to our established indirect \(\gamma\)-enolization and \(\alpha\)-enolate attack. If this approach proves successful, it will provide an expedient route to several new tetracyclic frameworks.
4.4.1 SUBSTRATE SYNTHESIS

We envisioned a route to linear precursors 8 involving coupling of prepared 2'-heterochalcones to commercially available arylacetic acids (Scheme 4.6). Fortunately, the pre-established coupling conditions between chalcones and crotonic acid, used to prepare precursors 1 and 6, were well suited to coupling with the arylacetic acids, resulting in precursors 8 being formed in excellent yields in most cases.

Scheme 4.6 a.) Synthesis of Hetroarylbenzo[c]coumarin Precursors b.) Synthesis of Hetroarylphenanthradin-6(5H)-one Precursors

Some of the linear substrates 8 however were prone to enolization and intramolecular aldol condensation during coupling conditions, likely due to the reduced pK_a of the α-methylene relative to the γ-crotonyl protons – In these cases the resulting aryl-diene was exposed to the reaction cascade conditions directly.
4.4.2 SUBSTRATE SCOPE AND LIMITATIONS

Phenyl-substituted precursor 8a was prepared and we proceeded to test our aryl-electrocyclization hypothesis. The precursor underwent the desired aldol condensation in good yields at room temperature, but this intermediate did not undergo 6π-electrocyclization at 80 °C, even after 24 hours. Unfortunately, this substrate did not undergo electrocyclization, even after 48 hours at 180 °C. We hypothesized that exchanging the phenyl ring with electron-rich heterocycles would provide a driving force for the desired electrocyclization to occur. After exchanging the phenyl ring for an electron-rich furan ring, we were delighted to observe the formation of 9b, although a slight increase in temperature (120 °C) was required to induce electrocyclization. We next pursued the scope of aryl-donors that could undergo electrocyclization (Scheme 4.7).

Scheme 4.7 Substrate Scope for Aryl-Electrocyclization Cascade
Furan-substituted 9b was prepared in an excellent 90% yield, and the reaction was also well-suited to a thiofuran donor, resulting in an 83% yield of 9c. Notably, this thiofuran precursor was prone to intramolecular aldol condensation during coupling conditions, so the reaction was performed using the resulting aryl-diene. Next, we explored the possibility of using bicyclic aromatic heterocycle donors – To our delight, the reaction conditions also tolerated dibenzofuran and N-methylindole donors 8e and 8f well, resulting in good yields of 9e and 9f. The lactam analogs were also successful candidates, and phenanthradin-6(5H)-ones 9g and 9h were prepared in comparable yields to their lactone counterparts. Lastly, we attempted the reaction conditions with pyridine-donor 8i, however this compound did not undergo aryl-electrocyclization even after 24 hours at 180 °C.

4.5 SYNTHESIS OF DIBENZOFURANS AND CARBAZOLEs

We next explored the possibility of synthesizing other heterocyclic scaffolds using our Aldol condensation/electrocyclization cascade. We were happy to find that this cascade could be applied to the synthesis of dibenzofurans and carbazoles (Scheme 4.8).

![Scheme 4.8 Cascade approach to dibenzofurans and carbazoles]

2′-functionalized chalcones underwent substitution with ethyl 4-bromocrotonate in the presence of base to cleanly give electrocyclization precursors 8 and 9. These compounds
underwent the desired γ-deprotonation and α-enolate attack to give the desired triene intermediate at room temperature. When the reaction was heated to 80 °C, no desired electrocyclization occurred, but when heated to 120 °C 8 and 9 were converted to dibenzofuran 10 and carbazole 11 were isolated in good yields.

4.6 ATTEMPTED FORMAL SYNTHESIS OF CANNABINOL

The natural product cannabinol (CBN), an agonist of the CB1 and CB2 receptors, was synthesized recently from a benzo[c]coumarin precursor. In their report, Wang et al. reported the synthesis of Benzo[c]coumarin B through intramolecular palladium-catalyzed lactonization of a biphenyl ortho-benzoic acid. Then a functionalization route employed by Teske et. al. was employed, involving addition of methyllithium followed by acid-catalyzed ring closure of the resulting diol, and subsequent ester cleavage. We envisioned that we could accomplish a formal synthesis of cannabinol by synthesizing B through an aldol/electrocyclization cascade of precursor A (Scheme 4.9).

Scheme 4.9 Planned formal synthesis of Cannabinol, using methods from Teske et. al.

We proceeded forward towards the synthesis of A. We designed a three-step route that would afford desired electrocyclization precursor B (Scheme 4.10).
Scheme 4.10 Synthesis of precursor A and exposure to cascade conditions

Methylresorcinol, which differs from methylolivitol, the actual precursor to CBN, was used as a model substrate to test our electrocyclization hypothesis. First, methylresorcinol underwent palladium-catalyzed arylation to give crotonophenone 14, which was exposed to a stoichiometric amount of boron trichloride. We envisioned that these conditions would result in mono-deprotection of a methyl ether, which occurred, but also resulted in Michael addition of chloride to the α,β-unsaturated ketone. We expected this alkyl chloride to undergo elimination in the presence of a base to restore the α,β-unsaturation, so we proceeded forward. Acyl substitution of crotonyl chloride then cleanly afforded desired precursor A.

Unfortunately, when A was exposed to the optimized reaction conditions, we were unable to isolate any quantity of desired CBN precursor, but rather observed a complex mixture of products. We then exposed A to DBU at room temperature, and quenched the reaction after 90 minutes, to determine whether there was an issue with the aldol condensation step, or the subsequent electrocyclization. In this case, we obtained a mixture of products featuring distinct 1H NMR peaks around 12.0 ppm – characteristic of 2′-hydroxychalcones. This leads us to suspect
that this compound, now bearing acidic protons at the ketone \(\gamma \)-position, underwent undesired enolization and subsequent attack on the ester component. Collapse of the resulting tetrahedral intermediate would lead to ester cleavage and fragmentation of the resulting phenol. These findings lead us to infer that a major limitation in substrate scope includes compounds that lack conjugation of the \(\alpha,\beta \)-unsaturated ketone to another functional group.
In summary, while pursuing a new pathway to generate 10-membered oxacycles, we have discovered a reaction cascade whereby benzo[c]coumarins are formed through an aldol condensation/6π-electrocyclization cascade; The cascade conditions proved general and resulted in a substrate scope of nine benzo[c]coumarins. Conditions were also well-suited to synthesize the lactam analogs, and eight N-alkylphenanthridin-6(5H)-ones were prepared. The parent benzo[c]coumarin and phenanthridine-6(5H)-one compounds were amenable to scale-up, and could be prepared at gram-scale. The 6π-electrocyclization could also include an aromatic heterocycle, and by heating at 120 °C six different tetracycles were prepared. By changing the cascade precursor slightly, we were also able to extend this approach to dibenzofuran and carbazole scaffolds. Lastly, insights gained during an attempted formal synthesis of the natural product cannabinol revealed that the reaction cascade undergoes an undesired decomposition pathway in the case of substrates containing enolizable protons on the ketone component, by way of ester cleavage and resulting phenolic fragmentation. The developed cascade methodology has shown an impressive substrate scope, but a limitation requires the α,β-unsaturated ketone be in conjugation with an aromatic ring or ester. Identification of a labile conjugating group, which could be cleaved after electrocyclization, would greatly improve the merit of this methodology. In addition, electrocyclization methodology could be employed in diazo-derived carbene chemistry – carbene-carbene coupling is a well-known process to generate alkenes. Utilizing vinyl, styryl, or aryl diazo compounds could provide a triene intermediate suitable for electrocyclization, as a new approach to substituted heterocycles.
4.8 REFERENCES FOR CHAPTER 4

4.9 EXPERIMENTAL SECTION

PUBLICATION AND CONTRIBUTION STATEMENT

The material in this chapter was published as a cover article in Organic Chemistry Frontiers (DOI: 10.1039/c9qo01336a). Dr. Indrajeet Sharma contributed with assistance in project design, manuscript writing, and editing. The compound examples produced in this chapter are contributed by Steven Schlitzer, with starting material preparation assistance contributed by co-author Katelyn Stevens and purification assistance by co-author Dr. Dhanarajan ‘Arun’ Arunprasath.

MATERIALS AND METHODS

Reagents

Reagents and solvents were obtained from Sigma-Aldrich (www.sigma-aldrich.com), ChemImpex (www.chemimpex.com) or Acros Organics (www.fishersci.com) and used without further purification unless otherwise indicated. Dry solvents (acetonitrile) were obtained from Acros Organics (www.fishersci.com), and dichloromethane was distilled over CaH₂ under N₂ unless otherwise indicated. THF purchased from Sigma-Aldrich was distilled over Na metal with benzophenone indicator.

Reactions

All reactions were performed in flame-dried glassware under positive N₂ pressure with magnetic stirring unless otherwise noted. Liquid reagents and solutions were transferred thru rubber septa via syringes flushed with N₂ prior to use. Cold baths were generated as follows: 0 °C with wet
ice/water and −78 °C with dry ice/acetone. Syringe pump addition reactions were conducted using a CMA/100 microinjection pump.

Chromatography

TLC was performed on 0.25 mm E. Merck silica gel 60 F254 plates and visualized under UV light (254 nm) or by staining with potassium permanganate (KMnO₄), cerium ammonium molybdenate (CAM), phosphomolybdic acid (PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230–400 mesh silica gel 60.

Analytical Instrumentation

IR spectra were recorded on a Shimadzu IRAffinity-1 FTIR or a Nicolet 6700 FTIR spectrometer with peaks reported in cm⁻¹. NMR spectra were recorded on a Varian VNMRS 400, 500 and 600 MHz NMR spectrometer in CDCl₃ unless otherwise indicated. Chemical shifts are expressed in ppm relative to solvent signals: CDCl₃ ([¹H, 7.26 ppm, ¹³C, 77.0 ppm]; coupling constants are expressed in Hz. NMR spectra were processed using Mnova (www.mestrelab.com/software/mnova-nmr). Mass spectra were obtained at the OU Analytical Core Facility on an Agilent 6538 High-Mass-Resolution QTOF Mass Spectrometer and an Agilent 1290 UPLC. X-ray crystallography analysis was carried out at the University of Oklahoma using a Bruker APEX ccd area detector and graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) source and a D8 Quest diffractometer with a Bruker Photon II cmos area detector and an Incoatec Iμs microfocus Mo Kα source (λ = 0.71073 Å). Crystal structures were visualized using CCDC Mercury software (http://www.ccdc.cam.ac.uk/products/mercury/).

Nomenclature
4.9.1 GENERAL PROCEDURE 1 FOR THE SYNTHESIS OF CROTONYLHYDROXYCHALCONES (1)

To a round bottom flask was measured 2′-hydroxyacetophenones (1) (1.0 equiv.), which was then dissolved in dichloromethane (0.2 M). This solution was cooled in an ice/water bath then crotonic acid (1.2 equiv.) and DMAP (0.1 equiv.) were added, followed by the addition of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 1.5 equiv.). The reaction vessel was allowed to warm naturally to room temperature with stirring over 16 hours. The reaction mixture was then diluted with excess dichloromethane and washed sequentially with 1N HCl (2x) and sat. NaHCO$_3$ (2x). Organics were dried over anhydrous Na$_2$SO$_4$, concentrated in vacuo, then purified by flash chromatography eluting with 1:20 ethyl acetate:hexanes gradient to 2:5 ethyl acetate:hexanes to furnish crotonylhydroxychalcones 1a-1h.

