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Abstract 

Mass spectrometry (MS) analysis of biological samples is traditionally carried out using 

extractions from large populations of cells, concealing the information from individual cells. 

In contrast, the drawbacks of traditional methods can be overcome by single cell MS 

(SCMS) methods, and this approach is particularly suitable to study rare types of cells 

that are hard to achieve or culture, including primary cells, stem cells, and patient-derived 

cells. Due to the super capability of MS technique, a series of SCMS methods have been 

rapidly developed to investigate undiscovered cellular mechanisms of a broad range of 

cells. My studies led to the development of two novel sampling and ionization devices for 

analyzing non-adherent single cells in ambient conditions: the redesigned T-probe and 

micropipette needle. The redesigned T-probe can be applied for real-time SCMS analysis 

of live single cells, without losing cell content during the analysis. In addition, this device 

allows for relatively long ion signal acquisition time for more molecular structure 

identification. The development and application of this device are described in Chapter 3. 

The micropipette needle is another technology for non-adherent single cell analysis. 

Particularly, this device can be used for reactive SCMS experiments, in which chemical 

reactions between cellular species and reagents can be performed prior to MS analysis, 

allowing for versatile experimental designs. In Chapter 4, the micropipette device was 

used to conduct both regular and reactive SCMS analysis of the same single cell to 

identify double bond locations of unsaturated lipid isomers, which are critical for the 

understanding of lipid biochemistry and therapeutic targets in diseases.  
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Chapter 1. Introduction 

1.1 Single-cell analysis 

Traditional studies of tissues or cells are based on pooled assays to achieve averaged 

results using bulk samples (i.e., cell lysis and tissue extraction) with the assumption that 

the weighted average can represent the population’s cellular constituents.1 However, 

numerous single-cell studies recently find that cellular heterogeneity is presented in 

multicellular organisms, including any single tissue, which is apparent homogeneous.1, 2 

The differences may appear in cell functions, morphologies, and gene expression profiles. 

These differences can influence the health and features of the entire cellular population.3 

Therefore, cellular heterogeneities cannot be ignored, and the behaviors of any individual 

cell cannot be studied based on behaviors of population cells.2 

Cells receive and respond to signals from the surrounding environment using their 

signaling molecules. However, each individual cell responds differently to the same 

message, and a portion of cells may exhibit incorrect or unexpected responses because 

of random signal transduction noise.4 Cellular heterogeneity is also related to the 

expression of genes, proteins, and metabolites.5 Recent studies indicated that cellular 

heterogeneity is a fundamental feature of cancer cells. For example, cell heterogeneity 

can affect cancer cell growth, which cannot be detected using pooled assays. Besides, 

previous studies point out that high levels of cellular heterogeneity exist in most unstable 

cancer cell populations.6 Investigating cellular heterogeneity can improve the 

understanding of the communication and responsibility of cells for both healthy and 
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disease states. Therefore, investigation of cellular heterogeneity is significant for cellular 

biology, especially for cancer cell populations.  

In contrast to bulk analysis, cell heterogeneity in multicellular organisms (i.e., organs, 

tissues, and cell culture) can be investigated using single-cell analysis.3 Various single-

cell analyses have been carried out in genomics, transcriptomics, proteomics, and 

metabolomics studies.5 Among all these single-cell “omics” studies, single-cell 

metabolomics studies are able to provide molecular information that more directly reflect 

the functions, status, and dynamics of individual cells. However, due to the intrinsic 

characteristics of metabolites, including rapid (e.g., a few seconds or less) dynamic 

change of abundances, vast structural diversity, broad ranges of concentrations, 

incapable amplification of quantities, and the absence of non-interfering labeling 

technique (e.g., commonly used fluorescent tags can alter metabolites’ functions), single-

cell metabolomics is a very challenging area.7 Currently, the major technologies used for 

single-cell metabolomics studies include mass spectrometry (MS), capillary 

electrophoresis (CE), optical spectroscopy, and fluorescence biosensors. With the 

development of the single-cell metabolomics study, it can be applied in broad areas, such 

as cancer cell study, systems biology, and drug resistance.7  

1.2 Single-cell mass spectrometry analysis (SCMS) 

A number of analytical techniques, such as single-cell transcriptomics8, flow cytometry9, 

fluorescence microscopy10, Raman spectroscopy10, 11, and electrochemical assays,12 

have been used for single-cell analysis. However, broad applications of these techniques 

are limited by their own drawbacks, including the requirement of using molecular labels 

(e.g., fluorescence-based methods), incapability of simultaneous detection of broad types 
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of molecules, limited sensitivity, inadequate resolution, and unsatisfied reproducibility.13 

Hence, a label-free method with high sensitivity, high selectivity, and high resolution 

would be more suitable for single-cell analysis. Compared with the above technologies, 

MS can provide several advantages, such as high sensitivity at femtomolar level, high 

selectivity, high resolution, high throughput, rich chemical information, and no 

requirement of labels. Particularly, owing to its high sensitivity, the sample consumption 

of MS measurement is very low, indicating it is suitable for single cell analysis.13, 14 

Presently, a variety of MS techniques have been developed as effective, powerful, and 

reliable devices for single cell analysis focusing on various types of molecules (i.e., 

proteins, peptides, lipids, and metabolites).13, 15 The summary of these SCMS techniques 

are shown in Table 1-1. 

1.2.1 Ambient MS for single-cell analysis 

Ambient MS techniques, which can be used in ambient conditions for sampling and 

ionization, allow for direct analysis of components and metabolites of cellular or 

subcellular under open-air status with little or no sample preparation or separation.14, 16 

The significance of ambient MS is that it enables a direct, rapid, real-time, and 

straightforward analysis of samples.14 This is particularly important for studies of live cells 

under their normal growing conditions. In addition, ambient MS technologies retain the 

advantages of MS, including high throughput, high selectivity, and high sensitivity. 

Nowadays, a number of ambient MS technologies have been applied in in situ or in vivo 

single-cell studies through direct, real-time analysis.14 
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Table 1-1. Summary of SCMS techniques 

SCMS technologies 
Require cell 
attachment 

Types Pros/Cons 

The Single-probe MS17 Y Ambient 
Real-time analysis; able to conduct reactive 

SCMS/Limited throughput; no separation  

The T-probe MS18 Y Ambient Real-time analysis/Limited throughput, no separation 

Live single-cell video-
MS19 

Y Ambient 
Easy assemble process/Limited throughput, no 

separation  

Capillary microsampling 
ESI-MS20 

Y Ambient 
Similar to Live single-cell video MS; Post-ionization 

separation (coupled with ion mobility 
separation)/Limited throughput, no separation 

Cell pressure probe MS21 Y Ambient 
Able to conduct quantitative SCMS/Limited 

throughput, no separation 

Internal electrode 
capillary pressure probe 

ESI-MS22 
Y Ambient 

Similar to the cell pressure probe; internal electrode 
which can provide stable ionization voltage/Limited 

throughput, no separation 

Nanomanipulation-
coupled nanospray MS23 

Y Ambient 
A second nanopositioner was used to puncture the 

cell membrane to avoid clogging of the probe/Limited 
throughput, no separation 

Probe electrospray 
ionization (PESI) MS24 

Y Ambient 
Analytes enrichment inside the probe/Limited 

throughput, no separation 

Direct sampling probe 
(DSP) MS25 

Y Ambient 

Cellular contents can be withdrawn in to probe 
spontaneously due to the hydrophilic surface of the 

probe and positive pressure inside of plant cells/ 
Limited throughput, no separation, limited signal 

duration time 

Surface-coated probe 
nanoelectrospray 

Ionization (SCP-nanoESI-
MS)26 

Y Ambient 
Similar to Direct sampling probe; surface-coated 

probe can absorb target analytes/Limited throughput, 
no separation 

Desorption electrospray 
ionization (DESI) MS27 

Y Ambient 
High throughput; less sample preparation/Limited 

spatial resolution 

Laser ablation 
electrospray ionization 

(LAESI) MS28 
Y Ambient 

High throughput; less sample preparation/Limited 
spatial resolution 

Laser 
desorption/ionization 

droplet delivery (LDIDD) 
MS29 

Y Ambient 
Similar to LAESI (the wavelength of LDIDD is 

different from LAESI) 

Integrated cell 
manipulation platform 

combined with the Single-
probe MS30 

N Ambient 
Real-time analysis/Limited throughput; no separation; 

limited signal duration time 
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Easy Ambient Sonic-
Spray Ionization (EASI) 

MS31 
N Ambient High throughput/large spatial resolution 

Drop-on-demand inkjet 
printing combined with 

Probe Electrospray 
Ionization (PESI)-MS32 

N Ambient 
High throughput; automatic sampling/no separation; 

limited signal duration time 

Mass cytometry33 N Ambient 
High throughput; automatic; able to analyze the 
mixture of different types of cells/limited signal 

duration time; no separation 

Redesigned T-probe MS34 N Ambient 
Real-time analysis; High throughput; online cell lysis 

system inside the probe/Limited throughput; no 
separation 

Micropipette needle MS35 N Ambient 
Longer signal duration time; long reactive time for the 

chemical reaction; able to conduct reactive 
SCMS/Limited throughput; no separation 

Time of Flight (ToF)- 
secondary ion mass 

spectrometry (SIMS)36 
Y 

Non-
ambient 

High spatial resolution; little sample 
consumption/complex sample preparation; extensive 

fragments 

Matrix-assisted laser 
desorption/ionization 

(MALDI)‐MS15 
Y 

Non-
ambient 

High throughput/complex sample preparation; large 
spatial resolution 

Nanostructure initiator 
MS37 

Y 
Non-

ambient 
No matrix effect/requirement of spatial substrates; 

Nanopost arrays (NAPA) 
based-LDI-MS38 

N 
Non-

ambient 
No matrix effect/requirement of spatial substrates; 

 

1.2.1.1 Ambient MS technologies requiring cell attachment 

These ambient MS technologies require single cell adherence on a smooth surface, such 

as glass slides, plastic slides, and well plates, for extraction of cellular contents, or 

desorption of analyte from single cells.14 Some of the ambient MS technologies are listed 

below. 
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1.2.1.1.1 The Single-probe MS 

The Single-probe works as a multifunctional sampling and ionization tool, which can be 

coupled with MS directly for real-time, in situ metabolomics analysis of living single cells. 

The single-probe is made up of three ingredients, which are a laser-pulled dual-bore 

quartz needle, a silica capillary, and a nano-ESI emitter. Both the nano-ESI emitter and 

the fused silica capillary, which works as solvent providing capillary, are embedded into 

a laser-pulled dual-bora quartz needle to combine a Single-probe. The diameter of   

Figure 1-1. Single-probe MS technology. (a) Fabrication processes of Single-probe; (b) 

Photograph of a Single-probe; (c) Tip of the Single-probe under magnification (40x); (d) 

Setup of Single-probe MS ( Pan, N.; Rao, W.; Kothapalli, N. R.; Liu, R.; Burgett, A. W.; 

Yang, Z., The single-probe: a miniaturized multifunctional device for single cell mass 

spectrometry analysis. Analytical chemistry 2014, 86 (19), 9376-9380. Copyright 



7 
 

permission is obtained from American Chemical Society, and the detail is shown in 

Appendix III.) 

the Single-probe tip is around 6-10 μm, which can be inserted into a mammalian cell. 

Since the materials of these parts are inexpensive, the total cost of a Single-probe is 

around 5 dollars. 17 The stability and reproducibility of the Single-probe have been 

demonstrated through a series of studies such as metabolomics studies of alga cells,39 

cancer stem cells,40 and tumor spheroids.41 Besides, the Single-probe is used for MS 

imaging studies. 42 The principle and structure of the Single-probe are shown in Figure 1-

1.   

During the sampling procedure, cells are attached to a glass slide. An XYZ-translational 

stage system, which is controlled by the LabView software, is used to insert the tip of the 

Single-probe into a target cell under a digital microscope. The solvent (methanol/water or 

acetonitrile) is continuously provided through the solvent providing capillary to the dual-

bore quartz needle (flow rate: ∼25 nL/min). A liquid junction, which is generated between 

two bores at the quartz needle tip, can extract the analytes from the target cell. Then, 

driven by a self-aspiring suction force generated by the ESI process, cellular contents 

dissolved in the solvent are withdrawn into the nano-ESI emitter. During the experiment, 

∼3 kV ionization voltage is transmitted to the nano-ESI emitter using a conductive union 

and solvent. The nano-ESI emitter is positioned in front of the inlet of a mass spectrometer 

(e.g., Thermo LTQ Orbitrap XL) for direct analysis of cellular contents in real-time.17  

1.2.1.1.2 The T-probe MS 

The T-probe is a sampling device with miniaturized multifunction that allows cellular 

contents extraction and ionization for SCMS. A T-probe is produced using thermal binding, 
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from which two polycarbonate slides are fused to sandwich three capillaries arranged in 

a T-shape. These capillaries work as a sampling probe, a solvent-providing capillary, and 

a nano-ESI emitter, respectively, during SCMS analysis. The tip size of the sampling 

probe is around 5-8 μm, which is small enough to insert into a mammalian cell. During 

the SCMS experiment, the sampling solvent (methanol: water 1:1 (v/v) with 0.1% formic 

acid) is delivered (flow rate: 0.2 μL/min) through the solvent providing capillary from a 

syringe. The sampling probe is controlled by an XYZ-stage to insert in a targeted cell. 

Similar to the Single-probe, a suction force, which is generated via the ESI mechanisms, 

at the tip of the sampling probe draws the cellular contents into T-probe and mixed with 

the solvent at the T-junction. The mixture is then delivered and ionized at the nano-ESI 

emitter. 4 kV ionization voltage is transmitted to the nano-ESI emitter via a conductive 

union. Because the sampling probe only has one channel, the tip size of the sampling 

probe can be minimized under 1 μm, which can be potentially used for Single-cell analysis 

at the subcellular-level. Coupled with a mass spectrometer (e.g., Thermo LTQ Orbitrap 

XL MS) during single-cell sampling, the T-probe enables for online, in situ, and real-time 

analysis of individual live cells. Due to the high sensitivity and high reproducibility of the 

T-probe, it can be applied for a variety of species of single-cell metabolomics studies.18 

The working mechanisms and photos of the T-probe are illustrated in Figure 1-2. 

1.2.1.1.3 Live single-cell video-MS 

In this design,  a video-microscope combined with a commercially available gold-coated 

nanospray tip was used to conduct SCMS analysis. Cell contents can be sucked into 
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Figure 1-2. T-probe technology for SCMS experiments. (A) Photography of T-probe; (B) 

Working mechanism and fluid flow direction of T-probe; (C) The photography of using T-

probe sample a single cell under the microscope (x40). (Liu, R.; Pan, N.; Zhu, Y.; Yang, 

Z., T-probe: an integrated microscale device for online in situ single cell analysis and 

metabolic profiling using mass spectrometry. Analytical chemistry 2018, 90 (18), 11078-
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11085. Copyright permission is obtained from American Chemical Society, and the detail 

is shown in Appendix III.) 

the nanospray tip (ID: 1-2 μm) under the video microscope using a piston syringe. After 

single-cell sampling, acetonitrile with 0.5% formic acid (ionization solvent) is added into 

the nanospray tip, which is then set up in front of the nano-ESI source of the mass 

spectrometer for analysis (Figure 1-3).14, 19, 43 This technique has been used to study 

multiple cell lines, including Swiss 3T3 cells, RBL 2H3 cells, and TIG‐3 cells. Hundreds 

of small metabolites were analyzed in a single cell. Statistical analysis methods, including 

PCA and t-test, were used for data interpretation.19 

 

Figure 1-3. Two steps of live single-cell video mass spectrometry using nanospray tip. 

In the first step: (A) Schematic diagram of live single-cell sampling; (B) Photo of Cells 

under video microscope; (C) Ionization of live single-cell video mass spectrometry; 

(D)Single-cell data acquisition and analysis. The second step is the workflow of molecular 

analyses. (Mizuno, H.; Tsuyama, N.; Harada, T.; Masujima, T., Live single‐cell video‐
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mass spectrometry for cellular and subcellular molecular detection and cell classification. 

Journal of mass spectrometry 2008, 43 (12), 1692-1700. Copyright permission is obtained 

from John Wiley and Sons, and the detail is shown in Appendix III.) 

1.2.1.1.4 Capillary microsampling ESI-MS 

The sampling procedure of capillary microsampling ESI-MS is similar to the above live 

single-cell video-MS. A nanospray tip (ID: 1 µm) is used to inject into a single cell and 

draw cell contents. After single-cell sampling, the electrospray solution (methanol and   

Figure 1-4. (a) Schematic diagram of single-cell capillary microsampling. The 

nanospray capillary is controlled by a micromanipulator under a microscope. An air pump 

is used for controlling nanospray tip to extract cell contents; (B) Schematic diagram of 

ESI-IMS-MS analysis of single cells. (Zhang, L.; Foreman, D. P.; Grant, P. A.; Shrestha, 

B.; Moody, S. A.; Villiers, F.; Kwak, J. M.; Vertes, A., In Situ metabolic analysis of single 

plant cells by capillary microsampling and electrospray ionization mass spectrometry with 
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ion mobility separation. Analyst 2014, 139 (20), 5079-5085. Copyright permission is 

obtained from Royal Society of Chemistry, and the detail is shown in Appendix III) 

water (1:1) with 0.2% acetic acid, 1 µL) is backfilled into the nanospray tip. Then, this tip 

is positioned with the ion source of the mass spectrometer, and the ionization voltage (2 

KV) is applied to a platinum wire, which is installed into the nanospray tip and to transfer 

the voltage to the solution and induce electrospray for analysis. In this specific study, the 

mass spectrometer utilizes ion mobility separation (IMS), (Figure 1-4) 20, which allows for 

post-ionization separation of ions due to the mobility in the gas-phase. This technique has 

been used to conduct analysis of different types of cells such as plant cells20 and human 

hepatocytes.44 Owing to the capability of ions separation, hundreds of metabolites and 

lipids were analyzed in these cells. Specifically, this technology has been used to 

investigate the lipids turnover rates, the energy charge of single cells, and the difference 

in energy charge between normal cells and drug-treated cells.14 

1.2.1.1.5  Cell pressure probe MS 

In this design, a quartz capillary with the tip size around 3-7 µM, which is fulfilled with a 

mixture of silicon oil and engine oil (9:1, v/v), is used as a sampling probe. The volume of 

the oil mixture is controlled by moving a rod back-and-forth with a motorized micrometer. 

After the capillary tip is inserted into a single cell, a pressure transducer is connected with 

the capillary tip to monitor and record the hydrostatic pressure inside the capillary. The 

piezo-manipulator controls and determines the location of the tip via a hydraulic continuity 

test. Because the sampling procedure is performed under a digital microscope, the 

volume of the cellular contents inside the capillary can be photographed and calculated. 

After cell sampling, the capillary is coupled to a mass spectrometer, and an ionization 
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voltage is applied on the capillary to create electrospray ionization (Figure 1-5).21, 45 

Because the cell sampling volume can be calculated, this technology can be applied for 

quantitative analysis of species in single cells. In the reported studies, several types of 

metabolites, such as sugars, amino acids, vitamins, and fatty acids, are rapidly detected. 

Besides, the pressure probe is coupled with hydrogen flame desorption ionization mass 

spectrometer (HFDI–MS) to quantitate metabolites at the single-cell level. 

 

 

 

 

 

 

 

 

 

Figure 1-5. (A) Photo of single-cell sampling using cell pressure probe. (B) Photo of cell 

pressure probe MS ionization and detection setup. (C) Scheme of the cell pressure probe 

instruments setup. (Gholipour, Y.; Erra-Balsells, R.; Hiraoka, K.; Nonami, H., Living cell 

manipulation, manageable sampling, and shotgun picoliter electrospray mass 

spectrometry for profiling metabolites. Analytical biochemistry 2013, 433 (1), 70-78. 
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Copyright permission is obtained from ELSEVIER, and the detail is shown in Appendix 

III.) 

1.2.1.1.6 Internal electrode capillary pressure probe ESI-MS 

The working mechanism, including the sampling procedure, of the internal electrode 

capillary pressure probe is similar to the cell pressure probe. The major difference 

between them is that a titanium wire (0.3 mm I.D.), which is pre-embedded inside the 

capillary before sampling, is used as the internal wire electrode. The set-up of this device  

 

Figure 1-6. (A) setup of the internal electrode capillary pressure probe. (B) the probe 

tip and a single cell under the microscope. (C) Photo of probe tip under the microscope. 

(D) The setup of subsequent ionization and detection using Orbitrap. (Nakashima, T.; 

Wada, H.; Morita, S.; Erra-Balsells, R.; Hiraoka, K.; Nonami, H., Single-cell metabolite 

profiling of stalk and glandular cells of intact trichomes with internal electrode capillary 

pressure probe electrospray ionization mass spectrometry. Analytical chemistry 2016, 88 
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(6), 3049-3057. Copyright permission is obtained from American Chemical Society, and 

the detail is shown in Appendix III.) 

is shown in Figure 1-6, and the location of the internal electrode is detailed in Figure 1-

6C.22 

1.2.1.1.7 Nanomanipulation-coupled nanospray MS 

This system contains two nanopositioners to extract cellular contents, such as extract 

lipids (especially for triacylglycerols (TGs)), from individual cells.23 In the reported studies, 

adipocytes are analyzed using this instrument. A Pd/Au-coated nanospray emitter (tip 

size: 1 ± 0.2 μm), which is prefilled with 10 μL of solution (chloroform: methanol 2:1 (v/v) 

with 0.1% NH4OAc), is controlled by the first nanopositioner and inserted into the target 

adipocyte to extract cellular contents form cells with gentle suction (five psi pressure) for 

500 ms. Because the tip size of the nanospray emitter is tiny, clogging by cell membrane 

can easily occur. Therefore, the authors use the second nanopositioner to hold a quartz 

probe (tip size: 8 μm) to puncture the cell membrane prior to sampling of cellular contents, 

minimizing the clogging issues. The sampling solvent and cellular species (e.g., TGs 

extraction) are drawn into the nanospray emitter to conduct subsequent detection using 

a mass spectrometer (Figure 1-7).23 In particular, they investigated the dissimilarity of the 

TGs between normal and tumorous adipocytes and identified them as potential 

biomarkers.23 In addition, they observed heterogeneity of TGs among large and small 

lipids droplets of normal adipocyte.46  

1.2.1.1.8 Probe electrospray ionization (PESI) MS 

The PESI-MS set-up uses a tungsten probe (tip size: 1 µm) as a sampling probe to insert 

into a single cell under the control of a three-dimensional manipulator. In order to enrich 
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metabolites, the probe is kept inside of the target cell for 30 s for surface absorption. After 

enrichment, the probe is coupled to the ion source of a mass spectrometer for subsequent 

ionization. Specifically, the sprayed-assistant solvent is used to wet the probe tip, and 

then an ionization voltage (~ 2.5 kV) is applied to the probe for ionization.24 Due to the 

 

Figure 1-7. (a) Scheme of single-cell sampling using a two-positioner nanomanipulator. 

(b) Photo of the two-positioner nanomanipulator. (Phelps, M.; Hamilton, J.; Verbeck, G. 

F., Nanomanipulation-coupled nanospray mass spectrometry as an approach for single 

cell analysis. Review of Scientific Instruments 2014, 85 (12), 124101. Copyright 

permission is obtained from AIP Publishing, and the detail is shown in Appendix III.) 

metabolite enrichment, this method is able to enhance signal intensity for 30 folds 

comparing with nanoESI-MS.14 
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1.2.1.1.9 Direct sampling probe (DSP) MS 

In this set-up, a piezomicro-manipulator is used to control the direct sampling probe (tip 

size: 150 nm), which is oxidized to obtain the hydrophilic surface, and insert the probe tip 

inside an individual plant cell. Because of the positive turgor pressure inside the plant cell 

and the hydrophilic surface of the probe, the cellular contents can naturally leak out and 

spontaneously be absorbed by the probe tip. Then, the probe is coupled with the time-of-

flight (TOF) mass spectrometer. The absorbed analytes are desorbed using auxiliary 

solvent droplets (acetonitrile and water, 50/50 (v/v)), which are generated by an inkjet 

head, and then an ionization voltage is applied to create electrospray for MS detection 

(Figure 1-8). Various metabolites of different plant single cells are detected and identified 

using this method.25 

 

Figure 1-8. (A) Scheme of single-cell sampling using DSP. (B) Scheme of DSP-MS 

setup. (Yu, Z.; Chen, L. C.; Ninomiya, S.; Mandal, M. K.; Hiraoka, K.; Nonami, H., 

Piezoelectric inkjet assisted rapid electrospray ionization mass spectrometric analysis of 

metabolites in plant single cells via a direct sampling probe. Analyst 2014, 139 (22), 5734-
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5739. Copyright permission is obtained from Royal Society of Chemistry, and the detail 

is shown in Appendix III.) 

1.2.1.1.10 Surface-coated probe nanoelectrospray Ionization (SCP-nanoESI-MS) 

Although the working mechanisms of the SCP device are similar to those of DSP, the 

SCP has two modifications.26 First, the surface of a fine tungsten probe is coated using a 

solvent mixture (30% sulfuric acid with 30 mg/mL potassium permanganate and 15 

mg/mL potassium dichromate; 30% sodium hydroxide) to improve the capability of 

absorbing target analytes such as perfluorinated compounds (PFCs). Second, a 

nanospray tip is used for the ionization of analytes. The sampling procedure of both 

techniques is nearly identical. After sampling, the SCP is installed into a nanospray tip, 

which is prefilled with desorption/spray solvent (1 μL of methanol) for 30 s to dissolve 

analytes for the surface of SCP. Then, an ionization voltage is applied to the SCP to 

induce the electrospray ionization for subsequent MS detection (Figure 1-9).26 PFCs are 

detected and quantified from single Daphnia magna’s egg cells using this method. 

 

Figure 1-9. Photo of Daphnia magna and Egg cell; Scheme of SCP-nanoESI-MS setup. 

(Deng, J.; Yang, Y.; Xu, M.; Wang, X.; Lin, L.; Yao, Z.-P.; Luan, T., Surface-coated probe 

nanoelectrospray ionization mass spectrometry for analysis of target compounds in 

individual small organisms. Analytical chemistry 2015, 87 (19), 9923-9930. Copyright 
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permission is obtained from American Chemical Society, and the detail is shown in 

Appendix III.) 

1.2.1.1.11 Desorption electrospray ionization (DESI) MS 

DESI directly applies the electrospray mist on the surface of samples, which are dried on 

the insulated surfaces. Then, the desorbed and ionized analytes with the splashed 

droplets are carried to the MS for detection.47, 48 In the study performed by Cooks et al., 

individual target cells (e.g., oocyte or embryo) are attached to the glass slide and dried at 

room temperature. A spray solvent, which contains ethanol (or acetonitrile) and 

dimethylformamide (50/50, v/v), is used to desorb and ionize lipids of single cells for MS 

analysis.49 In another study, this technique has been utilized to analyze unfertilized 

oocytes, two- and four-cell embryos, and blastocysts. A significant difference in lipids 

among these samples was discovered through the principal component analysis (PCA) 

of experimental data.27 In the other study, the dynamics of lipid composition change of 

single bovine oocytes and preimplantation embryos were obtained using this method 

combined with linear discriminant analysis and PCA.50 

1.2.1.1.12 Laser ablation electrospray ionization (LAESI) MS 

LAESI MS uses mid-IR laser pulses, which is conducted through a GeO2-based glass 

fiber, to ablate a single cell that is placed on a microscope glass slide. The ablated 

analytes are then ionized using electrospray and detected using MS.51 This technology 

has been broadly used for metabolomics studies at the single-cell level,28 including the 

metabolic variation of Allium cepa’s epidermal cells and Narcissus pseudo narcissus bulb, 

51 and metabolic and lipidomic changes of embryogenesis at early stages.52 
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1.2.1.1.13 Laser desorption/ionization droplet delivery (LDIDD) MS 

The working mechanisms of LDIDD are similar to the LAESI, whereas the major 

difference is that LDIDD utilizes UV light for desorption. LDIDD uses 266 nm UV laser 

beam to desorb samples, where the wavelength of IR laser used by LAESI is 2.94 µm.14, 

53 During the sampling process, target cells are placed on a glass slide, and then attached 

single cells are desorbed and ionized by the laser beam (15 Hz, 266 nm). Meantime, 

liquid droplets are applied to the laser focusing area to carry the desorbed analyte to the 

MS for analysis under ambient conditions (Figure 1-10).29 Because LDIDD MS combines 

laser photoionization and electrospray ionization together, it provides higher sensitivity 

compared with using pulsed laser alone.29 Zare’s group used this approach to investigate 

the difference of lipids in the healthy and apoptotic Human Embryonic Kidney cells.29  

 

Figure 1-10. Scheme of LDIDD MS. (Lee, J. K.; Jansson, E. T.; Nam, H. G.; Zare, R. 

