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The Relationship Between On-Ice Aerobic Capacity and On-Ice Power Output 

Abstract 

There is debate if a high aerobic capacity will improve recovery from repeated bouts of 

sprinting, which primarily taxes the anaerobic energy systems.  The relationship between 

aerobic capacity and repeat sprint ability in ice hockey players is not well established; 

moreover, the relationships that have been examined involved off-ice testing protocols, 

which lack specificity to the ice hockey.  Purpose:  The purpose of this study was to 

examine the relationship between on-ice aerobic capacity (VO2peak and VIIT) and repeated 

on-ice sprint ability (RISA) via percentage of power output decrement (%DPO), and 

other measurements of on-ice power output (OPO).  Methods: 11 male professional ice 

hockey players, recruited from an American Hockey League team, participated in two 

maximal effort on-ice tests.  Aerobic capacity was tested via the 30-15 Intermittent Ice 

Test.  Gas exchange was measured directly measured via an Oxycon portable O2 analyzer 

in four of the participants.  OPO was measured via the Repeat Ice Skating Test.  The 

relationship between these variables for nine of the participants was then analyzed via 

Pearson’s correlational testing. Results: There was no significant relationship between 

VIIT or VO2peak to %DPO (r =-.036 and .197 respectively; p > .05) or any other 

measurement of RISA.  Discussion:  The results from this study suggest that aerobic 

capacity was not related to RISA.  While the results were not statistically significant, 

likely due to a small sample size, the effect size for %DPO and aerobic capacity (VIIT and 

VO2peak) was small, indicating that the relationship was nearly negligible.  Elite level ice 

hockey players may not have a better RISA resultant from a higher aerobic capacity. 
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Chapter One: Introduction 

Significance 

 Ice hockey can be characterized as a high-intensity, contact sport, typically 

consisting of intermittent periods of sprinting, followed by periods of “coasting” 

(Montgomery, 1988).  The typical “shift” during a game generally lasts anywhere from 

45-70 seconds, with ~30 seconds of that time being characterized as “skating time,” and 

the remaining time being, “non-skating time” (Horrigan & Kreis, 1994).  After a player’s 

shift, he/she will return to the bench and rest for approximately three to five minutes 

(Montgomery, 1988).   

 There is a prevailing idea amongst many fitness professionals who work 

alongside ice hockey players that a high aerobic capacity (often measured as relative 

VO2max) is necessary for players to recover more rapidly from repeated bouts of anaerobic 

skating (Montgomery, 1988; Twist & Rhodes, 1993).  This can be attributed to increased 

reoxidation of lactate via slow-twitch muscle fibers, and increased oxidative energy 

system contribution during high-intensity exercise, which could spare glycogen and 

phosphocreatine stores (Tomlin & Wenger, 2001; Twist & Rhodes, 1993).  While there is 

debate as to whether or not that is true, the belief that a high aerobic capacity is necessary 

for optimal performance is prevalent within the sport (Bishop, Lawrence, & Spencer, 

2003; Carey, Drake, Pliego, & Raymond, 2007; Green, Pivarnik, Carrier, & Womack, 

2006; Montgomery, 1988; Nagasawa, 2013).  Existing evidence supports the notion that 

VO2max is related to repeat sprint ability up to a certain point.  It appears that in untrained 

subjects there is a correlation between the two variables; however, the relationship in 

trained subjects appears to be nebulous (Bishop et al., 2003; Tomlin & Wenger, 2001). 



AEROBIC CAPACITY AND POWER OUTPUT IN HOCKEY 8  
	
  
 One major problem with fitness testing for ice hockey is that the testing is often 

not specific to the sport itself, and usually takes place off-ice (Montgomery, 1988, 2006; 

Quinney et al., 2008).  Likewise, testing for aerobic capacity often involves continuous 

submaximal workloads, which does not reflect the intermittent natures of many sports, 

including ice hockey (Buchheit, 2008).  Therefore, results comparing off-ice aerobic 

capacity to on-ice repeated sprint ability should be interpreted with caution, as the testing 

is often not specific enough to the sport itself (Behm, Wahl, Button, Power, & Anderson, 

2005; Durocher, Jensen, Arredondo, Leetun, & Carter, 2008a; Montgomery, 1988). 

 Some researchers have compared off-ice VO2max to on-ice anaerobic performance 

and/or recovery, but it appears that there has not been any research that has compared the 

relationship between on-ice aerobic capacity and power output (PO) during repeated 

bouts of on-ice sprinting (Carey, et al., 2007; Roczniok et al., 2012). Additionally, it has 

been suggested that there is a need for further testing of multiple on-ice aerobic testing 

protocols using professional hockey players and direct gas exchange measurement. 

(Leone, Leger, Lariviere, & Comtois, 2007; Buchheit Lefebvre, Laursen, & Ahmaidi, 

2011).  The dearth of such evidence reflects the need for further investigation regarding 

this topic.  Moreover, conditioning protocols for hockey players are often prescribed by 

hockey coaches who have little to no educational background regarding energy system 

utilization (Twist & Rhodes, 1993).  The evidence from the current investigation could 

provide strength and conditioning professionals, as well as ice hockey coaches, a 

practical view of how to incorporate conditioning protocols for their players.  With 

professional hockey coaches placing a premium on the ability to sustain high 

performance throughout the duration of a game, it is important to prioritize appropriate 
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and specific conditioning protocols to adequately prepare players (Montgomery, 1988; T. 

Nelson, personal communication, October 8, 2014; Twist & Rhodes, 1993).  

Purpose  

 The purpose of this study was to test for the relationship between on-ice aerobic 

capacity (VO2peak and/or final skating velocity during the 30-15 Intermittent Ice Test) and 

repeated on-ice sprint (RISA) ability via a % decrement in PO (%DPO), peak PO (PPO), 

relative PO (RPPO), mean PO (MPO), and relative mean PO (RMPO) in elite ice hockey 

players.  

Hypothesis 

  H0: The null hypothesis states that there would not be a significant relationship 

between on-ice aerobic capacity (VO2peak and VIIT) and on-ice PO (%DPO, PPO, RPPO, 

MPO, and RMPO) in elite ice hockey players. 

HA:  The researcher’s hypothesis was in agreement with H0 in that there would not 

be a significant relationship between on-ice aerobic capacity and on-ice PO (%DPO, 

PPO, RPPO, MPO and RMPO) in elite ice hockey players (Carey et al., 2007; Nagasawa, 

2013). 

Assumptions  

 The researcher assumed that the participants put forth maximal efforts during 

testing.  It was also assumed that the participants were in similar physiological 

conditioning states, as they have similar lifestyles and similar physiological stressors.  

The researcher also assumed that VO2peak taken during the 30-15 Intermittent Ice Test 

(30-15IIT) would have a strong correlation to the final skating velocity (VIIT) achieved 

during the test. 
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Limitations 

 Limitations of this study included: the indirect estimation of PO, the small sample 

size of the subjects (n = 11 total; n = 9 for correlational testing), and the time constraints 

related to ice-time and participant availability.  Additionally, OPO was estimated using 

the Repeat Ice Skating Test (RIST), which is a field test, and lacks the improved accuracy 

that may improve via direct measurement (ACSM, 2010).  The participants likely had 

better skating performances while skating on their preferred side of the ice during the 

RIST, which may have skewed the results.  Moreover, not all of the participants were 

able to utilize the direct gas exchange measurement that were taken during 30-15IIT 

testing, meaning that VIIT was used in comparison with OPO, which was also an indirect 

estimation of aerobic capacity.  Additionally, the distance skated was an estimate taken 

from the average of skating tracks in the ice left after testing.   

Lastly, there are a limited number of subjects that could not participate in this 

study due to a variety of factors including, but not limited to: injuries and recalls by the 

clubs’ NHL affiliate, which further reduced the sample size of this study.  

Delimitations 

 Delimitations of the study included: only male professional hockey players 

between the ages of 18 and 35 were used, and the exclusion of goaltenders participation 

due to the different physiological demands of their position (Besson, Buchheit, Praz, 

Dériaz, & Millet, 2013).  The aformentioned delimitations resulted in normally 

distributed data, improving the validity of the study. 
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Definitions 

• Fatigue Index (FI): Used to describe a decrease in repeated sprint ability by 

calculating the drop off from best to worst performances (Oliver, 2009). 

• Mean power output (MPO): Average of power output during the Repeat Ice 

Skating Test (Oliver, 2009). 

• Peak power output (PPO):  The highest power output measurement observed 

during RIST trials (Carey et al., 2007). This will also be measured in watts. 

• Percent decrement of power (%DPO):  The percent decrease in power output 

observed over subsequent RIST trials (Oliver, 2009). Calculated via the following 

equation: %DPO= ((PPO – MPO) / PPO) x 100 (Oliver, 2009). 

• Power output (PO): The amount of work (force * distance) that can be performed 

over a period of time. Power = ((Force*Distance) / Time).  This will be measured 

in watts (ACSM, 2010). 

• Repeat ice skating test (RIST):  An on-ice test used to measure anaerobic PO of 

hockey players (Power, Faught, Przysucha, McPherson, & Montelpare, 2012). 

• VIIT: Final skating velocity completed during the 30-15IIT.  A multifactorial 

variable for measuring aerobic capacity (Buchheit et al., 2011). 
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Summary 

 There is conflicting evidence pertaining to the relationship between aerobic 

capacity and measurements of RSA, especially in ice hockey players (Carey et al., 2007).  

The purpose of this study was to examine the relationship between on-ice aerobic 

capacity (VO2peak and/or VIIT) and RISA (%DPO, PPO, RPPO, MPO, and RMPO).  The 

results of this study will help to clarify the relationship between the aforementioned 

variables, and could possibly shed light on training protocols for fitness professionals in 

order to further optimize on-ice performance. 
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Chapter Two: Review of Literature 

The intent of this section is to further the reader’s understanding of ice hockey, 

the physiological demands of the sport, and the importance of the research question.  The 

evidence from this study could be used to help prioritize training protocols for elite ice 

hockey players.  Moreover, this section will familiarize the reader with the background 

and physiological demands of ice hockey, as well as the roles of: high aerobic capacity; 

anaerobic power output; anaerobic recovery; the conflicting evidence in relationship 

between aerobic capacity and measurements of RSA; and the need for more specific 

testing for ice hockey players. 

Background Information 

 Ice hockey is a sport that is played in an oval-shaped “rink.”  Plastic boards and 

Plexiglas enclose the rink.  Between the boards is a sheet of ice on which the game is 

played.  There are six players on the ice, per team, during “even-strength” play (three 

forwards, two defenseman, and one goaltender).  Players wear ice hockey skates, full 

protective gear, and utilize an ice-hockey stick to pass, shoot, and defend the puck.  The 

puck is a small, short, cylindrical piece of vulcanized rubber, which is the equivalent of 

balls in other sports.  The objective of the sport is to have scored more goals than the 

other team after the completion of the three 20-minute periods of play.  The sport is 

played at a rapid pace, and involves full-body “checking” (full-body contact, similar to 

“hitting” in American football; Bracko, 2004). 

Physiological Demands  

 Ice hockey is a high-intensity sport, which relies heavily on anaerobic substrate 

utilization (Montgomery, 1988).  The typical “shift” during a game generally lasts 



AEROBIC CAPACITY AND POWER OUTPUT IN HOCKEY 14  
	
  
anywhere from 45-70 seconds, with ~30 seconds of that time being characterized as 

“skating time,” and the remaining time being, “non-skating time” (Horrigan & Kreis, 

1994).  These time frames are congruent with those in which anaerobic metabolism is the 

primary energy provider; however, a high aerobic capacity is considered by many to be 

requisite to playing ice hockey at an elite level (McArdle et al., 2010; Montgomery, 

1988; Twist & Rhodes, 1993).  To a certain degree this seems to be true.  The mean 

VO2max of 853 elite level junior hockey players was 57.4 ml/kg/min, putting the mean of 

said players in the “superior” category for aerobic capacity relative to age and gender 

(ACSM, 2010; Burr et al., 2008).  This suggests that there may be an inherent need for a 

high aerobic capacity to compete in the sport at a high level, which may be important 

when considering its high-intensity intermittent nature. 

