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ABSTRACT OF THESIS 
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Edmond, Oklahoma 

 

NAME: Roxanna Q. Grove 

TITLE OF THESIS: The Biosynthesis Reaction of Hypotaurine to Taurine 

DIRECTOR OF THESIS: Steven J. Karpowicz, Ph.D. 

PAGES: 118 

ABSTRACT:  

Taurine (2-aminoethanesulfonic acid) is one of the most abundant amino acid-

derived molecules in humans and most eukaryotes. Despite its many roles and functional 

properties, the biochemical mechanisms and the reaction of hypotaurine to taurine are 

still unknown. This study focuses on the biosynthesis reaction of hypotaurine to taurine in 

vivo and in vitro by using bioinformatics tools, enzymatic assays, and analytical 

techniques. 

Transcriptional co-expression analysis of 26 tissue and organ samples revealed 

Flavin- Monooxygenases (FMO) that seemed to be suitable candidates to catalyze the 

reaction of hypotaurine to taurine. However, enzymatic assay showed no chemical 

reaction on HPLC analysis after adding cofactors NAD+ and NADPH to HuH 7 

hepatoma cells and 11 day-old embryonic chicken livers. Enzymatic assays failed to 

confirm an enzyme for the reaction of hypotaurine to taurine.  

Analytical assays were used to determine the spontaneous reaction of hypotaurine 

to taurine with Reactive Oxygen Species (ROS). HPLC, ESI-MS, NMR, FTIR and 
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Raman assays were applied to investigate the reaction of hypotaurine and taurine with 

ROS such as superoxide, hydrogen peroxide, and singlet oxygen. HPLC and ESI-MS 

tests confirmed that hypotaurine did not react with singlet oxygen. However, various tests 

confirmed that hypotaurine reacted with hydrogen peroxide and superoxide. Analytical 

assay results revealed a novel molecule in the reaction of hypotaurine or taurine with 

superoxide. FTIR, NMR and Raman spectroscopy confirmed the characteristics of the 

novel molecule, peroxytaurine. Chemical methods to detect the peroxide in peroxytaurine 

was attempted with acridine, pyridine, and iron.  
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Chapter 1 

Introduction and Background 

I. Introduction 

  Taurine (2-aminoethanesulfonic acid) is an organic compound with the chemical 

structure C2H7NO3S (Figure 1.1). It is usually mischaracterized as an amino acid 

although it contains a sulfonic acid group rather than a carboxylic acid group [1]. 

Technically, it is a sulfonic acid that also contains an amino group. Taurine is one of the 

most abundant amino acid-derived molecules in cells, and it is implicated in multiple 

physiological and biological functions [2]. It is ubiquitous in animal tissues in the range 

of 1 to 50 mM, although it is highly concentrated in neutrophils, liver, brain, eye, heart 

and skeletal muscles. Taurine constitutes 0.1 percent of adult human body weight [3]. It 

forms a colorless crystal compound as a solid and has a molecular weight of 125.15 

g/mol. Taurine is soluble in water but almost insoluble in ethanol and ether. Both active 

groups in taurine, the sulfonic acid and the amine, may be ionized. Taurine is a zwitterion 

at pH 7.4, and it is highly hydrophilic with low lipophilicity. The pKa values of taurine at 

25°C have been determined to be 1.5 for the sulfonic acid and >9 for the amine [4]. It is 

the end-product of the metabolism of cysteine and other biological molecules. 

Stipanuk et al. [5] provided a detailed assessment of how the processes resulting 

in taurine production operate. Taurine synthesis occurs in the liver via a cysteine sulfinic 

acid pathway. In human beings, taurine is produced in hepatocytes. L-cysteine is oxidized 

to cysteine sulfinic acid by the enzyme cysteine dioxygenase. Other analyses identify 

how taurine production operates within the liver, specifically. Stipanuk et al. [6] observed 

that taurine-specific metabolism takes place in the liver and that the liver is the first organ 
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to respond to the influx of sulfur amino acids from meals, disposal of sulfur amino acids, 

and release of taurine and glutathione into plasma. The enzymes cysteine sulfinate 

decarboxylase (CSAD) and cystamine dioxygenase (ADO) activities are identified more 

frequently in the liver than in other tissues [7]. 

Initially, taurine was isolated from ox bile by two German scientists, Leopold 

Gmelin and Friedrich Tiedemann, in the year 1827. Yancey et al. [8] noted that within 

many mammal species, taurine is a conditionally essential amino acid-derivative during 

fetal development. It is viewed as a non-essential nutrient in rodents, but an essential 

nutrient in cats. Other research seeks to differentiate taurine production processes in 

humans from other mammals. Sturman and Gaull [9] studied the concentration of taurine 

in humans and monkeys throughout the gestation, birth, and neonatal life. Their study 

showed that the taurine concentration was 2-fold higher in the human fetal liver than in 

the mature human liver. After birth, the level declined and remained the same for the rest 

of the lifetime. It indicated that the potential gene is on and highly active during the fetal 

developmental stage and suppressed after birth. Newborn mammals are unable to 

synthesize a sufficient amount of taurine and have to rely on dietary supply. The human 

infant obtains taurine from mother's breast milk. Human milk contains a high-level 

concentration of taurine. Those who do not receive mother's milk require food with 

taurine supplementation. Taurine deficiency in the embryo is associated with 

consequences such as growth retardation, retinal degeneration, and cardiomyopathy [10]. 

Taurine deficiency in neonates causes deleterious effects on retina and brain 

development. Excessive taurine deficiency can also result in certain rare diseases such as 

cardiomyopathy, renal dysfunction, developmental abnormalities and retinal neurons 
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damage. Taurine concentrations can be measured in blood plasma and urine. Full-term 

infants showed a substantially higher-level concentration of taurine in urine than 

premature infants [4]. Humans have a low capacity to synthesize taurine after birth and 

must rely on intestinal uptake from meat and seafood. Vegans show a low concentration 

of taurine.  

The primary dietary sources of taurine in healthy humans are mainly from meat, 

seafood, egg, and milk. There is no, or negligible taurine content detected in cereals, 

peanuts, beans, grains, nuts, seeds, fruits, and vegetables. Hence, vegetarians have lower 

plasma concentrations of taurine. Its primary precursor is cysteine, although the ability to 

synthesize taurine widely varies among species. An adult human synthesizes an average 

of 0.4 to 1.0 millimolar of taurine per day. Under stress, the synthesis of taurine in 

humans can be impaired. Hence, taurine may be regarded as a conditionally-essential 

amino acid derivative [11]. 

Since taurine is involved in the process of bile acid conjugates, deficiency of 

taurine plays a part in the pathogenesis of cholestasis, a condition where bile cannot flow 

from liver to the duodenum. Taurine supplementation altered the pattern of secretion and 

conjugation of the bile acid to facilitate the bile flow and prevent hepatotoxic bile acids 

stasis [11]. 

Taurine plays a crucial role in detoxification, osmoregulation, intracellular 

calcium level modulation, and cell membrane stabilization. It can regulate many 

physiological functions that can alternate due to a variety of clinical conditions [12]. 

Despite that its mechanism of action is not comprehended, taurine seems to have essential 

cardiovascular effects as well as influences central nervous system (CNS) 
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neuromodulation, platelet aggregation, retinal photo-receptor activity, antioxidant 

activity, endocrine functions, cell growth and differentiation. 

II. Biosynthesis of Taurine 

Endogenous synthesis of taurine mainly occurs in the liver via multiple steps 

involving oxidation by enzymes as illustrated in Figure 1.2. Dietary methionine can be 

metabolized to cysteine and cysteine is the precursor for taurine [13]. The enzymes 

involved in the pathway of conversion from cysteine to taurine are cystamine 

dioxygenase (ADO), cysteine dioxygenase (CDO1), cysteine sulfinate decarboxylase 

(CSAD), glutamate decarboxylase (GAD), and glutamine decarboxylase-like (GADL). 

Two of the enzymes of the cysteine metabolism pathway, cystathionine synthase and -

cystathionase, and the taurine pathway enzyme CSAD require the cofactor pyridoxal 5’ 

phosphate (vitamin B6)) for full enzymatic activity. Dietary deficiency of vitamin B6 can 

lead to taurine depletion due to reducing taurine synthesis [14, 15].  

In humans, taurine is produced in hepatocytes from methionine and cysteine 

through hypotaurine. L-cysteine is derived from methionine and serine. L-cysteine is 

oxidized to cysteine sulfinic acid by enzyme cysteine dioxygenase (CDO1). Cysteine 

sulfinic acid is then decarboxylated by the enzyme cysteine sulfonate decarboxylase 

(CSAD) to form hypotaurine. The conversion of hypotaurine to taurine was still unclear 

at the beginning of this thesis projects.  

 In astroglial cells, the pathway of conversion of hypotaurine to taurine seems 

rather slow. Hypotaurine is the main product of metabolism of cysteine in astroglial cells. 

Brand et al. [16] hypothesize that there is the possible movement of the two vital organic 

osmolytes, hypotaurine and taurine, to the neurons from the astrocytes. Synthesis of 
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hypotaurine in the neurons from cysteine is quite unlikely since the localization of the 

enzyme cysteine sulfinate decarboxylase, which is essential for this role, is in the 

astrocytes rather than in the neurons. Hence, as suggested by Brand et al. [16], the 

hypotaurine generated in the astrocytes may act as a precursor for taurine synthesis 

within the neurons of other brain cell types.  

III. Distribution of taurine 

Taurine is not incorporated into the body’s proteins. Only a small proportion of it 

occurs in the brain as small peptides such as glutamyl-taurine [17]. It is mostly free in 

solution and is found in high concentration in cells and tissues like platelets, white blood 

cells, retina, liver, central nervous system, brain, skeletal muscle, and heart, which are 

prone to produce oxygen free radicals [18]. Taurine is involved in multiple biochemical 

reactions although one significant physiological role is the protection of cell membranes 

by osmoregulation or through amelioration of the effects of toxic substances [19]. 

Taurine is transported actively to all tissues in the body through a membrane transporter 

SLC6A6, which is coupled to the transport of chloride and sodium ions. Taurine transport 

is controlled by the activation of inhibitory and stimulatory enzymes of SLC6A6, which 

are identified as a protein kinase and calmodulin, respectively [13]. 

While the excretion of taurine occurs in the bile or urine, its total pool in the body 

is regulated in the kidney through altering reabsorption in its tubules. Taurine is filtered 

via the glomerulus then partial reabsorption occurs within the tubules via a high-affinity, 

low-capacity, sodium-dependent, β-amino acid specific transport system [20]. The daily 

amount of excreted taurine varies from one person to another and within the same 

individual daily depending on such factors as age, current dietary intake, sex, renal 
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function, or certain clinical conditions. An individual with dysfunctional renal tubules is 

at elevated risk of taurine deficiency. Renal reabsorption of taurine increases in cases of 

insufficient dietary intake and inadequate precursor amino acids, to favor the 

maintenance of tissue stores [20]. On the other hand, renal excretion of taurine is 

increased in the case of high dietary intake, radiotherapy, and any conditions which 

induce the release of taurine from cells, like muscle damage, disease, or surgery. 

IV. Taurine Bacterial Degradation 

Animals or plants are not known to have a pathway to degrade taurine. However, 

taurine can be degraded by multiple species of bacteria and potentially some fungi. 

Certain anaerobic bacteria may use taurine as an electron donor or receptor. Some other 

bacteria may use taurine as a substrate for fermentation [21]. These variant species use 

separate pathways leading to a breakdown of taurine into several distinct compounds. 

Three known reactions initiate degradation of taurine are transamination [22], oxidation, 

[23] and oxygenation, [24]. In both oxidation and transamination, the intermediate is 

sulfoacetyladehyde, while, in the case of oxygenation, taurine is broken down into 

aminoacetaldehyde and sulfite. 

Alcaligenes defragrans NKNTAU, an aerobic bacterium, converts taurine into 

sulfoacetyladehyde that is then broken down to sulfite and acetyl phosphate, and then 

finally converted by a sulfite reductase into hydrogen sulfide. Taurine acts as an electron 

donor in respiration for Alcaligenes defragrans NKNTAU, Paracoccus pantotrophus 

NKNCYSA, and Paracoccus denitrificans NKNIS to produce sulfate, ammonia and 

carbon dioxide (CO2) [25]. 
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Anaerobic bacteria have a broad range of dissimilatory reactions with taurine. 

Taurine serves as an electron acceptor with Bilophila wadsworthia RZATAU to yield 

hydrogen sulfide, ammonia, and acetate. Taurine also acts as a fermentative substrate for 

Desulfonispora thiosulfatigenes GKNTAU to yield thiosulfate, acetate, and ammonia 

[21]. 

Dissimilation of taurine involves two main aminotransferase enzymes: taurine-

pyruvate aminotransferase, found in both anaerobic and aerobic bacteria, and taurine α-

ketoglutarate aminotransferase. The enzyme taurine α-ketoglutarate aminotransferase is 

induced by β-alanine and, hence, its main physiological role is β-alanine transamination 

[21]. By the activity of the enzyme taurine-pyruvate aminotransferase, the amino group is 

transferred from taurine to pyruvate to form L-alanine. The oxidative deamination of 

alanine is catalyzed by alanine dehydrogenase to form pyruvate, as well as the release of 

ammonium [26].  

V. Bio-Physiological functions of Taurine 

A. Conjugation of bile acid and deterrence of cholestasis 

Chenodeoxycholic and cholic bile acids are produced from cholesterol within the 

hepatocytes via the enzymatic action of cholesterol 7-α-hydroxylase and then excreted as 

bile into the duodenum [11]. The secondary bile acids, lithocholic and deoxycholic acid, 

are synthesized from the primary bile acids through their contact with bacteria in the 

intestines, then the ileum reabsorbs the bile acid through the portal vein into the liver. 

Bile acids go through multiple structural modifications during enterohepatic circulation 

such as conjugation with glycine or taurine, as well as sulfation, to decrease the bile 

acids’ hepatoxicity. Furthermore, conjugation is very important in the maintenance of 



 8 

solubility of bile acids in the aqueous environment of the intestines. 

In healthy adults, the ratio of glycine-conjugated vs. taurine-conjugated bile acids 

is 1:3. The hepatic taurine pool influences this ratio, and it varies from one individual to 

another. Newborn infants are exclusive taurine-conjugators [27]. Glycine conjugation is 

usually absent up to the third week of life although earlier appearance may be observed in 

taurine-deficient newborns.  