N., High-resolution live-cell imaging and analysis by laser desorption/ionization droplet 
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delivery mass spectrometry. Analytical chemistry 2016, 88 (10), 5453-5461. Copyright 

permission is obtained from American Chemical Society, and the detail is shown in 

Appendix III.) 

1.2.1.2 Ambient MS technologies for non-adherent single cells 

1.2.1.2.1 Integrated cell manipulation platform combined with the Single-probe MS 

The Single-probe developed by our group has been primarily used for the analysis of 

adherent cells, which are attached to the substrate prior to MS analysis. We recently 

extended its application to the non-adherent cell by coupling it with an integrated cell 

manipulation platform (ICMP) to conduct real-time analysis of suspended cells. This 

multifunctional cell manipulation platform is used to control a Single-probe and the cell-

selection probe. During the single-cell sampling, the cell-selection probe is used to 

capture a suspended cell (through a gentle suction) at its tip, and the cell is then 

transferred to the tip of the Single-probe using the manipulator. Because the Single-probe 

can generate a liquid junction at its tip, rapid microscale lysis of the single cell occurs 

once the cell meets the liquid, which is composed of high-concentration acetonitrile. The 

released cellular species are then ionized by the nano-ESI emitter of the Single-probe for 

MS detection in real-time (Figure 1-11).30 
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Figure 1-11. Scheme of ICMP coupled with Single-probe MS.( Standke, S. J.; Colby, 

D. H.; Bensen, R. C.; Burgett, A. W.; Yang, Z., Mass spectrometry measurement of single 

suspended cells using a combined cell manipulation system and a single-probe device. 

Analytical chemistry 2019, 91 (3), 1738-1742. Copyright permission is obtained from 

American Chemical Society, and the detail is shown in Appendix III.) 

For example, this technique has been used to illustrate the metabolites difference of 

control and Taxol treated (100 nM, 24 h) K562 cells. 

1.2.1.2.2 Easy Ambient Sonic-Spray Ionization (EASI) MS 

EASI-MS is able to generate charged droplets of analytes for desorption and ionization 

for MS detection using sonic-spray ionization.31, 54 To apply this technique for SCMS 

studies, cells are resuspended and pipetted onto the sterilized membrane filters. Due to 

the absence of ionization voltage between the sample and EASI ion source inlet, this 

technique can eliminate electric field disturbance during the analysis. Besides, the EASI-

MS analysis is under room temperature, and live cells can be used for real-time analysis 

(Figure 1-12). Zhao’s group used this technique to investigate acidic lipids changes of 

unicellular and filamentous cyanobacteria at the single-cell level. They detected 
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metabolites and lipids of cyanobacteria and discovered several various species of 

cyanobacteria using PCA of experimental data.54 

 

Figure 1-12. Scheme of EASI-MS. (Haddad, R.; Sparrapan, R.; Kotiaho, T.; Eberlin, M. 

N., Easy ambient sonic-spray ionization-membrane interface mass spectrometry for 

direct analysis of solution constituents. Analytical chemistry 2008, 80 (3), 898-903. 

Copyright permission is obtained from American Chemical Society, and the detail is 

shown in Appendix III.) 

1.2.1.2.3 Drop-on-demand inkjet printing combined with Probe Electrospray Ionization 

(PESI)-MS 

In this method, drop-on-demand inkjet works as a cell sorting and separation device to 

print a free-flying droplet on the tip of a tungsten probe, and PESI is used to ionize the 

droplet. Prior to sampling, a cell suspension reservoir is connected with the inkjet to 

provide cells, and the inkjet head is coupled with an electric system to control the volume 

of a droplet. Using a homebuilt magnetic stirring device with optimized cell density in the 
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cell suspension reservoir, even distribution of suspended cells can be obtained to improve 

the production efficiency of single-cell-droplet. During the sampling, the position of inkjet 

is controlled by a precise automatic XY stage to manage the single-cell-droplet drip on 

the tip of the tungsten probe for subsequent MS analysis using PESI (Figure 1-13).32 In 

this study, cellular heterogeneity between several cells, such as human umbilical vein 

endothelial cells, NIH 3T3 cells, and MCF-7 breast cancer cells, was investigated using 

this method. 

 

Figure 1-13. Scheme of Drop-on-demand inkjet printing combined with PESI-MS. 

(Chen, F.; Lin, L.; Zhang, J.; He, Z.; Uchiyama, K.; Lin, J.-M., Single-cell analysis using 

drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry. 

Analytical chemistry 2016, 88 (8), 4354-4360. Copyright permission is obtained from 

American Chemical Society, and the detail is shown in Appendix III.) 
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1.2.1.2.4 Mass cytometry 

Mass cytometry blends flow cytometry and elemental mass spectrometry together. A 

major advantage of using MS as a detector is that MS is able to simultaneously detect 

multiple cellular parameters with high accuracy. Before the analysis using mass 

cytometry, a stain is used to label and eliminate single dead cells.  Multiple cell samples 

can be pooled together and barcoded with heavy metal isotopes before staining. These 

attached metal ions serve as reporters to express the target cells. Antibodies conjugated 

with metal ions are used for incubation with cells to target specific proteins on the cell 

surface. Cells are then nebulized into droplets containing single cells, atomized (e.g., 

using inductively coupled plasma (ICP)) into metal ions for MS detection (Figure 1-14).33, 

55 

 

Figure 1-14. The workflow of mass cytometry. (Bendall, S. C.; Nolan, G. P.; Roederer, 

M.; Chattopadhyay, P. K., A deep profiler's guide to cytometry. Trends in immunology 
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2012, 33 (7), 323-332. Copyright permission is obtained from ELSEVIER, and the detail 

is shown in Appendix III.) 

1.2.1.2.5 Redesigned T-probe MS 

The redesigned T-probe, a device developed by our group, has a similar structure to the 

T-probe except for two features.34 First, the orifice of the sampling probe of the redesigned 

T-probe (∼14 μm) is slightly larger than the original T-probe (∼6 μm). Therefore, a whole 

single cell can be drawn into the probe for measurement. Second, the nano-ESI emitter 

of the redesigned T-probe (5.5 cm) is much longer than the T-probe (∼0.5 cm), providing 

sufficient time (∼15 s)  for online single-cell lysis by the sampling solvent (acetonitrile with 

0.1% formic acid (FA)) inside the nano-ESI emitter. To conduct the experiment, cells are 

resuspended in the culture medium. A target cell can be drawn into the redesigned T-

probe for rapid lysis followed by MS analysis (more details of the redesigned T-probe are 

provided in Chapter 3).  

1.2.1.2.6 Micropipette needle MS 

In order to conduct regular (no chemical reactions) and reactive (with chemical reactions) 

SCMS for the same single cell, the micropipette needle is developed by our group. It is 

produced by combining a pulled glass capillary needle (tip size ~15 um) with a fused silica 

capillary. The solvent is loaded into the micropipette needle to play the role of the cell 

lysis solvent. Particularly, this technique allows for more versatile studies such as reactive 

SCMS analysis.35 For example, acetone or acetonitrile (containing 5 mM benzophenone) 

was used as both cell lysis solvent and the Paternò-Büchi (PB) reagents in the reactive 

SCMS experiments to assist the identification of unsaturated lipids. In our studies, the 

micropipette needle was connected to a syringe pump to draw a suspension cell, which 
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underwent rapid lysis, and then coupled to a mass spectrometer for detection. Using the 

micropipette needle as a nano-ESI emitter, both regular and reactive (with PB reactions 

induced by 15-min UV irradiation) SCMS analysis of the same cell can be achieved. 

Double bond locations were identified from MS scan and MS/MS analysis of PB products 

assisted by the Python program. The details of this study are shown in Chapter 4. 

1.2.2 Non-ambient MS techniques for single-cell analysis 

In contrast to ambient SCMS methods, non-ambient techniques require samples to be 

placed in vacuum conditions, indicating they cannot be used for live cell analysis. In 

addition, most of these non-ambient SCMS technologies, except for some matrix-free 

laser desorption/ionization (LDI)-MS method, require complex sample preparation and 

cell attachment. However, as a major advantage, the vacuum environment generally 

provides higher detection sensitivity than those ambient SCMS methods. 

1.2.2.1 Non-ambient MS technologies which require cell attachment 

1.2.2.1.1 Time of Flight (ToF)- secondary ion mass spectrometry (SIMS) 

SIMS uses the primary ion beam, which is generated by an ion gun, to focus on the 

surface of single-cell samples under high vacuum conditions, to generate secondary ion 

for subsequent ToF-MS analysis. The spatial resolution of SIMS is around 100 nm, 

allowing for molecular imaging of subcellular structures. In addition, SIMS is able to 

provide morphological information of samples. However, due to the non-ambient MS, this 

method requires elaborate sample preparation, such as frozen-hydrated samples.15, 36 
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1.2.2.1.2 Matrix-assisted laser desorption/ionization (MALDI)‐MS 

MALDI-MS has been widely applied in numerous studies. Similar to conventional MALDI 

experiments, SCMS analysis using this technique requires careful sample preparation. 

Before sampling, single cells are attached to the solid surface and embedded in the matrix. 

The UV laser pulse is then applied to desorb cellular contents. During the ablation, the 

matrix molecules transfer the analytes to the gas phase, and protonation (deprotonation) 

of the analytes occurs for MS detection. MALDI-MS has previously used for the analysis 

of single-cell, tissued-embedded cells, and unicellular organisms.15 

1.2.2.1.3 Nanostructure initiator MS (NIMS) 

Due to the matrix effect (i.e., hard to analyze small molecules (<1,000 m/z) because of 

matrix interference.56) and complicated sample preparation of matrix-assisted MS 

methods, matrix-free laser desorption/ionization techniques are developed to increase 

the sensitivity and efficiency of MS detection. NIMS is one of the matrix‐free LDI methods. 

Both NIMS and MALDI share certain similarities. However, the major difference is that 

NIMS uses a nanoporous silicon material to absorb the laser energy and trap an initiator 

compound, which can desorb and ionize analytes inside nanopores.15 Siuzdak’s group 

used NIMS to investigate changes of metabolites induced by chemotherapy at the single-

cell level.37  

1.2.2.2 Non-ambient MS technologies for non-adherent cells 

1.2.2.2.1 Nanopost arrays (NAPA) based-LDI-MS 

Similar to NIMS, NAPA (instead of the matrix) is used to decrease the matrix effect and 

simplify the sample preparation procedure. Because the silicon NAPA can produce 
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nanophotonic ionization of analytes, which is generated by the interaction between the 

laser pulse and a commensurate dimension and wavelength of the nanostructure, cell 

suspensions can be placed on the NAPA for direct LDI‐MS analysis (Figure 1-15). The 

NAPA can increase the ionization efficiencies and enable to detect ∼800 zmol of 

verapamil.38 Several metabolites of single S. cerevisiae cells were analyzed and identified 

using this method.57 

 

Figure 1-15. Scheme of single-cell sampling using Nanopost arrays (NAPA) based-LDI-

MS. (Walker, B. N.; Stolee, J. A.; Vertes, A., Nanophotonic ionization for ultratrace and 

single-cell analysis by mass spectrometry. Analytical chemistry 2012, 84 (18), 7756-7762. 

Copyright permission is obtained from American Chemical Society, and the detail is 

shown in Appendix III.) 
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Chapter 2. Research Overview 

During my Ph.D. studies, my research has been focused on the development and 

application of two SCMS technologies, redesigned T-probe and micropipette needle, for 

non-adherent single cell analysis. The detailed information of the Redesigned T-probe 

and micropipette needle are shown in Chapters 3 and 4, respectively. 

Currently, the majority of the SCMS technologies require cell attachment onto substrates 

prior to analysis. However, numerous types of cells, including lymphoblast, leucocyte, 

monocytes, and neutrophils,1-4 are non-adherent and suspended in biofluids such as 

blood, cerebrospinal fluid, and urine. These cells are related to serval diseases, such as 

blood cancer and chronic inflammatory diseases.5 However, only a few SCMS 

technologies, including ambient and non-ambient technologies, were developed for the 

studies of single cells in suspension. Among them, the redesigned T-probe and 

micropipette needle could solve the potential problems and overcome the limitations of 

current technologies for non-adherent single cell analysis. The redesigned T-probe has 

an online cell lysis system inside the probe for high throughput and real-time single cell 

analysis of non-adherent cells. To perform molecular structure identification, adequately 

long signal duration time can benefit tandem MS (MS/MS) analysis of ions of interest. The 

signal duration time (~15 to 20 seconds) is longer than some of the current SCMS 

methods for non-adherent cells, including the Integrated cell manipulation platform 

combined with the Single-probe MS and Drop-on-demand inkjet printing combined with 

PESI-MS.  



35 
 

The micropipette needle is reported as the first SCMS technique allowing for both regular 

SCMS and reactive SCMS, in which chemical reactions can be induced between cellular 

molecules and reagents, analysis of the same single cell.6 The reactive SCMS can extend 

the detection range of molecules and provide more structure information. Here are some 

examples. Using dicationic ion-pairing reagents in the Single-probe SCMS measurement 

can detect negative ions, such as phosphatidylethanolamines (PE), phosphatidylglycerol 

(PG), and phosphatidylserine (PS), under the positive ion mode. Paternò-Büchi reactions 

can be performed to identify lipids double bond locations at the single-cell level. The 

development of these two SCMS techniques can be potentially coupled with other 

chemical reactions. For example, Norrish reaction can be used to identify C=O location 

of metabolites. With further development, our novel technologies can be potentially 

utilized for the investigation of wider types of non-adherent cells in both fundamental 

studies and clinical applications. 
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Chapter 3. Redesigning the T-probe for mass 

spectrometry analysis of online lysis of non-

adherent single cells 
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3.1 Abstract 

Single cell mass spectrometry (SCMS) allows for molecular analysis of individual cells 

while avoiding the inevitable drawbacks of using cell lysate prepared from populations of 

cells. Based on our previous design of the T-probe, a microscale sampling and ionization 

device for SCMS analysis, we further developed the device to perform online, and real-

time lysis of non-adherent live single cells for mass spectrometry (MS) analysis at ambient 

conditions. This redesigned T-probe includes three parts: a sampling probe with a small 

tip to withdraw a whole cell, a solvent-providing capillary to deliver lysis solution (i.e., 

acetonitrile), and a nano-ESI emitter in which rapid cell lysis and ionization occur followed 

by MS analysis. These three components are embedded between two polycarbonate 

slides and are jointed through a T-junction to form an integrated device. Colon cancer 

cells (HCT-116) under control and treatment (using anticancer drug irinotecan) conditions 
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were analyzed. We detected a variety of intracellular species, and structural identification 

of selected ions was conducted using tandem MS (MS2). We further conducted statistical 

analysis (e.g., PLS-DA and t-test) to gain biological insights of cellular metabolism. Our 

results indicate that the influence of anticancer drugs on cellular metabolism of live non-

adherent cells can be obtained using the SCMS experiments combined with statistical 

data analysis. 

3.2 Introduction 

The basic structural, functional, and biological units of life are cells. Great efforts have 

been devoted in recent decades to study the dynamic nature of cells, and to understand 

their roles in complex biological systems.1, 2 However, a particular cell is an individual unit 

with unique genomic and phenotypic traits, and thus distinguishes itself from other 

seemingly identical cells that reside in adjacent regions.3 Such phenomenon termed as 

cell-to-cell heterogeneity poses a great challenge for clinical and biological studies, as a 

majority of conventional methods are based on cell populations, which result in averaged 

results of the cohort analyzed.4 Facing such challenges, single cell based techniques that 

can differentiate such cell-to-cell heterogeneity are desired to gain insights into the nature 

of cells. Currently, a variety of studies at the single-cell level have been conducted, and 

they have fundamentally enhanced our understandings of cells through single-cell 

genomics,5 single-cell transcriptomics,6 single-cell proteomics,7 and single-cell 

metabolomics.8 These studies provide chemical and biological information of target 

systems that is otherwise lost in traditional analyses using samples prepared from bulk 

populations of cells.3 Among those single-cell “omics” approaches, single-cell 
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metabolomics focuses on changes of cellular metabolites corresponding to the altered 

microenvironment and thus provides direct clues towards cellular metabolism.9 

Mass spectrometry (MS), as a powerful analytical approach, satisfies prerequisites of 

single-cell metabolomic analysis due to its abilities to analyze trace amounts of samples, 

resolve cellular metabolites from the complex matrix,10 and identify species of interest.11 

A variety of different single cell MS (SCMS) techniques, which fall into non-ambient or 

ambient method (i.e., non-ambient, ambient), according to their sampling and ionization 

environment, have been developed and applied to analyses of a broad range of cells 

(plant cells, mammalian cells, yeasts, etc.).12-14 

Non-ambient SCMS methods are primarily based on two ionization techniques: 

secondary ion MS (SIMS) and matrix-assisted desorption/ionization (MALDI) MS. 

Techniques based on SIMS and MALDI MS use high-energy ion beams or UV laser to 

ablate and ionize molecules in cells, such as metabolites, lipids, and pharmaceuticals, for 

sensitive and reproducible analysis at the single-cell level.13, 15 In contrast to vacuum-

based techniques, ambient SCMS methods allow for sampling and ionization of cells with 

little or no sample preparation.16-18 A variety of ambient SCMS techniques, such as live 

single-cell video-MS,19 laser ablation electrospray ionization (LAESI) MS,20 nanospray 

desorption electrospray ionization (nano-DESI) MS,21, induced nanoESI (InESI) MS,22 

probe electrospray ionization (PESI),23, 24 and techniques coupled to microfluidic chips 25 

and flow cytometry (i.e., mass cytometry).26, 27 In addition, we have previously developed 

the Single-probe,28-31 which was also used for MS imaging 29, 32-34 of tissues and MS 

analysis of extracellular molecules in live spheroids35, and the T-probe 36 to capture 

chemical information of single live cells. These approaches hold promising potentials 
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towards studies of fundamental cell biology and translational applications in clinical 

practice.12  

Due to the extremely small amount of contents from a single cell (e.g., a single cell volume 

can be as low as a few pLs, with a few types of cells being smaller than 1 pL),37, 38 sample 

separation, which can potentially result in analyte dilution and loss, is not performed in 

most SCMS methods. On the other hand, suitable separation techniques can be coupled 

with MS techniques to improve sensitivity and identification. These separation techniques 

include micro-separation prior to ionization (e.g., capillary electrophoresis39 and 

microscale liquid chromatography40, 41) and post-ionization (i.e., ion mobility separation42). 

These techniques have been applied to in situ metabolic analysis of single plant cells43 

and quantifying translational cell heterogeneity in the frog embryo.44 

Despite great efforts contributed, two major limitations still exist in most of SCMS 

techniques mentioned above. First, these methods require cell immobilization or 

attachment to a particular substrate.45 Second, loss of cellular contents may occur during 

sample preparation or sampling processes. The former prevents sampling from inherently 

non-adherent cells, whereas the latter renders a loss of molecular information of cellular 

contents. 

To address the above limitations, we provided a new design of the T-probe that enables 

rapid lysis of live non-adherent single cells followed by immediate MS analysis. This new 

design was based on our previously reported T-probe device.36 They both have three 

capillaries (i.e., a solvent-providing capillary, a sampling probe, and a nano-ESI emitter) 

that are joint to form a T-shaped junction and sandwiched by two polycarbonate slides 

(Figure 3-1B). The working mechanisms of both designs are similar. During the SCMS 
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experiment, the sampling solvent is provided a solvent pump and delivered to the solvent-

providing capillary, which is connected to a conductive union. A DC ionization voltage is 

applied on the conductive union and transmitted through the solvent inside the capillaries 

to generate ionization at the nano-ESI emitter. Under well-tuned conditions (e.g., suitable 

solvent flowrate and ionization voltage), a suction force can be generated at the sampling 

probe. Although the exact mechanisms are unclear, the generation of the suction force is 

likely due to the capillary action in the sampling probe induced by continuous consumption 

of solvent in the nano-ESI emitter.36 

 

Figure 3-1. (A) Experimental set-up of the redesign T-probe for SCMS analysis. Two 

microscopes were used to provide a visual guide during the experiment, and the XYZ-

stage was utilized to precisely target single cells. Ionization voltage was applied on the 

conductive union, and the MS analysis was conducted using a LTQ Orbitrap XL mass 
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spectrometer. (B) Photo of a T-probe, in which a solvent-providing capillary, a cell 

sampling probe, and a nano-ESI emitter were sandwiched by two polycarbonate slides. 

The novelty of the T-probe used in the current study includes two major aspects. First, it 

is designed for the analysis of suspension cells. Although the majority of existing SCMS 

techniques, including the T-probe device, only allow for analyzing cells attached to 

substrates, methods based on mass cytometry 27, PESI 24, and microfluid chip devices46 

have been developed to analyze suspension cells. The capability of analyzing suspension 

cells is particularly important for clinical investigations, in which suspension cells, 

including primary blood cells (e.g., lymphocytes, macrophages, dendritic cells), lymph 

node cells (T-cells and B-cells), bone marrow cells, circulating tumor cells, can be 

analyzed for cell-based therapy and diagnostics.47-50 Our group has recently reported an 

integrated cell manipulation platform (ICMP) for MS analysis of single suspension cells.51 

Compared with this technique, the redesigned T-probe is a relatively simple device 

allowing for higher throughput analysis. Second, the new design allows for the analysis 

of an entire cell undergoing online, rapid lysis. A cell can be withdrawn from the solution 

and followed by rapid lysis inside the nano-ESI emitter of the device to avoid the loss of 

cellular contents, which can potentially occur during the sampling process of other 

techniques. Compared with the previously reported T-probe, the new design accordingly 

has two major features. First, because the new design aims to sample an entire non-

adherent cell, its sampling probe has an orifice (~14 μm) slightly larger than that of the T-

probe (~6 μm). Second, its nano-ESI emitter (5.5 cm) is much longer than that of the T-

probe (~0.5 cm), allowing for adequate time (~15 s) to induce online cell lysis inside the 
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nano-ESI emitter upon the cell contacting the solvent (99.9% acetonitrile with 0.1% formic 

acid (FA)) at the T-junction.  

3.3 Experimental Design and Data Processing 

3.3.1 Fabrication and test of the T-probe 

Although the general fabrication workflows of both designs are similar,36 the major 

differences between them include the length of nano-ESI emitter and tip size of the 

sampling probe. The fabrication work is illustrated in Figure S3-1, and detailed information 

is provided in the Support Information. Briefly, three capillaries (a solve-providing capillary, 

a cell sampling probe, and nano-ESI emitter) were joint at a T-shaped junction and 

sandwiched by two polycarbonate slides, which were coated with a hydrophobic material 

and then bond together through a thermal binding process to form an integrated device 

(Figure 3-2). We have conducted experiments using a series of tip sizes, and we selected 

a tip size of ~14 μm for both the sampling probe and the nano-ESI emitter to achieve the 

optimized performance. In addition, the lengths of the sampling probe (8 mm) and the 

nano-ESI emitter (5.5 cm) were carefully selected. Ideally, the length of the sampling 

probe should be short enough to minimize the amount of cell culture medium drawn along 

with a cell (i.e., minimized matrix effect),24 but long enough to maintain a strong 

mechanical strength of the polycarbonate bond structure. On the other hand, with two 

major functions (i.e., online cell lysis and ionization) of the nano-ESI emitter, its length 

needs to be long enough to provide space and time for rapid cell lysis occurring upon the 

cell entering the T-junction and mixing with the solvent. However, an excessively long 

emitter can reduce the experimental throughput and result in difficulties of probe 

fabrication. 
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The performance of all devices was tested prior to the SCMS experiments. Simply, a 

small droplet of a prepared solution containing a standard testing compound (e.g., leucine 

enkephalin, 1 µM) was added to a vial, followed by immersion of the sampling probe tip 

into the solution. A stable 

 

Figure 3-2. Schematic of the T-probe and mechanisms of SCMS analysis. The inset 

shows the single cell withdrawn into the cell sapling probe undergoes a rapid (within a 

few seconds) lysis. The single-cell lysate is immediately ionized through the nano-ESI 

emitter for MS analysis. 

ion signal of leucine enkephalin can be observed shortly (~15 s) after the probe immersion 

(Figure S3-2). The sampling probe tip was then removed from the prepared solution, and 

the sampling solvent was continuously delivered to rinse the probe until the ion signal of 

the testing compound completely disappeared. To evaluate the sensitivity of the 

redesigned T-probe, we measured the limit of detection (LOD) of multiple standard 

compounds relevant to our studies. As a result, LODs were 0.1, 0.1, and 10 nM for 
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irinotecan, leucine enkephalin, and phosphatidylcholine (PC (16:0/18:1)), respectively 

(Figure S3-3). These results indicated that the new design has similar sensitivities 

compared with the original T-probe, the Single-probe, and standard nano-ESI source 

results.36, 52 (Table S3-1). 

3.3.2 SCMS Experiments   

During the SCMS analysis, the redesigned T-probe was coupled to our in-home 

developed SCMS platform employed in our previous SCMS studies using the Single-

probe28, 30, 35 and the original T-probe.36 Briefly, this platform includes an XYZ-translational 

stage system, two digital microscopes, and a Thermo LTQ Orbitrap XL mass 

spectrometer (Figure 3-1A).28 Cells in both control and drug treatment groups were used 

for the SCMS experiments (detailed sample preparation procedures are described in the 

Supporting Information). Irinotecan is a common anticancer drug for the treatment of 

colon cancer53 that inhibits the function of Topoisomerase I, leading to DNA damage and 

cell apoptosis.53, 54 This drug compound was selected to treat live HCT-116 colorectal 

cells in our experiments to demonstrate the change of cellular metabolites upon the 

treatment of anticancer agent. Specifically, cells were first treated using 18 µM irinotecan 

for 45 min, and then rinsed and detached using trypsinization. Afterward, a droplet of cell 

suspension solution was placed onto a glass slide, which was attached to the XYZ-stage 

system controlled by a LabView software package (incremental step size = 0.1 µm).55 

Using two digital microscopes as the visual guide, the sampling probe tip initially located 

above the sample plate was submerged into the solution containing cells by lifting the Z-

stage. Upon selecting a target cell, the sampling probe can precisely draw the target cell 

with visual guidance (Figure S3-4). The XYZ-stage was then immediately lowered down 
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to free the sampling probe tip from the culture medium and stop the suction of culture 

medium. Due to the complex composition of the cell culture medium that may affect the 

detection sensitivity,10caution should be taken to minimize its amount withdrawn during 

cell sampling. This is particularly important for future analysis of patient cells suspended 

in complex biological fluids such as blood, urine, saliva, and cerebrospinal fluid (CSF). 

After a single cell was withdrawn, the solvent provided through the solvent-providing 

capillary (flowrate = 0.5 μL/min) mixed with the cell at the T-junction, and cell lysis rapidly 

occurred inside the nano-ESI emitter. In our SCMS analysis, an ionization voltage (+4 kV) 

was applied to the conductive union and transmitted throughout the solution inside the 

solvent-providing capillary and the nano-ESI emitter to ionize the cell lysis for MS analysis. 