2-cinnamoylphenyl (E)-but-2-enoate (1a). Synthesized using general procedure 1. Yellow oil (272 mg, 79% yield). **TLC:** R_f 0.23 (ethyl acetate/hexanes = 1: 4). **IR** (neat) $\tilde{\nu}$$_{max}$: 3032, 1733, 1604, 1448, 1331, 1194, 1146, 1098, 964, 748 cm$^{-1}$. **1H NMR** (600 MHz) δ 7.70 (dd, J = 7.6, 1.7 Hz, 1H), 7.60–7.51 (m, 4H), 7.41–7.31 (m, 4H), 7.20 (dd, J = 8.2, 1.1 Hz, 1H), 7.17–7.08 (m, 2H), 5.97 (dd, J = 15.5, 1.8 Hz, 1H), 1.82 (dd, J = 6.9, 1.7 Hz, 3H). **13C NMR** (151 MHz) δ 191.6, 164.4, 148.7, 147.7,
HRMS (ESI) m/z calcd for C_{19}H_{16}O_{3}Na ([M + Na]^+) 315.0997; found 315.0995.

4-bromo-2-cinnamoylphenyl (E)-but-2-enoate (1b). Synthesized using general procedure 1.
Yellow oil (103 mg, 74% yield). TLC: R_{f} 0.29 (ethyl acetate/hexanes = 3: 7). IR (neat) \(\nu_{\text{max}} \): 3060, 3026, 2973, 1736, 1598, 1448, 1189, 1144, 966, 863, 741, 691 cm\(^{-1}\). \(^1\)H NMR (600 MHz) \(\delta \)
7.79 (d, \(J = 2.4 \) Hz, 1H), 7.63 (dd, \(J = 8.6, 2.4 \) Hz, 1H), 7.59–7.50 (m, 3H), 7.39 (m, 3H), 7.16–7.06
(m, 4H), 5.94 (dd, \(J = 15.6, 1.7 \) Hz, 1H), 1.82 (dd, \(J = 7.0, 1.7 \) Hz, 3H). \(^{13}\)C NMR (151 MHz) \(\delta \)
190.1, 164.1, 148.4, 147.6, 145.9, 135.07, 134.3, 134.2, 132.4, 130.8, 128.9 (2C), 128.5 (2C), 125.2,
125.0, 121.2, 119.1, 18.2. HRMS (ESI) m/z calcd for C_{19}H_{15}BrO_{3}Na ([M + Na]^+) 393.0102; found
393.0102.

3-cinnamoyl-[1,1'-biphenyl]-4-yl (E)-but-2-enoate (1c). Synthesized using general procedure 1.
Yellow oil (154 mg, 35% yield). TLC: R_{f} 0.27 (ethyl acetate/hexanes = 3: 7). IR (neat) \(\nu_{\text{max}} \): 3029,
1734, 1652, 1596, 1477, 1330, 1189, 1097, 964, 789 cm\(^{-1}\). \(^1\)H NMR (600 MHz) \(\delta \)
7.89 (d, \(J = 2.3 \) Hz, 1H), 7.75 (dd, \(J = 8.4, 2.3 \) Hz, 1H), 7.65–7.59 (m, 3H), 7.59–7.53 (m, 2H), 7.46 (t, \(J = 7.7 \) Hz,
2H), 7.42–7.35 (m, 4H), 7.28 (d, \(J = 8.4 \) Hz, 1H), 7.18 (m, 2H), 5.99 (dd, \(J = 15.5, 1.8 \) Hz, 1H), 1.84 (dd, \(J = 6.9, 1.7 \) Hz, 3H). \(^{13}\)C NMR (75 MHz) \(\delta \) 191.7, 164.6, 148.0, 145.4, 139.5, 139.2, 134.6, 132.8, 130.9, 130.7, 129.0, 128.9 (2C), 128.5 (2C), 128.4 (2C), 127.8, 127.2, 125.6, 123.8, 121.5, 18.3. HRMS (ESI) \(m/z \) calcd for C\(_{25}\)H\(_{20}\)O\(_3\)Na ([M + Na]\(^+\)) 391.1310; found 391.1316.

2-((E)-3-(p-tolyl)acryloyl)phenyl (E)-but-2-enoate (1d). Synthesized using general procedure 1. Yellow oil (328 mg, 12% yield). TLC: \(R_f \) 0.39 (ethyl acetate/hexanes = 1: 4). IR (neat) \(\nu_{\max} \): 2916, 1713, 1605, 1443, 1395, 1271, 1076, 887, 811, 781 cm\(^{-1}\). \(^1\)H NMR (600 MHz) \(\delta \) 7.68 (dd, \(J = 7.7, 1.7 \) Hz, 1H), 7.55 (d, \(J = 16.0 \) Hz, 1H), 7.51 (ddd, \(J = 8.2, 7.4, 1.7 \) Hz, 1H), 7.43 (d, \(J = 7.9 \) Hz, 2H), 7.32 (td, \(J = 7.5, 1.2 \) Hz, 1H), 7.19 (dd, \(J = 8.2, 1.1 \) Hz, 1H), 7.17 (d, \(J = 7.8 \) Hz, 2H), 7.15–7.07 (m, 2H), 5.96 (dd, \(J = 15.5, 1.7 \) Hz, 1H), 2.35 (s, 3H), 1.82 (dd, \(J = 6.9, 1.7 \) Hz, 3H). \(^{13}\)C NMR (151 MHz) \(\delta \) 191.7, 164.4, 148.7, 147.7, 145.4, 141.1, 132.7, 132.3, 131.8, 129.8, 129.7 (2C), 128.5 (2C), 125.9, 124.6, 123.5, 121.6, 21.5, 18.2. HRMS (ESI) \(m/z \) calcd for C\(_{20}\)H\(_9\)O\(_3\) ([M + H]\(^+\)) 307.1334; found 307.1325.
2-((E)-3-(4-chlorophenyl)acryloyl)phenyl (E)-but-2-enoate (1e). Synthesized using general procedure 1. Yellow oil (525 mg, 52% yield). **TLC:** \(R_f \) 0.25 (ethyl acetate/hexanes = 3: 7). **IR** (neat) \(\nu_{\text{max}} \): 2915, 1732, 1489, 1293, 1192, 1092, 964, 820, 730 cm\(^{-1}\). **\(^1\)H NMR** (600 MHz) \(\delta \) 7.68 (dd, \(J = 7.6, 1.9 \) Hz, 1H), 7.53 (m, 1H), 7.52–7.47 (d, \(J = 18 \) Hz, 1H), 7.45 (m, 2H), 7.33 (m, 3H), 7.19 (dd, \(J = 8.3, 1.9 \) Hz, 1H), 7.15–7.07 (m, 2H), 5.96 (d, \(J = 15.6 \) Hz, 1H), 1.85–1.81 (d, \(J = 6 \) Hz, 3H). **\(^{13}\)C NMR** (151 MHz) \(\delta \) 191.4, 164.4, 148.7, 147.9, 143.6, 136.4, 133.1 (2C), 132.5 (2C), 129.8 (2C), 129.5 (2C), 129.2, 126.0, 123.5, 121.5, 18.2. **HRMS** (ESI) \(m/z \) calcd for C\(_{19}\)H\(_{15}\)ClO\(_3\)Na ([M + Na]\(^+\)) 349.0607; found 349.0612.

2-((E)-3-(4-methoxyphenyl)acryloyl)phenyl (E)-but-2-enoate (1f). Synthesized using general procedure 1. Yellow oil (146 mg, 45% yield). **TLC:** \(R_f \) 0.13 (ethyl acetate/hexanes = 3: 7). **IR** (neat) \(\nu_{\text{max}} \): 2936, 1733, 1589, 1509, 1194, 1171, 1098, 1021, 966, 826, 730 cm\(^{-1}\). **\(^1\)H NMR** (600 MHz) \(\delta \) 7.67 (dd, \(J = 7.6, 1.7 \) Hz, 1H), 7.55–7.47 (m, 4H), 7.33 (td, \(J = 7.6, 1.1 \) Hz, 1H), 7.19 (dd, \(J = 8.1, 1.1 \) Hz, 1H), 7.11 (dq, \(J = 15.5, 6.9 \) Hz, 1H), 7.01 (d, \(J = 15.8 \) Hz, 1H), 6.89 (d, \(J = 8.8 \) Hz, 2H), 5.97 (dd, \(J = 15.5, 1.8 \) Hz, 1H), 3.83 (s, 3H), 1.84 (dd, \(J = 7.0, 1.7 \) Hz, 3H). **\(^{13}\)C NMR** (151 MHz) \(\delta \) 191.8, 164.5,
161.7, 148.6, 147.7, 145.2, 132.8, 132.1, 130.2, 129.7 (2C), 127.3 (2C), 125.8, 123.4, 121.6, 114.4, 113.5, 55.4, 18.2. **HRMS (ESI) m/z calcd for C_{20}H_{18}O_{4}Na ([M + Na]^+) 345.1103; found 345.1109.**

![Image](2-(E)-3-(4-(trifluoromethyl)phenyl)acryloyl)phenyl (E)-but-2-enoate (1g). Synthesized using general procedure 1. Yellow solid (565 mg, 68% yield, m.p. 55–56 °C). **TLC:** R_f 0.47 (ethyl acetate/hexanes = 1:4). **IR** (neat) $\tilde{\nu}_{\text{max}}$: 3014, 1734, 1655, 1597, 1442, 1321, 1289, 1211, 1145, 1066, 963, 836, 771 cm$^{-1}$. **1H NMR** (400 MHz) δ 7.70 (dd, $J = 7.7, 1.7$ Hz, 1H), 7.58 (d, $J = 14.9$ Hz, 4H), 7.54–7.43 (m, 2H), 7.31 (td, $J = 7.6, 1.2$ Hz, 1H), 7.24–7.17 (m, 2H), 7.09 (m, $J = 15.6$, 1H), 5.95 (dd, $J = 15.5, 1.7$ Hz, 1H), 1.79 (dd, $J = 7.0, 1.8$ Hz, 3H). **13C NMR** (151 MHz) δ 191.0, 164.4, 148.8, 148.0, 142.7, 138.0, 132.8, 131.7, 132.1, 129.9, 128.5, 127.6, 126.0, 125.7 (q, $J_{CF} = 3.4$ Hz), 123.5, 121.44, 18.1 [Note: While peaks corresponding to the CF$_3$ were observed, some portion of the peaks were lost in signal noise]. **HRMS (ESI) m/z calcd for C$_{20}$H$_{15}$F$_3$O$_3$Na ([M + Na]$^+$) 383.0871; found 383.0869.**

2-((E)-3-(furan-2-yl)acryloyl)phenyl (E)-but-2-enoate (1h). Synthesized using general procedure 1. Yellow oil (190 mg, 42% yield). **TLC:** R_f 0.30 (ethyl acetate/hexanes = 3: 7). **IR** (neat) $\tilde{\nu}_{\text{max}}$: 3057,
1732, 1655, 1598, 1550, 1477, 1037, 1217, 1194, 1098, 1012, 934, 750 cm\(^{-1}\). \(^1\)H NMR (300 MHz) \(\delta\) 7.71–7.65 (m, 1H), 7.53–7.48 (m, 1H), 7.47 (td, \(J = 1.4, 0.8\) Hz, 1H), 7.37–7.25 (m, 2H), 7.20–
7.01 (m, 3H), 6.63 (dd, \(J = 3.4, 0.6\) Hz, 1H), 6.45 (dd, \(J = 3.4, 1.8\) Hz, 1H), 5.98 (dd, \(J = 15.5, 1.8\) Hz, 1H), 1.85 (dd, \(J = 6.9, 1.7\) Hz, 3H). \(^1\)H NMR (600 MHz) \(\delta\) 7.70 (dd, \(J = 7.6, 1.7\) Hz, 1H), 7.59–7.51 (m, 4H), 7.37 (m, 3H), 7.35–7.31 (t, 2H), 7.19–7.13 (m, 2H), 5.85 (d, \(J = 1.4\) Hz, 1H), 2.11 (s, 3H), 1.83 (s, 3H). \(^1\)C NMR (151 MHz) \(\delta\) 191.8, 164.5, 161.0, 148.8, 147.6, 145.1, 132.4, 131.0, 129.8, 125.9, 123.5, 122.9 (2C), 121.6, 116.4, 112.7, 18.2. HRMS (ESI) \(m/z\) calcd for C\(_{17}\)H\(_{14}\)O\(_{4}\)Na ([M + Na]\(^+\)) 305.0790; found 305.0790.