In vitro, at physiological concentrations, sulfated glycolithocholate is precipitated 

readily by calcium, while conversely, sulfated tauro-lithocholate stops calcium 

precipitation and cholestasis. Supplementation of taurine facilitates the activity of hepatic 

enzyme cholesterol 7-α-hydroxylase, which is the enzyme that limits the rate of bile acid 

synthesis [28]. 

B. Taurine in Mitochondrial tRNA 

Despite decades of research, aspects of the function of taurine remain unknown. 

One of the emerging areas of research in the field relates to the role that taurine has in 

mitochondrial tRNA in human and mammalian biochemistry. Understanding the role of 

taurine in mitochondrial tRNA also can be potentially helpful for identifying a link 

between taurine production and deficiencies and presently untreatable diseases. 

Suzuki et al. [29] identified two taurine-containing modified uridine residues in 

mitochondrial tRNA: 5-taurinomethyluridine and 5-taurinomethyl-2-thiouridine. The 

taurine-containing uridines are located at the anticodon wobble position of human and 

bovine mt tRNA
Leu

(UUR) and mt tRNA
Lys

. This study provided the first evidence that 

showed that taurine is a constituent of biological macromolecules and revealed insights 

into the functions and subcellular localization of taurine. The identity of the taurine-
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containing modified uridines yields an important discovery that enhances our knowledge 

of the diversity and centrality of taurine within mitochondrial structures. The study 

suggested that due to the role of mitochondrial tRNA, taurine may play a significant role 

in the translation and expression of the mitochondrial respiratory proteins. Taurine`s 

notable impact upon mitochondrial structures might potentially be applied in human 

diseases from affected mitochondrial functions and the loss of a post-transcriptional 

modification. Pathogenic cells from patients with mitochondrial myopathy, 

encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) were shown missing 

5-Taurinomethyl uridine (m5U) at the wobble position in the mt tRNA. This decoding 

was due to lack of C5 taurine modification. The authors suggested that incomplete 

modification of 5-Taurinomethyl 2-thiouridine (m5s2U) in mt tRNAs due to a low 

plasma taurine level may be the primary factor that causes cardiomyopathy in cats and 

mitochondrial encephalomyopathies in humans. 

Hansen et al. [30] claimed that taurine’s pKa value is ideal for controlling the 

metabolic activity of the Acyl-CoA dehydrogenase (ACAD) enzymes and functions as an 

optimal mitochondrial matrix buffer. Depletion of intracellular taurine is associated 

directly with mitochondrial dysfunction and causes insufficient pH buffering of the 

matrix. The intracellular accumulation of carbohydrates, lipids, and polyols cause 

diabetes and metabolic syndrome, which the authors claim to imply taurine deficiency. 

The research indicates the potential link between low taurine levels in a patient`s system 

and hyperglycemia. This observation may also help yield advances in medical research 

that can address the diabetes pathology by administering taurine to affected structures. 
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C. Cardiovascular effects  

Taurine is found to have a high concentration in the cell cytosol and is abundant 

in heart and plasma [31]. Taurine is demonstrated to have optimal inotropic (increasing or 

decreasing the force of muscular contractions), antiarrhythmic, and chronotropic 

(influencing the rate of the heartbeat) effects in the facilitation of digitalis inotropy, plus 

it can lower blood pressure in humans as well as other eukaryotes. Chen et al. [32] 

demonstrated that taurine improves cardiac function by reducing the protein oxidation 

levels in mitochondria of methionine sulfoxide reductase A (MsrA) gene knockout mice. 

D. Taurine in central nervous system 

Taurine is the most prevalent amino-derived molecule in the brain [33] and has a 

high concentration in fetal brain but decrease in adults [34]. The high concentration of 

taurine in fetal brain suggested that it plays an essential role in brain development. An 

experiment by Hernández‐Benítez et al. [34] showed that taurine has a stimulatory effect 

on neural progenitor cells, which showed an increase of neurosphere size and cell 

numbers. In addition, taurine also functions as an osmoregulatory and neurotransmitter in 

the brain [35].  

E. Neuro-modulation of the central nervous system 

Taurine is localized within the central nervous system and in the brain, affects 

migration of cells, and regulates neurotransmission. By controlling calcium ion 

mobilization during membrane depolarization, taurine stabilizes membranes and alters 

the excretion of glutamate, which is an essential neurotransmitter. The studies were 

undertaken by Cunningham and Miller [36] about taurine action on neuronal pathways in 

the retina of the rabbit show that taurine is capable of separating the ‘on’ and ‘off’ 
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channels of certain cell signaling pathways. These pathways were observed by 

extracellular electrophysiological recordings electroretinogram (ERG) and proximal 

negative response (PNR), and intracellular recorded Müller cell responses. 

Taurine deficiency results in delays in differentiation or migration of cells within 

the cerebellum, pyramidal and visual cortex cells in monkeys and cats. Furthermore, 

Hernandez-Benitez et al. [37] demonstrated that taurine facilitates the development of 

neurons in both brains of adults and embryos. Taurine activates neural precursor cells and 

stems cells’ differentiation to neurons in the subventricular zones of cultured adult mouse 

brains. This zone is amongst the few brain regions in which neurogenesis progresses all 

through adulthood. Its cells can proliferate or migrate into the olfactory bulb for 

differentiation into neurons through the rostral migratory stream [20]. The high content of 

taurine in the adult olfactory bulb can be considered to implicate taurine’s significance in 

neurogenesis. 

F. Retinal photoreceptor activity 

 The retina has a high concentration of taurine ranging from 10 to 50 mM. It seems 

essential for normal vision. Taurine deficiency has been linked to failure for 

photoreceptors to mature correctly and photoreceptor degeneration in the adult retina 

[38]. Moreover, photoreceptors are rich in taurine compared to other retinal neurons. 

Apparently, taurine plays a part in neuroprotection in the ganglion cells and the 

photoreceptors as well. However, Miller and Steinberg [39] learned that in vivo 

experiments on taurine’s active transport showed that the main flux was in the retina 

towards the choroid coat, thickest at the far extreme rear of the eye. Conversely, 

Hillenkamp et al. [40] established that if a small molecule like taurine passively diffuses, 
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then it can go across the plasma membrane of the retinal cells with no help of the 

mechanism for active transport. The directionality of taurine transport across the retinal 

pigment epithelium (RPE) is driven by the taurine concentration gradient and subretinal 

potassium level. Reduction in apical potassium leads to the decrease in taurine transport 

across Bruch's choroid and RPE. Aging human retina and retinal disease exhibit taurine 

deficiency.  

Deficiencies of taurine are linked to degeneration of the retina. For instance, 

taurine in cats is considered an essential nutrient. If there is a deficiency of taurine, 

degeneration of the retina and subsequent blindness alongside low plasma and retinal 

concentrations will result. In newborn monkeys, insufficiency of taurine is linked to 

growth retardation while retinal function appeared not impaired. Taurine deficiency in 

primates is associated with degenerative structural changes in the outer segments of the 

photoreceptor, retinal lesions, and diminished visual acuity [13].  

Taurine is present at high levels during the developmental stage in mammals. 

During infancy, children who are reared on parenteral nutrition without taurine exhibit 

immature brain stem, auditory, and retinal abnormalities. These effects were observed 

through electrophysiology and ophthalmoscopy. Signal reduction of the b-wave was seen 

from the electroretinogram, linked to reduced concentrations of taurine in plasma. After 

taurine supplementation, then the electroretinogram normalized [40]. However, there is 

still no precise mechanism, although inhibition of protein phosphorylation or changes in 

osmoregulation and modification of calcium ion fluxes might be involved. 

G. Endocrine and metabolic effects 

Taurine plays a role in maintaining euglycemia through enhancement of insulin 
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activity by increasing glycogen synthesis in the liver and taurine insulin-receptor 

interaction [41]. In diabetes mellitus, low platelet and plasma taurine levels are observed 

while supplementation with taurine has been reported to restore both plasma taurine 

concentrations and increase kinin, hence increase kallikrein activities in liver, kidney, and 

heart [42]. In a rat model that had diabetes, studies revealed taurine buffered the level of 

glucose and rate of fat metabolism alongside reduced resistance to insulin [43]. The 

reduced triacylglycerol and cholesterol content may result in a more significant 

transformation of cholesterol in the bile acids as well as declined cholesterol synthesis. 

Therefore, taurine may aid in managing human hypercholesterolemia.  

 Also, taurine may hinder microangiopathy, which is associated with diabetes. 

Taurine appears to decrease apoptosis of the hyperglycemia-affected endothelial cells by 

inhibiting reactive oxygen species and stabilizing concentrations of intracellular calcium 

[44]. 

H. Antioxidant Activity 

Aruoma et al. [45] suggest that taurine can act as an oxidant scavenger or 

antioxidant. Hypotaurine, taurine, and their metabolic precursors - cysteine-sulfinic acid, 

cysteic acid, and cysteamine - play an antioxidant role in vivo [46]. However, taurine 

does not rapidly react with •OH and H2O2. Additionally, the product of taurine's reaction 

with a hypochlorous acid (HOCl) is taurine chloramine. HOCl is a robust oxidizing agent 

that causes damage to DNA. Taurine chloramine may have a modulatory action in 

inflammatory processes by inhibiting the generation of interleukin 8 (IL-8) and IL-6, due 

to reduced activity of the primary transcriptional cytokine gene modifiers [47]. Taurine 
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chloramine is sufficiently oxidizing to deactivate alpha 1-antiproteinase. Hence, in vivo, 

taurine is not a potent antioxidant.  

On the other hand, hypotaurine is an excellent hypochlorous acid (HOCl) and 

hydroxyl radical (•OH) scavenger in vivo. It can also interfere with the iron ion-dependent 

formation of •OH from hydrogen peroxide (H2O2) by chelating iron ions. Also, 

cysteamine reacts actively with H2O2, HOCl and •OH in vivo [45]. Therefore, both 

hypotaurine and cysteamine are more potent antioxidants in vivo than taurine, as long 

they are available in adequate concentrations at oxidant generation sites.  

In hamsters, acute bronchiole injury induced by NO2 and lung injuries caused by 

oxidants may be prevented by prophylactic dietary taurine. The damage can be reversed 

through the ability of taurine to stabilizing the membrane by promoting magnesium, 

calcium, sodium and potassium fluxes [48].  

Taurine plays a significant role in inflammation associated with oxidative stress 

by reacting with and detoxifying hypochlorous acid that is generated by the 

myeloperoxidase (MPO)-halide system of leukocytes [49]. Finally, taurine overwhelms 

glutamate-induced toxicity via multiple mechanisms: a) by inhibiting calcium influx via 

Q-, P-, N- and L-type voltage-gated calcium pathways, b) by protecting neurons from 

oxidative stress, c) preventing up-regulation of Bax and down-regulation of Bcl-2 protein 

product that would otherwise migrate to the mitochondria and cause a release of 

cytochrome c, which is highly toxic, and d) by inhibiting activation of glutamate-induced 

calpain and preventing the cleavage of Bcl-2 [50]. 

VI. Taurine in cats 

Taurine deficiency can affect cats’ eyesight. Cats that eat a vegetarian diet, in 
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which taurine is absent, or cooked meat, in which taurine is degraded, become blind over 

ten weeks. It is possible that cats cannot synthesize sufficient quantities of taurine to 

compensate for the use of taurine in bile acids. 

Humans and other vertebrates can conjugate glycine to bile acids when the taurine 

concentration is depleted. Cats cannot switch the conjugation from taurine to glycine 

[14]. The dietary absence of taurine in adult and juvenile cats can cause effects on 

ganglion cell activation and lead to the loss of function in retinal cells [51]. Low taurine 

concentration in the outer retina can produce signs of deterioration in the photoreceptors, 

as observed by electron microscopy, which leads to central retinal degeneration and 

eventually irreversible blindness [3]. 

Schuller-Levis et al. [52] conducted an intensive study that contrasted the 

immunological impact on cats that were fed a taurine-rich diet and those that were 

deliberately deprived of taurine. Their experiment indicated that cats that were fed a diet 

lacking in taurine showed significant leukopenia, which is an increased count of white 

blood cells, and a shift in the percentage of polymorphonuclear and mononuclear 

leukocytes. Serum gamma globulin in taurine-free diet cats was significantly increased 

compared to a taurine-rich diet. Histological examination of lymph nodes and spleen 

from cats fed a taurine-free diet showed mild extravascular hemolysis and regression of 

follicular centers with depletion of reticular cells. These results indicated the profound 

immunologic impact caused by taurine deficiency. 

Froger et al. [15] found that taurine may have a positive impact on human retinal 

diseases such as glaucoma and diabetic retinopathy. Unlike the connection between 

taurine and feline retinal disruptions, however, this claim remains hypothetical. 
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Nevertheless, it also reveals how taurine research among mammals can also influence 

directions regarding human-specific research.  

VII. Other actions of taurine 

Taurine has been suggested to be essential for prevention of depression, cirrhosis, 

and infertility in men as a result of low sperm motility [53]. Also, it has a potential effect 

on healing of acute gastric ulcers and damaged colon cells. Taurine supplementation in 

cystic fibrosis enhances steatorrhea, which may be due to enhanced reabsorption of bile 

salts. In Alzheimer’s disease, memory loss is associated with low concentrations of 

acetylcholine; however, administration of taurine has been reported to increase brain 

acetylcholine. Levels of taurine are lower in patients suffering from Gaucher disease, 

since the availability of taurine is an essential modifier of the function of macrophages in 

the liver. 

VIII. The reaction of hypotaurine to taurine 

While taurine has been recognized as essential in humans and other mammals, 

there is no pharmaceutical method involving taurine to address ongoing medical or health 

problems. Although the list of diseases that are impacted by taurine is quite long, the 

defined biochemical mechanism of action is not precise. Although previous research has 

discovered and classified all of the enzymes located in each step of cysteine metabolism, 

the specific components associated with hypotaurine transformation to taurine remains 

unknown. The lack of information about hypotaurine to taurine processes continues to 

limit our full understanding of amino acid and related processes. The intensive work from 

the past few decades illustrates an influx of new and contradictory information and data 
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regarding taurine and related issues. Most studies in the past focused on the 

supplementation of taurine and disease linkage roles of taurine regarding health benefits. 

