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NOMEN.CLATURE 

The symbols used throughout this thesis are listed belowo A brief 

description and the descriptive units follow each symbol. F is a force, 

usually pounds. Lis a length, usually feet. Tis time, usua.lly secondso 

B is the unit of heat, usually British thermal units. e is the tempera-

ture, usually degrees Fahrenheit. Mis the mass unit, usually slugs 

(one slug = 32.2 pounds or g pounds). 

a The velocity of propagation of a. pressure wave. LT-l or ft./sec. 

A Cross-sectional area of the conduit. L2 or sqoft. 

B Unit of heat, British thermal unito 

C Constant, dimensionless. 

C 
p 

S 'f' h t t t t BF-l e·-l or B/lbo/° Fo peci·ic ea a cons an pressure. 

D Internal diameter of pipe. Lor ft. 

f Darcy-Weisbach resistance coefficient. Dimensionless. 

F Force. For lb. 

g Gravitational constant. LT-2 or 32.2 fto/sec. 2• 

h Coefficient of heat transfero B T-lL-2 tf1 or B/hr./fto2/° F. 

k Therma.l conductivityo 
-1 -1 -1 

BL f) T or B/ft./hr./oF. 

£ Prandtl 1s mixing lengtho Lor ft. 

L Lengtho Lor ft. 

k - Natural logarithm. 

n The exponent of u for mean flow. Dimensionlesso 

NN - Nuss el t number. h: • Dimensionless. 

Np Prandtl numbero ~. Dimensionless. 

Du N Reynolds nrunber. Dimensionless. 
R 
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p 

p 
0 

p 
X 

-2 2 
Pressure (force per unit area) FL or lb./ft. o 

Mean pressure drop or pressure differential_~n length L causing 
a mean flow of q cubic feet per secondo FL or lb./fto2. 

The initial pressure rise above the hydraulic grade line at the 
point of valve closure. FL-2 or lb./ft.2. 

The pressure rise above the hydraulic grade line at a distance x 
feet from the point of valve closure. F1-2 or lb./ft.2 

q Mean volux11etric flow ra.te. 13 T-l or ft. 3 /sec. 

r Variable radius of the conduit. Lor ft. 

R Internal radius of the conduit. Lor ft. 

t Tbne. Tor sec. 

T Time. T, hours or for a period of time as in integrating over a 
period. 

u,v,w-Mean velocity at a point in the x,y,z directions respectively. 
LT-1 or ft./sec. 

u,v,w-Mean cross-sectional velocity in the x,y,z directions respectively. 
LT-1 or ft./sec. 

u 1 ,v 1 ,w 1 - Deviation from the mean velocity at a ,Point in the x,y,z 
directions respectively. LT-1 or ft./sec. 

u 
0 

Velocity at the centerline of the conduit in the x direction. 
LT-1 or ft./sec. 

x,y,z-The coordinate axes. 

o( - The attenuation coefficient. L-l or numeric/ft. 

E - The apparent kinematic eddy viscosity. r/T-l or fto 2/sec. 

FTL-2 I 2 ~ - The apparent dynamic eddy viscosity. or lb.sec. ft. 

i - Temporal mean value of the apparent dynamic eddy viscosity. 
FTL-2 or lb.sec./ft.2 o 

8 - Temperature. (if; , or degrees Fahrenheit. 

/- The dynarnic viscosity. F'TL-2 or lb.sec./ft. 2 • 

_} 2 -1 2; -v - The kinematic viscosity. LT or ft. sec. 

t- The density of the fluid or ma.ss per 1.mit volume. 
FT2rt·4 or lbosec. 2/ft. ; or Mr.-.3 or slugs/ft} 
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-2 I 2 '1 - The shearing stress in laminar flow. FL or lb. ft. • 

- The shearing stress due to the eddy motion in turbulent flow. 
FL-2 or lb./ft.2. 

I' - The total shearing stress, 7: + 
L --r- . e 

~ - Ratio of the dynamic eddy viscosity to the dynamic viscosity, 

:!L 
/A--

Dimensionless. 

Sign Convention 

In the consideration of forces, velocities etc. in the derivations 

herein, up and to the right are considered positive and down and to the 

left are considered negative. 
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CHAPI':ER I 

INTRODUCTION 

Fluid flow problems in general, are divided into two categories. 

These are usually designated as laminar flow and turbulent flow. 

In laminar flow, the fluid moves in thin layers or lamina, one 

layer tending to slide with respect to its neighbor. The resulting 

shearing stress is caused by internal friction, i.e. the interaction 

between adjacent layers. There is no transfer of fluid masses between 

adjacent layers. The flow regime may be characterized as being very 

regular and orderly. As a result, fluid flow problems of this type may 

be readily analyzed. 

If the flow is turbulent, however , there is in addition to the 

molecular friction an interaction between zones of flow due to momentum 

transfer or the transfer of fluid masses between adjacent zones of flow. 

The question, what is turbulence, involves more than a definition of the 

word. It involves a penetrating analysis of the phenomena of fluid 

motion to discover and recognize common features of many complex situa

tions and to establish a clearly defined physical concept. 5 

For example, regular systems of eddies trail from a plucked string 

and are capable of description as periodic flows. The variation of 

velocity components with time is not, therefore, a sole criterion. The 

essential feature of turbulent flow which distinguishes it from the 

other types of flow is the presence of a random element. It has no 

definite periods and the flow cannot be described by a regular system 

of vortices however complex. Obviously, therefore the description of 

1 
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turbulent flow phenomena in clear mathematical terms has been exceedingly 

difficult. 

This thesis is intended to be a contribution to the basic principles 

governing turbulent flow. Particularly, an analytical expression is de

rived for the apparent viscosity due to the eddy motion. Use of the re

sulting expression is demonstrated in applications to: 

1. The attenuation of a pressure wave in a. liquid filled conduit. 

2. The transfer of heat from a pipe wall to the fluid flowing 

therein. 



CHAPTER II 

PREVIOUS INVESTIGATIONS 

The concept of the apparent eddy viscosity was due to Boussinesq. 15a 

In 1877, he proposed the addition of a "molar viscosity" term to the 

dynamic viscosity term in the Na.vier-Stokes equations •. No attempt was 

made to describe this concept of "molar viscosity" (present day eddy 

viscosity) in mathematical terms. 

Prandtl 1s original work on the mixing length theory was published in 

Germany in 1925. Various authors have made use of this theory, until 

today, nearly all complete works on fluid mechanics discuss it. Prandtl 1s 

work appeared in English in 1949. 12b This was the first attempt made to 

define mathematica1ly the turbulent flow mixing or eddy process. 

Murphree10 used the results of Prandtl 1s mixing length theory to 

establish expressions for the apparent eddy viscosity. It was presumed 

by M1rphree that there existed a turbulent boundary layer or 11film 11 and 

that the apparent eddy viscosity varied as the third power from the pipe 

wall, while remaining essentia.lly constant in the main body of the fluid. 

The resulting derivation had a pair of simultaneous equations involving 

three unknowns; the apparent eddy viscosity, the Fanning friction factor 

and the ratio of the pipe diameter to the diameter of the 11film 11 • The 

computation of values of the apparent eddy viscosity by this rnethod is by 

a trial and error procedure, made exceedingly laborious by the fact that 

the equations are not independent. 