2-cinnamoylphenyl 3-methylbut-2-enoate (1i). Synthesized using general procedure 1. Yellow oil (350 mg, 88% yield). TLC: \(R_f\) 0.48 (ethyl acetate/hexanes = 1: 4). IR (neat) \(\nu\)\(_{\text{max}}\): 3061, 2917, 2359, 1738, 1605, 1448, 1332, 1200, 1119, 1063, 749 cm\(^{-1}\). \(^1\)H NMR (600 MHz) \(\delta\) 7.70 (dd, \(J = 7.6, 1.7\) Hz, 1H), 7.59–7.51 (m, 4H), 7.37 (m, 3H), 7.35–7.31 (t, 2H), 7.19–7.13 (m, 2H), 5.85 (d, \(J = 1.4\) Hz, 1H), 2.11 (s, 3H), 1.83 (s, 3H). \(^1\)C NMR (151 MHz) \(\delta\) 191.8, 164.5, 161.0, 148.8, 144.9, 134.7, 132.6, 132.4, 130.5, 129.8, 128.8 (2C), 128.4 (2C), 125.8, 125.7, 123.6, 114.7, 27.6, 20.5. HRMS (ESI) \(m/z\) calcd for C\(_{20}\)H\(_{18}\)O\(_{3}\)Na ([M + Na]\(^+\)) 329.1154; found 329.1153.

4.9.2 SYNTHESIS OF (E)-4-STYRYL-3-VNYL-2H-CHROMEN-2-ONE (2)
(E)-4-styryl-3-vinyl-2H-chromen-2-one (2). To a 4.0 mL vial was measured crotonylhydroxychalcone (1) (1.0 equiv.). DMSO (0.15M) was then added, followed by the addition of DBU (3.0 equiv.). The reaction vessel was equipped with a magnetic stir bar, sealed, and stirred at room temperature for 90 minutes. The reaction mixture was then diluted into ethyl acetate. Organics were washed sequentially with sat. NH₄Cl (2x) and water (2x) then dried over anhydrous Na₂SO₄. Organics were concentrated in vacuo and purified by flash chromatography to furnish (E)-4-styryl-3-vinyl-2H-chromen-2-one (2). Yellow oil (375 mg, 60% yield). **TLC:** R_f 0.53 (ethyl acetate/hexanes = 1:1). **IR** (neat): 3025, 1709, 1603, 1449, 1320, 1100, 984, 712. **¹H NMR** (400 MHz) δ 7.72 (d, $J = 8.0$ Hz, 1H), 7.57 (d, $J = 7.5$ Hz, 2H), 7.42 (tq, $J = 14.3, 7.5$ Hz, 4H), 7.30–7.20 (m, 2H), 7.15–7.06 (m, 1H), 6.91–6.76 (m, 2H), 6.41 (dd, $J = 17.6, 1.9$ Hz, 1H), 5.60 (dd, $J = 11.9, 1.9$ Hz, 1H). **¹³C NMR** (101 MHz) δ 159.8, 152.4, 146.5, 139.6, 135.6, 131.3, 129.6, 129.3, 129.0 (2C), 128.6 (2C), 127.0, 126.3, 124.1, 122.9, 120.8, 119.4, 116.7. **HRMS** (ESI) m/z calcd for C₁₉H₁₅O₂ ([M + H]$^+$) 275.1072; found 275.1081.

4.9.3 GENERAL PROCEDURE 2 FOR THE SYNTHESIS OF BENZO[C]COUMARINS (3)

To a 15 mL round bottom flask was measured crotonylhydroxychalcone (1) (1.0 equiv.). DMSO (0.15M) was then added, followed by the addition of DBU (3.0 equiv.). The reaction vessel was
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

equipped with a magnetic stir bar and stirred open to air at room temperature for 90 minutes. The reaction mixture was then heated to 80 °C and stirred at this temperature for 16 hours. The reaction mixture was then cooled to room temperature and diluted into ethyl acetate. Organics were washed sequentially with sat. NH₄Cl (2x) and water (2x) then dried over anhydrous Na₂SO₄. Organics were concentrated in vacuo and purified by flash chromatography 1:20 ethyl acetate:hexanes gradient to 2:5 ethyl acetate:hexanes to furnish benzo[c]coumarins 3a-3h.

9-phenyl-6H-benzo[c]chromen-6-one (3a). Synthesized using general procedure 2. (223 mg, 82% yield). Characterization data was in accordance with previous reports.⁹

2-bromo-9-phenyl-6H-benzo[c]chromen-6-one (3b). Synthesized using general procedure 2. (46 mg, 88% yield). Characterization data was in accordance with previous reports. ⁶ᵃ
2,9-diphenyl-6H-benzo[c]chromen-6-one (3c). Synthesized using general procedure 2. Gray solid (35 mg, 67% yield, m.p. 184–185 °C). TLC: Rf 0.54 (ethyl acetate/hexanes = 1:4). IR (neat) ν_{max}: 3057, 2925, 1723, 1611, 1484, 1270, 1076, 883, 761 cm\(^{-1}\). \(^1\)H NMR (600 MHz) δ 8.44 (dd, J = 8.1, 1.5 Hz, 1H), 8.31 (s, 1H), 8.26 (s, 1H), 7.78 (s, 1H), 7.71 (d, J = 7.3 Hz, 2H), 7.68 (d, J = 8.6, 1H), 7.64 (d, J = 7.4 Hz, 2H), 7.53 (t, J = 7.4 Hz, 2H), 7.51–7.45 (m, 3H), 7.44–7.37 (m, 2H). \(^{13}\)C NMR (151 MHz) δ 161.0, 150.9, 147.8, 140.1, 139.6, 137.9, 135.0, 131.2, 129.5, 129.1, 129.0 (2C), 128.8 (2C), 128.0 (2C), 127.7 (2C), 127.5 (2C), 127.2, 121.2, 120.1, 120.0, 118.2. HRMS (ESI) m/z calcd for C\(_{25}\)H\(_{16}\)O\(_2\)Na ([M + Na]\(^+\) 371.1048; found 371.1047.

9-(p-tolyl)-6H-benzo[c]chromen-6-one (3d). Synthesized using general procedure 2. (33 mg, 77% yield). Characterization data was in accordance with previous reports. \(^{6a}\)

9-(4-methoxyphenyl)-6H-benzo[c]chromen-6-one (3e). Synthesized using general procedure 2. (37 mg, 82% yield). Characterization data was in accordance with previous reports. \(^{9}\)
9-(4-chlorophenyl)-6H-benzo[c]chromen-6-one (3f). Synthesized using general procedure 2. (42 mg, 92% yield). Characterization data was in accordance with previous reports.

9-(4-(trifluoromethyl)phenyl)-6H-benzo[c]chromen-6-one (3g). Synthesized using general procedure 2. Beige solid (24 mg, 46% yield, m.p. 172–174 ºC). **TLC:** R_f 0.27 (ethyl acetate/hexanes = 1:5). **IR** (neat) ν_{max}: 3021, 2160, 1977, 1712, 1611, 1449, 1322, 1165, 1107, 1087, 826, 871 cm$^{-1}$. **1H NMR** (400 MHz) δ 8.51 (d, $J = 8.2$ Hz, 1H), 8.30 (d, $J = 1.8$ Hz, 1H), 8.16 (dd, $J = 7.9$, 1.6 Hz, 1H), 7.85–7.76 (m, 5H), 7.53 (m, $J = 8.5$ Hz, 1H), 7.44–7.35 (m, 2H). **13C NMR** (101 MHz) δ 160.9, 151.5, 146.2, 143.2, 135.3, 131.4, 130.8, 127.9, 126.1 (d, $J = 3.8$ Hz), 124.7, 122.7, 120.7, 120.4, 119.1 (q, $J_{C-F} = 272.1$ Hz, 1C), 117.8 [Note: While peaks corresponding to the CF$_3$ were observed, some portion of the peaks were lost in signal noise]. **HRMS (ESI)** m/z calcd for C$_{20}$H$_{12}$F$_3$O$_2$ ([M + H]$^+$) 341.0789; found 341.0794.
9-(furan-2-yl)-6H-benzo[c]chromen-6-one (3h). Synthesized using general procedure 2. Yellow oil (24 mg, 62% yield). TLC: \(R_f \) 0.40 (ethyl acetate/hexanes = 1:4). \textit{IR} (neat) \(\nu_{\text{max}} \): 2922, 2852, 1716, 1612, 1476, 1275, 1208, 1105, 916, 898, 734 cm\(^{-1}\). \textit{\(^1\)H NMR} (400 MHz) \(\delta \) 8.39 (dd, \(J = 5.0, 3.3 \) Hz, 2H), 8.19–8.11 (m, 1H), 7.83 (dd, \(J = 8.4, 1.6 \) Hz, 1H), 7.60 (d, \(J = 1.8 \) Hz, 1H), 7.50 (ddd, \(J = 8.4, 7.0, 1.6 \) Hz, 1H), 7.37 (t, \(J = 7.6 \) Hz, 2H), 6.95 (d, \(J = 3.4 \) Hz, 1H), 6.58 (dd, \(J = 3.5, 1.8 \) Hz, 1H). \textit{\(^{13}\)C NMR} (101 MHz) \(\delta \) 161.0, 152.3, 151.5, 143.9, 136.4, 135.4, 131.1, 130.6, 124.5, 124.1, 122.9, 119.5, 118.0, 117.8, 116.0, 112.4, 108.7. \textit{HRMS} (ESI) \(m/z \) calcd for C\(_{17}\)H\(_{11}\)O\(_3\) ([M + H]\(^+\)) 263.0708; found 263.0710.

7-methyl-9-phenyl-6H-benzo[c]chromen-6-one (3i). Synthesized using general procedure 2. (25 mg, 59% yield). Characterization data was in accordance with previous reports. \(^6\)a
4.9.4 GENERAL PROCEDURE 3 FOR THE SYNTHESIS OF N-ALKYLAMINOCHALCONES

To a solution of N-methylacetophenones (1.0 equiv.) in ethanol (2.5 M) was added solid NaOH (3.0 equiv.). After the solid was fully dissolved, the appropriate benzaldehyde (1.2 equiv.) was added, and the mixture was stirred at room temperature overnight. The reaction mixture was then cooled to 0 ºC in an ice/water bath and the mixture was carefully neutralized using 1N HCl. The crude mixture was extracted with dichloromethane (3x) then washed with water (2x) and brine (2x). Organics were dried over Na$_2$SO$_4$ and concentrated to furnish chalcones which were purified by flash chromatography 1:20 ethyl acetate:hexanes gradient to 2:5 ethyl acetate:hexanes to furnish N-alkylaminochalcones.