There are two known enzymes, CSAD and CDO, that are involved in the 

conversion of cysteine to hypotaurine. These two enzymes and their reactions have been 

well studied. There is a lack of study regarding the step that involves the conversion of 

hypotaurine to taurine. Some analysts contend that this reaction occurs spontaneously 

with no enzymes involved [3]. However, one could postulate that the reaction requires an 

enzyme. The focus of this thesis was to study the reaction as well as to identify the 

enzyme and gene that are related to the biosynthesis of taurine. 
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IX. Figures 

 

Figure 1.1. Chemical structure of taurine, which contains a primary amine and a sulfonic 

acid. 

 

Figure 1.2. Biosynthesis pathway of taurine and list of the enzymes involved.  
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Chapter 2 

Identifying the enzyme catalyzing the reaction of hypotaurine to 

taurine 

I. Introduction 

The awareness of taurine as a specific chemical byproduct dates back to its 

discovery in the early 19th century [2]. In mammalian tissues, there are two main 

biosynthesis pathways of taurine. Taurine is formed from cysteine via cysteine sulfinic 

acid and hypotaurine intermediates [4] or from pantetheine via cysteamine and 

hypotaurine [54]. The factors resulting in the transformation of hypotaurine into taurine 

remains unknown and uncertain (Figure 2.1).  

Sumizu [55] claimed the reaction was enzymatic. The presence of hypotaurine 

dehydrogenase enzyme in rat liver homogenates was detected by using the oxidation of 

hypotaurine with NAD+. Flori and Costa [56] were unable to replicate the results and 

suggested that hypotaurine is oxidized by the trace amount of hydrogen peroxide (H2O2) 

produced by cellular metabolism. Oja et al. [57] used a different method and detected 

hypotaurine oxidation in the retinal subcellular fractions. Di Giorgia et al. [58] and Oja 

and Kontro [59] were unable to repeat Sumizu’s experiment even with more sensitive 

methods. Oja and Kontro [59] used a radioactivity method that detected 1000X less 

hypotaurine oxidation than did Di Giorgia et al. [58] in rat liver and brain. They also 

could not adequately fractionate the supposed protein and suggested the protein was 

denaturing but had no evidence to support this explanation. Although there was no 

convincing evidence to prove the existence of hypotaurine dehydrogenase enzyme, many 

publications had claimed and misused the term hypotaurine dehydrogenase. No one has 
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ever isolated the enzyme and identified the protein sequence, but only the chemical 

reaction has been observed. 

 The goal of the project described in this chapter was to identify the enzyme that 

performs this biochemical reaction and its encoding gene (Figure 2.2). Methods included 

enzymatic assay and transcript co-expression analysis of known genes involved in the 

taurine biosynthesis pathway. 

II. Materials and Methods 

A. Materials 

All chemical materials were purchased from Sigma Aldrich (St. Louis, MO, 

USA). 18.2 M water from Barnstead Nanopure Ultrapure Water Purification System 

(Thermo Fisher Scientific, Marietta, OH, USA) was used for the preparation of aqueous 

solutions. A Gemini 3 m C18 110Å 100 × 4.6 mm ID column for High Performance 

Liquid Chromatography was purchased from Phenomenex (Torrance, CA, USA). 

Escherichia coli (E. coli) cells were cultured. Human HuH 7 hepatoma cells were a gift 

from Dr. Hari Kotturi, and embryonic chicken livers were a gift from Dr. Nikki 

Seagraves. 

B. Bioinformatics 

GeneNetwork (www.genenetwork.org) [60] was searched for candidate genes that 

co-express with cysteine and taurine metabolism genes in human, rat, and mouse. From 

the co-expression list of over 100 genes, flavin-containing monooxygenase (FMO) genes 

showed high correlation with CSAD and CDO1 in all three organisms. Scatter plot 

graphs showed the tissue correlation of CDO1 and ADO with FMO1, FMO2, and FMO4. 

The COXPRESdb (http://coxpresdb.jp) [61] database was searched for genes that 

http://www.genenetwork.org)/
http://coxpresdb.jp)/
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are co-expressed with CDO1, ADO, BAAT, and CSAD.  

C. Cell lysate 

Cell lysate and protein were extracted from Escherichia coli (E. coli) cells, human 

HuH 7 hepatoma cells, and 11 day-old embryonic chicken livers. Eleven day-old 

embryonic chicken livers had a wet weight of 0.066g to 0.099g. The cells and tissues 

were homogenized in 1X PBS solution by a probe sonicator (Fisher Scientific, Pittsburgh, 

PA, USA) with 120V 50/60Hz NOM at 120W for 10s intervals, 3 times. The 

homogenates were centrifuged at 15000 rpm for 5 min. The supernatants were spiked 

with hypotaurine and NAD+ or NADPH, and incubated at 37°C for 4, 8, 10, and 24 

hours. After the incubation period, supernatants were analyzed immediately by reverse 

phase HPLC. 

D. High Performance Liquid Chromatography (HPLC) 

The supernatants were filtered through a 3 ml syringe that attaches to 0.2 µm 

Thermo Scientific Nalgene Syringe Filter to remove proteins. The supernatants were 

analyzed by reverse-phase HPLC using an Agilent Technologies High Performance 1100 

series instrument (Alpharetta, GA, USA), which was equipped with ChemStation 

software. ortho-phthalaldehyde (OPA) with 2-mercaptoethanol was used as a 

colorimetric tagging agent. Samples were separated by a Gemini 3µm C18 110Å 100 × 

4.6 mm column. The separation was carried out by gradient elution at a flow rate of 1.2 

ml/min. The elution mixture consisted of 70% of a solution of 0.1 M Na2HPO4 and 0.1 

mM Na2-EDTA (pH 6.38) and 30% of methanol. The emission detector was set at 360 

nm.  
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Samples and reagents were prepared fresh for every analysis. Samples were 

mixed in a 1:1 dilution with the ortho-phthalaldehyde (OPA) reagent for 1 min before 

injection. The baseline for the standard curve was set up for 10 mM, 1 mM, 100 µM, 10 

µM, and 1µM of hypotaurine and taurine. Before reaction with OPA, 1 M Glycine was 

added to the samples for use as an internal standard.  

III. Results and Discussion 

Results from the GeneNetwork [60] database searched for human, rat, and mouse 

genes indicated that flavin-containing monooxygenase genes are highly correlated with 

CDO1, CSAD, and ADO. Tissue correlation of twenty-six samples of tissue and organ 

mRNAs from taurine and cysteine metabolism showed five FMO genes in humans are 

positively co-expressed with CDO1 (Spearman r = 0.277 - 0.675) and CSAD (r = 0.344 -

0.628) (Table 2.1). Scatter plot graphs of Spearman Rank correlation of CDO1 vs. CSAD, 

CSAD vs. FMO1, FMO1 vs. CDO1, CDO1 vs. FMO2, and CDO1 vs. FMO4, all showed 

high coexpression in the liver (Figures 2.3 to 2.7). 

A COXPRESdb database search confirmed the Spearman Rank correlation scatter 

plots graphs that CDO1, CSAD, and FMOs were highly expressed in the liver of three 

organisms: human, rat, and mouse. FMO is abundant in human fetal liver and is down-

regulated upon birth, which corresponds to the decreasing of taurine concentration after 

birth. FMOs belong to the cytochrome p450 superfamily and contain a heme cofactor. 

FMOs are microsomal enzymes that catalyze the NADPH-dependent oxygenation and 

oxidation of soft nucleophiles such as sulfur and nitrogen [62]. The oxidation reaction of 

FMO requires a NADPH cofactor. The chemical properties found in FMO proteins would 

seem to be amenable to catalyzing the reaction of hypotaurine to taurine. To assist with 
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the FMO activities, NAD+ and NADPH were added to cell lysate to assist the reaction of 

hypotaurine to taurine. 

Bacteria have no hypotaurine or taurine synthesis pathway and will not 

demonstrate an enzymatic reaction. Hence, cell lysate from cultured E. coli cells was 

used as the negative control as it should not produce taurine after adding hypotaurine and 

no taurine peak should be detected from HPLC assays. HPLC assays were performed 

from the homogenate cell lysates from human HuH 7 hepatoma cells and eleven days-old 

embryonic chicken livers. The whole livers and the homogenated cell lysates were 

incubated with hypotaurine at 37°C for 4, 8, 10, and 24 hours to allow more products to 

accumulate. NAD+ and NADPH were added to the liver and the cell lysates and 

incubated at 37°C for 4, 8, 10, and 24 hours to observe if a cofactor was involved in the 

reaction. 

HPLC analysis of chemical standards showed glycine eluted at around 8 min, 

taurine at 12.5 min and hypotaurine at 14 min (Figure 2.8). For the E. coli reaction, there 

was no decrease in the hypotaurine peaks and no taurine peaks present. Human HuH 7 

hepatoma cells and eleven days-old embryonic chicken livers showed no increase in the 

taurine peaks after incubation times, which suggested no chemical reaction occurred. 

The results contradicted previous literature that observed the reaction of 

hypotaurine to taurine from liver cell lysate [55, 59]. The results also suggested the 

previous studies results may have observed non-enzymatic reactions. The results of this 

experiment did not clearly show a chemical reaction of hypotaurine to taurine. Perhaps, 

the cofactors used in this analysis were not compatible with the enzyme, the enzyme was 

inactive in the cell lysates, or the concentration of the enzyme was too low and could not 
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be detected within the limits of the assay procedures used.  
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Figure 2.1. Biosynthesis pathway of taurine. L-cysteine oxidizes to cysteine sulfinic acid 

by enzyme cysteine dioxygenase (CDO1). Cysteine sulfinic acid then decarboxylates by 

enzyme cysteine sulfonate decarboxylase (CSAD) to form hypotaurine. Cysteamine 

oxidizes to hypotaurine by enzyme cystamine dioxygenase (ADO). The conversion of 

hypotaurine to taurine is still unknown.  
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A.  

 

 

 

B. 

 

 

 

 

Figure 2.2. Two hypothetical enzymatic reactions of hypotaurine to taurine with co-

factors (A) NAD(P)+ and (B) NAD(P)H. 

 

Figure 2.3. Tissue correlation scatter plot displays the correlation between CDO1 and 

CSAD gene. 
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Figure 2.4. Tissue correlation scatter plot displays the correlation between CSAD and  

FMO1 genes. 

 

Figure 2.5. Tissue correlation scatter plot displays the correlation between CDO1 and 

FMO1 genes. 
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Figure 2.6. Tissue correlation scatter plot displays the correlation between CDO1 and 

FMO2 genes. 

 

Figure 2.7. Tissue correlation scatter plot displays the correlation between CDO1 and 

FMO4 genes.  
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Figure 2.8. High Performance Liquid Chromatography shows the elution of taurine and 

hypotaurine. 1 M in cell lysate. Glycine was added to the supernatant as an internal 

standard immediately before sample injection. Amine-containing molecules were labeled 

with o-phthalaldehyde and detected by light absorbance at 360mm.  
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Chapter 3 

Reaction of hypotaurine or taurine with superoxide produces 

the organic peroxysulfonic acid peroxytaurine 

I. Introduction 

Taurine is one of the most abundant, free, amino acid-derived molecules in the 

cells of humans and other eukaryotes. A derivative of cysteine, taurine (2-

aminoethanesulfonic acid) comprises up to 0.1% of the body weight of humans [3]. It has 

been implicated in a number of biological processes, such as regulation of osmolality, 

calcium modulation, membrane stabilization, reproduction, pathogen immunity, function 

of the central nervous system, and neonatal development [3, 14]. Its concentration has 

been measured between 1 and 50 mM in liver, retina, leukocytes, neutrophils, the central 

nervous system, skeletal and cardiac muscles, and semen [3, 63]. Only a few biological 

roles for taurine are currently well understood, such as in bile acid production [3].  

Along with its biological roles being poorly understood, taurine as a molecule is 

often mischaracterized in the scientific literature. First, it is widely called an amino acid, 

though it lacks the carboxylic acid that would permit that designation. Second, it is 

referred to as an antioxidant and has been tested for antioxidant properties in a number of 

studies [45, 49]. According to one study, taurine does not react readily with superoxide, 

hydrogen peroxide, or hydroxyl radical [45], which are some of the molecules 

collectively called Reactive Oxygen Species (ROS). Taurine does react with 

hypochlorous acid to become taurine chloramine [45], but with a rate constant 100-fold 

less than for the reaction of glutathione with hypochlorous acid [64]. The taurine 

chloramine reaction is relevant in activated neutrophils that produce hypochlorous acid, 
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but taurine chloramine is itself a reactive oxidizing agent [45]. 

Taurine is derived from the metabolic pathways of cysteine degradation and 

pantothenate synthesis. Cysteine is enzymatically oxidized to cysteinesulfinic acid [65], 

which is then enzymatically decarboxylated to hypotaurine [66, 67]. Similarly, the 

production of pantothenate from pantetheine produces cystamine as a byproduct. 

Cystamine is enzymatically oxidized to form hypotaurine [68].  

The reaction of hypotaurine to taurine has been investigated but has not been 

clearly defined. Some early studies suggested an enzymatic conversion of hypotaurine to 

taurine [55, 58] but these results apparently were non-reproducible or could only measure 

taurine production at the detection limit [58, 59]. The identity of the putative 

“hypotaurine dehydrogenase” has never been clarified, but the enzymatic name has been 

referenced in the literature for decades as if it is a known enzyme [69, 70]. 

The lack of identification of an enzyme and its corresponding gene is highly 

problematic if one attempts to understand the apparently complex roles and regulation of 

hypotaurine and taurine in cells. As such, the synthesis of taurine from hypotaurine often 

is assumed implicitly by the literature that seeks to study taurine metabolism. If the 

synthesis of taurine from hypotaurine is not enzymatic, then it may be a spontaneous 

reaction in vivo. Interestingly, hypotaurine does appear to be an antioxidant. It reacts with 

hydroxyl radical, hypochlorous acid, and other oxidants with rate constants 100–10,000 

times that of taurine [45, 71, 72]. Indeed, the reaction of hypotaurine with hydroxyl 

radical generates taurine in vitro [63]. In this study, the reactions of hypotaurine and 

taurine with hydrogen peroxide and superoxide have been revisited. By applying the 
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logic of chemical reaction mechanisms (Scheme 3.1 and Figure 3.1), the reaction of 

superoxide with hypotaurine would not appear to produce taurine directly, but rather 

through multiple reactions. Specifically, an intermediate molecule that contained a 

peroxysulfonic acid was hypothesized to be generated in the production of taurine from 

the reaction of hypotaurine with certain ROS. Here, the identity of peroxytaurine (2-

aminoethaneperoxysulfonic acid) has been demonstrated in vitro as a semi-stable product 

of the reaction of superoxide with hypotaurine, and also, surprisingly, taurine. 