The preponderance of data available13 in the literature a.re in the 

form of dimensionless ratios involving velocity and temperature distri-

3 
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butions a.nd the various fluid properties. These results offer nothing 

conclusive about the magnitude of the apparent eddy viscosity and only 

indicate what the relative magnitude would be under given conditions. 

Binder4 used the data obtained by Murphree in a modified version of 

the Kirchhoff-Helmholtz equations for the a.ttenuation of a pressure wave 

tra.veling in a closed conduit with fair results. Waller, Fristoe a.nd 

Norton18 clearly demonstrated that values of the attenuation coefficient 

obtained by Binder I s method were in error by a.s much as twenty percent 

for large amplitude vibrations in a .. water filled tube. 



CHAPTER III 

BASIC CONCEPTS 

In laminar flow the fluid moves in thin layers or lamina,_one layer 

tending to slide with respect to its neighbor. The shearing stress ii, 
is usually written 

du 
=)Ady 

where du is the velocity gradient and A.J. is the dynamic viscosity. 
dy / 

For turbulent flow the shearing stress is usually written as 

~ du 1+7e = 1 = yU+Yl_)dy 

where '7. is the "exchange coefficient 11 , 11mechanical viscosity11 or 11 eddy 

viscosity" which is not a physica1 property of the fluid like~,(°, 

7;) etc., but is a characteristic of motion and does depend upon the 

Reynolds number. 

FigU:t'e No. 1 

Comparison of Typical Velocity Distributions in 
Laminar and Turbulent Flow. 

5 

(1) 

(2) 
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Turbulence originates in the boundary layer at the higher flow rates 

as almost sinusoidal oscillations form near the confining surface. These 

oscillations have been fully described by the linear theory of small 

oscillarions of laminar boundary layers by Tollmien and Schlichting. 5a 

It is believed that the growing waves lead to intermittent separation at 

the walls and the creation of minute discontinuities which are unstable. 

The waves tend to roll up into small scale eddies which break away from 

the boundary upon being disturbed. 

Hence it may be seen that the randomness factor enters in through 

the boundary conditions. The viscosity plays a major role in the damping 

of the oscillations and apparently produces a phase shift between the 

variations of the two components of velocity. The net result being, that 

some fluctuations are damped out while others tend to be magnified. It 

must be concluded that viscosity indirectly influences the transition to 

turbulence. 

Many mathematical models have been proposed by various authors to 

give a general physical picture of the turbulent flow process. In most 

current theory, turbulent flow is visualized as a steady motion on which 

12 is superimposed the secondary fluctuations. Prandtl's concept of the 

mixing length is the theory of turbulence most familiar to engineers. 

These two concepts will form the basis of the mathematical derivation 

herein. 

Analagous to~ = ,) 
r> 

(kinematic viscosity) 

is 'fl = £ 
~ 

(kinematic eddy viscosity). 

(.3) 

(4) 

Considering the dimensions involved, e should be dependent upon 

a length (eddy size.! or mixing length) and a velocity v' or u 1 (eddy 

velocity). Just as the mean size of the eddy in turbulent flow is 
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governed by the boundary geometry, the mean velocity fluctuations for 

given boundary conditions and a given fluid depend upon the mean velocity 

of flow. 14 

Therefore, e u.1 
-:;r .r,..J = NR -ii 

but g = "<. 
7 

and 

thereforel4a 
YJ. ,,-._ NR. 

,,,M-
( 5) 

Since/ is essentially constant for any given situation.)) Yt_ 

must be directly related3 to NR• That 17. varies continually from point 

to point from time to time is well recognized. However, if the correla

tion between '1. and NR exists12\ then there is some temporal mean 

2 value.)) for example "P(' which is representative of a given state of 

flow just as a given state of flow ha.s a particular mean velocity and 

Let u, v, w and u 1 , v 1 , wv be the mean and deviation from the.mean 

velocities in the x, y, z directions as shown in Figure Noo 2. 

y 

u u' 
X 

z 

Figure No. 2 

Definition Sketch for Velocities 
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The momentary velocity components fluctuate in a haphazard fashion9 

but the average velocity over a long period of time maintains a constant 

value. That is, 

V = W = 0 ' 
(6) 

~ ~T u 1dt = t ~T v 1dt 

and 

= l ( T w'dt = 0 
T)o 

, 

That these relations are true is evident from considerations of 

continuity. 

u 

u' 

Fisu;:e No. 3 

Instantaneous Distribution of Velocity 
In Turbulent Flow 

(7) 

(8) 

While u 1 , v 1 and w1 are zero over a period of time the same is not 

true of the squares or products of these values •. If the fluctuations 

were completely independent, then such values as u 1v 1 , u 1w1 and w1v 1 

w-0uld be zero. However, quantities such as (u 1 ) 2, (v 1 ) 2 etc. would not 



be zero and there would be a gradual increase in the mean velocities 

u, v and w due to the eddy motion. Any change in v and w from a zero 

value would violate the conditions of continuity. An increase in u 

from any previously established value would violate the hypothesis of 

a steady flow condition. Thus, there must be some relation between the 

quantities u 1v 1 and (u 1 )2 etc. which permits the above outlined hypo-

theses to be fulfilled, or in other words, the existence of a corre-

lation between u', v' and w' must be admitted. That is, the turbulent 

friction or apparent shearing stress is different from zero only when 

there is a correlation between u', v' and wi.12c 

A 1Y 

u - X B ------,1------B 

IA y 

Figure Noo 4 

Turbulent Exchange of Momentum 

9 

The mass crossing plane AA in time dt is /°udt and the x component 

of velocity is il; the momentum transfer in time dt is f'u.2dt or over a 

long period T is 

1 (T _2 
T) o fu dt = (9) 
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but 2 2 2 -2 u = (u + u 1 ) = u + 2uu1 + (u 1 ) • 

By definition, (see Fq. 7) u 1 over a period of time is zero. There-

fore, the quantity 2uu' = o. Whence, 

-2 
f(u') • (10) 

Therefore, there is added to the momentum of the steady motion the 

momentum due to the temporal mean value of the square of the velocity 
. 12iL fluctuations • 

The mass crossing plane BB in time dt is f vdt and the x component 

of velocity is ii. Hence, the momentum transfer is ruV'dt in time dt.9 

or 

(11) 

in time T. But iiv = (u + u 1 )(v + v') = uv + uv1 + ulv + u"1vl where 

again the second and third terms on the right are zero due to v' and u 1 

being zero over the period by definition. Therefore, 

f'UV = fUV + tu'v' . (12) 

Thus, also a term due to the variations in velocities has to be 

added to that of the steady motion. The reaction corresponding to /' u 0v 1 

which is exerted on unit area is a force in the direction of the x axis 

acting on an area perpendicular to they axis, i.e., a shearing stress. 

Therefore, the apparent shearing stress due to the eddy motion is 

le = - I° U 1vl O 
(13) 

The negative sign is necessary to give a positive shearing stress 

since (u 1v 1 ) is always a negative quantity, i.e., a positive u 1 is 

associat~d with a negative v 1 and vice versa15• In order to obtain a 
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formula for practical use it is necessary to express u• and v 1 in terms of 

quantities related to the mean velocity. 

u(y + J.) 