 Because of the physiological demands of the sport, elite level ice hockey players 

need well-rounded physical fitness levels encompassing multiple variables including: 

anaerobic power production, aerobic capacity, muscular strength, muscular endurance, 

and flexibility (Nightingale, Miller, & Turner, 2013).  While these variables are often 

related to measurements of on-ice success, the skill involved in playing the sport is of 

greater importance to coaches and players than off-ice fitness measurements (Bracko, 

2004; T. Nelson, personal communication, October 8, 2014). 

Benefits of a High Aerobic Capacity 

 According to McArdle et al. (2010), increasing cardiorespiratory endurance (i.e. 

aerobic capacity) can lead to an increase in: oxygen supply to working muscles, 

mitochondrial density, capillary density, aerobic enzyme activity, and type II muscle fiber 

transformation to type I.  All of these are positive factors if the person’s goal is to 
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increase his/her ability to sustain submaximal workloads over an extended period of time 

(Buchheit & Laursen, 2013a).  Twist and Rhodes (1993) stated that increasing aerobic 

capacity could increase lactate reoxidation in type I muscle fibers, which may be 

beneficial in fatigue avoidance.  Brooks (2009) also found that mitochondria are able to 

metabolize lactate, which implies that increasing mitochondrial density could result in 

improved metabolism of lactate on an intracellular level.  Since lactate accumulation is 

accompanied by an increase in acidity (resulting in a decrease in muscle pH), which 

limits binding of calcium ions to the troponin within a sarcomere (resulting in muscular 

fatigue), theoretically, increasing aerobic capacity could result in the ability to sustain 

higher workloads over a longer period of time (Brooks, 2009; McArdle et al., 2010). 

 However, improving aerobic capacity is not synonymous with low-intensity, long 

duration training.  In fact, Buchheit and Laursen (2013a, 2013b) stated that training at 

supramaximal VO2max levels leads to greater improvements in aerobic capacity than 

training at lactate threshold (LT).  Of importance, LT is lower than VO2max, but is highly 

dependent on training status (McArdle et al., 2010).  This type of training could 

theoretically improve aerobic capacity, LT, and sustained power output (Buchheit & 

Laursen, 2013a, 2013b).  Moreover, high lactate accumulation, which is common during 

hockey games, combined with improved mitochondrial density could result in greater 

lactate metabolism in hockey players (Brooks, 2009; Buchheit & Laursen, 2013a; 

McArdle et al., 2010).  It should be noted that the aforementioned training protocols are 

more similar to the demands of a hockey game as opposed to low-intensity, steady state 

cardiorespiratory endurance training (Buchheit et al., 2011). 
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Benefits of an Improved Anaerobic Power Output 

  McArdle et al. (2010) stated that there are three main improvements that occur 

via anaerobic training (which are the primary energy systems utilized in ice hockey): 

Improved levels of anaerobic substrates:  

1. PCr, glycogen stores, and ATP stores 

2. Improved threshold levels of glycolytic enzyme activity (i.e. 

phosphofructokinase) in type II muscle fibers 

3. Higher blood lactate levels occurring during maximal exercise 

Higher blood lactate levels are indicative of increased glycolytic activity, which 

implies that the body is metabolizing energy at a rapid pace (McArdle et al., 2010).  This 

is beneficial for multiple sprint sports (i.e. ice hockey) because the body needs to quickly 

generate energy; at a sustained pace for longer periods of time than ATP-PCr (McArdle 

et al., 2010; Montgomery, 1988).  As previously stated, training outlined by Buchheit and 

Laursen (2013a, 2013b) can lead to increases in anaerobic PO as well as mitochondrial 

density.  The latter improvement is resultant to an individual’s ability to metabolize 

lactate as energy within the muscle, as opposed to delayed metabolism by the heart, 

brain, or the liver in the Cori cycle (Brooks, 2009; Buchheit & Laursen, 2013b; McArdle 

et al., 2010).  This type of training can also improve muscle glycogen storage, which 

could be extremely important, as ice hockey players can deplete up to 70% of their 

muscle glycogen stores after approximately 10 shifts (Durocher, Leetun, & Carter, 

2008b). 

Durocher, Leetun, et al. (2008b) found that collegiate ice hockey players’ mid-

season skating velocity at LT were significantly higher than pre-season (p < .01).  This 
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further substantiates the theory that lactate can be utilized as energy by the muscles, 

which could increase LT.  Additionally, Bishop et al. (2003) recruited 14 elite level 

female field hockey players and compared the relationship between VO2peak (mean: 55.7± 

3.2 ml/kg/min), H+ ion concentration, and RSA using a cycle ergometer.  The authors 

found that H+ ion concentration was more related to RSA (r = .63; p < .05) than VO2peak 

(r =.3; p > .05).   These findings suggest that LT (represented by the H+ accumulation) 

might be a better indicator of RSA than aerobic capacity (in this case, VO2peak).  

Improved anaerobic substrate utilization may actually be a positive adapation for hockey 

players, as opposed to a negative one (Brooks, 2009). 

Benefits of Improved Anaerobic Recovery 

 There are multiple physiological measurements that can be utilized to track 

recovery from anaerobic work such as: heart rate, blood lactate, oxygen consumption, etc. 

(Besson, et al., 2013); however, the ability to maintain PO during repeated sprints is a 

specific indicator as to how well an individual can recover from repeated bouts of 

anaerobic work (Carey et al., 2007; Oliver, 2009). The ability to maintain power during a 

hockey game may also lead to improved play (Farlinger, Kruisselbrink, & Fowles, 2007; 

T. Nelson, personal communication, October 8, 2014).  Theoretically, a powerful athlete 

who can maintain his/her power from shift-to-shift or sprint-to-sprint may be able to 

benefit his/her team more than an athlete who cannot (T. Nelson, personal 

communication, October 8, 2014).  

Aerobic Capacity and Anaerobic Recovery 

 There has been ample research comparing the relationship between aerobic 

capacity and anaerobic recovery (often measured via RSA testing).  Despite the large 
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body of evidence pertaining to this subject, the literature itself is conflicting; moreover, 

there is a lack of empirical evidence, which compares the two aforementioned variables 

in a sport specific manner for ice hockey, much less in elite level players.  

 For example, Green et al. (2006) found that off-ice VO2max was a significant 

predictor of scoring chances throughout a season in collegiate hockey players (r = .41, p 

< .03).  This study indicated that a higher aerobic capacity is correlated to greater chances 

of scoring in a game.  However, the same researchers found that VO2max was not 

significantly related to minutes played throughout the season (r = .20; p > .05).  These 

researchers also found a significant relationship between blood lactate levels and minutes 

played throughout the season (r = .41; p < .03).  While it does appear that aerobic 

capacity could result in greater scoring chances, the reliance on anaerobic metabolism 

was more important for minutes played during an ice hockey game.  This could further 

substantiate speculation that aerobic capacity is not requisite to anaerobic recovery due to 

a higher reliance on glycolytic metabolism.  

 Roczniok et al. (2012) recruited 21 elite level male hockey players from the 

Polish U20 national team and found significant relationships between off-ice VO2max  

(mean: 57.88 ± 4.94 ml/kg/min) with skating agility and stop-and-start skating time (r = -

.68 and -.62 respectively; p < .05); however, aerobic capacity was measured via off-ice 

testing, which lacks the aforementioned specificity of testing. The authors also found a 

significant relationship between relative anaerobic PO (watts/kg; measured via a Wingate 

cycle ergometer test) and skating agility and stop-and-start skating time (r = -.58 and - 

.57 respectively; p < .05).  Again, this test was not as specific as an on-ice test, but the 

results still suggest that anaerobic PO can result in improved on-ice performance.  That 
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notwithstanding, aerobic capacity did have a stronger relationship to on-ice skating 

performance than that of anaerobic power, although both relationships were significant (p 

< .05). 

 McNeely, Millette, Brunet, and Wilson (2010) recruited 21 male NCAA Division 

I ice hockey players and compared the relationship between off-ice aerobic capacity, an 

on-ice FI, and lactate removal following repeated on-ice sprints.  The authors found that 

off-ice VO2max  (mean: 59.6 ± 5.48 ml/kg/min) was significantly and inversely related to 

on-ice FI and lactate removal (r = -.455 and -.49 respectively; p < .05).  This implies that 

a higher aerobic capacity is related to lower fatigue in elite ice hockey players.  However, 

the Reed Repeat Sprint Test (on-ice repeat sprint used in this study), is known for being 

especially difficult (Buchheit et al., 2011).  This could have resulted in pacing effect in 

some of the subjects, which may have skewed the FI data (Oliver, 2009; Power et al., 

2012; Watson & Sargeant, 1986).  Additionally, FIs have been shown to have a high 

coefficient of variability, meaning that if a FI was not calculated properly or slightly 

skewed by pacing, the data would strongly skewed, especially considering the relatively 

low magnitude of sprint times compared to those of PO in watts (Oliver, 2009). 

 Peterson and colleagues (2015) recruited 45 male college and elite level junior 

hockey players and compared the relationship between on-ice aerobic capacity and RISA.  

The participants were asked to complete a maximal effort aerobic capacity test, on a 

synthetic skating treadmill to establish the participants’ VO2peak. The participants were 

then asked to engage in an on-ice shift simulation skating test to examine their RISA.  

This test involved multiple changes of direction, and lasted approximately 23 seconds 

with 90 seconds of rest in between each repetition.  Eight total repetitions were 
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completed.  The authors then calculated a time decrement score similar to that of other 

FIs (% Decrement Score = (100 x (Total Sprint Time ÷ Ideal Sprint Time) – 100).   There 

were three timing points set-up throughout the skating course.   A decrement score was 

calculated for each (gate one, gate two, and total course).  It was found that VO2peak was 

not significantly related to gate one fatigue, nor total course fatigue (r = -.11 and -.17 

respectively; p > .05); however it was significantly related to gate two fatigue (r = -.31; p 

< 05).  It was also stated that the number of stages completed on the aerobic capacity test 

was significantly related to RISA for gate two fatigue (r = .46; p < .01) and total course 

fatigue (r = .32; p < .05), but not gate one fatigue (r = -.21; p > .05).  The authors 

attributed the significant relationship between VO2peak and gate two fatigue to an increase 

in glycolytic metabolism at this time (10-25 seconds into the sprint), resulting in a lower 

muscle pH.  They hypothesized that players with a higher aerobic capacity would be able 

to buffer H+ ions more efficiently, thus improving RISA via an improved reliance on 

aerobic metabolism.  They also theorized that gate one fatigue was not significantly 

related to VO2peak because the half-life of PCr restoration is about 21 seconds, meaning 

that the participants may have been more proficient at the beginning of the test because 

PCr was likely the primary fuel source.  It was also stated that the relationship between 

the maximum number of stages completed during the aerobic capacity test and the other 

decrement scores was indicative of higher skating proficiency in these participants, 

meaning that better skaters would use less energy than inefficient skating.   

While these results are intriguing, they should be interpreted with caution for 

numerous reasons.  For example, the aerobic capacity test was performed while skating, 

which would imply that the test was specific to the sport; however, skating treadmills use 
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synthetic plastic, which may increase the friction of the skating surface.  Additionally, 

this test was performed in a continuous fashion, which does not mirror the intermittent 

nature of the sport itself.  It should also be noted that the participants skated at an incline 

for the duration of the test, which may have been unfamiliar to them.  The authors did not 

mention if the participants completed this test in full hockey gear, which also may have 

skewed their results. The test also likely took place in a setting with a warmer 

temperature than those of an ice hockey rink, which may have caused the participants to 

become uncomfortable and further disassociated them from their natural skating habits.  

The RISA test also lent itself to higher fatigue accumulation by gate two because there 

were multiple stops and starts before skating in a full circle, followed by a half circle, and 

another sprint to finish the course.  While this test was specific to a shift simulation, the 

multiple changes in direction may have cause higher lactate accumulation (Besson et al., 

2013).   

