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ABSTRACT: Sexual selection theory often predicts that socially dominant males should 

sire more offspring than males adopting subordinate social tactics. However, it is often 

difficult to determine the extent to which this expected distribution of male reproductive 

success is influenced by intra- and intersexual selection. Using a combination of field 

behavioral studies and molecular genetic techniques, I first tested the extent to which 

observations of social and spatial behavior predicted the distribution of reproductive 

success among female collared lizards and males displaying alternative social tactics 

(territorial and non-territorial) during a single reproductive season. I also examined the 

strength of sexual selection acting on male morphological and behavioral traits. Contrary 

to expectations, male social status did not accurately predict patterns of reproductive 

success: non-territorial males obtained reproductive success equal to that of territorial 

males and females were highly promiscuous, mating with a similar number of territorial 

and non-territorial males, both within and among successive clutches. None of the traits 
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that I examined were significant targets of sexual selection among non-territorial males. 

However, male snout-vent-length was under positive directional selection among 

territorial males. 

 

 To test the generality of my earlier findings, I expanded my analyses to 

encompass three seasons to examine how the number of female mates and offspring sired 

among males varied with marked natural variation in the intensity of intra- and 

intersexual selection within and among seasons, and the influence of behavioral traits on 

male fitness. I also examined how the degree of female promiscuity varied with changes 

in the intensity of sexual selection and the influence of female promiscuity on offspring 

survivorship. Unexpectedly, results from all seasons confirmed that non-territorial males 

consistently mated with similar numbers of females and sired similar numbers of 

offspring as territorial males. Moreover, females were promiscuous in all three seasons 

with similar numbers of territorial and non-territorial males. However, promiscuity 

decreased offspring survivorship. Together, my results suggest that mating relationships 

among collared lizards contrast sharply with predictions from classical mating system 

theory and likely represent the outcome of sexual conflict. Both sexual conflict and the 

high reproductive success of non-territorial males appear to be promoted by the 

homogeneous and continuous topography of the semi-natural habitat at my study site, 

which differs markedly from the natural habitat of collared lizards.  

 

 

 



 
 

1 
 

THESIS INTRODUCTION 

 

Biologists have long recognized sexual selection as a pervasive and powerful 

evolutionary force, with strong potential to shape behavioral, morphological, and 

physiological traits that influence individual reproductive success (Fisher 1915; Williams 

1966; Trivers 1972; Andersson 1994). For males, reproductive success is generally 

limited by their ability to obtain access to limited female mates, which often results in 

intense intrasexual competition (Williams 1966; Trivers 1972). By contrast, because 

female reproductive success is usually not limited by access to males, selection often acts 

on females to choose mates based upon one or more phenotypic attributes that vary 

among numerous competing males (intersexual selection; Andersson and Simmons 

2006). The particular mating system (e.g., monogamy, polygyny, polygynandry) that 

evolves in natural populations is often viewed as a balance between intra- and intersexual 

mechanisms (Reynolds 1996). 

 

One possible consequence of strong intrasexual selection on males is the 

monopolization of mating opportunities by a subset of males that utilize dominant social 

tactics. Such tactics may range from intense physical contests and wars of attrition, to 

defense of territories and conspicuous patterns of display (LeBoef 1974; Dewsbury 1984; 

Stamps 1994). The inevitable outcome of mate monopolization by socially dominant 

competitors is that other males will be excluded from mating opportunities (Shuster 

2010). Less successful males are often sexually mature, but as a consequence of size 

and/or age constraints, may not be able to compete effectively against males employing 
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dominant social tactics, and/or may not possess suites of morphological traits that are 

attractive to females (Dominey 1984; Caro and Bateson 1986; Andersson 1994). 

Consequently, selection may favor the evolution of one or more alternative tactics that 

promote the ability of such males to increase their reproductive success by adopting 

subordinate patterns of behavior (e.g., sneaking copulations, female mimicry) (Dawkins 

1980; Shuster and Wade 2003). 

 

Alternative social tactics among males have been documented in almost every 

major vertebrate taxon, including fish, amphibians, reptiles, mammals, and birds 

(reviewed by Gross 1996; Shuster and Wade 2003). In most cases, alternative tactics are 

expressed in a condition-dependent (= plastic) manner, such that individual males are 

capable of switching between/among two or more tactics during ontogeny (Dominey 

1984; Gross 1996; Neff and Svennson 2013). Plastic tactics most often correlate with age 

and are characterized by individuals utilizing subordinate tactics when they are younger 

and smaller, and then switching to dominant social tactics when they are older and larger 

(Caro and Bateson 1986). A key prediction of classical mating system theory is that the 

evolutionary stability of plastic tactics is conditional upon reproductive success being 

disproportionately skewed toward males that are socially dominant in order to balance the 

high costs incurred (Andersson 1994; Ellis 1995). By contrast, males adopting 

subordinate tactics are predicted to have low reproductive success and ‘make the best of a 

bad job’ until they are old or large enough to compete via dominant tactics (Dawkins 

1980). 
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Historically, the expected relationship between social dominance and fitness has 

been well-supported by a wealth of studies (reviewed by e.g., Dewsbury 1982; Andersson 

1994; Ellis 1995). These studies have relied primarily on detailed observations of 

individual social and spatial behavior, and formed the basis for much of classical mating 

system theory (Krebs and Davies 1997). However, the reliability of these techniques has 

been strongly criticized, primarily due to the findings of studies which incorporate 

molecular genetic tools into behavioral ecological research on social and mating systems 

(Hughes 1998; LeBas 2001; Byers and Dunn 2012). Molecular studies have increased the 

precision with which investigators can measure individual variation in fitness. 

Surprisingly, these molecular estimates of fitness have produced results that often conflict 

strongly with behavioral estimates. For example, dominant males do not always 

monopolize females as predicted. Males employing subordinate tactics may achieve 

higher-than-expected levels of fitness by outcompeting socially dominant males through 

the use of sneaking or satellite tactics, the success of which may be promoted by social or 

ecological factors that render monopolization difficult for dominant males (Kvarnemo 

and Ahnesjö 1998; LeBas 2001; Rodriguez-Munoz et al. 2010). Alternatively, 

subordinate males may be relatively unsuccessful in precopulatory mating competition, 

but succeed in sperm competition against socially dominant rivals (Bilde et al. 2009). 

These discrepancies have shown that the assumption that socially dominant males will 

monopolize matings is not always supported, and in turn are altering our views of the 

fundamental processes underlying the evolution of mating systems and sexually selected 

traits. 
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Another surprising pattern to emerge from studies combining molecular and 

behavioral techniques is that female promiscuity is common (Parker and Birkhead 2013; 

Shuster et al. 2013). This finding stands in stark contrast to the long-held view that 

females behave passively during the mating process. Indeed, recent studies that highlight 

numerous instances where females not only influence mating system structure, but may 

also be the primary determinants of male reproductive success, completely dispel this 

notion (Fisher et al. 2006; Pölkki et al. 2012; Shuster et al. 2013). For example, females 

in many species actively pursue multiple copulations at the expense of dominant males 

that attempt to defend them. Their doing so likely promotes sexually antagonistic 

coevolution of male and female morphological and behavioral traits (Chapman et al. 

2003). Females may possess morphological adaptations that promote sperm competition 

and/or manipulate sperm from individual males to control which ones fertilize their eggs 

(Eberhard 1996). Although such findings provide fresh theoretical and empirical insights, 

they also complicate the task for evolutionary biologists to disentangle the effects of 

intra- and intersexual selection on individual fitness. 

 

Reptiles have emerged as excellent model systems for studies of sexual selection 

on social behavior (reviewed by e.g., Fox et al. 2003; Baird 2013a, b). Lizards in 

particular show remarkable flexibility in mating system structure both within and among 

species, as well as a wide range of sexually-selected variation in behavioral and 

morphological traits (Fox et al. 2003; Baird 2013a, b). Moreover, molecular studies 

reveal that many lizard species with diverse social mating system structure have 

exceptionally high rates of multiple paternity (Uller and Olsson 2008), even in species 
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where males appear to monopolize groups of females socially. Offspring production has 

even been detected between males and females that have no known behavioral 

relationships (LeBas 2001). Such findings are also the source of controversy regarding 

the extent to which intra- and intersexual selection influence patterns of observed mating 

relationships (Uller and Olsson 2008; Madsen 2011). Adequate answers to these 

problems are lacking, and this deficit is exacerbated by the fact that many mating system 

studies continue to rely solely on behavioral or molecular measures to estimate fitness. 

Moreover, many tests have been conducted in controlled laboratory settings, where 

ecological and social variables that likely influence sexual selection on mating system 

dynamics may be confounded. These problems highlight the need for investigators to 

combine behavioral and molecular data in free-ranging populations to gain insight into 

the processes governing the evolution of social behavior and sexually selected traits in 

the wild. 

 

Using the Eastern collared lizard (Crotaphytus collaris) as a model system, my 

thesis integrates extensive observations of social and spatial behavior in the field with 

molecular genetic determination of reproductive success in males and females to test: 1) 

the extent to which social and spatial relationships among females and males employing 

alternative tactics predicts actual mating relationships, and 2) the extent to which intra- 

and intersexual selection influence male fitness, female promiscuity, and the evolution of 

sexually selected traits. Below, I present my research in two chapters that are each 

formatted as papers for publication in two different journals. Chapter 1 is formatted for, 
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and is now in press in, the journal Animal Behaviour. Chapter 2 is formatted for 

submission to the journal Evolution. 
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UNEXPECTED HIGH FITNESS PAYOFF OF SUBORDINATE SOCIAL 

TACTICS IN MALE COLLARED LIZARDS 

Joshua R. York 

Department of Biology, University of Central Oklahoma, Edmond, OK, 73034 

 

ABSTRACT 

Sexual selection theory often predicts that dominant males will sire more 

offspring than males displaying subordinate social tactics. I combined the records of 

space use by collared lizard (Crotaphytus collaris) females and records of social and 

spatial behaviour of males displaying two markedly different social tactics (territorial and 

non-territorial) with genetic determination of parentage to test how variation in male 

social tactics influences the distribution of reproductive success.  In marked contrast with 

predictions based on their social and spatial behaviour, territorial males did not 

monopolise paternity of offspring with the females that they defended, and on average, 

non-territorial males obtained reproductive success equal to that of territorial males, both 

within and among successive clutches.  When all males were analysed together, none of 

the traits that are often hypothesized to promote fitness in other lizards were under strong 

sexual selection in collared lizard males. Among territory owners alone, however, there 

was positive directional selection on body size. Both the unexpected success of non-

territorial males and exceptionally high levels of multiple paternity appear linked in part 

to features of the habitat at my study site that diminish the ecological potential for 

territorial males to monopolise mating opportunities with females that resided in their 
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defended areas. If female collared lizards derive any fitness benefits by mating with 

multiple males, it is likely that these are genetic rather than material. 

 

INTRODUCTION 

 

 In populations under strong sexual selection, males having high resource holding 

potential (RHP; Parker, 1974) often attempt to monopolise groups of females or the 

resources that females require for reproduction (Andersson, 1994; Candolin & Voigt, 

2001; Pryke & Andersson, 2003). By contrast, unless they can disperse and establish 

territories elsewhere (Lawrence, 1987; Pasinelli & Walters, 2002), males having lower 

RHP typically remain within neighbourhoods composed of adjacent breeding territories 

by adopting alternative social tactics characterised by inconspicuous behaviour (Gross, 

1996; Shuster & Wade, 2003; Taborsky, Oliviera, & Brockmann, 2008). 