(E)-1-(2-(methylamino)phenyl)-3-phenylprop-2-en-1-one. Synthesized using general procedure 3. (1.17 g, 66% yield). Characterization data was in accordance with previous reports.10

(E)-1-(2-(benzylamino)phenyl)-3-phenylprop-2-en-1-one. Synthesized using general procedure 3. (55 mg, 35% yield). Characterization data was in accordance with previous reports.11
(E)-1-(5-bromo-2-(methylamino)phenyl)-3-phenylprop-2-en-1-one. Synthesized using general procedure 3. Orange solid (270 mg, 28% yield, mp 73 – 75 ºC). **TLC:** R_f 0.70 (ethyl acetate/hexanes = 1:4). **IR (neat)** ν_{max} : 3309, 3924, 2907, 1642, 1585, 1447, 1187, 1165, 984, 813 cm$^{-1}$. **1H NMR** (400 MHz) δ 8.98 (bs, 1H), 7.96 (s, 1H), 7.72 (d, J = 15.5 Hz, 1H), 7.64 (m, J = 9.1 Hz, 2H), 7.55 (d, J = 15.5 Hz, 1H), 7.41 (s, 4H), 6.62 (d, J = 9.1 Hz, 1H), 2.92 (s, 3H). **13C NMR** (101 MHz) δ 190.5, 151.5, 143.4, 137.5, 135.0, 133.5, 130.3, 128.9 (2C), 128.4 (2C), 122.4, 119.5, 113.3, 105.2, 29.5. **HRMS (ESI)** m/z calcd for C$_{16}$H$_{15}$BrNO ([M+H]$^+$) 316.0337; found 316.0338.

(E)-3-(4-chlorophenyl)-1-(2-(methylamino)phenyl)prop-2-en-1-one. Synthesized using general procedure 3. (273 mg, 88% yield). Characterization data was in accordance with previous reports.12

(E)-3-(4-methoxyphenyl)-1-(2-(methylamino)phenyl)prop-2-en-1-one. Synthesized using general procedure 3. (315 mg, quant. yield). Characterization data was in accordance with previous reports.13
(E)-4-(3-(2-(methylamino)phenyl)-3-oxoprop-1-en-1-yl)benzonitrile. Synthesized using general procedure 3. (251 mg, 83% yield). Characterization data was in accordance with previous reports.14
4.9.5 GENERAL PROCEDURE 4 FOR THE SYNTHESIS OF N-ALKYL-N-CROTONYLAMINOCHALCONES (6)

To a solution of N-alkylaminochalcone (1.0 equiv.) in dichloromethane (0.2M) at 0 °C was added solid NaHCO\(_3\) (1.5 equiv.). The mixture was stirred at this temperature for 10 minutes before crotonyl chloride (1.2 equiv.) was added slowly by syringe. The reaction mixture was allowed to warm naturally to room temperature and stirred at this temperature overnight. The reaction mixture was diluted with dichloromethane, then washed with water (2x). The organic layer was then dried over Na\(_2\)SO\(_4\) and concentrated to give crude N-alkyl-N-crotonylaminochalcones (5) as a separable mixture of E/Z isomers, which were then purified via column chromatography 1:10 ethyl acetate:hexanes gradient to 1:1 ethyl acetate:hexanes to furnish pure N-alkyl-N-crotonylaminochalcones 6a-6i.

(E)-N-(2-cinnamoylphenyl)-N-methylbut-2-enamide (6a). Synthesized using general procedure 4. Orange oil (970 mg, 81% yield). **TLC:** \(R_f\) 0.23 (ethyl acetate/hexanes = 2:5). **IR** (neat) \(\nu_{\text{max}}\): 3033, 1664, 1631, 1595, 1478, 1367, 1288, 1206, 1095, 771 cm\(^{-1}\). **\(^1\)H NMR** (500 MHz) \(\delta\) 7.68 (dd, \(J = 7.6, 1.6\) Hz, 1H), 7.59 (td, \(J = 7.7, 1.7\) Hz, 1H), 7.56–7.47 (m, 6H), 7.40 (m, 4H), 7.28 (d, \(J = 6.1\) Hz, 1H), 7.01 (d, \(J = 16.0\) Hz, 1H), 6.90 (dq, \(J = 15.0, 6.9\) Hz, 1H), 5.74 (dd, \(J = 15.0, 1.7\) Hz, 1H), 3.28 (s, 3H). **\(^{13}\)C NMR** (75 MHz) \(\delta\) 192.9, 165.8, 145.8, 141.8, 138.1, 134.2, 132.1, 130.8, 129.9, 129.6,
(E)-N-benzyl-N-(2-cinnamoylphenyl)but-2-enamide (6b). Synthesized using general procedure 4. Yellow oil (44 mg, 47% yield). TLC: \(R_f\) 0.43 (ethyl acetate/hexanes = 3:7). IR (neat) \(\nu_{\text{max}}\): 3028, 2245, 1662, 1595, 1446, 1386, 1354, 1288, 1203, 907, 725 cm\(^{-1}\). \(^1\)H NMR (300 MHz) \(\delta\) 7.66–7.61 (m, 1H), 7.52–7.45 (m, 2H), 7.40 (m, \(J = 8.5\) Hz, 5H), 7.21–7.14 (m, 4H), 7.03–6.92 (m, 2H), 6.90–6.85 (m, 1H), 5.74 (dq, \(J = 15.0, 1.6\) Hz, 1H), 5.48 (d, \(J = 14.3\) Hz, 1H), 4.24 (d, \(J = 14.4\) Hz, 1H), 1.70 (dd, \(J = 6.9, 1.7\) Hz, 3H). \(^{13}\)C NMR (75 MHz) \(\delta\) 192.9, 165.9, 145.9, 142.4, 139.8, 138.4, 137.1, 134.3, 131.6, 131.0, 130.9, 129.5, 129.3, 129.0 (2C), 128.5 (2C), 128.3 (2C), 128.1 (2C), 127.4, 125.1, 122.9, 53.3, 18.1. HRMS (ESI) \(m/z\) calcd for C\(_{20}\)H\(_{10}\)NO\(_2\) ([M + H]\(^+\) = 306.1494; found 306.1486.

(E)-N-(4-bromo-2-cinnamoylphenyl)-N-methylbut-2-enamide (6d). Synthesized using general procedure 4. Yellow oil (347 mg, 90% yield). TLC: \(R_f\) 0.26 (ethyl acetate/hexanes = 3:7). IR (neat) \(\nu_{\text{max}}\): 3055, 2631, 1597, 1447, 1393, 1293, 1198, 1102, 962, 823, 774 cm\(^{-1}\). \(^1\)H NMR (400 MHz) \(\delta\) 7.77 (d, \(J = 2.4\) Hz, 1H), 7.68 (dd, \(J = 8.3, 2.5\) Hz, 1H), 7.56–7.48 (m, 3H), 7.39 (d, \(J = 6.7\) Hz, 3H),
7.14 (d, J = 8.4 Hz, 1H), 6.99–6.83 (m, 2H), 5.75–5.66 (m, 1H), 3.23 (s, 3H), 1.71 (dd, J = 7.0, 1.7 Hz, 3H). ¹³C NMR (101 MHz) δ 191.3, 165.7, 146.6, 142.8, 140.7, 139.8, 135.1, 134.0, 132.5, 131.2, 131.0, 129.1 (2C), 128.6 (2C), 124.4, 122.1, 121.8, 37.7, 18.1. HRMS (ESI) m/z calcd for C₂₀H₁₉BrNO₂ ([M + H]⁺) 384.0599; found 384.0601.

(E)-N-(2-((E)-3-(4-chlorophenyl)acryloyl)phenyl)-N-methylbut-2-enamide (6f). Synthesized using general procedure 4. Yellow oil (337 mg, 99% yield). IR (neat) νmax: 2911, 1663, 1590, 1488, 1367, 1290, 1204, 1089, 962, 768 cm⁻¹. TLC: Rf 0.30 (ethyl acetate/hexanes = 2:5). ¹H NMR (300 MHz) δ 7.65 (dd, J = 7.5, 1.7 Hz, 1H), 7.57 (td, J = 7.6, 1.7 Hz, 1H), 7.45 (m, J = 16.3, 4H), 7.33 (d, J = 8.5 Hz, 2H), 7.25 (dd, J = 7.9, 1.2 Hz, 1H), 6.94 (d, J = 15.9 Hz, 1H), 6.89–6.79 (m, 1H), 5.75–5.64 (m, 1H), 3.24 (s, 3H), 1.67 (dd, J = 7.0, 1.7 Hz, 3H). ¹³C NMR (75 MHz) δ 192.5, 165.8, 144.1, 142.2, 141.7, 138.0, 136.7, 132.8, 132.3, 129.7, 129.6, 129.3, 129.3 (2C), 128.1 (2C), 125.4, 122.4, 37.8, 18.1. HRMS (ESI) m/z calcd for C₂₀H₁₈ClNO₂Na ([M + Na]⁺) 362.0924; found 362.0920.

(E)-N-(2-((E)-3-(4-methoxyphenyl)acryloyl)phenyl)-N-methylbut-2-enamide (6g). Synthesized using general procedure 4. Yellow oil (295 mg, 75% yield). IR (neat) νmax: 2933, 1663, 1592, 1444,
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

1329, 1303, 1171, 1020, 962, 826, 730 cm\(^{-1}\). \textbf{TLC}: \(R_f 0.18\) (ethyl acetate/hexanes = 2:5). \textbf{\(^1\)H NMR} (300 MHz) \(\delta 7.61\) (dd, \(J = 7.5, 1.8\) Hz, 1H), 7.52 (td, \(J = 7.6, 1.8\) Hz, 1H), 7.48–7.39 (m, 4H), 7.21 (dd, \(J = 7.8, 1.3\) Hz, 1H), 6.92–6.78 (m, 4H), 5.70 (dd, \(J = 15.0, 1.7\) Hz, 1H), 3.79 (s, 3H), 3.22 (s, 3H), 1.65 (dd, \(J = 6.9, 1.7\) Hz, 3H). \textbf{\(^{13}\)C NMR} (75 MHz) \(\delta 193.1, 165.9, 161.9, 145.9, 141.8, 141.5, 138.5, 131.9, 130.3, 129.5, 129.3\) (2C), 128.4 (2C), 126.9, 122.9, 122.5, 114.5, 55.4, 37.7, 18.0. \textbf{HRMS} (ESI) \(m/z\) calcd for \(\text{C}_{21}\text{H}_{21}\text{NO}_3\)Na ([M + Na]\(^+\)) 358.1419; found 358.1418.

\begin{center}
\includegraphics[width=0.2\textwidth]{image}
\end{center}

\textbf{(E)-N-methyl-N-(2-((E)-3-(p-tolyl)acryloyl)phenyl)but-2-enamide (6h).} Synthesized using general procedure 4. Yellow oil (495 mg, 77% yield). \textbf{IR} (neat) \(\nu_{\text{max}}\): 3050, 2915, 1664, 1628, 1596, 1445, 1370, 1297, 1205, 1040, 963, 813, 731 cm\(^{-1}\). \textbf{TLC}: \(R_f 0.48\) (ethyl acetate/hexanes = 1:1). \textbf{\(^1\)H NMR} (300 MHz) \(\delta 7.61\) (d, \(J = 9.1\) Hz, 1H), 7.53 (t, \(J = 7.6\) Hz, 1H), 7.48 – 7.40 (m, 2H), 7.36 (d, \(J = 8.1\) Hz, 2H), 7.22 (d, \(J = 8.8\) Hz, 1H), 7.14 (d, \(J = 7.9\) Hz, 2H), 6.92 (d, \(J = 15.9\) Hz, 1H), 6.88 – 6.77 (m, 1H), 5.70 (d, \(J = 16.7\) Hz, 1H), 3.23 (s, 3H), 2.32 (s, 3H), 1.67 – 1.59 (m, 3H). \textbf{HRMS} (ESI) \(m/z\) calcd for \(\text{C}_{21}\text{H}_{22}\text{NO}_2\) ([M + H]\(^+\)) 320.1651; found 320.1649.
(E)-N-(2-((E)-3-(4-cyanophenyl)acryloyl)phenyl)-N-methylbut-2-enamide (6i). Synthesized using general procedure 4. Yellow oil (102 mg, 32% yield). IR (neat) \(\nu_{\text{max}} \): 3462, 3054, 2226, 1661, 1445, 1295, 1096, 963, 827, 770 cm\(^{-1}\). TLC: \(R_f \) 0.18 (ethyl acetate/hexanes = 2:5). \(^1\)H NMR (300 MHz) \(\delta \) 7.72–7.52 (m, 9H), 7.50–7.43 (m, 2H), 7.29–7.21 (m, 1H), 7.03 (d, \(J = 15.9 \) Hz, 1H), 6.95–6.79 (m, 1H), 5.68 (dd, \(J = 15.0, 1.7 \) Hz, 1H), 3.24 (s, 3H), 1.67 (dd, \(J = 7.0, 1.6 \) Hz, 3H). \(^{13}\)C NMR (75 MHz) \(\delta \) 191.8, 165.8, 142.5, 142.4, 141.9, 138.7, 137.5, 132.9, 132.7, 129.9, 129.3, 128.7, 128.2, 127.8, 122.2, 118.3, 113.6, 37.8, 18.1. HRMS (ESI) \(m/z \) calcd for C\(_{21}\)H\(_{18}\)N\(_2\)O\(_2\)Na ([M + Na]\(^+\)) 352.1266; found 352.1266.