Yoshida and Watari (1993) clearly demonstrated that males with a high aerobic 

capacity (n = 5; mean VO2max: 73.6 ml/kg/min) had significantly (p < .05) lower PCr 

restoration times in comparison to a healthy male control group (n= 6 mean; VO2max : 

46.6 ml/kg/min); however, these findings may suggest that training status is more related 

to measurements of anaerobic recovery than aerobic capacity itself.  While the authors 

did not mention the training volume of the participants recruited for this study, one could 

deduce that the high-aerobic capacity group likely had more training time than that of the 

control group.  These findings could also illustrate the point that aerobic capacity can 

improve recovery via increased O2 supply to working muscles, mitochondrial density, 

capillary density, aerobic enzyme activity, and type II muscle fiber transformation to type 
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I, but this may only be beneficial up to a certain point, which may be after an “aerobic 

base” has been established (Bishop et al., 2003). Conversely, there is also evidence that 

suggests that O2 supply to the working muscles is not as important to RSA as O2 supply 

to the central nervous system (Smith & Billaut, 2010). 

          Tomlin and Wenger (2001) reviewed multiple scholarly articles and concluded that 

aerobic capacity was an essential element in an individual’s ability to recover from 

anaerobic work.  However, the authors did not mention if markers of anaerobic 

performance were also related to the ability to recover, as it was outside of the scope of 

their review.  Perhaps these two variables would be more related to each other than 

aerobic capacity and anaerobic recovery (Nagaswa, 2013).  Additionally, Tomlin and 

Wenger (2001) stated that studies that utilized participants with a higher aerobic capacity 

had nearly no relationship between aerobic capacity and anaerobic recovery.  

          Despite the aforementioned empirical evidence that aerobic capacity is related to 

anaerobic recovery, and/or skating ability, there is also sufficient experimental data 

demonstrating that the inverse are true.  For example, Carey et al. (2007) found a non-

significant, moderate, inverse relationship (r = -.422; p > .05) between off-ice aerobic 

capacity and an on-ice FI in female collegiate hockey players.  However, these results 

should be interpreted with caution as aerobic capacity was measured off ice, and female 

subjects tend to self-select lower intensity levels during repeated sprints (Durocher, et al., 

2008a; Laurent, Vervaecke, Kutz, & Green, 2014).  Moreover, females appear to rely 

more on aerobic energy systems when compared to males (Billaut, Giacomoni, & 

Falgairette, 2003; Laurent et al., 2014). As previously mentoined, a FI can have a high 

coefficient of variability (if the average is not taken into considertion), which could skew 
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this data even further (Oliver, 2009).  While these results are intriguing, they may not 

apply to this study, as all of the participants were males, both measurements will be 

conducted on-ice, and a FI was not used. 

 Durocher et al. (2008a) compared the on-ice aerobic capacities, lactate thesholds, 

and ventilatory thresholds of male (n = 10) and female (n = 10) Division III collegiate ice 

hockey players.  The researchers found that VO2max was significantly higher in males 

when compared to females (52.7 ± 1.3 and 40.1 ± 1 ml/kg/min respectively; p < .01).  

However, the authors found that LT was not significantly different (when represented as 

%HRmax and %VO2max), but the female group had a significantly higher ventilatory 

threshold when compared to the male group (67.3 ± 4% and 52.7 ± 3.2% respectively; p 

< .02).  The authors speculated that this might have been a compensatory mechanism in 

females to overcome their lower aerobic capacities and still play the sport at a high level.  

These results further substantiate the reasonable concern behind the findings of Carey et 

al. (2007), when trying to apply their findings to the participants of this proposed study. 

 Hoffman, Epstein, Einbinder, & Weinstein (1999) compared the relationship 

between VO2max and anaerobic recovery from repeated sprints on a basketball court and 

the Wingate cycle ergometer test (measured via a fatigue index) in 20 male national-level 

bastketball players (age: 19. 0 ± 1.7 years, mean VO2max: 50.2 ± 3.8 ml/kg/min).  The 

authors found a moderate correlation between VO2max and MPO on the Wingate test (r = 

.57;  p < .05); however, no significant relationship was found between VO2max and FI for 

the repeated sprints and the Wingate tests (r = .01 and -.23 respectively; p > .05).  The 

authors suggested that there might be a certain threshold where VO2max does not relate to 
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anaerobic recovery.  While these results are intriguing the use of a FI means that the 

results should be interpreted with caution (Oliver, 2009). 

Cooke, Petersen, and Quinney (1997) recruited 21 male participants to determine 

if aerobic capacity could predict PCr recovery rates.  The participants were seperated in 

high-aerobic capacity (n = 10; mean: 64.4 ± 1.4 ml/kg/min) and low aerobic capacity 

groups (n = 10; mean: 46.6 ± 1.1 ml/kg/min) and engaged in a two-minute bout of intense 

exercise involving the calf musculature.   Aerobic capacity was not a significant predictor 

(p > .05) of PCr recovery rates of the calf musculature following intense exercise.  

However, the testing for this study was performed 48 hours after baseline measurements 

of calf musculature strength was established, which is when delayed onset muscle sorness 

can peak, possibly skewing their results (Schoenfeld & Contreras, 2013). While PCr 

recovery rates are important for recovery from bouts of anaerobic work, muscle 

reoxygenation rates are another important factor in recovery (Tomlin & Wenger, 2001).  

Kime et al. (2003) recruited seven healthy males (mean age: 29 ± 3 years) to 

compare the relationship between muscle reoxygenation and PCr restoration following 

isometric exercise involving the hands.  The participants were instructed to contract their 

hands (isometric; maximally) for 10 seconds.  Muscle reoxygenation rates and PCr 

restoration rates were monitored after the testing was performed.  There was a significant 

positive relationship between muscle reoxygenation rates and PCr restoration rates (R2 = 

.939; p < .001), indicating that highly oxidative muscles took longer to restore PCr.  

While these results are intriguing, the protocol used for testing this relationship involved 

a short isometric contraction, which may not be indicative of the relationship between 
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aerobic capacity and anaerobic recovery in whole-body, dynamic movements, like those 

utilized in ice hockey. 

  Nagasawa (2013) found that muscle reoxygenation rates were significantly slower 

in the long distance runners (highest VO2max) compared to sprinters (middle VO2max; p 

<.05) and a control group (lowest VO2max; p <.01) following an anaerobic cycling test.  

Amongst all subjects there was a significant, positive, relationship between VO2max and 

muscle reoxygenation half-life rates (r = .75; p < .01), meaning that as aerobic capacity 

increased, so did muscle reoxygenation time.  Reoxygenation rates were the longest in 

the long distance runners, which indicates that aerobic capacity does not improve 

anaerobic recovery after bouts of anaerobic exercise. 

Smith and Billaut (2010) recruited 13 male collegiate soccer and rugby players 

(age: 23.6 ± 3.7 years) and compared muscle O2 saturation and prefrontal cortex O2 

saturation during repeated sprints on a cycle ergometer under normoxic and hypoxic 

conditions.  The participants completed 10 sets of 10-second maximal effort sprints 

followed by a period 30 seconds of rest under normoxic and hypoxic states on separate 

testing days.  The researchers found no significant difference (p > .05) in muscle O2 

saturation between the two states; however, prefrontal cortex O2 saturation, measured by 

the presence of deoxygenated hemoglobin content, was significantly (p < .05) higher 

under hypoxic conditions when compared to baseline measurements.  Additionally, the 

presence of deoxygenated hemoglobin was found to be negatively correlated with 

mechanical work over the 10 sprints in both normoxic and hypoxic states (R2 = .81 and 

.85 respectively; p < .05), whereas muscle O2 saturation did not have a significant main 

effect on normoxic or hypoxic states (p > .05).  These findings suggest that a lack of 
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oxygen supplied to the central nervous system has more of an affect on RSA than the 

ability of the human body to provide oxygen to working muscles (i.e. aerobic capacity). 

Based on this body of literature there is clearly conflicting evidence on this 

subject.  While some researchers have found a relationship between aerobic capacity and 

measurements of RSA there are other researchers that have shown the opposite (Carey et 

al., 2007; Cooke et al., 1997; Hoffman et al., 1999; McNeely et al., 2010; Tomlin & 

Wenger, 2001; Yoshida & Watari, 1993). 

Physical Fitness Testing 

 In 1988, Montgomery, called for more specific physical fitness tests for ice 

hockey players.  Off-ice measurements of aerobic capacity show mixed results when 

compared to on-ice aerobic capacity.  For example, Besson et al. (2013) demonstrated 

that off-ice aerobic capacity was higher than on-ice aerobic capacity (VO2peak: 62.7 ± 4 

and 60 ± 7 ml/kg/min respectively; p = .02) in 10 semi-professional hockey players.  The 

subjects also had significantly (p < .01) larger blood lactate accumulation on-ice when 

compared to off-ice, which the authors attributed to the hypoxic environment created by 

the seated position of the skating stride.  However, this could also be related to hockey 

players’ propensity to accumulate and utilize lactate as energy, which appears to be a 

positive adaptation for the sport (Brooks, 2009; Durocher et al., 2008b). 

 Additionally, Petrella, Montelpare, Nystrom, Plyley, and Faught (2007) recruited 

406 ice hockey players (male and female) between the ages of nine and 25 years old to 

establish aerobic capacity normative data for the on-ice Faught Aerobic Skating Test 

(FAST).  The primary objective of this study was to establish predicted VO2max for the 

FAST via a multiple linear regression equation, which would be compared to the 
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participants’ off-ice aerobic capacity.  The authors found that age, weight, height, and 

maximum completed lengths of the FAST were significant predictors of VO2max (adjusted 

R2 = .387; Standard Error = ± 7.25 ml/kg/min; p < .0001).  The authors also found mean 

predicted on-ice aerobic capacity was not significantly different than mean off-ice 

aerobic capacity via dependent t testing (t(405) = .077; p < .05; α = .01); however, there 

was a significant, moderate, positive relationship between predicted (on-ice) and actual 

(off-ice) VO2max (r = .77; p < .01).  These findings are contrary to those of Besson et al. 

(2013), and suggest that there is no difference in testing aerobic capacity on- and off-ice, 

meaning that either might be a viable option; however, FAST is a continuous skating test, 

which does not replicate the intermittent sprinting nature of ice hockey (Buchheit, 2008). 

 Leger, Seliger, and Brassard (1979) showed that 10 male ice hockey players had 

similar on-ice aerobic capacities when compared to off-ice (mean VO2max: 59.9 ± 7.4 and 

61.4 ± 6.3 ml/kg/min respectively; p > .05).  However, the hockey players were 15.9% 

more mechanically efficient during skating and 7.9% less mechanically efficient when 

running, which implies that on-ice testing might be more specific to the sport itself.  

 Conversely, Durocher, Guisfredi, Leetun, and Carter (2010) recruited 10 male 

collegiate ice hockey players and compared on-ice and off-ice aerobic capacity.  The 

authors found that on-ice VO2max was significantly higher than off-ice (46.9 ± 1 and 43.6 

± .09 ml/kg/ min respectively; p < .05).  The authors also found that no relationship 

existed between the two variables (r = -.002; p = .99).  This suggests that measurements 

of aerobic fitness should be performed in a more sport specific manner.  

 Additionally, Leone et al. (2007) established a predicted on-ice VO2max using 30 

elite youth hockey players (age: 14.7 ± 1.5 years) for the skating multistage aerobic test 
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(SMAT).  Additional testing involving 112 elite male (age: 14.2 ± 1.3 years) and 21 elite 

female (age: 14.0 ± 1.2 years) youth hockey players recruited to compare the predicted 

VO2max of the SMAT to the validated predicted VO2max of the 20-m shuttle run test (off-

ice).  The authors found that predicted VO2max was significantly higher in males during 

SMAT when compared to the 20-m shuttle run test (53.4 ± 6.34 and 48.5 ± 5.27 

ml/kg/min respectively; p < .05); however, the authors found no significant difference in 

aerobic capacity during SMAT and the 20-m shuttle run test in the female participants 

(44.5 ± 5.1 and 42.9 ± 5.17 ml/kg/min respectively; p > .05).  As previously mentioned, 

findings regarding female participants may not apply to the current study; however, these 

findings could be used to legitimize the findings of Carey et al. (2007) as off-ice aerobic 

capacity was not significantly different from on-ice in these participants.  With that being 

said, these participants were youth hockey players, and there is still evidence suggesting 

that the FI used by Carey et al. (2007) may have skewed their results. 

