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Abstract 

The detection and identification of bioactive molecules (e.g. therapeutic small-molecule 

lead compounds, functional proteins) from complex mixtures is often a critical step in various 

biochemical and biomedical research fields. Conventional approaches typically rely on purifica-

tion of the molecules of interest that is guided by a specific activity/function followed by structure 

elucidation, chemical/physical property characterization, and bioactivity evaluation. The bioassay-

guided purification/characterization process is often conducted in a labor-intensive and low-

throughput manner consisting of repeated experimental steps. The lack of tools to directly pinpoint 

the bioactive molecules from complex crude biological samples is currently a painful challenge in 

the discovery of new bioactive molecules from biological samples. Emerging LC-MS-based 

metabolomic and proteomic approaches enabled rapid and high-throughput identification of the 

proteins and bioactive small molecules from complex biological samples (e.g. natural product ex-

tracts/fractions, cell lysates). Nevertheless, it remains challenging to incorporate both the activity 

and chemical identifications of the bioactive molecules directly from the complex mixtures. To 

address this problem, we have developed two new approaches: 1) Lickety-split Ligand Affinity 

based Molecular Angling System (LLAMAS), and 2) Activity-Correlated Quantitative Protein 

Profiling Platform (ACPP), for direct detection and identification of bioactive small molecules and 

proteins, respectively, from complex biological samples by combining the activity-based assays 

with quantitative metabolomics and proteomics studies.  

In natural product discovery, bioactive compounds are usually purified via bioassay-guided frac-

tionations. Loss of the activity or failure in purification of the minor or unstable bioactive com-

pounds during the commonly multi-step workflows (e.g. multiple rounds of biological tests and 

chemical fractionations) is a common and costly limitation in the isolation of bioactive natural 
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products. A major reason behind the problem lies in that most common bioassay models (e.g. 

phenotypic and genotypic) are not accessible to the direct detection and identification of individ-

ual bioactive chemical component from complex fractions and crude extracts rich in diverse sec-

ondary metabolites. To address this, the Lickety-split Ligand Affinity based Molecular Angling 

System (LLAMAS), an ultrafiltration-LC-PDA-MS/MS-based DNA binding assay, coupled with 

modern dereplication tools (e.g. GNPS, and DNP), was established for quick and easy identifica-

tion and dereplication of DNA binding agents in complex samples. This assay was developed us-

ing eight known small-molecule DNA binders (1-8) with different properties (e.g. DNA binding 

mechanism, solubility, and LC-MS performance). It was further validated by the successful de-

tection of two DNA binders that were spiked into a highly complex soil extract and the derepli-

cation of three known DNA intercalators including actinomycin D (9), V (10) and X0β (11) from 

the crude extract of Streptomyces antibioticus. To improve the throughput, the approach was fur-

ther optimized to a 96-well plate-based assay—LLAMAS 2.0. Seven DNA binding candidates, 

including berberine (12), palmatine (13), coptisine (14), fangchinoline (15),  tetrandrine (16), 

daurisoline (17), and dauricine (18) were detected and identified from three herbal extracts 

through high-throughput screening of 394 plant extracts. The results demonstrateed that LLA-

MAS enables efficient identification and dereplication of DNA binding molecules directly from 

complex metabolite extracts in the early stage of natural product discovery pipelines to avoid re-

peated purification of known active compounds. 

Functional protein (e.g. catalytic enzymes) identification and its activity validation is often 

a time-consuming and labor-intensive process due to the inclusion of protein overexpression and 

purification steps. Proteomics approaches have been applied for discovery of novel enzyme can-

didates from microbial secretomes by comparing protein expression profiles with enzyme activity 
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of different secretome cocktails obtained under different growth conditions. However, the activity 

measurement of each enzyme candidate is needed for confident enzymatic activity assignment, 

which remains to be elucidated. To address this challenge, an Activity-Correlated Protein Profiling 

Platform (ACPP) was developed, that can systematically correlates protein-level enzymatic activ-

ity patterns with protein elution profiles obtained from the “native” LC prefractionation and quan-

titative proteomics analysis. Enzymatic activity patterns in sequential fractions measured in dif-

ferent micro-scale bioassays were correlated with protein elution profiles (protein relative intensi-

ties in each fractions) using Pearson Correlation algorithm to generate R-scores. The activity was 

then confidently assigned based on R-score and record of predicted functions in free-accessible 

databases, such as NCBI and UniProt. The ACPP has been successfully applied to the identifica-

tion of two types of active biomass-degrading enzymes (e.g. starch hydrolysis enzymes and cellu-

lose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By deter-

mining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 

1,4-α-glucosidase as the major active starch hydrolysis enzyme (R = 0.96) and the endoglucanase 

as the major active cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the 

ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-

throughput, multiplexing, and untargeted fashion.
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Chapter 1: An Introduction to A Critical Analytical Tool: Liquid Chro-

matography-Mass Spectrometry (LC-MS) 

 

1.1 An Overview of the Principles and Development of Liquid Chromatography-Mass 

Spectrometry (LC-MS) 

 Liquid chromatography-mass spectrometry (LC-MS) analysis plays significant roles in 

modern analytical chemistry and bioanalytical chemistry fields. It combines the physical separa-

tion techniques of liquid chromatography (e.g. HPLC, UPLC, UHPLC) with mass analysis capa-

bilities of mass spectrometry (MS). As an important and popular analytical tool in laboratories, it 

has been widely used for both qualitative and quantitative analysis of different biological sam-

ples (e.g. metabolites, proteins). With ever-emerging new advanced technologies in column 

packing and instrumentation, LC-MS has become a prominent and powerful technology with 

very high specificity, accuracy and sensitivity.1 

 Liquid chromatography (LC) is a useful analytical technique that separates complex mix-

tures of analytes in solution based on the differential partition coefficient of each analyte be-

tween mobile and stationary phase on a chromatography column. Based on different functional 

chemical groups connected to the stationary phase (e.g. most commonly, silica-based gels), the 

analytes can be separated by their differential properties, including hydrophobicity [e.g. re-

versed-phase chromatography (RPC)2 and hydrophobic interaction chromatography (HIC)], 

charge [e.g. ion-exchange chromatography (IC)], size [e.g. size-exclusion chromatography 

(SEC)], affinity (e.g. affinity chromatography), and the combination of hydrophobicity and 

charge [hydrophilic interaction liquid chromatography (HILIC)]. High-performance liquid chro-

matography (HPLC) is an advanced type of LC. It typically uses very small packing spherical 
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silica particles (e.g. 3-10 µm i.d.) as stationary phase with the pressure limit of 5800 psi or 400 

bar. For five decades since the 1960s, the pressure limits of HPLC systems remained stagnant, 

until the "breakthrough" in ultrahigh-pressure liquid chromatography (UHPLC), which holds the 

pressure up to 1400 bar or 20,000 psi, was reported in 1997, when James Jorgenson packed 

fused-silica capillaries (30 µm i.d.) with 1.5 µm nonporous octadecylsilane-modified silica parti-

cles.3 A similar study by Milton Lee built on these results in 2001.4 At that point, the noticeable 

UHPLC technology still stayed at the “proof-of-concept” stage instead of being applied as a rou-

tine analytical tool in laboratories due to the limitation of commercial UHPLC equipment. In 

2004, the first commercial Waters Acquity UPLC (Ultra-Performance LC) system was released 

to the market, together with Acquity UPLC columns (1.0 and 2.1 mm i.d.) packed with sub-2-μm 

(typically 1.7 or 1.5 µm i.d.) hybrid particles, with an upper pressure limit of 15,000 psi or 1000 

bar.5 Since then, separation science has stepped into a new era, followed by different UHPLC 

systems emerged by many other manufactures. Compared with HPLC, UHPLC provides faster 

analysis with good, largely enhanced resolution for the separation of complex samples, and other 

benefits, such as solvent savings, increased sensitivity, and improved precision for both retention 

time and peak areas.  

 Commonly used HPLC and UHPLC detectors include, mass spectrometer (MS), UV de-

tector, charged aerosol detector (CAD), and evaporative light scattering detector (ELSD), but the 

most popular detectors are UV and MS. In the UV detector, when the sample flows through a de-

tection cell where either single wavelength or full spectra of UV light pass through, the eluent 

absorbs part of the UV light, which is measured as output for qualitative and quantitative analy-

sis.6 Photodiode array (PDA) detector is the most popular HPLC detectors which records full 
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UV-Vis absorption spectra of samples. MS detector measures the mass-to-charge ratio (m/z) val-

ues of charged particles (ions) in the gas phase.7 CAD and ELSD are both aerosol detectors. 

CAD measures charged aerosol particles created via nebulization and positively charged gas col-

lision (e.g., N2) using an electrometer.8 ELSD detects the scattering of light caused by the gas-

phase analyte particles, which are formed via nebulization and evaporation.9 Aerosol detectors 

can detect analytes that are less volatile than the mobile phase, including non- or semi-volatile 

molecules. They are commonly used to analyze molecules without chromophore, which cannot 

be detected by UV detectors. In some cases, the LC system is equipped with multiple detectors 

for specific studies. For example, LC-MS usually combines a UV-Vis detector with a mass spec-

trometer. Coupling of LC and MS is always desirable and favorable in analytical and bioanalyti-

cal fields thanks to the high specificity and sensitivity of MS analysis compared with other chro-

matographic or aerosol detectors.10  

 Mass spectrometry (MS) is a powerful analytical tool that measures mass-to-charge ratio 

(m/z) values and relative intensities of gas-phase charged ions for the identification and quantifi-

cation of different biological molecules (e.g. proteins, peptides, lipids, small molecules, etc.). Ba-

sically, a mass spectrometer is composed of an ion source, mass analyzer, ion detector, data pro-

cessor and vacuum system. The Ion source converts analyte particles into ions by bombardment 

with electrons, molecules, ions, or photons. When passing through the mass analyzer, gas-phase 

ions with m/z values are sorted and separated based on the different amounts of deflection that 

they undergo in the electric and magnetic fields. The most common ion detector used in routine 

experiments is called electron multiplier. When the beam of ions arrives at the metal plate of the 

detector, the charge is neutralized by electron transferring, generating electrons, which will be 
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multiplied and further converted into mass spectra. Signal intensities are related to relative abun-

dance of analyte ions, representing the basic principle of MS-based quantification. Original ana-

lyte ions, namely precursor ions or parent ions (MS1) are selected in mass analyzer for fragmen-

tation [e.g. collision-induced dissociation (CID), electron capture dissociation (ECD), and 

higher-energy collisional dissociation (HCD).] to generate product or daughter ions (MS2) for 

tandem mass spectra recording. MS2 product ions can be further fragmented to generate MS3,  

MS4,… MSn spectra. The m/z values of the product ions (usually MS2 ions) and fragmentation 

patterns of the analytes are related to unique structure features, providing the foundation of MS-

based structure elucidation.11 

With different mass analyzers, variable resolution and sensitivity can be achieved for the 

identification and quantification of biological samples. Common mass analyzers include mag-

netic sector, time-of-flight (TOF), quadrupole mass filter, ion trap, and Fourier transform ion cy-

clotron resonance (FTICR). The magnetic sector mass analyzer uses a static magnetic field to af-

fect the path of ions in a perpendicular direction to form circular or arched path. Ions with 

smaller m/z and higher velocity are deflected more, leading to the separation of ions in the mag-

netic sector. Herein, the resolution might be limited because ions leaving the ion source may not 

always have exactly the same kinetic energy and velocity. This phenomenon is very similar to 

chromatic aberration in optical spectroscopy. To address this, it is usually necessary to add an 

electric sector to focus the ions, giving them the same starting kinetic energy.12  

In TOF-MS, ions are first accelerated by an electric field to generate same kinetic energy 

for those with the same charge. m/z values of ions are determined by measuring the time taken by 

ions of different masses to fly from ion source to the detector. Here, the starting time when ions 

leave ion source needs to be well defined. Thus, in TOF-MS, ions are usually formed by a pulsed 
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ionization method, such as matrix-assisted laser desorption ionization (MALDI), or rapid switch-

ing electric field, releasing the ions from ion source in the manner like a “gate”—open and close 

alternatively in a very short time. The “Chromatic aberration” phenomenon happens in TOF-MS 

as well. Ions leaving from ion source don’t always have same starting time or kinetic energy, 

which affects the resolution. Therefore, to improve the resolution, an ion optic device, so-called 

“ion mirror” or reflector, is usually adopted to minimize the time or energy difference. Analyte 

ions with greater kinetic energies will penetrate deeper into the reflector, leading to longer flying 

time to arrive at the detector.13  

Quadrupole mass filter selectively allows ions with a specific m/z value to pass through, 

by applying combined DC (direct current) and RF (radio frequency) potentials on the quadrupole 

rods. It is not well suited for pulsed ionization method.14 Ion trap analyzers can trap ions by 

bringing them into orbits that are caused by the application of RF fields. They are ideal for MS2 

analysis. Selected ions with a specific m/z value are trapped in orbit, waiting for the introduction 

of fragmentation. Based on different designs, commonly used ion trap analyzers include linear 

trap quadrupole (LTQ from Thermo Fisher), orbitrap, cylindrical ion trap, etc..15  

FTICR-MS measures m/z values of ions based on their cyclotron frequency in a fixed 

magnetic field. It provides very high resolution and accuracy, which facilitates the determination 

of the composition of complex mixtures base on their accurate masses.16,17 Although different 

mass analyzers provide different level of resolution and accuracy, we cannot simply judge which 

one is good for all. Choice of mass analyzer should be based on the application context. 

 Liquid chromatography-mass spectrometry (LC-MS) is a critical analytical platform that 

combines advanced separation capabilities of HPLC/UHPLC and specific and sensitive mass de-

tection capabilities of mass spectrometry. Due to its intrinsic detection ability for gas-phase ions, 
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MS was first coupled with gas chromatography (GC-MS) in the 1950s with commercial instru-

ments available in 1970s.18 LC-MS development was limited because of the incompatibility of 

MS ion sources with the continuous liquid stream from the LC end, until the electrospray (ES) 

ion source was invented by John Bennett Fenn in the 1980s,19-20 which was awarded Nobel Prize 

in Chemistry in 2002.21 In ES ion source, analytes are ionized as shown in Figure 1-1. Specifi-

cally, the liquid jet is first nebulized under the effect of electric field and heat, forming a spray of 

small charged micro droplets. The droplet shrinks due to solvent evaporation, which causes the 

increasing of charge concentration on the droplets' surface. When the Rayleigh limit is reached, 

the droplets explosively dissociate because Coulombic repulsion overcomes the surface tension, 

which is called “Coulombic explosion”, forming smaller, lower charged droplets. The process of 

shrinking followed by explosion is repeated until individual, charged, 'naked' analyte ions are 

formed.22 Electrospray ionization (ESI) is a “soft” ionization technique that is wildly used to 

convert liquid-phase particles from LC end to gas-phase ions, without destroying the intact struc-

ture of analytes. It is the most extensively used ion source in laboratories for different biological 

molecule analysis (e.g. proteins, peptides, small molecules).23,24 Other ionization methods that 

can be applied in LC-MS include atmospheric pressure chemical ionization (APCI), atmospheric 

pressure photoionization (APPI), and fast atom bombardment (FAB). APCI and APPI are com-

plimentary to ESI approach for non-polar and thermally stable compounds analysis such as li-

pids.10 
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Figure 1-1. The mechanism of electrospray ionization (ESI).  

 

 Due to its superior capability and robustness in both qualification and quantitation, LC-

MS is now successfully applied as a routine analytical and bioanalytical tool in various research 

areas, such as pharmaceutical,25 biopharmaceutical,26 clinical,10 food, environmental27 sector, 

and so on.28, In this chapter, approaches and applications of LC-MS as a routine metabolomic 

and proteomic tool will be reviewed.  

 

1.2 Liquid Chromatography-Mass Spectrometry (LC-MS)-based Metabolomics 

The term “metabolomics” was coined by Nicholson et al in 1990s.29 It represents the 

comprehensive analysis of a pool of metabolites present intracellularly or extracellularly in a bio-

logical system (e.g. cells, biofluids of urine or serum, tissues, organs, organisms). It provides un-

biased global qualitative or quantitative assessment of small molecules with low molecular 

weight (e.g. < 1800 Da).30,31 A variety of analytical platforms have been applied in metabolom-

ics, including proton nuclear magnetic resonance spectroscopy (1H NMR),32 MS coupled with 
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LC, GC,33,34 capillary electrophoresis (CE),35,36 and supercritical fluid chromatography (SFC)37, 

among which, NMR, GC-MS and LC-MS are most often used. Each platform has their own ad-

vantages and disadvantages, while LC-MS is the most popular technology due to its ease in sam-

ple preparation, high sensitivity, and throughput.38 Metabolomic pipelines can be categorized 

into targeted and untargeted approaches. The targeted approach is usually hypothesis-driven, fo-

cusing on identification or quantitation of a metabolite or a class of metabolites, such as sub-

strates/inhibitors of an enzyme, a group of compounds involved in a specific pathway, and so on. 