1 u{y) 

y 

17777777 7 7 7 Z 7~::Z::71 

Figure Noo 5 

Illustration of Mixing Length 

o 12e 
Some length, .A. may be envisioned through which the particles of 

fluid move relative to the rest of the fluid before they lose their 

identity by mixing with the surround:1,pg fluid. If a particle is displaced 

from a position y (see Figure No. 5) with a velocity u(y) through a dis

tance 1 to a point where the velocity is u(y + J), the difference in 

velocity is, 

u(y + J ) - u{y) 
0 Jg,y 0 

u' 
dy 

, 

similarly v' 
,,. }du 

dy ' (15) 

le = ~12 I~; I du 
dy whence (16) 

or le = - ~;;-1 du 
dy (17) 
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Let (18) 

then (19) 

or as is usually written for turbulent flow, the total shearing stress 

becomes 

The results of the Prandtl mixing length theory as expressed in 

Fqo 18 will be used in the following derivationo 

(2) 



A. DERIVATION 

CHAPI'ER IV 

DEVELOPMENT OF AN ANALYTICAL EXPRESSION FOR 

THE APPARENT EDDY VISCOSITY 

In uniform motion with no acceleration, the summation of the pressure 

forces, forces due to momentum transfer and the tangential friction forces 

must be zero. On choosing a point at which to describe the fluid flow 

regime it is found that all the velocity components are in perpetual and 

continual fluctuation. (See Figure No. 2 and Fqo 1s 61 7 and 8). 

However, from the conditions expressed in Fq. 1s 6, 7 and 8 the aver-

age velocity over a sufficiently long period of time maintains a constant 

value. This being true 1 the net momentum transfer over the same period 

of time is zero and the summation of forces is possibleo The two-dim.en-

sional flow of a fluid under turbulent conditions is pictured in 

Figure No. 6. 

dP 
---=a~ -1-----=I--

Figure No., 6 

Definition Sketch for Derivation 

13 
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The relative radial velocity perpendicular to the mean velocity u 

is v 1 ; length of shell is Land is of such length that the average value 

of v 1 over the inside and outside of the shell is zero. 

Summation of Forces on the Inside of the Shell 

The momentum transfer into the shell due to u 1 and v' per unit 

length is 2 ?r r f v1u 1 • The average gain of momentum to the shell is 

2 7TrL t° v 1u 1 which acts as a force directed to the right. 

UB -< UA UB ..:::: UA 

(A) ui (A) 

\ \ 
\ \ u1v1 

v' \ 

u1vr \ vi 
\ 

\ 
\ \ 

\ \ 

(B) u' (B) 

Positive Momentum Exchange Negative Momentum Exchange 

Figure Now 

The viscous force on the inside of the shell is directed toward the 

right and is 

The total force on the inside of the shell is then 

0 

The minus sign is necessary because the velocity gradient is negative and 
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the force acts to the right. 

SUllllllB.tion of Forces on the Outside of the Shell 

The force exerted to the left by the momentum transfer from the out-

side of the shell is 

-(2 ?rrL f v 1u 1 + -~- [ 2 ?rL JO v 1u 1 J dr) 
~r I 

and the viscous force directed to the left is 

-(-2 7TrL)A ~~ - ~r [ 2 '?TrLj(-~ J dr) 

where the minus sign is again needed to indicate the proper sense. 

Therefore the total force on the outside of the shell is 

Effect of the Pressure Gradient 

The force exerted by the pressure gradient is 

~x(2~rL)dr 

SUllllllB.tion of All Forces 

Adding these forces and setting the sum equal to zero: 

+ ~r [ r(- j-< ~: + f v'ui)] dr} + ~x(2 ?!'rL)dr = O 
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simplifying, 

0 (20) 

The term j0u1v 1 in .Eq. 20 represents the transfer of momentum per 

unit area across the shell boundary. Physically, this transfer is due to 

groups of molecules being thrown by the component of the eddy currents 

perpendicular to the mean velocity from one zone of flow to another. The 
' 

first zone may correspond to a higher or lower value of the mean velocity 

(u) than the second. If higherj the value of u' is positive andy if 

lower) u' is negative. (See Figure No. 7). 

Since u' may be regarded as equal to t ~ i where j is the distance 

between zones of flow, (or Prandtl's mixing length) then - ,1°u 1v 1 in 

.Eq. 20 may be replaced by 

But - !' ;i1 is mass times velocity times length of ;°f.. which 

is 1c_ • (See .Eq. 4). 

Let 

' 
(18) 

then 
(21) 

and Fq. 20 becomes 

• 
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Let~ = - -12... 
dX L 

then 

[r ( ,)A + ~ )1; J = - ...m:... 
L 

(22) 

Integra.tion of Differential Equation 

llq,. 22 can be integrated if 1?. may be assumed constant 7 for a given 

flow regime, for example, a temporal mean value "51 • 

Then Eq. 22 becomes 

Performing the integration, 

Since ~u = O Tr 
and 

= - ..E.. 

- 2 = _...m:..._+c 21 .. 1 

when r = O; 

, pr 

L 

- ------

Integrating ~. 23 

u = 

When r = 0; u = u 
0 

therefore c2 = u0 

and 

u = 

21(/ + '7_ ) 

-2 pr 

- 2 pr 
u - --------

0 41(~ + ">c ) 

(23) 

(24) 
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From the continuity equation 

q = Au 

or 

(25) 

Substituting Fq. 24 in Fq. 25 and integrating 

q = 

Since - q 
u = -9:... = 

A ') 

7rR,.. 

u 
j_:5R2 

(26) = u -
0 81 (.J-L + Y/_ ) 

From the Karman-Prandtl equation for the velocity distribution in 

turbulent flow, it may be shown that the ratio of the maximum or center

line velocity (u0 ) to the mean velocity (u) is14b 

uo -=- = 1.43 IT+ 1 , 
u 

where f is the Darcy-Weisba.ch resistance coefficient as defined by 

Substituting Fq. 27 in Fq. 26 

ii = 
s1(/A-'+ 72 ) (1.43 rn 

Rearranging, 
i5R2 

'1_ = 8L(L43 lf)u - )A--

(27) 

(28) 

(29) 

(30) 
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Fq • .30 is the defining equation for the apparent eddy viscosity. A 

relatively simple expression results in which all quantities are readily 

measurable. It should be noted here that even at relatively low Reynolds 

numbers, the effect of the dynamic viscosity is slight. In which case 

the apparent eddy viscosity becomes a function of the pressure gradient, 

pipe size and friction factor. The primary importance of this fact is 

that the apparent eddy viscosity becomes essentially temperature indepen-

dent. 

B. MATHEMATICAL VERIFICATION 

Inspection of El• .30 shows that it is dimensiona1ly correct. 

A quick check on the rnathema.tical soundness of the preceding deri-

vation may be obtained by assuming the flow to be laminar. ( -vz = 0). 

Equation 26 then reduces to 
_R2 

i1 = u __ P __ 
0 81~ 

(26a.) 

For laminar flow conditions the well known parabolic velocity dis-

t · b t · 1 · i 4c h ri u ion app ies , w ence, 

Then ]q. 26a becomes 

or 

il = l u 
2 0 

u = xm2 
8:y<-

or 

which is the well known equation of Poiseui11e14d. 

(31) 

To further varify the superposition principle for turbulent flow and 

the exactness of Prandtl 7s mixing length theory, ]q • .30 will be derived 

from the Na.vier-Stokes equations. Consider the Na.vier-Stokes equation 



for the x direction8 as modified by Boussinesq15a; 

where 

and 

F 
X = _l_ 

I° I° 

2 Vu = 

Assuming a constant elevation, ~h = constant and 

Therefore, Fq. 32 reduces to 

Since F = ma according to Newton's second law, 
X 

d( ~ h) 
dX 

The density,/', was assumed to be constant, (i.e. fluid incom-

11 pressible) therefore, the divergence of the velocity vector must be 

zero and 

= 0 

20 

(32) 

= 0 0 

(32a) 

(32b) 

In addition, the velocity remains constant in the x direction due 

to the constant pressure gradient and uniformity of the flow section. 