3.3.3 SCMS Data Analysis 

A comprehensive data analysis procedure was performed following SCMS analysis to 

gain biological insights. Specifically, we conducted data pre-treatment, including removal 

of background (i.e., species detected in the sampling solvent, the culture medium, and 

any dissolved polycarbonate oligomers), reduction of instrumental noise, ion signal 

normalization, and peak alignment (see the Supporting Information and Figure S3-5 for 

details).56 We performed statistical analyses, including Partial Least Squares-discriminant 

Analysis (PLS-DA) and two-sample t-test (hereinafter referred to as t-test), using an 

online metabolomics analysis tool, MetaboAnalyst.57 PLS-DA is a multivariate statistical 

method for data analysis and visualization, and it has been widely applied to classification 

and regression of metabolomics data.58 In addition, t-test is generally used to determine 

if there is a statistically significant difference between results from two groups of cells. In 

our work, we employed both methods to study the change of cellular metabolomic profiles 
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upon drug treatment. Furthermore, two online metabolome databases, METLIN59 and 

HMDB60, were used to tentatively assign the detected metabolites based on their accurate 

m/z values. More confident identification of species of interest was performed using 

MS/MS fragmentation patterns.  

3.4 Results and discussion 

3.4.1 Sampling solvent selection 

A key feature of the new design of the T-probe is to induce rapid cell lysis during the 

transport of a cell from the T-junction to the tip of the nano-ESI emitter. It is critical to 

select MS-compatible solvents with the desired composition for the SCMS experiments. 

To rapidly screen the solvent composition to be used in the SCMS analysis for optimal 

performance, we used a microscope (Micromaster, Fisher Scientific, MA) to monitor the 

lysis process of HCT-116 cells upon adding the lysis solution. A number of solvents 

commonly used in MS experiments (e.g., acetonitrile, methanol, and methanol/water) with 

a variety of compositions were tested as the lysis solution (Table 3-1). Our experiments 

indicated that cell lysis rapidly occurred (< 15 s) in the solution containing high 

concentrations of acetonitrile (> 80%) (Figure S3-6). Considering that a small amount of 

culture media would also be drawn along with a cell into the T-probe and therefore dilute 

the concentration of cellular contents, we used a sampling solvent composed of pure 

acetonitrile (with 0.1% FA to improve ionization efficiency) for our SCMS experiments. 

3.4.2 Molecular Analysis of Single Cells in the Control and Drug Treatment Groups      

During the SCMS analysis, the ion signals of cellular species were usually observed 

within 15 s upon the selected cell entering the sampling probe tip. We analyzed 25 cells 
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Table 3-1. Influence of solvent composition (acetonitrile/cell culture 

medium) on cell lysis rate. 

 

in the control group and 19 cells in the drug treated group, and a total number of ~400 

cellular metabolites were detected (Figure 3-3). As expected, irinotecan ([C33H38N4O6 + 

H] +, m/z 587.2881) was only detected in the drug treated cells. By accomplishing the 

tentative assignment of detected species, we found that cellular species detected in the 

control group include phosphatidylcholine (PC), metabolites of vitamin D3, 

phosphatidylethanolamide (PE), prostaglandin (PG), and PE-ceramide (PE-cer). For cells 

in the drug treated group, PC, PG, and PE were the major species. The forms of the 

detected species include protonated, sodiated, and potassiated species. Furthermore, 

the ion signal of one cell usually lasted for 15 to 20 seconds, which was adequate to 

conduct MS/MS analysis of a selected ion with relatively higher abundance (e.g., >105) 

at the single-cell level. Among all abundant cellular species (e.g., the top 30 most 

abundant species in the control and treatment groups), six of them were further identified 

by MS/MS analysis at the single-cell level (Tables S3-2 and S3-3, Figure S3-7 and Figure 

Percentage of acetonitrile (%) Cell lysis rate (s) 

20 > 120 

40 > 60 

60 ≥ 60 

80 10–15 

90 < 3 

95 < 3 
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S3-8). However, the signal intensities of the rest species were inadequate for MS/MS 

analysis at the single-cell level due to multiple factors, including a very limited amount of  

 

Figure 3-3. Mass spectra of (A) a cell in the control group, (B) a cell in the drug treatment 

groups, and (C) background.   

cellular contents, the ionization suppression by salts (from cell culture medium), and 

pronounced background signals. Therefore, we used traditional nanoESI-MS/MS to 

analyze cell lysate samples as a complementary method (see the Support Information for 

detailed procedures of the lysate preparation and MS analysis). For example, the 

identification of irinotecan has been confirmed by MS/MS analysis in single cells (Figure 

S3-7), cell lysate (Figure S3-10), and the standard irinotecan solution. In addition, five 

cellular species were detected in both control and drug treatment groups, and they were 

identified as PC(36:5), PC(38:5), PC(34:1), PC(36:1), and TEI 9647 (Figure S3-8) from 
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online MS/MS analysis at the single cell level. Using the cell lysate, 12 species from the 

control group were further identified as PC(36:5), PC(34:1), PC(36:3), PC(38:6), PC(38:5), 

PC(38:4), PC(40:4), PC(38:7), TEI-9647, Coenzyme Q4, PC(40:6), and PC(40:7) (Figure 

S3-9). Among them, the first seven species were also detected in the lysate sample 

prepared using irinotecan treated cells (Figure S3-10). 

Interestingly, the antagonist of VDR (vitamin D3 nuclear receptor), TEI-9647 61-63, was 

only present in control cells. As previously reported, vitamin D can hinder the progression 

of colon cancer64, 65 through its active form 1,25-dihydroxyvitamin D3 (1,25D), which 

induces growth arrest and apoptosis of cancer cells.63 Importantly, activating VDR in 

cancer cells is needed for effective treatment using 1,25D.63, 66 Our experimental results 

can likely provide rationales to these observations in previous studies. Producing TEI-

9647 seems to be a protection mechanism of cancer cells against their undesired 

chemical environment, and this antagonist can suppress the activity of VDR to disable 

the anticancer functions of 1,25D. The absence of TEI-9647 in cancer cells upon 

irinotecan treatment likely indicates this anticancer drug may hinder synthetic pathways 

of TEI-9647, which can potentially be a new mechanism in addition to its known inhibition 

function of topoisomerase67. However, comprehensive studies are still needed to verify 

our hypothesis. 

3.4.3 Changes of Metabolomic Profiles after Drug Treatment  

Lipid metabolism is regulated by several cellular processes, including cell growth, 

proliferation, apoptosis, chemotherapy response, and drug resistance.68 To illustrate the 

influence of anticancer drug treatment on cellular metabolism, we conducted the 

statistical analysis of the SCMS data. Specifically, PLS-DA was conducted to illustrate 
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the difference of overall metabolomic profiles between two groups of cells,69 followed by 

the permutation test to validate the results.70 We then used t-test to compare metabolites’ 

abundances before and after treatment. Intuitively, visual discrimination of chemical 

profiles between two groups can be observed from the PLS-DA score plot (Figure 3-4), 

and the corresponding permutation test indicates that the difference is statistically 

significant (p-value < 0.001). Through the t-test, we discovered that a few types of lipids, 

including PC, PG, phosphatidylserine (PS), PE, and triglycerides (TG), were significantly 

changed (most of them were downregulated) due to drug treatment (Table S3-4). From a 

biological perspective, phosphatidic acid (PA) is the precursor for the biosynthesis of TGs 

and other phospholipids such as PC, PG, and PE.71, 72 The suppressed production of PA 

upon the exposure to irinotecan, which was also reported in other studies,73 can likely 

result in reduced synthesis of down-stream metabolites, such as TGs and phospholipids. 
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Figure 3-4. 3D PLS-DA plot illustrating the metabolomic difference of cells between the 

control (red dots) and the treatment (green dots) groups. Each dot represents the overall 

metabolomic profile of a single cell. 

In addition, a number of abundant species, including PE-Cer(d40:2) (m/z 781.5588) and 

SM(d37:1) (m/z 783.5758), were only detected from single cells rather than cell lysates 

(Tables S3-2 and S3-3), indicating that these cellular species are rapidly altered due to 

changes of cell microenvironment, or they are too labile to survive from multi-step sample 

preparation procedures. Due to the minimum sample preparation and rapid analysis, our 

technology allows for the detection of cellular species reflecting the status of live cells 

with minimum perturbation of cell microenvironment. 

3.5 Conclusion 

We reported a redesigned T-probe that can be coupled to a mass spectrometer to conduct 

rapid, in situ SCMS analysis of entire live single cells in suspension. HCT-116 cell line 

was used as the model, and cells in control and drug treatment groups were subjected to 

the SCMS experiments. An individual cell was initially withdrawn into the probe, 

subsequently subjected to rapid online lysis upon mixing with lysis solvent, and 

immediately ionized for real-time MS detection. The major advantage of this new design 

is that this device can be used to analyze non-adherent cells without cellular contents 

loss, as an entire cell is lysed inside the device. A variety of cellular species, including 

PC, PS, PE, PG, and TG, were detected from control and irinotecan treated single cells, 

with some of those further identified through online MS/MS analysis at the single-cell level. 

Evident changes of metabolomic profiles of single cells after drug treatment were 

visualized through PLS-DA, and cellular species (i.e., PC, PG, PS, PE, and TG) with 
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significant changes were discovered through t-test.  In addition, we detected a number of 

species only present in single cells rather than cell lysates, indicating they are likely to be 

liable metabolites and sensitive to the change of cellular microenvironment. Our 

techniques can be potentially used for future SCMS analysis of a broader range of non-

adherent cell types with different sizes, such as patient cells suspended in biological fluids. 
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Chapter 4. Combining Mass Spectrometry with 

Paternò-Büchi Reaction to Determine Double-

bond Positions in Lipids at the Single-cell 

Level 

Author Contributions: The study of Chapter 4 is primarily conducted by Yanlin Zhu. 

Wenhua Wang participated in the development of Python scripts. 

Copyright permission: The material in chapter 4 is adapted from Zhu, Yanlin, Wenhua 

Wang, and Zhibo Yang. "Combining Mass Spectrometry with Paternò-Büchi Reaction to 

Determine Double-bond Positions in Lipids at the Single-cell Level". Copyright permission 

is obtained from American Chemical Society, and the detail is shown in Appendix III. 

4.1 Abstract 

Single cell MS (SCMS) techniques are under rapid development for molecular analysis 

of individual cells among heterogeneous populations. Lipids are basic cellular 

constituents playing essential functions in energy storage and cellular signaling 

processes of cells. Unsaturated lipids are characterized with one or multiple carbon-

carbon double (C=C) bonds, and they are critical for cell functions and human diseases. 

Characterizing unsaturated lipids in single cells allows for a better understanding of 

metabolomic biomarkers and therapeutic targets of rare cells (e.g., cancer stem cells); 

however, these studies remain challenging. We developed a new technique using a 

micropipette needle, in which Paternò-Büchi (PB) reactions at C=C bond can be induced, 
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to determine locations of C=C bonds in unsaturated lipids at the single-cell level. The 

micropipette needle is produced by combining a pulled glass capillary needle with a fused 

silica capillary. Cell lysis solvent and PB reagent (acetone or benzophenone) are 

delivered into the micropipette needle (tip size ~15 um) through a fused silica capillary. 

The capillary needle plays multiple functions (i.e., single-cell sampling probe, cell lysis 

container, micro-reactor, and nano-ESI emitter) in the experiments. Both regular (no 

reaction) and reactive (with PB reaction) SCMS analyses of the same cell can be 

achieved. C=C bond locations were determined from MS scan and MS/MS of PB products 

assisted by Python programs. This technique can be potentially used for other reactive 

SCMS studies to enhance molecular analysis for broad ranges of single cells. 

4.2 Introduction 

Among all known organisms, cells are the smallest unit of life. The majority of current 

studies of cells are based on ensemble measurement. However, each individual cell has 

unique genomic and phenotypic traits that can distinguish itself from other adjacent cells, 

causing the cell to cell heterogeneity in any population.1 Numerous studies indicate that 

small subpopulations of cells are overlooked using population measurements, resulting 

in the loss of important biology information of rare cells.1 Therefore, molecular analysis of 

single cells is an inevitable choice to understand cellular mechanisms that cannot be 

studied using traditional bulk analysis.1  

4.2.1 Lipids 

Among all cellular molecules, lipids are crucial components of the cell membrane and 

other cellular compartments, including the endoplasmic reticulum, Golgi apparatus, and 

nuclear membrane. Lipids are organic compounds that are generally soluble in nonpolar 
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solvents due to the long hydrophobic hydrocarbon chains.2 They are also defined as small 

amphiphilic molecules that enable them to form vesicles, liposomes, and membranes in 

the aqueous environment. Lipids play crucial roles in the structure and function of living 

cells such as acting as a structural unit of cell membranes, energy storage, signals, 

cofactors and pigments.3 

4.2.2 Classification of lipids 

Lipids can be classified into three according to their functions or composition4 5 

4.2.2.1 Classification of lipids base on their composition  

Base on their composition of lipids, they are divided into simple lipids, complex lipids, and 

derived lipids.4, 6 Simple lipids consist of the ester of fatty acids with diverse alcohols, 

such as fats, waxes, and triglycerides (TG). These lipids belong to heterogeneous 

nonpolar compounds that are soluble in nonpolar organic solvents.  

Complex lipids generally contain sugar moieties and two or more other chemical identities, 

including glycerol, fatty acids (FA), nucleoside, and the phosphate group. Some of them 

may only contain one of these identities.5 Complex lipids can be widely found in plants, 

bacteria, and animals, and they are the major components of cell membranes. 

Phospholipids, glycolipids, lipoamino acid, and nucleolipids are the main groups of 

complex lipids. Phospholipids contain a phosphate residue, one or two fatty acid tails, 

and one glycerol, amino alcohol, or fatty alcohol. Glycerophospholipids and 

sphingosylphosphatides are the most common phospholipids. Glycerophospholids 

contain three components, which are glycerol, two fatty acid tails, and a phosphate ester. 

Different glycerophospholipids contain variable phosphate esters, and the most common 

glycerophospholipids include phosphatidic acid (PA), phosphatidylserine (PS), 
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phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylinositol (PI), 

phosphatidylglycerol (PG), and bisphosphatidyl glycerol.7 

Sphingosylphosphatides, which is another class of phospholipids, consist of sphingosine, 

one fatty acid tail, and a phosphate ester. Similarly, different sphingosylphosphatides 

contain variable phosphate esters (Figure 4-1). Sphingosine, ceramide, sphingomyelin 

(SM), cerebroside, and ganglioside are the common sphingosylphosphatides.8 

 

Figure 4-1. The structure of sphingosylphosphatides contains variable phosphate 

esters. (Chen, H., Chan, A. Y., Stone, D. U., & Mandal, N. A. (2014). Beyond the cherry-

red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and 
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inflammatory disorders. Survey of ophthalmology, 59(1), 64-76. Copyright permission is 

obtained from ELSEVIER, and the detail is shown in Appendix III.) 

Derived lipids are the hydrolysis products of simple and complex lipids. FA, 

monoglycerides (MG), diglycerides (DG), steroids, terpenes, and carotenoids belong to 

this classification.5 Among these derived lipids,  FAs are the critical unit of lipids of living 

cells. A FA is composed of a carboxylic acid group and a saturated or unsaturated 

hydrocarbon chain. Saturated FAs only contain single carbon-carbon bonds of the long 

hydrocarbon chain, whereas unsaturated FAs contain one or multiple carbon-carbon 

double bonds (C=C).  

4.2.2.2 Classification of lipids base on their functions 

According to the functions of lipids, they can be divided into three classifications: storage 

lipids, structural lipids, and other lipids (e.g., signals, cofactors, and pigment).5 The 

storage lipids include FAs and TGs. TGs are energy storage molecules, and FAs work as 

an energy source of cells.9 Structural lipids, including phospholipids and non-

phosphorylated lipids, are essential components of cell membranes.10 Other lipids, such 

as signal,  cofactor, and pigment lipids, perform signaling roles.5 For example, DGs and 

MGs work as secondary messengers of signaling proteins. Since lipids work as 

messengers between extracellular and intracellular to control the normal physiology of 

cells, lipid signaling can cause inflammation, cancer, metabolic, cardiovascular, and 

degenerative diseases under deregulated conditions.11  
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4.2.3 Significance of unsaturated lipid isomers  

The identification of unsaturation sites is critical for understanding lipid biochemistry. For 

example, previous studies indicate that cancer stem cells have relatively higher levels of 

unsaturated lipids compared with non-stem cancer cells12, 13, and higher abundances of 

unsaturated lipids in cancer stem cells are related to the upregulated of de novo fatty acid 

(FA) synthesis pathway.12, 14, 15 The unsaturation level of lipids influences many cell 

physiological properties such as membrane fluidity16, 17, neurotransmitter release18, 19, 

and cardiolipin remodeling.20 The location of C=C bond in unsaturated lipids is critical for 

their biological functions. For example, lipid isomers with different C=C bond positions are 

related to numerous diseases, including cancer, cardiovascular disease, type II diabetes, 

Barth syndrome, Alzheimer's disease, and Parkinson's disease.20-22 Thus, determining 

the C=C bond locations in unsaturated lipids is needed in studies of fundamental cell 

biology and wide types of diseases. 

4.2.4 Identification of unsaturated lipid isomers 

4.2.4.1 Current methods for  unsaturated lipid isomers identification 

Mass spectrometry (MS) has become one of the most effective tools for lipid profiling and 

quantification.23, 24 MS based methods have been widely used for targeted and 

nontargeted lipidomics study, including identification of specific lipid classes using 

shotgun MS25 and analysis of complex lipids (e.g., glycerolipids, glycerophospholipids, 

and glycolipids).26-29 Particularly, combined with chemical reactions, MS has been used 

to pinpoint C=C bond sites in unsaturated lipids based on three different reactions. (1) 

Paternò–Büchi (PB) reaction. PB reaction is a classical photochemical derivatization that 

can specifically form adducts at C=C bonds under UV irradiation. Both acetone and 
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benzophenone have been used as the PB reagents to study unsaturated lipids. For 

example, Yu28, 30 and Liu29 have utilized tandem MS (MS/MS) to analyze adducts formed 

in the PB reactions to identify the structure of unsaturated lipids. (2) Ozone-induced 

dissociation (OzID). This technique can directly utilize ozonolysis, an organic reaction 

allowing for the cleavage of alkene double bonds using ozone, or combine it with CID 

(collision induced dissociation) to elucidate C=C bonds in unsaturated lipids.31 (3) Meta-

chloroperoxy benzoic acid (m-CPBA) epoxidation reaction. m-CPBA is an oxidant that 

can convert alkene to epoxide. Both Li32 and Hsu20 have used m-CPBA in reactions with 

unsaturated lipids to form products with triatomic rings, which generated two diagnostic 

ion pairs (with 16 Da mass difference) to determine the C=C bond positions. 

4.2.4.2 The novel approach for unsaturated lipid isomers identification at single-cell level 

Using PB, m-CPBA, and ozonolysis reactions as mentioned above, MS determination of 

C=C bonds in unsaturated lipids has been carried out in bulk analysis (e.g., lipids 

prepared solutions and lipids extractions form cells, tissues, and plasma).28, 30, 32, 33 

However, the corresponding studies at the single-cell level remain unexplored due to 

extremely small amount analytes in a single cell (e.g., a few pLs)34 and the absence of 

appropriate techniques. Single cell MS (SCMS) methods have been rapidly developed 

for metabolomics and proteomics studies of a broad range of cells, including plant cells, 

mammalian cells, and yeasts.35-37. Under vacuum conditions, matrix-assisted 

desorption/ionization (MALDI) MS38 and secondary ion MS (SIMS) are commonly used 

for single-cell analysis. In recent years, a variety of ambient based MS methods have 

been developed for single-cell analysis. The representative examples include single-cell 

video-MS39, induced nanoESI (InESI) MS40, probe electrospray ionization (PESI)41, the 
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Single-probe,42-45 and the T-probe.46 Cell attachment (e.g., onto a substrate) is generally 

required for most SCMS techniques. However, the requirement of cell attachment prior 

to MS analysis largely limits the type of cells in studies. In addition, cell attachment may 

alter cell status and their molecular compositions.47 A number of ambient MS techniques 

have been developed to analyze single non-adherent cells, such as mass cytometry48, 

drop-on-demand inkjet printing coupled with PESI 49, the redesigned T-probe 34, 

integrated cell manipulation platform (ICMP)/Single-probe secondary ion MS (SIMS),50 

and techniques coupled with microfluidic chips.51, 52 However, none of the existing SCMS 

methods has been used for studies of C=C bond positions in unsaturated lipids at the 

single-cell level. 

Here, we used the glass micropipette needles to perform PB reactions of single cells 

followed up by MS determination of C=C bonds’ positions in unsaturated lipids (Figure 4-

2). The micropipette needle is produced by combing a fused silica capillary with a pulled 
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Figure 4-2. (A) Experimental set-up of the micropipette needle for single-cell sampling. 

An inverted microscope was used to provide a visual guide during the experiment, and 

the cell manipulation system was used to control the micropipette needle to aim the 

targeted cell. Micropipette needle was connected with a syringe using capillary and 

unions. The syringe pump controlled the syringe to suck the targeted cell into the pipette.  

(B) Sketch of single-cell sampling using micropipette needle. 

glass micropipette (Figures 4-2B and 4-3D). The fused silica capillary is connected with 

a syringe to provide solution containing cell lysis solvent and the PB reagent. The  
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Figure 4-3. (A) Experimental set-up of the micropipette needle for C=C bond 

identification at the single-cell level. The mercury UV light was placed next to the 

micropipette needle, and the ionization voltage was applied on the micropipette needle. 

(B) Sampling a suspended HCT-116 cell under the microscope. (C) Schematics of single-

cell sampling and SCMS analysis. (D) Photo of a micropipette needle. 

micropipette needle plays multiple functions, including cell selection, cell lysis, micro-

reactor for PB reaction, and nano-ESI emitter for ionization (Figure 4-3). To conduct the 

PB reactions of single cells, the reagent (i.e., acetone or benzophenone solution tone) 

was drawn into the glass micropipette. Using an integrated cell manipulation system,52 

which contains two Eppendorf cell manipulation systems, an inverted microscope (Nikon 
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Eclipse TE300, Tokyo, Japan), and a syringe pump, a target cell was selected and sucked 

into the glass micropipette, in which the cell underwent a rapid lysis process (Figure 4-2). 

A mercury lamp was placed next to the micropipette needle to provide UV irradiation and 

induce PB reactions with unsaturated lipids (Figure 4-3). For MS analysis, the ionization 

voltage was applied onto the conductive union to generate nano-ESI at the tip of the 

micropipette needle. Two types of SCMS experiments, including the regular (no UV 

irradiation) and reactive (after 15 minutes of UV irradiation) methods, were conducted for 

the same cell to acquire comprehensive information for studying unsaturated lipids.  

4.3 Method 

4.3.1 Fabrication of the micropipette needle 

The micropipette needle (tip size ~15 um) was pulled from a glass capillary tube (size: 

0.8 x 90 mm, Kimble Chase Life Science and Research Products, Rockwood, TN) using 

a pipette puller (KOPF, Tujunga, CA). UV epoxy (Prime-Dent, Chicago, IL) was used to 

connect the micropipette needle to a fused silica capillary (OD: 150 µm, ID: 75 µm, 

Polymicro Technologies, Phoenix, AZ). A syringe was connected to the fused silica 

capillary via a conductive union (IDEX Health & Science LLC, Oak Harbor, WA). 

4.3.2 Preparation of SCMS solutions 

In the reactive SCMS studies, the solvent has three major functions: inducing cell lysis, 

performing PB reactions, and playing the role of the ionization solvent. First, the 

deoxygenation of solvents was performed to minimize side reactions while promoting PB 

reactions.29, 53 An Erlenmeyer flask (with stopper) containing pure acetone or ACN 

(acetonitrile) was placed on the ice and vacuumed for 30 min, followed by bubbling 

nitrogen for 30 min.29 This process was repeated for three times to deplete oxygen from 
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solvents. Next, the solution containing PB reagents was prepared and added in the 

micropipette needle. Two different reagents, benzophenone solution (5 mM 

benzophenone in ACN with 0.1 % formic acid) and acetone, have been tested in our 

studies to compare their performance.   

4.3.3 Reactive SCMS experiments 

Using an Eppendorf cell manipulation system and a syringe pump, a target cell was 

sucked into the glass micropipette (flowrate 10 µL/min) containing pre-filled acetone or 

benzophenone solution (Figure 4-2). Additional solution was drawn into the micropipette 

needle to ensure cell lysis. The syringe pump was turned on to deliver (flowrate 0.2 

µL/min) the single-cell lysate towards the nano-ESI emitter. A DC ionization voltage (+4 

kV in the positive ion mode or –4 kV in the negative ion mode) was applied on a 

conductive union and transmitted through the solvent to induce ionization of cell lysis at 

the tip of the micropipette for MS analysis. Due to the long signal duration time of a single 

cell (20-30 minutes), both the regular (no UV irradiation) and the reactive (after UV 

irradiation) SCMS experiments can be conducted for the same single cell. Specifically, 

after accomplishing data acquisition of the regular SCMS experiment, the ionization 

energy was turned off and the syringe pump was paused. The UV lamp (BHK, Ontario, 

CA) was then turned on to generate UV radiation and initiate PB reactions between the 

reagents and unsaturated cellular lipids. After 15 mins of reaction, the UV light was turned  
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Figure 4-4. Mechanism of PB reactions and the formation of diagnostic ion pairs 

(aldehyde and alkene formats) in CID. 

off, and then the reactive SCMS experiment was started by turning on the ionization 

voltage and resuming the syringe pump. Products from the PB reactions were analyzed 

using both MS scan (to obtain accurate m/z values of all ions) and tandem MS (MS/MS) 

analysis (to acquire fragments of selected ions). As illustrated in Figure 4-4, the PB 

reaction at each C=C bond can produce two isomers (i.e., Isomers I and II), which then 

produce one pair of diagnostic ions during CID, i.e., aldehyde and alkene ions can be 

generated from Isomer I and Isomer II, respectively. 

4.3.4 Cells culture and sample preparation 

The human colon cancer cell line, HCT-116, was chosen as a model system in the current 

study. Cells were cultured using a standard protocol as briefly described following.42 Cells 

were cultured in McCoy’s 5A medium, detached from Petri dish using trypsin, rinsed by 
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PBS (phosphate-buffered saline), centrifuged (1000 rmp, 10 min, three times), and then 

resuspended in PBS. Cell density was controlled to be around 5x104 cells/mL, and ~7 mL 

of the cell suspension solution was transferred to a culture dish for the following SCMS 

analysis. The cell lysis sample was prepared using standard protocols for comparative 

studies.54 The detailed procedure was shown in the Support Information.  

4.4 Result and Discussion 

4.4.1 Sampling solvent selection 

Previous studies utilized both acetone and benzophenone as the PB reagents in studies 

of unsaturated lipids in bulk samples.28, 29 Acetone and acetonitrile are common organic 

solvents generally used to prepare lysate. Thus, acetone and benzophenone solution (5 

mM in acetonitrile) were selected in the current studies to induce cell lysis and PB 

reactions. Because a small amount of PBS is inevitably drawn into the micropipette 

needle during single-cell sampling, a dilution of cell lysis solution can occur, potentially 

resulting in reduced cell lysis efficiency. For example, our previous studies show that 

acetonitrile can induce rapid cell lysis (< 15 s) when its concentration is >80 %, whereas 

lower concentrations result in slower lysis processes.34 Thus, we prepared cell lysis 

solutions using acetone and acetonitrile without adding other solvents commonly used in 

MS studies such as water and methanol. Because benzophenone concentration can 

affect the yield of products from the PB reactions,29 we prepared a series of acetonitrile 

solutions containing benzophenone (i.e., 0.5, 2.0, 5.0, and 10.0 mM) to optimize the PB 

reaction conditions in SCMS studies. Our experiments indicated that PB products were 

not observed using 0.5 and 2 mM benzophenone solutions. Although both 5 and 10 mM 

benzophenone induced PB reactions, the later one generated more undesired side 
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products. Thus, 5 mM benzophenone was selected as the optimum concentration for both 

the regular and reactive SCMS experiments. To generate PB products in the reactive 

SCMS experiments, UV irradiation (~15 minutes) was necessary for both PB reagents. 

Relatively abundant ions (e.g., intensity > 104) were selected for MS/MS analysis. 