The aforementioned results suggest that off-ice testing is not reliable for measuring 

aerobic capacity in hockey players.  While Besson et al. (2013) found that there was not a 

significant difference in on-ice and off-ice aerobic capacities (using participants similar 

to those of the current study), other researchers have shown the opposite. Anecdotally, 

off-ice testing may put a participant in an environment that they may not be comfortable 

with (Leger et al., 1979; Montgomery, 1988).  Not all subjects may be as comfortable or 

efficient on a cycle ergometer or running as they may be ice-skating (Leger et al., 1979).  

This is further validation that aerobic capacity testing should be conducted in a sport-

specific manner (Montgomery, 1988). 
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 Off-ice power measurements have been shown to be significantly related to 

measurements of skating ability; however, if specificity is optimal for testing 

physiological adaptations, on-ice power output  testing may be a better option than off-ice 

PO (Bracko & George, 2001; Farlinger, et al. 2007; McArdle et al., 2010; Montgomery, 

1988).  For example, Watson and Sargeant (1986) recruited 24 junior hockey players and 

compared PO between two on-ice tests and a maximal Wingate cycle ergometer test.  The 

authors found significantly (p < .05) higher OPO compared to the Wingate cycle 

ergometer test (off-ice), which is used as a standard off-ice PO test within multiple 

professional hockey organizations (Burr et al., 2008; Tarter et al., 2009).  These findings 

further substantiate the idea that on-ice testing would be more specific for PO testing than 

off-ice PO testing. 

Additionally, Farlinger et al. (2007) compared multiple measurements of off-ice 

fitness variables (e.g. broad jump, 30m sprint, Wingate mean PO, etc.) in 36 competitive 

youth hockey players (males and females; age range: 15 - 22 years) to two tests of on-ice 

skating agility and skating velocity.  The authors found that horizontal jump and a 3-hop 

jump test were the most highly correlated off-ice tests to skating times (r = -.59 and -.53 

respectively; p < .001).  These findings suggest that off-ice tests are related to on-ice 

performance; however, it should be noted that the two on-ice skating tests were the most 

highly correlated (r = .70; p < .001), suggesting that on-ice testing is more specific and 

more related to one another. 

 Power et al. (2012) designed a study to compare the interclass correlation of the 

RIST to other traditional power output tests, which were measured off-ice. While the 

objective of their study was not to determine whether or not the RIST resulted in higher 



AEROBIC CAPACITY AND POWER OUTPUT IN HOCKEY 30  
	
  
relative POs compared to the Wingate cycle test, the Margarita-Kalamen Stair Test, and 

Vertical Jump, the RIST OPO was much higher than traditional off-ice PO tests (47.9 ± 

3.8; 6.4 ± .53; 13.7 ± 2; and 37.9 ± 4.7 watts/kg respectively).  These findings are 

congruent with those of Watson and Sargeant (1986). 

 On-ice physical fitness testing is more specific to the nature of the sport than off-

ice testing (Bracko & George, 2001; Farlinger et al., 2007; Montgomery, 1988).  Since 

specificity is prefferable during physical fitness testing (due to activation of the trained 

musculature) it has been suggested that future researchers should strive to compare on-ice 

variables to one another (McArdle, et al., 2010; Montgomery, 1988).   

Summary 

 Ice hockey is a sport that relies on a multitude of different physical fitness 

variables in order to compete at an elite level (Montgomery, 1988).  While it has been 

stated that ice hockey relies mainly on anaerobic substrate utilization (69%) compared to 

aerobic metabolism (31%), some would argue that aerobic metabolism is beneficial to 

improving performance in ice hockey players (Montgomery, 1988; Twist & Rhodes, 

1993).  It could easily be deduced that a high aerobic capacity is requisite to playing the 

sport at a high level based on the findings of Burr et al. (2008).  Improving aerobic 

capacity might be beneficial as it would allow physiological adaptations to occur that 

would improve in-game performance, including: improved mitochondrial density, 

capillary density, O2 delivery to working muscles, and type I fiber 

hypertrophy/transformation, which could utilize lactate as energy, thereby bypassing the 

Cori cycle of the liver (McArdle et al., 2010; Twist & Rhodes, 1993). 
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 Ice hockey players might also benefit from improving anaerobic PO as it may 

increase lactate utilization of the muscles during an ice hockey game, as shown by 

Durocher et al. (2008).  Additionally, Bishop et al. (2003) found that increased H+ 

accumulation, which is indicative of the presence of lactate in the body, was positively 

related to RSA, meaning that hockey players that rely heavily on anaerobic substrate 

utilization may, in fact, demonstrate better RSA. 

Regarding the relationship between aerobic capacity and RSA or FI, the literature 

is quite conflicting.  While McNeely et al. (2010) used a group of NCAA Division I ice 

hockey players  (mean VO2max: 59.6 ± 5.48 ml/kg/min) and found a significant, moderate, 

inverse relationship between aerobic capacity, FI and lactate removal, Hoffman et al. 

(1999) used a group with a comparable aerobic capacity (mean VO2max: 50.2 ± 3.8 

ml/kg/min) and found no significant relationship between VO2max and the FI for a repeat 

sprint test and the Wingate test.  Yoshida & Watari (1993) found that males with a high 

aerobic capacity (mean VO2max: 73.6 ml/kg/min) had significantly faster (p < .05) PCr 

restoration rates when compared to a healthy control group (mean VO2max: 46.6 

ml/kg/min), Cooke et al. (1997) found that aerobic capacity (high-aerobic capacity mean 

VO2max: 64.4 ± 1.4 ml/kg/min; low aerobic capacity mean VO2max: 46.6 ± 1.1 ml/kg/min) 

was not a significant predictor (p > .05) of PCr recovery rates. Tomlin and Wenger 

(2001) have argued that aerobic capacity is related to RSA or FIs, but this seems to be 

true only in individuals with a relatively low aerobic capacity (Hoffman et al. 1999).  

Additionally, the majority of the data that compares these two variables utilize a FI, 

which has a high coefficient of variability, suggesting that some results should be 

interpreted with caution (Oliver, 2009). 
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While the literature is nebulous regarding the relationship between aerobic 

capacity and RSA, it also unclear as to whether or not off-ice measurements of aerobic 

capacity are specific enough to ice hockey (Leger et al., 1979; Montgomery 1988).  

Petrella et al. (2007) found that an on-ice predicted VO2max using a continuous on-ice 

skating protocol was not significantly different from actual off-ice VO2max in 406 ice 

hockey players (t(405) = .077; p < .05; α = .01); however, Besson et al. (2013) 

demonstrated that off-ice VO2peak was significantly different from on-ice VO2peak in 10 

semi-professional ice hockey players (VO2peak: 62.7 ± 4 and 60 ± 7 ml/kg/min 

respectively; p = .02).  Further convoluting this subject, Leger et al. (1979) found no 

significant difference in on-ice aerobic capacity and off-ice aerobic capacity in 10 male 

ice hockey players (mean VO2max: 59.9 ± 7.4 and 61.4 ± 6.3 ml/kg/min respectively; p > 

.05), whereas Durocher et al. (2010) found that off-ice aerobic capacity was significantly 

higher than on-ice (mean VO2max: 46.9 ± 1 and 43.6 ± .09 ml/kg/ min respectively; p < 

.05) and no significant relationship between the two variables (r = -.002; p = .99).   

The lack of clarity in the existing literature generally ceases to exist regarding 

OPO.  Watson & Sargeant (1986) found that two different skating tests yielded 

significantly higher POs when compared to those accrued via the Wingate cycle 

ergometer test (p < .05).  Additionally, while Power et al. (2012) were not comparing 

differences in POs between tests, OPO via the RIST was higher when compared to the 

Wingate cycle test, the Margarita-Kalamen Stair Test, and Vertical Jump tests (47.9 ± 

3.8; 6.4 ± .53; 13.7 ± 2; and 37.9 ± 4.7 watts/kg respectively). 

While there are theoretical advantages of improving both aerobic capacity and 

anaerobic PO, there is a clear need to determine the relationship between these two 
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theoretically advantageous physiological adaptations in a sport-specific manner. While 

off-ice testing may be a viable option for analyzing aerobic capacity, there has been a call 

to utilize sport-specific on-ice testing, which utilizes direct gas exchange measurement in 

elite ice hockey players (Buchheit, 2008; Leger et al., 1979; Montgomery, 1988). 

Examining the relationship between these two variables could only further the scientific 

community’s understanding of the application of underlying physiology in elite level ice 

hockey, thus encouraging coaches at all levels to apply the data which is collected via this 

study in the field.  Based on the existing literature, it is clear that further investigation on 

this topic is needed, especially considering the lack of specificity of testing for aerobic 

capacity and PO in ice hockey players.  (Besson et al., 2013; Buchheit et al., 2011; 

Montgomery, 1988). 

The purpose of this study was to compare on-ice aerobic capacity (VO2peak and/or 

VIIT) via the 30-15IIT (Besson et al., 2013; Buchheit et al., 2011) and OPO measured via 

the RIST (Power et al., 2012), in nine elite level ice hockey players recruited from an 

American Hockey League (AHL) team. 
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Chapter Three: Methodology 

 The purpose of this chapter is to familiarize the reader with the study design, 

participants, instrumentation, test selection, and statistical analyses that were performed 

with the data.  The design of this study had to consider the competition schedule of the 

participants, in addition to the ice-time availability necessary to perform the testing. 

This study was observational in nature.  The aim of this study was not to establish cause 

and effect, but rather to observe the relationship between on-ice aerobic capacity and 

RISA (correlational). 

Participants 

 Based on the research of Peterson et al. (2015), a sample size of 45 participants 

would be needed to find statistical significance between on-ice aerobic capacity and 

RISA.  However, Nagasawa (2013) found a significant relationship (r = .75; p < .01; ES 

= .52) between aerobic capacity and PCr recovery rates (ES = .86) in 11 participants.  

Conversely, Carey et al. (2007) found a non-significant relationship between off-ice 

aerobic capacity (r = -.422; p  >.05) and RISA in 11 participants (ES = .19).  Based on 

these findings, it seemed necessary to recruit 10-15 participants (ES = .13 to .22) for this 

study to have a similar p-value to that of Peterson et al. (2015) and Carey et al. (2007). 

In actuality, 11 professional ice hockey players (AHL; seven forwards and four 

defenseman) were recruited (mean age = 23.10 ± 2.66 years); however, correlational 

analyses were only conducted for nine of the eleven participants, as two were dropped 

from the study due to in-season recalls by the  club’s National Hockey League affiliate.  

As previously mentioned, there have been multiple studies comparing off-ice testing to 

on-ice testing, and additional studies that have analyzed repeated sprint ability (Carey et 
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al., 2007; da Silva, Guglielmo, & Bishop, 2010; Mendez-Villanueva, Hamer, & Bishop, 

2008; Montgomery, 1988).  The authors of the aforementioned studies were able to yield 

valid, and oftentimes, significant results with ≤ 12 subjects.  

Instrumentation 

The Oxycon portable O2 analyzer, created by CareFusion, is essentially a 

backpack that can be worn along with a gas exchange mask during exercise that can not 

be monitored using a traditional metabolic cart, due to its lack of portability.  This device 

has been shown to be a valid and reliable tool for measuring aerobic capacity remotely 

(Akkermans, Sillen, Wouters, & Spruit, 2012).  Some of the participants (n = 4) wore this 

mobile gas analyzer with their full hockey equipment during the 30-15IIT, and direct 

measurement of VO2peak was determined. 

 The Speedtrap 2, created by Brower Timing systems, is a wireless photocell 

timing system that was used for the RIST.  The timing device was set up on the red-line 

of the ice, which was both the starting and finishing point for the participants during the 

RIST (Figure 1). This device reduced the probability of user error during the timing of 

sprint trials (Hetzler, Stickley, Lundquist, & Kimura, 2008). 

 A Tanita BWB-800S Digital Physician Scale was used to obtain the bodyweight 

of the subjects prior to testing, as well as the weight of the subjects in full hockey gear.  