Whence 

and 
du 
dt = 0 

and Fq. 32b becomes 



Transforming into cylindrical co-ordinates and assuming 

Integrating 

At 

and 

Integrating 

r = O; 

du 
~ = 

--1.E = - .JL 
dX L ' 

_ E = ( µ + '1 _l_ (~) 
L > r c3>r c:h 

Pr 
21(~ '7 ) 

du = 0 
~ 

p.r 
- 21(~+ ~) 

- 2 

= ~+ C 
dr 1 

whence c1 = o 

1.1 = - 41():.+ ~) + 02 

where r = O; 

and Fq. 24 results. 

u = u 
0 

and therefore c2 = u0 

u = 2 
u - pr 

o 41(,/" + 1 ) 

21 

(32c) 

(32d) 

(23) 

(24) 

Substituting into the continuity equation (Fq. 25) and integrating, 

F.q. 26 ma.y be derived. Making use of Eq. 27 for the ratio of the center

line velocity to the mean velocity F.q. JO is obtained: 
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rrn2 

= 8L(L43 {f)u - _/l (30) 

This is particularly interesting from the standpoint that as late 

as 1930 it was widely believed that the Navier-Stokes equations could 

not be applied to turbulent flow5b and the inclination was to discredit 

Boussinesq 1s concept of 11molar 11 viscosity (present day eddy viscosity) 15a. 



CHAPI'ER V 

EXPERIMENTAL DEI'ERMINATION 
OF 

THE VALUE OF THE APPARENT EDDY VISCOSITY 

Ex:amination of Eq. 30 indicates that for a pipe of given dimen-

sions and known roughness, measurement of the mean pressure gradient 

and the mean velocity will permit calculation of values of the apparent 

eddy viscosity for a given fluid. 

A. ~UIPM.Em' 

The pilot pipeline constructed by the personnel of the Pressure 

Surge Research Project was used to obtain the data reported herein. 

This system consisted of 2,082 feet of standard wrought iron pipe one 

and one half inches in diameter, two storage tanks (322 gallon capacity), 

an air compressor system (0-125 psi capacity), the necessary valves, 

fittings and gages, a Midwestern recording oscillograph and five Con-

solidated Engineering Type 4.Jll pressure cells (0-250 psi capacity). 

The pipeline was looped four times around the periphery of the 

Engineering Building basement, terminating at the storage tanks. The 

individual components were joined together by Groovagrip connections and 

securely anchored to concrete piers approximately ten feet on centers by 

means of wooden clamps. Figure 8 is a picture of the storage tanks and 

related equipment. The piping may be seen on the piers in the background. 

(A) is the air compressor; (B) is the west tank with gage glass on the 

side and air regulator valve on top; (C) is the east tank, identical in 

detail to the west tank; (D) is the differential mercury manometer used 

to determine the general range of pressure differential between the west 

23 



and east tanks. 

Figure 9 is a photograph of the instrument table showing (A) the 

Midwestern oscillograph, (B) the camera for the oscillograph and 

(C) the control panel. Figure 10a is a photograph of the Consolidated 

24 

Engineering Type 4.311 pressure cell. Figure 10b shows the strain gage 

wire of the internal mechanism of the cell. 

Figure 11 is a photograph showing a Baldwin type pressure cell 

(A) mounted opposite a Consolidated type pressure cell (B) in the pilot 

pipeline. At the extreme left of the picture is a quick opening valve. 

The errors in instrumentation and in reading the oscillograph 

traces are the governing factors in the experimental precision. An 

estimate of the probable er,ror in obtaining the experimental pressure 

amplitudes may be found by considering the following independent errors 

that may exist: 
+ 

1. The pickup linearity - -

pickup linearity = : 39 (250) = 
• (100) 

+ 
2. The pickup hysteresis = -

pickup hysteresis = ! .975 psi. 

3. The galvanometer hysteresis 

.39% of full-scale pressure, or 

+ .975 psi. 

.39% of full scale pressure or 

+ 
= - 1% of three inches deflection, 

or the galvanometer hysteresis = : .03 inches, which is approximately 

+ - 2 psi from the calibration curves. 

+ 4. The trace reading error is estimated as being - .03 inches 
+ (thickness of line on trace) or - 2 psi. 

If these estimates represent two standard deviations of the in-

dividual error, then the standard deviation of the total error is the 

square root of the sum of the squares of the standard deviations of the 
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individual errors. 

Oerror = 

This means that 95% of the experimental values should fall in a 

band -
+ 3.15 psi (i.e. two standard deviations) from their mean value. 

A typical instrument calibration curve is shown in Figure 12. 

The relationship between the mean velocity u and the mean pressure p 

was determined by plotting the differential pressure between the end 

points of the line under various steady flow conditions versus the mean 

velocity. The mean velocity was determined by measuring the time necessary 

for a given volume to flow and using the continuity relationship for the 

steady motion, i1 = l 
A 

The equation (see Figure 13) 

p = 3.24 iI L885 (33) 

is the resulting experimental relationship or calibratfon equation for 

this piepline connecting differential pressure (psi) and mean velocity 

(fps). 

B. PROCEDURE 

The data. necessary to determine the va.lue of the a .. ppar·ent eddy vis~· 

cosity ma.y be obtained a.s outlined below. Knowing the pipe dimensions 

and the fluid properties: 

L = 2082 feet 

D = l.61 inches = .134 feet 

~ = 1. 9l+ J.b. sec2 /ft4 (at 70° F) 

/ = 2.0L~ x 10·- 5 lb. sec/rt2 (at 70° F) 



Figure No. 8 
Experimental Apparatus • 

Figure No. 9 
Instrument Table 
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(b) 

Figure no. 10 
C. E. Pressure Pickup 

Figure No. 11 
Pickups Mounted in the Line 

(al 
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Fq. 30 reduces to 

= 2. 72 X 10- 5 p - ,/4 (34) 
u ff 

It is now apparent that the measurement of the mean pressure and 

the mean velocity will permit the evaluation of the expression for the 

apparent eddy viscosityo 

The mean velocity just prior to va1ve closure may be exactly deter

mined from the Allievi1 theory for the initial surge pressure due to 

sudden valve closure: 

or 

i1 = 
p 

0 

Consider a pipeJ.ine as shown in Figure 14a in which a fluid is 

flowing with a mean velocity u from the sending end to the receiving 

(35) 

endo At point O is a valve which may be closed instantaneouslyo Figure 

14b is a graphic representation of the pressure causing the mean flow in 

the pipeline, in which; 

lo PL is the pressure L feet from O or the pressure at t,he sending 

end prior to valve closureo 

2o P1 is the pressure at the valve prior to closure,, 

3 o p is the differential pressure causing a mean veloci·ty of u in L 

feet of pipe. 