4.9.6 GENERAL PROCEDURE 5 FOR THE SYNTHESIS OF PHENANTHRADIN-6(5H)-ONES (7):

To a 15 mL round bottom flask was measured \(N \)-alkyl-\(N \)-crotonylaminochalcone (6) (1.0 equiv.). DMSO (0.15M) was then added, followed by the addition of DBU (3.0 equiv.). The reaction vessel was equipped with a magnetic stir bar and stirred open to air at room temperature for 90 minutes. The reaction mixture was then heated to 80 °C and stirred at this temperature for 16 hours. The reaction mixture was then cooled to room temperature and diluted with ethyl acetate. Organics were washed sequentially with sat. NH\(_4\)Cl (2x) and water (2x) then dried over anhydrous
Na$_2$SO$_4$. Organics were concentrated in vacuo and purified by flash chromatography using a 1:10 ethyl acetate:hexanes gradient to 1:1 ethyl acetate:hexanes to furnish phenanthridinones 7a-7i.

5-methyl-9-phenylphenanthridin-6(5H)-one (7a). Synthesized using general procedure 5. Yellow oil (259 mg, 91% yield). **TLC:** R_f 0.43 (ethyl acetate/hexanes = 3:10). **IR** (neat) ν_{max}: 3029, 2252, 1625, 1584, 1466, 1417, 1277, 1158, 1075, 866, 744 cm$^{-1}$. **1H NMR** (500 MHz) δ 8.63 (d, $J = 8.2$ Hz, 1H), 8.47 (d, $J = 1.7$ Hz, 1H), 7.82 (ddd, $J = 8.3$, 1.6 Hz, 1H), 7.75 (dd, $J = 8.2$, 1.3 Hz, 2H), 7.59 (ddd, $J = 8.6$, 7.1, 1.5 Hz, 1H), 7.54 (t, $J = 7.6$ Hz, 2H), 7.48–7.44 (m, 2H), 7.36 (ddd, $J = 8.1$, 7.2, 1.1 Hz, 1H), 3.85 (s, 3H). **13C NMR** (75 MHz) δ 161.5, 145.1, 140.4, 138.2, 133.8, 129.7, 129.5, 129.0 (2C), 128.3 (2C), 127.5, 127.1, 124.4, 123.2, 122.5, 120.1, 119.3, 115.1, 30.0. **HRMS** (ESI) m/z calcd for C$_{20}$H$_{16}$NO ([M + H]$^+$) 286.1232; found 286.1237.

5-benzyl-9-phenylphenanthridin-6(5H)-one (7b). Synthesized using general procedure 5. (36 mg, 86% yield). Characterization data was in accordance with previous reports.\(^{15}\)
2-bromo-5-methyl-9-phenylphenanthridin-6(5H)-one (7e). Synthesized using general procedure 5. Yellow oil (29 mg, 70% yield). **TLC:** *R*$_f$ 0.45 (ethyl acetate/hexanes = 3:10). **IR** (neat) ν_{max}: 3085, 2920, 2120, 1639, 1582, 1361, 1187, 1033, 853, 625 cm$^{-1}$. **1H NMR** (600 MHz) δ 8.59 (d, *J* = 8.3 Hz, 1H), 8.44 (s, 1H), 8.35 (d, *J* = 1.7 Hz, 1H), 7.84 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.76–7.70 (m, 2H), 7.65 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.31 (d, *J* = 8.9 Hz, 1H), 3.81 (s, 3H). **13C NMR** (151 MHz) δ 161.2, 145.6, 140.1, 137.3, 132.6, 132.3, 129.6, 129.0 (2C), 128.4 (2C), 127.8, 127.5, 126.0, 124.6, 121.1, 120.2, 116.8, 115.7, 30.1. **HRMS (ESI)** *m/z* calcd for C$_{20}$H$_{15}$BrNO ([M + H]$^+$) 364.0337; found 364.0342.

9-(4-chlorophenyl)-5-methylphenanthridin-6(5H)-one (7f). Synthesized using general procedure 5. Yellow Oil (38 mg, 80% yield). **TLC:** *R*$_f$ 0.28 (ethyl acetate/hexanes = 1:4). **IR** (neat) ν_{max}: 2923, 1644, 1585, 1444, 1389, 1343, 1092, 1005, 814, 689 cm$^{-1}$. **1H NMR** (300 MHz) δ 8.61 (dd, *J* = 8.3, 0.5 Hz, 1H), 8.42–8.39 (m, 1H), 8.36 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.78–7.73 (m, 1H), 7.70–7.63 (m, 2H), 7.58 (ddd, *J* = 8.5, 7.1, 1.5 Hz, 1H), 7.52–7.47 (m, 2H), 7.47–7.42 (m, 1H), 7.35 (ddd, *J* = 8.3, 7.3, 1.2 Hz, 1H), 3.84 (s, 3H). **13C NMR** (75 MHz) δ 161.4, 143.9, 138.8, 138.3, 134.5, 133.9, 129.8,
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

129.7, 129.2 (2C), 128.8 (2C), 126.9, 124.7, 123.2, 122.5, 120.0, 119.1, 115.2, 30.0. **HRMS (ESI) m/z** calcd for C_{20}H_{15}ClNO ([M + H]^+) 320.0842; found 320.0851.

9-(4-methoxyphenyl)-5-methylphenanthridin-6(5H)-one (7g). Synthesized using general procedure 5. Yellow oil (45 mg, 81% yield). **TLC**: R_f 0.21 (ethyl acetate/hexanes = 1:4). **IR** (neat) \(\nu_{\text{max}}: 2927, 1643, 1585, 1520, 1444, 1298, 1246, 1178, 1032, 826, 750 \text{ cm}^{-1} \). **\(^1 \text{H NMR} \) (300 MHz) \(\delta \) 8.58 (d, \(J = 8.3 \text{ Hz} \), 1H), 8.41 (d, \(J = 1.7 \text{ Hz} \), 1H), 8.38 (dd, \(J = 8.2, 1.5 \text{ Hz} \), 1H), 7.78 (dd, \(J = 8.3, 1.7 \text{ Hz} \), 1H), 7.72–7.65 (m, 2H), 7.57 (ddd, \(J = 8.5, 7.1, 1.5 \text{ Hz} \), 1H), 7.44 (dd, \(J = 8.5, 1.2 \text{ Hz} \), 1H), 7.35 (ddd, \(J = 8.2, 7.1, 1.2 \text{ Hz} \), 1H), 7.05 (d, \(J = 8.7 \text{ Hz} \), 2H), 3.89 (s, 3H), 3.84 (s, 3H). **\(^{13} \text{C NMR} \) (75 MHz) \(\delta \) 159.9, 144.8, 138.3, 133.9, 129.6 (2C), 129.5, 128.6, 126.8, 124.0, 123.2 (2C), 122.4 (2C), 121.8, 119.4 (2C), 115.1, 114.4, 55.4, 30.0. **HRMS (ESI) m/z** calcd for C_{21}H_{18}NO_2 ([M + H]^+) 316.1338; found 316.1345.

5-methyl-9-(p-tolyl)phenanthridin-6(5H)-one (7h). Synthesized using general procedure 5. Yellow solid (269 mg, 89% yield, m.p. 136–138 °C). **TLC**: R_f 0.33 (ethyl acetate/hexanes = 1:3). **IR** (neat) \(\nu_{\text{max}}: 2914, 1920, 1642, 1614, 1584, 1445, 1338, 1306, 1101, 1044, 814, 781, 684 \text{ cm}^{-1} \). **\(^1 \text{H NMR} \) (300 MHz) \(\delta \) 8.51 (d, \(J = 8.3 \text{ Hz} \), 1H), 8.30 (s, 1H), 8.23 (d, \(J = 7.8 \text{ Hz} \), 2H), 7.70 (d, \(J = 8.1 \text{ Hz} \),
1H), 7.58 (d, J = 7.8 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.29 (q, J = 7.2 Hz, 4H), 3.73 (s, 3H), 2.42 (s, 3H). 13C NMR (75 MHz). δ 161.4, 144.9, 138.2, 137.3, 133.7, 129.7, 129.5, 129.4 (2C), 127.3, 126.8, 124.1 (2C), 123.1, 122.3 (2C), 119.6, 119.2, 115.0, 29.9, 21.2. HRMS (ESI) m/z calcd for C$_{21}$H$_{18}$NO ([M + H]$^+$) 300.1388; found 300.1389.

4-(5-methyl-6-oxo-5,6-dihydrophenanthridin-9-yl)benzonitrile (7i). Synthesized using general procedure 5. Yellow oil (31 mg, 68% yield,). TLC: R_f 0.14 (ethyl acetate/hexanes = 1:4). IR (neat) ν_{max}: 3090, 3035, 2219, 1645, 1604, 1478, 1347, 1035, 824 cm$^{-1}$. 1H NMR (300 MHz) δ 8.64 (dd, J = 8.3, 0.5 Hz, 1H), 8.43 (d, J = 1.8 Hz, 1H), 8.35 (dd, J = 8.1, 1.5 Hz, 1H), 7.82 (d, J = 1.5 Hz, 4H), 7.77 (dd, J = 8.3, 1.7 Hz, 1H), 7.60 (ddd, J = 8.5, 7.1, 1.5 Hz, 1H), 7.45 (dd, J = 8.5, 1.1 Hz, 1H), 7.36 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 3.83 (s, 3H). 13C NMR (75 MHz) δ 161.2, 144.8, 143.0, 138.3, 134.1, 132.8, 130.1, 129.9, 128.2 (2C), 126.8, 125.4, 123.2 (2C), 122.6, 120.5, 118.9, 118.7, 115.3, 111.9, 30.1. HRMS (ESI) m/z calcd for C$_{21}$H$_{15}$N$_2$O ([M + H]$^+$) 311.1184; found 311.1191.