Untargeted analysis measures or profiles all metabolites of a biological system, finding active 

components (e.g. biomarkers), or generating a new hypothesis for further testing. Typical work-

flow (Figure 1-2) of the LC-MS-based metabolomic study starts with metabolite extraction and 

untargeted LC-MS/MS analysis to screen potential or putative compounds of interest, prior to a 

targeted analysis of metabolite identification and quantitation, followed by function interpreta-

tion or pathway analysis.  

 

Figure 1-2. Typical workflow of the LC-MS-based metabolomic study 

 

 Sample preparation, namely metabolite extraction is usually challenging due to the large 

chemical diversity, the dynamic nature of chemicals, matrix interference, and sample loss. To ex-

tract metabolites from cell or tissue samples, it is required to carefully quench or control the en-

zyme activities. In some cases, internal standards (e.g. isotope-labeled analytes) are often spiked 

into the samples during extraction to test if enzyme activity successfully ceases or evaluates the 
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degradation extent of the target metabolites.39 Extraction of the target metabolites often needs to 

be well-tuned and optimized based on their unique properties. Unbiased extraction techniques 

are often adopted in whole metabolome extraction, including liquid-liquid extraction (LLE), 

solid phase extraction (SPE), solid-liquid extraction (SLE), protein precipitation, accelerated sol-

vent extraction, etc. Specific protocol optimization should follow the basic principle of compro-

mising minimal matrix interreference and maximum sample recovery.40  

 In LC-MS/MS, RPLC and HILIC are commonly used separation techniques for metabo-

lite studies. Selected reaction monitoring (SRM) or multiple reaction monitoring (MRM) is ideal 

for targeted metabolite investigation, while full scan is required for untargeted analysis. To 

achieve better chromatographic resolution of co-eluted metabolites and further reduce the sample 

complexity, additional chromatography techniques are often combined with LC-MS, such as IE 

and SEC. Recent development of UHPLC also facilitate the improvement of peak capacity and 

chromatographic resolution.  

 In data analysis, LC-MS data usually needs to be converted into a peak list for further 

metabolite identification and quantification, requiring several steps of pre-processing, including 

peaking filtering, baseline correction, peaking detection and matching, and retention time align-

ment. Besides commercially available software provided by most instrument manufactures, there 

are some publicly available tools for LC-MS data pre-processing, including Mzmine,41 XCMS,42 

MetAlign,43 and many others.  

Metabolomics studies can be divided into qualitative analysis, wherein molecules are 

identified, and quantitative analysis leading to relative or absolute quantification of metabolites. 

Metabolite identification is another major challenge in metabolomic studies.44 Currently, metab-
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olite identification is achieved by MS and MS/MS spectra searching against open-source data-

bases [e.g. Human Metabolome Database (HMDB),45 MassBank,46 METLIN,47 and ChemDB48] 

and in-house libraries, followed by manual verification. Large chemical and physical diversities 

of metabolites (sugar, lipids, steroids, amino acids, etc.) make it very difficult to derive general 

rules for fragmentation prediction. Due to the huge population of metabolites, and ever-emerging 

new compound discovery, the lack of standards and MS database is a major bottleneck in metab-

olite annotation.38, 49 Sometimes, a compound can be identified as an analogue of a known mole-

cule, yet the exact structure cannot be determined through MS spectra comparison only.   

 Current quantification strategies in metabolomics are essentially targeted metabolite 

quantification and untargeted metabolomic profiling. The MRM technique serves as a foundation 

of high-quality metabolite quantification, while the full scan technique is utilized for metabo-

lome profiling. In some cases, relatively large-scale but not whole metabolome quantitative anal-

ysis is needed, wherein MRM is limited by its relatively low metabolite coverage and throughput 

capacity. With the advancement and improvement in mass spectrometer, new approaches then 

emerged, bridging this gap. For instance, Asara’s group successfully established a platform for 

large-scale metabolite (258 metabolites) analysis, using a MS platform of triple quadrupole for 

MRM analysis, with faster scan speed (e.g. 3-ms for dwell time) and the capability of fast posi-

tive-negative ion mode switching.50 In addition, parallel reaction monitoring (PRM) coupled 

with high-resolution MS (e.g. Orbitrap) is an alternative platform for large-scale metabolite 

quantification.51 MRM is powerful due to its dramatically fast scan speed and polarity switching, 

while PRM benefits from its high resolution and full MS/MS acquisition for higher confidence 

identification of metabolites.  
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Untargeted metabolomics often involves vast data processing, which requires fast and ac-

curate bioinformatic tools to deal with the high complexity of the generated metabolomic data. 

Commonly used statistical tools in metabolomics are t-test, analysis of partial least squares dis-

criminant analysis (PLS-DA), principal component analysis (PCA), analysis of variance 

(ANOVA), and so on. Multiple web-based untargeted metabolomic platforms have been estab-

lished, allowing users to update and process their data in a few mouse clicks. Some platforms 

will be reviewed later in this chapter. 

 LC-MS-based metabolomics has been demonstrated to be a robust analytical tool in mul-

tiple areas, such as drug discovery,52,53 metabolic pathway analysis,54,55 and identifying bi-

omarkers of various diseases, including hepatocellular carcinoma (HCC),56 colorectal cancer,57 

coronary heart disease,58 insulin resistance,59 and many others. Here, the application of LC-MS 

based metabolomics in drug lead discovery from natural sources is reviewed in detail.  

 Natural products (NPs) are usually refer to secondary metabolites produced by a living 

organism (e.g. fungi, bacteria, plant), which are considered as an important source for new drug 

discovery. 60,61 The classical natural product discovery pipeline starts with activity screening of 

crude metabolite extracts, followed by compound isolation using bioassay-guided fractionation 

technique, structure elucidation, and activity measurement (Figure 1-3).  

 

Figure 1-3. Classical new natural product discovery pipeline 
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 Although successful, discovery of new bioactive metabolites (e.g. drug leads) is always 

challenging due to the repeated isolation of known compounds. To overcome this problem, 

metabolomics was introduced to facilitate the compound dereplication in a high throughput man-

ner, by providing a better view of vast data and broader metabolome coverage.62 Moreover, 

MS/MS fragmentation provides additional information for structure elucidation. Various power-

ful untargeted metabolomic platforms have been developed to successfully facilitate the bioac-

tive natural product isolation, including structure dereplication and activity prediction, which are 

the major applications in natural product drug discovery. These platforms include XC-MS 

online,63 MZmine 2,64 OpenMS,65 MS-DIAL,66 MAVEN,67 W4M,68 MetaboAnalyst,69 Molecular 

Networking,70,71 and many others. Primarily, they utilize feature (e.g. retention time, MS1, MS2, 

etc.) detection/alignment algorithms coupling with other statistical approaches to discover known 

compounds or predict the active components. The dereplication process is generally achieved by 

direct matching, scoring, and grouping of the characteristic experimental data of a test compound 

with those deposited in natural product databases (e.g. Dictionary of Natural Products (DNP), 

MarinLit, Antibase, DEREP-NP, and Atlas.)72-74 Molecular Networking platform 

(http://gnps.ucsd.edu) implements LC-MS/MS molecular networking as a cheminformatic tool 

and allows users to annotate MS/MS data with structures in a rapidly expanding public database, 

making it advantageous for dereplication query. This platform automatedly associates MS/MS 

spectra based on similarity of fragmentation patterns, with the underlying concept that structur-

ally related molecules will fragment in related ways to give analogous patterns. These relation-

ships are used to define molecular networks, in which the fragmentation patterns of related struc-

tures are clustered, analyzed, and visualized. Thus, new analogues of a known class of structures 

can be predicted. Several studies witnessed the successful application of Molecular Networking 
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in active compounds isolation. The Yang and Dorrestein groups isolated several new antibacte-

rial amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp., facil-

itated by molecular networking.75 Similarly, Gerwick’s group isolated anti-inflammatory and an-

algesic sphongonucleosides from Caribbean sponge Tectitethya crypta,76 and purified new linear 

lipopeptides, microcolins from marine cyanobacterium Moorea producens most recently.77 Mo-

lecular Networking platform was improved recently to accommodate the activity prediction 

function for drug lead discovery. Bioactivity-based Molecular Networking is capable of finding 

candidate active compounds from bioactive fractions, through the correlation between the activ-

ity patterns and the elution profiles of all metabolites detected in LC-MS analysis.78 Another 

metabolomic platform MetaboAnalyst can also differentiate active and inactive molecules via the 

mummichog algorithm, which allows direct prediction of pathway activities of molecules from 

high-resolution MS peaks, without the prerequisite of accurate peak annotation.69 Espindola’s 

group successfully annotated active compounds acetogenins in the extract of Brazilian plant An-

nona crassiflora via MetaboAnalyst analysis.79  

 LC-MS based metabolomics has shown its success and importance in various fields, yet 

there is still room to improve in several areas, like sample preparation, metabolite identification, 

and activity prediction. Efforts should be made urgently to enlarge the metabolite MS library, de-

velop more advanced bioinformatic tools that can link the metabolomic dataset and the activity 

results. Intergradation of metabolomics and genomics for better understanding of the roles of the 

molecule of interest in various pathways might be a feasible and promising direction.  
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1.3 Liquid Chromatography-Mass Spectrometry (LC-MS)-based Proteomics 

 Proteins are critical functional components in different cellular activities (e.g. signal 

transportation, product manufacture, self-protection, and routine maintenances).80,81 Due to these 

important functional roles, comprehensive studies of the proteins of interest is paramount to un-

derstand the underlying mechanisms of these processes. Conventional approaches for studying 

functional proteins mainly rely on targeted gene overexpression, followed by the purification of 

the protein of interest and related structural studies and activity assays.3,81,80,82 are typically time 

consuming and low throughput. Proteomics, a large-scale analysis of proteome (e.g. the entire set 

of proteins that generated by an organism, cell, tissue, or system), relying on mass spectrometry 

analysis, provides a platform for protein characterization and quantification in complex samples. 

By coupling with LC separation, proteomics has been processed into a high-throughput and 

large-scale approach, as modern advanced LC techniques allows thousands of proteins to be ana-

lyzed in a single LC/MS run.83  

 The workflow of LC-MS-based proteomics often involves sample preparation, LC-

MS/MS analysis, and data analysis. The involved MS instrumentation and LC separation tools 

are similar as those adopted in metabolomics, so this part will not be reviewed much here. Based 

on different protein characterization purpose and upstream sample preparation, proteomics can 

be categorized into bottom-up and top-down strategies. Basically, bottom-up proteomics, namely 

shotgun proteomics, refers to chemical or enzymatical cleavage of the protein into peptides for 

further LC separation and MS analysis, while top-down proteomics directly fractionate and de-

tect the intact proteins. Both approaches are applicable for protein identification and quantifica-

tion, yet top-down proteomics is preferable for the identification of various proteoforms, which 
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are critical to functions. Proteoforms of proteins often result from combining regulations of ge-

netic variation, alternative splicing, and post-translational modifications (PTMs).  

 As the most commonly used proteomics platform, bottom-up proteomics is well-estab-

lished for proteome profiling and quantification.84 In sample preparation stage, desalting is re-

quired for the digested peptide samples to accommodate the interface of LC-MS, because the 

salts introduced in the digestion step is non-volatile, which will accumulate in the end of the ca-

pillary tip, causing clog issues. The most often used enzymes in protein digestion are trypsin and 

pepsin. Solid-phase extraction (SPE) is a routine desalting technique for peptide sample clean-up 

prior to LC-MS analysis. Integrated LC-ESI-MS is the most popular tool in high throughput pro-

teomic analysis of complex samples. In LC-MS-based proteomics, upstream separation or frac-

tionation techniques are critical for achieving improved analytical dynamic range and broader 

proteome coverage. Common separation techniques including one-dimensional (1D), two-dimen-

sional (2D), multi-dimensional LC, and most recently emerged ion mobility spectrometry. They 

are all widely used for global and quantitative proteomics analysis. RPLC (e.g. C18-based sta-

tionary phase) is a routine couple of MS detection due to the compatibility of its mobile phase. 

To improve the peak capacity, researchers often resort to extending the length of capillary col-

umn (e.g. 80 cm, 200 cm) with long separation gradient (e.g. 180 min, 33 hours).85,86,87 UHPLC, 

referred to the discussion in 1.2, is another mature separation technique with higher peak capac-

ity, better chromatographic resolution, facilitating the characterization and quantification of low 

abundance proteins in targeted or global proteomic analysis.88,89-90 To fulfill the higher require-

ments of accuracy and sensitivity for highly complex sample analysis, the hybrid platforms of 

2D or multi-dimensional separations towards the peptide samples have been developed and ap-

plied with success. Considering the compatibility, the separation technique directly coupled with 
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MS is usually RPLC, while the upper stream fractionations can be strong cation exchange 

(SCX),91-93 anion exchange (AEX),94 HILIC,95 SEC,96 capillary isoelectric focusing (CIEF),96-97 

and so on. High-pH-RPLC coupling low-pH-RPLC with fraction concatenation is a non-typical 

2D proteomic analysis platform, yet affording better proteome coverage.98 Ion mobility spec-

trometry (IMS) is an analytical tool that separates gas-phase ions based on their deferential mo-

bility, which is caused by different molecular size and shape, through a buffer gas.99 It can re-

solve the ions that are indistinguishable by MS only, such as isomers, or gain more insights into 

conformational structural information.99 It has been applied for analyzing small molecules (e.g. < 

500 Da),100 peptides,101-102 proteins, and protein complex under native conditions103-105. 

 Protein identification is accomplished through comparing the collected MS and MS/MS 

spectra with the predicted or previously identified features in a library (e.g. UniProt and NCBI), 

using bioinformatic software, like MS-GF+,106 Sequest,107 X!Tandem,108 Mascot,109 commer-

cially available software (e.g. Proteomic MS Solutions from Thermo, Progenesis QI from Wa-

ters ), and many others. Compared with small molecule identification in metabolomics, pro-

tein/peptide identification tools are mature and well-established, with handy well-predicted data-

bases, thanks to the advanced genome sequencing technology.  

 Quantitative proteomics is a critical analytical tool in system biology. The quantitation 

approaches can be categorized into label-free and stable isotope labeling strategies.110 Using a 

label-free strategy,  peptide quantification is achieved either by comparing the extracted MS1 

peak intensities/areas, or the total acquired MS2 spectra number of the same peptide across dif-

ferent samples, which is often referred as spectral counting approach. Various open-source and 

commercial data processing software have been developed for label-free quantitative proteomics 

analysis, including MZmine, MSight, MsInspect, MapQuant, OpenMs, PEPPeR, SuperHirn, 
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Skyline, and many others.111-113 Various stable isotope labeling approaches are available for bot-

tom-up quantitative proteomic studies, including Stable Isotope Labeling by Amino Acids in 

Cell Culture (SILAC), Tandem Mass Tag (TMT), Isobaric Tags for Relative and Absolute Quan-

tification (iTRAQ), Isotope-Coded Affinity Tag (ICAT), Isotope Coded Protein Labeling 

(ICPL), 15N/ 14N metabolic labeling, 18O/16O enzymatic labeling, and many other chemical label-

ing approaches. Both label-free and isotopic labeling strategies have their own merits and demer-

its. Label-free approaches are simple and robust yet limited by the linear dynamic range and ac-

curacy for low abundance protein quantification. The isotopic labeling strategies may address 

these, yet still have several potential limitations, including complex sample preparation and han-

dling, expensive labeling reagents, incomplete labeling issues, and the requirement of specific 

quantification software.114  

 In last several decades, bottom-up proteomics has been extensively utilized in system bi-

ology. Nevertheless, it is limited by PTMs identification (e.g. phosphorylation, glycosylation, 

acetylation, and methylation) as their position information is lost in the protein chopping proce-

dure during enzymatic digestion. Top-down proteomics seeks to eliminate these problems by de-

tecting intact protein samples.  This approach allows for 100% sequence coverage and full char-

acterization of proteoforms.115 Despite this advantage, top-down proteomics is more challenging 

due to wide range of the protein sizes and various technical difficulties, including sample han-

dling, MS instrumentation for large m/z values resolving, and downstream data analysis.116 Up-

stream separation techniques could be RPLC (e.g. C3-5 stationary phase), SEC, EX, HILIC, 

HIC, CIEF, which are similar to those in bottom-up proteomics analysis. On the MS side, the de-

tection and identification of intact proteins relies on high resolution mass spectrometers (e.g. 