When the valve is closed instantaneously1 the pressure at O will 

rise to a value of P2, a rise of P0 above P1• The surge of pressure will 

be propagated in the direc.tion of the sending endo At some point x 



distance from O, the rise above the hydraulic grade line is P 
X 
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Sending End Receiving End 

0-········------···---·- I- x -tD 
[ ------···· ----- 1 -------·-··----i 

(a) 

T r--_ 
I ----
1 - -- p 

1 lT 2 P I I 
x I I 

I I . 
I L 1 

I o f l I Ip = JOua 

p - - - ------------ -- ------ ----~l pl 1 I 
I 

0 
L X 0 

(b) 

Figure Noo 14 

Definition Sketch for Water Hammer 

Establishing a given flow in the pipeline system, closing the valve 

at O instantaneously and taking simultaneous traces (see Figl.ll'e 15 for 

typical trace of pressure at the valve) at the points O and x (equal to 

twice the length in this case), the values of P P and 11a 11 may be 
0 ' X 

determinedo P is the initial rise of pressure in psio P is the rise 
0 X 

above the hydraulic grade line at a distance X from O in psio The 

velocity of propagation is determined by measuring the time L'.1t re-
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= 6.x 
~t. quired for the surge to travel a known distance 6x ; then a 

The mean velocity may then be calculated from Fq. 35. These data are 

recorded in Table I. 

T 
p 

Figure 15 

Typical Trace 

Knowing the mean velocity, pipe diameter and the fluid properties, 

the Reynolds Number may be computed. The pipeline had been in use only 

a. short time before the data reported herein were taken. A rust inhibitor 

had been added a.t the outset. Therefore, the pipe was assumed to be 

smooth. Values of the Darcy-Wiesbach resistance coefficient 11f 11 were 

taken from Figure 108, wage 203 of "Elementary Mechanics of Fluids" by 

Hunter Rouse. Fq • .33 was used to determine the values of the mean 

pressure. These data are recorded in Table II. 

:Making use of the data in Tables I and II, values of the apparent 

eddy viscosity may be computed from Eq • .34. The dimensionless para-
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meter, 

(36) 

is plotted in Figure 16 versus the Reynolds Number. 

The dotted line in Figure 16 represents the results of Murphree•s10 

calculations as given below: 

Murphree 1s Data 

NR <p 

3,000 7.2 
5,000 11.7 

10,000 20.0 
25,000 42.0 
50,000 72.0 

100,000 121.0 

At a Reynolds Number of 2,100 (u = .16 5 fps and _/A- = -5 2.04 X 10 

lb.sec/ft2) and 11f 11 equal .03, p as determined from Fq. 33 is .107 psi. 

M.lrphree 1s data. gives a value of 5.65 for q>, or ~ = 11.52 x 10-5 

lb.sec/ft2 • Substituting this value into Eq. 34 a value of .142 psi is 

obtained for p. The percentage difference from the actual value is: 

A check of Figure 16 shows that Murphree's data will indicate too large 

a mean pressure drop below a Reynolds Number of about 13,000 and too 

small a value above this point. 

Since Eq. 33 was used to get the p used in Fq. 34 in calculating i1_, 

substitution of any values from Figure 16 back into Eq. 34 will give the 

same result as Eq. 33. 
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TABLE I 

BASIC EXPERIMENTAL DATA 

Run p p a u 
No. o. x. fps fps psi psi 

1 104.5 86.2 4200 1.85 
2 111.5 90.7 4200 1.97 
3 116.2 94.2 4200 2.05 
4 90.5 76.7 4200 1.60 
5 107.0 88.5 4200 1.89 

6 102.0 83.3 4200 1.80 
7 109.0 88.2 4200 1.93 
8 76.7 66.6 4200 1.36 
9 104. 5 86.o 4200 1.85 

10 136.7 108.5 4380 2.31 

11 141.2 110.7 4380 2.39 
12 129.5 10.3.7 4380 2.19 
1.3 150.8 117.8 4380 2.55 
lL~ 108.2 90.6 L~380 1.8.3 
15 129.5 103.7 4380 2.19 

16 125.0 102.0 4.380 2.12 
17 104.5 85.5 4.380 L77 
18 115.5 9~.2 4.380 J..95 
19 89.6 7 .5 4.380 1.52 
20 7.3.0 6.3.6 4.380 1.2.3 

21 94.2 80.2 l+.380 1.59 
22 84.7 7.3.0 4.380 L43 
2.3 84.7 7.3.0 4.380 1./,..3 
24 58.9 5.3.1 4.380 .99 
25 82.5 70.6 4.380 1.39 



Run 
No. 

26 
27 
28 
29 
JO 

Jl 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

TABLE I (cont. ) 

BASIC Ex:PERIMENTAL DATA 

p p 
o. x. psi psi 

145.0 113.J 
1J4.l 108.1 
173.0 132.0 
166.5 125.8 
151.2 118.6 

166.5 129.7 
103.8 86.6 
121.1 99.5 
110.4 90.9 
170.2 130.2 

156.1 122.0 
150.2 119.7 
130.3 106.8 
105. 7 89.2 
132.8 105.7 

124.5 100.3 
115.0 96.2 

91,,..0 80.8 
110.0 91.8 
92.6 78.6 

82.4 70.5 
83.8 72.0 
88.2 76.J 
67.6 59.6 
84. 5 7J.5 

35 

a u 
fps fps 

4380 2.45 
4380 2.27 
4380 2.93 
4380 2.82 
4380 2. 56 

4380 2.82 
4380 1.76 
4380 2.04 
4380 1.87 
4450 2.84 

4450 2.60 
4450 2. 50 
4450 2.17 
4450 1.76 
Ll-450 2.21 

4450 2.08 
4450 1.92 
4470 1.57 
4470 1.83 
4470 1.54 

4470 1.37 
4470 1.39 
4470 1.46 
4470 1.12 
4470 1.41 



Run NR 
No. 

X 104 

1 2.36 
2 2. 51 
3 2.61 
4 2.04 
5 2.41 

9 2.29 
7 2.46 
8 1.74 
9 2.36 

10 2.95 

11 .3.05 
12 2.79 
13 3.25 
14 2.33 
15 2.79 

16 2.70 
17 2.26 
18 2.49 
19 1.94 
20 1.57 

21 2.0.3 
22 1.82 
2.3 1.82 
24 1.26 
25 1.77 

TABLE II 

DEI'ERMINATION OF THE 
APPARENT EDDY VISCOSITY 

f p 
psi 

.0255 10 • .32 

.0250 11.64 

.0248 12. 50 

.0265 7.86 

.0254 10.75 

.0256 9.83 

.0253 11.18 

.0276 5.79 

.0255 10.32 

.0242 15.70 

.0240 16.70 

.0245 11~.20 

.0236 18.80 

.0255 10.10 

.0245 14.20 

.0253 13.40 

.0258 9. 50 

.0252 11.40 

.0268 7.12 

.0282 4.78 

.0265 7.76 

.0272 6 • .35 

.0272 6 • .35 

.0295 .3.18 

.0272 6.01 

36 

"'rr 
lb.se~/ft2 ~ 

X lQ-5 

9.3.26 45. 70 
99.66 48.80 

103.06 50.60 
80.16 39.30 
94.96 46. 50 

90.86 44. 50 
97.06 47.60 
67.56 3.3.10 
93.26 45.70 

116.96 57.30 

120.46 59.10 
110.96 54.30 
128.46 63.00 

92.06 45.20 
110.96 54.30 

105.96 51.80 
88.96 43. 50 
98.26 48.15 
75. 76 37.10 
61.06 29.90 

79.56 39.00 
71.16 .34.85 
71.16 34.85 
48.96 2.3.95 
69.16 3.3.85 



Run N 
Noo R 

4 
X 10 

26 Jo23 
27 2.89 
28 3. 7L1. 
29 3o60 
30 3o27 

31 3.60 
.32 2.25 
.33 2o60 
34 2 • .39 
3 5 3.62 

36 Jo.32 
37 Jol9 
.38 2.77 
39 2.25 
40 2.82 

L1-l 2.65 
42 2.45 
4.3 2.00 
L1-4 2 • .33 
45 L96 

46 L75 
47 1.77 
48 lo86 
49 1.43 
50 L80 I 

TABLE II (Conto) 