A pair of Harpenden skinfold calipers were used to assess body fat percentage of the 

subjects. Body fat percentage (%BF) was calculated via the Yuhasz formula in 

accordance with National Hockey League (NHL) combine standards (Burr et al., 2008; 

Yuhasz, 1962).  Six skinfold sites were utilized: pectoral, subscapular, triceps, suprailliac, 

abdomen, and thigh. 
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Test Selection 

  Because testing was performed in-season it was of the utmost importance that the 

tests would not cause undue fatigue on the participants (T. Nelson, personal 

communication, October 8, 2014); additionally, the tests had to be valid and reliable, 

which presented a unique problem.  While it was important that that data were reliable 

and valid, the subjects still needed to be able to perform at a high-level following the 

testing protocols (T. Nelson, personal communication, October 8, 2014).  The 

performance of their jobs could not be sacrificed for the sake of the data (T. Nelson, 

personal communication, October 8, 2014).  With that being said, there were tests 

available that are both reliable and valid for measuring both on-ice aerobic capacity and 

on-ice PO, but would not cause undue fatigue on the participants (Besson et al., 2013; 

Buchheit et al., 2011; Power et al., 2012). 

 The 30-15IIT has been shown to be a highly specific and reliable method for 

assessing on-ice aerobic capacity in hockey players (Buchheit et al., 2011).  Of the 

athletes that participated in the off-ice version of this test, 70% perceived it as less 

physically taxing than other submaximal, continuous effort tests (Buchheit et al., 2011). 

These characteristics made the 30-15IIT the most appropriate test for measuring in-season 

VO2peak in the subjects. 

 There are many on-ice tests that have been used to measure anaerobic recovery, 

but oftentimes these protocols result in extreme physical exhaustion.  For example, the 

Reed Repeat Sprint Test (RSS) has been shown to be the most reliable on-ice test for 

measuring repeated sprint ability (Nightingale, et al., 2013); however, this protocol has 

caused some participants to become physically incapacitated following testing (Power et 
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al., 2012). The RIST does not cause nearly as much fatigue, and can measure PO (watts) 

throughout repeated sprints (Astorino, Allen, Roberson, & Jurancich, 2012; Power et al., 

2012).  This test has also been shown to be a reliable and valid method for measuring 

OPO (Power et al., 2012). The RIST is also highly specific to the sport since the major 

skating components of the test are forward skating, and crossovers, which are some of the 

most common components of skating during a hockey game (Bracko, 2004).  Off-ice 

laboratory testing with similar work-to-rest ratios (utilizing maximal efforts), yielded 

high lactate accumulation levels, suggesting that an on-ice test of a similar nature (like 

the RIST), could sufficiently tax the anaerobic system (Bishop et al., 2003).  Data 

obtained from this test was then used to calculate a %DPO. 

 While there is concern regarding the use of a FI as a measurement of repeated 

sprint performance, Wilson, Snydmiller, Game, Quinney, and Bell (2010) demonstrated a 

FI to be a reliable variable for measuring anaerobic recovery.  Oliver (2009) stated that 

FIs should be interpreted with caution when time was used as a variable, but nothing was 

mentioned regarding the reliability and validity of PO being used as the variable for 

%DPO.  Moreover, since the numbers for PO should be markedly higher values than 

sprint times (e.g. ~ 1000 watts vs. ~7 seconds) there should be less coefficient variability 

in percentages (Oliver, 2009).  However, the concerns regarding %DPO cannot be 

ignored (i.e. a less power in the first trial will result in a lower %DPO).  Considering this 

evidence it seemed appropriate to include MPO and PPO in the statistical analyses as 

well.  It also seemed appropriate to include relative measurements of OPO, as this offered 

additional insight to the role of body mass on power production and decrement. 
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Procedures 

 Prior to the collection of data, Institutional Review Board (IRB) of the University 

of Central Oklahoma was requested and received (Appendix A).  Upon IRB approval, 

participant recruitment began on January 20, 2015.  The participants were recruited by 

the Co-PI in a group presentation within the clubs’ dressing room.  Prospective 

participants were encouraged to sign an informed consent with the PI in the following 

week (Appendix B).  The participants were reminded that their participation in this study 

was voluntary and that their results would not be shared with anyone in the organization.  

Players that did not meet the inclusion criteria (Appendix D) were not allowed to be 

present during the meeting and were not allowed to participate in the study.  Reasons for 

exclusion included: musculoskeletal injuries (sprains, strains, and fractures), acute illness, 

chronic illness, neurological deficits, psychological deficits, and sociological deficits (as 

determined by the athletic trainer and medical staff).  Goaltenders were excluded from 

participation in the study as their physiological adaptations may differ from those of the 

other players (Buchheit et al., 2011). 

On February 3, 2015, OPO testing was conducted, and on-ice aerobic capacity 

testing was completed on February 18, 2015.  It should be noted that due to injuries, two 

of the participant completed OPO testing at a later date (April 20, 2015).  These 

participants were cleared by the team Athletic Trainer to play in games at the time of 

testing, meaning that they were medically eligible to participate in the testing.  Aerobic 

capacity (VO2peak) was intended to be measured directly via the Oxycon portable O2 

analyzer during the 30-15IIT; however, due to malfunctions with the equipment and ice 

time limitations, the VIIT was used as a determinant of aerobic capacity in all participants 
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(Buchheit et al., 2011).  OPO was measured via the RIST (Power et al., 2012).  A %DPO 

was also calculated based on the PO of the six sprints for each subject.  MPO and PPO 

were also calculated.  Body weight (with and without hockey equipment), %BF, sprint 

times, and playing position were all used as descriptive statistics.  Body weight and %BF 

were measured prior to testing. 

 It should be noted that a Certified Athletic Trainer was present during all testing. 

The team Athletic Trainer medically cleared all of the participants prior to participation 

in this study (in conjunction with the team medical staff).  Two practitioners were present 

in the facility during all testing, namely the primary investigator (PI) and a University of 

Central Oklahoma faculty member. The PI was on the ice while the faculty member 

collected data off the ice in the scorekeeper’s box. 

RIST (Power et al., 2012).  Prior to testing the participants were instructed to 

avoid coffee and to go through a general off-ice warm-up prior to testing (Appendix F).   

The primary investigator (PI) was responsible for setting up the testing course.  The 

Speed Trap 2 Timing System was situated along the center ice long, on the same line as 

the neutral zone faceoff dots.  The PI was also responsible for placing the cones of the 

course in the proper place.  The first cone was placed three meters on the outside of the 

neutral zone faceoff dot.  The second cone was placed three meters to the outside to in-

zone dot closest to the net.  The third cone was placed one and a half meters away from 

the boards, in line with the previous two cones, and on the goal line.  The fourth cone was 

placed behind the net, one and a half meters away from the start of the start of the 

trapezoid line (which begins on the goal line).  The other four cones were placed in the 

exact same positions on the ice, but on the opposite side.  Pucks were placed on each dot 
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to help the participants visualize the width that they had to stay in during testing (a 

depiction of the cone set-up for the RIST can be seen in Figure 1). 

After their off-ice warm-up, they were weighed while wearing all of their hockey 

gear (body mass in hockey equipment; BMHE).  On the ice, the participants began 

skating with their skates perpendicular to the center ice line, with the toe of the hockey 

stick on the line, but not crossing the beam of the Speed Trap 2 Timing System, which 

was placed along the center ice line. Once on the ice, they were instructed to take 4 laps 

around the ice to warm-up their legs before the test.  The participants were given one 

familiarization repetition before the first repetition began.  They were instructed to skate 

at 70% of their perceived maximal effort, and given sixty seconds of rest prior to their 

first repetition.       

Once the participant started the first repetition, the beam of the timing system was 

broken by the shaft of the hockey stick, signaling the commencement of the repetition.  

The participants then skated as quickly as possible around the goal, in an elliptical 

pattern, ending at the opposite end of the center ice line (Figure 2). As they crossed the 

line, the on-ice practitioner counted the participants’ 10 seconds of rest from a stopwatch.  

Participants would stop at the near blue line, past the center ice line, change directions, 

and prepared for his next sprint in the opposite direction, all within the 10 seconds of rest.  

Once the rest period was over, the participants repeated this process for a total of three 

repetitions per trial.  Verbal encouragement was offered to each participant during each 

repetition.  The PI encouraged them to skate, “all the way through” the center ice line in 

order to maximize their efforts.  Between each trial the participants were given two 

minutes of rest.  It should be noted that this was different than the 10-minute rest protocol 
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set forth by Power et al. (2012), which was modified to be more specific to the sport, and 

due to the ice time limitations.  Two total trials (six total repetitions) were recorded.  

Skating times were collected by the on-ice practitioner and recorded by the off-ice 

practitioner for data analyses.  The PI then skated a distance-measuring wheel along the 

skate marks left by the participants to estimate the average distance skated by the 

participants. 

   Anaerobic power (watts) was calculated using the following equation for each 

repetition: Average Power Output (watts) = (Body mass (kg) x distance (49m) x 9.81 

m/sec2) / skating time(s) (Watson & Sargeant, 1986).  PPO was the highest PO out of all 

six repetitions, and MPO was the average of the six repetitions.  Calculations were also 

performed to give relative PO as well (PPO/BMHE in kg; MPO/BMHE in kg).  A %DPO 

was also calculated using the equation: %DPO = ((Peak PO – Mean PO) / Peak PO) x 

100 (McArdle et al., 2010; Oliver, 2009). Average skating times (AST) and fastest 

skating times (FST) were also used for analyses. 

 30-15IIT (Buchheit et al., 2011).  This was a maximal effort, on-ice test, 

designed to measure the aerobic capacities of the participants.  Prior to testing the 

participants were instructed on how the test was to be performed and were given a 

general off-ice warm-up.  Once on the ice, the participants were told to take four laps 

around the ice to warm-up their legs.  After their warm-up, four of the participants were 

fitted with the Oxycon.  The other five participants wore just their hockey equipment 

during testing. The participants that wore the Oxycon were instructed to wear it under 

their helmets (with no visor) and to have the backpack strapped tightly around their chest 

during the testing.  Additionally, the PI made sure that the mask fit the individual 
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appropriately (i.e. the mask was securely applied to the face, the wind blocker was 

applied to the mask, and the oxygen tube was attached to both the mask and the 

computing device on the backpack).  

The on-ice practitioner was also responsible for setting up the skating course, and 

playing the audio file.  The off-ice practitioner was responsible for monitoring oxygen 

uptake throughout the test (Durocher, et al., 2008b).  An MP3 file, which played audible 

“beeps” (that were correspondent with various skating velocities) was played during the 

test over speakers of the arena. 

 The participants skated for 30 seconds followed by 15 seconds of rest (per stage).  

Because of the skating proficiency of the participants, and the time limitations associated 

with this study, the participants began the test at the seventh stage, in accordance with 

recommendations set forth by Buchheit (2010).  Each subject began skating at 14.58 

km/h with a .63 km/h increase in velocity per stage.  The participants started the test with 

their skates facing parallel to the first cone (marking the beginning of the 40m shuttle).  

They then began to skate at the first audible “beep.” The participants then skated past a 

cone, which represented the 20m mark, in correspondence to the second audible beep, 

before proceeding to the final cone (of the 40m) by the third audible beep.  The 

participant would then stop, change directions, and repeat the process.  This process 

continued until each stage was completed (30 seconds).  Once the stage was completed 

the subject was instructed to rest at the next cone (e.g. he skated past the 20m cone, the 

final beep was a few seconds later, the participant would then glide and stop at the 40m 

cone to rest, instead of stopping and returning to the 20m cone).  Safe zone markers 

(pucks) were placed 3m in front of each cone (on both sides of the 20m cone).  If the 
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player did not reach the 3m zones on three consecutive occasions, the test was terminated 

and VIIT and/or VO2peak data were recorded (Figure 3 offers a visual depiction of the test 

course).  The subjects were instructed to complete as many stages as possible.   

It should also be noted that, due to time constraints, four of the participants completed 

this test at the same time (i.e. two participants were in two different lanes and completed 

the test together), whereas the remaining participants (n = 5) completed this test 

individually.  The PI also offered verbal encouragement to each participant when it 

appeared that they were near exhaustion. 