TOF, Orbitrap, and FTICR), especially for proteome-wide level studies.117 The commonly used 
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data analysis software are ProSignt, TopPIC, Big Mascot, PIITA, and many others. Compared 

with quantitative bottom-up proteomics, high throughput large-scale proteoform profiling and 

quantification has been left behind, yet due to the ever-emerging progress and improvement in 

LC separation techniques, MS instrumentation, ionization method [e.g. UV photodissociation, 

(UVPD)],118 and advanced data analysis software progress has started to accelerate.119-120  

LC-MS-based proteomics, mainly utilizing the bottom-up strategy, has been widely-used 

for functional protein studies (e.g. enzymes and drug targets), in which, function validation is al-

ways a major challenge.121,122 Herein, a variety of proteomics strategies have been developed for 

“active” proteins characterization. Activity-based protein profiling (ABPP) represents one of the 

most powerful chemical proteomic strategies (Figure 1-4). In principle, the approach makes use 

of an activity-based probe made of by three major components: 1) an electrophilic group that co-

valently binds to the nucleophilic residues within the active site of an enzyme, 2) a linker that 

connects the reactive group with a functional tag (e.g. biotin), and 3) the tag that enables the en-

richment of the probe-labeled proteins through a biochemical assay (e.g. biotin-streptavidin in-

teraction). Dependent on the selectivity of the probe, a specific enzyme or enzyme class can be 

directly labeled in situ within a complex biological system (e.g. live cells) and enriched selec-

tively followed by the identification and quantification of the target proteins of interest through 

high-resolution LC-MS/MS analysis. Since the first example of ABPP targeting esterases by Os-

trowski and Barnard with radioactive probe in 1961,123 many activity-based probes have been de-

veloped targeting different classes of enzymes, including serine-,124 cysteine-,125 aspartyl-,126 and 

metallo-127 hydrolases, kinases,128 glycosidases,129 histone deacetylases,130 and oxidoreduc-

tases.131 Despite of the robustness of ABPP, the dependence on a chemical probe somehow limits 

its application scope. 
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Figure 1-4. Schematic of the activity-based protein profiling (ABPP) 

 

 Several ligand label-free proteomic methods have been developed for functional protein 

characterization (e.g. enzyme and drug target), by monitoring protein property changes upon lig-

and binding. The shared principle is that small molecule-protein complexes become more re-

sistant to various external stresses, like protease, oxidation or heat, as the ligand binding stabi-

lizes the protein structure.132 Drug affinity responsive target stability (DARTS) characterizes the 

protein targets by separating the protease-resistant drug-treated proteins from others in compli-

cated cell lysate samples using the SDS-PAGE analysis, followed by in-gel proteomic identifica-

tion. This approach has been applied to and identified several drug targets,133 yet is limited by the 

sensitivity of in-gel based proteomics analysis for low abundance proteins identification. Most 

recently, several proteomics-based approaches, that can globally map the interaction landscape of 

drugs or metabolites, have been reported. Stability of proteins from rates of oxidation (SPROX) 

identifies the bonded proteins by reporting ligand-induced thermodynamic changes, which re-

quires the detection and quantification of the methionine-containing peptides.134 LiP-small mole-

cule mapping (LiP-SMap) can identify protein-small molecule interactions via measuring ligand-

induced protease susceptibility, through comparing the conformotypic peptide intensities among 

different samples that are treated by a drug with different concentrations. Similar to SPROX, 
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LiP-SMap characterizes the bounded proteins through measuring the intensity change of the pep-

tide which is considered to be the binding site.135 Thermal proteome profiling (TPP) is one of the 

representative unbiased small molecule-protein interaction mapping approaches that measures 

the thermal stabilization of proteins. It differentiates the binding proteins through comparing the 

melting curves of the drug-treated and control samples under 10 different temperature condi-

tions.136-137  The method has been widely used recently for drug target profiling.138-141  

As an essential analytical tool, LC-MS-based proteomics has witnessed rapid develop-

ments and successful applications, over the past two decades, especially in profiling and quanti-

tative analysis of proteins and their proteoforms. Nevertheless, functional protein characteriza-

tion or profiling in complex samples remains a major challenge in proteomics field.  

 

1.4 Perspectives and Future Opportunities 

 Identification and quantification of bioactive metabolites (e.g. natural products) and func-

tional proteins (e.g. enzymes, drug targets) are critical in many chemobiological fields, such as 

drug lead discovery, drug metabolism study, chemical verification of enzymes, disease diagno-

sis, food quality control, and so on. The early discovery and investigation of these bioactive mol-

ecules often rely on their purification, which is time-consuming, labor-intensive, and low 

throughput. With the ever-emerging new advanced technologies in the past several decades, 

methodologies and techniques have evolved dramatically for the discovery and characterization 

of new bioactive molecules.  

Mass spectrometry provides incomparable speed, accuracy, and sensitivity, making it the 

most popular tool for large-scale identification, quantification, and activity analysis of the mole-
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cule of interest in complex samples, especially when coupling with modern LC separation tech-

nologies (e.g. HPLC and UHPLC). Some LC-MS-based metabolomic and proteomic platforms, 

such as Molecular Networking, ABPP, TPP, and many others, have been developed and exten-

sively expanded in the past four decades. These approaches enable rapid and efficient detection, 

identification, and characterization of bioactive molecules from highly complex biological sys-

tems through the combination of multiple disciplines including synthetic chemistry, biochemis-

try, analytical chemistry, and bioinformatics. Nevertheless, these approaches often have limita-

tions, such as the difficulty in obtaining new probes, the lack of compatibility with different bio-

logical systems, and the insufficient informatic tools for accurate structure and function charac-

terizations. With the continuous improvement of current technologies, methodologies, informatic 

tools, and analytical techniques, new platforms and approaches will continue to emerge for bio-

active metabolite and functional protein characterization from complex biological systems with 

unprecedented accuracy, sensitivity, and throughput. 

 

Acronym list of chapter 1 

proton nuclear magnetic resonance 1H NMR 
activity-based protein profiling ABPP 
anion exchange AEX 
atmospheric pressure chemical ionization APCI 
atmospheric pressure photoionization APPI 
charged aerosol detector CAD 
capillary electrophoresis CE 
collision-induced dissociation CID 
capillary isoelectric focusing CIEF 
drug affinity responsive target stability DARTS 
Dictionary of Natural Products DNP 
electron capture dissociation ECD 
evaporative light scattering detector ELSD 
electrospray ES 
electrospray ionization ESI 
fast atom bombardment FAB 
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Fourier transform ion cyclotron resonance  FTICR 
hepatocellular carcinoma HCC 
higher-energy collisional dissociation HCD 
hydrophobic interaction chromatography HIC 
hydrophilic interaction liquid chromatography HILIC 
Human Metabolome Database HMDB 
high-performance liquid chromatography HPLC 
ion-exchange chromatography IC 
Isotope-Coded Affinity Tag ICAT 
Isotope Coded Protein Labeling ICPL 
ion mobility spectrometry IMS 
Isobaric Tags for Relative and Absolute Quantification iTRAQ 
liquid chromatography LC 
liquid chromatography-mass spectrometry LC-MS 
LiP-small molecule mapping LiP-SMap 
liquid-liquid extraction LLE 
mass-to-charge ratio m/z 
matrix-assisted laser desorption ionization MALDI 
multiple reaction monitoring MRM 
mass spectrometry   MS 
precursor ions or parent ions MS1 
product or daughter ions MS2 
natural products NPs 
principal component analysis PCA 
photodiode array PDA 
partial least squares discriminant analysis PLS-DA 
parallel reaction monitoring PRM 
post-translational modifications PTMs 
reversed-phase chromatography RPC 
strong cation exchange SCX 
size-exclusion chromatography SEC 
supercritical fluid chromatography SFC 
Stable Isotope Labeling by Amino Acids in Cell Culture SILAC 
solid-liquid extraction SLE 
solid phase extraction SPE 
stability of proteins from rates of oxidation SPROX 
selected reaction monitoring SRM 
tandem mass tag TMT 
time-of-flight TOF 
thermal proteome profiling TPP 
ultrahigh-pressure liquid chromatography UHPLC 
UV photodissociation UVPD 

 



23 
 

Chapter 2: Chapter Overviews 

2.1 Overview of Graduate Research and Accomplishments 

 As a graduate student in the division of analytical chemistry, my research mainly focused 

on LC-MS/MS-based bioanalytical method development, validation, and application to detect 

and identify bioactive molecules (e.g. potential drug leads, functional proteins) in complex bio-

logical samples (e.g. metabolite extracts, proteomes). Through 5+ years training, I was well-

trained for the whole pipelines of metabolomics (e.g. identification, quantitation), and quantita-

tive proteomics (e.g. label-free, isotopic labeling), including: 1) sample handling/preparation, 

such as metabolome and proteome extraction from plasma, cancer cell lines, bacteria, fungi 

through homogenization, sonication or bead-beating approaches, some of which were operated in 

BSL-2 labs; 2) hands-on HPLC/UHPLC/LC-MS operation experience (e.g. HPLC, UHPLC with 

normal/micro/nano-flow rate, and MS platform of Orbitrap Fusion, Q-Executive, Quadruple, 

IMS-QTOF, etc.), in charge of routine calibration, maintenance, and troubleshooting as an in-

strument manager; and 3) data processing and interpretation using either commercial or public 

statistical software (e.g. MSGF+, Skyline, MZmine, molecular networking). Moreover, I am 

adept at new bioassay development, such as high throughput enzymatic activity measurement 

(e.g. biomass-degrading enzymes, kinases) and DNA/small molecules binding assays. In addi-

tion, my research work has led to multiple publications and research awards, including a Lloyd 

E. Swearingen Scholarship for recognition of the outstanding graduate research in the Depart-

ment of Chemistry & Biochemistry and 3 travel grants to international conferences from the Uni-

versity of Oklahoma. I believe that my unique research experience has distinguished myself from 

other analytical or bioanalytical chemists.  
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 In addition to these laboratory techniques, I have also gained good scientific reporting 

and communication skills. I have been actively presenting my research work in conferences and 

seminars. As the presenting author, I had 2 oral and 5 poser presentations at several international 

conferences, including ASMS, USHUPO, ISCC, and ASP. Through my experience in new 

method development, I have gained various abilities, including literature-reviewing, critical-

thinking, independent problem-solving, multi-tasking, keen attention to detail, accuracy for data 

recording and organization, and so on. 

 

2.2 Chapter 3. Lickety-Split Ligand-Affinity-Based Molecular Angling System (LLAMAS): 

A Strategy for Detecting and Dereplicating DNA-Binding Biomolecules from Complex Nat-

ural Product Mixtures 

In Chapter 3, I present the development and application of a Lickety-Split Ligand-Affin-

ity-Based Molecular Angling System (LLAMAS): an ultrafiltration-LC-PDA-MS/MS-based 

DNA binding assay, coupled with modern dereplication tools (i.e., GNPS, and DNP), for detect-

ing and dereplicating DNA-binding molecules from complex natural product extracts. The LLA-

MAS was developed using eight known small-molecule DNA binders and then validated by the 

successful identification of three DNA intercalators from Streptomyces antibioticus. The ap-

proach was then further optimized to 96-well plate-based approach to accommodate the required 

throughput in new therapeutic natural product discovery pipeline. The well-developed high 

throughput angling system was then successfully applied into the screening of DNA binding 

molecules from a mini herbal extract library form our lab and a relatively larger plant extract col-

lection from National Cancer Institute (NCI). 
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2.3 Chapter 4. Finding Biomass-degrading Enzymes Through an Activity-Correlated 

Quantitative Protein Profiling Platform (ACPP) 

In Chapter 4, the development and application of the Activity-Correlated Quantitative 

Protein Profiling Platform (ACPP) is discussed. Specifically, the ACPP can be applied to iden-

tify functional proteins (e.g. biomass-degrading enzymes) from complex protein mixtures (e.g. 

fungal secretome) through cross-correlating protein-level enzymatic activity patterns with pro-

tein elution profiles obtained from the “native” LC prefractionation and quantitative proteomics 

analysis. The platform was developed by spiking a standard starch hydrolysis enzyme, 1,4-α-glu-

cosidase, in the Escherichia coli lysate. It was then successfully applied to the identification of 

two types of active biomass-degrading enzymes (e.g. starch hydrolysis enzymes and cellulose 

hydrolysis enzymes) from lab-cultured Aspergillus niger secretome. 
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Chapter 3: Lickety-Split Ligand-Affinity-Based Molecular Angling Sys-

tem (LLAMAS): A Strategy for Detecting and Dereplicating DNA-Binding Bi-

omolecules from Complex Natural Product Mixtures 

 

3.1 Introduction 

 Natural products are an important source of therapeutic drug leads owing to the incredi-

ble diversity of their structures and bioactivities.60, 142-143 Many of the successful stories to 

emerge from the field of natural-product drug-development research are legendary: the discovery 

of the antibiotic penicillin in 1928,144 the approval of anticancer drug taxol/paclitaxel by the US 

FDA in 1992,145 the discovery of the antimalarial drug artemisinin which won the 2015 Nobel 

Prize in Physiology or Medicine,146 and more.147 These milestones in drug discovery established 

natural products as an unparalleled resource for identifying therapeutically useful compounds to 

combat a wide range of diseases. 

Strikingly, a majority of the iconic natural products that are used as medicines were dis-

covered using the well-established, yet powerful technique known as bioassay-guided purifica-

tion.61, 148 This approach relies on subjecting mixtures of compounds (e.g. extracts and fractions) 

to iterative steps of fractionation and biological testing with the underlying strategy aimed at re-

ducing each sample’s chemical complexity until a single bioactive compound or group of bioac-

tive substances is secured. This method is effective, intuitive, and offers tremendous rigor as re-

searchers parse complex natural product mixtures; however, it has also been criticized for some 

real and perceived weaknesses: the process is somewhat slower compared to other library screen-

ing approaches, and it requires researchers to carefully track and dereplicate bioactive com-
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pounds throughout the purification process.78 A variety of supporting techniques have been re-

ported to enhance bioassay-guided-purification strategies, but few fundamental changes have oc-

curred to this central dogma of natural products drug discovery in over a century of use.149 

The longevity of bioassay-guided-purification in the field of natural product drug discov-

ery speaks volumes to its power and efficiency; undoubtedly, this technique will remain a main-

stay of the field for years to come. Yet natural product drug discovery has also witnessed many 

extraordinary technological advances such as new tools and data resources that have the power to 

disrupt traditional practices like bioassay-guided-purification.150,151,152 Our lab has sought to ex-

plore these emerging technologies not just as modifying agent used within existing drug discov-

ery frameworks, but rather as potentially transformative approaches to work in parallel, or some 

cases even replace, existing paradigm of bioassay-guided-purification. 

One area we see tremendous promise for enhancing natural-product drug discovery is 

based on the concept of ligand fishing. Although this approach is not new, it is certainly one that 

is now poised to take full advantage of the wealth of analytical tools and knowledge-based re-

sources that have become available to natural products researchers. What makes this method so 

attractive as an alternative to classical bioassay-guided purification is that it allows a researcher 

to condense multiple rounds of bioassays and purification into a single step. This is because lig-

and fishing turns the biological target into both the subject of the assay, as well as a pseudo-

sorbent for retaining compounds of interest. 