DEI' ERMINAT ION OF THE 
APPARE!IJ"'T EDDY VISCOSITY 

f p 
psi 

00237 17 0 50 
.021+3 15020 
.0227 24060 
00230 22090 
002.36 l9ol0 

.0230 22.90 

.0260 9.40 
00250 12.11-2 
.0255 10.56 
.0230 23.30 

.0235 19.62 

.02.37 18 • .35 
00245 1.3095 
.0258 9.1+0 
0021+5 14042 

00248 12087 
00252 11.10 
.0265 7.60 
.0255 10.10 I 

.0265 7oJ4 

00271,,. 5.86 
0027.3 6.04 
0026(5 6061 
.02E56 

I 
4o02 

.0272 6.20 I 

37 

'{ 
lb.sec/ft2 p 

X 10-5 

124006 I 60.90 
115.06 56. 50 
149046 73030 
14.3066 700 50 
1.30006 63.80 

14.3066 700 50 
88.06 43.10 

102086 50oJO 
94 • .36 ~-6010 

145016 7lo20 

1.31. 76 64. 55 
127.66 62. 50 
109086 5.3 0 80 
88.46 43020 

111.66 54.70 

104086 5LL1-0 
97046 47.70 
78.96 .38.70 
92.16 45.10 
77.76 J8ol0 

68.16 J.3 o l+O 
69oJ6 34000 
720 56 35060 
55.76 27oJO 
700 56 34060 

-· 
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Figure No. 16 

p vs. Reynolds Number 



CH.A.Pr ER VI 

ElCPER.IMEl\i'TAL VERIFICATION OF THE VALUE 
OF 

THE APPARENT EDDY VISCOSITY 

In the development of Fq • .30, the quantity f' v 1u 1 was found to 

represent a rate of momentum transfer. Therein, u 1 , may be regarded as 

equal to ~ ~ 1 where .1 is the distance between zones of flow or the 

Prandtl mixing length. Therefore, 1 v1°u1 may be written /°;;;J ! ~ . 
But ~ ;;;J is mass times velocity times length or ('E which is -rz. .. 

(see Fq. 4) or 

(18) 

The fluid density, 1 , is the only known quantity in Fq. 18 •. 

Since the deviation from the mean velocity, v 1 , and the Prandtl mixing 

length, .l, are incapable of mea.surement, 1· cannot be calculated 

directly • 

.All quantit:i.es in Fq," 30 are known or may be readily deterxnined. 

Hence, -~ may be calculated. To verify this va1ue soxne quantity in~· 

valving the concept of '1 , which 111l:l,Y a.lso be evaluated by other means, 

is needed. 

The a.ttenua.tion coefficient, o<, fox· the damping of a. pre~3sure 

wa.ve traveling in a liquid filled conduit presents a. st,r1,.ight forward 

a.pproach. For a damped oscillatory motion due to a. unit pulse or water 

hammer, 

p 
X 

= p 
0 

(.37) 

where P is the initial pressure rise, P is the pressure rise above 
0 X 

the hydraulic grade line at some distance x and ~ is the damping or 

39· 
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attenuation coefficient. For x = 21 

p 1 .lf = p 2°' 1 
0 e 

or 

h 
p 

2 c:><...1 = ....Q. 
P, 

X 

whence 
p 

o<.= 1 h_Q 
21 P 

(.38) 
X 

The experimental values of ex. in Table III are obtained from the 

values of P and P in Table I. These data are plotted in Figure 17. 
0 X 

The line was fitted by the method of least squares. 

The theoretical expression for the attenuation coefficient, pro

posed and verified by Waller, Fristoe et a117, is 

0(. :::: 
npA 

w 21q ;°a. 

But from Fq. 30 

E = (;,A-+ :!'l H 8 H 1. £i:.2 1f}u 
L 

R2 

whence o<.. in terms of the apparent eddy viscosity is 

= 4n(,fil + "7 ) (L4.3 f'Q 
l°aR2 

(39) 

(40) 

(41) 

The values of o{K in Table IV were calculated from the data in 

Table II. The value, c.x1 .S., is the least squares value of ocexp. 



for a given ~ value. The percentage difference shown in Table IV was 

based on the least squares value of o(exp. 

It should be noted that all values of O(K were less than o<L.S •• 

This is to be expected since all higher order differentials were neglected 

in the Prandtl mixing length theory. A further examination of all the 

data and the conditions under which it was taken reveals that neglecting 

differentials of higher order is of little consequence. Runs one through 

nine were made in early March when the building was closed to the outdoors 

and heated to approximately 70° Fahrenheit. The remaining runs were taken 

in late March, April and May after fans had been installed in the basement, 

it was not closed to the outdoors and the temperature was somewhat above 

70° F. 

The bulk modulus of water increases wi'th rising temperatm~e. An in-

crease in the bulk modulus gives an iz1crease i.n the velocity of propa.ga-

tion. Inspection of Fq. 41 reveals that this would reduce the value of 

Further, an increase in the velocity of propagation results in an 

increase in the mean velocity and the mean pressure. The dynamic viscosity 

decreases with rising temperature. The net result being an increase in the 

apparent eddy viscosity and the Reynolds number. (see Fq. 33 and 34). 

Had the temperature been noted and the proper corrections made, the re-

sult would most likely have been comparable to that of the first nine runs. 

As noted in Chapter V, the maximum probable error in measuring P 
0 

+ ' was - J.15 psi. 
+ 

A change of - 3 .15 psi in P would result in a variation 
0 

- + 
in '(_ of approximately - J.50 percent and a corresponding change in o(K 

+ 
of about - JoOO percent. 



42 

Referring again to runs one through nine, even if all the discrep-

ancies are charged against the theory, it can only be concluded that the 

results are within the precision of the instriunentation and Fq. 41 

= 4n(,A + :Z ) (1.43 -Jr) 
/0 aR2 

is correct and therefore, Fq. 30 

for the apparent eddy viscosity is valid. 



Run 
No. 

1 
2 
.3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
1.3 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 

,24 
l 25 

TABLE III 

ECPERIMENTAL DEI' :ERMINAT ION 
OF THE ATTENUATION COEFFICIENT 

p p 
....Q. .b( ....Q.) 
p p 

X X 

1.215 .1949 
1.2.30 .2070 
1.2.35 .2110 
1.180 .1658 
1.210 .1910 

1.225 .20.30 
1.237 .2125 
1.152. .14].5 
1.215 .1949 
1.260 .2.310 

1.275 .2430 
1.250 .22.35 
1.280 .2470 
1.195 .1782 
1.250 .22.35 

1.225 .20.30 
1.223 .2010 
1.225 .20.30 
1.172 .1590 
1.148 .1.383 

1 ... 175 .1615 
1.160 .1486 
1.160 .1486 
1.110 .1045 
1.168 .1555 

43 

o<.exp. J 
ft-l X 10-: 

I 

4.68 
4.97 
5.07 
.3.98 
4.59 

4.88 
5.11 
3.40 
4.68 
5.54 

5.8.3 
5.37 
5.9.3 
4.29 
5.37 

4.89 
4.$4 
4q88 
3.83 
.3 • .32 

.3.89 

.3. 57 

.3. 57 
2.51 
.3.74 



Run 
No. 