Statistical Analyses 

 Descriptive statistics were utilized (number of participants, mean, standard 

deviation, skewness, and kurtosis) for all scale data. Pearson’s correlational testing was 

then used determine the relationship between VO2peak, VIIT, and %DPO, PPO, RPPO, 

MPO and RMPO.  The null hypothesis stated that there would not be a significant 

relationship between on-ice aerobic capacity (VO2peak and VIIT) %DPO, PPO (absolute 

and relative), and MPO (absolute and relative). All data were analyzed via IBM’s SPSS 

Statistics software (version 22).  Significance levels were set at α = .05.    

A one-way analysis of variance (ANOVA) was also used to determine if the ice 

conditions affected the skating times and POs of the participants based on the order that 

they performed the RIST.  The null hypothesis stated that there would not be a significant 

difference in skating times and testing order between the participants.  Significance levels 

were set at α = .05.    

 

Chapter Four: Results 
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Descriptive Statistics 

Eleven professional male ice hockey players were recruited from an AHL club for 

participation in this research study (n = 11; 7 forwards and 4 defenseman).  Two forwards 

were not able to complete the 30-15IIT testing, due to mid-season recalls by the club’s 

NHL affiliate.   

The average age of the participants was 23.10 ± 2.66 years.  Their average body 

mass (BM) 200.73 ± 21.32 pounds, and BMHE 220.75 ± 23.51 lbs.  The average %BF 

was 9.45 ± 1.30 (Yuhasz, 1962).  Analysis of descriptive statistics revealed that age was 

positively skewed (S = 1.291), BM was negatively skewed (S = -1.177), BMHE was 

platykurtic (K = -1.575), and %BF was negatively skewed (S = -1.649). No outliers 

existed in this data.  Physical characteristic descriptive statistics can be found in Table 1. 

 Descriptive statistics for the RIST can be found in Table 2.  The average distance 

skated was 64.89 ± .90 meters, and was positively skewed (S = 1.426). There were two 

outliers in this data, but their data were kept in the analysis as they represented real 

numbers Figure 4.  There was also an outlier present for FST (mean = 8.39 ± .28 

seconds). This data was positively skewed, but again, this data were kept for analysis, as 

they were real numbers (S = 1.42; Figure 5). The average sprint time for all eleven 

participants was 8.71 ± .30 seconds, and was leptokurtic (K = 1.625); however, no outlier 

was present. It should also be noted that the average %DPO was 3.77 ± 1.06% (CV = 

.281). 

 Similarly, descriptive statistics for the 30-15IIT can be found in Table 3. The 

average VIIT was 18.71 ± .71 km/h (n = 9), and the average VO2peak was 56.53 ± 10.13 
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ml/kg/min.  All data that were skewed or lepto or platykurtic were kept because they 

represented real measurements and were not errors. 

Pearson’s Correlational Testing 

 Data for correlational results can be found in Table 4.  Due to the lack of 

significant findings, effect sizes (r2) were calculated for all correlational data.  There was 

a non-significant relationship between VO2peak and VIIT (r =.917; r2 = .841; p = .083) in 

the four participants for which this data was collected (Figure 4).  While this finding was 

not significant (likely due to the small sample size; n = 4), 84.1% of the variance in VIIT 

can be attributed to VO2peak. No significant correlations  (p > .05) existed between VIIT, 

%DPO (r = -.036; Figure 5), PPO (r = -.415; Figure 6), RPPO (r = .477; Figure 7), MPO 

(r = -.386; Figure 8), and RMPO (r = .565; Figure 9).  Additionally, .13% of the variance 

in %DPO could be attributed to VIIT.  No significant correlations (p > .05) existed 

between VO2peak, %DPO (r = .197; Figure 10), PPO (r = -.783; Figure 11), RPPO (r = 

.791; Figure 12), MPO (r = -.739; Figure 13), and RMPO (r = .620; Figure 14).  Finally, 

3% of the variance in %DPO can be attributed to VO2peak. 

Affect of Ice Conditions on Skating Ability 

One-way ANOVA revealed that there was no significant difference in any 

measurement of skating ability (F = .421; p > .05) that impaired/enhanced skating 

performance due to skating order during the RIST (i.e. first, second, third, or fourth 

participant to skate during testing).  Ice conditions did not impair the skating ability of the 

participants while performing the RIST (Tables 5, 6, & Figure 17; p > .05). 
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Skating Performance and Variability 

RPPO, RMPO, and VIIT were the most reliable measurements of skating ability in 

the participants (CV = .027, .031, and .038 respectively; Tables 2 & 3). Percent DPO 

showed a high degree of variability (CV = .281), which was higher than the guidelines set 

forth by Oliver (2009).  RPPO and RMPO also offered a more in-depth view of the 

participants’ skating ability, as it took into consideration the BMHE of each participant; 

moreover, RMPO took into consideration the data from each repetition during the RIST, 

whereas RPPO was only the best repetition. 
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CHAPTER FIVE: DISCUSSION 

Purpose/Hypothesis 

The purpose of this study was to examine the relationship between on-ice aerobic 

capacity and RISA in elite level ice hockey players.  The PI hypothesized that there 

would not be a significant relationship between VIIT and/or VO2peak to any measurement 

of RISA (i.e. %DPO, PPO, RPPO, MPO, and RMPO), which was in agreement with 

Carey et al. (2007), but contrary to the findings of Peterson et al. (2015).   The results of 

this research study were in agreement with the null hypothesis and the PI’s hypothesis.  

Aerobic capacity was not significantly related to RISA. 

Significance  

Ice hockey is a sport in which players skate for approximately one minute per 

shift, and about half of that time players skate at near maximal efforts (Horrigan & Kries, 

1994).  Because the sport involved high-intensity sprints, intermixed with periods of rest 

generally around two minutes, players are highly reliant on anaerobic metabolism (69%); 

however, Montgomery (1988) suggested that aerobic metabolism could contribute to up 

to 31% of the energy requirements during play. 

Many fitness professionals and ice hockey coaches believe that in order to play at 

an elite level, ice hockey players need to have a high aerobic capacity (Montgomery, 

1988; Twist & Rhodes, 1993).  While many hockey coaches may not understand the 

mechanism behind this belief, many fitness professionals believe that it is related to a 

higher reliance on aerobic metabolism, which may spare anaerobic substrates during 

play, thus improving their RISA (Peterson et al., 2015; Tomlin & Wegner, 2001; Twist & 

Rhodes, 1993). 
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There is conflicting evidence pertaining to the relationship between the 

relationship between aerobic capacity and RSA.  Additionally, there is a dearth of 

research for ice hockey players; moreover, the available research rarely compared these 

two variables on the ice, or in a sport specific manner (Bishop et al., 2003; Besson et al., 

2013; Buchheit et al., 2011; Carey et al. 2007; Green et al., 2006; Montgomery, 1988; 

Nagasawa, 2013; Peterson et al., 2015).  The results from the current study may help 

further explain the relationship between these two variables in a group of elite level 

athletes. 

Restatement of Results 

The main finding of this study was that on-ice aerobic capacity (VIIT) was not 

significantly related to RISA (%DPO) in nine professional ice hockey players (r = -.036; 

p > .05).  Based on these findings, aerobic capacity, as measured by VIIT, can account for 

only .13% of the variance in RISA.  For the participants whose VO2peak data were 

available (n = 4), the relationship improved (r = .197; p > .05), but aerobic capacity, as 

measured by VO2peak, could only account for 3% of the variance in RISA. Participants 

with a higher aerobic capacity did not have a significant decrease in fatigue during RIST. 

This could further substantiate the idea that O2 supply is not the only variable for 

improving RISA, but one of a multitude of different factors tested during the 30-15IIT 

(Buchheit, 2010). 

Since not all participants were able to use the Oxycon mobile metabolic analyzer, 

VIIT was the primary variable associated to RISA results; with that being said, there was a 

non-significant relationship between VO2peak and VIIT in the participants that were able to 

have gas exchange measured directly (n = 4; r = .917; r2 = .841; p = .083).  While this 
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relationship was non-significant, the effect size was large, indicating a strong relationship 

between the two variables.  Eighty-four percent (84%) of the variation in VIIT could be 

attributed to VO2peak.  This suggests that VIIT was highly related to another standard 

measurement of aerobic capacity, legitimizing its use as a variable for association with 

RISA (Buchheit et al., 2010; McArdle, et al., 2007). 

Percent DPO had high variability (CV = .281), compared with the recommended 

use of FIs by Oliver (2009); however, the CV for this data were similar to those of 

Peterson et al. (2015), and Glaister, Howatson, Pattison, & McInnes (2008). Because of 

the high CV for %DPO, additional variables were used for association with aerobic 

capacity (PPO, RPPO, MPO, and RMPO; Table 4) as they had lower levels of variability, 

similar to those suggested by Oliver (2009).   

As seen in Table 4 and Figure 11, RMPO had the highest r-value of all of the 

aforementioned variables, but its relationship to VIIT was still non-significant (r = .565; p 

= .115).  Thirty-two percent (32%) of the variance in the participants’ ability to maintain 

OPO could be attributed to their aerobic capacity (VIIT).  When correlated to VO2peak, the 

relationship for all measurements of RISA improved, although they were not statistically 

significant.  Most notably, participants with a higher VO2peak had a higher RPPO (r = 

.791; p < .05).  In this case, 62% of the variance in RPPO could be attributed to the 

participants’ VO2peak (Figure 14).   These numbers are similar to the findings of Peterson 

et al. (2015), although the findings are still not significant.  In this case, participants with 

a higher VIIT and/or VO2peak had a higher RMPO, which could also be used as a 

measurement of RISA (Oliver, 2009).  While not significant, this suggests that aerobic 

capacity could be related to RISA, although %DPO suggests otherwise (Table 4). 
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Conversely, participants with a higher aerobic capacity had lower PPOs and MPOs 

(Table 4).  This data suggests that heavier participants (higher absolute POs) had lower 

aerobic capacities, and participants with faster skating times during the RIST (higher 

relative POs) had higher aerobic capacities.  This data also suggests that individuals with 

higher aerobic capacities had lower absolute POs, suggesting that aerobic adaptations 

may hinder absolute power production on the ice. 

A concern that arose during testing was the ice conditions for the participants that 

were tested later in the day for the RIST.  Because the participants were skating in the 

same elliptical pattern, the ice behind the goal line began to roughen, which increased the 

friction of the skating surface, which may have skewed the results for the participants that 

skated later during the testing.  However, when participant testing order was controlled 

for (Tables 5, 6, & Figure 17), one-way ANOVA testing revealed that there were no 

significant differences in AST between and within the participants, further strengthening 

the findings during the RIST. 

Comparison of Literature 

This research study was the first (to the author’s knowledge) to compare the 

relationship between on-ice aerobic capacity in a sport specific manner to RISA; 

moreover, elite level ice hockey players have never been used to compare the 

aforementioned variables.  The majority of previous studies that compared the 

relationship between aerobic capacity and RSA or RISA have not utilized protocols that 

were specific to the sport itself; therefore, results from previous studies should be 

interpreted with caution. 
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   While Peterson et al. (2015) recently found that aerobic capacity was associated 

with a decrease in fatigue during RIS (r  = -.031; p = .04); however, their aerobic 

capacity testing protocol lacked the intermittent sprinting nature performed in ice hockey 

(Besson et al., 2013).  It should also be noted that this study had a larger sample size (n = 

45), which may have improved the significance of their findings; however, the authors 

also stated that 28.7% of the variance in RIS fatigue could be attributed to the combined 

predictive ability of final skating stage completed on the aerobic capacity skating test 

used, and VO2peak.  The authors noted that skating ability (as measured by final stage 

completed during aerobic capacity testing) was a better predictor of RISA, with 23% of 

the variance being attributed to final stage completed (p < .05).  Conversely, VO2peak 

attributed to only 4.2% of the variance in RISA (p  < .05).  The authors concluded that 

more efficient skaters could induce less fatigue when compared with less efficient 

skaters.   

The findings of the current research study were contrary to those of Peterson et al. 