While a detailed review of ligand fishing methods is beyond the scope of this discussion, 

we would like to highlight some selected cases from the natural products literature where repre-

sentative technologies have been used to identify putative bioactive substances from compound 
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mixtures.152 In principle, ligand fishing approaches enable enrichment and separation of the bio-

active molecules from the inactive matrix based on their binding characteristics to the corre-

sponding biological targets (e.g. proteins, DNAs, and RNAs, or other), through various tech-

niques, such as immunoprecipitation, affinity chromatography, equilibrium dialysis, ultrafiltra-

tion, and so on. Fu et al. discovered several water-soluble salvianolic acid analogues as xanthine 

oxidase inhibitors from Radix Salviae Miltiorrhizae using size exclusion affinity chromatog-

raphy.153 The ligand fishing approach based on ultrafiltration was particularly successful for 

identifying enzyme inhibitors from complex medicinal plant extracts. Some representative exam-

ples include the discovery of: inhibitors of Plasmodium falciparum thioredoxin reductase 

(PfTrxR) from the MEGx® collection of AnalytiCon Discovery containing 133 structurally di-

verse natural compounds,154 phenolic metabolites as mitochondria-targeted bioactive constituents 

from herbal medicines,155 quercetin-3-O-rhamnoside and protocatechuic acid from Kadsura 

longipedunculata as α-amylase inhibitors,156 C-glycosylflavones as α-glucosidase inhibitors from 

hawthorn leaf flavonoids extract,157 and eupatilin from Artemisia argyi as a selective PPARα ag-

onist.158 A relatively newer approach based on magnetic microbead affinity selection screening 

was invented by the van Breemen lab in 2008 to identify three estrogens from the herbal extracts 

of Trifolium pratense L. (red clover)  and  Humulus lupulus L. (hops) as inhibitors of the estro-

gen receptor159. In a later study, the similar approach was applied to identify quercitrin as an in-

hibitor of 5-lipoxygenase160 from an herbal extract of Proserpinaca palustris.  

For simplicity, these approaches can be divided into two major categories: those that in-

volve binding or immobilization of the biological target to a solid substrate and those that forego 

the immobilization requirement. Among the techniques dependent on target immobilization, 

magnetic beads have been used to identify molecules that bind to proteins/enzymes from natural 
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product extracts.161-162 A functionally similar approach has been achieved wherein the protein/en-

zyme of interest is bound to the surface of a capillary or pre-capillary chamber. After incubating 

the bound target with a compound mixture, electrophoresis was used to detect protein-binding 

substances based on their increased retention. This method was used to identify putative inhibi-

tors of epidermal growth factor receptor via capillary electrophoresis coupled to LC-MS.163 Un-

fortunately, both of these methods suffer from the challenges surrounding the need to effectively 

perform the immobilization of a target substrate to a bead, capillary, or other inert surface. 

Ligand fishing techniques that do not require target immobilization offer certain ad-

vantages over target-binding-based approaches due to a combination of enhanced assay simplic-

ity, the capacity to retain a biological target’s native form, and the ability to readily use a wider 

range of biological targets. Dialysis-based methods represents one of these types of strategies in 

which a semi-permeable membrane is employed to afford the enrichment of putative ligands 

from compound mixtures via molecular diffusion. Over time, a dynamic equilibrium is estab-

lished, wherein a molecule with an affinity for a particular biological target, e.g., will become 

concentrated with the target of interest. In theory, this approach should provide a mechanism to 

select for compounds from complex mixtures; however, in practice, it faces some problematic 

challenges. Namely, this technique is hampered by its relatively low-throughput due to the 

lengthy periods required to establish dynamic equilibrium. Nevertheless, the Liu group reported 

the use of an equilibrium dialysis system that employed LC-MS detection to successfully charac-

terize seven known liposome binders from Panax ginseng extract.164 Similar to this methods, ul-

trafiltration coupled with LC-MS analysis is a powerful approach to detect potentially bioactive 

substances from complex samples. This technique requires little or no sample pretreatment and 

can be coupled to a variety of analytical readout devices. Recently, Li and Yang reported an 



30 
 

strategy using ultrafiltration with LC-MS in conjunction with in silico molecular docking to dis-

cover enzyme inhibitors from traditional plant-based medicines.165 

One of the cellular components that continues to be an attractive, druggable target is 

DNA. For decades, molecules that bind to DNA have served as powerful and clinically effective 

weapons for combating several types of cancer. Examples of DNA-binding agents used in cancer 

chemotherapy include mitomycin C,166 cisplatin,167 and actinomycin D (9);168 however, their suc-

cess is somewhat limited due to dose-limiting side effects.169-170 Despite these success, the dis-

covery of new therapeutically-useful DNA binding molecules remains a challenging proposition 

in part because of DNA’s limited range of recurring binding motifs.171 Nevertheless, a promising 

report by Liu and Wan revealed that a triplex-DNA-binding assay was capable of detecting com-

pounds from natural plant extracts using a DNA-conjugated agarose-bead-based baiting tech-

nique that was used in combination with LC-MS detection.172 Unfortunately, this method still re-

quired the DNA to be immobilized, which presents certain challenges in high-throughput assay 

situations.  

Our goal was to develop an efficient ligand fishing assay for the detection and identifica-

tion of DNA-binding agents from natural product mixtures, which can be easily adapted for the 

high throughput screening required in common natural product discovery pipeline. As part of 

that goal, we sought to use non-immobilized DNA that would allow the assay to be readily con-

verted for use with different DNA sources, sequences, and targets. In this report, we describe our 

efforts to implement a natural product drug discovery pipeline using an ultrafiltration-based as-

say system linked with LC-PDA-MS/MS to seamlessly detect, dereplicate, and in some cases 

identify compounds from complex mixtures of natural products (e.g. total organic extracts). For 

higher throughput, the developed approach was then optimized to 96-well plate-based screening. 
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With the optimized assay, 62 herbal extracts from our lab and 332 plant samples obtained from 

NCI were screened, with 3 unique hits identified to contain DNA binding molecules.  

 

3.2 Results and discussion 

3.2.1 Design and Implementation of an Ultrafiltration-LC-PDA-MS/MS-Based DNA-Bind-

ing Assay 

A ligand fishing strategy was devised to identify DNA-binding agents from complex 

mixtures of natural products (Figure 3-1). While ligand fishing techniques are regularly exploited 

in the field of chemical biology, we found comparatively fewer cases of this methodological ap-

proach being used for the purpose of chemical detection in natural product drug discovery.152,173 

This was surprising to us, since in theory, ligand fishing approaches have the power to combine 

the individual steps of a biological assay with analytical chemical detection to create a seamless 

process that in theory, is capable of shortening the iterative cycles of traditional bioassay-guided 

compound identification. In our adaptation of ligand fishing, the plan consisted of four succes-

sive stages: (1) an incubation phase to afford binding of compounds with their DNA targets, (2) 

ultrafiltration to separate the ligand-bound-DNA complex from unbound small molecules, (3) 

untargeted LC-MS analysis of the filtrates to detect candidate DNA-binding molecules, and (4) 

employment of natural-product data resources (e.g. GNPS, SciFinder, DNP, and others) to both 

dereplicate and guide efforts toward the identification of putative DNA-binding molecules. By 

comparing the filtrates of extracts incubated with DNA versus control samples that were pro-

cessed without DNA, it was reasoned that compounds bound or otherwise associated with DNA 

would be revealed based on their differential abundance in experimental versus control filtrates. 

The filtrates from the experimental (with DNA) and control (without DNA) conditions could 
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then be analyzed directly using an ultra-high-performance-liquid-chromatography (UHPLC or 

simply LC) system equipped with a photo-diode-array (PDA) detector that was coupled to an ion 

trap mass spectrometer with ion fragmentation capabilities (MS/MS). We rationalized that by 

employing the orthogonal detection capabilities of LC-PDA-MS/MS (i.e., UV and EIC traces), it 

would provide a sensitive analytical platform that could handle a broad range of chemical scaf-

folds such as those found among natural products. Furthermore, if the system were operated 

within the linear dynamic range of putative binding agents (Figure S2, Appendix), the peak areas 

for DNA-binding molecules would measurably decrease within the experimental group, whereas 

the peak areas for non-DNA binding molecules would remain unchanged. 

 

Figure 3-1. Overview of a strategy designed to detect DNA-binding molecules from chemical mixtures 

using an ultrafiltration assay coupled to LC-PDA-MS/MS. Using this approach, putative DNA binding 

molecules would be detected by comparing the filtrates from samples that were incubated with (experi-

mental group) or without (control group) DNA. 

 

Many experimental parameters were considered during the development phase of the pro-

ject and optimized for our experimental; the reasoning behind some of the experimental design 

decisions merit further discussion. Bulk salmon-sperm DNA was used for our studies since it 
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represented an affordable source of reasonably-sized, intact DNA [double helix fragments con-

sisting on average of ≈2,000 bp (1,300 kDa)] that would be widely available to other labs want-

ing to adopt our protocols. After considering several types of ultrafiltration membranes, a modi-

fied polyethersulfone membrane that offered a 100 kDa cutoff was selected since it presented an 

advantageous suite of properties (compatible with a range of elution solvents and reasonable in-

ertness). Moreover, elution could be conducted using unextraordinary centrifugation conditions 

(i.e., 5,000 g) making this technique adaptable to many lab settings. A variety of assay incuba-

tion conditions were also evaluated as we searched for a solution that would allow for the DNA 

to retain a natural double helix structure, enable the solubilization of wide range of natural prod-

ucts, and minimize the number of weakly bound compounds in favor of molecules that exhibited 

stronger DNA binding interactions. This led to the identification of a modified glycerol-contain-

ing Tris-EDTA buffer combined with 33% by volume MeOH. The buffer served as the incuba-

tion solution and served in the wash step to remove unbound molecules. In our hands, this solu-

tion enabled a wide range of compounds (including many hydrophobic substances) to remain in 

solution during the incubation period.  

 

3.2.1.1 Testing Assorted DNA-Binding Agents  

Eight compounds known to interact with DNA (Table 3-1) were selected to test the lig-

and fishing system. Those compounds were chosen based on several criteria including the inclu-

sion of diverse structural features and chemical properties, coverage of different DNA binding 

mechanisms, and non-equivalent sensitivities to detection by UV and MS instrumentation. Two 

assay endpoints were examined (Figures 3-2 and S3, Appendix). The first endpoint involved de-

termining whether a putative DNA-binding molecule was present in the eluent obtained from the 
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ultrafiltration wash step based on semi-quantitative comparisons of its relative concentrations in 

samples incubated with and without DNA (Figure 3-2, upper panels). The second endpoint relied 

on analyzing the profile of substances obtained from an organic solvent rinse step (MeOH spiked 

with 0.1% formic acid) used to disrupt small-molecule binding interactions with DNA after the 

buffer wash (Figure 3-2, lower panels). While both methods were deemed to be informative and 

provide complementary information [e.g. distinguishing between covalent versus non-covalent 

DNA binders (Figure 3-3)], we conclude the first method alone was sufficient to perform routine 

sample screening. Thus, we determined that our ligand fishing system could detect molecules 

that exhibited different DNA binding mechanisms [i.e., intercalators (1-4), groove binders (5-6), 

and covalent binders (7-8)], and covered a wide range of structural motifs including molecules 

that were difficult to ionize under standard ESIMS conditions [i.e., compound 8]. 

Table 3-1. Information of 8 known DNA binders 
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Figure 3-2. Methods for the detection of intercalating compounds 1-4 in the DNA-binding assay. The UV 

chromatograms (λ 254 nm) show the peak areas of the filtrate for the control group samples incubated 

without DNA (upper panels, black solid line traces) compared to experimental group samples that were 

incubated with DNA (upper panels, red hashed line traces). The compounds bound with the DNA were 

subsequently dissociated (lower panels, green solid line traces) with MeOH containing 0.1% formic acid. 

(NL: normalized intensity) 

 

Figure 3-3. Detection of groove-binding agents 5-6 and covalent-binding compounds 7-8 in the DNA-

binding assay. Compounds 5, 7, and 8 were observed by UV (λ 254 nm) detection, whereas 6, which 

lacks a clearly detectable UV chromophore was monitored using the EIC trace from the mass spectrome-
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ter. Individual plots show the peak areas for the compounds from the filtrate for the control group (incu-

bated without DNA, black solid line traces) superimposed on the traces recorded for the experimental 

samples (incubated with DNA, red hashed line traces). While covalent-binding compounds 7 and 8 unsur-

prisingly were not dissociated from the DNA, the groove-binding compounds 5 and 6 were also proved 

difficult to recover using the dissociation solvent (data not shown). (NL: normalized intensity; EIC: ex-

tracted-ion chromatogram) 

 

3.2.1.2 Detection of DNA-Binding Molecules in Mixtures and Complex Matrices 

To establish the outcome when multiple types of compounds competed for the same or 

similar DNA-binding sites, we prepare a mixture of four DNA-intercalating agents (final assay 

concentration 51 M of 1, 81 M of 2, 67 M of 3, and 51 M of 4) for testing. We rationalized 

that many of the metabolites encountered in natural product extracts occur as mixtures; therefore, 

competition for binding sites was likely to occur during sample screening. The results from our 

tests indicated that such mixtures would likely not be problematic since all compounds were 

readily detected by LC-PDA-MS/MS (Figure 3-4).  

 

Figure 3-4. Monitoring the outcome for four DNA intercalators (1-4) tested as a mixture in the DNA-

binding assay. The upper UV traces (λ 254 nm) show the results for compounds incubated with (red 

hashed lines) or without (black solid lines) DNA whereas the lower panel (green solid lines) show the UV 
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traces following compound dissociation using MeOH containing 0.1% formic acid. (NL: normalized in-

tensity) 

Next, we sought to test how the assay system would perform when a DNA binding com-

pound incorporated into a complex matrix. We employed what was perceived to be a potential 

“worst-case” scenario that consisted of an organic extract prepared from soil (the top ≈7 cm of 

material collected from a low-lying hardwood forest plot that supported lush herbaceous plant 

growth). The soil extract contained >1,000 potential chemical features found in a wide range of 

concentrations.174 Two DNA intercalators, 9-aminoacridine (1) and ellipticine (2), were spiked 

into the soil extract in low 1:600 (w:w) amounts to test the assay system’s robustness. Analysis 

revealed that even under those challenging conditions, both compounds were readily detected 

(Figure 3-5) affording confidence that the assay was capable of handling the level of chemical 

complexity present in most natural product crude extracts. 

 

Figure 3-5. Detection of DNA binding agents incorporated into a complex soil extract. DNA intercalators 

1 and 2 were added (1:600, w:w) into an organic extract prepared from soil. (A) The UV chromatograms 

(λ 254 nm) reveal that retention of the test compounds was observable upon comparison of the samples 

incubated with (red hashed lines) versus without (black solid lines) DNA. Additionally, compounds 1 and 
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2 were readily found following their dissociation from the DNA using MeOH containing 0.1% formic 

acid (green solid line shown in the lower panel). (B) Alternatively, the extracted ion chromatograms 

demonstrated mass spectrometry could also serve as was a suitable tool for detection in a complex sub-

strate. (NL: normalized intensity; RT: retention time) 

 

At this juncture, we concluded that our system of detecting and analyzing putative DNA-

binding compounds was sufficiently refined and repeatable that it was ready for testing natural 

product extracts. We were encouraged by how quickly single samples could be processed giving 

us reason to believe that this approach could be further engineered to offer a reasonable level of 

throughput for screening purposes. This led to some debate within our lab what to call our “ultra-

filtration-LC-PDA-MS/MS-based DNA-binding assay and compound identification process,” 

since its analytical capabilities and potential screening applications went beyond traditional lig-

and fishing methods. Internally, we moved to adopt the amusing acronym “LLAMAS 1.0,” 

which stood for Lickety-split Ligand-Affinity-based Molecular Angling System version 1.0 as a 

amusing term intended to represent the unique processes built into our all-inclusive platform. 

 

3.2.1.3 Testing LLAMAS 1.0 for the Identification of DNA-Binding Natural Products in a 

Microbial Extract 

Actinomycin D (9) and its analogues are DNA-intercalating agents found in several 

Streptomyces spp.175-177 We prepared a sample containing the ethyl-acetate-soluble components 

from a Streptomyces antibioticus (ATCC14888) culture and analyzed the resulting extract using 

LLAMAS 1.0. The analysis resulted in the detection of multiple putative DNA binding candi-

dates including a major UV-active peak (RT 8.64 min) that afforded two mass features (m/z 

1255.75 and 1269.67), as well as a minor UV-active peak (RT 7.77 min) offering a single mass 
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feature (m/z of 1271. 75) (Figure 3-6). The resulting MS data were analyzed using the GNPS 

open-source cheminformatic platform leading to the provisional identification of actinomycin D 

(9) (Figure S5, Appendix) along with two metabolites that were likely to be structural analogues 

of 9 based on their mass fragmentation data. To confirm the identities of the compounds, MS-

guided semi-preparative C18 HPLC was used to purify the three metabolites, which were subse-

quently subjected to NMR and other spectroscopic tests resulting in their authentication as acti-

nomycin D (9), V (10) and X0β (11) (Figure 3-7).178 Thus, the incorporation of molecular net-

working into the LLAMAS platform demonstrated the potential to accelerate the identifica-

tion/dereplication of DNA-binding compounds from multicomponent natural product samples. 