26 
27 
28 
29 
.30 

.31 

.32 

.3.3 
34 
.35 

.36 

.37 

.38 

.39 
40 

41 
42 
4.3 
44 
45 

46 
47 
48 
49 
50 

TABLE III (Cont.) 

EXPERIMENTAL DErERMINATION 
OF THE ATTENUATION COEFFICIENT 

p p 
_Q_ Jn(...9.) p p 

X X 

1.280 .2470 
1.240 .2155 
1 • .310 .2710 
1 • .324 .2810 
1.275 .24.30 

1.285 .2510 
1.200 .1825 
1.217 .1967 
1.215 .1955 
1 • .308 .2685 

1.280 .2470 
1.255 .2275 
1.220 .1995 
1.184 .1690 
1.255 .2280 

1.240 .2150 
1.195 .1785 
1.16.3 .1512 
1.200 .1825 
1.179 .1650 

1.168 .1555 
1.164 .1520 
1.156 .1450 
1.1.35 .1265 
1.150 .1400 

44 

o<.exp. 

ft-l X 10-5 

5.94 
5.18 
6. 50 
6.76 
5.85 

6.0.3 
4 • .39 
4.72 
4.70 
6.46 

5.94 
5.47 
4.80 
4.06 
5.48 

5.17 
4.29 
.3. 6.3 
4 • .39 
J.97 

.3.74 
J.65 
.3.49 
.3.04 
.3 .J6 
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Run 
No. 

1 
2 
.3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

TABLE IV 

DEI'ERMINATION OF THE ATTENUATION 
COEFFICIENT IN TERMS OF THE APPARENT EDDY VISCOSITY 

o( K o( 
L.S. 

ft-l X 10-5 ft-l X 10-5 

4.48 4. 50 
4.74 4.75 
4.89 4.90 
.3. 94 4.00 
4. 55 4. 59 

4 • .37 4.42 
4.65 4.65 
3.41 .3.47 
4.49 4.51 
5.2.3 5 .4.3 

5.37 5.59 
5.00 5.20 
5.66 5.90 
4.25 4.49 
5.00 5.20 

4.84 5.00 
4.13 4.35 
4. 50 4.7.3 
3.60 .3.81 
3.00 .3.18 

J.75 J.97 
3.41 J.61 
3.41 3.61 

I 
2.4$ 2.65 
3 • .32 J. 52 

46 

% Difference 
o<.K-°'L c 

( 
0 uo )lQQ 

o(. 
Lo So 

- .45 
- .20 
-· .20 
-L50 
- .87 

-1.13 
- .oo 
-L73 
- .44 
-J.68 

-.3.93 
-J.85 
-4.07 
-5 • .34 
-.3.85 

·-3.20 
-5.06 
-4.86 
-5. 52 
-5.66 

-5. 51+ 
-5. 54 
-5. 54 
-6.41 
-5.68 



Run 
No. 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

TABLE IV (Cont. ) 

DEI'ERMINATION OF THE ATTENUATION 
COEFFICIENT IN TERMS OF THE APPARENT EDDY VISCOSITY 

~K 
o( 1.s. 

ft-l X 10-5 ft-l X 10-5 

5.40 5.73 
5.16 5.38 
6.45 6.70 
6.25 6.47 
5.74 5.97 

6.25 6.47 
L~.11 4.30 
4.68 4.89 
4.35 4.55 
6.20 6. 52 

5.71 6.00 
5.55 5.85 
4.86 5.15 
4.04 4.32 
4.95 5.24 

4.67 4.99 
4.39 4.67 
3.66 .3.95 
4.17 4.48 
3.60 3.90 

3.22 3. 50 
3.27 3. 54 
3.38 3.66 
2.71 2.95 
3.32 3. 59 

47 

% Difference 
ex-~ 

( K L.S.)100 
o( 

L.S. 

-5.76 
-4.09 
-3.73 
-3.40 
-3.85 

-3.40 
-4.42 
-4.30 
-4.39 
-4.91 

-L~.84 
-5.13 
-5.64 
-6.50 
-5. 51+ 

-6.l+O 
-6.00 
-7.34 
-6.92 
-7.69 

-8.oo 
-7.63 
-7.65 
-8.14 
-7.52 



CHAPTER VII 

APPLICATIONS OF THE 
APPARENT EDDY VISCOSITY 

As noted in Chapter VI, there are two quantities in the defining 

equation for ' that are incapable of measuremento Therefore, in using 

another quantity, involving the concept of "'f[ , which may also be 

evaluated by other means, a direct application of "Y[ is indicated. 

A, ATTENUATION COEFFICIENT 

The attenuation coefficient may be determined from experimental 

measurements and Fq. 38, 

The Waller theory gives 

°'-= l.. Jnpo 
21 P 

= 
npA 

2Lq~a 

X 

Fq. 41, involving the concept of ii. , indicates 

·- 4n( :,A+ !i )(1.43 . .ff] 

f°aR2 

(38) 

(39) 

(L,l) 

Waller, Fristoe eta118 demonstrated that Fq. 39 successfully 

predicted the actual happenings as indicated by Fq. 38. In Chapter VI 

it'was shown that Fq. 41 gave values of ol.. comparable to Eq. 38 within 

the limits of the instrumenta.tion. 

Therefore, Eq. 41 ma.y be regarded as a valid direct application 

of the concept of the apparent eddy viscosity to the attenuation of a 

48 
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pressure wave traveling in a liquid filled conduit. In addition, Fqo 41 

further verifies the Waller theory as expressed in Fq. J9. 

B. HF.AT TRANSF]R COEFFICIENT 

In 1874, Osbourne Reynolds16, in his treatise "On the Ex:tent and 

Action of the Heating Surface for steam Boilers" suggested that momentum 

and heat in a fluid are transferred in the same way. He concluded that 

in geometrically similar systems a simple proportionality relation must 

exist between fluid friciton and heat transfer. Since that time, par-

ticularly in recent years, many authors have proposed existence of an 

apparent thermal conductivity due to the eddy motion in fluid flow. 

The relationship in common use today for the heating of fluids in 

turbulent flow through circular conduits is the Dittus-Boelter6' 9 equa-

t:1.on, 

(42) 

where his the film coefficient of heat transfer, k is the thermal con

ductivity of the fluid, op is the specific heat at constant pressure and 

all other terms are as previously defined. It should be noted that the 

expression is in dimensionless form. 

Nusselt number = NN = !ll2 (4.3) 
k 

Reynolds number =· NR = uD~ (44) 
,P-

Pr and tl number Np = P 0P 
(45) = 

k 

Fqo 42 was derived by the methods of dimensional ana.lysis. The 

constant and the exponents represent the results of correlating a large 
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amount of experimental data. 

