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Abstract

In this work, multiple water-soluble polymer-surfactant systems were characterized
utilizing the hydrophilic lipophilic deviation (HLD) and net average curvature (HLD-NAC)
concepts. Water-soluble polymers utilized in this work include polydiallyldimethylammonium
chloride (PDADMAC), hydroxypropyl cellulose (HPC), and polyvinyl alcohol (PVA). Although
surfactant systems are extremely dynamic, this work aims to provide further understanding of the
effects caused by the addition of water-soluble polymers to the optimal salinity of Winsor III
microemulsions.

The optimal salinity for each system with differing concentrations of polymer was
determined using coalescence rate and interfacial tension measurements. HLD characterization
values, K and Cc, were analyzed for each polymer-surfactant system to provide insight to how the
polymer was interacting within each system. PDADMAC and HPC were found to induce
hydrophobic shifts in the optimal salinity of reference surfactant systems, while PVA induced
hydrophilic shifts. Functions, f(P), corresponding to the HLD equation were found for each
polymer-surfactant combination, allowing for the determination of the polymer-surfactant optimal
salinity utilizing reference surfactant K and Cc values.

Changes in solution viscosity and solubilization abilities due to the addition of polymer
were examined and compared with predictions from previous works based on expected charge
interactions. In this study, viscosity noticeably increased only with the addition of PVA, and
solubilization decreased with the addition of all polymers.

Emulsion droplet radii were found through dynamic light scattering experiments and
compared to emulsion droplet radii predictions provided by the NAC model. NAC was then used

to examine the hydrophilic surfactant head group area present within system middle phases.

vi



Chapter 1. Introduction
1.1.  Introduction to Surfactants

Surfactants, or surface-active agents, are organic chemicals consisting of both hydrophilic and
hydrophobic groups. Surfactants are used to alter the wettability, solubilization, and emulsification
properties of solution interfaces (Tadros, 2014). They are a key component in the formulation of
most chemical products such as dyestuffs, paints, paper coatings, agrochemicals, pharmaceuticals,
ceramics, consumer products, personal care products, etc.

Surfactants absorb onto system surfaces or interfaces and alter the free energy resulting in
changes in properties at these surfaces or interfaces. Interfacial free energy per unit area, or
surface/interfacial tension (y), can be defined as the amount of work required to expand the phase
boundary (Tadros, 2014). Adsorption of surfactant molecules at the interface lowers the surface
tension (Y aL at the air/liquid interface or yst. at the solid/liquid interface) or interfacial tension (yow
at the oil/water interface). The more surfactant adsorbed, the lower the y. Surfactants normally
display a gradual reduction in y until the critical micelle concentration is reached where y will
then remain constant.

Surfactants can be classified based on the charge or lack of charge of the hydrophilic
portion. A surfactant may be categorized as anion, cationic, amphoteric, or nonionic as shown in
Figure 1. Anionic surfactants are what is most widely used in industry, especially in detergents,
due to their relatively low cost. The most common hydrophilic groups used are carboxylates,
sulfates, sulfonates, and phosphates. The general formulas for these common anionic surfactants
are displayed below where n is a value between 8-16 and X*is usually Na*.

Carboxylates: CnHz2n+1COO~ X

Sulfates: CnHz2n410S03 X*



Sulfonates: CnHz2n41S03 X*
Phosphates: CnH2n+1 OPO(OH)O™ X*

Cationic surfactants are generally incompatible with anionic surfactants but are compatible
with nonionic surfactants. Cationic surfactants are used when there is a negatively charged surface
present and are commonly used in anticorrosive agents for steel, flotation collectors for mineral
ores, dispersants for inorganic pigments, antistatic agents, anticaking agents, and hair conditioners.
Cationic surfactants also exhibit antimicrobial activity. The most common cationic surfactants
consist of quaternary amines with at least one long alkyl group accompanied by a chloride ion.

Amphoteric surfactants have both positively and negatively charged groups. In acid
solutions, the surfactant will behave as a cationic surfactant, while in alkaline solutions, the
surfactant will behave as an anionic surfactant. They are compatible with other surfactants and
soluble in water where the minimum solubility occurs at the isoelectric point. They cause little eye
and skin irritations and are therefore often used in shampoos and cosmetics.

Nonionic surfactants are the second most commonly used class of surfactants (llenado and
Neubecker, 1983). They have no charge on the headgroup and are generally nontoxic and
biodegradable. They combine well with other types of surfactants and are not usually used as a
single compound due to their inability to properly stabilize the air system they create (Gelardi et
al., 2016). Nonionic surfactants are available at relatively low cost and are effective in wetting and
spreading and commonly used in emulsifiers, foaming agents, and personal care products. The
most widely used nonionic surfactants contain a polyoxyethylene group as the hydrophile, but
these molecules are under increasing pressure because of the possible presence as an unwanted

byproduct of a known carcinogen, dioxin, at trace levels.



Another class of surfactants classified as extended surfactants has also been of study during
recent years. Extended surfactants contain intermediate polarity molecules, such as polyethylene
and/or polypropylene oxide groups (EOs and POs, respectively), which are inserted between the
hydrocarbon tail and hydrophilic head (Witthayapanyanon et al., 2008). Extended surfactants have
a tail group that extends into the oil phase further than other surfactants while maintaining water
solubility which allows for a smoother transition from the oil to the water phase (Salager et al.,
2005). Uses for extended surfactants vary because of their ability to provide ultra-low interfacial
tensions and solubilize bulky oil molecules. Applications widely vary from aqueous based solvent

extraction, drug delivery, to bioremediation.

Figure 1: Surfactant depictions (Shapiro, 2018)
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1.2 Polymer-Surfactant Combinations
Polymers are widely used in colloidal systems. When combined, polymer-surfactant

combinations can significantly modify solution properties and can offer some tunability for



specific purposes such as viscosity enhancement, solubilization abilities, micro emulsion drop size,
and phase behavior characteristics (Goddard et al.,1998). Polymer-surfactant combinations offer
applications in a wide variety of industries such as in pharmaceutical formulations, personal care
products, food products, detergents, paints and coatings, oil drilling, and enhanced oil recovery
fluids (Goddard et al.,1998).

Different types of polymers can cause differing effects to a surfactant mixture. For
example, polymers of low molecular weight (SE3 — 50E?), such as synthetic polymers, can be used
as stabilizers (Goodwin, 2009). This occurs through the adsorption of part of the polymer to
particles at the interface. The portion of the polymer left unattached to the interface can then
expand away from the interface preventing other particles from close approach.

Polymers of higher molecular weight (< 10°) can be used as thickeners or rheology
modifiers (Goodwin, 2009). When a soluble polymer is added as a rheology modifier to a colloidal
dispersion, a synergistic effect is often observed (Goodwin, 2009). A relatively great increase in
viscosity of the dispersion is observed compared to the polymer solution by itself. When a polymer
which does not adsorb to the dispersed phase is present, there is a weak, reversible aggregation of
the disperse phase which is seen through a change in rheological behavior. However, when
polymers of a molecular weight >10° are used, rheological problems can occur. For example,
droplets may not break away from the bulk cleanly.

Polymers with charged groups can also be of use and are referred to as polyelectrolytes.
They can be used as stabilizing agents or to induce aggregation depending on their charge.

This work will focus on water soluble polymers, which can be classified as either natural
or synthetic. Water-soluble polymers dissolve, disperse, or swell in water and, thus, modify the

physical properties of aqueous systems in the form of gelation, thickening or



emulsification/stabilization (Kadajji & Betageri, 2011). These polymers usually have repeating
units or blocks of units; the polymer chains contain hydrophilic groups that are substituents or are
incorporated into the backbone. The hydrophilic groups may be nonionic, anionic, cationic or
amphoteric (Will et al., 2007). In this work, synthetic water-soluble polymers polyvinyl alcohol
(PVA) and polydiallyldimethylammonium chloride (PDADMAC) are of focus. PVA is soluble in
highly polar, hydrophilic solvents and is used as a stabilizer of emulsions and a viscosity increasing
agent (Kadajji & Betageri, 2011). PDADMAC is a cationic polyelectrolyte with high charge
density. It is well suited for flocculation and can neutralize negatively charged colloidal material.
Natural polymer, hydroxypropyl cellulose (HPC), is a nonionic water-soluble polymer which is
commonly used as a thickening agent and for other uses within the drug delivery industry (Kadajji
& Betageri, 2011). HPC is an ether of cellulose in which some of the hydroxyl groups in the
repeating glucose units have been hydroxypropylated forming -OCH,CH(OH)CH; groups using

propylene oxide.