 

Figure 3-6. Identification of the DNA binding natural products actinomycins D (9), V (10), and X0β (11) 

from S. antibioticus. (A) Analysis of the full PDA chromatogram (λ 190-602 nm) revealed putative DNA-

binding substances in the bacterial extract (candidate peaks are highlighted in red boxes). (B) Upon ad-

justing the PDA chromatogram to display a narrower range of wavelength (λ 400-500 nm) (solid black 

and dashed red lines), as well as carrying out dissociation of the substances bound to the DNA (solid 

green line, lower panel), the MS data revealed the presence of three substances in the extract: 9 (RT = 
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8.64, [M+H]+ ion at m/z 1255.75), 10 (RT = 8.64, [M+H]+ ion at m/z 1269.67), and 11 (RT = 7.77, 

[M+H]+ ion at m/z 1271.75). 
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Figure 3-7. Structures of identified DNA binding natural products (9-18) from bacterial and plant ex-

tracts. 
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3.2.2 LLAMAS 2.0 for 96-Well Plate-Based Assays 

3.2.2.1 Developing LLAMAS 2.0 

Considering the speed with which a single sample could be tested, and its DNA-binding 

compounds identified using LLAMAS 1.0, we speculated that substituting the filtration micro-

tubes for a device with higher throughput potential would enhance our ability to more rapidly 

screen larger numbers of test substances. Therefore, we turned to evaluating a  96-well microtiter 

plate system that contained a 100 kDa cutoff ultrafiltration membrane, which could be used in 

conjunction with a vacuum manifold system to afford a significantly increased level of through-

put. This approach, which was dubbed LLAMAS 2.0, was assessed using DNA binders 1-8 lead-

ing to the conclusion that all the test compounds could be detected alone (Figure S6A, Support-

ing Information) and in mixtures (Figure S6B, Supporting Information) using the 96-well ultra-

filtration plate format. As an additional test, a mixture of wild herbaceous annual and perennial 

plants (unidentified assemblage of plants containing ≈15-20 dicotyledons and monocotyledons) 

found growing in ungroomed plots on the University of Oklahoma campus were collected and 

extracted creating a complex natural-product-containing extract. Compounds 1 and 4 were added 

to the mixed plant extract in a ratio of 1:5:250 (w:w:w of 1:4:extract, respectively) and the sam-

ple tested using LLAMAS 2.0. The spiked-in DNA intercalators were readily detected employ-

ing sample sizes as small as 250 μg in a working volume of 100 μL (Figure S6C, Supporting In-

formation), which was far better than the 400 μL working volume 2-3 mg of extract needed for 

the microtube-based LLAMAS 1.0.  
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3.2.2.2 Testing LLAMAS 2.0 Using a Collection of Herbal-Supplement Extracts 

Over the course of many years, our lab has acquired a modest set of 62 plant specimens 

that are used in the United States in the herbal supplements industry (Table S1, Appendix). Or-

ganic extracts were prepared from the samples and portions of each were formatted in a 96-well 

microtiter plate for testing using LLAMAS 2.0. The experimentalist performing the test was 

blinded to the identities of the extracts to provide greater rigor for the experiment. The tester 

classified one sample as a “hit” after it was found to contain putative DNA-binding molecules 

(Figure 3-8) based on comparisons of its UV chromatograms and total ion traces of sample fil-

trates acquired following incubation of the extract with and without DNA present. The hit sam-

ple was determined to contain three UV-absorbing peaks that exhibited m/z values of 320.08, 

336.17, and 352.25. The MS2 fragmentation data for the three analytes were submitted to the 

GNPS platform, which generated a strong match to the DNA-intercalating compound berberine 

(12), as well as two berberine analogs.179-180 To confirm the identities of the natural products, 

semipreparative C18 HPLC was used to purify the compounds, which were dereplicated by NMR 

analyses as 12, palmatine (13), and coptisine (14) (Figure 3-7).181 Unmasking of the plant’s iden-

tity revealed the source of 12-14 to be the roots of Coptis chinensis Franch., which is a well-es-

tablished natural source of these metabolites. The DNA-binding activities of compounds 12-14 

were confirmed (Figure 3-9) and found to be consistent with published data.179, 182-183 In further 

support of the rigorousness and correctness of the results afforded by LLAMAS 2.0, a post hoc 

literature search was performed on the other 61 plant specimens and none were reported to con-

tain known DNA-binding compounds. The results of this test, although limited in scope, sug-

gested that LLAMAS 2.0 was not overly vulnerable to false-negative or false-positive results un-

der real-world natural-product screening conditions. For transparency purposes, it must be noted 
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that the plant materials used in this study were received as small pieces or in powdered form ne-

gating the opportunity to conduct macro-scale visual authentication. 

 

Figure 3-8. Three molecules in the crude extract of root slices of Gold Thread (Coptis chinensis) were 

found to bind with DNA. UV chromatogram at 254 nm showed two major DNA binder peaks that were 

eluted at 3.13 min and 3.37 min. MS spectrum revealed three m/z values at 320.08, 336.17, and 352.25 for 

the combined region of the three UV peaks. 
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Figure 3-9. Confirmation of the DNA binding activities of berberine (12), palmatine (13), and coptisine 

(14). UV chromatogram at 254 nm showed their peaks in experimental group (red line) disappeared, 

while detected in control group, indicating their DNA binding activity. 

 

3.2.2.3 Applying LLAMAS 2.0 to Test a Library of Traditional Chinese Medicinal Plant 

Extracts 

The US National Cancer Institute (NCI) has assembled a library composed of 332 or-

ganic extracts prepared from plants used in Traditional Chinese Medicine (TCM), and samples 

are available to researchers upon written request.184 This library, which offers good coverage of 

diverse natural product scaffolds originating from several plant families, offered an excellent op-

portunity for testing LLAMAS 2.0. Testing of the 332 organic extracts in duplicate yielded three 

samples that were identified as containing DNA-binding compounds. Upon examination of the 

sources of the three active extracts, we noted that one of the samples had been prepared from C. 

chinensis; the data derived from LC-MS/MS revealed that the same three DNA-binding metabo-

lites we previously dereplicated, 12-14 (vide supra), were present in the new sample from the 

NCI TCM collection. 

The two remaining active samples were detected using LLAMAS 2.0 had been prepared 

from Stephania tetrandra S. Moore and Menispermum dauricum DC. Focusing first on the re-

sults obtained for S. tetrandra, two molecular features were detected that yielded m/z values of 

609.33 and 623.33 ([M+H]+ ions), and were tentatively attributed to the bisbenzylisoquinoline 

metabolites fangchinoline (15) and tetrandrine (16), respectively (Figure 3-7), based on their bio-

genic source, UV-Vis spectra, reported DNA binding activities, and MS data.185,186 LC-MS data 

obtained from the samples using the M. dauricum extract supported the presence of two active 

compounds that were supported by the presence of [M+H]+ ions exhibiting m/z values of 611.50 
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and 625.42, which were preliminarily identified as daurisoline (17) and dauricine (18), respec-

tively (Figure 3-7), based on their LC-MS data, biogenic source, and reported DNA binding ac-

tivities.187,188 The initial structure assignments of 15-18 were subsequently confirmed based on 

comparisons of their 1H NMR spectra, specific rotation values, and MS features with reported 

data.186, 189, 190-191 The DNA-binding activities of purified 15-18 were then verified using the 

LLAMAS 2.0 method (Figure S7, Appendix). 

 

3.2.3 Conclusions 

The results of these studies demonstrate that LLAMAS 2.0 is an effective platform for 

the detection and dereplication of DNA-binding natural products from complex chemical mix-

tures. While this initial application LLAMAS focused on compounds that interact with DNA, we 

see tremendous potential for expanding this methodology to include alternative biological targets 

(e.g., proteins, RNA, cellular organelles, and more). The enduring dominance of bioassay-guided 

fractionation in natural products discovery is a testament to it power and practicality. However, 

alternative approaches that take advantage of the confluence of an expanding range of readily ac-

cessible commercial materials and the ever-improving capabilities of analytical tools need to be 

considered as enabling components for creating alternative bioactive natural product detection 

measures. Whereas various forms of ligand fishing techniques have been in use for a longtime, it 

is our opinion that they have not been appropriately exploited in the field of natural products dis-

covery. We anticipate that LLAMAS and related approaches, which consolidate the detection 

and identification of biologically intriguing compounds into a single process have the potential to 

further enhance the natural-products-driven drug discovery efforts.  
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3.3 Materials and Methods  

3.3.1 General Experimental Procedures 

Column chromatography was performed using silica gel and HP20SS. Preparative HPLC 

was processed on a SHIMADZU System equipped with LC-6AD HPLC pump, coupled to SPD-

M20A PDA detector and Phenomenex Luna C18 column (21.2 × 250 mm, and 10 × 250 mm, 5 

μm). Analytical and semipreparative HPLC were conducted using a Waters HPLC system with 

1525 binary pump and 2998 PDA detector, Phenomenex Gemini 5 μm C18 and Phenomenex 

Kinetex pentafluorophenyl (250 ×4.6 mm, 1 mL/min, and 250 × 10 mm, 4 mL/min, 5 μm) col-

umns. NMR data were collected on Varian 600 MHz NMR spectrometers. Microcentrifuge tube-

based ultrafiltration filters (100 kDa) were obtained from Pall Corporation (Houston, Texas, 

USA). Salmon sperm DNA and all other chemicals were purchased from Sigma-Aldrich (St. 

Louis, Missouri, USA). Distilled water was purified by a Milli-Q water purification apparatus 

(Millipore, Bedford, MA). All solvents were of ACS grade or better. 

 

3.3.2 Culture and extraction of Streptomyces antibioticus 

The bacterial strain (14888) was purchased from the American Type Culture Collection 

(ATCC, Manassas, Virginia, USA). Streptomyces antibioticus was first retrieved on Yeast Malt 

Agar plate, containing 0.5% peptone, 0.3% yeast extract, 0.3% malt extract, 1% dextrose, and 

0.15~0.2% agar (final pH 6.2±0.2), then cultivated in liquid media, containing 0.5% tryptone 

and 0.3% yeast extract. The single colony was inoculated to 20 mL liquid medium in falcon 

tubes, shaking at 200 rpm, 30 ℃ for 24 hours for seed broth preparation, which was then added 

to 1.25 L each liquid media for incubation under shaking at 200 rpm, 30 ℃ for 6 days. Around 5 
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L fermentation broth was obtained and then extracted with ethyl acetate through homogenization 

and overnight soak for three times. 

 

3.3.3 Herb extraction 

Herbal materials were purchased from Dandelion Botanical Company (Seattle, WA). 2 g 

dry herb sample was soaked in 200 mL MeOH for 24 hours. Supernatant was dried using rot vap 

and then resuspend in 400 mL ethyl acetate : H2O (v : v = 1 : 1) for partitioning. The ethyl ace-

tate phase was collected and dried for further analysis. For Gold Thread (Coptis chinensis), 550 

mg extract was obtained from 20 g root slices using the same protocol.  

 

3.3.4 Lickety-split Ligand Affinity based Molecular Angling System (LLAMAS) 

Pure compounds were dissolved in water or cosolvent of DMSO/methanol based on their 

solubilities. 1 mg/mL DNA solution in 1x TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) with 

15% glycerol was stocked at 4 °C before usage. 1x TE buffer with 15% glycerol was prepared 

and stocked at 4 °C as control buffer. 

In binding incubation step of the microtube-based approach, 5~50 μg pure compounds or 

1~3 mg of natural extract mixtures (water-soluble pure compounds were dissolved in 200 μL wa-

ter, other compounds and complex extracts were dissolved in 200 μL MeOH) was incubated with 

400 μL DNA solution in experimental group, while with 400 μL control buffer in control group, 

at room temperature for 30 mins with gentle shaking. The incubated sample was filtered through 

the ultrafiltration membrane (100 kDa) at 5,000 g, 10 °C. The filtrates were collected for LC-

PDA-MS/MS analysis. In dissociation workflow shown in Figure S1 (Supporting information, 

Appendix), the DNA-ligand complex (leftover solution above the ultrafiltration membrane) in 
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experimental group was washed 3 times using 30% methanol through ultrafiltration to remove 

the free molecules. Next, the complex was transferred to a microcentrifuge tube for dissociation 

in 600 μL 95% HPLC methanol with 1% formic acid, by rigid vertex for 20 mins at room tem-

perature. The released ligand was then separated from denatured DNA through centrifugation us-

ing a new ultrafiltration filter at 5,000 g for 10 mins. The collected filtrate was dried through 

evaporation in vacuum and then resuspended in 50 μL HPLC methanol, prior to LC-MS/MS 

analysis.  

In high throughput LLAMAS, 1~25 μg pure compounds or 125 μg of complex samples in 

50 uL MeOH, 100 μL DNA solution (experimental group) or control buffer (control group), and 

0.5 ug known DNA intercalator 1 were added into each well orderly, prior to incubation at room 

temperature for 30 mins with occasional shaking. During incubation, the plate was sealed with 

sealing film to avoid evaporation. Ultrafiltration was conducted in a MultiScreen®
HTS 

Vacuum Manifold (EMD Millipore, Billerica, MA) with the vacuum level of less than 20 in. Hg 

(i.e. 15-20 in. Hg). Collected filtrate was directly introduced into LC-MS/MS analysis with 10 

μL sample injection.  

 

3.3.5 Untargeted LC-PDA-MS/MS analysis 

LC was performed on an Accucore Vanquish UHPLC, equipped with a (photodiode ar-

ray) PDA detector, and an Accucore C18 column (1.5 μm, 100 × 2.1 mm, 0.4 mL/min,). Mobile 

phases applied in LC separation are H2O (A) and acetonitrile (B), with 0.1% formic acid, respec-

tively. For pure compounds and their assay output, gradient started at 7% B for 0.5 min, linearly 

increased from 7% to 50% B over next 5 min, then jump to 95% B in 0.5 min, hold at 95% B for 
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another 0.5 min and return to 7% B in 0.5 min, lastly hold at 7% B for 2 min for column re-equi-

libration. For soil and microbial extract and assay output, the gradient starts at 3% B, with an ex-

tended linear gradient from 3% to 95% B in 10 min; while the separation gradient is set as 3% to 

80% B in 7 min, for herbal extracts. Column temperature was maintained at 40 °C and sample 

compartment at 10 °C during the analysis. The flow rate was set at 0.4 mL/min. MS data was ac-

quired on Thermo LTQ XL mass spectrometer through electro-spray ionization (ESI). Capillary 

settings were 270 °C, 18 V with a spray voltage of 4.5 kV. Sheath gas (N2) and auxiliary gas 

(N2) were set at 40 arb and 5 arb, respectively. Tube lens voltage was set at 95 V for positive-ion 

mode. Collisional induced dissociation (CID) was applied for MS/MS fragmentation with a nor-

malized collision energy setting of 35%, in the data dependent acquisition mode using the five 

most abundant parent ions. 

 

3.3.6 Dereplication and characterization of DNA binding candidates 

Assay output of known DNA binders were manually characterized using their retention 

time, MS, and MS/MS features. In bacterial and herbal extract analysis, DNA binding candidates 

were dereplicated through the Global Natural Products Social Molecular networking (GNPS) 

online platform, using the mgf file exported from MZmine. 

 

3.3.7 Fractionation and isolation of DNA binding candidates 

All crude extracts were pre-fractionated by vacuum-liquid chromatography (HP20ss), re-

spectively, using step gradient of MeOH−H2O (30 : 70, 50 : 50, 70 : 30, 90 : 10, and 100 : 0) as 

eluents.  
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The fourth HP20ss fraction (MeOH−H2O, 90:10) from 1.3 g extract of Streptomyces anti-

bioticus contains the 3 candidates with m/z of 1255.75, 1269.67, and 1271.75. It was further 

fractionated by C18 preparative HPLC (gradient elution using acetonitrile−H2O with 0.1% for-

mic acid, 58% to 80% acetonitrile in 30 min) followed by semipreparative HPLC using a pen-

tafluorophenyl column (isocratic Acetonitrile−H2O with 0.1% trifluoroacetic acid, 52 : 48), ob-

taining 3 pure compounds: actinomycin D (9, 14.9 mg), V (10, 10.0 mg), and X0β (11, 9.8 mg). 