Assuming 

(46) 

and proceeding with a dimensionaf analysis: 

Variable Symbol Heat Time Length Mass Temp. 
H T L M e 

-·-

Heat Trans-
h fer Coeff. 1 - 1 - 2 0 - 1 

Fddy 
~ 0 - 1 - 1 1 0 Viscosity 

Dynamic 
~ 0 

Viscosity 
- 1 - 1 1 0 

Thermal k 1 - 1 - 1 0 - 1 Conductivity 

Diameter D 0 0 1 0 0 

Specific 
C 1 0 0 - 1 - 1 Heat p 

Constant C 0 0 0 0 0 

Fq. 46 may then be written 

(47) 

or the dimensional equation becomes 

If Fq. 48 is to be dimensionless, exponents of dimensions of the 

left member must equal exponents of the dimensions of the right member .. 
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Thus 

H: 1 = b + C 

T: - 1 = - b - d - e 

L: - 2 = a - b - d - e 

e: - 1 = - b - C 

M: 0 = - C + d + e 

Solving these equations simultaneously it is found that 

a = - 1 

b = 1 - C 

d = C - e 

and Fqo 47 becomes 

(49) 

This equation is identical to the Dittus-Boelter equation except 

that ;l = {? replaces the Reynolds number. An expression directly 

. connecting fluid friction ('iz) and heat transfer (h) is thus obtained. 

Assuming that the Nusselt number varies as the four-tenths power 

of the Prandtl number Fq. 49 becomes, 

For a mean temperature of 70° F, ,IL = 2.36 lb./hr.ft., 

c = 1 B/lb.° F, k = .343 B/hr.ft.° F and D = .134 ft., 
p 

Fq. 42 becomes 

h. = .1275 (NRr 8 
in 

(50) 

(51) 
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For the various Reynolds numbers shown, the following heat transfer 

coefficients are obtained: 

NR h. B/hr.ft. 2o F .cI? in 

10,000 202 18.6 
20,000 .152 38.3 
30,000 486 58.7 
40,000 613 80.0 
50,000 732 101.0 

The values of the heat transfer coefficient are plotted versus 4'1 

in Figure 19. The values of p corresponding to the given Reynolds 

number as obtained from runs one through nine are plotted in Figure 18. 

From the plot in Figure 19, 

at a Prandtl number of 6.88, 

k = • 343 B/hr • ft.° F. 

Whence 

hD 21.6 = k 

h. = 21.6 in 

T = 70° F, 

1.765(~ 
.343) 

Substituting these values in ]q. 50 

1> . 765 

D = .134 ft. 

8.45 ~ .765 = 

ht = C(~cp).4().)e = 8.45 p .765 

C(6.88) 04 = 8.45 

C = 3.91 

Whence 

hD ~c 0 4 ~ .765 
= 3.91 (~ P) ()A-) k 

or 
3. 91 (Np,) .4( ~ )° 765 NN = . 

and 

. 

( 52) 
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T? demonstrate the validity of this expression two examples are shown 

comparing the results of the Dittus-Boelter equation, Eq. 42, and Eq. 52 

ifi;ol ving ~ • 

6a Example 1 

From Fq. 52 

80° F -~~ ____ w_a_t_er ____ d--~ 
- 120° F 

T = 100° F mean 

I.D. = .25 inches 

1' = .0268 ft. 2 /hr. 

u = 4750 ft./hr. 

NR = .3685 

k = • .359 B/hr.ft.° F 

c = 1 B/lb.° F p 

NP = 4.63 

h = 512 B/hr.ft.2° F. (Dittus-Boelter Eq.) 

~ = 6.4 (Figure 18) 

h 

h = (67.25)(1.847)(4.14) 

h = 514 B/hr.ft.~° F 



6b Ex:a.mple 2 

From F.q. 52 

700 F --( ______ W_at_e_r ____ _..,.,J___. {)_ {J 190° F 

T mean 

I.D. 

h 

h 

h 

= 1.30° F 
2 = .0201 ft. /hr. 

= 4 inches 

= 4640 ft./hr. 

= 77,000 

= . .372 B/hr.ft.° F 

= 1 B/lb.° F 

= .337 B/hr.ft. 2° F (Dittus-Boelter F.q.) 

= 158 (Figure 18) 

= C .372) (3.91) (3.33) "4(156). 765 

A.. 
12 

= (4.36)(1.618)(48.3) 

= 341 B/hr.ft. 2° F 

% Diff = ( 341 .. 337.)(100) = + 1.19 % 0 

337 . 

The data reported in this thesis were taken at a temperature of· 

approximately 70° Fon a 1.61 inch inside die.meter pipe using water, 

over a Reynolds number range of 12,600 - 37,400. In :Ebcample 1, the 

fluid is water, T equals 100° F, I.D. = .25 inches and mean 

NR = . .3685. In Example 2, the fluid is water, T = 1.30° F, mean 

I.D. = 4 inches and NR = 77,000. 
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Thus, from this brief analysis, it appears that: 

1. The heat transfer coefficient for the heating of water in 

turbulent flow in a circular conduit may be directly expressed as a 

function of the apparent eddy viscosity, and 

2. The apparent eddy viscosity is essentially independent of 

temperature and dependent only on the flow regime. 
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CHAPI':ER VIII 

SUMMARY AND CONCLUSIONS 

Many attempts have been made to relate fluid friction, momentum 

transfer and heat transfer. All to frequently the results have been in 

such complex form that they are not any great assistance to the practicing 

engineer. 

The expression (Fq. 30) for the apparent dynamic eddy viscosity 

developed herein is directly solvable and involves only the dimensions of 

the conduit and well known fluid properties. This expression is a direct 

relationship between momentum transfer and fluid friction. 

From the results of the mathematical derivation presented in 

Chapter IV and the experimental work presented in Chapter V it can only 

be concluded that: 

1. The principle of superposition holds for this case and the total 

velocity at a point is equal to the sum of the mean velocity at that point 

and the deviation from the mean velocity at that point; 

2. The Prandtl mixing length theory, although not mathematically 

rigorous, is valid. While it is difficult to conceive of a mass of fluid, 

however small, traveling a given distance and then suddenly losing a part 

of its momentum. to the surrounding flow in a continuous, homogeneous and 

isotropis fluid, the Prandtl theory does satisfactorily account for the 

secondary motion and is therefore valid. 

J.· The Navier-Stokes equations are equally applicable to turbulent 

as well as laminar flow since the temporal mean value of the apparent 

dynarnic eddy viscosity accounts for the additional dissipative forces at 

work in the fulid; 
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4o - The effects of neglecting higher order differentials is 

negligible. 
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In addition, the shearing stress at any point in a fluid in tur

bulent motion may be determined directly from Fqo 2 for a given velocity 

distribution since a sufficiently exact value of the apparent dynamic eddy 

viscosity is now available. To date, this has not been possible as no 

data were available on the contribution of the eddy motion to the dissipa

tive action in the fluid. 

The results of applying the concept of the apparent dynamic eddy 

viscosity to the attenuation of a pressure wave in a liquid filled conduit 

(see Eqo 41) not only further verifies the Waller theory in this regard 

but gives another method of determining the attenuation coefficient. 

The analysis presented in Chapter VI shows the applicability of 

momentum transfer to heat transfer work. From the limited amount of data 

available it appears that the resulting expression for the transfer of 

heat from the pipe wall to the fluid flowing therein is valid and that 

- the apparent dynamic eddy viscosity is essentially independent of tempera

ture. 

The mathematical procedure used is perfectly general and could be 

applied to flow through annuli and flow past flat plates providing velocity 

distributions are known for these flow regimes. It now remains for 

further experimental work to be done to obtain values of the apparent 

dynamic eddy viscosity over a wider range of _Reynolds numbers, with diff

erent fluids and at various temperatures to substantiate the results re

ported herein. 
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