4.4.2 Characterization of the micropipette needle 

To evaluate the sensitivity of the micropipette needle, we measured the limit of detection 

(LOD) of a number of standard compounds relevant to our studies. The LODs were 

determined as 1.0, 0.1, and 0.1 pM, for irinotecan, verapamil, and a phosphatidylcholine 

(PC (16:0/18:1)), respectively, which are comparable with the results obtained using 

standard nano-ESI source (Table S4-1). 34, 46 

4.4.3 Workflow of data analysis 

To efficiently analyze the experimental data, we wrote two different Python scripts to 

determine the locations of C=C bonds in lipids through three steps: screening the potential 

lipids and their corresponding PB products, predicting the fragmentation of PB products, 

and identifying C=C bonds in lipids. First, we screened the potential lipids and their 

corresponding PB products using the Script A, as shown in Figure S4-1. Briefly, relatively 

abundant ions (intensity > 104) were retained from SCMS data in both the “regular” 

(without UV irradiation) and “reactive” (15-min UV irradiation) groups. Script A was used 

to search for the m/z values with a mass difference of 58.0418 (using acetone reagent) 

or 182.0731 (using benzophenone reagent) between the “regular” and “reactive” groups 

((m/z)reactive - (m/z)regular = 58.0418 or 182.0731, within 20 ppm), and to generate a list of 

m/z pairs. In each m/z pair, the (m/z)regular was regarded as a candidate of a potential lipid, 

whereas the (m/z)reactive was considered as the candidate of the corresponding PB product. 
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Then, METLIN 55 was used to find all potential lipids for each (m/z)regular, whereas those 

(m/z)regular values that cannot be found in METLIN were re-moved from the list along 

with their corresponding (m/z)reactive. An updated list of m/z pairs with potential 

identifications was then generated, and MS/MS experiments were conducted for ions in 

this list (intensity > 104). Second, we predicted the diagnostic fragments of all potential 

PB products obtained from the previous step using the Script B (Figure S4-2). All featured 

fragments (i.e., m/z values) representing the head groups, tails, and adducts (i.e., H+, 

Na+, and K+) of each PB product were predicted according to the potential lipids 

generated from METLIN database searching. Last, we determined locations of C=C 

bonds in unsaturated lipids by comparing the predicted fragments in the second step and 

experimental MS/MS spectra, which were measured from selected ions using both CID 

(for diagnostic ions) and HCD (for lipids head groups) modes. 

According to the METLIN database searching, all lipids detected in our experiments 

potentially belong to phospholipids. Phospholipids contain two fatty acid tails and a 

hydrophilic head with a phosphate group. For ions with the same m/z value, differences 

in these two fatty acid tails can generate multiple lipid isomers that can produce the same 

diagenetic ions in MS/MS (Table S4-2). To further elucidate the structure of each fatty 

acid tail, SCMS experiments were also conducted in the negative ion mode, in which 

ammonium acetate (10 mM) was added in the solvent to enhance the ion intensities. 

Acetate adducts of phospholipids were detected, and their fragments were used to 

determine the fatty acid chains in these phospholipids28 (Figure S4-3). 
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4.4.4 Determination of C=C bond locations in unsaturated lipids of single cells 

Determining the exact structures of large numbers of unsaturated lipids in single cells is 

challenging due to multiple factors, including extremely complex compositions of cellular  

Table 4-1. Analysis of unsaturated lipids in single cells. 
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species, small sample amounts, and the lack of complete structure information of all lipids 

in the current database.  Nevertheless, our technique can be used as an analytical tool 

to identify structures or confine the detected species to limited numbers of isomers. We 

conducted comprehensive data analysis and tentatively determined 16 unsaturated lipids 

at the single-cell level in the current study (Table 4-1). Among them, PB products of three 

ions (m/z 760.5821, 253.2162, and 281.2485) were detected using both acetone and 

benzo-phenone as the reagents, whereas the rest species were only observed using 

acetone in the experiment. The presence of benzophenone (5 mM) likely affected the 

detection sensitivity of lipids (Figure S4). Our results may indicate that acetone is a more 

effective PB reagent to identify lipids C=C bond at the single-cell level. 

Here, we presented an example, in which m/z 760.5821 was identified as PC 

(16:0/18:1(9)), with details to illustrate the workflow of locating C=C bonds in unsaturated 

lipids through comprehensive data analysis. First, we obtained all potential species with 

the m/z of 760.5821 ((m/z)regular = 760.5821). This peak is commonly detected in the 

regular SCMS experiment, and its potential PB adducts with acetone ((m/z)reactive 

818.6579) and benzophenone ((m/z)reactive 942.6542) were extracted from experimental 

data using the Script A (Figure S4-1). We then searched for the potential species with the 

m/z of 760.5821 obtained from METLIN searching and discovered that among all 36 

potential lipids, 20 of them are phosphatidylcholines (PCs) and the rest 16 species are 

phosphatidylethanolamines (PEs) (Table S4-3). Second, the structure identification of 

lipids and corresponding PB products was performed based on their MS/MS fragments. 

The MS/MS spectra of m/z 760.5821 in both HCD and CID modes are shown in Figures 

S4-5B and S4-5D. Because m/z 184.0724 is the head group of PC or sphingomyelin (SM), 
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56, 57 we excluded PEs from the list of potential candidates (Table S4-3). We then used the 

Script B to predict the featured fragments of the potential PB products based on the type 

of lipids, and results were listed in Table S4-2. Last, we determined the position of the 

C=C bond in the unsaturated lipid. The comparison between the experimental MS/MS of 

m/z 818.6579 and the predicted list led to the discovery of diagnostic ion pairs of m/z 

650.4359 and m/z 676.4872 (i.e., ∆26) using acetone as the PB reagent (Figure 4-5A, 

Table S4-2).28 However, five lipids (Table S4-2) can generate the same diagnostic ion pair 

(m/z 650/676). To narrow down the potential candidates, we performed MS/MS analysis 

of m/z 818.59 (acetate adduct of m/z 760.5821) in the negative mode and determined the 

fatty acid tails of m/z 760.5821 (Table S4-4). Combining all the above results, the ion m/z 

760.5821 was identified as PC (16:0/18:1(9)) (Table S4-5). This identification was further 

confirmed by comparing its MS/MS fragments with those obtained from standard 

compound PC (16:0/18:1(9)) measured in our experiments (Figure S4-5). 

As illustrated in Figure 4-4, the PB products at one C=C bond can produce a pair of 

diagnostic ions during fragmentation. In our experiments, nine different peaks of the PB 

products (Table S4-5 to S4-13) generated one or two pairs of diagnostic ions, with a mass 

difference of ∆26 (acetone) or ∆150 (150.0836, benzophenone29), in MS/MS analysis 

(Figures 4-5, S4-6, and S4-7). The production of two pairs of diagnostic ions likely due to 

the coexistence of isomeric lipids with C=C bond at different locations. For example, 

MS/MS experiment of m/z 868.6410 (the acetone PB product of m/z 810.5944) produced 

two pairs of diagnostic ions with a mass difference of ∆26: m/z 700.4489/726.5560 and 

756.5484/782.5640 (Figure S4-6B). Previous studies found that a featured ion m/z 
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Figure 4-5. (A) MS/MS spectra of PB product of m/z 760.5899 (m/z 818.6579) using 

acetone as the PB reagent detected at single-cell level. Ions labeled in red font are 

diagnostic ions (m/z 650.4359 and m/z 676.4872). (B) MS/MS spectra of the PB product 

of m/z 760.5821 (m/z 942.6542) using benzophenone as the PB reagent detected from a 

single cell. Ions labeled in red font are diagnostic ions (m/z 650.4362 and m/z 800.5195).  

146.9807 was produced from the head-groups of sodiated PCs, SMs, or PEs in CID.58, 59 

MS/MS spectra of the corresponding lipid(s) (m/z 810.5944) in the regular SCMS 

experiment also contained the peak of m/z 146.9807 (Figure S4-6A), supporting the 

prediction that the ion m/z 810.5944 belongs to one or multiple Na+ adducts of PCs, SMs, 

or PEs. By searching for the potential species in METLIN database, we were able to 
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exclude SMs and PEs from the list while keeping the rest PCs as potential candidates. 

Using the Script B, we predicted the diagnostic ions of the PB products of all potential 

PCs (Table S4-6) and compared with experimental observation (Figure S4-6B), in which 

two pairs of diagnostic ions (m/z 700.4489/726.5560 and 756.5484/782.5640) were 

detected. Because all potential PCs acquired from METLIN contain only one C=C bond, 

our results may indicate the coexistence of isomers with different locations of a C=C bond. 

Combining the results from PB reactions (positive ion mode) and information of fatty acid 

tails (negative ion mode, Table S4-4), these potential isomers were determined as seven 

unsaturated PCs as listed in Table S4-6: PC (16:0/20:1(11)), PC (18:0/18:1(13)), PC 

(18:0/18:1(9)), PC (18:1(9)/18:0), PC (20:1(11)/16:0), PC (14:0/22:1(13)), and PC 

(14:1(9)/22:0). 

Interestingly, our experimental results indicate that the relative signal intensities of two 

diagnostic ions in a pair are different: more than half of the aldehyde ions are more 

abundant than the alkene ions. These differences are likely attributed to the relatively 

higher abundances of Isomer I than Isomer II produced in the PB reactions. Similar results 

have been reported in previous studies of bulk samples.28 In addition to paired diagnostic 

ions, we observed that the PB products of four lipids (m/z 814.5931, 838.5899, 840.6057, 

and 812.5792) produced unpaired diagnostic ions (Tables S4-9 to S4-12). This is likely 

due to the relatively low concentrations of these lipids in single cells, and the abundances 

of their PB products were insufficient to produce detectable diagnostic ion pairs. The rest 

seven lipids PB products (m/z 787.6395, 842.6530, 844.7043, 845.6319, 435.1712 

(negative mode), 311.1686 (negative mode) and 339.1998 (negative mode)) also 

produced unpaired diagnostic ions. We totally analyzed 17 and nine single cells in the 
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positive and negative ion modes, respectively. The results of these ions are summarized 

in Tables S4-14 to S4-20, and MS/MS spectra of these PB products and their 

corresponding lipids are shown in Figure S4-8. 

4.4.5 Comparison studies of cell lysates and single cells 

Lipidomics studies are generally conducted using lysates prepared from bulk biological 

samples (e.g., populations of cells, tissues, and plasma extraction) through multiple steps 

(e.g., cell lysis, centrifuging, supernatant transfer, drying, and reconcentration), which 

may affect their molecular compositions due to the potential variance of sample 

preparation protocols1. In contrast, entire cellular contents from individual cells are 

retained in our SCMS experiments, minimizing the influence of sample preparation 

variance on composition analysis.42 To evaluate the difference between these two 

approaches to the identification of the C=C bond, we conducted MS measurements of 

cell lysates and compared the results with those obtained at the single-cell level. Cell 

lysates were prepared and loaded into the micropipette needle for MS analysis, and data 

were collected before (no UV) and after the PB reactions (after 15 min of UV irradiation). 

Data analysis was performed using the same procedures as those used to process single 

cell results (see details in the Supporting Information). In general, MS/MS spectra of PB 

products obtained from the cell lysates were more complex than those from single cells 

(Figures S4-9 and S4-10), likely due to larger amounts of cellular contents in cell lysates. 

On the other hand, more cellular contents allowed for the analysis of additional PB 

products, including those with relatively lower abundances. For example, m/z 790.5902 

(the PB product of m/z 732.5506) produced two pairs of diagnostic ions with a difference 

of m/z 26 (m/z 650.4354/676.4868 and 622.4042/648.4544) using cell lysate (Figure S4-
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9B, Table S4-21), whereas only one pair of diagnostic ions (m/z 650.4357/676.4882) were 

detected from single cells. According to MS/MS spectra (Figure S4-9A) and METLIN 

database, the PB product m/z 732.5506 was produced from PCs containing one C=C 

bond, indicating that the peak detected in single cells is attributed to multiple isomers. 

Therefore, traditional MS analysis of lysate can provide complementary information for 

single cell studies. Similar analyses of other ions using both cell lysates and single cells 

were conducted, as summarized in Table S4-22 and Figure S4-10.   

Although enhanced ion signal intensities were obtained from cell lysates, larger amounts 

of cellular contents resulted in more undesired products from PB side reactions. Previous 

studies indicate that abundant lipids can react with PB reagents to generate side products, 

which may have very similar m/z values as the regular PB products or induce the retro-

PB reactions, i.e., decomposition of PB products back into reactants in CID28, 33,  resulting 

in interference for C=C bond analysis.28, 60 For example, paired diagnostic ions in CID 

analysis of both m/z 868.6410 and 838.5899 were not observed using cell lysate, but they 

were detected at the single-cell level, providing structure information for C=C bond 

analysis (Tables S4-6 and S4-11,  Figures S4-6 and S4-7D). 

4.5 Conclusion 

We report a simple SCMS analysis device, the micropipette needle, that can 

accommodate PB reactions to deter-mine C=C bond positions in unsaturated lipids at the 

single-cell level. HCT-116 cell line was used as a model, and individual cells were drawn 

into a micropipette needle to induce rapid cell lysis after mixing with acetone or acetonitrile 

solution containing benzophenone. To determine C=C bond loca-tions in unsaturated 

lipids, the micropipette needle was then used a nano-ESI emitter and coupled to a mass 
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spectrometer to conduct both regular and reactive SCMS analyses of the same single 

cell. The regular SCMS measurement provided molecular analysis of single-cell lysate 

without PB reactions. When conducting a reactive SCMS experiment, the lysis solution 

also played the role of the PB reagent by reacting with unsaturated lipids at C=C bonds 

under UV irradiation. Python scripts were used to analyze data obtained from both regular 

and reactive SCMS experiments to screen potential lipids and their corresponding PB 

products. Assisted by MS/MS analysis of candidate PB product ions, C=C bond locations 

were determined to identify unsaturated lipids at the single-cell level. Experiments were 

conducted in both positive and negative ion modes to obtain comprehensive structure 

information. Comparative studies between cell lysates and single cells were performed, 

and we found that bulk sample analysis can provide complementary information for 

single-cell studies. However, limited by a number of factors (e.g., complex compositions 

of cellular contents with limited amounts, lack of separation, and requirement of abundant 

PB product ions for MS/MS analysis), our current method is more effective for structure 

identification of unsaturated lipids and fatty acids with relatively high abundances and 

simple structures (e.g., with one or two C=C bonds). In addition, to generate abundant 

PB products, the throughput of reactive SCMS is primarily restricted by the time (15 min) 

needed for UV irradiation. The reaction time can likely be shorten using micropipette 

needles produced from thin-wall glass capillaries or other materials with higher UV 

transmission (e.g., quartz). Although a common cancer cell line was used as a model 

system in the current proof-of-concept studies, other systems (e.g., rare cells and 

heterogeneous cells) can be studied using this technique to answer specific biological 

questions that are intractable from bulk analysis. In addition, our techniques can be 
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potentially used for broad ranges of reactive SCMS studies, in which other chemical 

reactions can be utilized to enhance the molecular analysis of single cells or trace 

amounts of biological samples. 
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Appendix I: Support Information of Chapter 3 

Fabrication of the redesigned T-probe 

The fabrication process of the redesigned T-probe is based on our earlier publication with 

major modifications, as shown in Figure S3-1. 

(1) Preparation of the fused silica capillaries. The same size of fused silica capillary 

(O.D. 150 μm, I.D. 75 μm; Polymicro Technologies, Phoenix, AZ) was used to 

prepare the solve-providing capillary, the cell sampling probe, and the nano-ESI 

emitter. Both the sampling probe and the nano-ESI emitter were pulled using the 

flame to create sharp tips (~ 14 µm), allowing for smooth suction of a whole cell 

from the sampling tip and maintaining a stable electrospray at the tip of the nano-

ESI emitter. The length of the sampling probe is 8 mm, and the nano-ESI emitter 

is 5.5 cm. 

(2) Engraving T-shaped grooves on a PC slide. Similar to the fabrication of the T-

probe, a polycarbonate (PC) slide was selected due to its cost-efficiency, safety, 

and chemical damage resistance.1 A regular PC slide (75 mm × 25 mm, P11011P, 

Science Supply Solutions, Elk Grove Village, IL) was graved using a Computer 

Numeric Control (CNC; CNC 3020, LiYang Welding Equipment Co., Ltd, 

Shenzhen, China) micro-engraver. An end mill with a small size (diameter = 0.1 

mm) was selected to produce a set of T-shaped grooves with uniform sizes (width 

~150 μm, and depth ~130 μm) on the surface. The T-shaped grooves were used 

to retain the positions of those three capillaries in the following steps.  
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(3) Salinization treatment of PC slides. Two PC slides with identical dimensions (i.e., 

one pristine and one containing the engraved T-shaped groove) were needed to 

fabricate a T-probe. Bis [3-(trimethoxysilyl) propyl]  amine (Bis-TPA), a salinizing 

reagent that can increase the surface hydrophilicity of PC slides2, was used to 

improve the binding affinity between PC slides. In our fabrication process, 1 % of 

bis-TPA (Tokyo Chemical Industry Co., LTD, Japan, Tokyo) solution was used to 

treat both PC slides (i.e., pristine and engraved) for 20 min prior to the probe 

assembly. 

(4) Probe assembly. Three capillaries were carefully embedded in the grooves on a 

PC slide to form a T-shaped layout. The solvent-providing capillary and nano-ESI 

emitter were aligned, whereas the sampling probe was vertically positioned at the 

T-junction.  The other Bis-TPA treated PC slide (no grooves) was used to sandwich 

those three capillaries. 

(5) Thermal binding. The sandwiched structure obtained from the previous step was 

retained using two glass slides, which were clamped using a paper binder. We 

placed such assembly in an oven at 100 oC for 30 min allowing for the thermal 

binding process. The probe was harvested after removing the glass slides and 

then glued on a trapezoidal glass slide for convenient use in the following SCMS 

experiments. 

Cells culture and SCMS sample preparation 

In this study, human colon cancer cell line, HCT-116, was chosen as the model system 

for SCMS experiments using the redesigned T-probe. HCT-116 cells were cultured under 

standard experimental conditions. When cells reached ~80% confluence in culture plate, 
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we subcultured them into a 12-well plate containing an autoclaved micro cover glass slide 

(diameter = 18 mm) in each well using the protocol reported earlier.3 After overnight 

incubation (condition of incubation: 5% CO2, 37 oC, humidified) in the incubator 

(HERAcell, Thermo Scientific), cells were ready for further sample preparation 

procedures as described in the following.  

Before sampling control cells (without irinotecan treatment) or treated cells (treated with 

18 μM of irinotecan solution for 45 min), several steps were taken to detach and wash 

cells. First, attached cells were rinsed with PBS, followed by trypsinization (200 µL of the 

trypsin-EDTA solution was added in each well). Next, 1.2 mL of McCoy’s 5A medium was 

used to quench trypsinization before sampling. Last, we transferred 50 µL of the cell 

suspension to a glass slide, which can be used for the following SCMS analysis. 

Cell lysis 

HCT-116 cell lysate samples were used to verify our findings at the single-cell level. The 

cell culture procedure and drug treatment conditions used for the preparation of HCT-116 

cell lysate samples were identical to those used in the SCMS sample preparation. For the 

preparation of control cell lysate (without drug treatment), 10 mL of HCT-116 cells in the 

culture plate (~5.6 × 106 cells) were washed by 5 mL of PBS before 2 mL of trypsin-EDTA 

solution was added to detach those cells. In parallel, irinotecan treated cells were treated 

using the same condition as used in the SCMS sample preparation protocol (18 µM, 45 

min). Control and treated cells were first washed with PBS, and trypsinization was then 

quenched by adding 8 mL of culture medium. Afterward, 1.5 mL of cell suspension 

solution was pipetted into a 2 mL tube and centrifuged (10 min at 13000 rpm) followed by 

washing with 1 mL of PBS solution for three times. Cell lysis procedure (including both 
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control and irinotecan treated cells) was performed using a standard protocol.4  First, cell 

lysis was conducted using 1 mL of lysis buffer (methanol: chloroform: water = 1:1:1) and 

vortexed for 10 mins on ice. Next, the sample was centrifuged at 14,000 rpm for 15 min 

before subjecting the supernatant (aqueous and organic phase, separately) for drying in 

SpeedVac concentrator (Thermo Scientific, MA). After solvent evaporation, 500 µL of 

methanol was used to re-dissolve the cell lysate, and 250 µL of the sample was fulfilled 

into a syringe. Last, we injected the cell lysate sample into MS inlet at the same flow rate 

(0.5 μL/min) as used in the redesigned T-probe SCMS analysis.  

Data pre-treatment 

The background includes instrumental noise (i.e., ions with intensity < 103) and interfering 

species detected from the culture medium. Here we developed a customized Python 

script to eliminate instrumental noise and reduce interfering species (Figure S3). After 

background subtraction, the intensities of ions were normalized to the total ion 

chromatogram (TIC), followed by data alignment accomplished using Geena 2 

(http://bioinformatics.hsanmartino.it/geena2).5 
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Supporting Tables 

Table S3-1. Limit of detections (LODs) of standard compounds (nM). 

Compounds 
Redesigned T-

probe 
T-probe61 

Single 

probe72 
Nano-ESI61 

irinotecan 0.1 0.1 / 0.1 

leucine 

enkephalin 
0.1 1 / 0.8 

PC (18:1/16:0) 10 10 5 5 
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Table S3-2. Top 30 most abundant metabolites detected in untreated (control) cells 

at the single-cell level. 

m/z Tentative Labeling Adducts Δppm 
198.0962 4-hydroxy Nonenal-d3 [M + K]+ 4 
199.9951 2-(hydroxyimino)- Pentanedioic acid [M + K]+ 2 
203.0538 Theobromine [M + Na]+ 0 
221.1662 1-Tridecene [M + K]+ 1 
352.0273 Oxine-copper [M + H]+ 1 
361.2336 S 1033 [M + H]+ 5 
365.1078 Ser-His-OH [M + H]+ 3 
413.2686 Boviquinone 4 [M + H]+ 0 
427.2843* TEI 9647 [M + H]+ 0 
429.2132 Taraxacolide 1-O-b-D-glucopyranoside [M + H]+ 3 
455.3157* Coenzyme Q4 [M + H]+ 0 
518.3247 PC (18:3) [M + H]+ 1 
546.3563 LysoPC (20:3) [M + H]+ 1 
671.5778 CE (20:5) [M + H]+ 2 
687.5721 9-HODE cholesteryl este [M + Na]+ 4 
780.5559* PC (36:5) [M + H]+ 2 
781.5588 PE-Cer (d40:2) [M + K]+ 4 
782.5712* PC (34:1) [M + Na]+ 2 
783.5758 SM (d37:1) [M + K]+ 2 
804.5573* PC (38:7) [M + H]+ 4 
806.5723* PC (38:6) [M + H]+ 3 
808.5871* PC (38:5) [M + H]+ 2 
810.6018* PC (36:1) [M + H]+ 1 
811.6073 SM (d39:1) [M + K]+ 2 
832.5851* PC (40:7) [M + H]+ 0 
834.6037* PE (43:6) [M + H]+ 3 
840.5781* PS (40:4) [M + H]+ 4 
846.5989 PE (44:7) [M + H]+ 2 
847.5244 PG (O-40:6) [M + K]+ 2 
874.6309 PE (46:7) [M + H]+ 1 

*Identified metabolites through MS/MS analysis either at the single-cell level (through 

online MS/MS analysis) or at the population level (through nanoESI-MS/MS analysis). 
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Table S3-3. Top 30 most abundant metabolites detected in irinotecan 

treated cells at the single-cell level. 

m/z Tentative Labeling Adducts Δppm 
221.1662 1-Tridecene [M + K]+ 1 
365.1078 Ser-His-OH [M + H]+ 3 
413.2686 Boviquinone 4 [M + H]+ 0 
429.2132 Taraxacolide 1-O-b-D-glucopyranoside [M + H]+ 3 
503.2029 Myxothiazol Z [M + H]+ 0 
518.3247 PC (18:3) [M + H]+ 1 
546.3563 LysoPC (20:3) [M + H]+ 1 
587.2890* Irinotecan [M + H]+ 4 
609.2708 Irinotecan [M + Na]+ 4 
671.5778 CE (20:5) [M + H]+ 2 
687.5721 9-HODE cholesteryl este [M + Na]+ 4 
729.4094 PG (30:2) [M + K]+ 1 
743.4070 PA (37:7) [M + K]+ 2 
743.4425 PA (P-38:6) [M + K]+ 1 
745.4230 PA (37:6) [M + K]+ 3 
765.4199 Avermectin A1a monosaccharide [M + Na]+ 1 
775.4149 Angiotensin IV [M + H]+ 1 
780.5547* PC (36:5) [M + H]+ 1 
781.5588 PE-Cer (d40:2) [M + K]+ 4 
782.5712* PC (34:1) [M + Na]+ 2 
783.5758 SM (d37:1) [M + K]+ 2 
785.4177 Ustilagic acid [M + H]+ 1 
787.4333 PI (29:2) [M + Na]+ 4 
789.4498 PI (29:1) [M + Na]+ 3 
804.5573* PC (38:7) [M + H]+ 4 
806.5723* PC (38:6) [M + H]+ 3 
807.4610 PG (36:5） [M + K]+ 4 
808.5865* PC (38:5) [M + H]+ 1 
809.4465 Ginsenoside F5 [M + K]+ 2 
810.6018* PC (36:1) [M + H]+ 1 

*Identified metabolites through MS/MS analysis either at the single-cell level (through 

online MS/MS analysis) or at the population level (through nanoESI-MS/MS analysis). 
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Table S3-4. Significantly changed cellular metabolites after drug treatment 

discovered through two-sample t-test. 

m/z Name p-value Regulation 
455.1850 Valtratum 0.05 Down 
455.3139* Coenzyme Q4 0.01 Down 
457.2560 PG (14:0) 0.01 Down 
507.2205 Limonoate 0.05 Down 
523.2592 Gallopamil 0.04 Down 
525.2623 Hydrocortisone cypionate 0.03 Down 
553.3773 3-Hydroxyvecuronium < 0.01 Down 
587.2873* Irinotecan < 0.01 Up 
780.5551* PC (36:5) < 0.01 Down 
781.5589 PE-Cer (d40:2) < 0.01 Up 
784.5830* PC (36:3) 0.01 Down 
798.5626 PS (O-38:4) < 0.01 Up 
799.5710 PE-Cer (d40:1) < 0.01 Up 
806.5672* PC (38:6) 0.01 Down 
840.5771* PS (40:4) 0.04 Up 
841.5700 PG (P-39:1) 0.04 Up 
843.6431 PG (O-40:0) < 0.01 Down 
862.6230 Galabiosylceramide (d34:1) < 0.01 Down 
863.5810 PG (41:4) 0.02 Down 
874.6293 PE (46:7) < 0.01 Down 
877.5700 PG (P-42:4) 0.01 Down 
888.6440 PC (44:7) 0.02 Down 
955.7187 TG (37:5) < 0.01 Down 
957.7261 TG (37:4) < 0.01 Down 

1091.2790 Acaciabiuronic acid 0.04 Up 
*Identified metabolites through MS/MS analysis either at the single-cell level (through 

online MS/MS analysis) or at the population level (through nanoESI-MS/MS analysis). 
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Supporting Figures 

 

Figure S3-1. The fabrication workflow of the redesigned T-probe. A Computer Numeric 

Control (CNC) micromachine was used to engrave a set of T-shaped grooves on one of 

the polycarbonate (PC) slide. Two PC slides were treated by 1 % Bis [3-(trimethoxysilyl) 

propyl] amine (Bis-TPA) to increase their binding affinity. Three capillaries were 

positioned in the T-shaped grooves and followed by the thermal binding process in the 

oven. 
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Figure S3-2.  Testing the performance of the redesigned T-probe using the standard 

leucine enkephalin solution. 
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Figure S3-3.  Evaluation of the LODs of the redesigned T-probe using standard 

solutions of (A) leucine enkephalin (0.1 nM), (B) irinotecan (0.1 nM), and (C) PC 

(16:0/18:1) (10 nM). 
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Figure S3-4.  Sampling a suspended HCT-116 cell under the microscope for the SCMS 

experiment. 
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Figure S3-5. The flowchart of the in-house developed Python script for the SCMS 

background subtraction. 
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Figure S3-6. Observation of cell lysis in different solvents under the microscope. (A) 

Live HCT-116 cells (with bright edges) in the culture medium. Cell lysis can be observed 

in (B) acetonitrile (95%)/culture medium (5%) within 3 seconds, (C) acetonitrile 

(90%)/culture medium (10%) within 3 seconds, and (D) acetonitrile (80%)/culture medium 

(20%) within 12 seconds   
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Figure S3-7. Online MS/MS spectra of irinotecan detected from a single cell treated 

with irinotecan. The ions highlighted in red (m/z 569, m/z 543, m/z 502, and m/z 195) are 

fragments consistent with reported studies.81 
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Figure S3-8. Online MS/MS analysis of cellular species at the single cell level, including 

(A) PC (36:5) (m/z 780.5534), (B) PC (38:5) (m/z 808.5832), (C) PC (34:1) (m/z 782.5744), 

(D) PC (36:1) (m/z 810.6037), and (E) TEI9647 (m/z 427.2822). The m/z values labelled 

in red are consistent with in silico data reported in HMDB and METLIN. 
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Figure S3-9. NanoESI-MS/MS analysis of 12 cellular species detected in the lysate 

prepared using cells in the control group, including (A) TEI-9647 (m/z 427.2890), (B) 

Coenzyme Q4 (m/z 455.3139), (C) PC (36:5) (m/z 780.5534), (D) PC (34:1) (m/z 

782.5643), (E) PC (O- 34:1) (m/z 784.5090), (F) PC (38:7) (m/z 804.5493), (G) PC (38:6) 

(m/z 806.5650), (H) PC (38:5) (m/z 808.5810), (I) PC (38:4) (m/z 810.5996), (J) PC (40:7) 

(m/z 832.5847), (K) PC (40:6) (m/z 834.5977), and (L) PC (40:4) (m/z 840.5712). The m/z 

values labelled in red are consistent with in silico data reported in HMDB and METLIN. 
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Figure S3-10. MS/MS analysis of 8 cellular species detected in the lysate prepared 

using cells in irinotecan treatment groups. (A) Irinotecan (m/z 587.2850), (B) PC (36:5) 

(m/z 780.5501), (C) PC (34:1) (m/z 782.5660), (D) PC (O- 34:1) (m/z 784.5835), (E) PC 
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(38:6) (m/z 806.5656), (F) PC (38:5) (m/z 808.5808), (G) PC (38:4) (m/z 810.6001), and 

(H) PC (40:4) (m/z 840.5716). The m/z values labelled in red are consistent with in silico 

data reported in HMDB and METLIN.  
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Appendix II: Support Information of Chapter 4 

Cell lysis preparation 

HCT-116 cells were cultured in complete McCoy’s 5A medium under standard 

experimental conditions (5% CO2, 37 ℃, humidified) in the incubator (HERAcell, Thermo 

Scientific). HCT-116 cells (cell density: 9* 105/mL) were washed using 5 mL of PBS to 

eliminate dead cells, and then detached from culture plate using 2 mL of trypsin-EDTA 

solution. Trypsinization lasted for 2 min in the incubator and then quenched by 8 mL of 

culture medium. 1 mL of cell suspension solution was pipetted into a 2 mL tube and 

centrifuged (10 min at 13000 rpm). The supernatant was removed after centrifugation, 

and cells were washed by 5 mL PBS solution. Repeat previous steps for three times. The 

procedure of cell lysis was using a standard protocol.1 The lysis buffer was methanol with 

chloroform at a ratio of 1:1. Using lysis buffer to conducted cell lysis and vortexed for 10 

min on ice. The cell lysis solution was centrifuged at 14,000 rpm for 15 min at 4 ℃ to 

eliminate sediment form cell lysis solution. The supernatant was dried in SpeedVac 

concentrator (Thermo Scientific, MA). After solvent evaporation, cell lysis tubes were 

stored at -80℃.  