Inconspicuousness allows lower RHP males to avoid costly aggression, but still maintain 

proximity to females, which may promote their ability to sneak copulations (Krebs, 1971; 

Mills & Reynolds, 2003; Whiting et al., 2006). Because territorial males typically interact 

with females more frequently and conspicuously than subordinate males, mating system 

studies based solely on observations of behaviour have often concluded that male 

territory owners monopolise matings and obtain much higher reproductive success than 

males utilising subordinate social tactics (Cox & Le Bouef, 1977; Andersson, 1994). In 

such systems, subordinate males are assumed to be ‘making the best of a bad job’ until 

they attain sufficient RHP to acquire territories (Dawkins, 1980; Andersson, 1994; Baird, 

Acree, & Sloan, 1996). 
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Inherent in studies that rely on behaviour to estimate mating relationships and 

reproductive success is the assumption that the behaviour of males accurately predicts 

mating and fertilisation (Wiley, Hatchwell, & Davies, 1991; Hughes, 1998; Baird, 

Hranitz, Timanus, & Schwartz, 2007). Moreover, females are often assumed to remain 

passive during the mating process, even though there is abundant evidence in several taxa 

that they preferentially interact and perhaps mate with males having certain 

morphological and/or behavioural characteristics (Kodric-Brown, 1985; Sullivan & 

Hinshaw, 1992; Ophir & Galef, 2003). The possibility for error in mating assignments 

based solely on observations of behaviour may be worsened because free-ranging 

animals often copulate quickly and secretively. Even when reliable observation of 

copulation is possible, post-copulatory mechanisms (e.g., sperm competition, cryptic 

female choice) may confound parentage assignments (Eberhard, 1996; Birkhead & 

Pizzari, 2002). Indeed, the difficulty of determining parentage assignments accurately is 

accentuated by mounting evidence that females choose to mate with and/or select sperm 

from multiple males, even in species where males judged to have to high RHP 

monopolise females socially (Gibbs et al., 1990; Olsson, Madsen, Shine, Gullberg, & 

Tegelstrøm, 1994; Hughes, 1998). By mating with multiple males, females may gain 

increased paternal care, access to resources required for reproduction, or increased 

quantities of sperm to ensure fertilisation of all eggs (Andersson & Simmons, 2006; 

Slatyer, Jennions, & Blackwell, 2012). Alternatively, by mating with multiple males 

females may derive genetic benefits that promote the survivorship and/or attractiveness 

of their offspring (Kokko, Jennions, & Brooks, 2006; Byrne & Keogh, 2009; Kuijper, 

Pen, & Weissing, 2012). 
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Genetic determination of parentage coupled with observations of social 

interactions among all potential parents, provides a much more accurate estimate of 

mating relationships and the distribution of reproductive success, especially in social 

systems where individuals use more than one reproductive tactic (Double & Cockburn, 

2003; Zamudio & Sinervo, 2003). The necessity of combining genetic with behavioural 

measures is accentuated by studies demonstrating marked discrepancies between mating 

relationships established using genetic techniques versus those estimated using 

behavioural observations (Gibbs et al., 1990; Hughes, 1998; LeBas, 2001). 

 

I combined genetic determination of parentage with detailed observation of the 

social and spatial behaviour of individual collared lizards to test whether defence of 

territories by high RHP males promotes monopolisation of females, or whether females 

mate with multiple males, including those that do not defend territories. Higher RHP and 

prolonged, frequent courtship predict that territorial males should garner a reproductive 

advantage over mature, but non-territorial males (Baird et al., 1996; Lappin & Husak, 

2005), and that females should preferentially mate with the males that defend areas 

overlapping their home ranges (Baird, Fox, & McCoy, 1997; Baird et al., 2007; Baird, 

2013a). In my study population, however, the possibility that spatial overlap and 

courtship frequency do not accurately predict mating relationships may be especially 

high. Female home ranges are partially overlapped by up to three territorial and numerous 

non-territorial males (Baird et al., 1996). Moreover, because the habitat consists of 

continuous boulder fields having nearly unlimited crevices (Baird & Sloan, 2003), non-

territorial intruders can readily hide to avoid attacks by territory owners without leaving 
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the vicinity of female home ranges. Increased access to females while being able to avoid 

aggression may promote opportunities for mate choice and multiple mating by females. 

 

METHODS 

 

Study population 

 

 This study was conducted from 20 March–31 October, 2007 and 2008 at the 

Arcadia Lake (AL) Dam flood control spillway located 9.6 km east of Edmond, 

Oklahoma Co., OK (Baird, Timanus, & Sloan, 2003). Collared lizards at AL occupy 

three topographically homogeneous patches of boulders (1 230–19 853 m
2
) used to 

construct flood-control channels (Curtis & Baird, 2008). This study site is well-suited for 

documentation of behavioural interactions among individuals because human access is 

restricted, lizards are undisturbed, the homogeneity of rock patches allows prolonged and 

unobstructed observation, and rock patches are mapped to scale using GIS measurements 

(accurate to ± 1.0 m) of markers arranged in 10 m grids (Baird & Timanus, 1998; Baird 

et al., 2003). All lizards have been noosed as hatchlings, the terminal phalanges of three 

digits clipped for permanent identification, and unique combinations of non-toxic acrylic 

paint spots applied to the dorsum for identification of individuals from a distance (see 

Ethical note). I know the ages of all of the lizards used in the present study because they 

were periodically recaptured for remarking and measurement since their first capture as 

hatchlings.  
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Previous studies on social and spatial behaviour have shown that females 

maintain strong philopatry to small non-defended home ranges where they spend most of 

their time scanning for arthropod prey from elevated perches (Baird et al., 1996; Baird & 

Sloan, 2003). Males typically acquire territories at the beginning of their second season. 

Territorial males rely on high rates of patrol and broadcast display punctuated by 

occasional chases and fights to advertise and defend territories (Baird, 2013a). Territories 

partially or completely overlap the home ranges of up to eight females that these males 

interact with frequently during prolonged (up to 30 min) courtship encounters throughout 

the reproductive season (Baird, Sloan, & Timanus, 2001; Baird et al., 2007). Even though 

they are sexually mature during their first year, males typically adopt inconspicuous 

subordinate social tactics characterised by low patrol and display rates. When detected by 

territory owners, non-territorial males flee and hide in crevices which are abundant at AL 

(Baird & Sloan, 2003). Nonetheless, first-year males interact with females when territory 

owners have not detected them (Baird et al., 2003). 

 

Recording spatial and social data 

 

During the reproductive season (1 May–15 July), mapped census sightings and 

focal individual observations (both described below) were recorded to document the 

spatial and social behaviour of lizards in the AL population. For the present study, both 

types of data were recorded on all mature males (N = 27), and census data on all females 

(N = 28). Data were recorded on scale-drawn maps when the substrate temperature was 

30–38 ˚C, a range over which collared lizard activity is independent of substrate 
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temperature (Baird et al., 2001). Behavioural data were recorded (described below) from 

1 May–30 June, when females produce up to three successive clutches (see Schedule of 

egg production and hatching; Baird et al., 2001).  

 

Censuses of the entire study site (N = 30; 15 during May, 15 during June) 

involved recording the point locations and identities of all emergent lizards on scale-

drawn maps. Census sightings for males were combined with the beginning and ending 

points of focal traces (described below) to construct maps of territories and home ranges 

using the minimum convex polygon technique (Turner, 1971). The number of points used 

to construct the composite maps of male territories (N = 60–65), as well as female home 

ranges (N = 30–40), equalled or exceeded the number necessary to achieve an asymptotic 

relationship when home range/territory area was graphed against the number of sightings 

(Stone & Baird, 2002; Baird & Sloan, 2003), following the method of Rose (1982). 

 

 Focal observations (sensu Altmann, 1974) involved tracing the path of travel and 

recording all of the social acts initiated by subject males on scale drawn maps (Baird, 

2013a). Twenty-minute focal observations (N = 10/male) were recorded on different days 

throughout the reproductive season. Male collared lizard activity does not vary as a 

function of time of day from 900–1300 h when focal observations were recorded (Baird 

et al., 2001). However, to control for any possible temporal bias, individual males present 

on the study site each day were observed in random order. 
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 Social behaviour is initiated by male collared lizards in two distinct contexts. 

Displays that are broadcast when males are on elevated perches at least 5 m from 

conspecifics are the most common (Baird & Curtis, 2010; Baird, 2013a). Most broadcast 

displays involve males extending all four legs to elevate the torso which is compressed 

laterally while the dewlap is extended (see photographs in Baird, 2013a, 2013b). While 

holding this full-show posture, males almost always flex their legs to raise and lower the 

head and torso 1–12 times (= push-ups) in succession. Much less frequently (2%), males 

display by walking in a circular or figure-eight pattern while remaining on a single perch 

(Baird & Curtis, 2010; Baird, 2013a, 2013b). 

 

 In contrast to broadcast displays, proximal aggressive encounters with male rivals 

(= contests) involve one male running to within 1 m of a male rival which always 

escalates into one or more of the following: an exchange of displays (full shows, push-

ups) while the two males remain in close proximity (1 m), the recipient fleeing, reciprocal 

chases (up to 40 m) back-and-forth, and occasionally attacks involving wrestling and 

biting (Baird, 2013a, 2013b). Because broadcast displays are given when males pause on 

perches and are distant from all conspecifics, they are readily distinguished from contests 

when males are charging, chasing, or fighting a rival, or when males are displaying to a 

rival in close (1 m) proximity that is reciprocating by also giving displays. 

 

Males also initiate proximal encounters with females that function for courtship 

(Baird et al., 2007; Baird & Curtis, 2010; Baird, 2013a). Courtship encounters involve the 

same displays that males broadcast from a distance (described above), but these are also 
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given when one male and female are within one body length of one another, and when 

both lizards are making frequent and prolonged physical contact (Baird, 2004). Physical 

contact includes one lizard mounting and sitting on the dorsal surface of their partner, 

superimposition of the legs and/or tails, nudging their partner with the snout (Baird, 

2013b), or simply perching adjacent while touching the other lizard (Baird & Sloan, 

2003; Baird, 2004). Males sometimes grasp the dorsal skin of the female’s neck and 

attempt to juxtapose their vent with that of the female, presumably to attempt copulation. 

However, because attempts at copulation usually result in both lizards moving into a 

refuge (Baird et al., 2003), it was not possible to reliably determine whether or not 

mounting resulted in successful intromission. 

 

Using the cumulative focal observations recorded on each male, I calculated 

hourly frequencies of broadcast displays, contests between rival males, and courtship 

encounters with females (separately) by dividing the total number of these acts/events by 

the total focal observation time (Baird et al., 2007). I measured mapped traces using a 

digital planimeter (Planix 2000) and calculated the hourly rate of patrol by dividing the 

total distance travelled by the cumulative observation time on individual males (Baird et 

al., 2007).  

 

Schedule of egg production and hatching 

 

Adult lizards typically emerge from hibernacula from late March to early April 

and remain reproductively active until 15 July (Baird et al., 2001). In 2007, the schedule 
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of egg development and oviposition was documented by capturing all females (N = 28) 

present on the site every 7–10 d to weigh and measure them, and palpate their abdomens. 

At each palpation, follicular/egg development was characterised using the egg size and 

shape criteria developed for females in this population (Baird, 2004; Telemeco & Baird, 

2011). The abdomen becomes increasingly swollen as females ripen their eggs, whereas 

oviposition is marked by pronounced loss in body mass (30–50% of total mass) and mud 

caked on the toes and integument from digging nests (Baird, 2004). The temporal 

schedule of oviposition of first and subsequent clutches differs in two-year and older 

(2Y+) females (Baird et al., 2001; Telemeco & Baird, 2011). First clutches produced by 

2Y+ females typically begin to develop in early May and are oviposited about two weeks 

later during the third week of May. First-year females ripen their first clutches 10–15 d 

later in mid-May, and lay them at the end of May or the first week of June. Females of 

both age groups may produce second or third clutches (Baird, 2004; Telemeco & Baird, 

2011), which are oviposited throughout June, into the first two weeks of July. Once the 

last clutches of the season are oviposited, females feed heavily and become progressively 

less active (Baird & Sloan, 2003), presumably to store energy for winter. 

 

 Eggs from the earliest clutches begin to hatch in mid-July, and hatchlings from 

later clutches continue to emerge until mid-October. Offspring are 38.0–40.0 mm SVL 

when they hatch, and may grow to 70.0–85.0 mm SVL by the end of the activity season 

in late October. From 15 July–15 October, the study site was surveyed at least three times 

per week to capture, mark and measure newly emerged hatchlings. For each individual, 

standard measurements (SVL, tail length, body mass) were recorded at first and 
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subsequent captures, sex was determined by examination of the post-anal scales (enlarged 

in males), the location of the first and subsequent captures was recorded on scale-drawn 

maps, and a blood sample was collected (see Collection of DNA samples and 

determination of genotypes). Hatchlings were then released unharmed by placing them in 

rock crevices at their precise capture locations (see Ethical note).  

 

 Genetic assignment of hatchlings to individual mothers (see Parentage 

assignments and patterns of reproductive success in females and males) of known age, 

combined with the schedule of oviposition for serial clutches and hatchling SVL at first 

capture, allowed me to estimate whether offspring were from first or subsequent (second 

or third) clutches. Assignment of offspring to first clutches was obvious using these 

criteria for both 2Y+ and first-year females. Because third clutches sometimes begin 

maturation before oviposition of second clutches, and third clutches develop rapidly 

(Baird, 2004), I could not distinguish hatchlings from second or third clutches. Therefore, 

I pooled hatchlings from second and third clutches for analyses. 