4.9.7 GENERAL PROCEDURE 6 FOR THE SYNTHESIS OF ARYLACETYLCHALCONES (8)

a.) To a round bottom flask was measured 2'-hydroxyacetophenones (1) (1.0 equiv.), which was then dissolved in dichloromethane (0.2 M). This solution was cooled in an ice/water bath then arylacetic acid (1.2 equiv.) and DMAP (0.1 equiv.) were added, followed by the addition of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 1.5 equiv.). The reaction
vessel was allowed to warm naturally to room temperature and stirred for 4 hours. The reaction mixture was then diluted with excess dichloromethane and washed sequentially with 1N HCl (2x) and sat. NaHCO₃ (2x). Organics were dried over anhydrous Na₂SO₄, concentrated in vacuo, then purified by flash chromatography eluting with 1:20 ethyl acetate:hexanes gradient to 2:5 ethyl acetate:hexanes to furnish arylacetichydroxychalones 8a-8d.

b.) To a stirred solution of corresponding arylacetic acid (1.2 equiv.) was added one drop of DMF. The reaction vessel was equipped with a reflux condenser and a 2M solution of (COCl)₂ (1.5 equiv.) was slowly added by syringe. The mixture was heated to reflux with stirring for 90 minutes, then cooled to room temperature. Solvent was removed by rotary evaporation and the crude acyl chloride was carried forward without further purification. To a solution of N-methylaminochalcone (1.0 equiv.) in dichloromethane (0.2M) at 0 °C was added solid NaHCO₃ (1.5 equiv.). The mixture was stirred at this temperature for 10 minutes before crude acyl chloride (1.2 equiv.) was added slowly by syringe. The reaction mixture was allowed to warm naturally to room temperature and stirred at this temperature overnight. The reaction mixture was diluted with dichloromethane, then washed with water (2x). The organic layer was then dried over Na₂SO₄ and concentrated to give crude N-alkyl-N-arylaceticaminochalones (8), which were then purified via column chromatography 3:10 ethyl acetate:hexanes gradient to 1:1 ethyl acetate:hexanes to furnish pure N-alkyl-N-arylaminochalcones 8f-8h.
2-cinnamoylphenyl 2-(furan-3-yl)acetate (8a). Synthesized using general procedure 6a. Yellow oil (467 mg, 80% yield). **TLC:** R_f 0.33 (ethyl acetate/hexanes = 1:4). **IR** (neat) ν_{max}: 3058, 2915, 1761, 1666, 1604, 1448, 1303, 1194, 1112, 1020, 998, 872, 731 cm$^{-1}$. **1H NMR** (300 MHz, Chloroform-d) δ 7.70 (dd, J = 7.7, 1.7 Hz, 1H), 7.60 – 7.50 (m, 4H), 7.44 – 7.31 (m, 6H), 7.21 – 7.10 (m, 2H), 6.38 (s, 1H), 3.68 (s, 3H). **13C NMR** (75 MHz, Chloroform-d) δ 191.7, 169.6, 148.6, 145.7, 143.0, 140.7, 134.4, 132.5, 132.2, 130.9, 129.9, 129.0, 128.5 (2C), 126.2, 125.3, 123.4, 116.4, 111.4, 30.7. **HRMS** (ESI) m/z calcd for C$_{21}$H$_{16}$O$_4$Na ([M + Na]$^+$) 355.0946; found 355.0948.

(Z)-4-(2-phenyl-2-(thiophen-2-yl)vinyl)-2H-chromen-2-one (8b). Synthesized using general procedure 6a. Yellow oil (690 mg, 77% yield). **TLC:** R_f 0.32 (ethyl acetate/hexanes = 1:4). **IR** (neat) ν_{max}: 3028, 2923, 2854, 1703, 1603, 1450, 1282, 1110, 1051, 970 cm$^{-1}$. **1H NMR** (400 MHz, Chloroform-d) δ 7.95 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 7.0 Hz, 1H), 7.54 – 7.47 (m, 3H), 7.43 (t, J = 7.0 Hz, 4H), 7.38 (d, J = 7.0 Hz, 1H), 7.32 (d, J = 9.2 Hz, 1H), 7.12 – 7.09 (m, 1H), 7.04 (d, J = 4.7 Hz, 2H). **13C NMR** (101 MHz, Chloroform-d) δ 160.3, 153.0, 146.5, 138.6, 135.8, 134.7, 131.5, 131.26,
129.2 (2C), 129.0 (2C), 128.2 (2C), 127.1, 126.6, 124.3, 122.5, 119.0, 118.7, 117.2. \textbf{HRMS} (ESI) \textit{m/z} calcd for \(\text{C}_{21}\text{H}_{15}\text{O}_{2}\text{S} \) ([M + H]+) 331.0793; found 331.0788.

\begin{center}
\includegraphics[width=0.2\textwidth]{structure.png}
\end{center}

\textbf{2-cinnamoylphenyl 2-(benzofuran-3-yl)acetate (8c)}. Synthesized using general procedure 6a. Yellow oil (260 mg, 76% yield). \textbf{TLC}: \(R_f \) 0.25 (ethyl acetate/hexanes = 1:4). \textbf{IR} (neat) \(\nu_{\text{max}} \) : 3060, 2954, 1760, 1604, 1449, 1331, 1303, 1196, 1097, 731 cm\(^{-1}\). \textbf{\(^1\text{H NMR} \)} (300 MHz, Chloroform-\(\text{d} \)) δ 7.69 (dd, J = 7.7, 1.7 Hz, 1H), 7.59 – 7.49 (m, 6H), 7.45 (d, J = 8.1 Hz, 1H), 7.43 – 7.33 (m, 4H), 7.32 – 7.25 (m, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.09 (d, J = 16.1 Hz, 1H), 3.92 (s, 2H). \textbf{\(^{13}\text{C NMR} \)} (101 MHz, Chloroform-\(\text{d} \)) δ 191.7, 169.2, 155.1, 148.6, 145.8, 143.2, 134.3, 132.5, 132.2, 130.9, 129.8, 129.0 (2C), 128.5 (2C), 127.5, 126.3, 125.2, 124.5, 123.5, 122.7, 119.8, 112.3, 111.5, 29.6. \textbf{HRMS} (ESI) \textit{m/z} calcd for \(\text{C}_{25}\text{H}_{19}\text{O}_{4}\) ([M + H]+) 383.1283; found 383.1289.
2-cinnamoylphenyl 2-(1-methyl-1H-indol-3-yl)acetate (8d). Synthesized using general procedure 6b. Yellow oil (140 mg, 19% yield). **TLC**: R_f 0.22 (ethyl acetate/hexanes = 1:4). **IR** (neat) ν_{max}: 3057, 2929, 1756, 1603, 1474, 1447, 1330, 1193, 1104, 1013, 916, 775 cm$^{-1}$. **1H NMR** (300 MHz, Chloroform-d) δ 7.66 (d, $J = 7.6$ Hz, 1H), 7.58 (d, $J = 7.9$ Hz, 1H), 7.54 – 7.45 (m, 4H), 7.41 – 7.29 (m, 4H), 7.24 (t, $J = 6.7$ Hz, 2H), 7.20 – 7.10 (m, 2H), 7.07 (m, 1H), 6.99 (d, $J = 19.7$ Hz, 1H), 3.96 (s, 2H), 3.66 (s, 3H). **13C NMR** (151 MHz, Chloroform-d) δ 192.1, 170.3, 148.7, 145.5, 136.8, 134.5, 132.5, 132.2, 130.6, 129.7 (2C), 128.9 (2C), 128.5, 128.0, 127.7, 126.0, 125.6, 123.4, 121.8, 119.3, 118.9, 109.3, 105.6, 32.6, 31.2. **HRMS** (ESI) m/z calcd for C$_{26}$H$_{21}$NO$_3$Na ([M + Na]$^+$) 418.1419; found 418.1411.

2-(benzofuran-3-yl)-N-(2-cinnamoylphenyl)-N-methylacetamide (8e). Synthesized using general procedure 6b. Yellow oil (184 mg, 93% yield). **TLC**: R_f 0.53 (ethyl acetate/hexanes = 1:1). **IR** (neat) ν_{max}: 3060, 2924, 2247, 1731, 1644, 1596, 1449, 1330, 1207, 1095, 906, 856, 725 cm$^{-1}$.
1H NMR (300 MHz, Chloroform-d) δ 7.73 – 7.68 (m, 1H), 7.57 – 7.53 (m, 2H), 7.52 – 7.48 (m, 2H), 7.47 – 7.43 (m, 2H), 7.42 – 7.32 (m, 5H), 7.28 – 7.22 (m, 1H), 7.22 – 7.19 (m, 1H), 7.19 – 7.12 (m, 1H), 7.00 (d, $J = 16.0$ Hz, 1H), 3.25 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 192.5, 170.2, 155.0, 146.5, 142.9, 141.8, 137.6, 134.1, 132.4, 131.1, 129.7, 129.6, 129.0 (2C), 128.6 (2C), 128.6 (2C), 127.9, 124.8, 124.2, 122.5, 119.9, 114.08, 111.3, 29.9. HRMS (ESI) m/z calcd for C$_{26}$H$_{21}$NO$_2$ ([M + H]$^+$) 396.1600; found 396.1604.

N-(2-cinnamoylphenyl)-N-methyl-2-(1-methyl-1H-indol-3-yl)acetamide (8f). Synthesized using general procedure 6b. Yellow oil (117 mg, 65% yield). TLC: R$_f$ 0.40 (ethyl acetate/hexanes = 1:1).

IR (neat) ν_{max}: 3055, 2928, 2240, 1644, 1596, 1484, 1447, 1371, 1329, 1206, 1109, 1012, 908, 728 cm$^{-1}$. 1H NMR (300 MHz, Chloroform-d) δ 7.65 (d, $J = 8.9$ Hz, 1H), 7.50 (dd, $J = 15.8, 9.0$ Hz, 3H), 7.36 (s, 5H), 7.23 (d, $J = 7.6$ Hz, 2H), 7.12 (s, 2H), 7.01 (s, 1H), 6.84 (s, 1H), 6.72 (d, $J = 15.9$ Hz, 1H), 3.61 (d, $J = 5.2$ Hz, 2H), 3.55 (s, 3H), 3.29 (s, 3H). 13C NMR (75 MHz, Chloroform-d) δ 192.3, 171.5, 145.6, 142.3, 137.8, 136.6, 134.1, 132.4, 130.9, 129.7, 128.9 (2C), 128.6 (2C), 128.3 (2C), 127.9, 127.7, 124.5, 121.4, 118.9, 118.7, 109.2, 107.3, 38.1, 32.6, 31.1. HRMS (ESI) m/z calcd for C$_{27}$H$_{25}$N$_2$O$_2$ ([M + H]$^+$) 409.1916; found 409.1922.
4.9.8 GENERAL PROCEDURE 7 FOR THE SYNTHESIS OF HETEROBENZO[C]COUMARINS AND HETEROARYLPHENANTHRADIN-6(5H)-ONES (9)

To a 15 mL round bottom flask was measured arylaceticchalcone (9) (1.0 equiv.). DMSO (0.15M) was then added, followed by the addition of DBU (3.0 equiv.). The reaction vessel was equipped with a magnetic stir bar, and stirred open to air at room temperature for 90 minutes. The reaction mixture was then heated to 120 °C and stirred at this temperature for 16 hours. The reaction mixture was then cooled to room temperature and diluted into ethyl acetate. Organics were washed sequentially with sat. NH₄Cl (2x) and water (2x) then dried over anhydrous Na₂SO₄. Organics were concentrated in vacuo and purified by flash chromatography 1:20 ethyl acetate:hexanes gradient to 2:5 ethyl acetate:hexanes to furnish heteroarylbenzo[c]coumarins 9a-9d.