Lipids C=C bond identification using cell lysate 

Before the experiment, 300 µL of ACN was used to redissolve the cell lysate. The same 

flow rate (0.2 μL/min) was used as in the SCMS analysis to infuse cell lysate in MS 

analysis. First, HCT-116 cell lysates were analyzed using the micropipette coupled to the 

mass spectrometer, and the data (both MS scan and MS/MS) were collected as the 

“control” group. Second, after 15 min UV irradiation of the same sample, experiments 
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were resumed to collect data as the “reactive” group. The procedures of the data analysis 

part were same as those used in single-cell results. 
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Supporting Tables 

Table S4-1.  Limit of detections (LODs) of standard compounds (pM). 

Compounds 
Micropipette 

needle 
Redesigned T-

probe2 
T-

probe3 
Single-
probe4 

Nano-
ESI3 

Irinotecan 10 100 100 / 100 
Leucine 

enkephalin 
/ 100 1000 / 800 

PC (16:0/18:1) 0.1 10000 10000 5000 5000 
Verapamil 0.1 / / / / 
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Table S4-2. Potential lipids with m/z 760.58 determined from acetone PB 

reaction at the single-cell level. 

Lipids 
PB 

products 
Adduct 

Double bond 
position 

m/z of predicted 
fragments 

MS/MS 
match1 

PC (16:0/18:1(9)) 
Isomer I H+ Chain2 ∆9 650.5 Y 

Isomer II H+ Chain2 ∆9 676.6 Y 

PC (16:1(7)/18:0) 
Isomer I H+ Chain1 ∆7 650.5 Y 

Isomer II H+ Chain1 ∆7 676.6 Y 

PC (18:1(9)/16:0) 
Isomer I H+ Chain1 ∆9 650.5 Y 

Isomer II H+ Chain1 ∆9 676.6 Y 

PC (14:0/20:1(11)) 
Isomer I H+ Chain2 ∆11 650.5 Y 

Isomer II H+ Chain2 ∆11 676.6 Y 

PC (20:1(11)/14:0) 
Isomer I H+ Chain1 ∆11 650.5 Y 

Isomer II H+ Chain1 ∆11 676.6 Y 

PC (16:0/18:1(11)) 
Isomer I H+ Chain2 ∆11 678.6 N 

Isomer II H+ Chain2 ∆11 704.6 N 

PC (16:0/18:1(6)) 
Isomer I H+ Chain2 ∆6 608.5 N 

Isomer II H+ Chain2 ∆6 634.5 N 

PC (16:1(9)/18:0) 
Isomer I H+ Chain1 ∆9 678.6 N 

Isomer II H+ Chain1 ∆9 704.6 N 

PC (14:1(9Z)/20:0) 
Isomer I H+ Chain1 ∆9 706.6 N 

Isomer II H+ Chain1 ∆9 732.7 N 

PC (18:0/16:1(9)) 
Isomer I H+ Chain2 ∆9 678.6 N 

Isomer II H+ Chain2 ∆9 704.6 N 

PC (18:1(11)/16:0) 
Isomer I H+ Chain1 ∆11 678.6 N 

Isomer II H+ Chain1 ∆11 704.6 N 

PC (20:0/14:1(9)) Isomer I H+ Chain2 ∆9 706.6 N 
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Isomer II H+ Chain2 ∆9 732.7 N 

PC (12:0/22:1(11)) 
Isomer I H+ Chain2 ∆11 622.5 N 

Isomer II H+ Chain2 ∆11 648.6 N 

PC (15:0/19:1(9)) 
Isomer I H+ Chain2 ∆9 636.5 N 

Isomer II H+ Chain2 ∆9 662.6 N 

PC (15:1(9)/19:0) 
Isomer I H+ Chain1 ∆9 692.6 N 

Isomer II H+ Chain1 ∆9 718.7 N 

PC (17:0/17:1(9)) 
Isomer I H+ Chain2 ∆9 664.6 N 

Isomer II H+ Chain2 ∆9 690.6 N 

PC (17:1(9)/17:0) 
Isomer I H+ Chain1 ∆9 664.6 N 

Isomer II H+ Chain1 ∆9 690.6 N 

PC (19:0/15:1(9)) 
Isomer I H+ Chain2 ∆9 692.6 N 

Isomer II H+ Chain2 ∆9 718.7 N 

PC (19:1(9)/15:0) 
Isomer I H+ Chain1 ∆9 636.5 N 

Isomer II H+ Chain1 ∆9 662.6 N 

PC (22:1(11)/12:0) 
Isomer I H+ Chain1 ∆11 622.5 N 

Isomer II H+ Chain1 ∆11 648.6 N 

1Comparison with experimental MS/MS spectra of the corresponding PB products. 

  



114 
 

 Table S4-3. Potential lipids (m/z 760.58) identified from acetone PB products (m/z 

818.6579). Species in the shade were eliminated based on the analysis of 

headgroups obtained from MS/MS. 

  
Lipids name Adduct 

PC (16:0/18:1(11)) H+ 
PC (16:0/18:1(6)) H+ 
PC (16:0/18:1(9)) H+ 
PC (16:1(7)/18:0) H+ 
PC (16:1(9)/18:0) H+ 
PC (18:1(9)/16:0) H+ 

PC (14:0/20:1(11)) H+ 
PC (14:1(9)/20:0) H+ 
PC (18:0/16:1(9)) H+ 

PC (18:1(11)/16:0) H+ 
PC (20:0/14:1(9)) H+ 

PC (20:1(11)/14:0) H+ 
PC (12:0/22:1(11)) H+ 
PC (15:0/19:1(9)) H+ 
PC (15:1(9)/19:0) H+ 
PC (17:0/17:1(9)) H+ 
PC (17:1(9)/17:0) H+ 
PC (19:0/15:1(9)) H+ 
PC (19:1(9)/15:0) H+ 

PC (22:1(11)/12:0) H+ 
PE (15:0/22:1(11)) H+ 
PE (15:1(9)/22:0) H+ 
PE (16:1(9)/21:0) H+ 

PE (17:0/20:1(11)) H+ 
PE (17:1(9)/20:0) H+ 
PE (18:0/19:1(9)) H+ 
PE (18:1(9)/19:0) H+ 
PE (19:0/18:1(9)) H+ 
PE (19:1(9)/18:0) H+ 
PE (20:0/17:1(9)) H+ 

PE (20:1(11)/17:0) H+ 
PE (21:0/16:1(9)) H+ 
PE (22:0/15:1(9)) H+ 

PE (22:1(11)/15:0) H+ 
PE (15:0/22:1(13)) H+ 
PE (22:1(13)/15:0) H+ 
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Table S4-4. Determination of fatty acid tails in lipids (negative ion mode) from single cells and cell 

lysates. 

m/z 
(lipids) 

m/z (acetate 
adducts of lipids) 

Sample m/z of side chains Fatty acid tails 

760.59 818.59 
Single cell 255,281 C 16:0, C 18:1 
Cell lysate 253,255,281,283 C 16:1, C 16:0, C 18:1, C 18:0 

810.6 868.61 
Single cell 255, 279, 281, 339 C 16:0, C18:2, C 18:1, C 22:0 
Cell lysate 255, 283, 339 C 16:0, C 18:0, C 22:0 

732.55 790.56 
Single cell 253, 281 C 16:1, C 18:1 
Cell lysate 253,255,281,283 C 16:1, C 16:0,C 18:1, C 18:0 

782.57 840.57 
Single cell 255,281 C 16:0, C 18:1 
Cell lysate 255, 279, 283 C 16:0, C 18:2, C 18:0 

754.54 812.54 
Single cell 239, 279, 281, 283 C 15:1, C 16:0, C18:2, C 18:1, C 18:0 
Cell lysate 239, 255, 279, 281, 283 C 15:1, C18:2, C 18:1, C 18:0 

780.55 838.56 
Single cell 253, 281, 307 C 16:1, C 18:1, C 20:2 
Cell lysate 255, 277, 281 C 16:0, C 18:3, C 18:1 

756.55 814.56 
Single cell 253, 267, 279, 283, 339 C 16:1, C 17:1, C 18:2, C18:0, C 22:0 
Cell lysate 255, 281, 283 C 16:0, C 18:1, C 18:0 

784.59 842.59 
Single cell 255, 279, 281, 283, 305 C 16:0, C18:2, C 18:1, C 18:0, C 20:3 
Cell lysate 255, 283 C 16:0, C 18:0 

786.6 844.61 
Single cell 253, 281, 339 C 16:1, C 18:1, C 22:0 
Cell lysate 255, 281, 283 C 16:0, C 18:1, C 18:0 
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Table S4-5. Potential species (m/z 760.58) with the same predicted fragments as m/z 818.62 (acetone PB products) 

at the single-cell level. 

Lipids 
PB product 

isomers 
Adducts C=C bond position 

m/z of predicted 
fragments 

Carbon number 
match* 

PC (16:0/18:1(9))** 
Isomer I H+ Chain2 ∆9 650.54 

Y 
Isomer II H+ Chain2 ∆9 676.59 

PC (18:1(9)/16:0)** 
Isomer I H+ Chain1 ∆9 650.54 

Y 
Isomer II H+ Chain1 ∆9 676.59 

PC (16:1(7)/18:0) 
Isomer I H+ Chain1 ∆7 650.54 

Y*** 
Isomer II H+ Chain1 ∆7 676.59 

PC (14:0/20:1(11)) 
Isomer I H+ Chain2 ∆11 650.54 

N 
Isomer II H+ Chain2 ∆11 676.59 

PC (20:1(11)/14:0) 
Isomer I H+ Chain1 ∆11 650.54 

N 
Isomer II H+ Chain1 ∆11 676.59 

*Comparison with results in Table S4. 

**Identified species with matched MS/MS fragments (from prediction) and carbon numbers in fatty acid tails. 

***Agreement is only obtained from cell lysates (not from single cells) 
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Table S4-6. Predicted diagnostic ions from m/z 868.64 (acetone PB products of m/z 810.60) at the single-cell level. 

Lipids1 PB products Adduct 
Double bond 

position 
m/z of predicted 

fragments 
MS/MS 
match2 

Carbon 
number match3 

PC (16:0/20:1(11)) 
Isomer I Na+ Chain2 ∆11 700.6 Y 

Y 
Isomer II Na+ Chain2 ∆11 726.6 Y 

PC (18:0/18:1(13)) 
Isomer I Na+ Chain2 ∆13 756.6 Y 

Y 
Isomer II Na+ Chain2 ∆13 782.7 Y 

PC (18:0/18:1(9)) 
Isomer I Na+ Chain2 ∆9 700.6 Y 

Y 
Isomer II Na+ Chain2 ∆9 726.6 Y 

PC (18:1(9)/18:0) 
Isomer I Na+ Chain1 ∆9 700.6 Y 

Y 
Isomer II Na+ Chain1 ∆9 726.6 Y 

PC (20:1(11)/16:0) 
Isomer I Na+ Chain1 ∆11 700.6 Y 

Y 
Isomer II Na+ Chain1 ∆11 726.6 Y 

PC (14:1(9)/22:0) 
Isomer I Na+ Chain1 ∆9 756.6 Y 

Y 
Isomer II Na+ Chain1 ∆9 782.7 Y 

PC (22:0/14:1(9)) 
Isomer I Na+ Chain2 ∆9 756.6 Y 

Y 
Isomer II Na+ Chain2 ∆9 782.7 Y 

PC (14:0/22:1(13)) 
Isomer I Na+ Chain2 ∆13 700.6 Y 

N 
Isomer II Na+ Chain2 ∆13 726.6 Y 

PC (22:1(13)/14:0) 
Isomer I Na+ Chain1 ∆13 700.6 Y 

N 
Isomer II Na+ Chain1 ∆13 726.6 Y 

PC (18:0/18:1(12)) 
Isomer I Na+ Chain2 ∆12 742.6 N 

Y 
Isomer II Na+ Chain2 ∆12 768.7 N 

PC (18:0/18:1(16)) 
Isomer I Na+ Chain2 ∆16 798.7 N 

Y 
Isomer II Na+ Chain2 ∆16 824.8 N 

PC (18:0/18:1(6)) 
Isomer I Na+ Chain2 ∆6 658.5 N 

Y 
Isomer II Na+ Chain2 ∆6 684.6 N 
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PC (18:0/18:1(7)) 
Isomer I Na+ Chain2 ∆7 672.5 N Y 

Isomer II Na+ Chain2 ∆7 698.6 N 

PC (16:1(9)/20:0) 
Isomer I Na+ Chain1 ∆9 728.6 N 

Y 
Isomer II Na+ Chain1 ∆9 754.7 N 

PC (18:0/18:1(11)) 
Isomer I Na+ Chain2 ∆11 728.6 N 

Y 
Isomer II Na+ Chain2 ∆11 754.7 N 

PC (18:1(11)/18:0) 
Isomer I Na+ Chain1 ∆11 728.6 N 

Y 
Isomer II Na+ Chain1 ∆11 754.7 N 

PC (20:0/16:1(9)) 
Isomer I Na+ Chain2 ∆9 728.6 N 

Y 
Isomer II Na+ Chain2 ∆9 754.7 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 
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Table S4-7. Predicted diagnostic ions from m/z 942.65 (benzophenone PB products of m/z 760.58) at the single-cell 

level. 

Lipids1 PB products Adduct 
Double bond 

position 
m/z of predicted 

fragments 
MS/MS 
match2 

Carbon 
number match3 

PC (18:1(9)/16:0) 
Isomer I H+ Chain1 ∆9 650.54 Y 

Y 
Isomer II H+ Chain1 ∆9 800.62 Y 

PC (16:0/18:1(9)) 
Isomer I H+ Chain2 ∆9 650.54 Y 

Y 
Isomer II H+ Chain2 ∆9 800.62 Y 

PC (16:1(7)/18:0) 
Isomer I H+ Chain1 ∆7 650.54 Y 

Y* 
Isomer II H+ Chain1 ∆7 800.62 Y 

PC (20:1(11)/14:0) 
Isomer I H+ Chain1 ∆11 650.54 Y 

N 
Isomer II H+ Chain1 ∆11 800.62 Y 

PC (14:0/20:1(11)) 
Isomer I H+ Chain2 ∆11 650.54 Y 

N 
Isomer II H+ Chain2 ∆11 800.62 Y 

PC (16:0/18:1(11)) 
Isomer I H+ Chain2 ∆11 678.58 N 

Y 
Isomer II H+ Chain2 ∆11 828.66 N 

PC (16:0/18:1(6)) 
Isomer I H+ Chain2 ∆6 608.48 N 

Y 
Isomer II H+ Chain2 ∆6 758.56 N 

PC (18:1(11)/16:0) 
Isomer I H+ Chain1 ∆11 678.58 N 

Y 
Isomer II H+ Chain1 ∆11 828.66 N 

PC (16:1(9)/18:0) 
Isomer I H+ Chain1 ∆9 678.58 N 

Y* 
Isomer II H+ Chain1 ∆9 828.66 N 

PC (18:0/16:1(9)) 
Isomer I H+ Chain2 ∆9 678.58 N 

Y* 
Isomer II H+ Chain2 ∆9 828.66 N 

PC (14:1(9)/20:0) 
Isomer I H+ Chain1 ∆9 706.62 N 

N 
Isomer II H+ Chain1 ∆9 856.70 N 
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PC (20:0/14:1(9)) 
Isomer I H+ Chain2 ∆9 706.62 N 

N 
Isomer II H+ Chain2 ∆9 856.70 N 

PC (12:0/22:1(11)) 
Isomer I H+ Chain2 ∆11 622.50 N 

N 
Isomer II H+ Chain2 ∆11 772.58 N 

PC (15:0/19:1(9)) 
Isomer I H+ Chain2 ∆9 636.52 N 

N 
Isomer II H+ Chain2 ∆9 786.60 N 

PC (15:1(9)/19:0) 
Isomer I H+ Chain1 ∆9 692.60 N 

N 
Isomer II H+ Chain1 ∆9 842.68 N 

PC (17:0/17:1(9)) 
Isomer I H+ Chain2 ∆9 664.56 N 

N 
Isomer II H+ Chain2 ∆9 814.64 N 

PC (17:1(9)/17:0) 
Isomer I H+ Chain1 ∆9 664.56 N 

N 
Isomer II H+ Chain1 ∆9 814.64 N 

PC (19:0/15:1(9)) 
Isomer I H+ Chain2 ∆9 692.60 N 

N 
Isomer II H+ Chain2 ∆9 842.68 N 

PC (19:1(9)/15:0) 
Isomer I H+ Chain1 ∆9 636.52 N 

N 
Isomer II H+ Chain1 ∆9 786.60 N 

PC (22:1(11)/12:0) 
Isomer I H+ Chain1 ∆11 622.50 N 

N 
Isomer II H+ Chain1 ∆11 772.58 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 

*Agreement is only obtained from cell lysates (not from single cells). 
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Table S4-8. Predicted diagnostic ions from m/z 790.59 (acetone PB products of m/z 732.55) at the single-cell level. 

Lipids1 PB products Adducts 
Double bond 

position 
m/z of predicted 

fragments 
MS/MS 
match2 

Carbon number 
match3 

PC (16:0/16:1(9)) 
Isomer I H+ Chain2 ∆9 650.5 Y 

Y 
Isomer II H+ Chain2 ∆9 676.6 Y 

PC (14:0/18:1(11)) 
Isomer I H+ Chain2 ∆11 650.5 Y 

Y 
Isomer II H+ Chain2 ∆11 676.6 Y 

PC (16:1(9)/16:0) 
Isomer I H+ Chain1 ∆9 650.5 Y 

Y 
Isomer II H+ Chain1 ∆9 676.6 Y 

PC (18:1(11)/14:0) 
Isomer I H+ Chain1 ∆11 650.5 Y 

Y 
Isomer II H+ Chain1 ∆11 676.6 Y 

PC (12:0/20:1(11)) 
Isomer I H+ Chain2 ∆11 622.5 N 

N 
Isomer II H+ Chain2 ∆11 648.6 N 

PC (13:0/19:1(9)) 
Isomer I H+ Chain2 ∆9 608.5 N 

N 
Isomer II H+ Chain2 ∆9 634.5 N 

PC (15:0/17:1(9)) 
Isomer I H+ Chain2 ∆9 636.5 N 

N 
Isomer II H+ Chain2 ∆9 662.6 N 

PC (15:1(9)/17:0) 
Isomer I H+ Chain1 ∆9 664.6 N 

N 
Isomer II H+ Chain1 ∆9 690.6 N 

PC (17:0/15:1(9)) 
Isomer I H+ Chain2 ∆9 664.6 N 

N 
Isomer II H+ Chain2 ∆9 690.6 N 
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PC (17:1(9)/15:0) 
Isomer I H+ Chain1 ∆9 636.5 N 

N 
Isomer II H+ Chain1 ∆9 662.6 N 

PC (19:1(9)/13:0) 
Isomer I H+ Chain1 ∆9 608.5 N 

N 
Isomer II H+ Chain1 ∆9 634.5 N 

PC (20:1(11)/12:0) 
Isomer I H+ Chain1 ∆11 622.5 N 

N 
Isomer II H+ Chain1 ∆11 648.6 N 

PC (14:0/18:1(9)) 
Isomer I H+ Chain2 ∆9 622.5 N 

Y 
Isomer II H+ Chain2 ∆9 648.6 N 

PC (18:1(9)/14:0) 
Isomer I H+ Chain1 ∆9 622.5 N 

Y 
Isomer II H+ Chain1 ∆9 648.6 N 

PC (14:1(9)/18:0) 
Isomer I H+ Chain1 ∆9 678.6 N 

Y* 
Isomer II H+ Chain1 ∆9 704.6 N 

PC (18:0/14:1(9)) 
Isomer I H+ Chain2 ∆9 678.6 N 

Y* 
Isomer II H+ Chain2 ∆9 704.6 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 

*Agreement is only obtained from cell lysates (not from single cells). 
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Table S4-9. Predicted diagnostic ions from m/z 840.60 (acetone PB products of m/z 782.56) at the single-cell level. 

Lipids1 PB products adduct 
Double bond 

position 
m/z of predicted 

fragments 
MS/MS 
match2 

carbon number 
match3 

PC (16:0/18:1(9)) 
Isomer I Na Chain2 ∆9 672.5 Y 

Y 
Isomer II Na Chain2 ∆9 698.6 Y 

PC (18:1(9)/16:0) 
Isomer I Na Chain1 ∆9 672.5 Y 

Y 
Isomer II Na Chain1 ∆9 698.6 Y 

PC (16:0/18:1(6)) 
Isomer I Na Chain2 ∆6 630.5 N 

Y 
Isomer II Na Chain2 ∆6 656.5 Y 

PC (16:1(7)/18:0) 
Isomer I Na Chain1 ∆7 672.5 Y 

Y* 
Isomer II Na Chain1 ∆7 698.6 Y 

PC (14:0/20:1(11)) 
Isomer I Na Chain2 ∆11 672.5 Y 

N 
Isomer II Na Chain2 ∆11 698.6 Y 

PC (20:1(11)/14:0) 
Isomer I Na Chain1 ∆11 672.5 Y 

N 
Isomer II Na Chain1 ∆11 698.6 Y 

PC (16:1(9)/18:0) 
Isomer I Na Chain1 ∆9 700.6 N 

Y* 
Isomer II Na Chain1 ∆9 726.6 N 

PC (18:0/16:1(9)) 
Isomer I Na Chain2 ∆9 700.6 N 

Y* 
Isomer II Na Chain2 ∆9 726.6 N 

PC (16:0/18:1(11)) 
Isomer I Na Chain2 ∆11 700.6 N 

Y 
Isomer II Na Chain2 ∆11 726.6 N 

PC (18:1(11)/16:0) 
Isomer I Na Chain1 ∆11 700.6 N 

Y 
Isomer II Na Chain1 ∆11 726.6 N 

PC (14:1(9)/20:0) 
Isomer I Na Chain1 ∆9 728.6 N 

N 
Isomer II Na Chain1 ∆9 754.7 N 

PC (20:0/14:1(9)) 
Isomer I Na Chain2 ∆9 728.6 N 

N 
Isomer II Na Chain2 ∆9 754.7 N 

PC (12:0/22:1(11)) Isomer I Na Chain2 ∆11 644.5 N N 
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1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 

*Agreement is only obtained from cell lysates (not from single cells).