(2015), although similar variables were measured.  While this research study may have 

lacked the statistical power necessary to obtain statistically significant results (p < .05) 

because of the small sample size (n = 9), the effect sizes for VIIT and VO2peak were small 

when associated with %DPO (r2 = .0013 and .03 respectively; p  > .05).  Even if a larger 

sample size was used to obtain statistically significant results, the relationship is nearly 

non-existent; moreover, aerobic capacity can only contribute to .13-3% of the variance in 

the RISA in this sample. 

Conversely, the findings of the current research study were in agreement with 

those of Carey et al. (2007).  In this study, the authors found that off-ice VO2max was not 
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significantly related to RISA (r = -.422; p = > .05).  While the r-value of Carey et al. 

(2007) was similar to those found by Peterson et al. (2015), the lack of significant 

findings in this study may attributed to a small sample size (n = 14).  Even so, off-ice 

aerobic capacity could only contribute to 17.8% of the variance in RISA. 

The lack of significant correlations could be attributed to a variety of different 

factors, including: skating efficiency, lactate tolerance, anaerobic metabolism, change of 

direction ability, and inter-effort recovery (Besson et al., 2013; Buchheit, 2010). 

Saunders, Pyne, Telford, and Hawley (2004) noted that body mass and running economy 

were better predictors of running performance than VO2max in long distance runners.  It 

could then be deduced that there are other factors that may be more related to improved 

RISA in elite level hockey players than aerobic capacity alone. 

Higher lactate accumulation appears to be a key contributor to improved 

workload of the lower body musculature during high intensity exercise, as noted by Stone 

et al. (1987). It appears that trained athletes are able to handle higher levels of lactate at a 

given workload and are able to sustain work for longer periods of time (Stone et al., 

1987).  Additionally, it has been found that an increase in muscle H+ buffering was more 

related to work decrement during repeated sprints (Bishop, Edge, & Goodman, 2004).  In 

short, athletes that can handle larger spikes in lactate and buffer the H+ ions more 

effectively may be more effective during repeat sprint efforts. Lactate shuttling could 

help assist this buffering (i.e. lactate clearance) by utilization of lactate in slow-twitch 

muscle fibers instead of entering into the Cori cycle (Brooks, 2009; Twist & Rhodes, 

1993). Sporis, Ruzic, and Leko (2008) found that soccer players increased lactate 

accumulation and improved their 300-m shuttle test times, indicating that players could 



AEROBIC CAPACITY AND POWER OUTPUT IN HOCKEY 53  
	
  
buffer and utilize lactate more efficiently, which lead to improved performance.  This 

adaptation may be especially important in ice hockey, as these athletes will produce more 

lactate skating than running, due to the hypoxic nature of the skating stance, which 

requires hip and knee flexion to be maintained isometrically while skating (Besson et al., 

2013).  In fact, this adaptation appears to improve throughout the course of a competitive 

season, as shown by an increased anaerobic capacity, yet an unchanged VO2max 

(Durocher et al., 2008b; Montgomery, 1988).  Moreover, improvements in lactate 

threshold (LT) have been shown to improve on-ice performance more than VO2max 

(Bassett & Howley, 2000; Durocher et al., 2008b; Minkoff, 1982).  This is important 

because VO2max is difficult to improve and highly dependent on genetic and lifestyle 

factors factors (Bouchard, et al., 1999).  It is possible that the participants that performed 

better on both the RIST and 30-15IIT had higher levels of lactate tolerance, but not 

necessarily a higher aerobic capacity.  While Bassett & Howley (2000) noted that O2 

delivery and not muscle O2 extraction was the limiting factor in VO2max, the authors also 

concluded that there are a variety of factors that contribute to aerobic capacity, but lactate 

tolerance appears to be a combination of the aforementioned factors. 

The results of the current research study are not implying that aerobic capacity is 

irrelevant in RISA or reduced fatigue, in fact, some subjects with a higher VIIT had a 

lower %DPO (Figure 5); however, there are other factors that appear to play more 

important roles in RISA than aerobic capacity.  The mean VO2peak of the participants of 

this study was 56.53 ml/kg/min, which was considered “superior” relative to the 

participants’ mean age and sex (ACSM, 2010).  As previously stated, based on the 

literature there appears to be a ceiling for the relationship between aerobic capacity and 
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RSA (Hoffman et al., 1999; Tomlin & Wegner, 2001).  That may have been the case for 

the participants in this study (Hoffman et al., 1999).  Skating ability, body mass, lactate 

tolerance, neural factors, and biomechanical factors may have all played a role in %DPO 

and VIIT (Bassett & Howley, 2000; Saunders et al., 2004).  While having a higher aerobic 

capacity may contribute to one’s RSA, this may only be true up to a certain point, as 

evidenced by the findings of the current research study. 

Limitations 

The sample size (n = 11) was a limitation of this research study.  Additionally, 

due to limitations in ice time availability, some participants had to perform the VIIT at the 

same time, which may created a competitive mindset within the participants, possibly 

skewing the aerobic capacity results.  Two participants also had to leave the study due to 

NHL recalls, which further reduced the sample size (n = 9) for correlational analyses.  

The sample size was reduced even further (n = 4) for data that were used to compare the 

relationship between VO2peak and %DPO due to malfunctions with the Oxycon portable 

metabolic analyzer. 

It should also be noted that two of the participants of this study were tested 

(RIST) approximately two months after the other participants, which may have caused a 

decreased in PO, resultant from aerobic adaptations that occur as the playing season 

progressed (Durocher et al., 2008b).  Additionally, PO was also measured indirectly, 

which may have caused the RIST results to be not as accurate as a direct measurement, 

although this method has been shown to be reliable for testing PO in hockey players 

(ACSM, 2010; Power et al., 2012).  The ice conditions were also suspected to have 

skewed the RIST results, as the ice surface began to roughen with each skater; however, 
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the use of a one-way ANOVA revealed no significant differences between-within the 

participants that were tested earlier in the testing order (less friction) and those that were 

tested later in the testing order (more friction).  Additionally, the participants skated 

faster in one direction of the test than the other, which may have skewed the %DPO 

results, although this is not likely because the mean of the sprints was taken into 

consideration during the calculation (Oliver, 2009). 

Strengths 

This research study utilized highly skilled and highly fit participants for the data 

collection.  This is important because it shows the physical capabilities of players that are 

near the highest levels of professional hockey, and what physical characteristics may 

have helped them get there.   

The tests utilized in this research study were also specific to the nature of the 

sport itself, and could be easily be implemented in the field.  Both tests took 

approximately five minutes to prepare, and the data were valid and reliable based on the 

suggestions of Buchheit et al. (2011) and Power et al. (2012).   

The RIST took into consideration not only the participants’ skating time, but the 

players’ body mass, which offers a deeper understanding of their skating abilities, and a 

more individualized view of their fatigue (Oliver, 2009).  

The 30-15IIT has been shown to be a more specific method for measuring VO2peak 

and aerobic capacity, as it is performed in an intermittent nature (mirroring that of ice 

hockey). Furthermore, the 15 second rest period is less than the time necessary to 

increase O2 debt, thus central nervous system and muscular fatigue, which occurs in other 
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intermittent aerobic capacity ice tests, meaning the participants’ true VO2peak was likely 

found (Buchhet et al., 2011). 

Future Directions 

Future research should aim to directly measure skating efficiency, power output, 

and VO2peak in all participants. It is unclear as to what extent skating efficiency played in 

the fatigue of the participants, it seems reasonable to assume that more efficient skaters 

may have used less energy and had a higher VIIT than someone with a higher VO2peak that 

is a less efficient skater (Saunders et al., 2004). While it was not the goal of this research 

study to examine how skating efficiency, it may have affected the results, it is likely that 

it played a key role.  Power output and VO2peak should also be measured directly to offer a 

more in-depth view of the relationship between on-ice aerobic capacity and RISA. 

While it was advantageous to examine the relationship between these two 

variables in-season, as theoretically it would be when the sport specific adaptations 

would be near their peak, the time limitations and ice-time availability made it difficult to 

collect the data for all the participants at one time (Durocher et al., 2008b).  Future 

studies should also include a larger sample size to increase the statistical power of their 

findings. 

Practical Applications 

While the findings of this research study suggest that a high aerobic capacity is 

not related to an improved RISA, the reader should keep in mind that this is only in a 

small sample of elite level athletes that have already established their “aerobic base” 

(ACSM, 2010; Hoffman et al., 1999). At an elite level, improvements in aerobic capacity 

do not appear to improve RISA, due to the multitude of factors that are involved in both 
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variables (Bracko, 2004; Saunders et al., 2004).  Fitness professionals and ice hockey 

coaches should use these findings to improve other factors in their athletes, if their goal is 

to improve RISA, and if a high aerobic base has already been established.   

The researcher also utilized sport-specific tests which could be implemented in 

the field, and offer a more in-depth view of the physical capabilities of an ice hockey 

player when compared to off-ice testing (Buchheit et al., 2010; Besson et al., 2013; 

Montgomery, 1988; Power et al., 2012). 

Conclusion 

It may be concluded that aerobic capacity is not related to RISA in elite level ice 

hockey players.  While these findings were not statistically significant, the small effect 

size also implies that the relationship between these two variables is not related.  Elite 

level ice hockey players with a high RISA do not necessarily have a higher aerobic 

capacity. 
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Table 1 
     

 
 

Physical Characteristics of Participants 
 N Mean ± SD Kurtosis Skewness 
Age 11 23.10 ± 2.66 1.046 1.291 

BM  
(lbs.) 
 

11 200.73 ± 21.32 .479 -1.177 

BMHE 
(lbs.) 
 

11 220.75 ± 23.51 -1.575 0.348 

%BF 11 9.45 ± 1.30 -.457 -1.649 

Note. N = number, SD = standard deviation, BM = body mass, BMHE = body mass with 
hockey equipment, %BF = body fat percentage. 
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Table 2 
     

  

Descriptive Statistics for RIST  
 N Mean ± SD Kurtosis Skewness CV 
Distance  
(m) 

11 64.89 ± .90  1.004 1.426 .014 

AST 11 8.71 ± .30 1.625 1.181 .034 

FST 11 8.39 ± .28 .722 1.42 .033 

%DPO 11 3.77 ± 1.06 -.287 -.609 .281 

PPO 
(watts) 
 

11 7656.56 ± 770.83 .297 -1.697 .101 

RPPO 
(w/kg) 
 

11 76.16 ± 2.33 -.011 -1.457 .031 

MPO 
(watts) 

11 7362.49 ± 775.45 .428 -1.250 .103 

RMPO 
(w/kg) 

11 73.20 ± 2.00 -.464 -.624 .027 

Note. N = number, SD = standard deviation, CV = coefficient of variation, Distance = 
distance skated in meters, AST = average sprint time for all six trials, FST = fastest sprint 
time, %DPO = percent decrement of power output, PPO = absolute peak power output, 
RPPO = relative peak power output, MPO = absolute mean power output, RMPO = 
relative mean power output. 
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Table 3 
     

  

Descriptive Statistics for 30-15IIT  
 N Mean ± SD Kurtosis Skewness CV 
VIIT  
(km/h) 
 

9 18.71 ± .71 .492 -1.390 .038 

VO2peak 

(ml/kg/min) 
 

4 56.53 ± 10.13 1.435 1.703 .179 

Note. N = number, SD = standard deviation, CV = coefficient of variability, VIIT =  
velocity for the last completed stage. 
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Table 4 
 
Pearson’s Correlation Coefficients for VIIT, VO2peak, and OPO 

 VIIT 
VO2peak 

(ml/kg/min) %DPO 
PPO 

(watts) 
RPPO 
(w/kg) 

MPO 
(watts) 

RMPO 
(w/kg) 

VIIT r 1 .917 -.036 -.415 .477 -.386 .565 
p-value  .083 .927 .266 .194 .305 .113 
N 9 4 9 9 9 9 9 

VO2peak r .917 1 .197 -.783 .791 -.739 .620 
p-value .083  .803 .217 .209 .261 .380 
N 4 4 4 4 4 4 4 

Note. N = number, VIIT = final velocity of 30-15IIT, %DPO = percent decrement of power 
output, PPO = absolute peak power output, RPPO = relative peak power output, MPO = 
absolute mean power output, RMPO = relative mean power output. 
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Table 5 
 
One-way Analysis of Variance of Testing Order and Average Sprint Time 

 
Sum of 
Squares df Mean Square F p 

Between Groups .134 3 .045 .421 .744 
Within Groups .744 7 .106   
Total .878 10    
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Note. First = first participant tested in RIST, Second = second participant tested in RIST, 
Third = third participant tested in RIST, Fourth = fourth participant tested in RIST. 