1.3 Study Goals and Future Efforts

The goal of this work is to provide further understanding of the effects of these three
different water-soluble polymers on multiple surfactant reference systems. To achieve this, phase
behavior studies were conducted using the hydrophilic-lipophilic difference (HLD) concept and
HLD net average curvature (NAC) concept. Using these methods and previous knowledge of
polymer-surfactant interactions, each system was analyzed in order to distinguish possible reasons
why the interactions between polymer and surfactant occurred.

Future efforts should include more in-depth analysis of the cause for some of the trends

seen. Rheology should also be studied quantitatively, and a broader range of polymer



concentrations should be examined. These findings could then be applied to specific industries to

accommodate needs such as HLD value, viscosity, solubility, or emulsion drop size.



Chapter 2. System Characterization and Determination of S*
2.1. Introduction

The systems studied in this paper include an anionic surfactant and a nonionic surfactant
paired with a nonionic polymer and a cationic polyelectrolyte each separately and another extended
anionic surfactant paired with a nonionic surfactant. To begin studying the effects of the polymers
on the surfactant systems, phase behavior analysis using the hydrophilic-lipophilic difference
(HLD) must be conducted.

HLD is an empirical, thermodynamic model that describes the amphiphilic behavior of
surfactants and other active solutes on the interface within biphasic systems (Warren, 2020). The
HLD relation, displayed as Equation 1 and 2, was first developed by Salager and later extended by

Acosta to describe microemulsions and the phase inversion point:

(1) HLDIonic Surfactant — ln(S) + f(A) - aT(AT) - K(EACN) + Cc
(2) HLDyonronic surfactant = b(S) + f(A) — cr(4T) — K(EACN) + Cc

where S is the aqueous phase salinity (g NaCl/100 mL), f(A) is a function of alcohol or cosolvent
concentration, ar and cr are the surfactant temperature coefficients, AT is the temperature
difference from 25°C, K and EACN reflect the lipophilic interactions between the hydrophobic tail
of the surfactant and the oil, and Cc is the characteristic curvature. at and cr are typically ~0.01 K-
! for most surfactants (Broze, 1999; Hammond and Acosta, 2011; Salager et al., 1979)), and K
ranges from approximately 0.004 - 0.17 (Acosta et al., 2008; Hammond and Acosta, 2011; Salager
et al., 1979; Velasquez et al., 2009; Witthayapanyanon et al., 2008). EACN is determined by the
hydrophobicity of the oil in use. For alkanes, the EACN is equal to the number of carbon atoms
present in the molecule. The Cc value describes the degree to which a surfactant is more

hydrophilic or hydrophobic. A negative Cc value corresponds to a hydrophilic surfactant while a



positive Cc value corresponds to a hydrophobic surfactant. Acosta coined the term Characteristic
Curvature, Cc, to describe the surfactant’s tendency to cause the interface to curve away from the
aqueous phase (hydrophilic surfactant) or away from the oil phase (hydrophobic surfactant) in
order to maximize the interaction with the preferred phase.

The value of HLD describes the deviation of a formulation from optimum conditions. By
definition, HLD = 0 for a Winsor Type III microemulsion with equal volumes of oil and water in
the middle phase. A negative HLD value corresponds to a Windsor Type I microemulsion while a
positive HLD value corresponds to a Windsor Type II microemulsion. A Winsor Type I
microemulsion consists of oil solubilized in normal micelles in the water phase, while a Winsor
Type Il microemulsion consists of surfactant-solubilized water in reverse micelles in the oil phase.
A Winsor Type I1I microemulsion consists of water, oil, and surfactant all in equilibrium with each
other. The phase inversion point occurs when HLD transitions from negative to positive. In
characterizing a microemulsion, it is generally assumed that all the surfactant is present in the
middle phase, along with some oil and some water. For an optimum Winsor III microemulsion,
the volume of oil equals the volume of water in the middle phase.

Optimum conditions are said to occur at Windsor Type III microemulsion with an HLD
value of zero where S is defined as the optimal salinity, or S*. At these conditions, the minimum
interfacial tension (IFT) and coalescence rate occurs, and the solubilization capacity (SP) is at a

maximum for a given system.

2.2. Materials and Methods

Materials



Three reference surfactants were utilized in this study. The anionic surfactants used,
extended Ci2.13 alkyl ethoxy sulfate Isalchem 123-2 (508.56gmol’!/ 70.18%) and SDHS MMS&0
(388gmol'/80%), were received from Sasol North America and Croda, respectively. Nonionic
surfactant, Cs.10E3.5 (molecular weight 334 gmol'/100%) was purchased from Sasol North
America. Water soluble polymers, poly(diallyldimethylammonium) chloride (PDADMAC)
(molecular weight 80,000 g mol™"), Hydroxypropyl cellulose (HPC) (molecular weight 100,000 g
mol™), and polyvinyl alcohol (PVA) (molecular weight 90,000 g mol-") were purchased from VHR
and Sigma Aldrich. For phase behavior experiments, sodium chloride (99%) purchased from
Sigma Aldrich was added to deionized filtered water. Linear alkanes, hexane (98%, EACN=6),
heptane (98%, EACN=7), and octane (99%, EACN=8) were purchased from VWR. Before
utilizing HPC in phase behavior studies, existing water was removed by placing the HPC powder
in the oven at 50°C for 30 minutes. All materials were used without further purification. The

chemical structures of the surfactants and polymers are presented below.

Table 1: Surfactant Structures

Surfactant Structures

Cs.10E3.5 SDHS Ci2-13 Alkyl Ethoxy Sulfate

Molecular

Na
structure H ] o M
V\/\/\/+0/\]/nOH 3 . HBC\/\/\/\/\(\O/\/O\/\O/S\\O

CsHi7-(EO)-OH | NaCi2H2s5-(EO)2-SO4 Ci12H26-(EO)2-SO4Na




Table 2: Polymer Structures

Polymer Structures

PDADMAC HPC PVA
Molecular structure | | |
o B —o% -
Nl e HO n
n n

R=H or CH,CH(OH)CH,
(CsHisNCl)n C36H70019 (C:H4O)n

Phase Behavior Studies

Phase behavior studies were conducted for each surfactant polymer combination with each
of the three oils at varying salinities. Studies were performed in 15 mL flat-bottom vials with
Teflon-lined caps. Vials contained consistent amounts of surfactant in 5 mL aqueous phase and 5
mL of the studied oil, thus, the ratio of aqueous solution to oil to remained unity. Vials were mixed
routinely by hand and formulation coalescence rates were recorded at 25°C. Coalescence rates
were then modeled using an Akima spline interpolation method which determined the optimal
salinity (S*) (Warren, 2020). The Akima spline model was chosen because it underestimates the
least among all other interpolation models and was seen to produce the most natural results.
Seemingly accurate data was obtained; however, the model is not perfect, and, in few cases raw
coalescence data was used to determine S* instead of using the spline approximation. S* was said

to be the formulation with the fastest coalescence rate.

Interfacial Tension Measurements
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The oil-water interfacial tension (IFT) was measured using a spinning drop tensiometer
(M6500 Grace Instrument, Houston, Texas) in order to confirm that coalescence rate
measurements provided the correct S*. The salinity of the formulation with the lowest IFT was
considered S*. Three pL of the studied oil was placed into a 300 puL capillary tube containing
studied aqueous solution. All IFT tests were repeated five times by recording the diameter of the
oil droplet and the rotational velocity (rpm) at 25°C. The formula for calculating the interfacial
tension is presented below

() y = 1.45 %1077 ApD3w?
where y is the interfacial tension (mN m™), Ap is the difference between the water and oil phase

densities (g cm™), D is the oil droplet diameter (mm), and w is the rotational velocity (rpm).