 

Collection of DNA samples and determination of genotypes 

 

Blood samples were collected for isolation of nuclear DNA from all adult lizards 

(N = 55) when they emerged from hibernacula in early April 2007 and from 86 hatchlings 

from August 2007–May 2008 (for details see Schedule of clutch production and 

hatchling emergence). Blood samples (50 µl) were collected from the orbital sinus using 

heparanised micro-hematocrit tubes, and immediately transferred into 15 ml tubes 
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containing standard lysis buffer for storage until DNA extraction. Bleeding was 

staunched by applying slight pressure to the orbit with a cloth. Lizards were returned to 

their exact capture locations within 15 min (see Ethical note).  

 

Genomic DNA was isolated from blood samples using a DNeasy blood and tissue 

extraction kit (Qiagen, Venlo, Netherlands). Using PCR, I amplified eleven microsatellite 

loci with primers developed for C. collaris (Hutchison, Strasberg, Brission, & 

Cummings, 2004) that were labeled with fluorescent dyes. PCR amplification reactions 

(15 μl) contained 4.75 μl of genomic DNA, 0.50 μl of forward and reverse primers, 9 μl 

of True Allele Premix (Perkin-Elmer Applied Biosystems, Foster City, CA), and 0.25 μl 

of GoTaq DNA polymerase (Promega, Madison, WI). All PCR products were optimised 

according to the thermal profile and annealing temperatures described in Husak, Fox, 

Lovern, & Van Den Bussche (2006).  I visualised amplicons for all loci on an automated 

DNA sequencer (model ABI 3130, Perkin-Elmer Applied Biosystems, Foster City, CA) 

after loading a mixture of 9.25 μl formamide, 0.25 μl of ROX 500 HD size standard, and 

0.50 μl of PCR product. Each mixture was denatured at 96˚C for 5 min and then 

immediately chilled on ice for 3 min prior to loading. I scored all genotypes using 

GeneMapper software v. 4.0 (Perkin-Elmer Applied Biosystems, Foster City, CA). To 

test for the presence of null alleles, large-allele dropout, and stutter-induced typing errors 

at each locus, I used Microchecker software v. 2.2.1 (University of Hull, UK; Van 

Oosterhout, Hutchinson, Willis, & Shipley, 2004).  
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All adult males (N = 27) and hatchlings (N = 86) in the 2007 cohort were 

genotyped for all eleven loci. I genotyped all 28 females that were present in 2007, but 

only included in my parentage analyses the 18 that produced clutches (see Schedule of 

clutch production and hatchling emergence). Two loci (Orig11, ENR21) showed a high 

frequency of null alleles. Null alleles can confound parentage assignments when a true 

heterozygote is incorrectly typed as a homozygote, potentially resulting in a genetic 

mismatch and false exclusion of the true parent (Dakin & Avise, 2004). However, 

because both loci were polymorphic, I retained them in analyses. To avoid false 

exclusion of potential parents, all hatchlings that were homozygotes at these two loci (N 

= 66) were typed at only one allele for parentage analyses following the methods of 

LeBas (2001) and Husak et al. (2006).  

 

Parentage assignments and patterns of reproductive success in females and males 

 

Both adult female and male collared lizards maintain strong philopatry to home 

ranges and territories, and mark-recapture/mapping studies since 1990 have shown that 

hatchlings remain within 20 m of their first capture location for 1–1.5 months 

(unpublished data). Therefore, I used the locations of adults relative to hatchlings as the 

first criterion to inform my analysis of possible parents (see similarly Zamudio & 

Sinervo, 2000). The two smallest habitat patches (1 230 and 1 505 m
2
) are separated by 

only 40 m of grass, and there is a concrete wall running between them along which 

lizards have been observed to travel two to four times per season (Curtis & Baird, 2008). 

I pooled lizards from these two patches for parentage analyses because the potential for 
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gene flow is high. A much larger (19 583 m
2
) habitat patch is 260 m from the other two at 

the closest point (Baird & Curtis, 2010), no more than one lizard per season has moved 

among this larger patch and the other two during 17 seasons, and no such movements 

were recorded in 2007. Consequently, I considered the larger patch separate from the 

small patch for parentage analyses. 

 

For these two pools of potential parents and offspring, I used the maximum-

likelihood program CERVUS v. 3.0 (Marshall, Slate, Kruuk, & Pemberton, 1998; 

Kalinowski, Taper, & Marshall, 2007) to assign a mother and father for all hatchlings at 

80% confidence. My simulation parameters for parentage assignments were: 1) mean 

proportion of candidate fathers (or mothers) sampled = 0.98, 2) proportion of loci 

mistyped = 0.01, and 3) number of simulation cycles = 100 000.  For hatchlings that 

CERVUS could not assign to a mother and/or father with at least 80% confidence, I 

compared the genotypes of the two most-likely parents to the hatchling genotype, and 

excluded the parent candidate that mismatched at any locus (genetic exclusion, Haynie, 

Van Den Bussche, Hoogland, & Gilbert, 2003). If the two most-likely parents did not 

mismatch, or shared the same number of mismatches with that of the hatchling at any 

locus, I measured the minimum linear distance between the mapped first hatchling 

capture location and the nearest boundaries of the home ranges (or territories) of each 

candidate parent, and assigned the hatchling to the parent that was closest.  

 

I estimated relative fitness for individual males for all clutches pooled, and for the 

first and subsequent (second and third) clutches separately by dividing absolute 
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reproductive success (number of offspring sired) by the population mean reproductive 

success for males. I estimated the number of different males that females mated with by 

determining the identities of sires for the offspring assigned to individual females, and the 

number of different males that inseminated individual clutches by determining the 

identity of sires for hatchlings from individual clutches. 

 

Statistical analysis 

 

All analyses were performed in the program R v. 3.0.1 (R Development Core 

Team, 2013). I used generalised linear models (GLM) to compare the following variables 

in 2Y+ males that were defending territories and first-year males that were not: hourly 

rate of patrol (m/h); hourly frequencies of broadcast display; courtship encounters with 

females; and contests with rival males; territory/home range area (m
2
); the number of 

females that males overlapped spatially; and SVL (mm). Because the number of females 

overlapped was a discrete variable, I used a GLM with Poisson error structure and log 

link function. The response variables for all other GLM were continuous, so I used a 

Gaussian error structure and identity link function. I also used GLM to compare relative 

fitness in territorial and non-territorial males by including sire social status (territorial or 

non-territorial) as a categorical predictor and relative fitness as a response variable with 

Gaussian error structure and identity link function. I used the package ‘compute.es’ to 

calculate standardised (mean = 0, standard deviation = 1) effect sizes (Cohen’s d) and 

associated 95% confidence intervals (CI) for all models.  
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To determine the strength of selection acting on phenotypic traits that are 

hypothesized to promote fitness in male lizards (reviewed by Baird, 2013c), I calculated 

standardised linear selection differentials (s′) using the methods of Morrissey & Sakrejda 

(2013). This approach employs spline-based generalised additive models to model 

absolute fitness as a function of unstandardised traits, and converts regression coefficients 

of unstandardised traits into standardised linear selection differentials. To avoid problems 

with model over-fitting and multicolinearity among independent variables, I conducted 

separate univariate analyses of selection for individual traits (see similarly Bolund, 

Bouwhuis, Pettay, & Lummaa, 2013). I used the package ‘mgcv’ to model absolute 

reproductive success as a function of male phenotypic traits. Standardised linear selection 

differentials and standard errors were estimated from models after 1000 parametric 

bootstrap replicates in the package ‘gsg’ (Morrissey & Sakrejda, 2013).   

 

For my selection analyses, I chose traits that are hypothesized to be important 

components of male fitness in my study population (Baird et al., 2003, 2007) and lizards 

in general (Andersson, 1994; Zamudio & Sinervo, 2003; reviewed by Baird, 2013c). 

Baird et al. (2007) showed that broadcast display, patrol, and courtship behaviours were 

positively associated with annual male mating success as estimated by relative courtship 

frequency in the AL population, whereas intrasexual contests and large body size (SVL) 

did not influence mating success. Especially in territorial polgynous species such as 

collared lizards, the number of females overlapped has been used as an estimate of male 

fitness because males overlapping more females are assumed to mate more frequently 

and hence achieve higher reproductive success (Andersson, 1994; Lappin & Husak, 
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2005). Therefore, on the basis of previous behavioural studies I predicted that the 

frequency of broadcast display, patrol rate, frequency of courtship and the number of 

females overlapped would be under positive directional selection, whereas traits that 

previous studies have not linked with behavioural estimates of mating success (male 

SVL, frequency of contests initiated) would not. 

 

For all analyses, my primary means for evaluating statistical significance involved 

determining whether the 95% CI of predictor variables did not include zero.  However, 

because my selection analyses involved multiple univariate tests, I also used Bonferroni 

correction for P-values as a supplementary measure of statistical significance. For all 

other analyses, I do not report P-values, because they are subject to sample size variation 

and do not reveal the biological significance or statistical uncertainty of the variables of 

interest (Colegrave & Ruxton, 2003; Nakagawa & Cuthill, 2007). Instead, I use 

standardised effect sizes with CI because they provide both biologically and statistically 

meaningful inference at a specified degree of certainty (Colegrave & Ruxton, 2003), and 

have the additional advantage of facilitating direct comparisons of the influence of 

variables in my system with other systems (Nakagawa & Cuthill, 2007). 

 

Ethical Note 

 

All procedures performed on live lizards were conducted with approval of the 

Institutional Animal Care and Use Committee at the University of Central Oklahoma 

(IACUC, permit number 13009) and the Oklahoma Department of Wildlife (permit 
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number 5553). Longitudinal studies of collared lizard behaviour, growth and survival in 

this population have been conducted over 17 consecutive seasons. Throughout, the 

terminal phalanges of three digits were clipped for permanent identification of 

individuals, non-toxic acrylic paint has been applied to the dorsum for identification of 

individuals from a distance, individuals have been repeatedly captured by noosing, 

female abdomens have been palpated to monitor reproductive cycles, and morphometric 

measurements have been made on lizards at each capture. Subsequent monitoring of the 

behaviour of lizard subjects confirmed that these techniques have had no adverse effects 

on the health of adult or hatchling collared lizards (Baird et al., 2001, 2003, 2007; Baird, 

2004). Collection of blood from the orbital sinus using a micro-hematocrit tube is the 

most humane technique, because samples are taken within 1 min of capture, and bleeding 

is staunched quickly (≤ 1 min) by applying gentle pressure to the orbit with the eyelids 

closed. Alternative collection techniques (e.g., from clipped toes, needle puncture) are 

more invasive and/or would require much longer handling. Rapid blood collection from 

the orbital sinus is especially important to protect hatchlings because they are the most 

susceptible to over-heating (high surface area/volume) during handling. Hundreds of 

hatchlings from 2007–2013 have had blood samples obtained in this manner and their 

behaviour has been subsequently monitored for the balance of these seasons and beyond 

with no indication of ill effects. Hatchlings are almost always re-sighted behaving 

normally within 1 h of blood sampling, and the others are sighted no more than 2 d later. 

There has not been a single observed incidence of eye infection in the hundreds of lizards 

that have been bled. 
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RESULTS  

 

Male spatial and social behaviour 

 

Consistent with findings of past studies on male behaviour at AL, all 2Y+ males 

(N = 17) defended territories, whereas even though they were sexually mature, first-year 

males (N = 10) did not. Average rates of patrol and broadcast display in territorial males 

were 5.2 times and 3.1 times higher, respectively (patrol, GLM: t 2, 25 = 7.27, Cohen’s d, 

95% CI = 2.90, 1.74 to 4.05; broadcast display, GLM: t 2, 25 = 6.50, Cohen’s d, 95% CI = 

2.59, 1.49 to 3.68; Table 1). On average, territorial males courted females 3.2 times more 

frequently (GLM: t 2, 25 = 2.59, Cohen’s d, 95% CI = 1.03, 0.16 to 1.90) than did non-

territorial males (Table 1). Not only did territorial males initiate aggressive contests more 

frequently (GLM: t 2, 25 = 3.71, Cohen’s d, 95% CI = 1.48, 0.56 to 2.40 (Table 1), in most 

contests (95%) they engaged non-territorial males that fled immediately. Territorial males 

were significantly larger (GLM: t 2, 25 = 5.58, Cohen’s d, 95% CI = 2.33, 1.28 to 3.38) 

than non-territorial males (Table 1). In marked contrast, both the size of areas used 

(GLM: t 2, 25 = 0.34, Cohen’s d, 95% CI = 0.14, - 0.69 to 0.96), and the number of females 

overlapped (GLM: z 2, 25 = 0.03, Cohen’s d, 95% CI = 0.01, - 0.81 to 0.83), were similar 

in the two social classes of males (Table 1). 
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Schedule of clutch production and hatchling emergence 

 

Of the 28 females that emerged from hibernacula in early April of 2007, ten died 

before they produced a first clutch as indicated by their abrupt and continued absence. 