Table 6 
 

Tukey’s Post hoc Comparison of Testing Order and Average Sprint Time  

(I) Testing Order Mean (s) (J) Testing Order 

Mean 
Difference 

(I-J) Std. Error p 
First 8.67 Second -.21500 .26615 .849 

Third -.00806 .29757 1.000 
Fourth .06889 .26615 .993 

Second 8.88 First .21500 .26615 .849 
Third .20694 .29757 .896 
Fourth .28389 .26615 .719 

Third 8.68 First .00806 .29757 1.000 
Second -.20694 .29757 .896 
Fourth .07694 .29757 .993 

Fourth 8.60 First -.06889 .26615 .993 
Second -.28389 .26615 .719 
Third -.07694 .29757 .993 
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Figure 1.  Depiction of the course set-up for the RIST.  Triangles = cones; Octagons = 

Timing systems. 
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Figure 2.  Depiction of the RIST skating path.  The timing devices were placed along the 

center ice line.  Cones were also placed ice so that each skater took the same elliptical 

pattern around the ice.  Only one skater Adapted from Power et al. (2012). 

  



AEROBIC CAPACITY AND POWER OUTPUT IN HOCKEY 77  
	
  

	
  
Figure 3. Depiction of the 30-15IIT course.  Additional cones placed at the center ice 

lines, and pucks 3m outside of each cone. Adapted from Buchheit et al. (2011). 
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Figure 4. Outliers for distance skated (m) during the RIST. 
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Figure 5.  Outlier for FST (s) during the RIST.	
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Figure 6. Relationship between VO2peak (ml/kg/min) and VIIT (km/h). 
  

y	
  =	
  -1.61E2+11.72*x 
r2 = .841 
r =.917 
p = .083 
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Figure 7. Relationship between VIIT (km/h) and %DPO. 
  

y = 4.9±0.06*x 
r2 = .001 
r = - .036 
p = .927 
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Figure 8. Relationship between VIIT (km/h) and PPO (watts). 
  

y = 1.61E4±4.6E2*x 
r2 = .172 
r = -.415 
p = .266 
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Figure 9. Relationship between VIIT (km/h) and RPPO (w/kg). 

y = 46.48+1.58*x 
r2 = .227 
r = .477 
p = .194 
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Figure 10. Relationship between VIIT (km/h) and MPO (watts). 
  

y	
  =	
  1.53E4±4.3E2*x  
r2 = .149 
r = - .386 
p = .305 
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Figure 11. Relationship between VIIT (km/h) and RMPO (w/kg).  
 
 
  

y	
  =	
  42.7+1.62*x 
r2= .319 
r = .565 
p = .113 
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Figure 12. Relationship between VO2peak (ml/kg/min) and %DPO. 

y	
  =	
  2.24+0.02*x 
r2 = .039 
r = .197 
p =  .803 
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 Figure 13. Relationship between VO2peak (ml/kg/min) and PPO (watts).    

y	
  =	
  1.21E4±75.32*x 
r2 = .612 
r = -.783 
p = .217 
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Figure 14. Relationship between VO2peak (ml/kg/min) and RPPO (w/kg).  
 
  

y	
  =	
  67.44+0.16*x 
r2 = .626 
r = .791 
p = .209 
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Figure 15. Relationship between VO2peak (ml/kg/min) and MPO (watts).   
  

y	
  =	
  1.17E4±74.82*x 
r2 = .546 
r = -.739  
p = .261 
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Figure 16. Relationship between VO2peak (ml/kg/min) and RMPO (w/kg).  

y	
  =	
  65.82+0.14*x 
r2 = .385  
r = .620  
p = .380 
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Figure 17. Effect of ice surface on average sprint time. 
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January 14, 2015                                                                                                    IRB 
Application #: 14185 
                                                                                                   
Proposal Title:  The Relationship Between On-Ice Aerobic Capacity And On-Ice Power 

Output During Repeated Sprints In Elite Ice Hockey Players  
  
Type of Review:  Initial-Expedited 
  
Investigator(s): 
Mr. Patrick Love 
Dr. Jerel Cowan 
Department of Kinesiology & Health Studies 
College of Education & Professional Studies 
Campus Box 189 
University of Central Oklahoma 
Edmond, OK  73034 
  
Dear Mr. Love and Dr. Cowan: 
  
  Re: Application for IRB Review of Research Involving Human Subjects 
  
We have received your materials for your application.  The UCO IRB has determined 
that the above named application is APPROVED BY EXPEDITED REVIEW.  The 
Board has provided expedited review under 45 CFR 46.110, for research involving no 
more that minimal risk and research category 7. 
  
Date of Approval:  1/14/2015 
Date of Approval Expiration: 1/13/2016        
  
If applicable, informed consent (and HIPAA authorization) must be obtained from 
subjects or their legally authorized representatives and documented prior to research 
involvement. A stamped, approved copy of the informed consent form will be sent to you 
via campus mail.  The IRB-approved consent form and process must be used.  While this 
project is approved for the period noted above, any modification to the procedures and/or 
consent form must be approved prior to incorporation into the study.  A written request is 
needed to initiate the amendment process.  You will be contacted in writing prior to the 
approval expiration to determine if a continuing review is needed, which must be 
obtained before the anniversary date.  Notification of the completion of the project must 
be sent to the IRB office in writing and all records must be retained and available for 
audit for at least 3 years after the research has ended. 
  
It is the responsibility of the investigators to promptly report to the IRB any serious or 
unexpected adverse events or unanticipated problems that may be a risk to the subjects. 
  
On behalf of the UCO IRB, I wish you the best of luck with your research project.  If our 
office can be of any further assistance, please do not hesitate to contact us. 
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Sincerely, 
  
  
  
Robert D. Mather, Ph.D. 
Chair, Institutional Review Board 
NUC 341, Campus Box 132 
University of Central Oklahoma 
Edmond, OK  73034 
405-974-5479 
irb@uco.edu   
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Manuscript for Participant Recruitment	
  



AEROBIC CAPACITY AND POWER OUTPUT IN HOCKEY 99  
	
  

Dr. Jerel Cowan: Written Manuscript for Presentation of Patrick Love’s Masters Thesis 
proposal to the AHL Club 

 

Preface: 

“Participation in this study is not mandated by Patrick Love.  Your participation, or lack 
thereof is completely voluntary, and will have no bearing on your working relationship 
with Mr. Love.“ 

 

Purpose: 

“To see if there is a relationship between on-ice aerobic capacity (VO2max) and on-ice 
power output during repeated sprints.  A fatigue index (%FI), mean  power output (MPO) 
and peak power output (PPO) will be correlated to VO2max.” 

 

Procedures: 

“First, it should be noted that some players may be excluded from participating in this 
study based on the advice of the Athletic Trainer, if said player has an acute or chronic 
injury/medical condition.  Height, weight, and body fat percentage will be measured one 
day before on-ice testing begins.  On-ice power output will be tested (in full hockey gear) 
via the Repeat Ice Skating Test.  The participant will be weighed in full-hockey gear prior 
to testing.  The participant will then be asked to skate a half lap around the rink as fast as 
possible, rest for ten seconds, and repeat a half lap around the rink in the opposite 
direction.  After three repetitions the participant will rest for two minutes before 
completing the protocol for three more repetitions.  There will be a total of six repetitions 
for this test.  Heart rate will be monitored during testing. PO will then be determined 
based on the participant's time and body weight (in full gear).  A %FI will then be 
calculated based on the participant's power output (PO).  Maximal sprinting effort is 
expected by the participants. 

 

A second test designed to tax the participant's aerobic system will be administered the 
following week.  There will be two weeks available for aerobic testing to ensure that all 
participants have ample time to complete the test.  Scheduling for this test will be 
randomized.  The participants will wear a portable gas exchange analyzer and complete 
the 30-15 intermittent ice test.  This is an on-ice graded test designed to test the 
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participant's aerobic capacity in a sport specific manner.  This is a maximal test, and the 
researchers ask that the participants put forth maximal physical effort.  The participant 
will skate to cones marked on the ice corresponding to the cadence of an audible beep, 
which will be played over the speakers in the rink.  The player will skate for 30 seconds 
(stopping at the end cones and changing directions), matching the speed of the beep, and 
rest for 15 seconds at the cone in front of them after the final beep of the stage.  Skating 
velocity will increase with every stage.  The test will end when the participant cannot 
reach the three-meter ‘safe zone’ in front of every cone, which will be marked with 
pucks, corresponding to the beep, on three consecutive occasions, or when he wants to 
voluntarily stop the test. Oxygen consumption will be collected data will be collected via 
an Oxycon portable oxygen consumption analyzer; heart rate will also be monitored 
throughout the test. 

 

A video will then be presented to the team to give the prospective participants a visual 
representation of the 30-15 intermittent ice test.  Dr. Cowan will request that questions 
are saved until the end of his presentation.  

 

http://www.youtube.com/watch?v=RiErH0xTFXo 

 

Benefits 

“The participants will help contribute to the scientific community’s understanding of the 
relationship between aerobic capacity and repeat sprint ability in elite level ice hockey 
players.  There is currently a lack of evidence on this subject.” 

 

Expected Length of Participation 

“Testing for this study will last three weeks, with three testing days in February, 2015.   
RIST will occur prior to aerobic capacity testing.  All participants will be testing on the 
same day for this test.  This test is expected to last approximately five minutes per 
participant.  30-15IIT will occur on two separate days to ensure ample time for each 
participant to complete the testing.  This test will take a maximum of 16 minutes per 
participant.“ 
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Potential Risks or Discomforts 

“There is a chance of delayed onset muscle soreness occurring as a result of these tests; 
additionally, because the tests require maximal physical effort, there is the chance of a 
cardiovascular event taking place, which could lead to serious injury and/or death.  While 
these events are unlikely, they are possible.  The team Athletic Trainer will be present 
during all testing to ensure that proper medical procedures are followed in the case of 
such an event.” 

 

“ALL testing will be monitored by the team athletic trainer.  His contact information is 
attached to the informed consent, which the participants will be signing.  The researchers’ 
contact information and contact information for the university of Central Oklahoma is 
also available.” 

 

“To reiterate, participation in this study is completely voluntary.  The NHL affiliate, 
AHL club, and all of its affiliate employees are not requiring that anyone participate in 
this study; moreover, all information collected is completely confidential and will not 
be shared with ANYONE, including ownership, management, coaching staff, etc., of 
the NHL affiliate’s organization, nor any of its affiliates or said affiliates’ employees.  
If you elect to participate in this study, you also have the right to withdraw from the 
study for any reason.” 
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!

!

To!Whom!It!May!Concern:!

!

The!athletes!participating!in!the!study!will!be!clear!of!injury!or!illnesses,!including!but!not!limited!to!the!

following!list:!

> Musculoskeletal!Injuries!

o Sprains!

o Strains!

o Fractures!

> Acute!Illness!

> Chronic!Illness!

> Neurological!Deficits!

> Psychological!Deficits!

> Sociological!Deficits!

If!you!have!any!questions!regarding!any!of!these!injuries!or!illness,!or!any!participants!in!the!study,!

please!feel!free!to!contact!me.!

!

Sincerely,!

AHL!Athletic!Trainer,!MS,!ATC,!LAT!

!
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Appendix E 

Head Coach Assent for Recruitment 
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Appendix F 
 

Pre-Testing Instructions 
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Pre-Testing Instructions 

 
1. Don’t drink coffee 
2. Foam roll for 5 minutes 
3. Steady state bike ride for 5 minutes 
4. 30 second hip flexor stretch on each side 
5. 30 second pigeon glute stretch on each side 
6. 2x10 Glute bridge 
7. 2x :10 Full tension plank (RKC Plank) 
8. Get fully dressed in your gear 
9. Weigh in with your hockey gear on and your stick in your hand on the scale in the 

dressing room 
10. Details of the test will be discussed on the ice 

	
  
	
  

 

 

 

	
  