2.3. Results and Discussion
Determination and Comparison of S*

Coalescence rates as well as IFT values were recorded for Cg.10E3.5 and SDHS reference
surfactant systems in order to determine S*. It is seen in Figures 2 and 3 that both methods
produced very similar results regarding the optimal salinity, therefore, coalescence rates were used,
subsequently, as the primary method for selecting the optimal salinity in all other Cs.10E3.5 and
SDHS surfactant systems due to the method’s reproducibility and low time commitment. It is seen
that S* for SDHS reference can vary between SDHS batches, therefore, the coalescence data
presented in Figure 3 is an average of two experimental sets. IFT measurements were used to
determine S* for Ci2-13 alkyl ethoxy sulfate surfactant systems because coalescence rates were

very slow for the extended surfactant and the Type III windows were very small, making the

11



Akima spline method difficult to use. The IFT measurements are displayed for the salinities
producing Type III microemulsions for 123-2S surfactant system in Table 3.

As EACN increased, the optimal salinity increased, which was expected due to the
relationship between S* and HLD shown in Equations 1 and 2. Interfacial tension can be defined
as the amount of energy required to increase interfacial area, therefore, it is reasonable to predict
that as lipophilic chain length increases, interfacial tension will increase. This prediction supports
the experimental data below and in previous studies where minimum IFT increased as EACN

increased for all systems (Huh, 1979).

Figure 2: Cs.10E3.5 Relationship between coalescence rate and IFT values
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Figure 3: SDHS Relationship between coalescence rate and IFT values
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Table 3: Ci2-.13 Alkyl ethoxy sulfate IFT values
Cs Cy Cs
Salinity (g NaCl/mL) +5% | 14 14.5 15.5 16 16.5 17
IFT (mNm™') 0.0036 | 0.0094 | 0.0071 0.0066 | 0.0081 0.0040

K & Cc Values

K and Cc values were found by plotting a function of S* against EACN. According to
Equations 1 and 2, the K value is the slope and the Cc value is the y-intercept of the linear plot. K
and Cc values are displayed in Figures 4-8 for all surfactant-polymer combinations.

The K values for Cg.10E3.5 and SDHS surfactants remained relatively constant with the

addition of PDADMAC while the Cc values generally increased with increasing PDADMAC
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concentration, indicating a hydrophobic shift. Although PDADMAC is a hydrophilic polymer, the
hydrophobic shift is thought to be due to the polymer acting as a salt, as the polymer is a polycation.
As a cation, the van’t hoff factor is greater than 1, meaning that the polymer dissociated in solution.
It was seen that the PDADMAC eventually stopped shifting S* of the surfactant solutions at the
highest concentration used. This is speculated to be due to the polymer falling out of the linear
structure and no longer interacting with the surfactant as more polymer was added. At high
polymer concentrations, it is not unusual for a polymer to self-associate or complex with surfactant
and become ineffective in shifting the salinity of the formulations at a given temperature. The
aqueous phase in Type I emulsions became cloudy as polymer concentration was increased, further

justifying the conclusion of complexation.

Figure 4: Relationship between Cs.10E3.5 & PDADMAC K and Cc values

Cg.10E3.5 & PDADMAC
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Figure 5: Relationship between SDHS & PDADMAC K and Cc values
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SDHS & PDADMAC
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The K values remained relatively constant for Cs.1oE3.5, while K values for SDHS
increased with the addition of HPC. The Cc values increased for both surfactant systems.
Regardless, as HPC concentration was increased, the formulations became more hydrophobic until
the highest HPC concentration was reached where formulation S* remained consistent. The
differing trends in the K value for each system was because HPC interacted with the surfactant
structures differently. HPC should have a van’t hoff factor less than 1, meaning that polymer
particles associated in solution. HPC was speculated to mainly interact with the head groups of the
Cs-10E3.5 system, while HPC interacted with both the head groups and the tail groups more equally
in the SDHS system. Because HPC has both hydrophilic and hydrophobic groups, this result was
expected because it can interact with the palisade layer more than hydrophilic PDADMAC which
interacts more with only the aqueous phase. The hydrophobic effect also supports why SDHS

would interact more strongly with HPC, resulting in more opportunities for hydrogen bonding.
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Figure 6: Relationship between Cs.10E3.5 & HPC K and Cc values
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Figure 7: Relationship between SDHS & HPC K and Cc values
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The K values for Ciz.13 alkyl ethoxy sulfate extended surfactant remained relatively

constant with the addition of PVA while the Cc values decreased with increasing PVA

concentration indicating a hydrophilic shift due to changes in surfactant head group interactions.
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It was expected that PVA would induce a hydrophilic shift in the extended surfactant formulations
since PVA is considered a hydrophilic polymer. 0.1g PVA/100 mL was also tested, however the
polymer seemed to no longer be effective and to phase separate due to self-association. The PVA
was believed to form a water rich PVA coacervate phase. Because the polymer is relatively large
and there is a limited amount of space in the palisade layer, the polymer was bound to exhibit

limited solubility.

Figure 8: Relationship between Ci2-13 alkyl ethoxy sulfate & PVA K and Cc values
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Determination of f(P) Function for the Addition of Polymer

A function, f(P), was found for each polymer-surfactant pair at each oil used so that one
could use only the surfactant reference K and Cc values in the HLD equation to predict S* with
the addition of polymer. The f(P) values were found by plotting a function of the difference
between S* with polymer and S* without polymer against the natural log of the polymer
concentration used. The function of the difference between S* with and without polymer depended

on the surfactant charge, and the log of the polymer concentration was used because it is
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proportional to the polymer activity, or effective concentration. Supporting plots are displayed in

Appendix A and f(P) functions are presented in Tables 4-8.

The model provided relatively good estimates for S* with the addition of polymer.

Although the percent error is large in some cases and the model generally overestimates, the S*

approximation was never above +3 g NaCl/100 mL, allowing for simpler formulation work.

Table 4: {f(P) functions for the HLD equation for Cs.10E3.5 & PDADMAC

Cs-10E3.5 & PDADMAC
f(P) % Error

Polymer Concentration (g/100 mL) Polymer Concentration (g/100 mL)

0.05 0.1 0.2 0.05 0.1 0.2
Ce -1.281 -0.985 -0.688 29.886 2.683 8.641
Cy -1.336 -1.027 -0.718 21.118 0.473 0.360
Cs -0.261 -0.201 -0.140 4.800 0.898 3.239

Table S: {f(P) functions for the HLD equation for SDHS & PDADMAC
SDHS & PDADMAC
f(P) % Error

Polymer Concentration (g/100 mL) Polymer Concentration (g/100 mL)

0.05 0.1 0.2 0.05 0.1 0.2
Ce -0.641 -0.493 -0.344 9.145 20.034 40.854
G -0.629 -0.484 -0.338 7.358 12.596 32.450
Cs -0.591 -0.455 -0.318 15.774 25.710 50.047

Table 6: f(P) functions for the HLD equation for Cs.10E3.5 & HPC
Cs-10E3.5 & HPC
f(P) % Error

Polymer Concentration (g/100 mL) Polymer Concentration (g/100 mL)
Ce -2.671 -2.053 -1.435 52.385 6.536 266.147
G -2.346 -1.803 -1.260 10.942 18.341 113.564
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-2.541 | -1.953 -1.365 3.318 4.699 63.383
Table 7: {f(P) functions for the HLD equation for SDHS & HPC
SDHS & HPC
f(P) % Error

Polymer Concentration (g/100 mL) Polymer Concentration (g/100 mL)

0.05 0.1 0.2 0.05 0.1 0.2
Ce -1.184 -0.910 -0.636 11.262 1.613 12.795
Cs -0.422 -0.324 -0.227 3.923 7.097 12.793
Cs -0.161 -0.124 -0.087 13.464 14.533 17.768

Table 8: {f(P) functions for the HLD equation for Ci2.13 Alkyl ethoxy sulfate & PVA

Ci2-13 alkyl ethoxy sulfate & PVA

f(P) % Error
Polymer Concentration (g/100 mL) Polymer Concentration (g/100 mL)
0.02 0.05 0.02 0.05
Ce 1.165 0.892 2.388 3.797
Gy 0.752 0.576 1.459 5.281
Cs 0.624 0.478 0.670 1.188

2.4. Conclusions

The measuring of coalescence rates was shown to be a valid method of determining S*
based on measured IFT values. K and Cc values were found for each polymer-surfactant system
to achieve a greater understanding of how the polymer interacted with each system. Even though
the surfactants used may have well-known reference K and Cc values, potential batch to batch
composition differences require a formulator to preform phase behavior experiments on each
reference surfactant (Warren, 2020).