The reproductive cycles of the remaining 18 females were monitored using recaptures 

from 1 May–15 July during which the abdomen was palpated to assess developmental 

stages and oviposition of one to three clutches of eggs. These 18 females produced 25 

clutches total. Eight females produced only one clutch because they died before the 

reproductive season was completed, whereas seven and three females that survived the 

entire season produced two and three clutches, respectively. The eight females that died 

early were each captured and palpated three to four times. The remaining ten females 

were palpated 8–12 times distributed throughout the season. 

 

 Daily monitoring revealed that 2007 hatchlings began emerging from the earliest 

clutches on 13 August. Seventy hatchlings were captured from then until October 2007. 

Sixteen more 2007 hatchlings were captured from 19 April–15 May in 2008. Hatchlings 

that were captured first in 2007, as well as those captured in early 2008, were distributed 

randomly throughout the entire site. Therefore, the fact that 19% of hatchlings were not 

captured until 2008 does not introduce systematic bias into my estimates of male 

reproductive success. Hatchlings from later clutches began to emerge on 10 September, 

which resulted in their being substantially (< 20 mm) smaller than already emergent 

hatchlings from first clutches. Based on the different reproductive schedules of first-year 

and 2Y+ females (see Schedule of egg production and hatching), and the marked 
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difference in the size of hatchlings when they first emerged, I was able to assign 68 

offspring to first clutches, and 18 offspring to subsequent (second or third)  clutches. 

 

Parentage assignments, mating relationships and reproductive success in males and 

females 

 

I assigned a father and mother for all hatchlings on the small habitat patch using 

CERVUS.  On the large habitat patch, I assigned 37 (62%) hatchlings a father and 35 

(56%) hatchlings a mother using CERVUS. Of the 25 hatchlings that I could not assign a 

father using CERVUS, eight were assigned using genetic exclusion, whereas 17 were 

assigned by exclusion based on spatial proximity (see Parentage assignments and 

patterns of reproductive success in females and males). Twenty-seven hatchlings could 

not be assigned a mother using CERVUS. Of these, seven were assigned based upon 

genetic exclusion, and the other 20 were assigned using spatial proximity. 

 

When I pooled data for all clutches, the relative fitness of territorial and non-

territorial males was similar (GLM: t 2, 25 = - 0.17, Cohen’s d, 95% CI = - 0.07, - 0.89 to 

0.75, Fig. 1). All non-territorial males sired at least one offspring, whereas three 

territorial males did not sire any offspring. Because survivorship of hatchlings from first 

clutches appears to be higher than that from second and third clutches in the AL 

population (unpublished data), I examined reproductive success of the two social classes 

of males from first versus later clutches separately. Relative fitness of males employing 

the two social tactics was also similar for the first clutch alone (GLM: t 2, 25 = - 0.34, 
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Cohen’s d, 95% CI = - 0.13, - 0.96 to 0.69, Fig. 1), as well as for later clutches (GLM: t 2, 

25 = 0.27, Cohen’s d, 95% CI = 0.11, - 0.71 to 0.93, Fig. 1).  

 

Sixteen females (89%) copulated with two to six males, whereas only two females 

(11%) mated exclusively with one male (Fig. 2). Of the 16 females mating with multiple 

males, 13 (81%) mothered hatchlings sired by both territorial and non-territorial males 

(Fig. 2). Seventy-six percent (19 of 25) of individual clutches were fertilised by multiple 

(up to six males) males, and eggs in 15 (60%) clutches were fertilised by both territorial 

and non-territorial males (Fig. 3).  

 

Because the number of offspring sired by territorial and non-territorial males was 

not different, I pooled them for my estimates of the strength of sexual selection on male 

phenotypic traits even though behavioural and morphological traits were markedly 

different. As a consequence of these differences, none of the seven traits that I examined 

were significant targets of selection for all males pooled (Table 2; P’s 0.22 to 0.90). 

When only territorial males were considered, I found positive directional selection on 

male SVL (Table 2; P = 0.02), but Bonferroni correction rendered this result 

nonsignificant. 

 

DISCUSSION 

 

As expected, 2Y+ males vigorously defended territories and courted females that 

resided within these territories far more frequently and conspicuously than first-year 
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males that displayed subordinate non-territorial tactics. Nonetheless, genetic parentage 

analyses did not support predicted patterns of reproductive success based on these 

patterns of male behaviour. Territorial males did not effectively monopolise matings with 

the females that resided within their territories. Instead, females were highly 

promiscuous, producing offspring with several other males (even for individual clutches), 

both territorial and non-territorial. Non-territorial males obtained unexpectedly high 

reproductive success, siring equal numbers of offspring on average relative to territory 

owners. That non-territorial males had equal reproductive success while avoiding the 

costs of territory defence incurred by territory owners (Baird et al., 2001), and that 

females did not maintain high mating fidelity to territory owners, calls into question the 

adaptive value of territory defence in this population. These results are surprising, 

because field studies in all populations of C. collaris examined to date show that the 

largest males incur substantial costs by defending reproductive territories, and hence are 

expected to obtain a disproportionate reproductive advantage over non-territorial males to 

balance these costs (Baird et al., 2003; McCoy, Baird, & Fox, 2003; Lappin & Husak, 

2005). 

 

One possible explanation of the unexpectedly high reproductive success of non-

territorial males is that the habitat topography at AL promotes exceptional opportunities 

for them to travel to contact females and mate by stealth. Habitat patches at AL are large 

and continuous and contain nearly unlimited crevices in which non-territorial males can 

hide to evade attacks by territorial males without being forced to disperse away from 

females (Baird & Sloan, 2003). Especially when territorial males are patrolling and 
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displaying at distant boundaries, there appear to be opportunities for non-territorial males 

to sneak copulations. By contrast, the natural habitat of collared lizards is fundamentally 

different from that at AL. It consists of smaller discontinuous rock patches that contain 

fewer crevices, and patches are separated by expanses of prairie grass. Travel among 

patches is infrequent due to increased predation risk when lizards are distant from cover. 

This habitat distribution and scarcity of crevices provides territory owners with smaller, 

more economically defensible areas from which to repel intruders that cannot readily 

hide. The features at AL that appear to promote the success of non-territorial males are 

diminished in natural habitats (McCoy et al., 2003), and territorial males are probably 

better able to monopolise matings with the females that they overlap spatially. 

 

Relatively high reproductive success in non-territorial males and high levels of 

multiple paternity may also be a consequence of females increasing their own fitness by 

choosing to mate with multiple males (Arnqvist & Nilsson, 2000). With a few exceptions 

(Uller & Olsson, 2005), there is little support for the hypothesis that female squamates 

mate multiply to gain access to material benefits (e.g., increased paternal care, access to 

high quality resources, fertilisation assurance; Uller & Olsson, 2008). Collared lizards do 

not provide parental care for offspring. It is also unlikely that female collared lizards 

mate multiply to obtain access to important resources such as elevated perches that they 

use for foraging and basking, or rock crevices that function as refuges from predators and 

heat. Both are abundant at AL (Baird & Sloan, 2003), and females mated frequently with 

non-territorial males that did not control access to these resources. For the few females 

that sired offspring with only one male, the fact that these same males also produced 
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offspring with other females indicates that mating with multiple males is not selected in 

females to avoid sperm depletion (Preston, Stevenson, Pemberton, & Wilson, 2001). 

 

Multiple mating may also promote female fitness by increasing the viability or 

attractiveness of their offspring (Jennions & Petrie, 2000) through post-copulatory 

mechanisms such as sperm competition (Birkhead & Pizzari, 2002) or cryptic female 

choice (Eberhard, 1996). In several taxa, including squamate reptiles, females either 

promote competition among sperm acquired from multiple males (sperm competition), or 

bias fertilisation by sperm obtained from particular males (cryptic female choice) (Uller 

& Olsson, 2008). Both of these mechanisms are possibilities in collared lizards. However, 

differences in relative testis size between males employing different social tactics, which 

is often observed in species with sperm competition (Birkhead & Møller, 1998), was not 

observed in territorial and non-territorial males from the AL population (Baird et al., 

2003). In many female squamates having cryptic female choice, there are morphological 

specialisations for sperm storage and/or manipulation, but these are also lacking in 

female collared lizards (Telemeco & Baird, 2011). Moreover, both sperm competition 

and cryptic choice models predict random mating by females, but non-random biases in 

paternity (Uller & Olsson, 2008). The distribution of paternity observed in our study did 

not support either prediction.  

 

Females mated with males displaying a wide range of phenotypic traits. When all 

males were pooled, none of the traits that are typically hypothesized to promote fitness in 

male lizards (Baird et al., 2003, 2007; Zamudio & Sinervo, 2003; reviewed by Baird, 
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2013c), were under strong sexual selection. However, when I restricted the analysis to 

only males that controlled territories, I found positive directional selection on sire SVL. 

Large body size among territory owners may promote success in intra-sexual contests 

among males. In many lizard species, larger males often defend larger or higher-quality 

territories and/or monopolise mating opportunities with more females (Andersson, 1994; 

Sinervo & Lively, 1996). Sexual selection on body size may be particularly important in 

species such as collared lizards where males exhibit alternative tactics, because traits 

characterising each tactic may be under correlational selection. Such a case is evident in 

water skinks in which male SVL interacts with a suite of behavioural traits that promote 

the evolution of divergent social tactics through disruptive selection (Noble, Wechmann, 

Keogh, & Whiting, 2013).  

 

Sexual selection for large body size among territorial males may also be explained 

by female choice. If females derive fitness benefits by mating with multiple males, then 

benefits derived by mating with territorial versus non-territorial sires are likely different. 

Females may use body size as an indicator of superior genetic quality in the case of 

territorial sires (Kirkpatrick, 1982; Andersson & Simmons, 2006), but be choosing one or 

more different traits displayed by non-territorial males. Mating with non-territorial males 

also may be advantageous because it promotes genetic compatibility or diversity, both of 

which may enhance offspring survivorship (Stockley, Searle, Macdonald, & Jones, 1993; 

Yasui, 1998; Mays & Hill, 2004). Especially when selection varies spatially and 

temporally, the adaptive significance of mating preferences by females may fluctuate 

depending upon the ecological and social conditions experienced in local neighbourhoods 
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(Cornwallis & Uller, 2010). For example, females may prefer dominant males during one 

season, whereas preferences may change or vary among seasons (Gosden & Svensson, 

2008; Robinson, Pilkington, Clutton-Brock, Pemberton, & Kruuk, 2008). The possibility 

that variation in operational sex ratios in local neighbourhoods influences the distribution 

of reproductive success among males, and the potential for females to evaluate and 

choose mates remains to be tested in collared lizards. 

 

My results contrast sharply with predictions from classical mating system theory 

and with many findings on reproductive success in other systems where males adopt 

alternative social tactics (Dawkins, 1980; Andersson, 1994; Ellis, 1995; Qvarnström & 

Forsgren, 1998). Moreover, my estimate of the strength of sexual selection on male SVL 

among territory owners was high relative to studies that examined similar morphological 

traits, but in larger samples recorded over longer periods (Kingsolver et al., 2001; 

Kingsolver, Diamond, Siepielski, & Carlson, 2012).  Thus, my small sample size 

warrants that my results should be interpreted with caution. Smaller sample sizes coupled 

with univariate models of selection have been shown to inflate the estimated strength of 

selection (Kingsolver et al., 2001; 2012). Moreover, estimates of selection and the high 

success of non-territorial males over short time scales may not accurately reflect selective 

regimes and mating system dynamics over the long term (Kingsolver et al., 2001; but see 

Morrissey & Hadfield, 2012). Analyses of larger sample sizes within individual seasons, 

combined over longer time scales, will clarify the extent to which patterns of 

reproductive success and strength of selection vary temporally among male collared 



 
 

38 
 

lizards at AL, providing much needed insight into the evolution and maintenance of 

alternative tactics in natural populations. 