Peroxytaurine was also observed to degrade to taurine in the presence of water.  

II. Materials and methods 

Most chemicals, as well as XploSens PS strips, were purchased from Sigma-

Aldrich (St. Louis, MO, USA). IR-grade KBr was purchased from Fisher Scientific 

(Pittsburgh, PA, USA). 18.2MΩ water from a Barnstead Nanopure Ultrapure Water 

Purification System (Thermo Fisher Scientific, Marietta, OH, USA) was used for the 

preparation of aqueous solutions. A Gemini 3 μm C18 110 Å 100 × 4.6 mm ID column 

for High Performance Liquid Chromatography was purchased from Phenomenex 

(Torrance, CA, USA).  

A. Reactions 

Standard hypotaurine and taurine solutions were prepared at 120 mM. For 

reactions involving hydrogen peroxide, a mixture of aqueous solutions produced final 

concentrations of 100 mM hypotaurine or taurine, 20 mM H2O2, and 40 mM Na2HPO4 

buffer, pH 7. For reactions involving potassium superoxide, 0.005g (70 micromoles) of 

KO2 was dissolved in 200 μl of a 120 mM solution (24 micromoles) of hypotaurine or 
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taurine. After the superoxide reaction was complete, solution pH was adjusted to 7 using 

1 N HCl. The pH-adjusted reaction product solution was used for High-Performance 

Liquid Chromatography and Mass Spectrometry experiments. Alternatively, the pH-

adjusted reaction solution was desiccated to a solid powder in an Eppendorf Vacufuge 

Plus vacuum centrifuge (Westbury, NY, USA). The desiccated powder was used for 

Nuclear Magnetic Resonance Spectrometry, Fourier Transform Infrared Spectroscopy, 

and Raman spectroscopy experiments. Reactions were performed fresh each day for 

analytical analysis.  

B. Desiccated mass determination 

Solutions of hypotaurine and taurine at 100, 75, 50, and 25 mM were prepared. As 

a control, KO2 pellets of a mass that provided 1, 2, 3, and 4 times the molar equivalent of 

each of the four concentrations of reactant were dissolved in 1ml pure water. The 

solutions were desiccated by heating at 50°C and weighed in a weigh boat using a Denver 

Instrument Pinnacle Analytical balance (Bohemia, NY, USA). The measured mass was 

assumed to be the mass of solid potassium hydroxide plus unaccounted-for excess mass 

(Figure 3.2A). The excess mass was used as a correction factor in later calculations. As 

another control, pure water was desiccated by heat, and the difference in mass of the 

weigh boat before and after desiccation was used to correct for systemic error in the 

balance.  

For the experiment proper, KO2 pellets of the various masses were dissolved in 

solutions of hypotaurine or taurine at the four concentrations. The solutions were 

desiccated by 50°C heat then the residual mass was measured. All measurements were 
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conducted in experimental triplicate or more. For each of the four molar equivalent 

values of KO2, a best fit line was constructed using the mass results from the 100, 75, 50, 

and 25 mM reaction solutions containing the same molar equivalence of KO2 (Figures 

3.2B, 3.2C). Values derived from standard curves fitted to the desiccated mass data 

points (Figures 3.2A - C) were used for purposes of calculating the percentage of product 

made in the reaction. These values were preferable compared to mean mass values at 

each of the four tested KO2 concentrations because they mitigated error inherent in 

measuring milligram-level quantities of reagent and product.  

The maximum expected values of the desiccated mass were calculated as follows: 

mass of peroxytaurine resulting from 100% conversion of the moles of hypotaurine or 

taurine reactants, plus potassium bound to reactant or product, plus remaining mass of 

potassium in the form of potassium hydroxide, plus the excess mass determined from the 

KO2 in water control, minus the systemic error in the analytical balance. The minimum 

expected mass values were calculated as above except assuming all of the hypotaurine 

and taurine reactants remained in solution. A comparison of the product mass, as 

determined from the best fit line, to the maximum and minimum expected masses, 

produced a percentile that was interpreted as an approximate representation of reaction 

completion.  

Measurement of the mass of degrading peroxytaurine was performed by exposing 

1 ml of a 100 mM solution of taurine to 4 molar equivalents potassium superoxide. The 

pH of the solution was adjusted to 7 using 1 N HCl, and 1 μl of 10000 Units catalase was 

added to the solution. Solutions were stored at 24°C for up to 3 days. At time points of 0, 
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1, 2, and 3 days, solutions were desiccated by heating at 50°C, and the residual mass was 

measured. The control substituted pure water in place of taurine solution.  

C. High Performance Liquid Chromatography (HPLC) 

HPLC analyses were performed using an Agilent Technologies High Performance 

1100 series instrument (Alpharetta, GA, USA), which was equipped with ChemStation 

software. Since hypotaurine and taurine do not absorb visible light, ortho-phthalaldehyde 

(OPA) with 2-mercaptoethanol was used as a colorimetric tagging agent. Prior to reaction 

with OPA, 1 M glycine was added to the sample to a final concentration of 100 mM for 

use as an internal standard in the HPLC traces. 2.5 μl of a sample solution was auto-

injected, mixed with 2.5 μl of OPA solution, and permitted to react for 1 min prior to 

injection into the column. The samples were separated by a 100 × 4.6 mm Gemini C18 

reverse phase column. The separation was carried out with a flow rate of 1.2 ml/min and 

an elution mixture comprising 70% of a solution of 0.1 M Na2HPO4 and 0.1 mM Na2-

EDTA (pH 6.38) and 30% of methanol. OPA-tagged molecules were detected by 

absorbance at 360 nm.  

D. Electrospray Ionization Mass Spectrometry (ESI-MS) 

ESI-MS was performed on an Applied Biosciences QSTAR Elite hybrid 

quadrupole/Time Of Flight mass spectrometer system (Foster City, CA, USA), equipped 

with a NanoSpray Ion source with Borosilicate Emitters IonSpray Voltage of 1300 V. 

The samples were analyzed under positive ESI conditions. Analyst QS 2.0 software, 

using default system parameters, was used to run the instrument. Full scan mass spectra 

were recorded over the mass range of m/z 50–500 using time-of-fight mode. Nitrogen 
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was used as the curtain and collision gas. The collision energies were between 10 and 

25eV. All spectra reported were averages of 50–200 scans. Superoxide reaction solutions 

were pH- adjusted using 1 N HCl prior to sample injection.  

E. Nuclear Magnetic Resonance Spectrometry (NMR) 

Solid hypotaurine, taurine and, desiccated peroxytaurine samples were dissolved 

in D2O. 600 μl of the samples were transferred into a 5 mm NMR probe head. 
1

H NMR 

spectra were recorded on a Varian 500 MHz NMR spectrometer at 24°C. Default system 

parameters were used to run the instrument.  

F. Fourier Transform Infrared Spectroscopy (FTIR) 

Potassium bromide discs for FTIR were analyzed on a Nicolet 6700 spectrometer 

(Thermo Scientific, Waltham, MA, USA) with the DTGS KBr detector plugin. Samples 

to be investigated were desiccated in an Eppendorf Vacufuge Plus vacuum centrifuge for 

4 h before mixing with KBr powder. One mg of a desiccated sample was mixed with 1g 

of KBr in a mortar and pestle. The mixture was compressed to a disc in a hydraulic press 

under 13 t pressure for 3 min. All spectra were produced from an average of 50 scans 

obtained at room temperature for the range of 7400–400 cm
−1 with an optical resolution 

of 1.9 cm
−1

. Peaks were interpreted by comparison to reference tables in a handbook [73] 

by analysis using IRanalyze software (LabCognition Analytical Software, Cologne, 

Germany), and by de novo prediction by General Atomic and Molecular Electronic 

Structure System (GAMESS) software [74, 75].  

G. Raman spectrospray 
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Raman spectra were observed on a DeltaNu Advantage 200A Raman 

spectrometer (Laramie, WY, USA). Commercial hypotaurine and taurine crystals were 

used as control samples. Desiccated peroxytaurine reaction product retains water, which 

interfered with measurements. Thus, solid peroxytaurine-potassium bromide discs 

produced for FTIR, as described above, were used as samples. All spectra were produced 

from an average of 5 scans with an integration time of 10 s. Spectra were obtained at 

room temperature using the high-resolution mode (3.125 cm
−1 resolution) over the 

spectral range 3400–200 cm
−1

. Peaks were interpreted by comparison to reference tables 

in a handbook [73], by analysis using RAMalyze software (LabCognition Analytical 

Software, Cologne, Germany), and by de novo prediction by GAMESS software [74, 75]. 

H. Isotope labeling 

Isotopic hydrogen peroxide (H2

18

O2) enriched to > 90% (Berry & Associates, 

Dexter, MI, USA) at a concentration of ~500 mM was reacted with an equimolar volume 

of 100 mM hypotaurine in a 240 μl reaction. The solution was permitted to react for 2 h 

at room temperature and then was desiccated by 50°C heat to form a crystal. One such 

sample was used as a solid crystal for Raman spectroscopy via a contracted service 

(Moore Analytical, Houston, TX, USA). A second reaction sample was re-suspended in 

200 μl water to produce a 100 mM 
18

O-labeled taurine solution. This solution was reacted 

with 0.0057g (4 molar equivalents) of potassium superoxide. The reaction solution was 

desiccated by heat to a solid crystal and used for Raman spectroscopy via contracted 

service.  
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I. Hydrogen peroxide assay 

Solutions of taurine at 25mM were reacted with 1–4 molar equivalents of 

potassium superoxide. The pH of the product solution was adjusted to below 7 using 1 N 

HCl in order to eliminate HOO
− ion, which is abundant at pH 12 and has a larger 

extinction coefficient than HOOH. Samples were then diluted up to 10-fold in water. The 

solutions were analyzed by a UV/Vis Spectrophotometer (Varian Cary 50 Bio, Agilent 

Technologies, Santa Clara, CA, USA) in the range of 200–500 nm. Absorbance values at 

the wavelength of 250 nm were selected for data analysis. As a control, potassium 

superoxide was reacted in water alone. A standard solution of hydrogen peroxide also 

was diluted to various concentrations and measured. One-way t-tests were performed for 

statistical analysis.  

III. Results and discussion 

A. Hydrogen peroxide reactions 

The reactions of hypotaurine and taurine with hydrogen peroxide were 

investigated. A 200 μl, a phosphate-buffered aqueous solution of 100 mM hypotaurine, 

pH 7, was reacted with 20 mM of hydrogen peroxide. The reaction was performed both 

with and without 1.25 mM of the chelator diethylenetriaminepentaacetic acid (DTPA). 

Samples were permitted 20 min to react. High-performance liquid chromatography 

(HPLC) (Figure 3.3) and electrospray ionization-mass spectrometry (Figure 3.5C) of the 

reaction solutions were performed to evaluate the product molecules. When compared to 

phosphate-buffered hypotaurine and taurine standards (Figures 3.3, 3.5A, 3.5B), the H2O2 

reaction revealed that taurine was produced from hypotaurine. Addition of DTPA did not 
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affect the appearance of a taurine peak in HPLC traces of the hypotaurine reaction 

(Figure 3.4). The evidence suggests that taurine was formed from a direct reaction of 

hypotaurine with hydrogen peroxide (Scheme 3.1 and Figure 3.1). The taurine product 

does not appear to result from the reaction of hypotaurine with hydroxyl radicals arising 

from metal-catalyzed hydrogen peroxide cleavage.  

The result of the hypotaurine reaction agrees with a previous study that observed 

a reaction between hypotaurine and hydrogen peroxide using HPLC methods [63], but 

disagrees with another study that did not observe a reaction of hydrogen peroxide with 

hypotaurine [45]. This discrepancy may be due to the latter study using a peroxidase-

based colorimetric assay to detect changes in hydrogen peroxide concentrations 

indirectly, while the former and present study detected the product taurine directly using 

analytical techniques. As described below for the isotope labeling experiment, an 

equimolar mixture of hypotaurine and hydrogen peroxide yielded complete conversion to 

taurine within two hours, suggesting the reaction's rate constant is not insignificant. As 

with hypotaurine, a buffered aqueous solution of 100mM taurine, pH 7, was reacted with 

20 mM of hydrogen peroxide. HPLC and mass spectrometry revealed no large molecules 

in the reaction mixture other than taurine (Figures 3.3, 3.5D), which indicated taurine 

does not react with H2O2.  

B. Superoxide reactions 

The reactions of hypotaurine and taurine with superoxide were investigated. An 

unbuffered, 200 μl aqueous solution of 120 mM hypotaurine (24 micromoles), pH ~5, 

was reacted with 3 molar equivalents (70 micromoles) of solid potassium superoxide. 

Unbuffered reactions were performed because the buffer concentrations attempted proved 
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unable to maintain the reaction's pH, and the buffer molecules would interfere with 

downstream analytical analyses. Upon addition of KO2 pellets to the solution, oxygen gas 

bubbles and heat were produced for approximately 4 s. After completion of the reaction, 

the pH of the solution was ~12, which is similar to the pKa of hydrogen peroxide at 11.8. 

A similar reaction also was performed using 120 mM taurine, pH ~5, in place of 

hypotaurine. Again, the product solution's pH was ~12.  

As a side reaction in both experiments, H2O2 and O2 were produced due to 

spontaneous dismutation of superoxide. Taurine and hypotaurine are poorly soluble in 

solvents other than water, so the aqueous solution that promoted the dismutation side 

reaction was necessary for this experiment. At a low pH, the dismutation reaction 

involving hydroperoxyl (HO2

•

) occurs with a rate constant of > 10
5 

M
−1 s

−1

. As the pH 

would rapidly change to 12 dues to consumption of ~2 nmol H
+ by hydrogen peroxide, 

the dismutation reaction's rate constant for superoxide anions (O2
•−

) approaches 0.3 M
−1 

s
−1 [76]. Therefore, most of the superoxide anions would react with hypotaurine or 

taurine. The results are shown in Figure 3.5E and the NMR experimental results 

presented below reveal that the hydrogen peroxide generated as a side product did not 

noticeably compete with the superoxide for reaction with hypotaurine during the few 

seconds before reaction completion.  