Differing effects were seen for the studied systems based on surfactant and polymer

structures. PDADMAC was assumed to act as a cation and mostly interact with the aqueous phase
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instead of the palisade layer. HPC and PVA were assumed to interact mostly with the aqueous
phase as well, but also interact with the palisade layer more than PDADMAC. PVA was deemed
difficult to work with because of the size of the polymer.

Functions, f(P), corresponding to the HLD equation were determined for each
surfactant/polymer combination using each studied oil. Utilizing the model allows for the
determination of S* with the addition of polymer using reference surfactant K and Cc values. The

model is very specific to this study and requires much more work for application to other systems.
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Chapter 3. Surfactant System Property Changes Due to Polymer (SP¥)
3.1. Introduction

The effects on viscosity and solubilization abilities seen by adding polymers to surfactant
solutions is dependent on the structures involved and the nature of the interaction forces between
the surfactant, polymer, and solvent in use.

First, it is possible that weak or no polymer-surfactant association occurs and is displayed
in Figure 9. This situation could happen if both the polymer and surfactant carry the same type of
ionic charge, if the polymer is relatively rigid and for steric reasons does not interact with ionic or
nonionic surfactants, or if the polymer and the surfactant are uncharged and no attractive
interactions exist between them (Nagarajan, 2001). It has also been concluded that interactions
between nonionic surfactants and polymers are usually relatively weak (Lindman et al., 2018).

Strong interactions between polymer and surfactant have been found to occur within the
combination of a nonionic polymer with an ionic surfactant and a polyelectrolyte with an
oppositely charged surfactant (Lindman et al., 2018). Anionic surfactants usually have a strong
interaction with nonionic hydrophilic polymers while cationic surfactants do not. These systems
are explained in depth by Goddard’s two-part review (2018).

Figure 10 displays a system where the polymer and surfactant have opposite attracting
electrical charges and single surfactant molecules are bound linearly along the length of the
polymer molecules. This situation causes the creation of complexes with reduced charge and
reduced hydrophilicity leading to the precipitation of these complexes from solution (Nagarajan,
2001).

Relations shown in Figure 11 occur in systems containing surfactant and polymer

possessing opposite charges where a single surfactant molecule binds at multiple sites on a single
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polymer molecule or to more than one polymer resulting in intramolecular bridging (Nagarajan,

2001).
Figure 9: Figure 10: Figure 11:
No polymer-surfactant Polymer and surfactant with Polymer and surfactant have
association opposite attracting electrical opposite charges, a single

surfactant molecule binds at
multiple sites on a single

polymer molecule or to more

than one polymer resulting in
intramolecular bridging

charges, single surfactant
molecules are bound linearly
along the length of the polymer
molecules

A8y TR %
A 9 /\0‘ a
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(Nagarajan, 2001)

For systems with strong interactions between polymers and surfactants, viscosity has been
seen to increase significantly at certain polymer/surfactant concentrations (Goddard et al., 1998).
Gel formation also has been found to occur for systems with strong interactions, however, this is
most likely caused by chain entanglement between surfactant and polymer. On the other hand, it
was shown that a viscosity reduction is possible if there is competition between the surfactants,
polymers, or salts. An example of this occurred when a water-soluble polymer polypropyleneoxide
(PPO) was combined with a cationic surfactant (CTAB) where competition between the polymer
and salicylate produced a structural reorganization facilitating a thinning process (Brackman and
Engberts, 1993).

In addition, it is known that surfactants can increase solubilization effects of polymers and

vice-versa. Generally, the addition of a polymer to a surfactant solution increases solubilization
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abilities if there are strong interactions present due to polymer/surfactant complexes decreasing
the critical aggregation concentration of the surfactant (Goddard et al., 1998). The degree of

solubilization falls however, when the concentration of surfactant reaches the precipitation zone.

3.2. Materials and Methods
Materials

The materials were used as stated in section 2.2.

Solubilization Capacity
Solubilization capacity (mL of oil in the middle phase/g surfactant) for a given system can be
calculated from the following relation.
4) SP = 0.1457 * x + 0.0401
where x is the height of the middle phase (mm). SP was calculated for S* of each system in this

work.

3.3. Results and Discussion

The only system which noticeably became more viscous with the addition of polymer is
that of Ci2.13 alkyl ethoxy sulfate and PVA, which is thought to be due to complexation of the
extended polymer with surfactant and itself as predicted by literature. At higher polymer
concentrations in systems with strong interactions, it was expected that solutions would become
more viscous due to binding between surfactant and polymer resulting in configurational changes
(Saito, 1979). Rheology tests were not performed, so it is possible that there was a slight increase

in viscosity for other systems, and this should be evaluated in future studies.
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In every surfactant system at all polymer concentrations, solubilization abilities were
shown to decrease with increasing EACN. Huh studied the relationship between minimum
interfacial tension and solubilization of oil and aqueous phase in the middle phase (1979). He
concluded that interfacial tension of oil microemulsions and aqueous phase microemulsions are
almost symmetric with respect to oil volume per surfactant volume in microemulsions and aqueous
volume per surfactant volume in microemulsions. He also found that interfacial tension of oil
microemulsions is approximately equal to the interfacial tension of aqueous microemulsions when
oil volume per surfactant volume in microemulsions is equal to aqueous volume per surfactant
volume in microemulsions. Based on Huh’s findings and given that minimum IFT values increased
with increasing EACN, it was expected that solubilization abilities would decrease with increasing
EACN.

Because there are weak interactions between surfactant and polymer for nonionic Cg.10E3.5
systems, the addition of HPC and PDADMAC was expected to decrease solubilization abilities in
these systems. Evidence supporting a decrease in solubilization abilities between systems with
weak charge interactions can be found throughout many studies (Zhang et al., 2015 a). It is seen
in Figures 12 and 14 that solubilization abilities were decreased with the addition of polymer for
all concentrations besides 0.2 g HPC/100 mL, which increased solubilization above that of the
reference surfactant. The reason for this abnormal occurrence is not known and is beyond the scope
of this thesis.

The addition of HPC, PDADMAC, and PVA was, however, expected to increase the
solubilization abilities of SDHS and the Ci2.13 alkyl ethoxy sulfate. For all three systems,
solubilization abilities decreased with the addition of polymer, which is displayed in Figures 13,

15, and 16. SP* calculations were not done for the Ci2-13 alkyl ethoxy sulfate systems; however,
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the decrease in solubility can be seen by simply viewing the decrease in middle phase volume of
stabilized samples in Figure 16. The decrease in solubility for these systems with strong
interactions goes against what was expected from literature and many previous experimental
studies (Zhang et al., 2015 a,b).

However, a study by Saito found that a combination of an anionic surfactant and nonionic
polymer, much like the SDHS and HPC combination presented in this work, displayed a decrease
followed by the leveling off in solubilization of hydrocarbons (Saito, 1967). He attributed this to
that when surfactant molecules are effectively bound to polymers and a solubilizate has a structure
fitting to the polymers, the solubilization power of the surfactant solution may be synergistic with
the polymer. The reverse is the case when a solubilizate does not fit to the structure of polymers
in the complexes. This occurrence could be the cause for the systems with strong charge
interactions in this work as well as competition for water molecules at the interfaces (Warren,
2020), or competition for open area at the interface due to the large polymer size, all resulting in
loss of interaction at the palisade layer.

Additionally, another study found that addition of salts increases the solubilization of
hydrophobic compounds, since they may shield the charges of the polar head group of the
surfactant, leading to a transition from more spherical to more elongated micelles, which lowers
the critical micelle concentration (Zhang et al., 2016). Because both PDADMC and HPC caused
hydrophobic shifts in systems, less salt was added to solutions of higher polymer concentrations
to maintain an HLD of zero, supporting the decrease in solubilization of oil.

From Table 9, it is seen that HPC caused much more drastic drops in solubilization abilities

than PDADMAC on SDHS systems. This is could be due to the idea that PDADMAC interacted
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with the aqueous phase more than the palisade layer, and t is possible that both systems could later

experience proportional increases in solubility at higher polymer concentrations.