 

Conclusion 

 

As expected, I found that territory defence, the dominant social tactic in male 

collared lizards, promoted increased courtship opportunities relative to the subordinate, 

non-territorial social tactics employed by first-year males. Nonetheless, on average, 

relative fitness among territorial and non-territorial males was similar, both within and 

among successive clutches. None of the phenotypic traits I analysed were significant 

targets of selection when all males were pooled. However, there was positive directional 

selection on large body size when only territory owners were considered, possibly to 

promote success in intra-sexual competition, or because females prefer to mate with 

larger territorial males. The homogenous, continuous topography of the human-

constructed habitat at my study site appears to promote exceptional opportunities for 

subordinate males to sneak matings, and for females to mate with multiple males, perhaps 

to gain genetic benefits that promote the survivorship and/or attractiveness of their 

offspring.  
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Table 1. Summary of GLM analyses comparing social, spatial and morphological data in 

territorial and non-territorial collared lizard males at Arcadia Lake in 2007. Data are 

means with standard errors in parentheses. 

  

Variable Territorial Males 

 

Non-Territorial Males 

 

   Rate of Patrol (m/h)  76.07 (5.21) * 14.58 (6.57) 

    Broadcast Displays/h 51.00 (5.49) * 3.90 (0.85) 

    Courtship Encounters/h 0.79 (0.15) * 0.25 (0.09) 

    Contests/h 0.27 (0.05) * 0.00 (0.00) 

    SVL (mm) 112.00 (0.72) * 94.35 (3.71) 

    Territory/Home Range Area 

(m
2
) 2 094.00 (409.00) 

 

1 867.00 (518.00) 

    Number of Females 

Overlapped 2.10 (0.30) 

 

2.10 (0.50) 

 

 

1
Asterisks indicate statistically significant differences between columns (95% CI did not 

include zero). 
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Table 2. Standardised linear selection differentials (s′), standard errors (SE) and 95% CI 

from univariate linear selection analyses of phenotypic traits for all males pooled, and for 

only territorial males. 

 

All Males Pooled (N = 27) s′ (SE) 95% CI 

 

  Trait 

  

   Rate of Patrol (m/h) 0.11 (0.17) - 2.33 to 9.82 

   Broadcast Displays/h 0.09 (0.16) - 0.25 to 0.43 

   Courtship Encounters/h 0.22 (0.15) - 0.21 to 0.68 

   Contests/h 0.18 (0.15) - 0.57 to 0.69 

   Number of Females Overlapped 0.07 (0.18) - 0.36 to 0.66 

   SVL (mm) 0.65 (0.40) - 0.85 to 1.49 

   Territorial Males Only (N = 17) 

  

   Rate of Patrol (m/h) - 0.11 (0.42) - 1.03 to 6.40 

   Broadcast Displays/h 0.27 (0.24) - 0.20 to 0.75 

   Courtship Encounters/h 0.42 (0.23) - 0.09 to 0.86 

   Contests/h 0.15 (0.23) - 0.66 to 1.04 

   Number of Females Overlapped 0.33 (0.35) - 0.57 to 2.12 

   SVL (mm) 0.60 (0.23) * 0.13 to 0.95 

 

1
Asterisk indicates a statistically significant difference (95% CI did not include zero). 
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FIGURE LEGENDS 

 

Fig. 1. Relative fitness in territorial males (solid bars) and non-territorial males (hatched 

bars) for all clutches pooled, first clutches only, and the second and third clutches pooled. 

Data are means ± 1.0 SE.  

 

Fig. 2. The number of females that produced offspring with only one versus multiple 

males. Hatched bars indicate females that mated only with territorial males, open bars 

indicate females that mated with only non-territorial males, and solid bars indicate 

females that mated with males employing both social tactics.  

 

Fig. 3. The number of individual clutches inseminated by only one versus multiple males.  

Hatched bars indicate clutches inseminated by only territorial males, open bars indicate 

clutches inseminated by only non-territorial males, and solid bars indicate clutches 

inseminated by males employing both social tactics.  
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FEMALE PROMISCUITY AND SUCCESS OF SUBORDINATE MALES 

PROMOTE SEXUAL CONFLICT IN COLLARED LIZARDS 

Joshua R. York 

Department of Biology, University of Central Oklahoma, Edmond, OK, 73034 

 

ABSTRACT 

Disentangling the effects of intra- and intersexual selection in natural populations is a 

long-standing goal of research in evolutionary biology. I tested the extent to which these 

sexual selection mechanisms influenced mating relationships among collared lizards over 

three seasons when sex ratios in local neighborhoods (LSR) varied markedly. 

Surprisingly, neither the number of offspring sired, nor the number of females that males 

mated with, varied as a consequence of highly variable LSR. Moreover, non-territorial 

and territorial males sired similar numbers of offspring by mating with similar numbers 

of females in all three years. For territorial males, courtship frequency was positively 

associated with both the number of female mates and offspring sired, but none of the 

factors examined predicted either fitness estimate in non-territorial males. Females mated 

promiscuously with similar numbers of territorial and non-territorial males during all 

three seasons, and survivorship of offspring produced by individual females decreased 

with the degree of female promiscuity. Because females do not appear to garner material 

or genetic benefits that balance this offspring survival cost, it appears that they are 

‘making the best of a bad job’ by accepting multiple copulations. Sexual conflict and the 

high success of non-territorial males may be promoted by the homogenous, continuous 
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topography of the human-constructed habitat occupied by this population, which differs 

substantially from that of the natural habitat of collared lizards in Oklahoma. 

 

INTRODUCTION 

 

Sexual selection is a powerful evolutionary force responsible for shaping sex-specific 

patterns of mating behavior, but is also capable of generating substantial intrasexual 

diversity in mating phenotypes known as alternative reproductive tactics (Gross 1996; 

Oliveira et al. 2008; Neff and Svensson 2013). In many populations under strong sexual 

selection, males having high resource holding potential (RHP, Parker 1974) attempt to 

monopolize females using dominant tactics such as territory defense (Stamps 1994; 

Calsbeek and Sinervo 2002). When males having lower RHP cannot disperse, they may 

adopt socially subordinate tactics that allow them to avoid aggressive encounters with 

territorial rivals, but still remain near to females to sneak copulations (Lawrence 1987; 

Baird et al. 2003). Classical mating system theory predicts that selection will favor 

dominant tactics when the fitness benefits gained balance the costs incurred (Dewsbury 

1982; Andersson 1994; Ellis 1995). Therefore, both higher RHP and extensive social 

interactions with females predict that territorial males should obtain a reproductive 

advantage over non-territorial males to balance costs imposed by territory maintenance. 

Non-territorial males are often hypothesized to be ‘making the best of a bad job’ earning 

relatively low reproductive success (Dawkins 1980; Gross 1996; Shuster and Wade 

2003). 
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 The expectation that territorial males monopolize matings has become 

increasingly difficult to reconcile with strong evidence that females in many species are 

highly promiscuous, even when males are strongly territorial and attempt to deny access 

by same-sex competitors to certain females (Hughes 1998; Uller and Olsson 2008; 

Pizzari and Wedell 2013; York et al. 2014). Mating promiscuously may increase female 

fitness, or the fitness of their offspring (Gray 1997; Newcomer et al. 1999; Fisher et al. 

2006), which acts to counter the purposes of males that are using territorial tactics to 

monopolize females (Qvarnström and Forsgren 1998; York et al. 2014). Female 

promiscuity may also arise as a consequence of ecological factors that promote such 

ready access by subordinate males because females cannot avoid harassment by several 

males without incurring other costs without simply mating with them. Either scenario 

predicts the evolution of different mating strategies in the sexes that are in conflict with 

one another (Chapman et al. 2003; Fricke et al. 2010).  

 

 Both the intensity of intrasexual male competition and the potential for females to 

exercise adaptive mating choices are hypothesized to be influenced by variation in the 

number of male competitors relative to the number of receptive females in local 

neighborhoods (hereafter, local sex ratio = LSR) (sometimes referred to as operational 

sex ratio = OSR by Emlen and Oring 1977; Kvarnemo and Ahnesjø 1996; Weir et al. 

2011). Estimating LSR is particularly important for species that display low vagility and 

maintain strong philopatry to certain habitat patches (Zamudio and Sinervo 2000). Sex 

ratio-based hypotheses predict that when LSR is male-biased, more males will compete 

for and court each available female. Both increased pressure from rivals and 
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opportunities for females to interact with more males should decrease the ability of 

territorial males to monopolize matings with individual females. By contrast, lower LSR 

should enhance opportunities for mate monopolization by territorial males, and decrease 

opportunities for females to mate promiscuously.  I combined detailed observations of 

social and spatial behavior made in the field with genetic determination of parentage to 

test the extent to which mating relationships in collared lizards are influenced by 

intrasexual competition among males displaying territorial and non-territorial social 

tactics, and adaptive mating choices by females. My test involved 1) determining the 

number of females that males mated with and the number of offspring sired by all males 

in the population and 2) determining variation in the degree of female promiscuity in 

response to marked natural variation in LSR within and among three seasons. Because 

females have been hypothesized to mate with multiple males to increase the survival of 

their offspring (Yasui 1997; Ivy and Sakaluk 2005), I also examined survival of offspring 

as a function of the degree that females mated promiscuously.  

 

MATERIALS AND METHODS 

 

Study site and population 

 

Field work for this study was conducted from 20 March–15 July 2007–2010 at the 

Arcadia Lake (AL) Dam flood-control spillway located 9.6 km east of Edmond, OK, 

where collared lizards occupy three topographically homogeneous patches of boulders 

(1,230–19,853 m
2
) used to construct flood-control channels (Curtis and Baird 2008). The 
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AL site is well-suited for studying the social and spatial behavior of individual lizards 

because human access is restricted, the homogeneity of rock patches allows prolonged 

and unobstructed observation of all individuals (Baird et al. 1996; 2003), and the entire 

site is mapped to scale using GIS measurements of mapping markers arranged in 10 m 

grids made with USAF equipment (Baird and Timanus 1998; Baird et al. 2003). All 

social and spatial data (see below) were recorded on these scale-drawn maps. Since 1990, 

all lizards at AL have been noosed after hatching, the terminal phalanges of three digits 

clipped for permanent identification, and unique combinations of non-toxic acrylic paint 

spots applied to the dorsum for identification of individuals from a distance. Because 

lizards have been periodically recaptured for remarking and measurements over 24 

consecutive seasons, I knew the ages of all subjects used in this study.  

 

 Previous findings on individual social and spatial behavior have shown that 

females maintain strong philopatry to small non-defended home ranges where they spend 

most of their time scanning for arthropod prey from elevated perches (Baird et al. 1996; 

Baird and Sloan 2003). Females may produce one to three successive clutches of eggs 

each reproductive season (Baird et al. 2001; Telemeco and Baird 2011). Males typically 

acquire territories at the beginning of their second season that they defend until they die 

(Baird et al. 1996; Baird 2013a). Defense of territories involves high rates of patrol, 

frequent broadcast display, and occasional chases and fights (described below; Baird et 

al. 2007; Baird 2013b). Territories of males partially or completely overlap the home 

ranges of up to eight females, with whom the males interact frequently during prolonged 

(up to 30 min) courtship encounters throughout the reproductive season (Baird 2013b, c). 
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Even though males are sexually mature during their first year, they typically adopt 

inconspicuous subordinate social tactics characterized by low patrol and display rates.  

When detected by territory owners, non-territorial males flee and hide in crevices, which 

are abundant at AL (Baird & Sloan, 2003). Nevertheless, first-year males interact with 

females and attempt to sneak copulations when territory owners have not detected them 

(Baird et al., 2003). Females frequently reject their advances by fleeing (Baird and 

Timanus 1998). By contrast, females almost always engage in courtship involving 

prolonged physical contact by territorial males (Baird 2013c). 

 

Spatial and Social Data 

 

During each reproductive season (1 May–15 July), mapped census sightings and focal 

individual observations (both described below) were recorded to document the spatial 

and social behavior of lizards. We recorded both types of data on all mature territorial 

(2007, N = 17; 2008, N = 12; 2009, N = 9) and non-territorial (2007, N = 10; 2008, N = 3; 

2009, N = 9) males, and census data on all mature females (N = 64). Data were recorded 

on scale-drawn maps when the substrate temperature was 30–38 ˚C, a range over which 

collared lizard activity is independent of substrate temperature (Baird et al. 2001). 