Isomer II Na Chain2 ∆11 670.5 N 

PC (15:0/19:1(9)) 
Isomer I Na Chain2 ∆9 658.5 N 

N 
Isomer II Na Chain2 ∆9 684.6 N 

PC (15:1(9)/19:0) 
Isomer I Na Chain1 ∆9 714.6 N 

N 
Isomer II Na Chain1 ∆9 740.6 N 

PC (17:0/17:1(9)) 
Isomer I Na Chain2 ∆9 686.5 N 

N 
Isomer II Na Chain2 ∆9 712.6 N 

PC (17:1(9)/17:0) 
Isomer I Na Chain1 ∆9 686.5 N 

N 
Isomer II Na Chain1 ∆9 712.6 N 

PC (19:0/15:1(9)) 
Isomer I Na Chain2 ∆9 714.6 N 

N 
Isomer II Na Chain2 ∆9 740.6 N 

PC (19:1(9)/15:0) 
Isomer I Na Chain1 ∆9 658.5 N 

N 
Isomer II Na Chain1 ∆9 684.6 N 

PC (22:1(11)/12:0) 
Isomer I Na Chain1 ∆11 644.5 N 

N 
Isomer II Na Chain1 ∆11 670.5 N 
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Table S4-10. Predicted diagnostic ions from m/z 812.57 (acetone PB products of m/z 754.53) at the single-cell level 

Lipids1 
PB 

produc
ts 

add
uct 

Double bond 
position 

m/z of predicted 
fragments 

MS/ 
MS   
Mat
ch2 

Double bond 
position 

m/z of predicted 
fragments 

MS/ 
MS 
Mat
ch2 

Double bond 
position 

m/z of predicted 
fragments 

MS/ 
MS 
Mat
ch2 

Double bond 
position 

m/z of predicted 
fragments 

MS/ 
MS 

Match2 

Carbon 
number 
match3 

PC 
(16:0/18:
4(9,11,1
3,15)) 

Isomer 
I 

H+ Chain2 
∆11 

676.6 N 
Chain2 

∆13 
702.6 N 

Chain2 
∆15 

728.6 Y 
Chain2 

∆9 
650.5 N 

Y Isomer 
II 

H+ Chain2 
∆11 

702.6 N 
Chain2 

∆13 
728.6 N 

Chain2 
∆15 

754.7 Y 
Chain2 

∆9 
676.6 N 

PC 
(18:4(9,1
1,13,15)/

16:0) 

Isomer 
I 

H+ Chain1 
∆11 

676.6 N 
Chain1 

∆13 
702.6 N 

Chain1 
∆15 

728.6 Y 
Chain1 

∆9 
650.5 N 

Y Isomer 
II 

H+ Chain1 
∆11 

702.6 N 
Chain1 

∆13 
728.6 Y 

Chain1 
∆15 

754.7 Y 
Chain1 

∆9 
676.6 N 

PC 
(16:0/18:
4(6,9,12,

15)) 

Isomer 
I 

H+ Chain2 
∆12 

688.6 N 
Chain2 

∆15 
728.6 Y 

Chain2 
∆6 

608.5 N 
Chain2 

∆9 
648.5 N 

Y Isomer 
II 

H+ Chain2 
∆12 

714.6 N 
Chain2 

∆15 
754.7 Y 

Chain2 
∆6 

634.5 N 
Chain2 

∆9 
674.6 N 

PC 
(16:2(2,4
)/18:2(2,

4)) 

Isomer 
I 

H+ Chain1 
∆2 

576.4 N 
Chain1 

∆4 
602.4 N 

Chain2 
∆2 

548.4 N 
Chain2 

∆4 
574.4 N 

Y Isomer 
II 

H+ Chain1 
∆2 

602.5 N 
Chain1 

∆4 
628.5 Y 

Chain2 
∆2 

574.4 N 
Chain2 

∆4 
600.4 N 

PC 
(18:2(9,1
2)/16:2(5

,8)) 

Isomer 
I 

H+ Chain1 
∆12 

686.5 Y 
Chain1 

∆9 
646.5 N 

Chain2 
∆5 

618.5 N 
Chain2 

∆8 
658.5 N 

Y Isomer 
II 

H+ Chain1 
∆12 

712.6 N 
Chain1 

∆9 
672.6 N 

Chain2 
∆5 

644.5 Y 
Chain2 

∆8 
684.6 N 

PC 
(14:0/18:

1(9)) 

Isomer 
I 

Na+ 
Chain2 

∆9 
644.5 Y 

 

Y Isomer 
II 

Na+ 
Chain2 

∆9 
670.5 N 

PC 
(18:1(9)/

14:0) 

Isomer 
I 

Na+ 
Chain1 

∆9 
644.5 Y 

Y Isomer 
II 

Na+ 
Chain1 

∆9 
670.5 N 

PC 
(14:0/20:
4(8,11,1
4,17)) 

Isomer 
I 

H+ Chain2 
∆11 

648.5 N 
Chain2 

∆14 
688.6 N 

Chain2 
∆17 

728.6 Y 
Chain2 

∆8 
608.5 N 

N Isomer 
II 

H+ Chain2 
∆11 

674.6 N 
Chain2 

∆14 
714.6 N 

Chain2 
∆17 

754.7 Y 
Chain2 

∆8 
634.5 N 

PC 
(16:1(9)/
18:3(9,1
2,15)) 

Isomer 
I 

H+ Chain1 
∆9 

672.5 N 
Chain2 

∆12 
688.6 N 

Chain2 
∆15 

728.6 Y 
Chain2 

∆9 
648.5 N 

N Isomer 
II 

H+ Chain1 
∆9 

698.6 N 
Chain2 

∆12 
714.6 N 

Chain2 
∆15 

754.7 Y 
Chain2 

∆9 
674.6 N 

PC 
(18:3(9,1
2,15)/16:

1(9)) 

Isomer 
I 

H+ Chain1 
∆12 

688.6 N 
Chain1 

∆15 
728.6 Y 

Chain1 
∆9 

648.5 N 
Chain2 

∆9 
672.5 N 

N Isomer 
II 

H+ Chain1 
∆12 

714.6 N 
Chain1 

∆15 
754.7 Y 

Chain1 
∆9 

674.6 N 
Chain2 

∆9 
698.6 N 
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PC 
(20:4(8,1
1,14,17)/

14:0) 

Isomer 
I 

H+ Chain1 
∆11 

648.5 N 
Chain1 

∆14 
688.6 N 

Chain1 
∆17 

728.6 Y 
Chain1 

∆8 
608.5 N 

N Isomer 
II 

H+ Chain1 
∆11 

674.6 N 
Chain1 

∆14 
714.6 N 

Chain1 
∆17 

754.7 Y 
Chain1 

∆8 
634.5 N 

PC 
(14:0/20:
4(5,8,11,

14)) 

Isomer 
I 

H+ Chain2 
∆11 

646.5 N 
Chain2 

∆14 
686.5 Y 

Chain2 
∆5 

566.4 Y 
Chain2 

∆8 
606.5 N 

N Isomer 
II 

H+ Chain2 
∆11 

672.6 N 
Chain2 

∆14 
712.6 N 

Chain2 
∆5 

592.5 N 
Chain2 

∆8 
632.5 N 

PC 
(17:2(9,1
2)/17:2(9

,12)) 

Isomer 
I 

H+ Chain1 
∆12 

700.6 N 
Chain1 

∆9 
660.5 N 

Chain2 
∆12 

700.6 N 
Chain2 

∆9 
660.5 N 

N Isomer 
II 

H+ Chain1 
∆12 

726.6 N 
Chain1 

∆9 
686.6 Y 

Chain2 
∆12 

726.6 N 
Chain2 

∆9 
686.6 Y 

PC 
(14:1(9)/
20:3(5,8,

11)) 

Isomer 
I 

H+ Chain1 
∆9 

700.6 N 
Chain2 

∆11 
644.5 Y 

Chain2 
∆5 

564.4 N 
Chain2 

∆8 
604.4 N 

N Isomer 
II 

H+ Chain1 
∆9 

726.6 N 
Chain2 

∆11 
670.5 N 

Chain2 
∆5 

590.5 N 
Chain2 

∆8 
630.5 N 

PC 
(14:1(9)/
20:3(8,1
1,14)) 

Isomer 
I 

H+ Chain1 
∆9 

700.6 N 
Chain2 

∆11 
646.5 N 

Chain2 
∆14 

686.5 Y 
Chain2 

∆8 
606.5 N 

N Isomer 
II 

H+ Chain1 
∆9 

726.6 N 
Chain2 

∆11 
672.6 N 

Chain2 
∆14 

712.6 N 
Chain2 

∆8 
632.5 N 

PC 
(16:1(9)/
18:3(6,9,

12)) 

Isomer 
I 

H+ Chain1 
∆9 

672.5 N 
Chain2 

∆12 
686.5 Y 

Chain2 
∆6 

606.5 N 
Chain2 

∆9 
646.5 N 

N Isomer 
II 

H+ Chain1 
∆9 

698.6 N 
Chain2 

∆12 
712.6 N 

Chain2 
∆6 

632.5 N 
Chain2 

∆9 
672.6 N 

PC 
(18:3(6,9
,12)/16:1

(9)) 

Isomer 
I 

H+ Chain1 
∆12 

686.5 Y 
Chain1 

∆6 
606.5 N 

Chain1 
∆9 

646.5 N 
Chain2 

∆9 
672.5 N 

N Isomer 
II 

H+ Chain1 
∆12 

712.6 N 
Chain1 

∆6 
632.5 N 

Chain1 
∆9 

672.6 N 
Chain2 

∆9 
698.6 N 

PC 
(20:3(5,8
,11)/14:1

(9)) 

Isomer 
I 

H+ Chain1 
∆11 

644.5 Y 
Chain1 

∆5 
564.4 N 

Chain1 
∆8 

604.4 N 
Chain2 

∆9 
700.6 N 

N Isomer 
II 

H+ Chain1 
∆11 

670.5 N 
Chain1 

∆5 
590.5 N 

Chain1 
∆8 

630.5 N 
Chain2 

∆9 
726.6 N 

PC 
(20:3(8,1
1,14)/14:

1(9)) 

Isomer 
I 

H+ Chain1 
∆11 

646.5 N 
Chain1 

∆14 
686.5 Y 

Chain1 
∆8 

606.5 N 
Chain2 

∆9 
700.6 N 

N Isomer 
II 

H+ Chain1 
∆11 

672.6 N 
Chain1 

∆14 
712.6 N 

Chain1 
∆8 

632.5 N 
Chain2 

∆9 
726.6 N 

PC 
(20:4(5,8
,11,14)/1

4:0) 

Isomer 
I 

H+ Chain1 
∆11 

646.5 N 
Chain1 

∆14 
686.5 Y 

Chain1 
∆5 

566.4 Y 
Chain1 

∆8 
606.5 N 

N Isomer 
II 

H+ Chain1 
∆11 

672.6 N 
Chain1 

∆14 
712.6 N 

Chain1 
∆5 

592.5 N 
Chain1 

∆8 
632.5 N 

PC 
(12:0/22:
4(7,10,1
3,16)) 

Isomer 
I 

H+ Chain2 
∆10 

606.5 N 
Chain2 

∆13 
646.5 N 

Chain2 
∆16 

686.5 Y 
Chain2 

∆7 
566.4 Y 

N Isomer 
II 

H+ Chain2 
∆10 

632.5 N 
Chain2 

∆13 
672.6 N 

Chain2 
∆16 

712.6 N 
Chain2 

∆7 
592.5 N 

PC 
(22:4(7,1

Isomer 
I 

H+ Chain1 
∆10 

606.5 N 
Chain1 

∆13 
646.5 N 

Chain1 
∆16 

686.5 Y 
Chain1 

∆7 
566.4 Y N 
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0,13,16)/
12:0) 

Isomer 
II 

H+ Chain1 
∆10 

632.5 N 
Chain1 

∆13 
672.6 N 

Chain1 
∆16 

712.6 N 
Chain1 

∆7 
592.5 N 

PC 
(12:0/20:

1(11)) 

Isomer 
I 

Na 
Chain2 

∆11 
644.5 Y 

 

N Isomer 
II 

Na 
Chain2 

∆11 
670.5 N 

PC 
(15:1(9)/

17:0) 

Isomer 
I 

Na 
Chain1 

∆9 
686.5 Y 

N Isomer 
II 

Na 
Chain1 

∆9 
712.6 N 

PC 
(17:0/15:

1(9)) 

Isomer 
I 

Na 
Chain2 

∆9 
686.5 Y 

N Isomer 
II 

Na 
Chain2 

∆9 
712.6 N 

PC 
(20:1(11)

/12:0) 

Isomer 
I 

Na 
Chain1 

∆11 
644.5 Y 

N Isomer 
II 

Na 
Chain1 

∆11 
670.5 N 

PC 
(18:4(6,9
,12,15)/1

6:0) 

Isomer 
I 

H 
Chain1 

∆12 
688.6 N 

Chain1 
∆15 

728.6 N 
Chain1 

∆6 
608.5 N 

Chain1 
∆9 

648.5 N 

Y Isomer 
II 

H 
Chain1 

∆12 
714.6 N 

Chain1 
∆15 

754.7 N 
Chain1 

∆6 
634.5 N 

Chain1 
∆9 

674.6 N 

PC 
(16:0/16:

1(9)) 

Isomer 
I 

Na 
Chain2 

∆9 
672.5 N 

 

Y Isomer 
II 

Na 
Chain2 

∆9 
698.6 N 

PC 
(14:0/18:

1(11)) 

Isomer 
I 

Na 
Chain2 

∆11 
672.5 N 

Y Isomer 
II 

Na 
Chain2 

∆11 
698.6 N 

PC 
(14:1(9)/

18:0) 

Isomer 
I 

Na 
Chain1 

∆9 
700.6 N 

Y Isomer 
II 

Na 
Chain1 

∆9 
726.6 N 

PC 
(16:1(9)/

16:0) 

Isomer 
I 

Na 
Chain1 

∆9 
672.5 N 

Y Isomer 
II 

Na 
Chain1 

∆9 
698.6 N 

PC 
(18:0/14:

1(9)) 

Isomer 
I 

Na 
Chain2 

∆9 
700.6 N 

Y Isomer 
II 

Na 
Chain2 

∆9 
726.6 N 

PC 
(18:1(11)

/14:0) 

Isomer 
I 

Na 
Chain1 

∆11 
672.5 N 

Y Isomer 
II 

Na 
Chain1 

∆11 
698.6 N 
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PC 
(13:0/19:

1(9)) 

Isomer 
I 

Na 
Chain2 

∆9 
630.5 N 

N Isomer 
II 

Na 
Chain2 

∆9 
656.5 N 

PC 
(15:0/17:

1(9)) 

Isomer 
I 

Na 
Chain2 

∆9 
658.5 N 

N Isomer 
II 

Na 
Chain2 

∆9 
684.6 N 

PC 
(17:1(9)/

15:0) 

Isomer 
I 

Na 
Chain1 

∆9 
658.5 N 

N Isomer 
II 

Na 
Chain1 

∆9 
684.6 N 

PC 
(19:1(9)/

13:0) 

Isomer 
I 

Na 
Chain1 

∆9 
630.5 N 

N Isomer 
II 

Na 
Chain1 

∆9 
656.5 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 

  



129 
 

Table S4-11. Predicted diagnostic ions from m/z 838.59 (acetone PB products of m/z 780.55) at the single-cell level 

Lipids1 
PB 

prod
ucts 

Ad
du
ct 

Double 
bond 

position 

m/z of 
predicted 
fragments 

MS/ 
MS 
Mat
ch2 

Double 
bond 

position 

m/z of 
predicted 
fragments 

MS/ 
MS 
Mat
ch2 

Double 
bond 

position 

m/z of 
predicted 
fragments 

MS/ 
MS 
Mat
ch2 

Double 
bond 

position 

m/z of 
predicted 
fragments 

MS/ 
MS 
Mat
ch2 

Double 
bond 

position 

m/z of 
predicted 
fragments 

MS/ 
MS 
Mat
ch2 

Carbon 
number 
match3 

PC 
(16:1(9)/20
:4(5,8,11,1

4)) 

H+ 
Iso
me
r I 

Chain1 
∆9 

698.5 N 
Chain2 

∆11 
672.5 N 

Chain2 
∆14 

712.6 Y 
Chain2 

∆5 
592.4 N 

Chain2 
∆8 

632.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆9 

724.6 N 
Chain2 

∆11 
698.6 N 

Chain2 
∆14 

738.6 Y 
Chain2 

∆5 
618.5 N 

Chain2 
∆8 

658.5 N 

PC 
(16:1(7)/20
:4(5,8,11,1

4)) 

H+ 
Iso
me
r I 

Chain1 
∆7 

670.5 N 
Chain2 

∆11 
672.5 N 

Chain2 
∆14 

712.6 Y 
Chain2 

∆5 
592.4 N 

Chain2 
∆8 

632.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆7 

696.6 N 
Chain2 

∆11 
698.6 N 

Chain2 
∆14 

738.6 Y 
Chain2 

∆5 
618.5 N 

Chain2 
∆8 

658.5 N 

PC 
(20:4(5,8,1
1,14)/16:1(

9)) 

H+ 
Iso
me
r I 

Chain1 
∆11 

672.5 N 
Chain1 

∆14 
712.6 Y 

Chain1 
∆5 

592.4 N 
Chain1 

∆8 
632.5 N 

Chain2 
∆9 

698.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆11 

698.6 N 
Chain1 

∆14 
738.6 Y 

Chain1 
∆5 

618.5 N 
Chain1 

∆8 
658.5 N 

Chain2 
∆9 

724.6 N 

PC 
(16:1(9)/20
:4(8,11,14,

17)) 

H+ 
Iso
me
r I 

Chain1 
∆9 

698.5 N 
Chain2 

∆11 
674.5 N 

Chain2 
∆14 

714.6 Y 
Chain2 

∆17 
754.6 N 

Chain2 
∆8 

634.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆9 

724.6 N 
Chain2 

∆11 
700.6 N 

Chain2 
∆14 

740.6 N 
Chain2 

∆17 
780.7 Y 

Chain2 
∆8 

660.6 N 

PC 
(18:1(11)/1
8:4(6,9,12,

15)) 

H+ 
Iso
me
r I 

Chain1 
∆11 

698.5 N 
Chain2 

∆12 
714.6 Y 

Chain2 
∆15 

754.6 N 
Chain2 

∆6 
634.5 N 

Chain2 
∆9 

674.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆11 

724.6 N 
Chain2 

∆12 
740.6 N 

Chain2 
∆15 

780.7 Y 
Chain2 

∆6 
660.6 N 

Chain2 
∆9 

700.6 N 

PC 
(18:1(9)/18
:4(6,9,12,1

5)) 

H+ 
Iso
me
r I 

Chain1 
∆9 

670.5 N 
Chain2 

∆12 
714.6 Y 

Chain2 
∆15 

754.6 N 
Chain2 

∆6 
634.5 N 

Chain2 
∆9 

674.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆9 

696.6 N 
Chain2 

∆12 
740.6 N 

Chain2 
∆15 

780.7 Y 
Chain2 

∆6 
660.6 N 

Chain2 
∆9 

700.6 N 

PC 
(18:4(6,9,1
2,15)/18:1(

11)) 

H+ 
Iso
me
r I 

Chain1 
∆12 

714.6 Y 
Chain1 

∆15 
754.6 N 

Chain1 
∆6 

634.5 N 
Chain1 

∆9 
674.5 N 

Chain2 
∆11 

698.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆12 

740.6 N 
Chain1 

∆15 
780.7 Y 

Chain1 
∆6 

660.6 N 
Chain1 

∆9 
700.6 N 

Chain2 
∆11 

724.6 N 

PC 
(18:4(6,9,1 H+ 

Iso
me
r I 

Chain1 
∆12 

714.6 Y 
Chain1 

∆15 
754.6 N 

Chain1 
∆6 

634.5 N 
Chain1 

∆9 
674.5 N 

Chain2 
∆9 

670.5 N Y 
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2,15)/18:1(
9)) H+ 

Iso
me
r II 

Chain1 
∆12 

740.6 N 
Chain1 

∆15 
780.7 Y 

Chain1 
∆6 

660.6 N 
Chain1 

∆9 
700.6 N 

Chain2 
∆9 

696.6 N 

PC 
(20:4(8,11,
14,17)/16:1

(9)) 

H+ 
Iso
me
r I 

Chain1 
∆11 

674.5 N 
Chain1 

∆14 
714.6 Y 

Chain1 
∆17 

754.6 N 
Chain1 

∆8 
634.5 N 

Chain2 
∆9 

698.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆11 

700.6 N 
Chain1 

∆14 
740.6 N 

Chain1 
∆17 

780.7 Y 
Chain1 

∆8 
660.6 N 

Chain2 
∆9 

724.6 N 

PC 
(14:0/20:2(

11,14)) 

Na 
Iso
me
r I 

Chain2 
∆11 

672.5 N 
Chain2 

∆14 
712.6 Y 

 

Y 
Na 

Iso
me
r II 

Chain2 
∆11 

698.6 N 
Chain2 

∆14 
738.6 Y 

PC 
(20:2(11,14

)/14:0) 

Na 
Iso
me
r I 

Chain1 
∆11 

672.5 N 
Chain1 

∆14 
712.6 Y 

Y 
Na 

Iso
me
r II 

Chain1 
∆11 

698.6 N 
Chain1 

∆14 
738.6 Y 

PC 
(18:2(9,12)
/18:3(6,9,1

2)) 

H+ 
Iso
me
r I 

Chain1 
∆12 

712.6 Y 
Chain1 

∆9 
672.5 N 

Chain2 
∆12 

712.6 Y 
Chain2 

∆6 
632.5 N 

Chain2 
∆9 

672.5 N 

Y* 
H+ 

Iso
me
r II 

Chain1 
∆12 

738.6 Y 
Chain1 

∆9 
698.6 N 

Chain2 
∆12 

738.6 Y 
Chain2 

∆6 
658.5 N 

Chain2 
∆9 

698.6 N 

PC 
(18:2(9,12)
/18:3(9,12,

15)) 

H+ 
Iso
me
r I 

Chain1 
∆12 

712.6 Y 
Chain1 

∆9 
672.5 N 

Chain2 
∆12 

714.6 Y 
Chain2 

∆15 
754.6 N 

Chain2 
∆9 

674.5 N 

Y* 
H+ 

Iso
me
r II 

Chain1 
∆12 

738.6 Y 
Chain1 

∆9 
698.6 N 

Chain2 
∆12 

740.6 N 
Chain2 

∆15 
780.7 Y 

Chain2 
∆9 

700.6 N 

PC 
(18:3(6,9,1
2)/18:2(9,1

2)) 

H+ 
Iso
me
r I 

Chain1 
∆12 

712.6 Y 
Chain1 

∆6 
632.5 N 

Chain1 
∆9 

672.5 N 
Chain2 

∆12 
712.6 Y 

Chain2 
∆9 

672.5 N 

Y* 
H+ 

Iso
me
r II 

Chain1 
∆12 

738.6 Y 
Chain1 

∆6 
658.5 N 

Chain1 
∆9 

698.6 N 
Chain2 

∆12 
738.6 Y 

Chain2 
∆9 

698.6 N 

PC 
(16:0/20:5(
5,8,11,14,1

7)) 

H+ 
Iso
me
r I 

Chain2 
∆11 

674.5 N 
Chain2 

∆14 
714.6 Y 

Chain2 
∆17 

754.6 N 
Chain2 

∆5 
594.5 N 

Chain2 
∆8 

634.5 N 

Y* 
H+ 

Iso
me
r II 

Chain2 
∆11 

700.6 N 
Chain2 

∆14 
740.6 N 

Chain2 
∆17 

780.7 Y 
Chain2 

∆5 
620.5 N 

Chain2 
∆8 

660.6 N 

PC 
(20:5(5,8,1
1,14,17)/16

:0) 

H+ 
Iso
me
r I 

Chain1 
∆11 

674.5 N 
Chain1 

∆14 
714.6 Y 

Chain1 
∆17 

754.6 N 
Chain1 

∆5 
594.5 N 

Chain1 
∆8 

634.5 N 

Y* 
H+ 

Iso
me
r II 

Chain1 
∆11 

700.6 N 
Chain1 

∆14 
740.6 N 

Chain1 
∆17 

780.7 Y 
Chain1 

∆5 
620.5 N 

Chain1 
∆8 

660.6 N 

PC 
(16:0/18:2(

10,12)) 
Na 

Iso
me
r I 

Chain2 
∆10 

686.5 N 
Chain2 

∆12 
712.6 Y  Y* 
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Na 
Iso
me
r II 

Chain2 
∆10 

712.6 Y 
Chain2 

∆12 
738.6 Y 

PC 
(16:0/18:2(

9,12)) 

Na 
Iso
me
r I 

Chain2 
∆12 

712.6 Y 
Chain2 

∆9 
672.5 N 

Y* 
Na 

Iso
me
r II 

Chain2 
∆12 

738.6 Y 
Chain2 

∆9 
698.6 N 

PC 
(18:2(9,12)

/16:0) 

Na 
Iso
me
r I 

Chain1 
∆12 

712.6 Y 
Chain1 

∆9 
672.5 N 

Y* 
Na 

Iso
me
r II 

Chain1 
∆12 

738.6 Y 
Chain1 

∆9 
698.6 N 

PC 
(14:0/22:5(
4,7,10,13,1

6)) 

H+ 
Iso
me
r I 

Chain2 
∆10 

632.5 N 
Chain2 

∆13 
672.5 N 

Chain2 
∆16 

712.6 Y 
Chain2 

∆4 
552.4 N 

Chain2 
∆7 

592.4 N 

N 
H+ 

Iso
me
r II 

Chain2 
∆10 

658.5 N 
Chain2 

∆13 
698.6 N 

Chain2 
∆16 

738.6 Y 
Chain2 

∆4 
578.5 N 

Chain2 
∆7 

618.5 N 

PC 
(14:1(9)/22
:4(7,10,13,

16)) 

H+ 
Iso
me
r I 

Chain1 
∆9 

726.6 N 
Chain2 

∆10 
632.5 N 

Chain2 
∆13 

672.5 N 
Chain2 

∆16 
712.6 Y 

Chain2 
∆7 

592.4 N 

N 
H+ 

Iso
me
r II 

Chain1 
∆9 

752.6 N 
Chain2 

∆10 
658.5 N 

Chain2 
∆13 

698.6 N 
Chain2 

∆16 
738.6 Y 

Chain2 
∆7 

618.5 N 

PC 
(22:4(7,10,
13,16)/14:1

(9)) 

H+ 
Iso
me
r I 

Chain1 
∆10 

632.5 N 
Chain1 

∆13 
672.5 N 

Chain1 
∆16 

712.6 Y 
Chain1 

∆7 
592.4 N 

Chain2 
∆9 

726.6 N 

N 
H+ 

Iso
me
r II 

Chain1 
∆10 

658.5 N 
Chain1 

∆13 
698.6 N 

Chain1 
∆16 

738.6 Y 
Chain1 

∆7 
618.5 N 

Chain2 
∆9 

752.6 N 

PC 
(22:5(4,7,1
0,13,16)/14

:0) 

H+ 
Iso
me
r I 

Chain1 
∆10 

632.5 N 
Chain1 

∆13 
672.5 N 

Chain1 
∆16 

712.6 Y 
Chain1 

∆4 
552.4 N 

Chain1 
∆7 

592.4 N 

N 
H+ 

Iso
me
r II 

Chain1 
∆10 

658.5 N 
Chain1 

∆13 
698.6 N 

Chain1 
∆16 

738.6 Y 
Chain1 

∆4 
578.5 N 

Chain1 
∆7 

618.5 N 

PC 
(18:3(9,12,
15)/18:2(9,

12)) 

H+ 
Iso
me
r I 

Chain1 
∆12 

714.6 Y 
Chain1 

∆15 
754.6 N 

Chain1 
∆9 

674.5 N 
Chain2 

∆12 
712.6 Y 

Chain2 
∆9 

672.5 N 

N 
H+ 

Iso
me
r II 

Chain1 
∆12 

740.6 N 
Chain1 

∆15 
780.7 Y 

Chain1 
∆9 

700.6 N 
Chain2 

∆12 
738.6 Y 

Chain2 
∆9 

698.6 N 

PC 
(14:0/22:5(
7,10,13,16,

19)) 

H+ 
Iso
me
r I 

Chain2 
∆10 

634.5 N 
Chain2 

∆13 
674.5 N 

Chain2 
∆16 

714.6 Y 
Chain2 

∆19 
754.6 N 

Chain2 
∆7 

594.5 N 

N 
H+ 

Iso
me
r II 

Chain2 
∆10 

660.6 N 
Chain2 

∆13 
700.6 N 

Chain2 
∆16 

740.6 N 
Chain2 

∆19 
780.7 Y 

Chain2 
∆7 

620.5 N 

PC 
(22:5(7,10, H+ 

Iso
me
r I 

Chain1 
∆10 

634.5 N 
Chain1 

∆13 
674.5 N 

Chain1 
∆16 

714.6 Y 
Chain1 

∆19 
754.6 N 

Chain1 
∆7 

594.5 N N 
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13,16,19)/1
4:0) H+ 

Iso
me
r II 

Chain1 
∆10 

660.6 N 
Chain1 

∆13 
700.6 N 

Chain1 
∆16 

740.6 N 
Chain1 

∆19 
780.7 Y 

Chain1 
∆7 

620.5 N 

PC 
(12:0/22:2(

13,16)) 

Na 
Iso
me
r I 

Chain2 
∆13 

672.5 N 
Chain2 

∆16 
712.6 Y 

 

N 
Na 

Iso
me
r II 

Chain2 
∆13 

698.6 N 
Chain2 

∆16 
738.6 Y 

PC 
(15:1(9)/19

:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆9 

712.6 Y 
Chain2 

∆9 
656.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆9 

738.6 Y 
Chain2 

∆9 
682.5 N 

PC 
(19:1(9)/15

:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆9 

656.5 N 
Chain2 

∆9 
712.6 Y 

N 
Na 

Iso
me
r II 

Chain1 
∆9 

682.5 N 
Chain2 

∆9 
738.6 Y 

PC 
(22:2(13,16

)/12:0) 