HPLC analysis of the products of the reaction of hypotaurine or taurine with 

potassium superoxide revealed peaks with elution times equivalent to the taurine standard 

(Figure 3.3). The chemical identity of the peaks' components was investigated 

subsequently with additional analytical techniques.  
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For other downstream experiments, the product of the superoxide reaction was 

dried to a white powder using a vacuum desiccator to remove water and hydrogen 

peroxide. The powder, as a potassium salt, exhibited hygroscopic and electrostatic 

properties. Most subsequent analyses used either the desiccated powder or a solution in 

which the powder was re-suspended with ultrapure water.  

In HPLC analysis, the product reacted at pH 7 with ortho-phthalaldehyde (OPA), 

a colorimetric tag that reacts with primary amines. Thus, the primary amine in 

hypotaurine and taurine was not oxidized by superoxide. Oxidation of the amines was not 

logically expected to occur as a chemical reaction anyway. Additionally, OPA-tagged 

product eluted at the same time and is indistinguishable from OPA-tagged taurine (Figure 

3.3). This result suggested a reason why the product molecule (peroxytaurine) has not 

been previously observed in investigations of hypotaurine reactions or taurine 

metabolism, which have relied primarily upon chromatographic methodologies. For the 

HPLC experiment, only 2 molar equivalents of KO2 were exposed to hypotaurine or 

taurine to achieve incomplete conversion, so that both reactant and product molecules 

would be visible on the HPLC trace.  

C. Mass spectrometry 

To determine the number and masses of products generated by the superoxide 

reaction, electrospray ionization-mass spectrometry (ESI- MS) was performed. A 

reaction solution (pH~7) of hypotaurine and superoxide revealed three unknown peaks at 

a mass-to-charge ratio (m/z) of 112.9, 164.0, and 201.9 (Figure 3.5E). Taurine peaks of 

126 or 148 m/z were not present. The peak at 164.0 would suggest a product molecule 
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corresponding to the mass of a hypotaurine (132 m/z) plus two oxygen atoms (32 m/z). 

Additional peaks were observed at different pH values of the product solution. For an un-

adjusted reaction solution of pH~12, peaks at 94.9, 176.9, and 201.9 m/z were observed 

(Figure 3.6A). For a reaction solution adjusted to pH~4, peaks at 148.9, 164.0, and 201.9 

m/z were present (Figure 3.6B). The true masses of hypotaurine and taurine positive ions 

are 110 and 126 m/z, respectively, but these are one of the multiple peaks in the 

hypotaurine (Figure 3.5A) and taurine (Figure 3.5B) standards observed under positive 

ESI conditions. Zwitterions associated with Na
+ may explain the hypotaurine (132.0 

m/z), taurine (148.0 m/z), and product (164.0 m/z) peaks, while the negative ion of the 

product may associate with both Na
+ and K

+ (201.9 m/z). The multiple peaks in the 

product solutions also may correspond to various ionically-charged forms of the product 

molecule or its degradation products in the mass spectrometer.  

ESI-MS of the reaction solution (pH~7) of taurine and superoxide (Figure 3.5F) 

reveals the same peaks as those seen in the hypotaurine reaction solution. The higher 

count intensity, and thus greater sensitivity of the instrument for this sample may explain 

why all of the putative ionically-charged product molecules mentioned above are 

detected in a single spectrum. Changing the pH of the product solution resulted in the 

same pattern of peaks as for the hypotaurine reaction (Figures 3.6C, D). The results 

indicate the same product molecule was generated by both the reaction of hypotaurine 

with superoxide and the reaction of taurine with superoxide. Again, the m/z of 148 for 

taurine plus one oxygen (16 m/z) would yield a m/z of 164. The m/z of the product 

initially suggests the hypothesized molecule named peroxytaurine (Scheme 3.1). Mass 

spectrometry indicates almost complete stoichiometric conversion of hypotaurine or 
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taurine to product molecule by exposure to 3 molar equivalents superoxide (Figures 3.5E, 

F). As mentioned above, in the reaction of hypotaurine and superoxide, taurine is not 

observed to be produced from the competing reaction of hypotaurine with the low 

concentration by-product hydrogen peroxide (Figure 3.5E).  

D. Nuclear Magnetic Resonance Spectroscopy 

To determine if the chemical modification in the product molecule was located on 

the central carbon atoms, 
1

H Nuclear Magnetic Resonance Spectroscopy was performed. 

In D2O, both hypotaurine and taurine present triplets for their two methanediyl groups 

(Table 3.1 and Figure 3.7). The product molecule resulting from a reaction of hypotaurine 

and superoxide revealed triplets whose central peaks' chemical shift differed from that of 

both hypotaurine and taurine. The hydrogen atoms of the amines and the sulfur-based 

acids could not be observed due to hydrogen exchange with the solvent. The result 

indicates that hypotaurine was modified by superoxide at either its amine or sulfinic acid 

to a molecule similar, but not identical, to taurine. Since the HPLC results indicate that 

the primary amine is not oxidized, the logical conclusion is that the chemical 

modification by superoxide was present on the sulfur-centered moiety. This inference 

further suggests that the product molecule contained an SO4 group, likely as a 

peroxysulfonic acid.  

E. Fourier Transform Infrared Spectroscopy 

To investigate the chemical structure of the product molecule, Fourier Transform 

Infrared Spectroscopy (FTIR) was performed to detect bond vibrations. A FTIR spectrum 
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of hypotaurine (Figure 3.8A) using the potassium bromide disc method reveals a strong 

S–O symmetric stretching peak at 999 cm
−1

. In contrast, taurine and the product molecule 

peroxytaurine reveal strong S=O asymmetric stretching peaks at 1213 cm
−1

 (Figure 3.8B) 

and 1194 cm
−1

 (Figures 3.8C, D), respectively. It is notable that the product molecule's 

spectrum is similar, but not identical, to that of taurine (Table 3.4). For example, a 

conspicuous medium peak at 1113 cm
−1 in the taurine spectrum is not present in the 

peroxytaurine spectra. Since the bonds of the sulfur-based acid in the product molecule 

absorb infrared light at different frequencies than hypotaurine or taurine, the results 

suggest that the chemical environment of the sulfur-based acid in the product molecule is 

also different. Specifically, taurine contains an SO3 sulfonic acid while the product 

molecule contains an SO4 peroxysulfonic acid.  

Peroxytaurine generated from either hypotaurine or taurine revealed substantially 

equivalent spectra. However, the peroxytaurine generated from hypotaurine and 

presented in Figure 3.8C has a unique peak at 962cm
−1

, while the peroxytaurine 

generated from taurine and presented in Figure 3.8D has a unique peak at 1722 cm
−1

. 

These peaks were not always reproducible in the FTIR experiments but are reported in 

case of significance. These inconsistent peaks, as well as the broadened peaks overall for 

peroxytaurine, likely resulted from water contamination in the KBr discs.  

F. Raman spectroscopy 

Raman spectroscopy can better detect symmetric bond vibrations that FTIR 

methods cannot, such as the stretching of O–O bonds. The Raman spectra of 
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peroxytaurine emphasized three strong peaks at 1090 cm
−1

, 1065 cm
−1

, and 837 cm
−1 

(Table 3.2 and Figure 3.9). A general trend in the results was a shift to larger frequencies 

for equivalent peaks in taurine and peroxytaurine relative to hypotaurine. The strongest 

peak seen from hypotaurine at 981 cm
−1 corresponds to S=O stretching, while the strong 

peaks of taurine at 1065 cm
−1 and peroxytaurine at 1065 cm

−1 correspond to symmetric 

SO2 stretching. C–S bond stretching yields the strong 765 cm
−1 peaks in hypotaurine, 

medium 778 cm
−1 peak in taurine, and a weak 815 cm

−1 shoulder peak in peroxytaurine. 

A symmetric S=O/S–O sulfoxy bend is revealed in hypotaurine at 828 cm
−1

. This 

symmetric bending mode is interrupted in the SO3 environment of taurine or 

peroxytaurine, and, consequently, no equivalent peaks are observed in their spectra. 

Instead, peroxytaurine has a strong peak at 837 cm
− 1 that may correspond to symmetric 

O–O bond stretching. This interpretation is suggested by another study that observed 

peroxydisulfate O–O bonds absorbing at 858 cm
−1 [77]. Notably, H2O2 does not absorb at 

any of the described frequencies, so these peaks cannot be attributed to residual H2O2 

generated as a by-product of the synthesis reaction.  

To confirm the presence of the O–O peak, an experiment was performed to label 

peroxytaurine with 
18

O isotope. An 
18

O–
16

O absorbance peak would appear at a different 

frequency than an 
16

O–
16

O peak. In order to label peroxytaurine, two sequential reactions 

were performed. To begin, hypotaurine was reacted with an equimolar amount of 
18

O-

labeled hydrogen peroxide. FTIR spectra (not shown) suggested complete conversion of 

hypotaurine to taurine after a two-hour reaction. A Raman spectrum of the reaction 
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product indicates taurine contained the isotope, based on the shifting of the SO2 stretch 

peak to 1014 cm
−1 (Figure 3.10A). Almost all peaks for the labeled taurine and 

peroxytaurine described below exhibited a bathochromic shift relative to those presented 

in Table 3.2. The general shifting may be due to using of a different Raman spectroscope 

for this particular experiment. Furthermore, use of potassium salt crystals of sample, 

rather than of compressed KBr discs containing sample, can influence the physical 

bending arrangement, and hence vibrational frequencies, of the molecule in the 

crystalline solid. Regardless, the bathochromic shift of the isotopic SO2 stretch peak is 

noticeable even after aligning the spectra of unlabeled and labeled taurine (Figure 3.10C).  

A subsequent reaction of the labeled taurine with four molar equivalents of 

potassium superoxide produced labeled peroxytaurine. FTIR spectra (not shown) 

suggested complete conversion of taurine to peroxytaurine. A Raman spectrum reveals 

that the product was labeled, based on the SO2 stretch peaks (1028, 969, and 961cm
−1

; 

Figure 3.10A). The smaller and separate labeled peaks (969 and 961 cm
−1

) from the main 

unlabeled peak (1028 cm
−1

), relative to the single peak in taurine (1014 cm
−1

; Figure 

3.10B), suggests weak isotopic SO2 symmetric stretch modes in peroxytaurine. To 

elaborate, the three oxygen atoms in taurine are in resonance and each has a bond order 

of 1.66, which contributes to the single observed peak. In contrast, the three sulfur-bound 

oxygen atoms in peroxytaurine are not in resonance and have bond orders of 1, 2, and 2, 

which creates a different environment for symmetric stretch modes of 
16

O=S=
18

O, 

16

O=S–
18

O, and 
18

O=S–
16

O relative to 
16

O=S=
16

O or 
16

O=S–
16

O.  
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The 
16

O–
16

O stretch mode is observed at 802cm
−1

, with an adjacent peak at 739 

cm
−1

, which suggests the 
18

O–16O stretch mode (Figure 3.10D). It should be noted that 

the frequency of the 
18

O–
16

O symmetric stretch mode is influenced by the S–
18

O stretch 

modes. A simple linear harmonic oscillator model of two coupled diatomic molecules, 

with 
18

O as the central atom, predicts a shift of the O–O vibrational frequency from 802 

cm
−1 to 749 cm

−1

. The observed peak at 739 cm
−1 does not appear to be identical to the 

labeled taurine peak at 730 cm
−1 (Figure 3.10B).  

Hydrogen peroxide is observed in the peroxytaurine Raman spectrum, which may 

be due to some of the superoxide reaction by-product being trapped in the heat-desiccated 

salt crystal and/or minor degradation of peroxytaurine that occurred during sample transit 

prior to measurement. The 
16

O–
16

O peak at 874cm
−1 closely matches the literature value 

for hydrogen peroxide of 877cm
−1

. Furthermore, isotopic hydrogen peroxide, indicating 

some legitimate degradation, presents an 
18

O–
16

O peak at 840 cm
−1

, which is similar to 

the linear harmonic oscillator model's predicted value of 838 cm
−1

. and a literature value 

of 847 cm
−1  

G. Stoichiometry 

To determine the extent of reaction completion and thus provide insight into the 

reaction stoichiometry, a gravitometric experiment was performed that measured the 

desiccated mass of peroxytaurine. Hypotaurine (109 g/mol) and taurine (125 g/mol) have 

less mass than peroxytaurine (141 g/mol). The mass of reaction product was compared to 
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that of calculated product masses, which were the minimum and maximum expected 

masses due to, respectively, fully un-reacted and fully reacted hypotaurine or taurine. For 

example, the expected maximum masses of peroxytaurine were calculated by assuming 

complete conversion of hypotaurine or taurine to peroxytaurine regardless of superoxide 

concentration, and by assuming that dry K
+ was bound to reagent and in the form of 

potassium hydroxide. Comparing the measured masses to the difference between the 

calculated maximum and minimum masses would indicate the percent conversion of 

hypotaurine or taurine to peroxytaurine. In the experiment, 1 ml of various concentrations 

of hypotaurine or taurine were reacted with between 1 and 4 molar equivalents of 

potassium superoxide. Samples were then desiccated by heat to dry residue. Heat 

desiccation of pure water and aqueous solutions of potassium superoxide served to 

provide control masses for calculation of expected values.  

The results (Table 3.3, Figure 3.2) indicate that reactions of both 3 and 4 molar 

equivalents of KO2 with hypotaurine or taurine produced final masses that are > 75% of 

the difference between the predicted maximum and minimum masses of the product's 

potassium salt mixture. The results of the FTIR, ESI-MS, and NMR experiments 

discussed above indicate complete or near complete conversion of hypotaurine or taurine 

to peroxytaurine when using > 3 molar equivalents of potassium superoxide. Thus, the 

reaction completion percentiles are not exact but reveal a general trend.  