Figure 12: Cs.10E3.5 & PDADMAC SP*
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Figure 13: SDHS & PDADMAC SP*
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Figure 14: Cs.10E3.5 & HPC SP*
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Table 9: ASP* from reference

A SDHS reference

% 0.1 g HPC/100 mL

0.05 g HPC/100 mL
0.2 g HPC/100 mL

0.05 g/100 0.1 g/100 0.2 g/100
mL mL mL
ASP* from reference (mL/g Cs.10E3.5 & PDADMAC
surfactant) Cs -0.01 0.00 -0.25
Cy -0.26 -0.10 -0.26
Cs -0.22 0.00 -0.16
SDHS & PDADMAC
Cs -0.13 -0.13 -0.19
Cy -0.16 -0.12 -0.20
Cs -0.10 -0.07 -0.16
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Cs-10E3.5 & HPC
Ce -0.10 -0.10 0.16
Cy -0.15 -0.04 0.19
Cs -0.04 -0.10 0.23
SDHS & HPC
Ce -0.31 -0.28 -0.25
Cy -0.31 -0.28 -0.25
Cs -0.32 -0.29 -0.31

Figure 16: Ci,.13 alkyl ethoxy sulfate wide scans where the star represents S*

Reference ’ 0.01 g PVA/100 mL

3.4. Conclusions
Although the rheology of the systems was not quantitatively studied, the Ci2-13 alkyl ethoxy

sulfate and PVA system noticeably became more viscous with the addition of polymer. This is
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believed to be due to complexation of the extended polymer with itself, based on theories in
literature.

For all polymer-surfactant systems, solubilization abilities decreased with increasing
EACN as predicted by Huh (1979). Based on previous studies, solubilization abilities were
expected to decrease for systems with weak charge interactions between surfactant and polymer.
This trend was generally seen for nonionic Cs.10E3.5 systems with the addition of HPC and
PDADMAC. One exception to this prediction was presented in the data, however, the reason for
the occurrence is unknown and was not analyzed in this work.

Solubilization abilities were expected to increase with the addition of polymer in systems
with strong charge interactions between polymer and surfactant based on most works in literature.
However, in this study, the opposite trend was found to occur for the addition of PDADMAC,
HPC, and PVA to SDHS and Ci»-13 alkyl ethoxy sulfate systems. Based on other studies where
similar instances occurred, the decrease in solubilization abilities was attributed to possible
structural incompatibility, competition for water molecules at the interfaces, competition for open
area at the interface due to relatively large polymer size, and lack of salt due to the PDADMAC
and HPC inducing a hydrophobic shift.

It was also noted that HPC caused more drastic drops in solubilization abilities than
PDADMAC on SDHS systems with strong polymer-surfactant interactions, further supporting the

claim that HPC interacted with the palisade layer more than the PDADMAC.
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Chapter 4. HLD-NAC Characterization

4.1. Introduction

HLD is a very useful tool to determine which type of emulsion will be formed; however,
to obtain more information regarding physical properties such as droplet radius, density, viscosity,
and interfacial tension, another method is needed. Using HLD values, Net Average Curvature
(NAC) equations can be utilized to determine the listed properties. In this study, the purpose of
using NAC is to determine whether the model provides an accurate prediction of drop sizes and
consistent results regarding interactions between polymer and surfactant as found in phase
behavior studies.

The key NAC equations can be summarized as below (Acosta et al., 2003)

(5) _ HLD 1 1 1

n= " "5 T S5UUET uE

2L 2R gk

S VR P
() a_Z ro,uE rvij -

where H,, and H, are the net and average curvatures of the surfactant, L represents the extended
length of the surfactant tail and is representative of the solubilization capacity of the surfactant
using the Tanford Equation (Tanford, 1980), r,*F and ry*® are the sphere equivalent radii of oil and
water droplets, and 1/¢ is a sort of order parameter called Gennes Coherence Length, which is
dependent on the oil used and measured through neutron scattering or by measuring phase volumes
of the formulations at optimal salinity. The net average curvature equation implies there is infinite
mutual solubility at an HLD value of zero, which is impossible. Average curvature is always finite,
so solubilities are always finite. Therefore, calculations must take both equations into account,

allowing the theory to be named net average curvature. It should be noted that NAC assumes
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chemical symmetry. This is not the case in reality and is based on structure, thus, it is likely to see

deviations in either Type I or Type Il domains.

4.2. Materials and Methods
Materials

The materials were used as stated in section 2.2.

Particle Size Analysis (DLS)

DLS measurements were taken using a Brookhaven Instruments NanoBrook 90Plus PALS
(Particle Size & Zeta Potential using Phase Analysis Light Scattering) instrument and analyzed
using Brookhaven’s Particle Solutions software (v. 3.5). All data was collected using a 90°
scattering angle. Approximately 2 mL of each solution was filtered and put into glass cuvettes
which were ensured to be free of dust by rinsing with filtered water beforehand. Measurements
were performed after appropriate dilution of Type I microemulsions if needed. Solutions were set
aside to stabilize for 30 minutes before running three 60 second DLS analysis trials. DLS data was
considered valid if data was reproducible-the correlation function for each trial was very similar,
and each sample was stabilized. Intensity and number DLS measurements seemed very reasonable

and are displayed in Appendix A.

HLD-NAC Calculations
When performing NAC calculations, a constant adjustable length parameter, which was
shown to be proportional to the extended length of the surfactant hydrophobic tail, was used for

Cs-10E3.5 and for SDHS. Experimental droplet radius was found using DLS intensity
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measurements because intensity is the purest form of light scattering data obtainable. The
characteristic length parameter was kept constant for each surfactant for each oil and was
determined by fitting the reference surfactant’s Type III window and approximate range of
experimental drop sizes. This term, &, is known to decrease with increasing EACN because a
surfactant has more control over a small oil molecule than a larger one. It was found that £ in this
study followed this trend, further verifying the decrease in oil solubilization in the middle phase
with increasing EACN. Surfactant head group area was changed for each surfactant-polymer
system so that the NAC predicted middle phase volume was approximately equal to the

experimental middle phase volume.

4.3. Results and Discussion

First, the experimental emulsion drop sizes were plotted against the NAC predicted
emulsion drop sizes. The model provided a relatively good estimation for droplet radii, as most
experimental radii were within 10 nm of the model. For most systems, it was seen that the NAC
model provided better predictions for samples of an HLD value above zero than below zero. This
could be the case for multiple reasons. As mentioned previously, NAC assumes chemical
symmetry, which is not a true assumption. Either the surfactant head or tail group will be dominant
over the other in most cases. The model also assumes emulsions are spherical pure water or oil
drops where the size of the water droplets is predicted based on the surfactant concentration, so
the oil droplet size is mirrored.

This occurrence was also thought to be due to the polymer having difficulties solubilizing
in the oil phase. Because the aqueous phase was more dynamic than the oil phase, the oil emulsions

in Type I microemulsions might be hypothesized to fit the model better given that the surfactant,
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polymer, and salt all mostly reside in the aqueous phase instead of the oil phase. However, based
on the data, it is now believed that polymer could not get in the water droplet emulsions because
it was not able solubilize in the oil phase. Therefore, the water droplets in oil phase were more
ideal. Additionally, systems at higher polymer concentration resulted in more accurate drop size
fittings, which may mean that polymer solubilization in the oil phase decreased as polymer
concentration is increased. This is reasonable considering the aqueous phase density is most likely
changing.

Another general trend is that the model provided more accurate predictions as an HLD
value of zero was approached. This was expected since the model’s parameters were derived from
systems with HLD values very close to zero. The NAC model should be assumed to have greater
error at HLD values not close to zero. It should also be noted that the NAC model will not provide
relatively accurate predictions if a system’s K and Cc values are not correct.