The 1H and 13C NMR data and spectra of the isolated compounds were included in supporting 

information. 

The second and fourth HP20ss fractions (MeOH−H2O, 50 : 50, and 90 : 10) from 550 mg 

extract of Gold Thread contain the 3 candidates with m/z of 320.08, 336.17, and 352.25. They 

were purified by semipreparative HPLC using a pentafluorophenyl column (isocratic Acetoni-

trile−H2O with 0.1% trifluoroacetic acid, 30 : 70), obtaining 3 pure compounds: berberine (12, 

19.2 mg), palmatine (13, 5.4 mg), and coptisine (14, 4.9 mg). The 1H and 13C NMR data and 

spectra were shown in supporting information. 

The fourth HP20ss fraction (MeOH−H2O, 90 : 10) from 1 g extract of Stephania tetran-

dra contains the 2 candidates with m/z of 609.33 and 623.33. They were purified by semiprepar-

ative HPLC using a C18 column (isocratic Acetonitrile−H2O with 0.02% diethylamine, 70 : 30), 

obtaining 2 pure compounds: fangchinoline (15, 1.2 mg), [α]D 275 (c 0.08, CHCl3) and tetran-

drine (16, 7.2 mg), [α]D 279 (c 0.48, CHCl3). The 1H NMR spectra were shown in supporting in-

formation. 

The fourth HP20ss fraction (MeOH−H2O, 90 : 10) from 1 g extract of Menispermum 

dauricum contains the 2 candidates with m/z of 611.50 and 625.42. They were purified by semi-

preparative HPLC using a C18column (isocratic Acetonitrile−H2O with 0.02% diethylamine, 
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60 : 40), obtaining 2 pure compounds: daurisoline (17, 1.2 mg), [α]D -125 (c 0.08, MeOH) and 

dauricine (18, 2.3 mg), [α]D -134 (c 0.15, MeOH). The 1H NMR spectra were shown in support-

ing information.   
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Chapter 4: Finding Biomass-degrading Enzymes Through an Activity-

Correlated Quantitative Protein Profiling Platform (ACPP) 

This chapter was adapted from a paper with the same title that was published on Journal 

of the American Society for Mass Spectrometry in 2017. The reuse licenses of this paper were 

issued by its copyright owners Springer Nature on Jun 20, 2019 (Supporting information, Appen-

dix), and American Chemical Society on Jun 15, 2020 (Supporting information, Appendix). The 

copies of the reuse licenses have been submitted to Graduate College, and Bizzell Library of the 

University of Oklahoma as well.  

The authors of this paper are Hongyan Ma, Daniel G. Delafield, Zhe Wang, Jianlan You, 

and Si Wu. The work presented within this chapter was conducted as follows: Daniel G. Delafield 

and Zhe Wang helped with part of preliminary work related to biomass-degrading enzyme activity 

measurement; Jianlan You helped with fungal culturing setup; as my previous advisor, Si Wu su-

pervised all the work presented in this chapter. Hongyan Ma performed micro-scale biomass-

degrading enzyme activity assay development, fungal secretome preparation, HPLC prefraction-

ation, activity measurement, LC-MS-MS data collection, and quantitative proteomics data analy-

sis. 

 

4.1 Introduction 

As an alternative energy source, bioethanol has attracted substantial attention due to its 

sustainability and renewability compared with traditional fuels. A key step of its production is 

converting plant biomass (e.g. starch and celluloses) into fermentable monomer sugars (e.g. glu-

cose). Prior to publication of this research in 2017, this step mainly relies on extracellular fungal 

secretome (e.g. Aspergillus, Trichoderma, and Fusarium), which contains many different glycosyl 
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hydrolases (GHs), such as cellulases, breaking polysaccharides into monosaccharides. However, 

the commonly used fungal secretome cannot provide enough efficiency in industrial scale. On the 

other hand, thousands of proteins have been predicted with GH hydrolysis activities based on their 

genome sequences, many of which are potential highly-efficient biomass-degrading enzymes.192 

In addition, around 160,000 GH family sequences have been predicted by the CAZy database, in 

which only 6% of the predicted CAZymes were biochemically characterized till September 

2013.193 Thus, there is great potential to find new highly effective biomass-degrading enzymes in 

unknown fungal species.  

Conventionally, functional protein (e.g. biomass-degrading enzyme) discovery method re-

lies on targeted gene overexpression in host cells (e.g. Escherichia coli or yeast). Specifically, the 

overexpressed enzyme candidate is usually purified through several sequential liquid chromatog-

raphy separations prior to further physical features characterization (e.g. size, sequence) and en-

zymatic activity analysis.82,194,195 This approach can be readily incorporated into protein structure 

analysis and provide direct insights into activities of the target protein. Nevertheless, this method 

is limited by being relatively low throughput as it only allows one protein to be analyzed per 

screening. As to relatively high-yield enzymes, direct purification from crude fungal secretome is 

a common investigating method. For instance, with nine fast protein liquid chromatography (FPLC) 

separations followed by activity measurement on all collected fractions, Olsson’s group success-

fully purified five cellulases from Penicillium brasilianum secretome against different hydrolysis 

substrates (microcrystalline cellulose, carboxymethyl cellulose, galactomannan, and xylan).196 

This method is typically labor-intensive and low throughput, and often requires large amount of 

starting materials. Recently, with emergence and development of LC-MS/MS-based proteomics, 

it is accessible to high-throughput identification of up to hundreds to thousands of proteins in 
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complex biological samples through several LC-MS runs. This approach has been applied to dis-

cover novel biomass-degrading enzymes in fungal secretome. For example, the Sze group has 

adopted an isobaric tag for absolute quantitation (iTRAQ)-based quantitative proteomics approach 

to analyze the expression levels of putative GH enzymes under different fungi culture conditions, 

providing key insights on enzyme mixture design for optimal biomass hydrolysis.197 The enzyme 

candidates were predicted through comparing their expression levels with enzymatic activity of 

the whole secretome. This approach is lacking accuracy to assign enzymatic activity to individual 

protein because the expression level of each enzyme cannot be directly correlated to its own activ-

ity. Recently, the activity-based protein profiling (ABPP) approach has been applied to biomass-

degrading enzymes profiling in fungal secretome.198,199,200 Activity-based probes (ABPs) were 

used to covalently label and affinity-purify the GHs from fungal secretome for proteomics studies. 

The ABPP approach has been used to detect active biomass-degrading enzymes in different mi-

crobial organisms. Currently, this method is limited by the probe availability, in which, develop-

ment, evaluation and optimization of GH-ABPs are usually cumbersome. Therefore, there is a 

critical need to develop a new high-throughput approach to directly assign the protein-level enzy-

matic activity.  

In this work, we developed an Activity-Correlated Quantitative Protein Profiling Platform 

(ACPP) that can systematically correlate protein-level enzymatic activity patterns with protein 

elution profiles obtained from the “native” LC separation and quantitative proteomics analysis to 

characterize bioactive enzymes from highly complex biological samples, in a high throughput and 

untargeted fashion. This platform consists of the 4 steps: 1) prefractionation in anion exchange 

chromatography (AEX), which provides good separation efficiency while preserving protein ac-

tivity; 2) enzymatic activity pattern determination through a micro-scale (e.g. 5~100 μL) activity 
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assay, which allows multiple enzyme activity characterization using one set of fractions; 3) protein 

elution profiles generation by LC-MS/MS-based quantitative proteomics, using peptide counting, 

a simple and robust label-free quantitative approach;201 4) statistical correlation between the de-

tected enzymatic activity patterns and protein elution profiles, using Pearson Correlation algorithm. 

The correlation R score (-1 to 1) is used for enzyme candidate evaluation. The enzyme concentra-

tion is proportional to its activity in the linear dynamic range. Thus, the theoretical correlation 

between enzyme elution profile and its activity pattern should have a perfect R-score of 1. The 

ACPP was successfully applied to the characterization of biomass-degrading enzymes from the 

Aspergillus niger secretome, demonstrating this approach is a powerful tool to characterize new 

bioactive enzymes through the cross-correlation of activity patterns and protein elution patterns in 

an untargeted and high-throughput manner.  

 

4.2 Results and Discussion 

4.2.1 ACPP Development and Proof-of-Concept 

The overall ACPP strategy is demonstrated in Figure 4-1. In general, the ACPP method is 

composed of four steps: 1) “native” HPLC fractionation of the complex samples, which preserves 

enzymatic activities; 2) micro-scale bioactivity assay for enzymatic activity pattern generation; 3) 

quantitative protein profiling in which protein elution profiles are generated; and 4) statistical cor-

relations between enzymatic activity patterns and the elution profiles of identified proteins. As a 

proof-of-principle, we examined the commercially available standard starch hydrolysis enzyme 

1,4-α-glucosidase (AAG) from A. niger secretome. Performance and reproducibility for each step 

were first evaluated. 
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Figure 4-1. Overall workflow of the Activity-Correlated Quantitative Protein Profiling Platform (ACPP) 

 

4.2.1.1 HPLC Fractionation 

The ACPP starts with a “native” LC fractionation that can preserve protein activities. Dif-

ferent chromatographic techniques have been applied in functional protein purification, including 

size exclusion chromatography (SEC) and ion exchange chromatography (IEX).202 Here we 

adopted a high-performance anion exchange (AEX) LC using a GE (Pittsburgh, PA, USA) Mono 

Q column for the prefractionation of complex protein samples. We first evaluated the separation 

performance of complex protein samples (Figure 4-2) using SDS-PAGE and quantitative prote-

omics studies. The results revealed that the AEX separation technique using a GE MonoQ column 

can efficiently fractionate complex protein samples in ACPP. The following bioactivity assay 

across the collected fractions further confirmed that the selected “native” buffers in AEX can pre-

serve enzymatic activities. 
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Figure 4-2. Analysis results of the E.coli. cell lysate spiked with standard AAG: A) the UV chromato-

gram and activity pattern from the mono Q based LC separation; B) hierarchical clustering of protein elu-

tion profiles on the basis of their similarities; C) SDS PAGE gel image of fractions 23 to 41 

 

4.2.1.2 Bioactivity Assay 

Two biomass substrates were selected in this study: starch and cellulose. Starch is a linear 

polymer of glucose linked with (1→4) bonds, and cellulose is a polymer with repeated beta-linked 

glucose units (Figure 4-3).203 Starch hydrolysis enzymes such as 1, 4-α-Glucosidase (AAG) convert 

starch into glucose, whereas cellulases catalyze the decomposition of cellulose into glucose mon-

omers or smaller oligomers. Here we developed a two-step biomass-degrading enzyme activity 

assay: enzymatic hydrolysis reaction and glucose assay. First, an aliquot of the fractions (e.g. 5–

100 μL) was incubated with substrate solution under optimized pH and temperature conditions for 

optimal hydrolysis. Then, the supernatant of the reaction solution (~20 μL) of each fraction was 

added to glucose fermentation enzyme mixture in a 96-well plate for high throughput micro-scale 

glucose detection. Here, the assay protocol was developed from a commercial glucose assay kit 

(Sigma-Aldrich), based on manufacturer’s instructions. In each analysis, a serial dilution of stand-

ard glucose solution was incubated with a premixed enzyme mixture to generate a standard cali-

bration curve for the quantification of released glucose by each fraction. Quantification sensitivity, 
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reproducibility, and the linear dynamic range were first evaluated using a serial dilution of standard 

starch hydrolysis enzyme AAG (Figure 4-4). We further applied the developed activity assay on 

the fractions of the E. coli cell lysate spiked with standard AAG (e.g. 150 μg AAG in 1.85 mg cell 

lysate). The assay was conducted using 5 μL of each fraction (e.g. 1/200 of each fraction) twice at 

day 1 and day 30, storing the fractions at -80 ℃ between these timepoints. The results demon-

strated that the activity patterns of AAG showed very good reproducibility (Figure 4-5). Overall, 

the developed micro-scale activity assay is sensitive and highly reproducible, therefore can be used 

for generating accurate enzymatic activity patterns in ACPP. 

Figure 4-3. Hydrolysis mecha-

nisms of starch and cellulose: A) 

1, 4-α-Glucosidase (AAG) is a 

typical enzyme that can directly 

convert starch into glucose; B) 

cellulose is converted into glucose 

in a two-step reaction. Activity of 

the endo-cellulase (e.g. endoglu-

canase) can be measured in the 

presence of sufficient β-gluco-

sidase. 

 

  

Figure 4-4. The linear dynamic range analysis of the AAG activity using the developed two-step activity 

assay 
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Figure 4-5. Reproducibility performance of the activity assay towards the fractions of the E. coli cell ly-

sate spiked with standard AAG (e.g. 150 μg AAG in 1.85 mg cell lysate). 

 

4.2.1.3 Proteome Profiling to Generate Protein Elution Profiles 

Protein identification and quantification in each fraction was conducted through untargeted LC-

MS/MS analysis. Peptide counting, a label-free quantitation approach, was used to quantify the 

identified proteins to generate their elution profiles. As a simple and powerful quantitative prote-

omics technique, it has been applied to characterize commercial cellulase cocktails, demonstrat-

ing its capability for relative protein quantification among different samples.204  

 Label-free (e.g. peptide counting) quantitative proteomics analysis was performed on 

AEX fractions 23 to 41 of the E. coli lysate spiked with AAG. The results are illustrated in Figure 

4-2. In total, 934 proteins were identified, and their elution profiles were generated by plotting the 

normalized protein intensities against their corresponding fraction numbers. The elution profiles 

can be visualized in a heat map format through hierarchical clustering using an open-source soft-

ware. We then compared the protein elution profiles in SDS-PAGE analysis. Although AAG 

merged very well in the lysate on the gel, which can barely be observed, it was successfully iden-

tified and quantified by the adopted quantitative proteomics studies. In summary, the selected la-

bel-free quantitative proteome profiling approach can detect relatively low abundant proteins and 

provide reasonable elution profiles in ACPP.  
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4.2.1.4 Statistical Correlation Between Activity Pattern and Protein Elution Profiles 

 In ACPP, the bioactivity can be assigned through evaluating the statistical correlations 

between the activity pattern and protein elution profiles. The detected enzymatic activity pattern 

in sequential fractions was cross-correlated with all the identified protein elution profiles using 

Pearson Correlation algorithm, generating correlation R-scores range from +1 to –1. Theoretically, 

the enzyme concentrations are proportional to its activity in its linear dynamic range, so the corre-

lation between enzyme elution profile and its activity pattern should have a perfect R-score of 1.  

As a proof-of-concept, we first evaluated the correlation approach in E.coli lysate spiked 

with AAG sample. The elution profile of AAG correlates the best with the detected activity pattern 

(R = 0.98, Figure 4-6A). We then analyzed all the R-scores between the activity pattern and all the 

quantifiable protein elution profiles (e.g. total peptide counts greater than10). As shown in Figure 

4-6B, 3 proteins including AAG have best R-scores that are larger than 0.95. Their predicted ac-

tivities were then manually checked through CAZY and NCBI databases, and only AAG is pre-

dicted with starch hydrolysis activity. To further confirm the results, we manually checked the top  

best-correlated proteins (e.g. the best 10 correlations). Among them, only AAG was confirmed as 

the starch hydrolysis enzyme through function verification by searching against the database of 

NCBI (https://www.ncbi.nlm.nih.gov/protein/).  
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Figure 4-6. Proof-of-concept results: starch hydrolysis enzyme characterization from the E coli. cell lysate 

spiked with standard AAG. A) Overlap of the starch hydrolysis activity pattern and the AAG protein elution 

profile; B) Analysis of the correlations between the activity pattern and all quantifiable elution profiles.  

 

In summary, the enzymatic activity can be used to assign through the cross-correlation 

between the activity pattern and all identified protein elution profiles (e.g. R-scores). Nevertheless, 

two unrelated proteins give relatively high R-scores in ACPP as well. This observation can be 

attributed to the co-elution effect in LC separation, which is inevitable for complex samples in any 

one-dimensional chromatography. Thanks to the adopted high performance AEX separation col-

umn, the co-elution effect is relatively low, so ACPP can provide sufficient capability for enzyme 

annotation. Notably, manual verification of good-correlated proteins (e.g. top 10) is usually needed 

for confident active protein identification in ACPP. 