Na 
Iso
me
r I 

Chain1 
∆13 

672.5 N 
Chain1 

∆16 
712.6 Y 

N 
Na 

Iso
me
r II 

Chain1 
∆13 

698.6 N 
Chain1 

∆16 
738.6 Y 

PC 
(17:0/17:2(

9,12)) 

Na 
Iso
me
r I 

Chain2 
∆12 

726.6 N 
Chain2 

∆9 
686.5 N 

N 
Na 

Iso
me
r II 

Chain2 
∆12 

752.6 N 
Chain2 

∆9 
712.6 Y 

PC 
(17:2(9,12)

/17:0) 

Na 
Iso
me
r I 

Chain1 
∆12 

726.6 N 
Chain1 

∆9 
686.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆12 

752.6 N 
Chain1 

∆9 
712.6 Y 

PE 
(15:1(9)/22

:1(11)) 

Na 
Iso
me
r I 

Chain1 
∆9 

712.6 Y 
Chain2 

∆11 
642.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆9 

738.6 Y 
Chain2 

∆11 
668.5 N 

PE 
(17:0/20:2(

11,14)) 

Na 
Iso
me
r I 

Chain2 
∆11 

672.5 N 
Chain2 

∆14 
712.6 Y 

N 
Na 

Iso
me
r II 

Chain2 
∆11 

698.6 N 
Chain2 

∆14 
738.6 Y 

PE 
(18:2(9,12)

/19:0) 
Na 

Iso
me
r I 

Chain1 
∆12 

712.6 Y 
Chain1 

∆9 
672.5 N N 
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Na 
Iso
me
r II 

Chain1 
∆12 

738.6 Y 
Chain1 

∆9 
698.6 N 

PE 
(19:0/18:2(

9,12)) 

Na 
Iso
me
r I 

Chain2 
∆12 

712.6 Y 
Chain2 

∆9 
672.5 N 

N 
Na 

Iso
me
r II 

Chain2 
∆12 

738.6 Y 
Chain2 

∆9 
698.6 N 

PE 
(20:2(11,14

)/17:0) 

Na 
Iso
me
r I 

Chain1 
∆11 

672.5 N 
Chain1 

∆14 
712.6 Y 

N 
Na 

Iso
me
r II 

Chain1 
∆11 

698.6 N 
Chain1 

∆14 
738.6 Y 

PE 
(22:1(11)/1

5:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆11 

642.5 N 
Chain2 

∆9 
712.6 Y 

N 
Na 

Iso
me
r II 

Chain1 
∆11 

668.5 N 
Chain2 

∆9 
738.6 Y 

PE 
(15:0/22:2(

13,16)) 

Na 
Iso
me
r I 

Chain2 
∆13 

672.5 N 
Chain2 

∆16 
712.6 Y 

N 
Na 

Iso
me
r II 

Chain2 
∆13 

698.6 N 
Chain2 

∆16 
738.6 Y 

PE 
(22:2(13,16

)/15:0) 

Na 
Iso
me
r I 

Chain1 
∆13 

672.5 N 
Chain1 

∆16 
712.6 Y 

N 
Na 

Iso
me
r II 

Chain1 
∆13 

698.6 N 
Chain1 

∆16 
738.6 Y 

PE 
(17:2(9,12)

/20:0) 

Na 
Iso
me
r I 

Chain1 
∆12 

726.6 N 
Chain1 

∆9 
686.6 N 

N 
Na 

Iso
me
r II 

Chain1 
∆12 

752.6 N 
Chain1 

∆9 
712.6 Y 

PE 
(20:0/17:2(

9,12)) 

Na 
Iso
me
r I 

Chain2 
∆12 

726.6 N 
Chain2 

∆9 
686.6 N 

N 
Na 

Iso
me
r II 

Chain2 
∆12 

752.6 N 
Chain2 

∆9 
712.6 Y 

PC 
(18:4(2,4,6,
11)/18:1(11

)) 

H+ 
Iso
me
r I 

Chain1 
∆11 

698.5 N 
Chain1 

∆2 
578.4 N 

Chain1 
∆4 

604.4 N 
Chain1 

∆6 
630.5 N 

Chain2 
∆11 

698.5 N 

Y 
H+ 

Iso
me
r II 

Chain1 
∆11 

724.6 N 
Chain1 

∆2 
604.5 N 

Chain1 
∆4 

630.5 N 
Chain1 

∆6 
656.5 N 

Chain2 
∆11 

724.6 N 

PC 
(16:1(2)/18

:1(9)) 
Na 

Iso
me
r I 

Chain1 
∆2 

600.4 N 
Chain2 

∆9 
670.5 N  Y 
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Na 
Iso
me
r II 

Chain1 
∆2 

626.5 N 
Chain2 

∆9 
696.6 N 

PC 
(16:1(7)/18

:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆7 

670.5 N 
Chain2 

∆9 
670.5 N 

Y 
Na 

Iso
me
r II 

Chain1 
∆7 

696.6 N 
Chain2 

∆9 
696.6 N 

PC 
(16:1(9)/18

:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆9 

698.5 N 
Chain2 

∆9 
670.5 N 

Y 
Na 

Iso
me
r II 

Chain1 
∆9 

724.6 N 
Chain2 

∆9 
696.6 N 

PC 
(16:1(9)/18

:1(11)) 

Na 
Iso
me
r I 

Chain1 
∆9 

698.5 N 
Chain2 

∆11 
698.5 N 

Y 
Na 

Iso
me
r II 

Chain1 
∆9 

724.6 N 
Chain2 

∆11 
724.6 N 

PC 
(18:1(11)/1

6:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆11 

698.5 N 
Chain2 

∆9 
698.5 N 

Y 
Na 

Iso
me
r II 

Chain1 
∆11 

724.6 N 
Chain2 

∆9 
724.6 N 

PC 
(18:1(9)/16

:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆9 

670.5 N 
Chain2 

∆9 
698.5 N 

Y 
Na 

Iso
me
r II 

Chain1 
∆9 

696.6 N 
Chain2 

∆9 
724.6 N 

PC 
(16:0/18:2(

11,13)) 

Na 
Iso
me
r I 

Chain2 
∆11 

700.6 N 
Chain2 

∆13 
726.6 N 

Y* 
Na 

Iso
me
r II 

Chain2 
∆11 

726.6 N 
Chain2 

∆13 
752.6 N 

PC 
(16:0/18:2(

2,4)) 

Na 
Iso
me
r I 

Chain2 
∆2 

574.4 N 
Chain2 

∆4 
600.4 N 

Y* 
Na 

Iso
me
r II 

Chain2 
∆2 

600.4 N 
Chain2 

∆4 
626.5 N 

PC 
(16:0/18:2(

6,9)) 

Na 
Iso
me
r I 

Chain2 
∆6 

630.5 N 
Chain2 

∆9 
670.5 N 

Y* 
Na 

Iso
me
r II 

Chain2 
∆6 

656.5 N 
Chain2 

∆9 
696.6 N 

PC 
(16:0/18:2(

9,11)) 
Na 

Iso
me
r I 

Chain2 
∆11 

698.5 N 
Chain2 

∆9 
672.5 N Y* 
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Na 
Iso
me
r II 

Chain2 
∆11 

724.6 N 
Chain2 

∆9 
698.6 N 

PC 
(18:1(9)/16

:1(3)) 

Na 
Iso
me
r I 

Chain1 
∆9 

670.5 N 
Chain2 

∆3 
614.4 N 

Y* 
Na 

Iso
me
r II 

Chain1 
∆9 

696.6 N 
Chain2 

∆3 
640.5 N 

PC 
(18:2(2,4)/

16:0) 

Na 
Iso
me
r I 

Chain1 
∆2 

574.4 N 
Chain1 

∆4 
600.4 N 

Y* 
Na 

Iso
me
r II 

Chain1 
∆2 

600.4 N 
Chain1 

∆4 
626.5 N 

PC 
(18:2(6,9)/

16:0) 

Na 
Iso
me
r I 

Chain1 
∆6 

630.5 N 
Chain1 

∆9 
670.5 N 

Y* 
Na 

Iso
me
r II 

Chain1 
∆6 

656.5 N 
Chain1 

∆9 
696.6 N 

PC 
(17:1(10)/1

7:1(10)) 

Na 
Iso
me
r I 

Chain1 
∆10 

698.5 N 
Chain2 

∆10 
698.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆10 

724.6 N 
Chain2 

∆10 
724.6 N 

PC 
(17:1(9)/17

:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆9 

684.5 N 
Chain2 

∆9 
684.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆9 

710.6 N 
Chain2 

∆9 
710.6 N 

PC 
(18:0/16:2(

2,4)) 

Na 
Iso
me
r I 

Chain2 
∆2 

602.4 N 
Chain2 

∆4 
628.4 N 

N 
Na 

Iso
me
r II 

Chain2 
∆2 

628.5 N 
Chain2 

∆4 
654.5 N 

PC 
(14:1(9)/20

:1(11)) 

Na 
Iso
me
r I 

Chain1 
∆9 

726.6 N 
Chain2 

∆11 
670.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆9 

752.6 N 
Chain2 

∆11 
696.6 N 

PC 
(20:1(11)/1

4:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆11 

670.5 N 
Chain2 

∆9 
726.6 N 

N 
Na 

Iso
me
r II 

Chain1 
∆11 

696.6 N 
Chain2 

∆9 
752.6 N 

PE 
(17:1(9)/20

:1(11)) 
Na 

Iso
me
r I 

Chain1 
∆9 

684.5 N 
Chain2 

∆11 
670.5 N N 
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Na 
Iso
me
r II 

Chain1 
∆9 

710.6 N 
Chain2 

∆11 
696.6 N 

PE 
(18:1(9)/19

:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆9 

670.5 N 
Chain2 

∆9 
656.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆9 

696.6 N 
Chain2 

∆9 
682.5 N 

PE 
(19:1(9)/18

:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆9 

656.5 N 
Chain2 

∆9 
670.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆9 

682.5 N 
Chain2 

∆9 
696.6 N 

PE 
(20:1(11)/1

7:1(9)) 

Na 
Iso
me
r I 

Chain1 
∆11 

670.5 N 
Chain2 

∆9 
684.5 N 

N 
Na 

Iso
me
r II 

Chain1 
∆11 

696.6 N 
Chain2 

∆9 
710.6 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 

*Agreement is only obtained from cell lysates (not from single cells). 
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Table S4-12. Predicted diagnostic ions from m/z 814.49 (acetone PB products of m/z 756.54) at the single-cell level 

Lipids1 
PB 

products 
Adduct 

Double bond 
position 

m/z of 
predicted 
fragments 

MS/ 
MS 

Match2 

Double bond 
position 

m/z of 
predicted 
fragments 

MS/ 
MS 

Match
2 

Double bond 
position 

m/z of 
predicted 
fragments 

MS/ 
MS 

Match2 

Carbon 
number 
match3 

PC 
(16:1(7)/18

:2(9,12)) 

Isomer I H+ 
Chain1 

∆7 
646.5 Y 

Chain2 
∆12 

688.6 N 
Chain2 

∆9 
648.5 N 

Y 
Isomer II 

H+ Chain1 
∆7 

672.6 Y 
Chain2 

∆12 
714.6 N 

Chain2 
∆9 

674.6 N 

PC 
(17:2(9,12)

/17:1(9)) 

Isomer I 
H+ Chain1 

∆12 
702.6 N 

Chain1 
∆9 

662.5 N 
Chain2 

∆9 
660.5 N 

Y 
Isomer II 

H+ Chain1 
∆12 

728.6 Y 
Chain1 

∆9 
688.6 N 

Chain2 
∆9 

686.6 N 

PC 
(17:1(9)/17

:2(9,12)) 

Isomer I 
H+ Chain1 

∆9 
660.5 N 

Chain2 
∆12 

702.6 N 
Chain2 

∆9 
662.5 N 

Y 
Isomer II 

H+ Chain1 
∆9 

686.6 N 
Chain2 

∆12 
728.6 Y 

Chain2 
∆9 

688.6 N 

PC 
(14:0/20:3(

5,8,11)) 

Isomer I 
H+ Chain2 

∆11 
646.5 Y 

Chain2 
∆5 

566.4 N 
Chain2 

∆8 
606.5 N 

N 
Isomer II 

H+ Chain2 
∆11 

672.6 Y 
Chain2 

∆5 
592.5 N 

Chain2 
∆8 

632.5 N 

PC 
(14:1(9)/20:
2(11,14)) 

Isomer I 
H+ Chain1 

∆9 
702.6 N 

Chain2 
∆11 

648.5 N 
Chain2 

∆14 
688.6 N 

N 
Isomer II 

H+ Chain1 
∆9 

728.6 Y 
Chain2 

∆11 
674.6 N 

Chain2 
∆14 

714.6 N 

PC 
(20:3(5,8,1

1)/14:0) 

Isomer I 
H+ Chain1 

∆11 
646.5 Y 

Chain1 
∆5 

566.4 N 
Chain1 

∆8 
606.5 N 

N 
Isomer II 

H+ Chain1 
∆11 

672.6 Y 
Chain1 

∆5 
592.5 N 

Chain1 
∆8 

632.5 N 

Isomer I 
H+ Chain1 

∆9 
674.5 N 

Chain2 
∆12 

688.6 N 
Chain2 

∆9 
648.5 N Y 
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PC 
(16:1(9)/18:

2(9,12)) 
Isomer II 

H+ 
Chain1 

∆9 
700.6 N 

Chain2 
∆12 

714.6 N 
Chain2 

∆9 
674.6 N 

PC 
(18:2(9,12)/

16:1(9)) 

Isomer I 
H+ Chain1 

∆12 
688.6 N 

Chain1 
∆9 

648.5 N 
Chain2 

∆9 
674.5 N 

Y 
Isomer II 

H+ Chain1 
∆12 

714.6 N 
Chain1 

∆9 
674.6 N 

Chain2 
∆9 

700.6 N 

PC 
(18:3(6,9,1

2)/16:0) 

Isomer I 
H+ Chain1 

∆12 
688.6 N 

Chain1 
∆6 

608.5 N 
Chain1 

∆9 
648.5 N 

Y* 
Isomer II 

H+ Chain1 
∆12 

714.6 N 
Chain1 

∆6 
634.5 N 

Chain1 
∆9 

674.6 N 

PC 
(18:3(9,12,
15)/16:0) 

Isomer I 
H+ Chain1 

∆12 
690.6 N 

Chain1 
∆15 

730.6 N 
Chain1 

∆9 
650.5 N 

Y* 
Isomer II 

H+ Chain1 
∆12 

716.6 N 
Chain1 

∆15 
756.7 N 

Chain1 
∆9 

676.6 N 

PC 
(16:0/18:3(

5,9,12)) 

Isomer I 
H+ Chain2 

∆12 
688.6 N 

Chain2 
∆5 

594.5 N 
Chain2 

∆9 
648.5 N 

Y* 
Isomer II 

H+ Chain2 
∆12 

714.6 N 
Chain2 

∆5 
620.5 N 

Chain2 
∆9 

674.6 N 

PC 
(16:0/18:3(

6,9,12)) 

Isomer I 
H+ Chain2 

∆12 
688.6 N 

Chain2 
∆6 

608.5 N 
Chain2 

∆9 
648.5 N 

Y* 
Isomer II 

H+ Chain2 
∆12 

714.6 N 
Chain2 

∆6 
634.5 N 

Chain2 
∆9 

674.6 N 

PC 
(16:0/18:3(
9,12,15)) 

Isomer I 
H+ Chain2 

∆12 
690.6 N 

Chain2 
∆15 

730.6 N 
Chain2 

∆9 
650.5 N 

Y* 
Isomer II 

H+ Chain2 
∆12 

716.6 N 
Chain2 

∆15 
756.7 N 

Chain2 
∆9 

676.6 N 

PC 
(20:2(11,14
)/14:1(9)) 

Isomer I 
H+ Chain1 

∆11 
648.5 N 

Chain1 
∆14 

688.6 N 
Chain2 

∆9 
702.6 N 

N 
Isomer II 

H+ Chain1 
∆11 

674.6 N 
Chain1 

∆14 
714.6 N 

Chain2 
∆9 

728.6 Y 
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PC 
(15:0/19:3(
9,12,15)) 

Isomer I 
H+ Chain2 

∆12 
676.6 N 

Chain2 
∆15 

716.6 N 
Chain2 

∆9 
636.5 N 

N 
Isomer II 

H+ Chain2 
∆12 

702.6 N 
Chain2 

∆15 
742.7 N 

Chain2 
∆9 

662.6 N 

PC 
(14:0/20:3(
8,11,14)) 

Isomer I 
H+ Chain2 

∆11 
648.5 N 

Chain2 
∆14 

688.6 N 
Chain2 

∆8 
608.5 N 

N 
Isomer II 

H+ Chain2 
∆11 

674.6 N 
Chain2 

∆14 
714.6 N 

Chain2 
∆8 

634.5 N 

PC 
(20:3(8,11,
14)/14:0) 

Isomer I 
H+ Chain1 

∆11 
648.5 N 

Chain1 
∆14 

688.6 N 
Chain1 

∆8 
608.5 N 

N 
Isomer II 

H+ Chain1 
∆11 

674.6 N 
Chain1 

∆14 
714.6 N 

Chain1 
∆8 

634.5 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 

*Agreement is only obtained from cell lysates (not from single cells). 
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Table S4-13. Predicted diagnostic ions from m/z 463.33 (benzophenone PB products of m/z 281.25) at the single-

cell level 

Lipids1 PB products Adduct Double bond position m/z of predicted fragments MS/MS Match2 

FA (18:1(9)) 
Isomer I H- Chain1 ∆9 171.1 Y 
Isomer II H- Chain1 ∆9 321.2 Y 

FA (18:1(2)) 
Isomer I H- Chain1 ∆2 73.0 N 
Isomer II H- Chain1 ∆2 223.1 N 

FA (18:1(3)) 
Isomer I H- Chain1 ∆3 87.0 N 
Isomer II H- Chain1 ∆3 237.1 N 

FA (18:1(4)) 
Isomer I H- Chain1 ∆4 101.0 N 
Isomer II H- Chain1 ∆4 251.1 N 

FA (18:1(5)) 
Isomer I H- Chain1 ∆5 115.1 N 
Isomer II H- Chain1 ∆5 265.1 N 

FA (18:1(6)) 
Isomer I H- Chain1 ∆6 129.1 N 
Isomer II H- Chain1 ∆6 279.2 N 

FA (18:1(7)) 
Isomer I H- Chain1 ∆7 143.1 N 
Isomer II H- Chain1 ∆7 293.2 N 

FA (18:1(8)) 
Isomer I H- Chain1 ∆8 157.1 N 
Isomer II H- Chain1 ∆8 307.2 N 

FA (18:1(10)) 
Isomer I H- Chain1 ∆10 185.2 N 
Isomer II H- Chain1 ∆10 335.2 N 

FA (18:1(11)) 
Isomer I H- Chain1 ∆11 199.2 N 
Isomer II H- Chain1 ∆11 349.3 N 

FA (18:1(12)) 
Isomer I H- Chain1 ∆12 213.2 N 
Isomer II H- Chain1 ∆12 363.3 N 

FA (18:1(13)) Isomer I H- Chain1 ∆13 227.2 N 
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Isomer II H- Chain1 ∆13 377.3 N 

FA (18:1(14)) 
Isomer I H- Chain1 ∆14 241.2 N 
Isomer II H- Chain1 ∆14 391.3 N 

FA (18:1(15)) 
Isomer I H- Chain1 ∆15 255.3 N 
Isomer II H- Chain1 ∆15 405.3 N 

FA (18:1(16)) 
Isomer I H- Chain1 ∆16 269.3 N 
Isomer II H- Chain1 ∆16 419.4 N 

FA (18:1(17)) 
Isomer I H- Chain1 ∆17 283.3 N 
Isomer II H- Chain1 ∆17 433.4 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 
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Table S4-14. Predicted diagnostic ions from m/z 787.64 (acetone PB products of m/z 729.59) at the single-cell level 

Lipids1 
PB 

product
s 

Adduct 
Double 
bond 

position 

m/z of predicted 
fragments 

MS/MS 
Match2 

Double bond 
position 

m/z of predicted 
fragments 

MS/MS 
Match2 

SM 
(d18:1(4)/18:1(9Z)) 

H+ 
Isomer 

I 
Chain1 ∆4 549.4 N Chain2 ∆9 619.5 N 

H+ Isomer 
II 

Chain1 ∆4 575.5 N Chain2 ∆9 645.6 Y 

SM 
(d16:1(4)/20:1(11)) 

H+ Isomer 
I 

Chain1 ∆4 577.5 N Chain2 ∆11 619.5 N 

H+ Isomer 
II 

Chain1 ∆4 603.5 N Chain2 ∆11 645.6 Y 

SM 
(d18:0/18:2(9,12)) 

H+ Isomer 
I 

Chain2 ∆12 661.6 N Chain2 ∆9 621.6 N 

H+ Isomer 
II 

Chain2 ∆12 687.7 N Chain2 ∆9 647.6 N 

SM 
(d18:2(4,14)/18:0) 

H+ Isomer 
I 

Chain1 ∆4 551.5 N Chain1 ∆14 689.6 N 

H+ Isomer 
II 

Chain1 ∆4 577.5 N Chain1 ∆14 715.7 N 

SM 
(d19:1(4)/17:1(9)) 

H+ Isomer 
I 

Chain1 ∆4 535.4 N Chain2 ∆9 633.6 N 

H+ Isomer 
II 

Chain1 ∆4 561.5 N Chain2 ∆9 659.6 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 
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Table S4-15. Predicted diagnostic ions from m/z 842.65 (acetone PB products of m/z 784.57) at the single-cell level 

Lipids1 
PB 

products 
Addu

ct 
Double bond 

position 

m/z of 
predicted 
fragments 

MS/MS 
Match2 

Double bond 
position 

m/z of 
predicted 
fragments 

MS/
MS 

Matc
h2 

Double bond 
position 

m/z of 
predicted 
fragments 

MS/M
S 

Match2 

Carbon 
number 
match 

PC 
(16:0/20:3(1

1,14,17)) 

Isomer I H+ Chain2 ∆11 678.6 N Chain2 ∆14 718.6 N Chain2 ∆17 758.7 N 
Y 

Isomer II H+ Chain2 ∆11 704.6 N Chain2 ∆14 744.7 N Chain2 ∆17 784.7 Y 

PC 
(16:0/20:3(5,

8,11)) 

Isomer I H+ Chain2 ∆11 674.5 N Chain2 ∆5 594.5 N Chain2 ∆8 634.5 N 
Y 

Isomer II H+ Chain2 ∆11 700.6 Y Chain2 ∆5 620.5 N Chain2 ∆8 660.6 N 

PC 
(16:0/20:3(5,

8,11)) 

Isomer I H+ Chain2 ∆11 674.5 N Chain2 ∆5 594.5 N Chain2 ∆8 634.5 N 
Y 

Isomer II H+ Chain2 ∆11 700.6 Y Chain2 ∆5 620.5 N Chain2 ∆8 660.6 N 

PC 
(18:0/18:3(9,

12,15)) 

Isomer I H+ Chain2 ∆12 718.6 N Chain2 ∆15 758.7 N Chain2 ∆9 678.6 N 
Y 

Isomer II H+ Chain2 ∆12 744.7 N Chain2 ∆15 784.7 Y Chain2 ∆9 704.6 N 

PC 
(18:1(9)/18:2

(6,9)) 

Isomer I H+ Chain1 ∆9 674.5 N Chain2 ∆6 634.5 N Chain2 ∆9 674.5 N 
Y 

Isomer II H+ Chain1 ∆9 700.6 Y Chain2 ∆6 660.6 N Chain2 ∆9 700.6 Y 

PC 
(18:1(9)/18:2

(9,12)) 

Isomer I H+ Chain1 ∆9 674.5 N Chain2 ∆12 716.6 N Chain2 ∆9 676.6 N 
Y 

Isomer II H+ Chain1 ∆9 700.6 Y Chain2 ∆12 742.7 N Chain2 ∆9 702.6 N 

PC 
(18:1(11)/18:

2(9,12)) 

Isomer I H+ Chain1 ∆11 702.6 N Chain2 ∆12 716.6 N Chain2 ∆9 676.6 N 
Y 

Isomer II H+ Chain1 ∆11 728.6 Y Chain2 ∆12 742.7 N Chain2 ∆9 702.6 N 

PC 
(18:2(9,12)/1

8:1(11)) 

Isomer I H+ Chain1 ∆12 716.6 N Chain1 ∆9 676.6 N Chain2 ∆11 702.6 N 
Y 

Isomer II H+ Chain1 ∆12 742.7 N Chain1 ∆9 702.6 N Chain2 ∆11 728.6 Y 

PC 
(18:2(9,12)/1

8:1(9)) 

Isomer I H+ Chain1 ∆12 716.6 N Chain1 ∆9 676.6 N Chain2 ∆9 674.5 N 
Y 

Isomer II H+ Chain1 ∆12 742.7 N Chain1 ∆9 702.6 N Chain2 ∆9 700.6 Y 

PC 
(18:3(9,12,1

5)/18:0) 

Isomer I H+ Chain1 ∆12 718.6 N Chain1 ∆15 758.7 N Chain1 ∆9 678.6 N 
Y 

Isomer II H+ Chain1 ∆12 744.7 N Chain1 ∆15 784.7 Y Chain1 ∆9 704.6 N 

PC 
(20:3(5,8,11)

/16:0) 

Isomer I H+ Chain1 ∆11 674.5 N Chain1 ∆5 594.5 N Chain1 ∆8 634.5 N 
Y 

Isomer II H+ Chain1 ∆11 700.6 Y Chain1 ∆5 620.5 N Chain1 ∆8 660.6 N 

Isomer I H+ Chain1 ∆11 676.6 N Chain1 ∆14 716.6 N Chain2 ∆9 702.6 N N 
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PC 
(20:2(11,14)/

16:1(9)) 
Isomer II 

H+ 
Chain1 ∆11 702.6 N Chain1 ∆14 742.7 N Chain2 ∆9 728.6 Y 

PC 
(16:1(9)/20:2

(11,14)) 

Isomer I H+ Chain1 ∆9 702.6 N Chain2 ∆11 676.6 N Chain2 ∆14 716.6 N 
N 

Isomer II H+ Chain1 ∆9 728.6 Y Chain2 ∆11 702.6 N Chain2 ∆14 742.7 N 

PC 
(16:0/20:3(8,

11,14)) 

Isomer I H+ Chain2 ∆11 676.6 N Chain2 ∆14 716.6 N Chain2 ∆8 636.5 N 
Y 

Isomer II H+ Chain2 ∆11 702.6 N Chain2 ∆14 742.7 N Chain2 ∆8 662.6 N 

PC 
(18:0/18:3(6,

9,12)) 

Isomer I H+ Chain2 ∆12 716.6 N Chain2 ∆6 636.5 N Chain2 ∆9 676.6 N 
Y 

Isomer II H+ Chain2 ∆12 742.7 N Chain2 ∆6 662.6 N Chain2 ∆9 702.6 N 

PC 
(18:3(6,9,12)

/18:0) 

Isomer I H+ Chain1 ∆12 716.6 N Chain1 ∆6 636.5 N Chain1 ∆9 676.6 N 
Y 

Isomer II H+ Chain1 ∆12 742.7 N Chain1 ∆6 662.6 N Chain1 ∆9 702.6 N 

PC 
(20:3(8,11,1

4)/16:0) 

Isomer I H+ Chain1 ∆11 676.6 N Chain1 ∆14 716.6 N Chain1 ∆8 636.5 N 
Y 

Isomer II H+ Chain1 ∆11 702.6 N Chain1 ∆14 742.7 N Chain1 ∆8 662.6 N 

PC 
(14:1(9)/22:2

(13,16)) 

Isomer I H+ Chain1 ∆9 730.6 N Chain2 ∆13 676.6 N Chain2 ∆16 716.6 N 
N 

Isomer II H+ Chain1 ∆9 756.7 N Chain2 ∆13 702.6 N Chain2 ∆16 742.7 N 

PC 
(22:2(13,16)/

14:1(9)) 