11-phenyl-4H-benzofuro[4,5-c]chromen-4-one (9a). Synthesized using general procedure 7. Beige solid (61 mg, 90% yield, m.p. 204–206 °C). **TLC:** *R*ₚ 0.50 (ethyl acetate/hexanes = 1:4). **IR** (neat) *ν*_{max}: 3027, 2921, 1726, 1607, 1482, 1350, 1251, 1200, 1109, 1025, 873, 684 cm⁻¹. **¹H NMR** (300 MHz, Chloroform-<d>) δ 8.15 (d, *J* = 9.1 Hz, 2H), 7.94 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.86 (dd, *J* = 24.4, 2.1 Hz, 2H), 7.63 – 7.50 (m, 3H), 7.50 – 7.38 (m, 2H), 7.36 (d, *J* = 7.8 Hz, 1H). **¹³C NMR** (75 MHz, Chloroform-<d>) δ 160.3, 152.2, 151.3, 148.0, 135.0, 132.6, 132.1, 129.9, 129.2, 129.2, 129.1 (2C),
11-phenyl-4\textit{H}-thieno[2',3':5,6]benzo[1,2-c]chromen-4-one (9b). Synthesized using general procedure 7. Beige solid (19 mg, 83% yield, m.p. 206–208 °C). TLC: R_f 0.50 (ethyl acetate/hexanes = 1:4). IR (neat) ν_{max}: 2923, 2359, 1702, 1583, 1498, 1332, 1280, 1199, 967, 746 cm$^{-1}$. 1H NMR (400 MHz, Chloroform-d) δ 8.22 (d, $J = 8.0$ Hz, 1H), 8.12 (s, 1H), 7.74 (d, $J = 5.6$ Hz, 1H), 7.68 (d, $J = 6.8$ Hz, 2H), 7.62 – 7.47 (m, 6H), 7.40 (t, $J = 7.4$ Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 160.6, 151.2, 144.4, 139.8, 139.1, 132.8, 131.0, 130.4, 129.2 (2C), 128.9 (2C), 128.7 (2C), 124.7, 123.3, 123.0, 118.3 (2C), 117.9 (2C). HRMS (ESI) m/z calcd for C$_{21}$H$_{14}$O$_2$S ([M + H]$^+$) 329.0636; found 329.0643.

6-phenyl-12\textit{H}-benzo[2,3]benzofuro[4,5-c]chromen-12-one (9c). Synthesized using general procedure 7. Beige solid (12 mg, 89% yield, m.p. 247–249 °C). TLC: R_f 0.42 (ethyl acetate/hexanes = 1:4). IR (neat) ν_{max}: 2919, 2849, 1723, 1599, 1451, 1364, 1252, 1195, 1142, 966, 874, 767 cm$^{-1}$. 1H NMR (300 MHz, Chloroform-d) δ 9.41 (d, $J = 9.3$ Hz, 1H), 8.30 (s, 1H), 8.15 (d, $J = 8.0$ Hz, 1H), 7.97 (d, $J = 6.8$ Hz, 2H), 7.67 – 7.51 (m, 5H), 7.51 – 7.45 (m, 2H), 7.45 – 7.38 (m, 1H), 7.37 – 7.29
(m, 1H). 13C NMR (126 MHz, Chloroform-d) δ 160.2, 157.5, 153.6, 151.1, 135.2, 132.8, 132.1, 130.0, 129.4, 129.2, 129.0 (2C), 128.3 (2C), 125.7, 124.5, 123.4, 123.1, 123.0 (2C), 120.4, 118.3, 117.6, 115.2, 111.4. HRMS (ESI) m/z calcd for C$_{25}$H$_{15}$O$_3$ ([M + H]$^+$) 363.1021; found 363.1029.

7-methyl-6-phenylchromeno[4,3-c]carbazol-12(7H)-one (9d). Synthesized using general procedure 7. Yellow solid (19 mg, 71% yield, m.p. 251–253 ºC). TLC: R_f 0.40 (ethyl acetate/hexanes = 1:4). IR (neat) ν_{max}: 2919, 2850, 1712, 1594, 1400, 1321, 1143, 1005, 873, 738 cm$^{-1}$. 1H NMR (400 MHz, Chloroform-d) δ 9.66 (d, J = 8.7 Hz, 1H), 8.09 – 8.01 (m, 2H), 7.56 (s, 6H), 7.41 – 7.32 (m, 4H), 7.27 (d, J = 4.6 Hz, 1H), 3.40 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 160.8, 150.8, 143.4, 139.5 (2C), 139.1, 133.2, 129.5, 129.0, 128.4 (2C), 128.4 (2C), 128.2 (2C), 127.4, 124.1, 123.4, 122.7, 121.9, 120.1, 118.9, 117.2, 115.1, 108.7, 33.4. HRMS (ESI) m/z calcd for C$_{26}$H$_{18}$NO$_2$ ([M + H]$^+$) 376.1338; found 376.1340.

13-methyl-6-phenylbenzofuro[3,2-i]phenanthridin-12(13H)-one (9e). Synthesized using general procedure 7. Beige solid (58 mg, 86% yield, m.p. 234–236 ºC). TLC: R_f 0.38 (ethyl acetate/hexanes $= 1:1$). IR (neat) ν_{max}: 3032, 2921, 1915, 1642, 1604, 1486, 1328, 1219, 1047, 866, 743 cm$^{-1}$. 1H
NMR (300 MHz, Chloroform-d) δ 9.60 (d, $J = 8.1$ Hz, 1H), 8.38 (s, 1H), 8.27 (d, $J = 9.4$ Hz, 1H), 7.94 (d, $J = 6.9$ Hz, 2H), 7.60 (t, $J = 7.2$ Hz, 3H), 7.54 (d, $J = 7.0$ Hz, 1H), 7.46 (q, $J = 8.3$ Hz, 3H), 7.36 (d, $J = 9.3$ Hz, 1H), 7.26 (t, 1H), 3.85 (s, 3H).

13C NMR (75 MHz, Chloroform-d) δ 161.3, 157.2, 153.4, 137.6, 135.8, 130.7, 130.5, 129.3, 129.2, 129.0, 128.8 (2C), 128.7, 128.0, 124.3, 124.1, 123.4, 123.0, 122.3, 120.86, 120.7, 119.5, 114.8, 111.1, 30.0. **HRMS** (ESI) m/z calcd for C$_{25}$H$_{18}$NO$_2$ ([M + H]$^+$) 376.1338; found 376.1338.

7,13-dimethyl-6-phenyl-7,13-dihydro-12H-indolo[3,2-i]phenanthridin-12-one (9f). Synthesized using general procedure 7. Yellow oil (48 mg, 63% yield). **TLC:** R_f 0.46 (ethyl acetate/hexanes = 1:1). **IR** (neat) ν_{max}: 3050, 2925, 2241, 1629, 1598, 1448, 1307, 1246, 1078, 907, 729 cm$^{-1}$. **1H NMR** (300 MHz, Chloroform-d) δ 8.13 (dd, $J = 8.2$, 1.5 Hz, 1H), 7.59 (ddd, $J = 8.5$, 7.1, 1.5 Hz, 1H), 7.45 (dd, $J = 8.1$, 1.1 Hz, 2H), 7.37 – 7.30 (m, 1H), 7.30 – 7.25 (m, 4H), 7.24 (d, $J = 8.7$ Hz, 1H), 7.22 – 7.17 (m, 1H), 7.10 – 7.03 (m, 2H), 6.86 (d, $J = 16.8$ Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H). **13C NMR** (126 MHz, Chloroform-d) δ 161.7, 142.7, 139.6, 136.9, 136.7, 136.2, 131.3, 129.7, 128.7 (2C), 128.1 (2C), 127.6, 127.4, 126.6, 125.0, 124.6, 121.8, 121.5, 121.3, 120.4, 119.6, 114.4, 109.5, 109.3, 33.0, 30.3. **HRMS** (ESI) m/z calcd for C$_{27}$H$_{21}$N$_2$O ([M + H]$^+$) 389.1654; found 389.1654.
4.9.9 SYNTHESIS OF ETHYL 2-PHENYLDIBENZO[B,D]FURAN-3-CARBOXYLATE (11)

ethyl (E)-4-(2-cinnamoylphenoxy)but-2-enoate (10). To a suspension of anhydrous potassium carbonate (6.0 mmol, 829 mg, 3.0 equiv.) in DMSO (2 mL) was added hydroxychalcone (448 mg, 2.0 mmol, 1.0 equiv.). Ethyl 4-bromocrotonate (0.736 mL, 4.0 mmol, 2.0 equiv.) was then added dropwise via syringe. The mixture was then stirred at room temperature for 6 hours. The inorganic solids were removed via filtration and organics were quenched via addition of cold water. The aqueous solution was extracted with dichloromethane (3x 20 mL) and the organics were washed with water (3x 15 mL). Organics were dried over dried over anhydrous Na$_2$SO$_4$, concentrated, and purified by flash chromatography to furnish Ethyl (E)-4-(2-cinnamoylphenoxy)but-2-enoate 10. Yellow oil (362 mg, 54% yield). **TLC:** $R_f = 0.21$ (ethyl acetate/hexanes = 1:4). **IR** (neat) ν_{max}: 2980, 1715, 1660, 1599, 1448, 1303, 1271, 1177, 1021, 970, 753 cm$^{-1}$. **1H NMR** (300 MHz) δ 7.67–7.59 (m, 2H), 7.58–7.51 (m, 2H), 7.47–7.38 (m, 2H), 7.38–7.30 (m, 3H), 7.09–6.97 (m, 2H), 6.92 (dd, $J = 8.4$, 0.9 Hz, 1H), 6.15 (dt, $J = 15.8$, 2.1 Hz, 1H), 4.75 (dd, $J = 3.9$, 2.1 Hz, 2H), 4.05 (q, $J = 7.1$ Hz, 2H), 1.13 (t, $J = 7.1$ Hz, 3H). **13C NMR** (75 MHz) δ 192.6, 165.9, 156.4, 143.4, 141.4, 134.8, 132.9, 130.6, 130.3, 129.7, 128.8 (2C), 128.5 (2C), 126.9, 122.2, 121.5, 112.7, 67.1, 60.4, 14.1. **HRMS** (ESI) m/z calcd for C$_{21}$H$_{21}$O$_4$ ([M + H]$^+$) 337.1440; found 337.1431.
ethyl 2-phenyldibenz[o,d]furan-3-carboxylate (12). To a 15 mL round bottom flask was measured ethyl (E)-4-(2-cinnamoylphenoxy)but-2-enoate (10) (1.0 equiv.). DMSO (0.15M) was then added, followed by the addition of DBU (3.0 equiv.). The reaction vessel was equipped with a magnetic stir bar, and stirred open to air at room temperature for 90 minutes. The reaction mixture was then heated to 120 °C and stirred at this temperature for 16 hours. The reaction mixture was then cooled to room temperature and diluted into ethyl acetate. Organics were washed sequentially with sat. NH₄Cl (2x) and water (2x) then dried over anhydrous Na₂SO₄. Organics were concentrated in vacuo and purified by flash chromatography to furnish dibenzofuran 11. Yellow oil (26 mg, 55% yield). **TLC:** *R*ᵣ 0.57 (ethyl acetate/hexanes = 1:4). **IR** (neat) *ν*_{max}: 3057, 2979, 2358, 1707, 1458, 1217, 1106, 1017, 786 cm^{⁻¹}. **¹H NMR** (600 MHz) δ 8.07 (d, *J* = 2.2 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.92 (d, *J* = 2.2 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 1H), 7.53 (t, *J* = 7.9 Hz, 1H), 7.45–7.33 (m, 6H), 4.13 (q, *J* = 7.0 Hz, 2H), 1.02 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (151 MHz) δ 168.4, 157.5, 154.7, 141.9, 137.8, 130.0, 128.7 (2C), 128.4 (2C), 128.0, 127.0, 126.8, 123.4, 123.1, 122.6, 121.2, 113.2, 112.0, 61.12 13.6. **HRMS** (ESI) *m/z* calcd for C₂₁H₁₆O₃Na ([M + Na]⁺) 339.0997; found 339.0986.
4.9.10. SYNTHESIS OF ETHYL-9-METHYL-3-PHENYL-9H-CARBAZOLE-2-CARBOXYLATE (13)