 

4.2.2 Biomass-degrading Enzymes Characterization from Fungal Secretome using ACPP 

We then applied the well-developed ACPP approach to identify the biomass-hydrolysis 

enzymes from lab-cultured fungal secretome of A. niger, a model fungal strain that generates sev-

eral different biomass-degrading enzymes. Two biomass substrates were selected in this study: 

starch and cellulose. The results demonstrated that ACPP can be utilized to identify both starch 
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and cellulose hydrolysis enzymes in a multiplexed fashion with one set of proteomics data. Activ-

ities of the two enzymes were measured (Figure 4-7A). The results showed they have different 

activity patterns under the developed LC fractionation conditions. In starch hydrolysis activity 

analysis, a single Gaussian-distributed peak was observed from fraction 27 to 34 with a peak center 

at fraction 30. All fractions in the activity range were then subjected to protein identification and 

quantification analysis. In total, 156 proteins were identified from these eight fractions, including 

two enzyme candidates with R-scores larger than 0.95. The best-correlated protein (R=0.96) (Fig-

ure 4-7B), was identified as AAG (GH 15, EC 3.2.1.3), which is a classic starch hydrolysis enzyme 

in biofuel research field.205 We further manually checked all the identified 25 GH proteins pre-

dicted by CAZY database. Four of them with R-scores higher than 0.80 were listed in Table 4-1, 

including GH15 (i.e., AAG), GH36, GH32, and GH18 proteins. The predicted substrate for the 

detected GH36 protein is glycolipids or glycoproteins, and the GH32 protein was reported as an 

inulinase. The GH18 protein was a hypothetical protein with unknown substrates. We further ran 

BLASTp of its sequence against the NCBI database.206 The result did not show any sequences 

homologous with known starch degrading enzymes. In addition, the R-score of this GH18 protein 

is only 0.87, which indicates that it does not have good correlation with the starch hydrolysis ac-

tivity pattern. Overall, the results demonstrated that ACPP is a powerful approach for bioactive 

enzymes identification from complex biological samples.  
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Figure 4-7. The results of applying ACPP into biomass-degrading enzymes identification: A) UV-Vis 

from the AEX fractionation (at 280nm); B) the correlation between the starch hydrolysis activity pattern 

and the best matched protein elution profile: AAG; and the correlations between the cellulose hydrolysis 

activity pattern and C) the best matched protein elution profile of endoglucanase and D) protein elution 

profile of β-glucosidase 

 

Table 4-1. Manual check of the 4 starch hydrolysis enzyme candidates, which are belongs to glycosyl hy-

drolase (GH) family, with correlation R-scores higher than 0.8 in all 156 identified quantifiable proteins 

in the activity range (e.g. fraction 27-34) 

Protein ID R score GH family Protein Substrates 

gi|350633017 0.96 15 AAG starch 

gi|350639761 0.95 36 α-galactosidase Glycolipids  
or glycoproteins 

gi|350631139 0.91 32 inulinase inulin 

gi350640229 0.87 18 hypothetical protein unknown 

 

 

In cellulose hydrolysis enzyme characterization,  the active range is the same as the starch 

hydrolysis activity, which is from 27 to 34 with a different peak center at fraction 31 (Figure 4-

7c). In all detected proteins from the activity range, the best-correlated protein is endoglucanase 

(GH5) with R-score of 0.97. It is known that two steps involving two enzymes are necessary to 
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break cellulose to glucose monomers: endoglucanase and β-glucosidase (Figure 4-3). Endoglu-

canase can only convert cellulose to cellobiose, which is not detectable using the presented bioac-

tivity assay.207 The results indicated two possibilities: 1) the two enzymes were co-eluted under 

the adopted LC separation conditions, or 2) it represented a novel cellulase that can directly hy-

drolyze cellulose to glucose. With further investigation, the protein with second highest R-score 

of 0.90 is identified as β-glucosidase, which can convert cellubiose to glucose. Thanks to the pres-

ence of the co-eluted β-glucosidase, the endoglucanase activity was successfully detected via the 

presented activity assay. We further confirmed that β-glucosidase cannot convert cellulose into 

glucose using the commercial enzyme (Figure 4-8). Therefore, endoglucanase and β-glucosidase 

are the cellulose hydrolysis enzymes identified from A. niger secretome using the ACPP. To fur-

ther confirm that the two proteins were co-eluted under the adopted LC conditions, we performed 

three sets of activity assays on three separated aliquots of HPLC fractions (e.g. 5-100 μL) incu-

bated with different substrates: 1) cellulose with the presence of over-dose commercial β-gluco-

sidase, 2) cellobiose, and 3) cellulose. Theoretically, the first set provides elution profile of en-

doglucanase, the second set provides elution profile of β-glucosidase, and the third set evaluates if 

endoglucanase and β-glucosidase were co-eluted. The hypothesis is that if they are not co-eluted, 

the activity peak center should differentiate in set 1 and 2. As it shows in Figure 4-9, the 3 activity 

patterns overlapped very well with each other. The result demonstrated that the commercial cellu-

lase cocktail contains both endoglucanase and β-glucosidase, which were co-eluted under the 

adopted AEX fractionation conditions. Besides, the co-eluted two enzymes were successfully iden-

tified as the cellulose hydrolysis enzymes using ACPP. In conclusion, the ACPP approach showed 

its power and robustness to identify bioactive proteins (e.g. enzymes) from complex biological 

samples in an untargeted, high throughput and multiplexed fashion.  
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Figure 4-8. Cellulose and cellubiose hydrolysis by commercial β-glucosidase.   

 

 

Figure 4-9. Co-elution effect evaluation results. Three hydrolysis reactions were conducted: 1) cellulose 

+ HPLC fractions + commercial β-glucosidase, 2) cellobiose + HPLC fractions, and 3) cellulose + HPLC 

fractions. The blue line with diamond represents the endoglucanase elution profile, the green line with tri-

angle represents the β-glucosidase elution profile, and the red line with square evaluates if endoglucanase 

and β-glucosidase were co-eluted under the adopted AEX fractionation conditions. 

 

4.2.3 Conclusions 

In conclusion, ACPP is a powerful approach for identifying bioactive enzymes from com-

plex protein samples by cross correlating the activity pattern and all identified protein elution pro-

files in the activity range (e.g. active fractions), in a high throughput and untargeted manner. It can 

identify more than one active enzymes from complicated protein mixtures, thanks to the micro-
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scale activity assay and the sensitive quantitative proteomics technique. In addition, the ACPP 

approach can be further optimized into a universal functional protein characterization approach for 

different applications, such as disease-regulating enzyme screening or drug target discovery.  

 

 

4.3 Materials and Methods 

4.3.1 A. niger Fermentation and Secretome Extraction 

All chemicals were purchased from Sigma-Aldrich (Milwaukee, WI, USA) unless other-

wise noted. A. niger (ATCC11414) was recovered on a PDA plate for further liquid fermentation 

as described previously.208 After shaking at 37 ℃, 200 rpm for 24 hours, the supernatant was 

harvested by filtering the cultured medium mixture through two layers of sterile miracloth, fol-

lowed by centrifugation at 15,000 g and 4 °C for 10 min to remove the remaining cell debris. The 

harvested crude secretome was further concentrated to 20 mL in an ultrafiltration stirring cell at 

4 °C (Millipore, Billerica, MA, USA) with a 3 kDa membrane. Buffer exchange was then con-

ducted twice using Milli-Q water (e.g. from 250 to 20 mL) in the same stirring cell. The remaining 

secretome was further concentrated down to 3~5 mL using a 3 kDa centrifugal ultrafiltration filter 

(Millipore) by centrifugation. The prepared secretome was stored at –20 °C until being analyzed. 

 

4.3.2 Anion Exchange LC Fractionation 

The LC fractionation was performed at 4 °C using an AKTA protein purification system 

(GE, Pittsburgh, PA, USA) with a high-performance mono-Q column (4.6 × 100 mm; GE). The 

secretome was exchanged to buffer A (20 mM Tris, pH = 8.0) before sample injection. Elution 

gradient was set as 0–100% buffer B (20 mM Tris, 1 M NaCl, pH = 8.0) in 38 column volume at 
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a flow rate of 0.5 mL/min. Fractions (0.83 mL per fraction for the spiked-in sample, 1 mL per 

fraction for the A. niger secretome, and 1.66 mL per fraction for A. niger cellulose and cellubiose 

activity assays) were collected for activity assays and proteomics studies. Three aliquots from each 

fraction were used for: (1) the biomass hydrolysis activity assay (e.g. 5–100 μL), (2) the cellulose 

hydrolysis activity assay (e.g. 20–100 μL), and (3) tryptic digestion and LC/MS/MS based bottom-

up proteomic characterization (e.g. 100–200 μL). The remaining fractions were stored at –20 °C 

until further analysis. 

 

4.3.3 Microplate-Based Enzymatic Activity Assays 

A two-step 96-well plate-based enzymatic assay (e.g. substrate hydrolysis and glucose de-

tection) was developed based on the reported large-scale (e.g. 4 mL) assay method 209,210 to achieve 

higher throughput and lower sample consumption. First, in substrate hydrolysis step, a small ali-

quot of each fraction (5–100 μL) was mixed with 5% (w/v) cellulose, cellubiose, or starch sub-

strates at the ratio of 1:4. The mixture was incubated at 37 °C and 900 rpm for 2 hours, followed 

by being quenched on ice for 10 min. Reaction supernatant was collected after centrifugation at 

13000 g, 4 °C, for 30 min. The concentration of released glucose in each reaction supernatant was 

measured based on a commercial glucose assay protocol (Sigma-Aldrich). Briefly, the supernatant 

of reaction mixtures (e.g. 20 μL) and glucose working reagent were first mixed at the ratio of 1:5 

in a 96-well plate. After incubation at 25 °C for 30 min, the absorbance of the reaction mixture 

was measured at 340 nm. The activities of fractions were represented by the detected glucose con-

centration. 
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4.3.4 LC-MS/MS Analysis 

In-solution tryptic digestion was performed to a set of fraction aliquots (e.g. 100–200 μL) 

using a previously published protocol.211 Peptide samples were desalted, dried via SpeedVac, and 

resuspended in ultra-pure water; 1/5 of each peptide sample was analyzed using a custom-packed 

C18 RPLC column (75 um i.d., 150 mm length, 2 μm C18 resin) on a Waters (Milford, MA, USA) 

nano-Acquity UPLC system. The peptide separation was performed in a water-acetonitrile LC 

system, with buffer A of 0.1% formic acid in water, and buffer B of 0.1% formic acid in acetonitrile. 

The gradient was set from 8% to 35% buffer B over 100 mins. The coupled mass spectrometer 

was an LTQ Orbitrap Velos Pro mass spectrometer (Thermo Fisher Scientific, Hanover Park, IL, 

USA) with a custom nano-ESI interface. The capillary temperature was set to 300 °C with a spray 

voltage of 2.4 kV. Full MS spectra were acquired at a resolution of 30000 (m/z range between 350 

and 2000). Low resolution collisional induced dissociation (CID) MS/MS with a normalized col-

lision energy setting of 35% was applied in data dependent acquisition (DDA) mode to analyze 

the most ten abundant parent ions. 

 

4.3.5 Peptide and Protein Identification 

Peptides and proteins were identified using an online platform MSGF+ to search the mass 

spectra from LC-MS/MS analysis against the annotated A. niger database and its decoy data-

base.212 Peptide identifications were filtered using an MS-GF cut-off value of 1E−10 (e.g. the cal-

culated FDR <1% at the unique peptide level). Spectral counting, namely peptide counting ap-

proach was used for label-free quantitative proteomics analysis. The normalized quantitation of 

the same protein in different fractions was plotted against the fraction number to obtain the protein 

elution profile. 
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4.3.6 Statistical Correlation between Protein Profiles and Activity Pattern 

Cross-correlation between protein elution profiles and the activity pattern was obtained 

through a linear correlation algorithm—Pearson Correlation. The correlation efficiency was rep-

resented by the calculated R-score, which is from –1 to 1. The protein elution profiles were refined 

using a peptide count number cut-off of 10 to distinguish a good elution profile from random noises. 

Before the cross-correlation calculation, individual values in each protein elution profile and ac-

tivity pattern were normalized respectively. Thus, an R of 1 indicates the protein elution profile is 

perfectly overlapped with the activity pattern. The top correlated proteins with high R values were 

manually verified with their estimated activity to confidently characterize the enzyme from com-

plicated protein mixture. 

 

4.4 Future directions of the ACPP 

Here, further improvements of ACPP, such as 2D-ACPP and TMT-ACPP approaches, and 

their successful applications were briefly summarized. This work has led to a Lloyd E. Swearingen 

Scholarship for the recognition of the outstanding graduate research in the Department of Chem-

istry & Biochemistry, and 3 travel grants to international academic conferences from the Univer-

sity of Oklahoma. Moreover, 1 oral and 4 poser presentations about the 2D-ACPP and TMT-

ACPP work have been presented at different international conferences, including ASMS, 

USHUPO, and ISCC.  Unfortunately, due to the conflict of interest, the data cannot be presented 

in detail here.  

 

We envision potential possibilities to enhance the resolution and accuracy of current ACPP 

approach. First, as previously mentioned, the co-elution effect is inevitable in any one-dimensional 
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chromatography fractionation, leading to  the observation that several unrelated inactive proteins 

stand out in the correlation step. One possible solution is to add an additional dimension to the 

fractionation (e.g. size exclusion) to remove the enzyme candidate noise. The additional dimension 

can also facilitate the expansion of proteome coverage, by identifying more low abundance pro-

teins. Based on this concept, I further developed 2D-ACPP to expand the ACPP capability by 

increasing the resolution for functional protein characterization through incorporating an addi-

tional orthogonal fractionation [e.g. size exclusive chromatography (SEC)] step. Through the suc-

cessful characterization of both starch and cellobiose hydrolysis enzymes in fungal secretome 

spiked with E.coli lysate with no random hit, it is believed that the 2D-ACPP approach can effec-

tively remove the randomly matched protein candidates for functional enzyme characterization in 

highly complex biological samples, due to the good orthogonality between SEC and AEX frac-

tionation techniques. 

Second, the protein elution profiles were generated using peptide counting-based label-free 

quantitative proteomics technique in ACPP. Peptide counting is a simple and robust technique for 

relative protein quantification among samples yet is often restricted by the linear dynamic range 

for low abundance protein quantification. Isotope labeling quantitative methods, such as tandem 

mass tag (TMT), provides higher accuracy for protein quantification, especially for the low abun-

dance proteins in complex protein samples. The TMT labeling quantitative proteomics approach 

can directly correlate the reporter ion profiles with enzyme activity patterns for deeper identifica-

tion and quantification of low abundance proteins. Besides, the peptide-level 2D separation ap-

proach (e.g. high-pH-RPLC coupling with low-pH RPLC) has been proven that it can largely en-

hance the proteome coverage in proteomics studies. Therefore, the TMT-ACPP coupling with the 
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peptide-level 2D separation technique was developed for generation of more accurate protein elu-

tion profiles, especially for those proteins with low abundance. The TMT-ACPP has been success-

fully developed and applied for functional characterization of active kinases (e.g. important cancer 

drug targets) from highly complex human cancer cell lysates (e.g. Hela cell line).  

It is envisioned that through further developments, the ACPP will enable efficient charac-

terization of functional proteins in various biological and bioanalytical fields.  

 

Acronym list of chapter 4: 

1, 4-α-Glucosidase  AAG 
activity-based protein profiling ABPP 
activity-based probes ABPs 
Activity-Correlated Quantitative Protein Profiling Platform ACPP 
anion exchange chromatography  AEX 
fast protein liquid chromatography FPLC 

glycosyl hydrolases GHs 
ion exchange chromatography  IEX 
isobaric tag for absolute quantitation  iTRAQ 
size exclusion chromatography  SEC 
tandem mass tag  TMT 
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Table S1. List of 62 herbs. 