Behavioral data (described below) were collected from 1 May–30 June when female 

collared lizards produce one to three successive clutches, and 2Y+ males actively defend 

territories (Baird et al. 2001). 
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 Censuses of the entire study site (N = 30; 15 during May, 15 during June of each 

year) involved recording the point locations and identities of all emergent lizards on 

scale-drawn maps. I combined census sightings for males with the beginning and ending 

points of their focal traces (described below) to construct composite maps of territories 

and home ranges using the minimum convex polygon technique (Turner 1971). The 

number of points used to construct composite maps of male territories/home ranges (N = 

60–65) and female home ranges (N = 30–40) equaled or exceeded the number necessary 

to achieve an asymptotic relationship when territory/home range areas were graphed 

against the number of sightings (Stone and Baird 2002; Baird and Sloan 2003), following 

the method of Rose (1982). 

 

 Focal observations (sensu Altmann 1974) involved tracing the path of travel and 

recording all of the social acts initiated by subject males on scale drawn maps (Baird 

2013a). Twenty minute focal observations (Baird et al. 2003; N = 10–15 per male) were 

recorded on different days during May and June of each year. Male collared lizard 

activity does not vary as a function of time of day from 0900–1300 h when focal 

observations were recorded (Baird et al. 2001). However, to control for any possible 

temporal bias during this 4 h time period, individual males were observed each day in 

random order. 

 

 Previous studies have shown that collared lizard males initiate social behavior in 

two distinct contexts. Displays that are broadcast when patrolling males are on elevated 

perches at least 5 m from conspecifics are the most common (Baird and Curtis 2010; 
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Baird 2013a). Most broadcast displays involve males extending all four legs to elevate 

the torso which is laterally compressed while the dewlap is extended (see photographs in 

Baird 2013a, b). While holding this ‘full-show’ posture, males typically flex their legs to 

raise and lower the head and torso multiple times (= pushups) in succession. Much less 

frequently, males display by walking in a circular or figure-eight pattern while remaining 

on a single perch (Baird 2013a, b; Baird and Curtis 2010).  

 

 In contrast to distant broadcast displays, proximal aggressive encounters with 

male rivals (= contests) involve one male running towards another male to within 1 m, 

followed by escalation into one or more of the following: an exchange of displays (full 

shows, push-ups) while the two males remain in close proximity (1 m), the recipient 

fleeing, reciprocal chases (up to 40 m) back-and-forth, and occasionally attacks involving 

wrestling and biting (Baird 2013a, c). Because broadcast displays are given when males 

pause on perches and are distant from all conspecifics, they are readily distinguished 

from contests when males are charging, chasing, or fighting a rival, or when males are 

displaying to a rival in close proximity that is reciprocating by also giving displays (Baird 

2013a, c). 

 

 Males also initiate proximate encounters with females that function in courtship. 

Courtship encounters involve the same displays that males broadcast from a distance 

(described above), but these are also given when one male and female are within one 

body length of one another, with both lizards making frequent and prolonged physical 

contact (Baird and Sloan 2003; Baird 2004). Physical contact includes one lizard 
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mounting and sitting on their partner’s dorsum, superimposition of the legs and/or tails, 

nudging their partner with the snout, or perching adjacent to and touching the other lizard 

(Baird and Sloan 2003; Baird 2004). Occasionally, males grasp the dorsal skin of the 

female’s neck and attempt to juxtapose their vent with that of the female, presumably to 

attempt copulation. Because such mounting usually results in both lizards moving into a 

crevice (Baird et al. 2003), we could not reliably determine whether or not mounting 

resulted in successful intromission. 

 

 I used cumulative focal observations recorded on each male to calculate hourly 

frequencies of broadcast displays, contests initiated with rival males, and courtship with 

females (separately) by dividing the total number of these acts/events by the total focal 

observation time (Baird et al. 2007). I measured mapped spatial traces using a digital 

planimeter (Planix 2000)) and calculated the hourly rate of patrol for each male by 

dividing the total distance traveled by the total observation time on individual males 

(Baird et al. 2007). 

 

Local Ratios of Male Competitors to Females 

 

In species such as collared lizards where adults show strong intra- and interseasonal 

philopatry to their territories and home ranges, determining the ratio of male competitors 

to available females that individual males experience in local neighborhoods is a 

powerful method to quantitatively estimate the intensity of sexual selection (Baird et al. 

2001; Baird and Sloan 2003; Baird 2013a). Using mapped census sightings and focal 
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observations (described above), I determined the ratio of the number of mature males that 

abutted or partially overlapped each male territory/home range to the number of mature 

females partially overlapped by each territorial (2007, N = 17; 2008, N = 12; 2009, N = 9) 

and non-territorial (2007, N = 10; 2008, N = 3; 2009, N = 9) male present in the AL 

population during these three seasons. I used census data recorded on all females (N = 64) 

during this period to document spatial relationships between each female and the males in 

their neighborhoods. 

 

Schedule of egg production and emergence of hatchlings 

 

Adult lizards at AL typically emerge from hibernacula from late March to early April and 

remain reproductively active until 15 July (Baird et al. 2001). During all three study 

seasons, the schedule of egg development and oviposition was documented by capturing 

all females present throughout the site every 7–10 d to weight and measure them, and 

palpate their abdomens. At each palpation, follicular/egg development was characterized 

using egg size and shape criteria developed for females in this population (Baird 2004; 

Telemeco and Baird 2011). The abdomen becomes increasingly swollen as females ripen 

their eggs, whereas oviposition is marked by pronounced loss in body mass (30–50% of 

total mass) and mud caked on the toes and integument from digging nests (Baird 2004). 

The temporal schedule of oviposition of first and subsequent clutches differs between 

first-year females and females that are two years old or older (2Y+ females) (Baird et al. 

2001; Telemeco and Baird 2011). First clutches produced by 2Y+ females typically begin 

to develop in early May and are oviposited about two weeks later during the third week 
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of May. First-year females ripen their first clutches 10–15 d later in mid-May, and lay 

them at the end of May or the first week of June. Females of both age groups may 

produce second or third clutches (Baird 2004; Telemeco and Baird 2011), which are 

oviposited throughout June, into the first two weeks of July. Once the last clutches of the 

season are oviposited, females feed more frequently and become progressively less active 

(Baird and Sloan 2003), presumably to store energy for winter. 

 

 Eggs from the earliest clutches begin to hatch in mid-July, followed by hatchlings 

from later clutches emerging until mid-October. Offspring are 38.0–40.0 mm SVL when 

they hatch, and may grow to 70.0–85.0 mm SVL by the end of the activity season in late 

October. From 15 July–15 October, 2007–2009, the entire study site was surveyed at 

least three times per week to capture, mark and measure newly emerged hatchlings. At 

first and subsequent captures standard measurements (SVL, body mass) were recorded, 

sex was determined by examination of the post-anal scales (enlarged in males), and 

capture locations were recorded on scale-drawn maps. A blood sample was collected at 

the first capture. Hatchlings were then released unharmed by placing them in rock 

crevices at their precise capture locations.  

 

 Genetic assignment of hatchlings to individual mothers (see Parentage 

assignments and estimates of male fitness) of known age, combined with the schedule of 

oviposition for serial clutches and hatchling SVL at first capture, allowed me to estimate 

whether offspring were from first or subsequent (second or third) clutches. Assignment of 

offspring to first clutches was obvious using these criteria for both 2Y+ and first-year 
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females. Because third clutches sometimes begin maturation before oviposition of second 

clutches, and third clutches develop rapidly (Baird 2004), I could not distinguish 

hatchlings from second or third clutches. Therefore, I pooled offspring from second and 

third clutches for analyses. 

 

Collection of blood samples and DNA genotyping 

 

Blood samples (50 μl) were collected from all adults when they emerged from 

hibernacula in the spring, and from all hatchlings (N = 251) at their first capture by 

puncturing the orbital sinus with heparinized micro-hematocrit tubes. Blood samples 

were immediately transferred into 15 ml tubes containing lysis buffer for storage until 

DNA extraction. Bleeding was staunched by applying slight pressure to the orbit with a 

clean cloth. Lizards were released unharmed by placing them in a rock crevice at their 

precise capture location. 

 

 I isolated genomic DNA from blood using a DNeasy blood and tissue extraction 

kit (Qiagen, Venlo, Netherlands).  Using fluorescently-labeled primers developed for C. 

collaris (Hutchison et al. 2004), I amplified eleven microsatellite loci. PCR amplification 

reactions (15 μl) contained 4.75 μl genomic DNA, 0.50 μl forward and reverse primers, 9 

μl True Allele Premix (Perkin-Elmer Applied Biosystems, Foster City, CA), and 0.25 μl 

GoTaq DNA polymerase (Promega, Madison, WI). PCR products were optimized 

according to the thermal profile and annealing temperatures used by Husak et al. (2006) 

for C. collaris.  Mixtures of 9.25 µl Hi-Di formamide, 0.25 µl ROX 500 HD size 
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standard, and 0.50 µl PCR product were denatured at 96˚C for 5 min and then 

immediately chilled on ice for 3 min prior to loading.  Amplicons were visualized on an 

automated DNA sequencer (model ABI 3130, Perkin-Elmer Applied Biosystems) using 

GeneMapper software (Perkin-Elmer Applied Biosytems). I used Microchecker 

(University of Hull, U.K., Van Oosterhout et al. 2004) to test for the presence of null 

alleles, large-allele dropout, and stutter-induced typing errors at each locus.  

 

 All adult and hatchling lizards were genotyped for all eleven loci. Microchecker 

revealed that one locus (Orig11) contained null alleles.  Null alleles can confound 

parentage assignments when a true heterozygote is incorrectly typed as a homozygote, 

potentially resulting in false exclusion of the true parent (Dakin and Avise 2004). 

Because this locus was polymorphic, it was still informative for determination of 

offspring-parent relationships. Therefore, I retained it for parentage analyses. To avoid 

false exclusions, all hatchlings that were homozygous at this locus were typed at only one 

allele following the methods of LeBas (2001) and Husak et al. (2006).  

 

Parentage assignments and estimates of male fitness 

 

Because 24 years of mark-recapture studies on collared lizards at AL have shown that 

adults occupy the same home ranges/territories over multiple seasons (Baird and Sloan 

2003), and hatchlings remain within 20 m of where they first emerged for 1–1.5 months 

(T. A. Baird unpublished data), I used the spatial relationships of hatchlings relative to 

potential parents as my first criterion to guide parentage assignments (see similarly, 
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Zamudio and Sinervo 2000). The two smallest habitat patches (1,230, 1,505 m
2
) at AL 

are separated only by 40 m of grass, and there is a concrete wall running between them.  

Several lizards each season have been observed to use this wall to travel between these 

two patches (Curtis and Baird 2008). Because the potential for gene flow is high, I pooled 

these two patches for parentage analyses. By contrast, the third much larger (19,583 m
2
) 

habitat patch at AL is separated from the two smaller patches by 260 m at the closest 

point (Curtis and Baird 2008). No more than one lizard per season has moved between 

the larger patch and the two smaller patches during 24 seasons, and no such movements 

were recorded during 2007–2009. For parentage analyses, therefore, I considered the 

larger patch separate from the pooled smaller patches. 

 

 I used CERVUS 3.0.3 (Marshall et al. 1998; Kalinowski et al. 2007) to assign a 

mother and father to all hatchlings at a minimal 80% confidence level. My simulation 

parameters for parentage assignments were: 1) mean proportion of candidate fathers (or 

mothers) sampled = 0.98; 2) proportion of loci mistyped = 0.01; 3) number of simulations 

= 100,000.  For cases in which hatchlings could not be assigned a mother and/or father by 

CERVUS alone, I compared the genotypes of the two most-likely parents to the hatchling 

genotype. I excluded a parent candidate when it mismatched the genotype of the 

hatchlings at any locus (genetic exclusion, Haynie et al. 2003). For the few hatchlings 

that both candidate parents did not mismatch the genotype of the hatchling at any locus, 

but still had positive logarithm of the odds (LOD) scores (I did not used LOD scores that 

were negative), I used spatial locations of hatchlings relative to putative parents as my 

guide. Specifically, I compared the minimum linear distance from the first capture 
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location of the hatchling to the boundaries of the home ranges/territories of each 

candidate parent, and assigned the hatchling to the parent that was closest. I then 

determined the number of offspring sired and the number of different females mated with 

in all territorial and non-territorial males. 