ethyl (E)-4-((2-cinnamoylphenyl)(methyl)amino)but-2-enoate (11). To a solution of N-methylaminochalcone (356 mg, 1.50 mmol, 1.0 equiv.) and ethyl 4-bromocrotonate (0.310 mL, 1.80 mmol, 1.2 equiv.) in MeCN (3 mL) was added anhydrous potassium carbonate (207 mg, 1.50 mmol, 1.0 equiv.). The reaction vessel was sealed and heated to reflux with stirring for 16 hours. The reaction mixture was cooled to room temperature and inorganic salts were removed via filtration. Organics were then concentrated and purified by flash chromatography to furnish Ethyl (E)-4-((2-cinnamoylphenyl)(methyl)amino)but-2-enoate 9. Yellow oil (468 mg, 89% yield). TLC: \(R_f \) 0.32 (ethyl acetate/hexanes = 1:4). IR (neat) \(\nu_{\text{max}} \): 2980, 1715, 1658, 1597, 1485, 1448, 1367, 1265, 1173, 1030, 974, 704 cm\(^{-1}\). \(^1\)H NMR (400 MHz) \(\delta \) 7.65 (d, \(J = 16.0 \text{ Hz} \), 1H), 7.59–7.54 (m, 2H), 7.50 (dd, \(J = 7.6, 1.7 \text{ Hz} \), 1H), 7.44–7.34 (m, 3H), 7.30 (d, \(J = 16.0 \text{ Hz} \), 1H), 7.03 (qd, \(J = 7.8, 7.4, 1.0 \text{ Hz} \), 2H), 6.87 (dt, \(J = 15.7, 5.7 \text{ Hz} \), 1H), 5.93 (dt, \(J = 15.7, 1.7 \text{ Hz} \), 1H), 4.09 (q, \(J = 7.1 \text{ Hz} \), 2H), 3.80 (dd, \(J = 5.7, 1.6 \text{ Hz} \), 2H), 2.79 (s, 3H), 1.18 (t, \(J = 7.1 \text{ Hz} \), 3H). \(^{13}\)C NMR (101 MHz) \(\delta \) 195.2, 165.9, 150.8, 143.8, 143.2, 134.9, 132.8, 131.8, 130.3 (2C), 128.9 (2C), 128.4 (2C), 126.3, 123.5, 121.4, 118.5, 60.4, 57.9, 41.3, 14.1. HRMS (ESI) \(m/z \) calcd for C\(_{22}\)H\(_{24}\)NO\(_3\) ([M + H]\(^+\)) 350.1756; found 350.1758.
ethyl 9-methyl-3-phenyl-9H-carbazole-2-carboxylate (13). To a 15 mL round bottom flask was measured ethyl (E)-4-((2-cinnamoylphenyl)(methyl)amino)but-2-enoate (12) (1.0 equiv.). DMSO (0.15M) was then added, followed by the addition of DBU (3.0 equiv.). The reaction vessel was equipped with a magnetic stir bar, and stirred open to air at room temperature for 90 minutes. The reaction mixture was then heated to 120 °C and stirred at this temperature for 16 hours. The reaction mixture was then cooled to room temperature and diluted into ethyl acetate. Organics were washed sequentially with sat. NH₄Cl (2x) and water (2x) then dried over anhydrous Na₂SO₄. Organics were concentrated in vacuo and purified by flash chromatography to furnish carbazole 9. Orange oil (64 mg, 69% yield). **TLC:** R_f 0.36 (ethyl acetate/hexanes = 1:4). **IR** (neat) ν_{max}: 2978, 1701, 1493, 1460, 1368, 1234, 1095, 1018, 908, 785, 699 cm$^{-1}$. **1H NMR** (500 MHz) δ 8.11 (d, $J = 7.8$ Hz, 1H), 8.07 (d, $J = 1.5$ Hz, 1H), 7.95 (d, $J = 1.5$ Hz, 1H), 7.56 (t, $J = 7.9$ Hz, 1H), 7.46 (d, $J = 8.3$ Hz, 1H), 7.45–7.34 (m, 4H), 7.30–7.26 (m, 2H), 4.14 (qd, $J = 7.1$, 1.4 Hz, 2H), 3.94 (d, $J = 1.6$ Hz, 3H), 1.01 (t, $J = 7.1$ Hz, 3H). **13C NMR** (101 MHz) δ 169.6, 142.8, 142.4, 139.5, 133.6, 128.9 (2C), 128.5 (2C), 127.9, 126.9, 126.5, 125.0, 122.2 (2C), 121.0, 119.4, 110.4, 108.8, 61.0, 29.3, 13.6. **LRMS** (ESI) m/z calcd for C$_{22}$H$_{22}$NO$_3$ ([M + H + H$_2$O]$^+$) 348.2; found 348.5.

We were unable to obtain an accurate HRMS in ESI for this compound.
Appendix III

Spectra Relevant to Chapter 4
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

Diagram:

- Structure labeled as 1b with chemical shifts on a 1D NMR spectrum.

- **1H NMR Spectrum (Top):**
 - Chemical shifts range from -10 to 18 ppm.
 - Peaks are labeled with specific chemical shifts.

- **13C NMR Spectrum (Bottom):**
 - Chemical shifts range from -10 to 230 ppm.
 - Peaks are labeled with specific chemical shifts.
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

1g
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Diagram of molecular structure](image_url)
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Chemical Structure](image)

![NMR Spectrogram](image)
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

3h
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Chemical structure diagram](image)

4b
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Chemical structure](image)

4e

![NMR spectrum](image)
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Chemical structure of 4f](image)

![NMR spectrum](image)
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Chemical Structure](image1)

![NMR Spectra](image2)
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Diagram of molecular structure]

![NMR spectrum]

![Carbon-13 NMR spectrum]
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Chemical Structure](image)
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

![Chemical Structure](image)

6a

![Graph](image)
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles

7b
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
Ch. 4 – Development of a Metal-Free Cascade Approach to Aromatic Heterocycles
CHAPTER 5

Conclusions

As drug development has shifted its focus towards straightforward, planar molecules in the 21st century which can be quickly and conveniently synthesized, there exists a need to expand the chemical space of the drug development process to encompass molecules with a higher degree of structural complexity. The current trend in combinatorial chemistry has shifted development of pharmaceuticals to flat, aromatic compounds; because biological targets like proteins and receptors are complex three-dimensional structures, carefully designed, structurally complex small molecules are capable of binding with a high degree of selectivity, mitigating undesired side effects of off-target binding. Since the cost of a drug is directly related to the number of synthetic steps used to prepare the compound, we have formed a central research hypothesis utilizing reactive intermediates to form such compounds in a cascade fashion, directly reducing the number of steps in their synthesis. Ultimately, culmination of this research effort
has produced new methods of generating spiroethers, carbocycles, spirothiophenes, and an array of aromatic heterocycles.

First, we have employed a catalytic cocktail comprised of Rh$_2$(esp)$_2$ and Au$^+$, which had been previously used for the formation of γ-butyrolactones from α-diazocarbonyl compounds through an acid O–H insertion/Conia-ene cascade, towards the formation of tetrahydrofurans (Chapter 2). This approach has proven general for a range of ketoester, diketone, and malonate diazo substrates with primary and secondary alkynols. We have also shown that this approach could be applied to cyclic diazo substrates, for the formation of spiroethers. Targeting the core of the natural product Berkeleyamide D, we were able to synthesize α-spiro-γ-lactams with a high degree of stereocontrol. These efforts were not met without challenges however, as we observed reduced yields and diastereoselectivity when chiral secondary alkynols were used with these lactam diazos.

Next, we pursued the applications of using underexplored S–H and sp3 C–H nucleophiles in a cascade fashion (Chapter 3). When secondary mercaptynes were exposed to Rh$_2$(esp)$_2$ in the presence of a linear diazo substrate, we were able to isolate the corresponding insertion product then induce a Conia-ene cyclization in a stepwise fashion by exposing this compound to Au$^+$. However, when the mercaptyne and diazo were exposed to all catalysts in a one-pot fashion, we instead isolated a thiofuranofuran product, which we expect formed via undesired 5-endo-dig cyclization of the mercaptyne before S–H insertion could occur. By altering our cascade approach to an intramolecular insertion/Conia-ene strategy, we were able to develop a diazo substrate capable of producing 3-spiroinden-2-ones through benzylic sp3 C-H insertion. These conditions
however did not prove general for the 5-membered and 7-membered Conia-ene cyclization however, as we had previously observed in a sp² C–H insertion/Conia-ene cascade.

Lastly, in an orthogonal research effort, we have discovered a metal-free cascade approach to four classes of heterocycles (Chapter 4). The reaction cascade is commenced by an intramolecular aldol condensation generating a 1,3,5-triene intermediate; the triene undergoes a 6π electrocyclization and oxidative aromatization to generate a new aromatic ring. The cascade precursors are conveniently accessed through coupling of readily accessible 2’-hydroxy/aminochalcones with vinylic carboxylic acids/acyl chlorides. The reaction conditions were suitable scale-up to gram scale without significant decrease in yields, and could also utilize aromatic components in the electrocyclization reaction to generate tetracyclic frameworks.
AUTOBIOGRAPHICAL STATEMENT

Education

08/2015-present
Ph.D. Candidate in Organic Chemistry University of Oklahoma
(Advisor : Dr. Indrajeet Sharma)

Doctoral Dissertation “Cascade reactions to Access Bioactive Scaffolds”

08/2011-05/2015
B.S. in Chemistry Miami University in Oxford, Ohio
(Undergraduate Research Advisor : Dr. Benjamin W. Gung)

Publications

Memberships

American Chemical Society (ACS)

Society for Chemistry and Biochemistry Researchers (CBR)
Honors and Awards

04/2020 **Roland E. Lehr Scholarship**
Established to provide scholarships to full-time graduate students with priority consideration given to students in physical, inorganic, or materials chemistry.

04/2016 **Outstanding Graduate Teaching Assistant Award**
Selected on the basis of exceptional performance as a TA in our undergraduate laboratories.

03/2016 **Provost’s Certification for Distinction in Teaching**
Awarded to one teaching assistant per course who receives student evaluations in the top 10% of instructors.

05/2014 **Sigma Xi Grant**
Awarded to undergraduate students to pursue research during the summer semester. Designed a spectroscopy database webpage with undergraduate advisor for teaching purposes.

Teaching and Leadership Experience

CHEM 1415 General Chemistry II Laboratory Laboratory Teaching Assistant
Led two 24-student sections through experiments that covered the fundamentals of chemistry, including basic reactions, titrations, redox chemistry, and green chemistry principles.

CHEM 3152 Organic Chemistry Laboratory Laboratory Teaching Assistant
Led two 24-student sections through experiments that introduced students to fundamental techniques in organic chemistry including distillations, extraction techniques, basic spectroscopy, and experimental optimization culminating in a multi-step synthesis experiment.

CHEM 3053 Organic Chemistry I: Biological Emphasis Lecture Teaching Assistant
Assisted professors in large-lecture courses (>300 students) by generating exam questions, formulating weekly problem sets, holding weekly office hours, and grading assessment materials.

CHEM 4444 Inorganic Chemistry & Spectroscopic Characterization Laboratory Teaching Assistant
Head Teaching Assistant
Led small sections of senior students (12 – 16 students) in learning the fundamentals of inorganic synthesis, including anhydrous techniques and formation of coordination compounds. Highly focused on developing independent skills in the laboratory and in spectroscopy, including acquisition and analysis of NMR, IR, UV-Vis, and CV data.