Sample # Name Extension 
1 Vetivert root Vetiveria zizanoides, conventionally grown roots 
2 Canada Snakeroot Asarum canadense, wildcrafted 
3 Atractylodes Attractylodes macrocephala, sulfur free root 
4 Schizandra berries Schizandrae chinensis, exrta fine grade, organic 
5 Stone Root Collinsonia canadensis, conventionally grown root 
6 Elecampane Inula helinum, organic root 
7 Ladies Mantle Alchemilla vulgaris, organic, aerial parts 
8 Butterbur Petasites frigidus, root 
9 Dan Shen Salvia miltiorrhiza, sulphur free 
10 Osha root Ligusticum porterii, organic whole roots 
11 Cinnamon Bark Sticks Cinnamomum cassia, organic 
12 Jujube Dates Ziziphus jujube, sulfur free fruits 
13 Rehmannia root raw Rehmanniae glutinosa, sulphur free 
14 Muira Puama Ptychopetalum dacordes, wildcrafted 
15 Kava root Piper methysticum, grown without pesticides 
16 Fo Ti (He Shou Wu) Polygonum multiflorum, sulfur free root 
17 Valerian root Valeriana officinalis, organic 
18 Blue Malva Malva officinalis, dried flowers 
19 Boldo  Pemus boldus, leaves 
20 Alkanet Root Alkanna tinctorial, chopped root 
21 Honeysuckle Flowers Lonicera japonica, sulfur free 
22 California Poppy  Escholtzia californica, organic, aerial portions 
23 Licorice Chinese Glycerrhiza uralensis, sulfur free 
24 Chrysanthemum flowers Chrysanthemum morifolium, sulfur free flowers 
25 Horney Goat Weed Epimedium brevicornum max., sulfur free herb 
26 Chaparral Larrea divaricata, wild crafted leaves 
27 Oakmoss Evernia furfuracea, lychen, not for internal use 
28 Dang Quai Angelica chinensis, sulfur free root slices 
29 Wakame Alaria marginita, wildcrafted seavegetable 
30 Astragalus Astragalus membranaceous, organic, root 
31 Mangolia bark Magnolia officinalis, sulfur free 
32 Bai Zhi Angelica dahurica, sulfur free, root 
33 Peony Root Paeonia lactiflora, sulfur free 
34 Chuan Xin Lian Andrographis paniculata, sulfur free herb 
35 Poke Root Phytolacca americana, wildcrafted 
36 Ajowan (Ajwan) Seed Apium graveolens, seeds, whole 
37 Deer′s Tongue Leaf Trilisa odoratissima 
38 Kelp Neriocystis sp., wildcrafted 
39 Eleuthero Eleutherococcus senticosus, organic root 
40 Gold Thread (Coptis) Coptis chinensis, root slices 
41 Bupleurum Bupleurum chinensis, sulfur free roots 
42 Chaste Tree Berry Vitex agnus-castus, organic 
43 Codonopsis Codonopsis pilosula, sulfur free root 
44 Lychii berries Lycium chinensis, sulfur free 
45 Calamus root Acorus calamus, cut sifted 
46 Quassia  Picrassa famara 
47 Orris Root Iris germanica var. Florentina 
48 Papaya Leaf Carica papaya, conventionally grown leaf 
49 Angelica Angelica archangelica, organic root 
50 Tansy flowering tops Tanacetum vulgare, wildcrafted 
51 Carydalis root Corydalis yanhouso, sulfur free 
52 Isatis Isatidis/Baphicanthus, root 
53 Pau d′Arco Tabebuia impetiginosa, conventionally grown, bark 
54 Pygeum Pygeum africanus, bark powder 
55 Gymnema sylvestris leaf, cut/sift 
56 Tonka beans whole Dipteryx odorata 
57 Chuan xiong Ligusticum walichii , sulfur free root 
58 Blue Flag Iris versicolor, rhizome, cut/sift 
59 Job′s tears Coix lachryma-jobi, sulfur free 
60 Skullcap, Chinese Scutellaria baicalensis, sulfur free root 
61 Reishi mushroom Ganoderma lucidum, sulphur free 
62 High John the Conqueror Ipomea jalapa, root 
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Table S2. 1H NMR (600 MHz) data for actinomycin D (9) and V (10) in CDCl3 

No. 9  10 
3 7.59, d (7.7) 7.59, d (7.7) 
4 7.35, d (7.7) 7.36, d (7.7) 
2′ 4.51, dd (7.1, 2.5) 4.58, m 
4′ 3.53, dd (9.5, 6.0) 3.59, m 
5′ 2.16, m 2.13, m 
6′ 1.09, d (6.6) b 1.13, d (6.8) b 
7′ 0.85, d (6.6) b 0.91, d (6.8) b 
9′ 3.70, m; 3.95, m 3.98, d (19.5); 4.54, m 
10′ 2.07, 2.23, m -- 
11′ 1.80, m; 2.61, m 2.34, d (17.5); 3.65 d (17.5) 
12′ 5.98, d (9.2) 6.56, d (10.0) 
14′ 2.85, s 2.90, s d 
15′ 3.63, d (17.5); 4.71, d (17.5) 3.71, m; 4.59, m 
17′ 2.91, s 2.93, s 
18′ 2.67, d (9.4) 2.66, m c 
19′ 2.61, m 2.64, m 
20′ 0.72, d (6.5) a 0.75, d (6.0) a 
21′ 0.92, d (6.5) a 0.95, d (6.0) a 
23′ 5.19, dd (6.5, 2.4) 5.25, dd (5.6, 2.2) 
24′ 1.22, d (6.3) 1.26, d (6.7) 
NH‐2′ 7.15, d (7.0) 7.17, d (7.3) 
NH‐4′ 8.19, d (6.0) 7.76, d (5.8) 
2ʺ 4.61, dd (6.7, 2.5) 4.52, m 
4ʺ 3.56, dd (10.0, 6.0) 3.70, m 
5ʺ 2.12, m 2.23, m 
6ʺ 1.08, d (6.6) b 1.15, d (6.8) b 
7ʺ 0.87, d (6.6) b 0.90, d (6.8) b 
9ʺ 3.67, m; 3.81, m 3.73, m; 3.91m 
10ʺ 2.07, 2.23, m 2.21, m; 2.27, m 
11ʺ 1.84, m; 2.90, m 1.86, m; another H not detected 
12ʺ 5.9, d (9.2) 5.94, d (9.2) 
14ʺ 2.85, s 2.89, s d 
15ʺ 3.60, d (17.5); 4.79, d (17.5) 3.65, d (17.5); 4.71, d (17.5) 
17ʺ 2.90, s 2.91, s 
18ʺ 2.67, d (9.4) 2.71, m c 
19ʺ 2.61, m 2.63, m 
20ʺ 0.72, d (6.5) a 0.74, d (6.0) a 
21ʺ 0.94, d (6.5) a 0.98, d (6.0) a 
23ʺ 5.15, dd (6.5, 2.4) 5.17, dd (6.2, 2.2) 
24ʺ 1.22, d (6.3) 1.12, d (6.6) 
NH‐2ʺ 7.7, d (6.6) 7.68, d (5.8) 
NH‐4ʺ 8.01, d (6.2) 8.23, d (6.0) 

                             a-d The data with the same labels in each column may be interchanged. 
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Table S3. 13C NMR (150 MHz) data for actinomycin D (9) and V (10) in CDCl3 

No. 9 10  No. 9 10 
1 129.2 129.3  17′ 39.3 39.5 
2 132.5 132.2  18ʺ 71.2 71.3 
3 125.8 126.2  18′ 71.4 71.6  
4 130.4 130.5  19ʺ 27.0 27.2 
5 127.8 128.1  19′ 27.1 27.1 
6 140.6 140.7  2ʺ 54.9 55.1 
7 145.2 145.2  2′ 55.2 54.9 
8 113.6 113.8  20ʺ 19.1 19.2 
9 179.1 179.2  20′ 19.2 19.2 
10 147.7 147.5  21ʺ 21.7 21.9 
11 101.7 101.9  21′ 21.6 21.7 
12 145.9 146.1  22ʺ 167.8 167.6 
13 15.1 15.2  22′ 167.7 167.6 
14 7.8 7.9  23ʺ 75.1 74.9 
1ʺ 166.6 166.4  23′ 75.0 74.8 
1′ 166.7 166.4  24ʺ 17.8 17.8 
10ʺ 22.9 23.1  24′ 17.4 17.3 
10′ 23.1 208.9  3ʺ 169.1 169.2 
11ʺ 31.4 31.2  3′ 168.7 169.1 
11′ 31.0 42.0  4ʺ 58.8 57.4 
12ʺ 56.6 56.7  4′ 58.9 58.8 
12′ 56.4 54.5  5ʺ 31.9 32.1 
13ʺ 173.4  173.7  5′ 31.6 31.9 
13′ 173.4  172.9  6ʺ 19.1 19.1 
14ʺ 35.0 35.2  6′ 19.1 19.0 
14′ 35.1 35.0  7ʺ 19.3 19.4 
15ʺ 51.4 51.5  7′ 19.4 19.3 
15′ 51.4 51.5  8ʺ 173.7 173.5 
16ʺ 166.7 166.7  8′ 173.3 174.2 
16′ 166.4 166.0  9ʺ 47.7 47.6 
17ʺ 39.2 39.2  9′ 47.4 53.0 
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Table S4. 1H NMR (600 MHz) data for actinomycin X0β (11) in CDCl3 

No. δH (J in Hz) 
  
3 7.65, d (7.7) 
4 7.35, d (7.7) 
2′ 4.83, dd (6.2, 2.2) 
4′ 3.57, m 
6′ 1.12, d (6.7) d 
7′ 0.88, d (6.7) d 
12′ 6.07, dd (9.3, 2.7) 
14′ 2.88, s 
15′ 3.60, m; 4.54, d (17.6) 
17′ 2.93, s a 
18′ 2.68, (9.1) 
19′ 2.66, m 
20′ 0.74, d (6.7) b 
21′ 0.96, d (6.7) b 
23′ 5.25, m 
24′ 1.29, d (6.2) c 
NH‐2′ 7.46, d (6.2) 
NH‐4′ 7.51, d (6.9) 
2ʺ 4.5, d (6.2, 2.5) 
4ʺ 3.74, t 
6ʺ 1.14, d (6.7) d 
7ʺ 0.91, d (6.7) d 
12ʺ 5.99, d (9.2) 
14ʺ 2.88, s 
15ʺ 3.66, d (17.2); 4.73, d (17.2) 
17ʺ 2.94, s a 
18ʺ 2.72, (9.3) 
19ʺ 2.66, m 
20ʺ 0.75, d (6.7) b 
21ʺ 0.97, d (6.7) b 
23ʺ 5.25, m 
24ʺ 1.26, d (6.2) c 
NH‐2ʺ 7.91, d (6.3) 
NH‐4ʺ 8.19, d (5.6) 

a-d The data with the same labels may be interchanged. 
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Table S5. 1H NMR (600 MHz), and 13C NMR (150 MHz) data for berberine (12) in MeOH-d4 

No. δH (J in Hz) δC (ppm) 
1 7.64, s 105.3 
2  148.7 
3  150.8 
4 6.94, s 108.2 
4a  130.7 
5 3.24, t (6.4) 27.0 
6 4.91, t (6.4) 56.0 
8 9.75, s 145.2 
8a  122.1 
9  144.6 
9-OMe 4.18, s 61.3 
10  151.0 
10-OMe 4.09, s 56.4 
11 7.98, d (8.3) 126.8 
12 8.10, d (8.3) 123.3 
12a  134.0 
13 8.69, s 120.3 
13a  138.5 
13b  120.7 
OCH2O 6.09, s 102.5 
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Table S6. 1H NMR (600 MHz), and 13C NMR (150 MHz) data for palmatine (13) in MeOH-d4 

No. δH (J in Hz) δC (ppm) 
1 7.67, s 109.9 
2 

 
150.9 

3 
 

153.8 
4 7.05, s 112.2 
5 3.28, m 27.8 
6 4.94, m 56.7 
8 9.77, s 146.4 
9 

 
145.8 

10 
 

151.9 
11 8.12, d (9.0) 124.4 
12 8.01, d (9.0) 128.1 
13 8.81, s 121.3 
10-OMe 3.94, s 57.6 
12a 

 
135.3 

13a 
 

139.8 
13b 

 
123.3 

2-OMe 3.99, s 57.3 
3-OMe 4.11, s 57.0 
4a 

 
130.1 

8a 
 

120.5 
9-OMe 4.21, s 62.5 
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Table S7. 1H NMR (600 MHz), and 13C NMR (150 MHz) data for coptisine (14) in MeOH-d4 

No. δH (J in Hz) δC (ppm) 
1 7.65, s 106.4 
2  149.3 
3  150.0 
4 6.96, s 109.4 
5 3.25, m 28.1 
6 4.89, m 57.2 
8 9.72, s 145.8 
9  145.3 
10  152.2 
11 7.88, d (8.5) 121.9 
12 7.86, d (8.5) 123.1 
13 8.74, s 122.3 
12a  134.4 
13a  139.0 
13b  122.5 
4a  131.8 
8a  113.7 
OCH2O 6.47, s 106.2 
OCH2O 6.11, s 103.7 
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Figure S1. Overflow of DNA-ligand complex dissociation 
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Figure S2. Calibration curve analysis (UV peak area) of 4 intercalators and 1 groove binder 
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Figure S3. EIC analysis of the 4 individual intercalators in the assay. 
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Figure S4. EIC analysis of bisbenzimide (H33258), melphalan, and 4 intercalators mixture. 
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m/z 1255.75 1269.67 1271.75 
RT (min) 8.64 8.64 7.77 
annotation actinomycin D actinomycin D +14 Da actinomycin D +16 Da 
cosine score 0.96 0.92 0.91 
m/z error (Da) 0.11 0.1 0.12 
reference Spectrum ID CCMSLIB00000006871 CCMSLIB00000081798 CCMSLIB00000006871 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure S5. Annotation and mirror plots of actinomycin D and its analogues using GNPS. 

actinomycin D 
m/z= 1255.75 

cosine score: 0.96 

actinomycin D +14 
m/z= 1269.67 

cosine score: 0.92 

actinomycin D +16 
m/z=1271.75 

Cosine score: 0.91 
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Figure S6. Results of the high throughput LLAMAS development. A) Performance of the 8 known bind-

ers: 4 intercalators, including: 9-aminoacridine (34 μM), ellipticine (54 μM), methapyrilene (45 μM), and 

chlorpheniramine (34 μM); 2 groove binders: bisBenzimide (H 33258) (125g μM), and neomycin (157 

μM), and 2 covalent binders: melphalan (44 μM) and carmustine (62 μM) in the assay. Activity of neo-

mycin was confirmed by analyzing EIC peaks extracted at m/z of 615.09-615.51; while others were con-

firmed by UV-Trace analysis. (Here, the concentrations are all final ones in binding incubation step) LC 

separation gradient: 7-50% B. B) Performance of the mixture of 4 intercalators in the assay: 1: 9-amino-

acridine, 2: methapyrilene, 3: chlorpheniramine, 4: ellipticine. C) Known DNA intercalators were suc-

cessfully characterized in plant extract spiked with 9-aminoacridine (1) and ellipticine (4) with the ratio of 

1:5:250 (w:w:w).  
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Figure S7. Confirmation of the DNA binding activities of fangchinoline (15), tetrandrine (16), dauriso-

line (17), and dauricine (18). UV chromatogram at 200 nm showed their peaks in experimental group (red 

line) disappeared, while detected in control group, indicating their DNA binding activities.  
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Figure S8. 1H NMR (600 MHz) spectrum of actinomycin D (9) in CDCl3 
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Figure S9. 13C NMR (600 MHz) spectrum of actinomycin D (9) in CDCl3  
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Figure S10. 1H NMR (600 MHz) spectrum of actinomycin V (10) in CDCl3  
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Figure S11. 13C NMR (600 MHz) spectrum of actinomycin V (10) in CDCl3  
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Figure S12. 1H NMR (600 MHz) spectrum of actinomycin X0β (11) in CDCl3  
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Figure S13. 1H NMR (600 MHz) spectrum of berberine (12) in MeOH-d4  
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Figure S14. 13C NMR (600 MHz) spectrum of berberine (12) in MeOH-d4  
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Figure S15. 1H NMR (600 MHz) spectrum of palmatine (13) in MeOH-d4  
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Figure S16. 13C NMR (600 MHz) spectrum of palmatine (13) in MeOH-d4  
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Figure S17. 1H NMR (600 MHz) spectrum of coptisine (14) in MeOH-d4  
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Figure S18. 13C NMR (600 MHz) spectrum of coptisine (14) in MeOH-d4 
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Figure S19. 1H NMR (500 MHz) spectrum of fangchinoline (15) in CDCl3 
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Figure S20. 1H NMR (500 MHz) spectrum of tetrandrine (16) in CDCl3 
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Figure S21. 1H NMR (500 MHz) spectrum of daurisoline (17) in CDCl3 
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Figure S22. 1H NMR (500 MHz) spectrum of dauricine (18) in CDCl3 
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Supporting information for chapter 4 
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