In the reactions involving 2 molar equivalents of KO2, the product masses, 

relative to expected, are ≥15% less than that of product in the reactions with 3 molar 

equivalents KO2. These results suggest incomplete conversion to peroxytaurine. By 
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accounting for the spontaneous dismutation of superoxide in water, which consumes an 

initial quantity of the superoxide, the overall experiment's results appear to support the 

reaction stoichiometry suggested in Scheme 1. Specifically, greater than 2 molar 

equivalents of superoxide were necessary in practice for reaction completion due to some 

loss of superoxide in side reactions.  

One molar equivalent of KO2 presented different results for taurine versus 

hypotaurine. While about half of the taurine appears to have consumed almost all of the 

superoxide to convert to peroxytaurine, less of the hypotaurine converted to product. One 

possible explanation is that hypotaurine engaged in both reduction and oxidation 

reactions with superoxide and thus served as a catalyst for its dismutation in solution. 

Alternatively, the rate of the hypotaurine reaction may be more dependent on superoxide 

concentration than in the taurine reaction. Challenges with precise measurements 

prevented useful experiments using less than 1 molar equivalent KO2.  

An additional experiment, involving spectroscopic measurement of produced 

hydrogen peroxide, was conducted to further inform reaction stoichiometry. Reactions of 

potassium superoxide in pure water or solutions of 25 mM hypotaurine or taurine were 

performed. The pH of the product solutions was adjusted to below 7 to mitigate 

spectroscopic absorbance by hydrogen peroxide anion. The absorbance of light at 250 nm 

indicated the concentration of hydrogen peroxide. The results (Figure 3.11) suggest that 

one hydrogen peroxide was produced per two superoxides in both the hypotaurine and 

taurine reactions, as well as for the dismutation of superoxide in water. There is no 

statistical difference between the three samples' mean absorbance values at each of the 
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four concentrations of KO2 used.  

The production of one hydrogen peroxide per peroxytaurine molecule was 

expected for the reaction of hypotaurine with superoxide. One hypothetical reaction 

mechanism (Figure3.1C(a)) postulates oxidation of the sulfinic acid by superoxide 

followed by formation of a covalent bond between the sulfinic acid radical and a second 

superoxide. The initial reaction step involving oxidation of hypotaurine and reduction of 

superoxide likely has a net unfavorable reduction potential and would be slow, which 

contradicts the observed rapid reaction. However, it should be noted that the reaction 

occurred near pH 12, which would have altered the standard reduction potentials. An 

alternative mechanism (Figure 3.1C(b)) involving initial nucleophilic attack of 

superoxide on hypotaurine and subsequent one electron transfers may not have as 

unfavorable reduction potentials within the transition states. Favorable thermodynamic 

features must compensate for any unfavorable reaction steps to yield an overall exergonic 

reaction, as evidenced by the release of heat. Such features may include increased 

entropy, decreased solvation enthalpy, and/or a negative heat of formation.  

The production of just one hydrogen peroxide in the superoxide reaction with 

taurine was unexpected. Most potential reaction mechanisms involving the conversion of 

one taurine to one peroxytaurine in the presence of two superoxides suggest either zero or 

two hydrogen peroxide molecules produced per peroxytaurine. It is possible that multiple 

mechanisms are used simultaneously. However, a potential mechanism that produces a 

single hydrogen peroxide product involves two superoxides reacting with a single taurine 

to yield one hydrogen peroxide and one atomic oxygen, which would rapidly react with 

dioxygen to form ozone. Such a mechanism is unlikely, as spectroscopic measurements 
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of the head gas following reactions in a closed quartz cuvette failed to detect an ozone 

peak at 254 nm (data not shown). Alternatively, a mechanism involving two taurines 

reacting with two superoxide molecules to yield peroxytaurine, hypotaurine, hydrogen 

peroxide, and dioxygen is plausible. The hypothesized taurine mechanism has similarities 

to the hypotaurine mechanism in that there are two potential pathways (Figures 3.1D(a) 

and 3.1D(b)). Whether the initial reaction steps have a positive or negative reduction 

potential depends on the exact mechanism. Regardless of the mechanism, the overall 

reaction is exergonic, for similar reasons as suggested above for the hypotaurine reaction. 

If hypotaurine is produced as a product of the taurine reaction, it also would have reacted 

with superoxide in a manner consistent with the observed results.  

An attempt was made to measure the rate constant of the superoxide reactions. 

Hypotaurine and taurine do not absorb in the visible or near- UV spectrum, but H2O2 

production can be detected at 250nm. However, the maximum limit of detection on a 

UV–Vis spectrophotometer was reached within the minimum measurement interval of 

12.5 ms after mixing KO2 with the solution. These technical challenges and the rapid 

reaction (> 25 mM hypotaurine converted in a matter of seconds) precluded direct rate 

experiments based on the available equipment. A previous study has suggested the 

reaction rate constants of hypotaurine or taurine with superoxide are < 103 M
−1 s

−1 [45]. 

However, that study was unable to detect reactions between superoxide and hypotaurine 

or taurine due to using indirect cytochrome c- and Nitro Blue Tetrazolium-coupled assay 

systems.  

H. Chemical properties of peroxytaurine 
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A titration curve of peroxytaurine in water at 24°C (data not shown) revealed two 

pKa values that would correspond to deprotonation of the primary amine at pH 9.78 and 

deprotonation of the peroxysulfonic acid at pH 6.28. In comparison, the measured pKa of 

taurine's amine was 9.25 (data not shown). The pKa of taurine's sulfonic acid was inferred 

to be 1.51 based on a solution pH of 5.38 after dissolving crystalline taurine in water. 

These results were similar to published pKa values for taurine of ~1.5 and 9.08 (Albert, 

1950). The large difference in pKa of the sulfur-based acid (6.28 versus 1.51) suggests the 

terminal –OH group of peroxytaurine is chemically distinct from that of taurine's sulfonic 

acid. The deprotonated, negatively-charged oxygen would be resonance- stabilized in 

taurine, thus permitting a low pKa. As is typical of peroxy acids, the peroxysulfonate 

form of peroxytaurine would not be resonance-stabilized and would be less energetically 

favorable, hence the higher pKa.  

A chemical test for the presence of a peroxide using a commercial colorimetric 

peroxide detection strip (XploSens PS, Sigma-Aldrich) yielded a positive result 

immediately after reaction of superoxide with hypotaurine or taurine. Subsequent 

treatment of the solution with catalase produced gas bubbles. The solution then would 

yield a negative result (data not shown). Curiously, the desiccated, solid product 

molecule tested negative when pressed against the detection strip. Upon re-suspension of 

the product powder in water, the peroxide test again showed a positive result. However, 

treatment of the re- suspended solution with catalase followed by sampling with the 

detection strip would produce a negative result. Hydrogen peroxide generated by the 

dismutation reaction of superoxide and in the production and degradation of 

peroxytaurine (Scheme 3.1 and Figure 3.1) was the likely source of the positive test 



 54 

result. Catalase is specific for its substrate, hydrogen peroxide. Addition of catalase 

removed the hydrogen peroxide and eliminated the positive test result. The peroxide test 

apparently was insensitive to the peroxysulfonic acid.  

A solution of peroxytaurine freshly prepared from hypotaurine did not show 

hypotaurine or taurine signals in ESI-MS (Figure 3.5E). To clarify if peroxytaurine 

spontaneously degrades in water, a solution of freshly prepared peroxytaurine was 

adjusted to pH 7 and treated with catalase. Samples were stored at 24°C for up to three 

days. The pH of the solutions remained ~7 through day three, implying catalase remained 

functional to remove hydrogen peroxide. Results suggest that most of the peroxytaurine 

degraded to a final mass equivalent to taurine within three days (Figure 3.12). It was 

expected that the rate of degradation decreases according to exponential decay over 

subsequent days as the concentration of peroxytaurine is reduced. This result, as well as 

that of the commercial peroxide test described above, suggests that peroxytaurine 

degrades in water to taurine and hydrogen peroxide (Scheme 3.1 and Figure 3.1).  

I. Potential biological significance  

Cells produce large quantities of superoxide during normal metabolic processes. 

Approximately 1–3% of O2 that encounters mitochondria is converted into superoxide 

anion [78] O2

•− is poorly soluble in membranes but can diffuse more readily in the form 

of HO2

•

. Hydroperoxyl can initiate certain lipid peroxidation events and react with 

existing lipid hydroperoxides to form lipid peroxyl radicals [76]. The O2

•− or HO2

• that is 

soluble in water can be removed enzymatically by superoxide dismutase to form 
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hydrogen peroxide. The results presented in this work suggest that superoxide can react 

spontaneously with hypotaurine or taurine, which can be present at micromolar or 

millimolar concentrations, respectively, in cells [3, 63]. It is reasonable to assume that the 

chemistry demonstrated in vitro would apply in vivo. Indeed, hypotaurine has been 

observed to protect against lipid peroxidation [79]. Since hypotaurine and taurine in a cell 

are likely maintained at steady state concentrations, the results presented herein suggest 

that the reaction rate of these molecules with superoxide would be dependent primarily 

upon superoxide concentration. Because up to 10–30% of O2 may be converted to 

superoxide during exercise [78], the rate of production of peroxytaurine may greatly 

increase during periods of cellular exertion.  

One complicating factor as to the potential abundance of peroxytaurine in cells is 

the reaction mechanism. The reactions to form peroxytaurine are likely multi-step (Figure 

3.1). For in vitro experiments, two superoxide molecules were required per reagent to 

achieve conversion to product. In a cell, other oxidants could potentially substitute in 

place of one of the superoxide molecules. Depending on the reaction mechanism, some 

type of radical would be formed in the transition states. A previous study revealed that 

the sulfinyl radical of hypotaurine is an unstable intermediate, which can rapidly react 

with another radical in vitro [63]. In a complex biochemical system, any sulfinyl, 

sulfonyl, or peroxyl radical may react with biological molecules other than a superoxide 

or an appropriate redox-active molecule that is useful to yield peroxytaurine. Quenching 

of a transition state radical in vivo to restore hypotaurine or taurine may serve as a 

propagation mechanism for radical chain reactions. Alternatively, a transition state 

radical may quench with antioxidant molecules known to contain radicals, such as 
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ascorbate. While the reactions demonstrated herein were spontaneous in vitro, the 

possibility remains open that one or more enzymes may exist that catalyze reactions of 

hypotaurine and taurine with reactive oxygen species.  

The results in this work indicate that hypotaurine can react with hydrogen 

peroxide to form taurine. While catalase and glutathione peroxidases are effective 

enzymes for the elimination of hydrogen peroxide, their localization to the mitochondria, 

peroxisomes, or other subcellular locations may limit their ability to remove hydrogen 

peroxide that is generated or diffuses elsewhere in a cell or outside a cell. Hypotaurine 

may serve as an antioxidant in the cytosol and in other cellular and extracellular locations 

where it is abundant. For example, neutrophils may contain about 120 μM hypotaurine in 

their cytosol, as calculated from published hypotaurine quantity [63] and cell volume [80] 

data. Hypotaurine may protect against oxidants such as hydrogen peroxide, which are 

generated by neutrophils yet can cross membranes.  

Numerous studies rely on liquid chromatography methods to detect taurine [81-

83]. Peroxytaurine appears to elute similarly to taurine in standard chromatographic 

methods used to detect amino acids and similar biological molecules. Thus, a question 

may be raised as to what quantity of detected biological taurine is, in fact, co-eluted 

peroxytaurine. Additionally, peroxytaurine can degrade to taurine and hydrogen peroxide 

and thus can be considered a pro-oxidant. The perception of taurine as an antioxidant, 

specifically against superoxide, should be reconsidered in this context.  

J. Summary 

Hypotaurine was observed to react to taurine in the presence of hydrogen 
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peroxide. Both hypotaurine and taurine react with superoxide. The product gained 32 m/z 

units over hypotaurine and 16 m/z units over taurine, but it runs at an equivalent elution 

time as taurine in HPLC. Amine-labeling of compounds for HPLC suggests no chemical 

modification of the primary amine in the product. No chemical modification of the two 

carbons in the product occurred. FTIR and Raman results suggest an altered SO3 

environment in the product, relative to taurine, with the appearance of an interpreted O–O 

bond vibration in the Raman spectra. The product has a higher pK than taurine's SO3, and 

it degrades in water to yield hydrogen peroxide. Collectively, the results suggest an 

addition of two oxygen atoms to hypotaurine and one oxygen atom to taurine to form an 

SO4 moiety, with the chemical evidence indicating the formation of a peroxysulfonic 

acid.   
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IV. Figures and tables 

  

Scheme 3.1. Proposed chemical reactions involving hypotaurine and taurine. Synthesis 

reactions are shown involving hypotaurine (A) and taurine (B) with hydrogen peroxide or 

hypotaurine (C) and taurine (D) with superoxide anion. Degradation of peroxytaurine (E) 

is shown. A pH of 7 is assumed in presentation of the protonation state of chemical 

groups.  
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Table 3.1. The chemical shift of triplet main peak from 1H-Nuclear Magnetic Resonance 

spectra. 

 

 

 

Table 3.2. Peaks and vibration modes from Raman Spectroscopy spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assigned peaks are aligned in rows with indicated vibration mode. Other unassigned 

peaks are listed in order of frequency (cm-1) and have no particular association with other 

frequencies in the same row. Sym=symmetric. Asym=asymmetric.  

 

 

Carbon-α 

(ppm) 

Carbon-β 

(ppm) 

Hypotaurine 3.336 2.621 

Taurine 3.409 3.242 

Peroxytaurine 3.397 3.237 

Vibration mode Hypotaurine Taurine Peroxytaurine 

  431 412 

  531  

SO2 wag 600 581 590 

  644 662 

   744 

C-S stretch 765 778 815 

S=O/S-O sym. 

bend 

828   

O-O stretch   837 

  888  

  934  

  996  

S=O stretch 981   

SO2 sym. stretch  1065 1065 

 1018 1084 1090 

   1128 

CH2 twist 1075, 1106, 

1192, 1281 

1140, 1209, 

1285, 1369 

1222, 1287 

 1363, 1441 1453 1397, 1447 

CH2 scissoring 1485 1481 1490 

NH3 asym. bend 1635, 1659 1634 1619 

 2878, 2943 2806, 2884, 

2950 

2944 

NH2 sym. stretch 2966 2994 2985 

NH2 asym. 

stretch 

3022 3028 3009 

   3378 
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Table 3.3. Percentile product mass in reactions with KO2 relative to expected mass. 