Lastly, the polydispersity of DLS samples was analyzed. The Type I DLS samples were
much more polydisperse than the Type II samples indicating that the polymer resided in the
aqueous phase instead of in the middle or oil phases, thus confirming the findings of prior phase

behavior studies.
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Figure 17: Comparison between Cs-10E3.5 exp. and NAC emulsion drop radius

C8-10E3.5 References

25 NAC Radius
B 20 .
c ¢  Experimental
Py 15 Hexane Radius
3
T 10 ® ®  Experimental
< ," Heptane Radius
9]
- 0 Experimental
g-z -1 5 0 1 2 Octane Radius

-10 +/-10 nm

HLD

Figures 18-20: Comparison between Cs-10E3.5 & PDADMAC exp. and NAC emulsion drop
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Figures 21-23: Comparison between Cs.10E3.5 & HPC exp. and NAC emulsion drop radius
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Figure 24: Comparison between SDHS exp. and NAC emulsion drop radius
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Figures 25-27: Comparison between SDHS & PDADMAC exp. and NAC emulsion drop radius
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Figures 28-30: Comparison between SDHS & HPC exp. and NAC emulsion drop radius
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HLD-NAC was then utilized to quantify system properties such as surfactant head group
area (A2). The surfactant head group area used by NAC is displayed in Figures 31-34. Head group
area was usually seen to decrease with increasing EACN for a given PDADMAC or HPC
concentration. This was expected given that at an interface, as the length of present hydrophobic
chains increase, the surfactant head groups pack more closely together to maintain as much
distance as possible from the hydrophobic groups the surfactant tail attracts. There are cases where
this trend was not seen such as in the SDHS and PDADMAC system. The model is not perfect;
however, it can provide some useful insight to general ranges for properties. In reality, &, surfactant

head group area and L are all dependent on each other. Therefore, results cannot be fully accurate



The addition of PDADMAC to Cs-10E3.5 and SDHS seemed to decrease the surfactant head
group area with increasing polymer concentration. The decrease in head group area caused by
PDADMAC is reasonable considering the conclusion that the polymer is acting as a cation. As
higher concentrations of PDADMAC were utilized, the systems became more hydrophobic, much
like they would if EACN was increased. Also, the Type III window made in Windsor wide scans
became smaller with the addition of polymer, further supporting the decrease in area.

The addition of HPC to Cs.10E3.5 and SDHS initially decreased the surfactant head group
area, but then increased the head group area at the highest HPC concentration. It was discovered
previously that the addition of HPC caused Cs.10E3.5 and SDHS to become more hydrophobic,
which would explain the initial decrease in surfactant head group area to provide space for
hydrophobic groups. However, the increase in surfactant head group area could possibly imply
that the tail groups of the HPC interact less with the palisade layer at higher concentrations, thus
making space for the head groups to then begin spreading out. Because the Van’t Hoff factor is
less than 1 for HPC, this is a reasonable conclusion. The HPC may have associated in the aqueous

phase as concentration was increased.
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Figure 31: Cs.10E 3.5& PDADMAC changes in surfactant head group area
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Figure 32: SDHS & PDADMAC changes in surfactant head group area
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Figure 33: Cs.10E3.5 & HPC changes in surfactant head group area
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Figure 34: SDHS & HPC changes in surfactant head group area
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4.4. Conclusions

The € parameter was first seen to decrease with increasing EACN, which further proves
that the solubilization of oil in the middle phase decreased with increasing EACN.

The NAC model provided a relatively good estimation for droplet radii, as most
experimental droplet radii were within 10 nm of the model. For all systems, it was seen that the

NAC model provided better predictions for samples of an HLD value above zero than below zero.
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This is thought to be due to the limitations of the model and the solubilization limits of the polymer
in the oil phase. It was also seen that the model provided more accurate predictions as an HLD
value of zero was approached. This was expected since the model’s parameters were derived from
systems with HLD values very close to zero.

Surfactant head group area was observed generally to decrease with increasing EACN for
a given PDADMAC or HPC concentration. This trend was expected, but it should be noted that
the NAC model should not be taken to be always accurate due to &, surfactant head group area and
L being dependent on each other. It was not possible in this study to change more than one variable
for each system as they would change in reality.

The decrease in surfactant head group area with the addition of PDADMAC to Cg.10E3.5
and SDHS systems was reasonable considering PDADMAC acts as a cation, causing solutions to
become hydrophobic.

The addition of HPC to Cs.10E3.5 and SDHS systems was also expected to decrease
surfactant head group area because of the induced hydrophobic shift. While the addition of HPC
initially caused a decrease in head group area, an eventual increase was also observed. This is
speculated to be due to HPC tail groups interacting less with the surfactant tail groups at higher
concentrations due to association.

Because of the many assumptions one makes when utilizing NAC, it is probably not well
suited for industry applications at this time, however, the model is effective in providing a quick

method to quantify system changes at the head group level.
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Chapter 5. Conclusions and Future Work
5.1. Conclusions

The purpose of this study was to contribute to the understanding of the effects of water-
soluble polymers on reference surfactant systems through HLD-NAC phase behavior
characterization. Specifically, shifts on system optimal salinity, deviations from reference K and
Cc values, changes of the solubilization parameter, and changes in microemulsion droplet radius
where studied as polymer was introduced to reference surfactant systems.

Characterization behavior among reference surfactants as well as polymer-surfactant
interactions have been extensively studied in prior works. However, due to how dynamic
surfactant-polymer systems are, the predicted outcomes and characterization values with the
addition of polymer may not always be reality. Composition differences between batches of
surfactant create the need for consistent evaluation. The strength of general interactions between
differently charged polymers and surfactants are known, however, the systems are sensitive to
structural hinderances and competition at the interface, making formulation work imperative to
gain understanding of the systems.

The three polymers used in this study were PDADMAC, HPC, and PVA. PDADMAC and
HPC induced hydrophobic shifts, decreasing the optimal salinity of Cs.10E3.5 and SDHS systems,
while PVA induced a hydrophilic shift, increasing the optimal salinity of Ci2-13 alkyl ethoxy sulfate
systems. K and Cc values were first found for surfactant-only systems, then new K and Cc values
were found for each concentration of polymer for polymer-surfactant systems through formulation
work. A function, f(P), was found for each polymer concentration and oil to account for the
addition of polymer to surfactant systems so that reference surfactant K and Cc values could

predict the optimal salinity of systems with polymer using the HLD equation. These functions are
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displayed in Tables 4-8. Overall, it was concluded that PDADMAC acted as a cation and mostly
interacted with the aqueous phase instead of the palisade layer. HPC and PV A mostly interacted
with the aqueous phase as well but were able to interact with the palisade layer more than
PDADMAC. This conclusion was further confirmed though examination of the polydispersity of
DLS samples.

Although the rheology of the systems was not quantitatively studied, the Ci2-13 alkyl ethoxy
sulfate and PVA system noticeably became more viscous with the addition of polymer. The other
systems exhibited no visible changes in viscosity.

PDADMAC, HPC, and PVA were all observed to decrease the solubilization of oil at the
optimal salinity of Cs.10E3.5, SDHS, and C2.13 alkyl ethoxy sulfate systems. For the systems with
weak charge interactions, this result was expected. For the systems with strong charge interactions,
the opposite trend was expected. Possible reasons why the systems with strong charge interactions
did not act as predicted include structural incompatibility, competition for water molecules at the
interfaces, competition for open area at the interface due to relatively large polymer size and
decrease in salt concentration due to the PDADMAC and HPC inducing a hydrophobic shift.

The NAC model was shown to provide a relatively good estimation for droplet radii, as
most experimental droplet radii were within 10 nm of the model. For all systems, it was seen that
the NAC model provided better size predictions for samples of an HLD value above zero than
below zero due assumptions included in NAC and lack of solubilization abilities for the polymer
in oil.

Surfactant head group area in the palisade layer was generally observed to decrease with

increasing EACN for a given PDADMAC or HPC concentration as expected. Surfactant head
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group area also decreased with the addition of PDADMAC to Cg.10E3.5 and SDHS systems as
expected, considering PDADMAC acted as a cation causing solutions to become hydrophobic.

The addition of HPC to Cs.10E3.5 and SDHS systems caused an initial decrease followed by an
increase in head group area. This is speculated to be due to HPC tail groups interacting less with
the surfactant tail groups at higher polymer concentrations due to association. The NAC model
should not be taken to be always accurate due to &, surfactant head group area and L being

dependent on each other and the many assumptions included in the model.