 

Female promiscuity and offspring survivorship 

 

I determined whether or not offspring produced by individual females survived to the 

following season in relation to the number of different males that sired their offspring to 

test the hypothesized positive effect of female promiscuity on the survivorship of their 

offspring. I determined the number of males that females mated with by determining the 

identity (territorial or non-territorial) of sires that inseminated individual clutches. 

Hatchlings that were captured during one season, but absent throughout the following 

season were considered non-survivors. 

 

Statistical analyses 

 

All analyses were performed in the program R v. 3.0.1 (R Development Core Team 

2013) using a Bayesian statistical framework in the package ‘MCMCglmm’ (Hadfield 

2010). Similar to traditional statistical approaches, Bayesian models determine effect 

sizes (β), standard errors (SE), and 95% credible intervals (CI, Bayesian analogue of 

confidence intervals) for evaluating the significance of predictor variables (Ellison 2004; 

Kruschke et al. 2012). However, because these parameters often cannot be calculated 



 
 

71 
 

directly, they must be estimated using a simulation technique known as Markov Chain 

Monte Carlo (MCMC). MCMC simulations are iterated until a point is reached where 

estimates of all parameters are unbiased (convergence). Because the first batch of 

simulation runs are usually far from convergence, retaining them produces biased 

estimates. Consequently, these runs are discarded (burn-in).  Because the total number of 

simulation iterations is often very large, only a fraction are kept as samples for parameter 

estimates after burn-in (thinning interval). This entire process yields an ‘effective sample 

size’ that provides a robust estimate of effect size, SE, and 95% CI for predictor 

variables.  For all models (described below), MCMC simulations consisted of 13,000 

iterations in total. I discarded the first 3000 iterations as burn-in, and retained a sample at 

every tenth iteration (thinning interval = 10). In total, this yielded an effective sample size 

of 1000 for each model.  

 

 I used generalized linear mixed models (GLMM; Bolker et al. 2009) to compare 

behavioral traits (rate of patrol (m/h), broadcast displays/h, courtship encounters/h, and 

contests/h), the number of different females mated with, and the number of offspring 

sired by territorial and non-territorial males. I also used GLMM to examine the effects of 

LSR within each season (intraseasonal LSR) and male behavioral traits on the numbers of 

female mates and the number of offspring sired by territorial and non-territorial males. 

Because some males controlled territories for more than one season, I included paternal 

identity as a random effect to control for pseudoreplication. I also used GLMM to 

determine annual variation in female promiscuity, and the potential effects of female 

promiscuity, sire social status, and variation in LSR among seasons (interseasonal LSR) 
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on offspring survivorship. For these analyses, I included both paternal and maternal 

identity as random effects. Predictor variables having 95% CI that did not include zero 

were considered statistically significant. I do not report P-values because they are subject 

to sample size variation and do not reveal the biological significance or statistical 

uncertainty of the variables tested (Colegrave and Ruxton 2003; Nakagawa and Cuthill 

2007). Instead, I report effect sizes (β), SE, and 95% CI for predictor variables, which 

provide both biologically and statistically meaningful inference at a specified degree of 

certainty (Colegrave and Ruxton 2003). 

 

RESULTS 

 

Male social behavior 

 

Consistent with all previous studies on the AL population (reviewed by Baird 2013c), 

territorial males in 2007–2009 had markedly higher rates of patrol (β = 51.7, SE = 7.12, 

95% CI = 38.87–65.85) and broadcast display (β = 55.15, SE = 8.62, 95% CI = 39.30–

72.29). They also courted females (β = 0.78, SE = 0.18, 95% CI = 0.44–1.45), and 

initiated aggressive contests more frequently than non-territorial males did (β = 0.18, SE 

= 0.05, 95% CI = 0.09–0.27). 
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Emergence of hatchlings, determination of genotypes, and parentage assignments 

 

Eighty-six percent (215 of 251) of hatchlings were captured from 15 July–15 October 

(2007, N = 70; 2008, N = 76; 2009, N = 69). Thirty-six more (14% of total) hatchlings 

(2007, N = 16; 2008, N = 8; 2009, N = 12) were not captured until April to May, 2008–

2010. In all three seasons, these additional hatchlings were randomly distributed 

throughout the entire study site instead of being localized on the territories/home ranges 

of only some males on areas of some males. The fact that a small percentage of 

hatchlings were captured later, therefore, does not introduce bias into my estimates of the 

number of offspring sired and the number of different mates for males and females. 

 

 Of the 251 total hatchlings, 168 were assigned a mother, and 189 assigned a 

father, using CERVUS alone. I used genetic exclusion to assign mothers for 13 

hatchlings, and fathers for 14 hatchlings. Forty-five hatchlings were assigned mothers, 

and 31 were assigned fathers using exclusion based on spatial proximity. As a 

consequence of negative LOD scores for one or both parents, I did not assign 25 and 17 

hatchlings mothers and fathers, respectively. Both parents shared negative LOD scores 

for the same hatchlings in ten of these 42 cases. Therefore, only 15% of hatchlings (N = 

32) were not assigned parents, whereas I assigned a mother and father to 214 of 251 

(85%) hatchlings using a combination of the three described methods. Of these 214 

hatchlings, 117 (55%) were assigned to territorial males, and 97 (45%) were assigned to 

non-territorial males. 
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Influence of local sex ratio and behavioral traits on male fitness 

 

Despite marked variation in the LSR values among individual males within each season 

(range = 0.00–7.00), LSR did not influence the number of female mates, or the number of 

offspring sired in either territorial or non-territorial males (Tables 1, 2). None of the 

behavioral variables that I examined significantly predicted the number of female mates 

or offspring sired for non-territorial males (Tables 1, 2). For territorial males considered 

alone, however, courtship frequency was positively associated with both the number 

female mates and offspring sired (Tables 1, 2). 

   

 Although LSR varied significantly among seasons (β = -0.99, SE = 0.23, 95% CI 

= -1.46 – -0.55, Fig. 1), both the numbers of female mates and offspring sired were 

similar (95% CI’s included zero) in all three years when all males were pooled, and when 

territorial and non-territorial males were considered separately (Table 3). Moreover, 

comparisons between territorial and non-territorial males revealed that social status had 

no significant effect on the number female mates or offspring sired in all three seasons 

(Table 3, all 95% CI included zero). 

 

Female promiscuity and offspring survivorship 

 

Neither the degree of female promiscuity, nor the number of offspring produced from 

matings with territorial versus non-territorial sires differed by year (Table 1). 

Survivorship of offspring produced by individual females did not vary among years, and 
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was independent of sire social status (Table 4). However, offspring survivorship 

decreased with the degree of female promiscuity (Table 4). 

 

DISCUSSION 

 

Consistent with previous studies on male collared lizards at AL, territorial and non-

territorial males differed markedly in patterns of social and spatial behavior. Although 

territory ownership promoted increased courtship opportunities relative to the 

subordinate, non-territorial social tactics employed by first-year males, my results show 

that male social status had no effect on the numbers of females that males mated with or 

offspring sired, regardless of significant variation in LSR. Despite attempts by territory 

owners to monopolize females that they overlapped spatially by courting them frequently, 

females showed little mating fidelity, producing offspring with multiple territorial and 

non-territorial males in each season. This finding is surprising. In the four populations of 

C. collaris that have been studied quantitatively to date, the oldest and largest males 

incurred substantial costs by defending territories (Baird et al. 1997; McCoy et al. 2003; 

Baird et al. 2003; Husak et al. 2006). Theory predicts that territoriality should only 

evolve when those individuals defending territories obtain a reproductive advantage that 

balances the cumulative costs (Brown 1964; Davies and Houston 1981; Stamps 1994). 

The fact that non-territorial male collared lizards in our population consistently achieved 

reproductive success equal to that of territory owners without incurring the costs of 

territory maintenance contradicts this widely-held expectation. My results raise the 
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question, is territory defense by males adaptive and evolutionarily stable in the AL 

population?  

 

         One possible explanation of my results is that the success of non-territorial males 

and high degree of female promiscuity may be linked to features of the human-

constructed AL habitat that promote the ability of non-territorial males to access mating 

opportunities with several females despite the defensive efforts of territory owners. The 

rock habitat patches at AL are large and continuous and offer almost unlimited crevices 

within which non-territorial males take refuge when threatened by larger territory owners 

(Baird and Sloan 2003). Inconspicuous behavior coupled with ready access to refuges, 

appears to promote the ability of non-territorial males to evade attacks by territory 

owners without leaving the vicinity where females reside.  Maintaining proximity to 

females likely allows subordinate males to sneak copulations, especially when territory 

owners are patrolling distant boundaries. The frequent, prolonged and intimate courtship 

behavior that characterizes territorial male interactions with females at AL may better 

promote mate monopolization in smaller, much less topographically homogeneous and 

continuous rock outcroppings and washes in the natural habitat of collared lizards in 

which mate monopolization is more economical (Baird and Sloan 2003; McCoy et al. 

2003). The markedly different features of the AL habitat that promote both matings by 

non-territorial males and female mating with multiple males, both diminish a higher 

degree of  mate monopolization through territory defense that may be possible under the 

habitat conditions in which the social structure of this species evolved. 
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         What explains the persistence of territorial tactics at AL even though defense did 

not result in higher reproductive success than that achieved using non-territorial tactics? 

In some other vertebrates, intense intrasexual competition and female promiscuity 

appears to force socially dominant males to abandon territory defense temporarily (Grant 

1993; Weir et al. 2010). Adopting subordinate tactics over short periods may allow such 

males to increase their reproductive success with much lower costs. There is no evidence 

that territorial collared lizard males revert to non-territorial social tactics in the AL 

population. Even in local neighborhoods having strongly male-biased LSR, territorial 

males have not been observed to revert to non-territorial tactics during longitudinal 

studies spanning 24 seasons (T. A. Baird unpublished data), but there are numerous 

examples of non-territorial males becoming territorial when opportunities arise through 

experimental removal or natural mortality of territory owners (Baird and Timanus 1998; 

Baird and Curtis 2010). Features of the AL habitat that distinguish it from this species’ 

natural habitat over time may promote the diminution of a territorial male advantage in 

mating competition enough that territorial tactics are lost in the AL population. The loss 

of sexually selected traits is common in many vertebrate clades, including lizards (Wiens 

2001; Hews and Quinn 2003). However, if territory defense is under strong phylogenetic 

inertia and has become fixed in the AL population (Wilson 1975; Blomberg and Garland 

Jr. 2002), it seems highly unlikely that short-term reproductive disadvantages for 

territorial males will rapidly lead to the loss of territoriality and/or its replacement by an 

alternative tactic. 
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 The adaptive significance of multiple paternity in reptiles remains a controversial 

issue (Uller and Olsson 2008; Madsen 2011). Uller and Olsson (2008) hypothesized that 

female multiple mating is selected because mating with numerous females increases male 

fitness, and costs to females of copulating with several males are probably negligible. 

Alternatively, females may mate promiscuously to promote their own fitness, or that of 

their offspring (Keogh et al. 2013; Noble et al. 2013; York et al. 2014). My results do not 

support either hypothesis. The negative effect of female multiple mating on survivorship 

of offspring strongly suggests that different factors promote fitness of the sexes in this 

population, and that these factors act antagonistically in females and males (i.e., sexual 

conflict, sensu Parker 1979; Chapman et al. 2003; Arnqvist and Rowe 2005). 

Importantly, the negative effect on female fitness was independent of the social status of 

males that sired their offspring, ruling out the possibility that mating with territorial and 

non-territorial males imposes differential offspring survival costs for females. Although 

the genetic basis of sexual conflict remains unknown in collared lizards, recent 

theoretical work and empirical findings on zebra finches have revealed that female 

promiscuity may arise incidentally via indirect sexual selection on males (Forstmeier et 

al. 2011; Reid 2011a, b). Alleles that promote multiple mating by males may be inherited 

by both male and female offspring (Halliday and Arnold 1987). Consequently, female 

promiscuity may be selected, despite the potential for significant fitness costs incurred by 

females (Reid et al. 2011a, b). 