 

Product masses for purposes of the calculation were derived from linear fit lines of 

measured product masses at four concentrations. Each product mass is presented as a 

percentage of the difference between its predicted maximum and minimum product 

masses. Maximum standard deviations using actual desiccated mass data are presented as 

modifiers of the percentile.  

mol KO2 / mol 

taurine or 

hypotaurine 

1 2 3 4 

Hypotaurine 12.1% (± 

22.6) 

70.9% (± 3.3) 87.4% (± 2.1) 84.0% (± 2.3) 

Taurine 48.3% (± 7.5) 59.9% (± 

10.0) 

76.9% (± 5.9) 89.0% (± 4.5) 
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Table 3.4. Peaks and vibration modes from Fourier Transform Infrared Spectroscopy 

spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assigned peaks are aligned in rows with indicated vibration mode. Other unassigned 

peaks are listed in order of frequency (cm-1) and have no particular association with other 

frequencies in the same row.  

Vibration mode Hypotaurine Taurine Peroxytaurine 

S-O 

deformation 

438   

 452 467 532 

 490 524 571 

 547 533 584 

  599 613 

   675 

   706 

C-S stretch 721 743 741 

NH 

deformation 

786 848 802 

 832 894 808 

  962 883 

   960 

   1030 

C-S=O stretch 938 1038 1049 

 962 1113  

 974   

S-O stretch 999 1182 1151 

SO2 stretch  1213 1194 

 1047 1222 1251 

 1073 1250 1284 

 1157 1304  

 1250   

CH bend 1335 1344 1336 

CH wag 1377 1388 1384 

CH bend 1421 1427 1450 

CH bend 1460 1458 1483 

 1550 1512  

 1615 1526  

  1586  

NH bend 1639 1617 1593 

 2127 2476 1664 
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Table 3.4. (continued) 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

Vibration mode Hypotaurine Taurine Peroxytaurine 

 2402 2570 1722 

  1586  

NH bend 1639 1617 1593 

 2127 2476 1664 

 2402 2570 1722 

  1586  

NH bend 1639 1617 1593 

 2127 2476 1664 

 2402 2570 1722 

  1586  

NH bend 1639 1617 1593 

 2127 2476 1664 

 2402 2570 1722 

  1586  

NH bend 1639 1617 1593 
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Figure 3.1. Proposal chemical mechanisms involving hypotaurine and taurine. Synthesis 

reactions are shown involving hypotaurine (A) and taurine (B) with hydrogen peroxide. 

Two models for the reaction of superoxide with hypotaurine (C(a) and C(b)) and taurine 

(D(a) and D(b)) are hypothesized. Literature values for standard reduction potential and 

kinetic data for the presented and analogous reactions are also shown for one electron 

transfer reactions. Degradation of peroxytaurine (E) is shown. A pH of 7 is assumed in 

presentation of the protonation state of chemical groups.  
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Figure 3.1. Proposal chemical mechanisms involving hypotaurine and taurine 

(continued). 
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Figure 3.1. Proposal chemical mechanisms involving hypotaurine and taurine 

(continued). 
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A. 

B. 

Figure 3.2. Determination of desiccated mass from reaction of hypotaurine to taurine with 

potassium superoxide. (A) Potassium superoxide was reacted in water alone, and the 

sample was desiccated by heat. (B) Potassium superoxide was reacted with in solution of 

hypotaurine before desiccation. (C) Potassium superoxide was reacted in solution of 

taurine before desiccation. Three or more independent replicates were used for each 

sample. The negative x-intercept is to correct for systemic error in the balance as 

measured via desiccated water controls. 
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C. 

 

Figure 3.2. (continued) 
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Figure 3.3. High Performance Liquid Chromatography elution times of hypotaurine, 

taurine, and reaction products. Glycine was added to the solutions as an internal standard 

immediately before sample injection. Amine-containing molecules were labeled with 

ortho-phthalaldehyde and detected by light absorbance at 360 nm. Three independent 

replicates were used for each sample in collection of elution time data. 
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Figure 3.4. High Performance Liquid Chromatography elution times of products from 

reactions of hypotaurine or taurine with hydrogen peroxide. DTPA was added as a 

chelating agent. Glycine was added to the solutions as an internal standard immediately 

before sample injection. Amine-containing molecules were labeled with orth-

phthalaldehyde and detected by light absorbance at 360 nm. Two independent replicates 

were used for each sample in collection of elution time data. Elapsed time of reaction 

before sample injection is given. An unknown disturbance in the HPLC elution system 

during this experiment resulted in consistent, secondary trailing peaks behind the primary 

peaks. Primary peaks are enclosed by boxes for clarity.  
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Figure 3.5. Mass Spectrometry spectra for hypotaurine, taurine, and reaction products. An 

electrospray-ionization setup was used to vaporize liquid samples for detection via mass 

spectrometry. All samples were adjusted to pH 7±1 before injection. Samples in panels 

A‒D were dissolved in phosphate buffer, while samples in panels E‒F were dissolved in 

pure water. Two independent replicates were used for each sample in collection of mass 

spectrometric data. Intensity counts are arbitrary and not quantitative.  
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Figure 3.6A. Mass Spectrometry spectra for products from superoxide reactions. An 

electrospray-ionization setup was used to vaporize liquid samples for detection via mass 

spectrometry. A hypotaurine with superoxide reaction product was not pH-adjusted and 

was sampled at a pH of 12. 

Figure 3.6B. Mass Spectrometry spectra for products from superoxide reactions. An 

electrospray-ionization setup was used to vaporize liquid samples for detection via mass 

spectrometry. An experimental setup identical to that of part A was performed, except the 

sample was pH-adjusted to 4. 
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Figure 3.6C. Mass Spectrometry spectra for products from superoxide reactions. An 

electrospray-ionization setup was used to vaporize liquid samples for detection via mass 

spectrometry. A reaction of taurine with superoxide was not pH-adjusted and was sample  

at a pH of 12. 

Figure 3.6D. Mass Spectrometry spectra for products from superoxide reactions. An 

electrospray-ionization setup was used to vaporize liquid samples for detection via mass 

spectrometry. An experimental setup identical to that of part C was performed, except the 

samples was pH-adjusted to 4. 
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Figure 3.7. 1H-Nuclear Magnetic Resonance Spectrometry spectra of hypotaurine, 

taurine, and peroxytaurine. Samples were dissolved in D2O. The peak at 4.785 ppm 

corresponds to water. The inset amplifies the 3.450‒3.200 ppm region. 
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Figure 3.8. Fourier Transform Infrared Spectroscopy spectra for hypotaurine, taurine, and 

peroxytaurine. Peroxytaurine was produced from the reaction of superoxide with 

hypotaurine or taurine. Relative absorbance values between samples are dependent on 

concentration and are thus arbitrary. Three independent replicates were used for each 

sample in collection of spectra. Representative spectra are presented. 
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Figure 3.9. Raman Spectroscopy spectra for hypotaurine, taurine, and peroxytaurine. 

Relative absorbance values between samples are dependent on concentration and thus are 

arbitrary. Three independent replicates were used for each sample in collection of spectra. 

Representative spectra are presented. 
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Figure 3.10A. Raman Spectroscopy spectra for 18O isotope-labeled taurine and 

peroxytaurine. Full spectra of labeled taurine and peroxytaurine. Relative absorbance 

values between samples are dependent on concentration and have been scaled for 

purposes of comparison, and thus are arbitrary. Two independent replicates were used for 

each sample in collection of spectra. Representative spectra are presented. 
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Figure 3.10B. Raman Spectroscopy spectra for 18O isotope-labeled taurine and 

peroxytaurine. Overlay comparison of taurine and peroxytaurine in region of interest. 

Relative absorbance values between samples are dependent on concentration and have 

been scaled for purposes of comparison, and thus are arbitrary. Two independent 

replicates were used for each sample in collection of spectra. Representative spectra are 

presented. 
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Figure 3.10C. Raman Spectroscopy spectra for 18O isotope-labeled taurine and 

peroxytaurine. Overlay comparison of labeled and unlabeled taurine. The x-values for 

unlabeled taurine have been shifted lower by 37 cm-1 for purposes of alignment. Relative 

absorbance values between samples are dependent on concentration and have been scaled 

for purposes of comparison, and thus are arbitrary. Two independent replicates were used 

for each sample in collection of spectra. Representative spectra are presented. 

 

 

 

 

 

 



 79 

Figure 3.10D. Raman Spectroscopy spectra for 18O isotope-labeled taurine and 

peroxytaurine. Overlay comparison of labeled and unlabeled peroxytaurine. The x-values 

for unlabeled peroxytaurine have been shifted lower by 37 cm-1 for purposes of 

alignment. Relative absorbance values between samples are dependent on concentration 

and have been scaled for purposes of comparison, and thus are arbitrary. Two 

independent replicates were used for each sample in collection of spectra. Representative 

spectra are presented. 

  



 80 

Figure 3.11. Production of hydrogen peroxide by reaction of superoxide in water, 25 mM 

hypotaurine, or 25 mM taurine solutions. Hydrogen peroxide was measured 

spectroscopically at 250 nm. Dilutions of a standard solution of hydrogen peroxide 

provided reference absorbance values at four concentrations. The KO2 + water, KO2 +
 

hypotaurine, and KO2 + taurine values have been offset from the bottom x-axis values of 

25, 50, 75 and 100 for the sake of clarity. There is no statistical difference between the 

mean values of samples at each of the four concentrations. 
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Figure 3.12. Degradation of peroxytaurine in water. Reactions of taurine and 4 molar 

equivalents potassium superoxide were performed. Samples were pH-adjusted to 7 and 

treated with catalase, then stored at 24ºC. Samples were desiccated by heat at the 

indicated time points for determination of mass. 
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Chapter 4 

 

Investigation of peroxytaurine 
I. Introduction 

A. Rose Bengal 

Various in vivo data that taurine has a variety of protective functions and 

deficiency leads to pathological changes [3]. Taurine has been known as an antioxidant 

by reacting with hypochlorous acid (HOCl) that is generated at sites of inflammation. 

Aruoma et al. [45] suggested that the precursor of taurine, hypotaurine, might act as an 

antioxidant in vivo by scavenging hydroxyl radicals (•OH), and does not react with singlet 

oxygen (1O2), but reacts with hydrogen peroxide (H2O2). In contrast, Pecci et al. [84] 

suggested that hypotaurine oxidized to taurine by singlet oxygen generated by methylene 

blue photosensitizer. Grove and Karpowicz [85] observed that hypotaurine reacts with 

hydrogen peroxide and superoxide and products an intermediate molecule – 

peroxytaurine. 

Reactive oxygen species (ROS) are chemically reactive oxygen-derived 

molecules, such as hydroxyl radical (•OH), superoxide (•O2
–), peroxides (O2

2–) and singlet 

oxygen (1O2). Some ROS are free radicals that have an unpaired electron in the outer 

orbital that can cause cell-damaging reactions, resulting in mutation and injury. ROS 

plays an essential role in apoptosis induction under physiological and pathological 

conditions and has destructive actions on DNA and proteins [86].  

In vivo, reactive oxygen species (ROS) are formed as a natural byproduct of the 

normal metabolism of oxygen [87]. During environment stress or exposure to UV light, 

ROS levels increase and result in cell damage that causes oxidative stress. Among the 
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free radicals, singlet oxygen has a higher energy state than the triplet ground state 

molecular oxygen. Singlet oxygen is a toxic gas that causes DNA damage [88].  

Singlet oxygen can be produced from porphyrins and Rose Bengal (RB), which 

are visible light-active photosensitizers [89]. Rose Bengal converts triplet oxygen (3O2) to 

singlet oxygen in the presence of light. Once dioxygen is in the singlet excited state, 1O2 

becomes more reactive with organic chemical groups. Due to its high electrophilicity, 

singlet oxygen is capable of oxidizing sulfides and amines. 

Singlet oxygen is the active species used in photodynamic therapy, and it is used 

for sterilizing blood products and in cancer treatment [88]. Photosensitized generation of 

1O2 is used for treating wastewater and activating herbicides and insecticides under 

sunlight [89]. 

This study was to investigate the antioxidant property of hypotaurine to 

scavenging singlet oxygen. The hypothesis was that hypotaurine reacts in vitro with 1O2 

and is oxidized to peroxytaurine. 

 

3O2 

         photosensitizer 

 

Hypotaurine + 1O2                       Peroxytaurine (?) 

B. Peroxide Reactions 

A novel molecule, peroxytaurine, was discovered from the reaction of 

hypotaurine with superoxide [85]. The authors used FTIR, NMR, and Raman 

spectroscopy to confirm that the chemical proprieties of the new molecule are the result 

of a peroxide group. The distinguishing chemical characteristic of peroxytaurine from 

Kc 

light 
1O2 
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taurine and its analogous molecules is the peroxide group. However, a commercial 

colorimetric peroxide detection test strips (XPloSens PS, Sigma-Aldrich) designed to 

detect organic peroxides and other peroxides did not detect peroxytaurine. The strips only 

detected hydrogen peroxide produced from the formation reaction and the degradation 

reaction of peroxytaurine. There was no chemical detection observed for the peroxide 

group in peroxytaurine. The goal of this study was to detect the peroxide group directly in 

peroxytaurine using chemical reactions. 

The chemicals used for this project were acridine, pyridine, and Fe(II)Cl2. The O-

O chemical bond of the peroxide is unstable and can be split into reactive radicals via 

homolytic cleavage. The peroxide may potentially donate an oxygen to acridine and 

pyridine to form acridine N-oxide and pyridine N-oxide, respectively.  

Fenton chemistry is the reaction of hydrogen peroxide with ferrous iron [90]. The 

peroxide reacts with Fe(II) to form Fe(III) and OH• and OH–. It was hypothesized that 

Fe(II) would react with peroxytaurine to form Fe(III). 

II. Materials and Methods 

A. Rose Bengal  

All chemical materials were purchased from Sigma–Aldrich (St. Louis, MO, 

USA). 18.2 M water from Barnstead Nanopure Ultrapure Water Purification System 

(Thermo Fisher Scientific, Marietta, OH, USA) was used for the preparation of aqueous 

solutions. A Gemini 3 m C18 110Å 100 x 4. 6 mm ID column for High Performance 

Liquid Chromatography was purchased from Phenomenex (Torrance, CA, USA). 