5.2. Future Work

Future work should consist of a more in-depth analysis of the systems characterized in this
work. A broader range of polymer concentrations and oils would be beneficial to study so that
trends in K and Cc values could be tested for consistency and more accurate f(P) functions for the
HLD equation could be developed.

A quantitative study of the rheology of the systems would provide valuable information
regarding the relationship between viscosity increase and polymer-surfactant interaction strength.
It would also provide more information regarding the polymer-surfactant interactions, allowing
for a better explanation in solubilization trends.

The exact cause for the decrease in solubilization abilities for systems with strong polymer-
surfactant charge interactions should be determined through further analysis. Discrepancies in the
general trends of system solubilization abilities with the addition of polymer existed in this work
and should be ensured valid.

Utilization of a transmission electron microscopy technique would also be very beneficial

in confirming the emulsion drop size data obtained from DLS tests. Given this extra information,
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a better understanding of how and if the polymer is interacting with the surfactant could be
obtained.

The NAC model parameters could be studied in depth so that all predictions from the model
would be more accurate. In particular, the relationship between L, head group area, and & for
common surfactant systems would be very beneficial. It would also be interesting to experiment
with different surfactant concentrations and observe effects on NAC drop size predictions.

Finally, the findings from this work could be applied more firmly to the oil and gas, drug
delivery, or other formulation industry. Because each industry has differing needs and
specifications, one could experiment with controlling HLD value, viscosity, solubility and drop

size using the addition of water-soluble polymers to fit a given need.
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Appendices
Appendix A: Plots Determining f(P) Function for HLD Equation
f(P) = slope * In[Polymer]

Figure 35: Cs.10E3.5 & PDADMAC f(P)
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Figure 37: Cs.10E3.5 & HPC f(P)
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Figure 38: SDHS & HPC {(P)
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Figure 39: Ci2.13 Alkyl Ethoxy Sulfate & PVA f(P)
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Appendix B: Sample DLS Graphs (PD = Polydispersity, CR = Count Rate (kcp))

B.1. SDHS

Reference Systems

Figures 40-42: C6 Reference: 2 g NaCl/100 mL DI water PD = 0.138, CR =399.6
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Figures 43-45: C6 Reference: 3 g NaCl/100 mL DI water PD =0.121, CR = 503
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Figures 46-48: C6 Reference: 14 g NaCl/100 mL DI water PD = 0.028, CR = 103.3
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Figures 49-51: C6 Reference: 15 g NaCl/100 mL DI water PD = 0.066, CR = 140.7
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Figures 52-54: C7 Reference: 2 g NaCl/100 mL DI water PD = 0.082, CR = 269.6
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Figures 55-57: C7 Reference: 3 g NaCl/100 mL DI water PD = 0.234, CR =473.3
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Figures 58-60: C7 Reference: 15 g NaCl/100 mL DI water PD =0.033, CR =22
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Figures 61-63: C7 Reference: 16 g NaCl/100 mL DI water PD = 0.059, CR = 209.4
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Figures 64-66: C8 Reference: 3 g NaCl/100 mL DI water PD =0.372, CR =92.14
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Figures 67-69: C8 Reference: 4 g NaCl/100 mL DI water PD = 0.313, CR =63.1

Correlation Graph | MSD Intensity Graph

0% Brookhave P ;
rookhaven Brookhaven
s s
««£0® Instruments DLS Graph «£0€ Instruments DLS Graph
o o
o7 w0
o |
05 Il
It
0 I
0s I
“ |
0 1
g HE ‘ |
03 |
| w I
1 ‘ ‘ i
02 I
: = 1 il
I \
o [ |
2 f ‘ H
i
|
) 1 g
o0 10 / -
/ |
/ [N
\ |
| |
1o oo Tam  taboo | iomose | 1oms Toees Too o Tooboo Too0s0
Tls) Diametes nm)
A S0P 1 1162020 105828 P A S0P 21182020 10.58.47 P A S0P 1 1162020 10:5428 P A S0P 2 1182020 10.88.47 P
hia Sop 3 162020 11007 P A Sob 3 1n6z020 110607 P
Prv 1182020 ParicleSolons . 3.5 (Universiy of Okiahoms) Tot Pintes 1182020 Paricle Soluons v. 35 (Universiy f Okiahoma) Tt
2" Brookhaven
£ InSiaents DLS Graph
T ; \
@ 1
|
|
80- 1 ‘
i
| M
7 |
I
- I
f = |
|
w
|
0 ‘ |
2. -
10 !
\
o oo oo Tose
Diameter nm)
A S0P 1 1182020 10:5828 P A S0P -2 1152020 105347 P
 iia 506 3. 18z020 110507
Prs: 1262020 Parile Soltons v. 35 (Uniersty of Okhama) Tt

59




Figures 70-72: C8 Reference: 17 g NaCl/100 mL DI water PD = 0.076, CR = 144.7
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Figures 73-75: C8 Reference: 18 g NaCl/100 mL DI water PD = 0.129, CR = 80.7
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B.2. SDHS & PDADMAC Systems

Figures 76-78: C6 0.05 g PDADMAC/100 mL: 2 g NaCl/100 mL DI water PD = 0.141, CR
=112.6
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Figures 79-81: C6 0.05 g PDADMAC/100 mL: 3 g NaCl/100 mL DI water PD =0.121, CR
=508.5

Correlation Graph | MSD Intensity Graph

0%, ’ edee
srookhaven £ "Brookhave:
IS rookhaven
«£0€ Instruments DLS Graph <£0® Instruments DLS Graph
e 0 T
I
018 \
w0 | i
|
w0 |
01 ‘
7 ’ |
w0 ‘
0410- ‘
z e i
£
© |
0.06- I
30- ’
i
| :
1 i A
2 l il
o002 T { I
| M
| | |
| |
[ il |
0 | |
(I ‘ ‘
1 |
|
|
I L 1
1 1000 10000 100000 1000000 1.0es5 10646 100 1000 10000 1000.00 10000.00
s Diameter nm).
AMA SOP -1 - 11612020 2:50.32 PM AMA SOP - 2 - 116/2020 1:5203 PM. AMA SOP - 1 - 1162020 2:50:32 PM AMA SOP - 2 - 111612020 1:52.03 PM
Aaia SoP -2 1182020 115226 P ia SOP -2 1162020 113220 P

Printed: 111612020 Partice Solutons v.35 (University of Oklahoma) Tort Printed: 111612020 Pariicle Solutions v. 35 (Uriversity of Okishoma) Tort

MSD Number Graph

008" .,
Lo€ rookbaren DLS Graph

100

Number

1000 10000 1000.00 1000000
Dismete o)

— AMA SOP -1 - 11672020 250:32 PM AMA SOP - 2 1162020 15203 PM
AMA SOP - 2 - 1162020 1:32:26 PM

Printed: 11262020 Partice Solutions v.35 (University of Oklahoma) Tort

63




Figures 82-84: C6 0.05 g PDADMAC/100 mL: 14 g NaCl/100 mL DI water, PD =0.141,
CR=26.5
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Figures 85-87: C6 0.05 g PDADMAC/100 mL: 15 g NaCl/100 mL DI water PD = 0.056,
CR=2523
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Figures 88-90: C6 0.1 g PDADMAC/100 mL: 1 g NaCl/100 mL DI water PD = 0.088, CR
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Figures 91-93: C6 0.1 g PDADMAC/100 mL: 2 g NaCl/100 mL DI water PD = 0.049, CR
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Figures 94-96: C6 0.1 g PDADMAC/100 mL: 13 g NaCl/100 mL DI water PD = 0.109, CR
87.8
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-99: C6 0.1 g PDADMAC/100 mL: 14 g NaCl/100 mL DI water PD = 0.185, CR
=72.72
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Figures 100-102: C6 0.2g PDADMAC/100 mL: 2 g NaCl/100 mL DI water PD = 0.242,

CR =262.7
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Figures 103-105: C6 0.2 PDADMAC/100 mL: 3 g NaCl/100 mL DI water PD =0.147, CR
477.7
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Figures 106-108: C6 0.2 g PDADMAC/100 mL: 13 g NaCl/100 mL DI water PD = 0.236,
CR =559
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Figures 109-111: C6 0.2 g PDADMAC/100 mL: 14 g NaCl/100 mL DI water PD =0.112,