 

 Females may also mate promiscuously to acquire material and/or genetic benefits 

(Jennions and Petrie 2000; Head et al. 2005; Slatyer et al. 2011). There is little evidence 



 
 

79 
 

that material benefits explain multiple mating by female collared lizards because the 

resources that females require to produce eggs (foraging perches, arthropod prey, 

refuges) are not limiting at AL and neither sex provides parental care (Baird and Sloan 

2003). Genetic benefits acquired through multiple mating are also unlikely because 

female C. collaris appear to lack mechanisms that, in other species, promote sperm 

competition and/or cryptic female choice (Birkhead and Pizzari 2002; Telemeco and 

Baird 2011), paternity was not biased toward a subset of males (Uller and Olsson 2008), 

and females decreased, rather than increased, offspring survivorship by mating multiply. 

Although females may reject male advances by fleeing (Baird et al. 2003; Baird 2004), 

doing so likely detracts from other important activities such as effective foraging and 

thermoregulation, and may increase their risk of being noticed by predators. Fleeing 

would require females to abandon locations that they had chosen because they were 

favorable for one or more of these activities (Rowe 1992; Magurran and Seghers 1994; 

Arnqvist and Rowe 2005). Given the lack of evidence for material and genetic benefits to 

counter the likely costs, the most parsimonious explanation for sustained multiple 

copulations by female collared lizards is that they are ‘making the best of a bad job’ by 

accepting copulations from males that attempt to maximize their fitness by mating with 

as many females as possible (convenience polyandry; Lee and Hays 2004). Convenience 

polyandry may be the only viable strategy for females to manage such costs, given the 

high rate at which males encounter them in the AL population.  

 

 Variation in courtship frequency was positively associated with both the number 

of female mates and the number of offspring sired by territorial males, whereas variation 
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in LSR and behaviors that are hypothesized to promote defense of territories (e.g., patrol, 

frequency of contests with rivals) had no significant effect on genetic measures of male 

fitness. This finding is consistent with those of previous behavioral studies suggesting 

that territory ownership increases access to females by AL males (Baird 1996; 2013b, c). 

Male performance traits that are likely important in competitive contests (bite force, 

sprint speed) were positively correlated with behavioral and genetic estimates of 

territorial male fitness in another Oklahoma population of collared lizards (Lappin and 

Husak 2005; Husak et al. 2006). I did not measure performance traits in this study. 

However, the success of non-territorial males clearly indicates that correlates of success 

in intrasexual contests are not the only determinants of male fitness in the AL population. 

Non-territorial males almost always fled instead of fighting, and almost certainly exhibit 

lesser performance traits (bite force, sprint speed; Lappin and Husak 2005; Husak et al. 

2006) owing to their small size, and neither the frequency with which territorial males 

initiated contests or their size were correlated with fitness. Instead, I hypothesize that 

frequent close-contact courtship may be functional for two possible reasons in the AL 

population. Territorial males may use courtship to advertise genetic quality, resulting in 

offspring that are more viable and/or attractive to the opposite sex (Candolin 2003; 

Kokko et al. 2003; Andersson and Simmons 2006). Males that court most persistently 

may also sire more offspring borne by more different females. Frequent courtship may 

carry advantages for territorial males, but such harassment may also be costly to females 

(Clutton-Brock and Langley 1997; Rowe and Arnqvist 2002; Crudgington et al. 2009). 

Females may endure the persistent courtship efforts of territorial males because evading 

them would impose even greater costs.  
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Table 1. Summary statistics from analyses examining the effects of intraseasonal local 

sex ratios (LSR) and male behavioral traits on the number of females mated by territorial 

and non-territorial males. The asterisk indicates a statistically significant effect (95% CI 

did not include zero). 

 

 

 

 

 

 

Territorial Males (N = 38)   β  SE  95% CI 
 

     

Intraseasonal LSR    0.08  0.07   -0.03–0.23 

      

Rate of Patrol (m/h)    0.003  0.007   -0.009–0.01 

      

Broadcast Displays/h -0.002  0.004   -0.01–0.004 

      

Courtship Encounters/h   0.47  0.19  * 0.11–0.83 

      

Contests/h   -0.006  0.59    -1.01–1.20 

      

Non-Territorial Males (N = 22)    

      

Intraseasonal LSR    0.04  0.15   -0.25–0.32 

      

Rate of Patrol (m/h)    0.007  0.01   -0.01–0.03 

      

Broadcast Displays/h  -0.09  0.08   -0.23–0.06 

      

Courtship Encounters/h   0.81  0.65   -0.29–2.12 

      

Contests/h    2.03  2.05   -1.69–5.70 
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Table 2. Summary statistics from analyses examining the effects of intraseasonal local 

sex ratios (LSR) and male behavioral traits on the number of offspring sired by territorial 

and non-territorial males. The asterisk indicates a statistically significant effect (95% CI 

did not include zero). 

 

 

 

 

 

 

Territorial Males (N = 38)  β SE 95% CI 

 

     Intraseasonal LSR 

 

 0.01 0.08 -0.14–0.17 

      Rate of Patrol (m/h) 

 

 0.007 0.007 -0.008–0.02 

      Broadcast Displays/h -0.001 0.005 -0.01–0.008 

      Courtship Encounters/h  0.51 0.23 * 0.06–0.94 

      Contests/h 

 

 0.08 0.68 -1.21–1.34 

      Non-Territorial Males (N = 22) 

   

      Intraseasonal LSR 

 

 0.04 0.12 -0.23–0.29 

      Rate of Patrol (m/h) 

 

 0.008 0.01 -0.007–0.03 

      Broadcast Displays/h -0.09 0.06 -0.21–0.02 

      Courtship Encounters/h  0.54 0.65 -0.43–1.76 

      Contests/h 

 

 2.05 1.71 -0.77–0.03 
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Table 4. Summary statistics from analysis examining the effects of interseasonal variation 

in local sex ratios (LSR) among years, sire social status (territorial or non-territorial) and 

female promiscuity (number of male mates for individual clutches) on the survivorship of 

offspring produced by individual females. Asterisk indicates a statistically significant 

effect (95% CI did not include zero). 

 

Variable β SE  95% CI 

 
 

    Year -0.48 0.23  -0.91–0.008 

     Sire Social Status -0.41 0.38  -1.11–0.37 

     Female Promiscuity -0.31 0.14 *-0.58– -0.04 
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FIGURE LEGEND 

 

Fig. 1. Annual variation in local sex ratios (LSR) for individual males. Data are means ± 

1.0 SE. The asterisk indicates a statistically significant effect (95% CI did not include 

zero). 
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GENERAL SUMMARY 

 

My results add to an extensive body of work documenting marked differences in social 

and spatial behavior among territorial and non-territorial male collared lizards at Arcadia 

Lake that appear to be linked to sexual selection pressures (Baird et al. 1996; 2003; Baird 

2013). According to classical mating system theory, these differences should result in a 

disproportionate reproductive advantage for territorial males (Dewsbury 1982; Andersson 

1994; Ellis 1995). My results contradict this prediction. Male social status had no 

influence on the numbers of female mates or hatchlings sired, regardless of significant 

intra- and interseasonal variation in the intensity of sexual selection, and females showed 

little mating fidelity to territorial males that appeared to monopolize them socially. 

Rather than modifying their behavior patterns to reduce costs, 2Y+ males continued to 

invest in costly behaviors that promote ownership of territories, but did not achieve 

higher reproductive success. Together, these findings question the evolutionary stability 

of territorial tactics in the AL population. Mine is a startling result given that studies on 

all four populations of C. collaris to date have revealed that the oldest and largest males 

control territories and attempt to monopolize social access to female residents (Baird et 

al. 1996; McCoy et al. 2003; Lappin and Husak 2005; Husak et al. 2006).  

 

 My earliest results based on a single season (Chapter 1) raised the possibility that 

females at AL mate promiscuously to gain genetic benefits. However, results over three 

consecutive seasons (Chapter 2) showed that this was not the case. Indeed, a strong 

negative impact of mating with multiple males on the survivorship of offspring produced 
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by individual females indicated significant fitness costs of promiscuity for females. 

Because females do not appear to possess any behavioral or morphological adaptations to 

balance these costs, or appear to obtain any material or genetic benefits by copulating 

with multiple males, the most parsimonious explanation of this pattern is that mating 

relationships in AL collared lizards are influenced strongly by sexual conflict. Although 

the ‘best of a bad job’ hypothesis has been applied to male collared lizards (Baird and 

Timanus 1998), it appears to apply well to females. 

 

 An important component of sexual selection theory is how non-random variation 

in reproductive success is linked to variation in the expression of phenotypic traits, 

especially those in males (Lande and Arnold 1983; Andersson 1994; Kingsolver et al. 

2001). None of the behavioral variables that I measured significantly influenced the 

fitness of non-territorial males. This result is not surprising given the low level of 

investment by these males in traits that are associated with social dominance, and a 

wealth of data indicating that non-territorial males attempt to increase their reproductive 

success by sneaking copulations, especially when 2Y+ males are patrolling distant 

territorial boundaries. Despite the fact that they achieved reproductive success no better 

than that of socially subordinate non-territorial males, territorial males continued to 

engage in prolonged intimate courtship encounters with females. Doing so may be a long-

term bet-hedging strategy to ensure some degree of reproductive success, even when 

intense intrasexual competition renders monopolization of multiple females difficult. 

However, it may also indicate low potential for behavioral plasticity owing to genetic 

constraints and canalization (Baird and Baird 2006; Baird and Baird 2014). Contrary to 



 
 

101 
 

studies on other populations of C. collaris in Oklahoma that incorporated behavioral 

and/or genetic estimates of male fitness (Lappin and Husak 2005; Husak et al. 2006), my 

results show no support for the hypothesis that traits associated with intrasexual male 

aggression are important components of male fitness. Instead, my findings reveal that 

social dominance in general is not an effective strategy for maintaining exclusive access 

to mating opportunities with females, especially against non-territorial males. 

 

 My results also conflict with current hypotheses regarding the evolutionary origin 

of multiple paternity in squamate reptiles (Uller and Olsson 2008), suggesting an 

alternative hypothesis rooted in sexual conflict. In my study population, the common 

factor that explains both the cause of sexual conflict and high success of non-territorial 

males appears to be the homogenous, continuous topography of the human-constructed 

habitat. The habitat at AL is markedly different from the natural habitat of collared 

lizards, which is characterized by much smaller, more discontinuous rock outcroppings 

that likely decrease female encounter rates with multiple males, make territories more 

economically defensible, and promote a higher degree of mate monopolization by 

territory owners (McCoy et al. 2003). Although territory defense may promote high 

reproductive success in such natural rock habitats, my results indicate that mate 

monopolization by territory owners is much less feasible when habitat structure renders 

mate monopolization more difficult. 

 

 The incongruence between behavioral and genetic estimates of reproductive 

success in collared lizards highlights the unreliability of using social and spatial 
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interactions among individuals alone to determine fitness. My results are certainly not the 

first that document this incongruence. Indeed, similar findings have been reported in 

almost every major vertebrate and invertebrate taxon in which behavioral and genetic 

estimates of fitness have been integrated (reviewed by Hughes 1998; Birkhead and 

Pizzari 2002; Shuster et al. 2013). It is obvious that the inclusion of contemporary 

molecular techniques in behavioral ecology has provided a heretofore unparalleled level 

of precision for determining individual variation in fitness, and revealed subtle, yet 

important features underlying the evolution of sexually selected traits that are simply 

undetectable using behavioral methods alone. Although the application of molecular 

techniques presents clear advantages, it should be noted that these techniques are also 

prone to pitfalls unless they are coupled with detailed information on behavioral or 

morphological traits that are hypothesized to influence reproductive success. Molecular 

data will be of limited use unless investigators combine behavioral and genetic measures 

over the long term to test important evolutionary hypotheses. 

 

 Although the results presented here provide important and surprising insights into 

the mechanisms underlying individual variation in fitness in collared lizards, there are 

still numerous questions remaining to be answered. Future work should focus on 

determining the genetic basis of sexual conflict, and the extent to which behavioral traits, 

social dominance, fitness, and multiple mating in males and females, are heritable. 

Answers to such questions have strong potential to shed light on how behavioral traits 

respond to spatial and temporal variation in selection, as well as the role of genotype-

environment interactions on sexually selected traits, an area that remains largely 
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unexplored (Cornwallis and Uller 2010; Forstmeier et al. 2011). Lastly, although 

logistically difficult, studies combining behavioral and molecular techniques should 

ultimately be conducted in the fully natural habitats occupied by collared lizards to test 

the hypothesis that habitat topography and ecology are key factors influencing the 

distribution of reproductive success and mating system evolution that I have documented 

in a human-constructed habitat. 
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