Samples and reagents are prepared fresh for every analysis. Reaction mixtures 

contained 1000 µl of 120 mM hypotaurine, 50 µl of 1 M sodium phosphate buffer pH 
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7.0, and 200 µl of 300 mM rose Bengal. Reaction mixtures were placed in a quartz 

cuvette and exposed to ultraviolet light (=180 nm) inside a Cary Eclipse Fluorescence 

Spectrophotometer. The absorbance was set at 540 nm with split width 5 nm. After every 

5 min, 300 µl of the mixture solution was combined with 1 µl of 1 M glycine and 

analyzed by High Performance Liquid Chromatography (HPLC) for hypotaurine and 

taurine concentrations.  

Control solutions were prepared with the same chemical components as the 

reaction mixture. The solutions were placed in a quartz cuvette and then positioned inside 

the Cary Eclipse Fluorescence Spectrophotometer without the ultraviolet rays. After 

mock exposure to ultraviolet light, the solutions were analyzed by HPLC. 

Hypotaurine and taurine concentrations were analyzed by reverse-phase HPLC 

using an Agilent Technologies High Performance 1100 series instrument (Alpharetta, 

GA, USA), which was equipped with ChemStation software. ortho-phthalaldehyde 

(OPA) with 2-mercaptoethanol was used as a colorimetric tagging agent. Samples were 

separated by a Gemini 3 m C18 110 Å 100 x 4.6 mm column. The separation is carried 

out by a gradient elution at a flow rate of 1.2 ml/min. The elution mixture consisted of 

70% of a solution of 0.1 M Na2HPO4 and 0.1 mM Na2-EDTA (pH 6.38) and 30% of 

methanol. Detection was performed by absorbance at 360 nm. 1 µl of 1 M glycine as an 

internal standard was added to the mixture solution. Each of the reactions and controls 

was run in triplicate.  

The mixture solution was analyzed by Electrospray Ionization Mass Spectrometry 

(ESI-MS). ESI-MS was performed on an Applied Biosciences QSTAR Elite hybrid 

quadrupole/Time Of Flight mass spectrometer system (Foster City, CA, USA), equipped 
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with a NanoSpray Ion source with Borosilicate Emitters IonSpray Voltage of 1300 V. 

The samples were analyzed under positive ESI conditions. Analyst QS 2.0 software, 

using default system parameters, was used to run the instrument. Full scan mass spectra 

were recorded over the mass range of m/z 50–500 using time-of-flight mode. Nitrogen 

was used as the curtain and collision gas. The collision energies were between 10 and 25 

eV. All spectra reported were averages of 50–200 scans. Each of the reactions and 

controls were run in triplicate. 

B. Peroxide Reactions 

Samples and reagents were prepared fresh for every analysis. A standard curve for 

H2O2 was set at 250 mM, 100 mM, 1 mM, 100 µM, 10 µM, and 1 µM. Peroxytaurine 

solutions were made from hypotaurine and taurine with 3 molar equivalents of potassium 

superoxide. Peroxytaurine solutions were adjusted to pH 7 ± 1 with 1 N HCl. Catalase 

was added to the peroxytaurine solution to eliminate background hydrogen peroxide 

before reacting with acridine, pyridine, or Fe(II)Cl2. 

Acridine standard solution at 200 mM was prepared by dissolving acridine in 

acetic acid and diluted to 100 mM, 10 mM, 1 mM and 0.1 mM. The reactive solutions 

were prepared by mixing 50 mM peroxytaurine solution with acridine solutions. Pyridine 

reactive solutions were prepared with the same dilutions as for acridine. Samples were 

placed in a quartz cuvette and measured on a UV-Vis spectrophotometer (Varian Cary 50 

Bio, Agilent Technologies, Santa Clara, CA, USA). Full scan fluorescence spectra were 

recorded in the wavelength range of 280-500 nm. 

Standard Fe(II)Cl2 solution was prepared at 200 M in water and 100 M taurine. 

Fe(II)Cl2 reaction solutions were prepared with peroxytaurine. After 30 seconds, the 
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reaction solutions were placed in plastic cuvettes and measured on a Varian Cary 50 UV-

Vis spectrometry. Full scan fluorescence spectra were recorded in the wavelength range 

of 250-800 nm. 

III. Results and Discussion 

A. Rose Bengal 

The reaction of hypotaurine with singlet oxygen was investigated. Rose Bengal 

exhibits intense absorption bands in the green area of the visible spectrum (480-550 nm). 

Reaction mixtures of Rose Bengal and hypotaurine in buffer solution were placed in a 

quartz cuvette and then exposed to ultraviolet rays inside a Cary Eclipse Fluorescence 

Spectrophotometer. The absorbance was set at 540 nm. After 15 or 30 minutes, 300 µl of 

the mixture solution was combined with 1 µl of 1 M glycine and analyzed by HPLC 

assay for hypotaurine and taurine concentrations. 

The reaction solutions of hypotaurine and Rose Bengal were isolated by HPLC. 

Glycine eluted at 11 min and served as an internal control (Figure 4.1). Hypotaurine 

eluted at 20 min and taurine at 16 min. There appeared to be taurine peaks detected at 16 

min after the mixture solution exposure to 30 minutes of UV light.  

To confirm if there was a taurine product from the reaction of Rose Bengal and 

hypotaurine, an electrospray ionization-mass spectrometry (ESI-MS) experiment was 

performed. A reaction solution (pH ~7) revealed a hypotaurine peak at 132 m/z (Figure 

4.2A) and a taurine peak at 148 m/z (Figure 4.2B). The reaction solution (pH~7) of 

hypotaurine and Rose Bengal after exposure to ultraviolet light for 30 min revealed peaks 

at 132 m/z and 148 m/z (Figure 4.C). The small peak of 148 m/z (Figure 4.2C) was also 

observed in the hypotaurine control (Figure 4.2A). The 148 m/z peak was small, probably 



 88 

occurred due to background oxidation, and was not enough to demonstrate the presence 

of the taurine reaction product.  

It was unclear regarding why the taurine peak appeared in the HPLC from the 

reaction mixture of Rose Bengal and hypotaurine (Figure 4.1). It may be due to the 

degradation of the OPA solution or carry over from the previous sample. ESI-MS 

provided more convincing evidence that little or no taurine was produced from the 

reaction mixture. The small peak of 148 m/z in Figure 4.2C was not enough to conclude 

that hypotaurine reacts with singlet oxygen from Rose Bengal to produce taurine. This 

study agrees with a previous study [45] that showed hypotaurine does not react with 

singlet oxygen but disagrees with another study [84] that hypotaurine reacts with singlet 

oxygen. 

B. Peroxide Reactions 

The hypothesized chemical reactions of hypotaurine with acridine or pyridine was 

to form acridine N-oxide (Figure 4.3A) and pyridine N-oxide, respectively. UV-vis 

absorption spectra of acridine and pyridine have absorbance maxima at 350 nm and 256 

nm, respectively [91]. Acridine N-oxide has absorbance maxima at 400 nm, 425 and 480 

nm [92]. Pyridine N-oxide has an absorbance maximum at 338 nm. Data showed there 

were no new peaks detected at 400 nm, 425 nm, and 480 nm when reacting peroxytaurine 

with acridine, which indicated that no N-oxide was formed (Figure 4.4). The lower 

intensity of the 350 nm peak of 100 mM acridine with 50 mM peroxytaurine compared to 

100 mM acridine alone suggested that peroxytaurine reacted with acridine but not in the 

way that was expected (Figure 4.3A). The presence of no new peaks indicated there was 

no N-oxide formed. The reaction of acridine and peroxytaurine can be explained as by 
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nucleophilic attack on acridine at position 9 to break the aromatic ring and form an 

aldehyde [93] (Figure 4.3B).  

In the case of pyridine, there was no change in signal from the spectra peaks (data 

not shown), which indicated no reaction occurred. The conclusion from the spectra is that 

peroxytaurine has weaker oxidation potential than other peroxy acids and cannot form N-

oxide with acridine or pyridine. However, it still appears to react with acridine and form a 

different product than expected. 

Figure 4.5 shows the UV-Vis absorption spectra of the reaction of different 

concentrations of iron and peroxytaurine. Fe2+ absorbs light from 240 to 280 nm, and 

Fe3+ from 300 to 350 nm [94]. Fe2+ reacted with peroxytaurine to form the product Fe3+, 

and the absorbance was measured at 350 nm. Hydrogen peroxide (H2O2) reacts with Fe2+ 

to form Fe3+. H2O2 has absorbance from 185 nm to 220 nm (data not shown). Therefore, 

it was necessary to add catalase to the peroxytaurine solution to eliminate any 

background H2O2. After catalase was added, the solution formed bubbles, which 

indicated the hydrogen peroxide was breaking down to water and releasing oxygen. The 

data shows that the same concentration of Fe2+ (200 M) had a higher intensity in the 

range of 300 to 400 nm when mixed with peroxytaurine compared to H2O. The data 

showed that Fe2+ converted to Fe3+, which confirmed that the peroxide in peroxytaurine 

reacted with Fe2+. 

Fe2+ + O2
2–  + 2H+ 

 ==> Fe3+ + OH•  + OH– 

The conclusion from the results of the acridine, pyridine, and Fe(II) experiments 

provided direct chemical evidence of the presence of a peroxide in peroxytaurine.  
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IV. Figures  

 

 

Figure 4.1. High Performance Liquid Chromatography shows elution of hypotaurine, 

taurine and the reaction products of hypotaurine and Rose Bengal before and after 

exposure to UV. Glycine was added to the solution as an internal standard immediately 

before sample injection. Amine-containing molecules were labeled with ortho-

phthalaldehyde and detected by light absorbance at 360 nm.  
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Figure 4.2. ESI-MS spectra for (A) hypotaurine, (B) taurine and (C) reaction solution of 

hypotaurine with Rose Bengal after exposure to UV for 30 min. An electrospray-

ionization setup was used to vaporize liquid samples for detection of positive ions via 

mass spectrometry. All samples were adjusted to pH 7 ± 1 before injection. Intensity 

counts are arbitrary and not quantitative. 
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Figure 4.3. Proposed chemical reactions involving acridine with peroxytaurine (A) 

Expected reaction of peroxytaurine with acridine forms N-oxide and taurine (B) Acridine 

undergoes nucleophilic attack at position 9, which breaks the aromatic ring and forms an 

aldehyde.  
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Figure 4.4. UV-Visible absorbance spectra of acridine standard and acridine with 

peroxytaurine. Acridine solutions were prepared by dissolving acridine in acetic acid. 

Peroxytaurine solutions were adjusted to pH 7 ± 1. Catalase was added to the solutions to 

eliminate H2O2 before reaction with acridine. 
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Figure 4.5. UV-visible spectra of Fe(II)Cl2 in the solution of water, taurine, and 

peroxytaurine. Catalase was added to the solutions to eliminate H2O2 before reaction with 

Fe(II)Cl2.  
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Chapter 5 

General Summary 

Taurine, an amino acid-derived molecule, has fascinated scientists for decades. 

Knowledge of the biological roles and biochemical functions of taurine remain elusive 

despite decades of studies and investigations [4]. The goal of this projects was to 

understand the biosynthesis reaction of taurine better.  

The initial plan was to identify the gene and protein involved in the conversion of 

hypotaurine to taurine and perform protein expression and screening for protein activity. 

Bioinformatic analysis of over 100 genes from three species from GeneNetwork and 

COXPRESdb database indicated that flavin-containing monooxygenase (FMO) genes 

were highly correlated with CDO1, CSAD, and ADO. Co-factors NAD+ and NADPH 

were added with hypotaurine to cell lysate to observe the presence of an enzyme that 

could catalyze the reaction of hypotaurine to taurine. The cell lysates were analyzed using 

High Performance Liquid Chromatography for additional taurine production. Results 

from HPLC revealed no change in taurine concentration which suggested this line of 

experimentation was not promising. For that reason, alternative pursuits were used to 

investigate non-enzymatic reactions. 

HPLC is the most common method for measuring taurine concentration. Although 

gas chromatography had been used to measure taurine in some studies [95], the attempt 

to use a gas chromatography method in this project failed because taurine is poorly 

soluble in common solvents other than water and taurine is not volatile. 

Reactions of hypotaurine and taurine with hydrogen peroxide, superoxide, and 

singlet oxygen were observed from HPLC and ElectroSpray Ionization -Mass 
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Spectrometry. Mass spectrometry revealed a novel molecule that peaks at 164 m/z, which 

corresponds to the mass of a hypotaurine (132 m/z) plus two oxygen atoms (32 m/z). 

Evidence from Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance 

Spectroscopy, and Raman Spectrometry suggested chemical properties indicating the 

novel molecule peroxytaurine which has a peroxy acid. FTIR and Raman spectrometry 

were performed with an 18O isotope labeled peroxytaurine to confirm the presence of the 

O-O bond of the peroxy acid. The results suggested that hypotaurine and taurine are 

oxidized to peroxytaurine. Hypotaurine reacts with hydrogen peroxide and converts to 

taurine. Hypotaurine did not oxidize in the presence of Rose Bengal, which is a singlet 

oxygen generator.  

To further investigate the presence of the peroxy acid in peroxytaurine, direct 

chemical reactions of peroxytaurine with pyridine, acridine, and Fe(II)Cl2 were also 

studied. Although UV-vis spectra showed no presence of acridine N-oxide or pyridine N-

oxide as predicted, a different product may have been formed from the reaction of 

peroxytaurine with acridine. Peroxytaurine reacted with Fe(II) to produce Fe(III).  

Since peroxytaurine has a similar chemical structure to taurine and is only an 

oxygen atom different in mass, therefore, was observed to have approximately the same 

elution time as taurine on HPLC. This observation explains why no one had previously 

identified peroxytaurine. No one had ever used ESI-MS, FTIR, and Raman spectrometry 

to analyze hypotaurine and taurine compounds.  

Although no new gene or protein was identified, the discovery of the 

peroxytaurine molecule demonstrated that there is a spontaneous intermediate reaction in 
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the conversion of hypotaurine to taurine. Further analysis of peroxytaurine will contribute 

to the understanding of the metabolism of taurine.   
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