CR =109.8
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Figures 112-114: C7 0.05 g PDADMAC/100 mL: 2 g NaCl/100 mL DI water PD = 0.086,
CR=158.6
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Figures 115-117: C7 0.05 g PDADMAC/100 mL: 3 g NaCl/100 mL DI water PD = 0.172,
CR=4764
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Figures 118-120: C7 0.05 g PDADMAC/100 mL: 15 g NaCl/100 mL DI water PD = 0.074,
CR =437.7
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Figures 121-123: C7 0.05 g PDADMAC/100 mL: 16 g NaCl/100 mL DI water PD = 0.065,
CR=975
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Figures 124-126: C7 0.1 g PDADMAC/100 mL: 2 g NaCl/100 mL DI water PD = 0.038, CR
=157.2

Correlation Graph | MSD Intensity Graph

: oSee
o8 £ & Brookhaven
©& "Brookhaven © DLS Graph
s -£0€ Instruments rap!
«£0€ Instruments DLS Graph H
o0
0z
oz
@
w
0z
3
o
s
ots 2
= § -
0
00,
s
s 1
= 4
i
1}
1
oo 1
10 \
{
i oo oo
o ) T b doono | 10ees T i)
)
— fata sop -1 - o020 53549 Pt A SOP -2 - 1162020 6.41:08 1
~AMA S0P -1 - 1152020 83549 P M0A S0P -2 1162020 84109 P i sop. 3. inacam aaeem
" Aain S0P -3 1182020 84828 P
Prned: 1182020 Parice Soluions .35 (Unversty of Okishoma) vt
Prec: 182020 Paricle Solutons .35 (Universty of Okiahoma) Tt
0% "p, .
rookhaven
s
.2 Instriments DLS Graph
100 (\
1\
[\
@ Pt
|
|
{1
I A
|
B .‘
i
I
3
@
£ w
0. l}
1
|
a0
s
o
00 oo w0
Diomete o)
ata S0P -1 - 1162020 83549 P A S0P -2 - 1672020 84100 P
ia S0P -3 1182020 64828 P
Prned: 1262020 Parice Solutons .35 (Unversty of Okishoma) Tart

78




Figures 127-129: C7 0.1 g PDADMAC/100 mL: 3 g NaCl/100 mL DI water PD = 0.063,
CR =247
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Figures 130-132: C7 0.1 g PDADMAC/100 mL: 15 g NaCl/100 mL DI water PD = 0.083,
CR=109.8
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Figures 133-135: C7 0.1 g PDADMAC/100 mL: 16 g NaCl/100 mL DI water PD = 0.061,
CR=138.5
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Figures 136-138: C7 0.2 g PDADMAC/100 mL: 2 g NaCl/100 mL DI water PD = 0.083,

CR=237.8
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Figures 139-141: C7 0.2 g PDADMAC/100 mL: 3 g NaCl/100 mL DI water PD = 0.173,
CR=51738
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Figures 142-144: C7 0.2 g PDADMAC/100 mL: 15 g NaCl/100 mL DI water PD = 0.272,
CR =40
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Figures 145-147: C8 0.05 g PDADMAC/100 mL: 3 g NaCl/100 mL DI water PD = 0.074,
CR=201.8
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Figures 148-150: C8 0.05 g PDADMAC/100 mL: 4 g NaCl/100 mL DI water PD = 0.211,
CR=8.2
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Figures 151-153: C8 0.05 g PDADMAC/100 mL: 16 g NaCl/100 mL DI water PD = 0.034,
CR=573
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Figures 154-156: C8 0.05 g PDADMAC/100 mL: 17 g NaCl/100 mL DI water PD =0.11,
CR=134
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Figures 157-159: C8 0.1 g PDADMAC/100 mL: 2 g NaCl/100 mL DI water PD = 0.071,
CR =100.6
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Figures 160-162: C8 0.1 g PDADMAC/100 mL: 3 g NaCl/100 mL DI water PD = 0.137,

Correlation Graph

CR=1262.5
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Figures 163-165: C8 0.1 g PDADMAC/100 mL: 16 g NaCl/100 mL DI water PD = 0.147,
CR=30.2
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Figures 166-168: C8 0.1 g PDADMAC/100 mL: 17 g NaCl/100 mL DI water PD = 0.354,
CR=574
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Figures 169-171: C8 0.2 g PDADMAC/100 mL: 3 g NaCl/100 mL DI water PD =0.115,

CR =352.1
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Figures 172-174: C8 0.2 g PDADMAC/100 mL: 4 g NaCl/100 mL DI water PD = 0.151,
CR=17.6
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B.3. Cs.10E3.5 Reference Systems

Figures 175-177: C6 Reference: 11 g NaCl/100 ml DI water PD = 0.166, CR = 56
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Figures 178-180: C6 Reference: 12 g NaCl/100 ml DI water PD =0.13, CR =28.2
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Figures 181-183: C6 Reference:

Correlation Graph

13 g NaCl/100 ml DI water PD = 0.148, CR = 489.9
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Figures 184-186: C6 Reference: 14 g NaCl/100 ml DI water PD = (0.109, CR = 448.7
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Figures 187-189: C7 Reference: 0 g NaCl/100 ml DI water PD =0.117, CR

503.1
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Figures 190-192: C7 Reference: 0.5 g NaCl/100 ml DI water PD =0.118, CR = 576.2
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Figures 193-195: C7 Reference: 14 g NaCl/100 ml DI water PD = 0.1, CR = 26.4
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Figures 196-198: C7 Reference: 15 g NaCl/100 ml DI water PD = 0.063, CR =23.1
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Figures 199-201: C8 Reference: 0.5 g NaCl/100 ml DI water PD = 0.152, CR =452.9
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Figures 202-204: C8 Reference: 1 g NaCl/100 ml DI water PD = 0.186, CR =408
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Figures 205-207: C8 Reference: 16 g NaCl/100 ml DI water PD = 0.096, CR = 147.1
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Figures 208-210: C8 Reference: 17 g NaCl/100 ml DI water PD =0.131, CR =139.2

Correlation Graph MSD Intensity Graph

oo
2% Brookhaven
-ege€ Inst

o Brookh
rookhaven
o
ruments DLS Graph «£o® Instruments DLS Graph
03 o0 ~
| A\
: 7\
\
a0 .
02 I
|
| “ f
025 i
0 / \
it |
020
&0 i
= 1
E os I {
= £ Il
. i
[
I
Il
' o It
010 Il
. 0 !
oss. i |
! P
1
os0. L\
0 \
T a0 0300 Tohoo | doooo | 10ees T 1 o000
i) Diamter (o)
= a10 0P -1 - 172172020 90420 P 10507 -2 172172020 90347 7 610 S0P -1 - 112172020 50425 P 810,508 -2 12172020 80347 P
~ B1050P -3 12172020 81506 P 610 S0P - 31112172020 31506 P
Pried: 1212020 Parile Soluons v. 35 (Universiy o OKishoms) Tort Prined: 1212020 Paricl Soluions v. 35 (Universy of Okahoma) 1ot
&% Brookhaven
&€ Instruments DLS Graph
e
0 1
&0, W
H
th
70 4
60- i
£ 1
2 {1
I
“ H
» \
=
0 \
N\
N
100 o) 030
Diameter nm).
—51050P -1 - 12172020 90425 oM 810 S0P - 2112172020 50847 P
510.50P -3 12172020 91506 M
Printed: 1242020 Parice Sautons .35 (Unversky of Okishona) 1ot

106




Appendix C: DLS Sample Examples

Cs.10E3.5, 0.05 g PDADMAC/100 mL, C7, 0 g NaCl/100 mL

Figures 205 and 206 display examples of DLS samples. The aqueous phase of Cs-10 E 3.5 Type |
samples was often blue colored as shown in Figure 205. These solutions had to be diluted to
make solutions clear to slightly hazy, resembling Figure 206 in order to obtain valid DLS data.
This is true because the Stokes-Einstein equation applies to infinitely dilute solutions, and if the
sample is too concentrated, the measured size of your particles will be inaccurate due to multiple

scattering or viscosity effects (Farrell & Brousseau).

Figure 211: Cs.10E3.5 Type | Figure 212: Cs.10E3.5 Type 11
aqueous phase sample oil phase sample
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