Isomer I H+ Chain1 ∆13 676.6 N Chain1 ∆16 716.6 N Chain2 ∆9 730.6 N 
N 

Isomer II H+ Chain1 ∆13 702.6 N Chain1 ∆16 742.7 N Chain2 ∆9 756.7 N 

PC 
(17:2(9,12)/1

9:1(9)) 

Isomer I H+ Chain1 ∆12 730.6 N Chain1 ∆9 690.6 N Chain2 ∆9 660.5 N 
N 

Isomer II H+ Chain1 ∆12 756.7 N Chain1 ∆9 716.6 N Chain2 ∆9 686.6 N 

PC 
(19:1(9)/17:2

(9,12)) 

Isomer I H+ Chain1 ∆9 660.5 N Chain2 ∆12 730.6 N Chain2 ∆9 690.6 N 
N 

Isomer II H+ Chain1 ∆9 686.6 N Chain2 ∆12 756.7 N Chain2 ∆9 716.6 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 
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Table S4-16. Predicted diagnostic ions from m/z 844.70 (acetone PB products of m/z 786.59) at the single-cell level 

Lipids1 PB products adduct 
Double bond 

position 
m/z of predicted 

fragments 
MS/MS 
Match2 

Double bond 
position 

m/z of predicted 
fragments 

MS/MS 
Match2 

Carbon number 
match3 

PC 
(18:1(15)/18:1(15)) 

Isomer I H+ 
Chain1 

∆15 
760.7 N 

Chain2 
∆15 

760.7 N 
Y 

Isomer II H+ 
Chain1 

∆15 
786.7 Y 

Chain2 
∆15 

786.7 Y 

PC (18:1(6)/18:1(6)) 
Isomer I 

H+ Chain1 
∆6 

634.5 N 
Chain2 

∆6 
634.5 N 

Y 
Isomer II 

H+ Chain1 
∆6 

660.6 Y 
Chain2 

∆6 
660.6 Y 

PC (18:1(8)/18:1(8)) 
Isomer I 

H+ Chain1 
∆8 

662.5 Y 
Chain2 

∆8 
662.5 Y 

Y 
Isomer II 

H+ Chain1 
∆8 

688.6 N 
Chain2 

∆8 
688.6 N 

PC (17:1(9)/19:1(9)) 
Isomer I 

H+ Chain1 
∆9 

690.6 N 
Chain2 

∆9 
662.5 Y 

N 
Isomer II 

H+ Chain1 
∆9 

716.6 N 
Chain2 

∆9 
688.6 N 

PC (19:1(9)/17:1(9)) 
Isomer I 

H+ Chain1 
∆9 

662.5 Y 
Chain2 

∆9 
690.6 N 

N 
Isomer II 

H+ Chain1 
∆9 

688.6 N 
Chain2 

∆9 
716.6 N 

PC (18:0/18:2(6,9)) 
Isomer I 

H+ Chain2 
∆6 

636.5 N 
Chain2 

∆9 
676.6 N 

N 
Isomer II 

H+ Chain2 
∆6 

662.6 Y 
Chain2 

∆9 
702.6 N 

PC 
(18:1(10)/18:1(10)) 

Isomer I 
H+ Chain1 

∆10 
690.6 N 

Chain2 
∆10 

690.6 N 
Y 

Isomer II 
H+ Chain1 

∆10 
716.6 N 

Chain2 
∆10 

716.6 N 
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PC 
(18:1(11)/18:1(11)) 

Isomer I 
H+ Chain1 

∆11 
704.6 N 

Chain2 
∆11 

704.6 N 
Y 

Isomer II 
H+ Chain1 

∆11 
730.7 N 

Chain2 
∆11 

730.7 N 

PC 
(18:1(12)/18:1(12)) 

Isomer I 
H+ Chain1 

∆12 
718.6 N 

Chain2 
∆12 

718.6 N 
Y 

Isomer II 
H+ Chain1 

∆12 
744.7 N 

Chain2 
∆12 

744.7 N 

PC 
(18:1(13)/18:1(13)) 

Isomer I 
H+ Chain1 

∆13 
732.6 N 

Chain2 
∆13 

732.6 N 
Y 

Isomer II 
H+ Chain1 

∆13 
758.7 N 

Chain2 
∆13 

758.7 N 

PC 
(18:1(14)/18:1(14)) 

Isomer I 
H+ Chain1 

∆14 
746.7 N 

Chain2 
∆14 

746.7 N 
Y 

Isomer II 
H+ Chain1 

∆14 
772.7 N 

Chain2 
∆14 

772.7 N 

PC 
(18:1(16)/18:1(16)) 

Isomer I 
H+ Chain1 

∆16 
774.7 N 

Chain2 
∆16 

774.7 N 
Y 

Isomer II 
H+ Chain1 

∆16 
800.8 N 

Chain2 
∆16 

800.8 N 

PC 
(18:1(17)/18:1(17)) 

Isomer I 
H+ Chain1 

∆17 
788.7 N 

Chain2 
∆17 

788.7 N 
Y 

Isomer II 
H+ Chain1 

∆17 
814.8 N 

Chain2 
∆17 

814.8 N 

PC (18:1(2)/18:1(2)) 
Isomer I 

H+ Chain1 
∆2 

578.4 N 
Chain2 

∆2 
578.4 N 

Y 
Isomer II 

H+ Chain1 
∆2 

604.5 N 
Chain2 

∆2 
604.5 N 

PC (18:1(3)/18:1(3)) 
Isomer I 

H+ Chain1 
∆3 

592.4 N 
Chain2 

∆3 
592.4 N 

Y 
Isomer II 

H+ Chain1 
∆3 

618.5 N 
Chain2 

∆3 
618.5 N 
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PC (18:1(4)/18:1(4)) 
Isomer I 

H+ Chain1 
∆4 

606.5 N 
Chain2 

∆4 
606.5 N 

Y 
Isomer II 

H+ Chain1 
∆4 

632.5 N 
Chain2 

∆4 
632.5 N 

PC (18:1(5)/18:1(5)) 
Isomer I 

H+ Chain1 
∆5 

620.5 N 
Chain2 

∆5 
620.5 N 

Y 
Isomer II 

H+ Chain1 
∆5 

646.5 N 
Chain2 

∆5 
646.5 N 

PC (18:1(7)/18:1(7)) 
Isomer I 

H+ Chain1 
∆7 

648.5 N 
Chain2 

∆7 
648.5 N 

Y 
Isomer II 

H+ Chain1 
∆7 

674.6 N 
Chain2 

∆7 
674.6 N 

PC (18:1(9)/18:1(9)) 
Isomer I 

H+ Chain1 
∆9 

676.6 N 
Chain2 

∆9 
676.6 N 

Y 
Isomer II 

H+ Chain1 
∆9 

702.6 N 
Chain2 

∆9 
702.6 N 

PC 
(16:1(9)/20:1(11)) 

Isomer I 
H+ Chain1 

∆9 
704.6 N 

Chain2 
∆11 

676.6 N 
Y 

Isomer II 
H+ Chain1 

∆9 
730.7 N 

Chain2 
∆11 

702.6 N 

PC 
(18:1(11)/18:1(9)) 

Isomer I 
H+ Chain1 

∆11 
704.6 N 

Chain2 
∆9 

676.6 N 
Y 

Isomer II 
H+ Chain1 

∆11 
730.7 N 

Chain2 
∆9 

702.6 N 

PC 
(18:1(9)/18:1(11)) 

Isomer I 
H+ Chain1 

∆9 
676.6 N 

Chain2 
∆11 

704.6 N 
Y 

Isomer II 
H+ Chain1 

∆9 
702.6 N 

Chain2 
∆11 

730.7 N 

PC 
(20:1(11)/16:1(9)) 

Isomer I 
H+ Chain1 

∆11 
676.6 N 

Chain2 
∆9 

704.6 N 
Y 

Isomer II 
H+ Chain1 

∆11 
702.6 N 

Chain2 
∆9 

730.7 N 
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PC 
(16:0/20:2(11,14)) 

Isomer I 
H+ Chain2 

∆11 
678.6 N 

Chain2 
∆14 

718.6 N 
Y* 

Isomer II 
H+ Chain2 

∆11 
704.6 N 

Chain2 
∆14 

744.7 N 

PC 
(18:0/18:2(10,12)) 

Isomer I 
H+ Chain2 

∆10 
692.6 N 

Chain2 
∆12 

718.6 N 
Y* 

Isomer II 
H+ Chain2 

∆10 
718.7 N 

Chain2 
∆12 

744.7 N 

PC (18:0/18:2(2,4)) 
Isomer I 

H+ Chain2 
∆2 

580.4 N 
Chain2 

∆4 
606.5 N 

Y* 
Isomer II 

H+ Chain2 
∆2 

606.5 N 
Chain2 

∆4 
632.5 N 

PC (18:0/18:2(9,12)) 
Isomer I 

H+ Chain2 
∆12 

718.6 N 
Chain2 

∆9 
678.6 N 

Y* 
Isomer II 

H+ Chain2 
∆12 

744.7 N 
Chain2 

∆9 
704.6 N 

PC (18:2(9,12)/18:0) 
Isomer I 

H+ Chain1 
∆12 

718.6 N 
Chain1 

∆9 
678.6 N 

Y* 
Isomer II 

H+ Chain1 
∆12 

744.7 N 
Chain1 

∆9 
704.6 N 

PC 
(20:2(11,14)/16:0) 

Isomer I 
H+ Chain1 

∆11 
678.6 N 

Chain1 
∆14 

718.6 N 
Y* 

Isomer II 
H+ Chain1 

∆11 
704.6 N 

Chain1 
∆14 

744.7 N 

PC 
(14:0/22:2(13,16)) 

Isomer I 
H+ Chain2 

∆13 
678.6 N 

Chain2 
∆16 

718.6 N 
N 

Isomer II 
H+ Chain2 

∆13 
704.6 N 

Chain2 
∆16 

744.7 N 

PC 
(14:1(9)/22:1(13)) 

Isomer I 
H+ Chain1 

∆9 
732.6 N 

Chain2 
∆13 

676.6 N 
N 

Isomer II 
H+ Chain1 

∆9 
758.7 N 

Chain2 
∆13 

702.6 N 
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PC 
(22:1(13)/14:1(9)) 

Isomer I 
H+ Chain1 

∆13 
676.6 N 

Chain2 
∆9 

732.6 N 
N 

Isomer II 
H+ Chain1 

∆13 
702.6 N 

Chain2 
∆9 

758.7 N 

PC 
(22:2(13,16)/14:0) 

Isomer I 
H+ Chain1 

∆13 
678.6 N 

Chain1 
∆16 

718.6 N 
N 

Isomer II 
H+ Chain1 

∆13 
704.6 N 

Chain1 
∆16 

744.7 N 

PC 
(14:1(9)/22:1(11)) 

Isomer I 
H+ Chain1 

∆9 
732.6 N 

Chain2 
∆11 

648.5 N 
N 

Isomer II 
H+ Chain1 

∆9 
758.7 N 

Chain2 
∆11 

674.6 N 

PC (17:2(9,12)/19:0) 
Isomer I 

H+ Chain1 
∆12 

732.6 N 
Chain1 

∆9 
692.6 N 

N 
Isomer II 

H+ Chain1 
∆12 

758.7 N 
Chain1 

∆9 
718.7 N 

PC (19:0/17:2(9,12)) 
Isomer I 

H+ Chain2 
∆12 

732.6 N 
Chain2 

∆9 
692.6 N 

N 
Isomer II 

H+ Chain2 
∆12 

758.7 N 
Chain2 

∆9 
718.7 N 

PC 
(22:1(11)/14:1(9)) 

Isomer I 
H+ Chain1 

∆11 
648.5 N 

Chain2 
∆9 

732.6 N 
N 

Isomer II 
H+ Chain1 

∆11 
674.6 N 

Chain2 
∆9 

758.7 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 
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*Agreement is only obtained from cell lysates (not from single cells). 
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Table S4-17. Predicted diagnostic ions from m/z 845.53 (acetone PB products of m/z 787.67) at the single-cell level 

Lipids1 PB products Adduct Double bond position m/z of predicted fragments MS/MS Match2 

SM/d16:1(4)/24:0) 
Isomer I H+ Chain1 ∆1 635.6 N 
Isomer II H+ Chain1 ∆1 661.6 Y 

SM/d18:1(4)/22:0) 
Isomer I H+ Chain1 ∆1 607.5 N 
Isomer II H+ Chain1 ∆1 633.6 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 
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Table S4-18. Predicted diagnostic ions from m/z 435.17 (benzophenone PB products of m/z 253.21) at the single-

cell level. 

Lipids1 PB products Adduct Double bond position m/z of predicted fragments MS/MS Match2 

FA (16:1 (9)) 
Isomer I H- Chain1 ∆9 171.1 Y 
Isomer II H- Chain1 ∆9 321.2 N 

FA (16:1 (2)) 
Isomer I H- Chain1 ∆2 73.0 N 
Isomer II H- Chain1 ∆2 223.0 N 

FA (16:1 (3)) 
Isomer I H- Chain1 ∆3 87.0 N 
Isomer II H- Chain1 ∆3 237.1 N 

FA (16:1 (4)) 
Isomer I H- Chain1 ∆4 101.0 N 
Isomer II H- Chain1 ∆4 251.1 N 

FA (16:1 (6)) 
Isomer I H- Chain1 ∆6 129.1 N 
Isomer II H- Chain1 ∆6 279.2 N 

FA (16:1 (7)) 
Isomer I H- Chain1 ∆7 143.1 N 
Isomer II H- Chain1 ∆7 293.2 N 

FA (16:1 (10)) 
Isomer I H- Chain1 ∆10 185.2 N 
Isomer II H- Chain1 ∆10 335.2 N 

FA (16:1 (11)) 
Isomer I H- Chain1 ∆11 199.2 N 
Isomer II H- Chain1 ∆11 349.3 N 

FA (16:1 (12)) 
Isomer I H- Chain1 ∆12 213.2 N 
Isomer II H- Chain1 ∆12 363.3 N 

FA (16:1 (13)) 
Isomer I H- Chain1 ∆13 227.2 N 
Isomer II H- Chain1 ∆13 377.3 N 

FA (16:1 (14)) 
Isomer I H- Chain1 ∆14 241.2 N 
Isomer II H- Chain1 ∆14 391.3 N 
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1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

  



154 
 

Table S4-19. Predicted diagnostic ions from m/z 311.16 (acetone PB products of m/z 253.21) at the single cell level. 

Lipids1 PB products Adduct Double bond position m/z of predicted fragments MS/MS match2 

FA (16:1(9)) 
Isomer I H- Chain1 ∆9 171.1 N 
Isomer II H- Chain1 ∆9 197.2 Y 

FA (16:1(2)) 
Isomer I H- Chain1 ∆2 73.0 N 
Isomer II H- Chain1 ∆2 99.0 N 

FA (16:1(3)) 
Isomer I H- Chain1 ∆3 87.0 N 
Isomer II H- Chain1 ∆3 113.1 N 

FA (16:1(4)) 
Isomer I H- Chain1 ∆4 101.0 N 
Isomer II H- Chain1 ∆4 127.1 N 

FA (16:1(6)) 
Isomer I H- Chain1 ∆6 129.1 N 
Isomer II H- Chain1 ∆6 155.1 N 

FA (16:1(7)) 
Isomer I H- Chain1 ∆7 143.1 N 
Isomer II H- Chain1 ∆7 169.1 N 

FA (16:1(10)) 
Isomer I H- Chain1 ∆10 185.2 N 
Isomer II H- Chain1 ∆10 211.2 N 

FA (16:1(11)) 
Isomer I H- Chain1 ∆11 199.2 N 
Isomer II H- Chain1 ∆11 225.2 N 

FA (16:1(12)) 
Isomer I H- Chain1 ∆12 213.2 N 
Isomer II H- Chain1 ∆12 239.2 N 

FA (16:1(13)) 
Isomer I H- Chain1 ∆13 227.2 N 
Isomer II H- Chain1 ∆13 253.3 N 

FA (16:1(14)) 
Isomer I H- Chain1 ∆14 241.2 N 
Isomer II H- Chain1 ∆14 267.3 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 
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2Comparison with experimental MS/MS spectra of the corresponding PB products. 
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Table S4-20. Predicted diagnostic ions from m/z 339.20 (acetone PB products of m/z 281.25) at the single cell level. 

Lipids1 PB products Adduct Double bond position m/z of predicted fragments MS/MS match2 

FA (18:1(9)) 
Isomer I H- Chain1 ∆9 171.1 N 
Isomer II H- Chain1 ∆9 197.2 Y 

FA (18:1(2)) 
Isomer I H- Chain1 ∆2 73.0 N 
Isomer II H- Chain1 ∆2 99.0 N 

FA (18:1(3)) 
Isomer I H- Chain1 ∆3 87.0 N 
Isomer II H- Chain1 ∆3 113.1 N 

FA (18:1(4)) 
Isomer I H- Chain1 ∆4 101.0 N 
Isomer II H- Chain1 ∆4 127.1 N 

FA (18:1(5)) 
Isomer I H- Chain1 ∆5 115.1 N 
Isomer II H- Chain1 ∆5 141.1 N 

FA (18:1(6)) 
Isomer I H- Chain1 ∆6 129.1 N 
Isomer II H- Chain1 ∆6 155.1 N 

FA (18:1(7)) 
Isomer I H- Chain1 ∆7 143.1 N 
Isomer II H- Chain1 ∆7 169.1 N 

FA (18:1(8)) 
Isomer I H- Chain1 ∆8 157.1 N 
Isomer II H- Chain1 ∆8 183.2 N 

FA (18:1(10)) 
Isomer I H- Chain1 ∆10 185.2 N 
Isomer II H- Chain1 ∆10 211.2 N 

FA (18:1(11)) 
Isomer I H- Chain1 ∆11 199.2 N 
Isomer II H- Chain1 ∆11 225.2 N 

FA (18:1(12)) 
Isomer I H- Chain1 ∆12 213.2 N 
Isomer II H- Chain1 ∆12 239.2 N 

1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 
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2Comparison with experimental MS/MS spectra of the corresponding PB products. 
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Table S4-21. Predicted diagnostic ions from m/z 790.59 (acetone PB products of m/z 732.55) at cell lysates level.    

Lipids1 PB products Adduct 
Double bond 

position 
m/z of predicted 

fragments 
MS/MS 
match2 

Carbon 
number match3 

PC (14:0/18:1(9)) 
Isomer I H+ Chain2 ∆9 622.5 Y 

Y Isomer II H+ Chain2 ∆9 648.6 Y 

PC (16:0/16:1(9)) 
Isomer I H+ Chain2 ∆9 650.5 Y 

Y Isomer II H+ Chain2 ∆9 676.6 Y 

PC (18:1(9)/14:0) 
Isomer I H+ Chain1 ∆9 622.5 Y 

Y Isomer II H+ Chain1 ∆9 648.6 Y 

PC (14:0/18:1(11)) 
Isomer I H+ Chain2 ∆11 650.5 Y 

Y Isomer II H+ Chain2 ∆11 676.6 Y 

PC (16:1(9)/16:0) 
Isomer I H+ Chain1 ∆9 650.5 Y 

Y Isomer II H+ Chain1 ∆9 676.6 Y 

PC (18:1(11)/14:0) 
Isomer I H+ Chain1 ∆11 650.5 Y 

Y Isomer II H+ Chain1 ∆11 676.6 Y 

PC (12:0/20:1(11)) 
Isomer I H+ Chain2 ∆11 622.5 Y 

N Isomer II H+ Chain2 ∆11 648.6 Y 

PC (20:1(11)/12:0) 
Isomer I H+ Chain1 ∆11 622.5 Y 

N Isomer II H+ Chain1 ∆11 648.6 Y 

PC (14:1(9)/18:0) 
Isomer I H+ Chain1 ∆9 678.6 N 

Y Isomer II H+ Chain1 ∆9 704.6 N 

PC (18:0/14:1(9)) 
Isomer I H+ Chain2 ∆9 678.6 N 

Y Isomer II H+ Chain2 ∆9 704.6 N 

PC (13:0/19:1(9)) 
Isomer I H+ Chain2 ∆9 608.5 N 

N Isomer II H+ Chain2 ∆9 634.5 N 

PC (15:0/17:1(9)) 
Isomer I H+ Chain2 ∆9 636.5 N 

N Isomer II H+ Chain2 ∆9 662.6 N 
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PC (15:1(9)/17:0) 
Isomer I H+ Chain1 ∆9 664.6 N 

N Isomer II H+ Chain1 ∆9 690.6 N 

PC (17:0/15:1(9)) 
Isomer I H+ Chain2 ∆9 664.6 N 

N Isomer II H+ Chain2 ∆9 690.6 N 

PC (17:1(9)/15:0) 
Isomer I H+ Chain1 ∆9 636.5 N 

N Isomer II H+ Chain1 ∆9 662.6 N 

PC (19:1(9)/13:0) 
Isomer I H+ Chain1 ∆9 608.5 N 

N Isomer II H+ Chain1 ∆9 634.5 N 
1Species labeled in red front indicate Identified species with matched MS/MS fragments (from prediction) and carbon 

numbers in fatty acid tails. 

2Comparison with experimental MS/MS spectra of the corresponding PB products. 

3Comparison with results in Table S4. 
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Table S4-22. Comparison of C=C bond identifications between single cells and cell lysates. 

Lipids 
(m/z) 

Experiment 
type 

Head group 
(m/z) 

Head group type with 
adduct 

Product of Lipids 
(m/z) 

Diagnostic ions 

810.6012 
Single-cell 146 [PC + Na]+ 

868.641 
700,726,756, 782 

Cell lysate 146, 184 [PC + H]+ , [PC + Na]+ none 

732.5543 
Single-cell 184 [PC + H]+ 

790.5902 
650, 676 

Cell lysate 184 [PC + H]+ 622, 648, 650, 676 

756.55 
Single-cell 184 [PC + H]+ 

814.4938 
646, 672, 728 

Cell lysate 184 [PC + H]+ none 

760.5856 
Single-cell 184 [PC + H]+ 

818.6279 
650, 676 

Cell lysate 184 [PC + H]+ 650, 676, 678 

782.5699 
Single-cell 146 [PC + Na]+ 

840.6057 
656, 672, 698, 782 

Cell lysate 146 [PC + Na]+ 592, 594, 656, 782 

754.5387 
Single-cell 146, 184 [PC + H]+ , [PC + Na]+ 

812.5792 
566, 628, 644, 687, 728, 

754 
Cell lysate 146, 184 [PC + H]+ , [PC + Na]+ 566, 628, 754 

780.5543 
Single-cell 146, 184 [PC + H]+ , [PC + Na]+ 

838.5899 
712, 714, 738, 780 

Cell lysate 146, 185 [PC + H]+ , [PC + Na]+ 780 

784.5746 
Single-cell 184 [PC + H]+ 

842.653 
700, 728, 784 

Cell lysate 184 [PC + H]+ 784 

786.6012 
Single-cell 184 [PC + H]+ 

844.7043 
660, 662, 786 

Cell lysate 184 [PC + H]+ 786 

787.6693 
Single-cell 184 [SM + H]+ 

845.5319 
661 

Cell lysate 184 [SM + H]+ 661 
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Supporting Figures 

 

Figure S4-1. Flowchart of the Script A for screening potential lipids and their corresponding PB products. 
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Figure S4-2. Principles of Script B to predict the m/z of diagnostic ions of PB products 

  

PC(14:1(9)/20:2(11,14))

Chain 1 Chain 2

1
2

3
4

5
6

7
8

910
11

12
13

14

15
16

17
18

Number of carbons

Degree of unsaturation

Position of double bonds

PC(14:1(9)/20:2(11,14))

Degree of unsaturation

Number of carbons

Position of double bonds

12345
67

8
910

1112
13

1419
20

Head group

Head group

Using PC(14:1(9)/20:2(11,14)) as an example
m/z of the lipid = m/z of head group + m/z of Chain 1 + m/z 
of Chain 2 + m/z of adduct

Using PB product of PC(14:1(9)/20:2(11,14)) at ∆9 position 
as an example
m/z of PB product isomer I = m/z of head group + m/z of 
parts of Chain 1 (from ∆1 to ∆9) + m/z of Chain 2 + m/z of 
adduct + 16 
m/z of PB product isomer II = m/z of head group + m/z of 
parts of Chain 1 (from ∆1 to ∆9) + m/z of Chain 2 + m/z of 
adduct + 42.05 (this value depends on PB reagent, acetone: 
42.05; benzophenone: 166.08)
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Figure S4-3. MS/MS spectra of PC (16:0/18:1(9)) standard solution (1 µM, containing 10 mM ammonium acetate) at the 

negative ion mode. m/z 281.25 and m/z 255.08 are two fatty acid tails of PC (16:0/18:1(9)). 
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Figure S4-4. Mass spectra (selected range) of HCT-116 single cell in (A) acetone and (B) 5 mM benzophenone solution 

without UV irradiation. 
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Figure S4-5. (A) MS/MS spectra of PC (16:0/18:1(9)) detected from 10 µM PC (16:0/18:1(9)) standard solution using CID 

mode. (B) MS/MS spectra of PC (16:0/18:1(9)) detected at the single-cell level using CID mode. (C) MS/MS spectra of PC 

(16:0/18:1(9)) detected from 10 µM PC (16:0/18:1(9)) standard solution using HCD mode. (D) MS/MS spectra of PC 

(16:0/18:1(9)) detected at the single-cell level using HCD mode. 
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Figure S4-6. (A) MS/MS spectra of m/z 810.59 detected at the single-cell level. (B) MS/MS spectra of m/z 868.64 (PB 

product of m/z 810.59) detected at the single-cell level. The peaks labelled in red are parent and diagnostic ions. 
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Figure S4-7. MS/MS  of lipids and their corresponding PB products (with paired 

diagnostic ions) at the single-cell level, including (A) m/z 732.55, (B) m/z 790.59 (PB 

product of m/z 732.55), (C) m/z 780.54, (D) m/z 838.58 (PB product of m/z 780.54), (E) 

m/z 782.56, (F) m/z 840.60 (PB product of m/z 782.56), (G) m/z 754.5, (H) m/z 812.58 

(PB product of m/z 754.53), (I) m/z 756.54, (J) m/z 814.59 (PB product of m/z 756.54), 

(K) m/z 463.33 (negative mode) and (L) m/z 463.33 (negative mode). The peaks labelled 

in red are parent and diagnostic ions. 
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Figure S4-8. MS/MS analysis of lipids and their corresponding PB products (with 

unpaired diagnostic ions) at the single-cell level, including (A) m/z 729.51, (B) m/z 787.63 

(PB product of m/z 729.51), (C) m/z 784.57, (D) m/z 842.65 (PB product of m/z 784.57), 

(E) m/z 786.59, (F) m/z 844.70 (PB product of m/z 786.59), (G) m/z 787.67, (H) m/z 

845.64 (PB product of m/z 787.67), (I) m/z 435.17 (negative mode), (J) m/z 311.16 

(negative mode) and (K)m/z 339.19 (negative mode). The peaks labelled in red are parent 

and diagnostic ions. 
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Figure S4-9. MS/MS spectra of m/z 790.59 obtained (A) at the single-cell level and (B) 

from cell lysate. (C) MS/MS spectra of m/z 732.55 detected from cell lysate. The peaks 

labelled in red are parent and diagnostic ions. 
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Figure S4-10. MS/MS analysis of PB products. Results from single cells include (A) m/z 

840.60, (B) m/z 868.64, (C) m/z 814.59, (D) m/z 818.65, (E) m/z 812.58, (F) m/z 838.58, 

(G) m/z 842.65, (H) m/z 844.67, (I) m/z 845.64, Results from cell lysates include (J) m/z 

840.60, (K) m/z 868.64, (L) m/z 814.59, (M) m/z 818.65, (N) m/z 812.58, (O) m/z 838.58, 

(P) m/z 842.65, (Q) m/z 844.67, and (R) m/z 845.64. The peaks labelled in red are parent 

and diagnostic ions. 
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