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Abstract 

This research project involved the development of a fully customizable, user-defined hardware-

software suite for automated signal routing with function expandability. Because of the above-

mentioned characteristics, the project was called Programmable Integrated Switch Matrix 

(PrISM). This intelligent switching system can be customized and employed in any industry 

where there is a need for programmable, timed, and/or simultaneous routing of analog or digital 

signals between devices. Potential applications of these automated switching systems include, 

but are not limited to: demarcation points, test floors, redundant backup systems, remote 

maintenance, etc. A suitable test bed for PrISM was found in a collaboration with the Federal 

Aviation Administration (FAA) Oklahoma Communications Engineering Team (OKCET) 

Laboratory and has found an immediate potential application as a large-scale switching system. 

The fundamental hardware unit for this system is the National Instruments (NI) PXI chassis with 

a NI SwitchBlock populated with matrix relay cards. The chassis can be deployed in any 

location, contributing to the robust nature of the design. The advantage of using an integrated NI 

system is its modularity; the hardware can be easily tailored to the specific needs of each end 

user. Expansion and customization is accomplished with the addition of a wide spectrum of 

matrix relay cards. Matrix cards are available with a varying number of relays or switching 

points. The proposed system is controlled and automated by a customized virtual instrument (VI) 

application software that was developed using NI LabVIEW software environment and can be 

integrated with the PXI or function as an executable on a standalone desktop computer. 
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I Introduction 

Large-scale switching is performed at facilities that utilize multiple communication/signal/test 

devices that must frequently be connected, disconnected, and rerouted. This facility could be a 

massive demarcation point at an airport, responsible for routing vital communications to and 

from in-flight aircraft; a testing facility or laboratory that must perform large quantities of tests 

on various devices and/or signals; or any communication hub with large-scale routing needs. A 

system that performs this large-scale switching needed to be subjected to some requirements in 

order to have the full functionality required for a specific application. Such requirements range 

from power specifications on the switch relays and expandability options, to aesthetics of the 

graphical user interface and bulkiness of the hardware setup. 

 

This thesis proposes the development of a programmable and modular integrated switch matrix. 

These characteristics are reflected in the name of the project, PrISM (Programmable Integrated 

Switch Matrix). PrISM needs to be versatile enough to be deployed in different switching 

applications. Additionally, different applications can require different functionalities as well as 

vastly different switch matrix size. This can be achieved by designing a system using a modular 

approach, where functionality is added as required for each specific application. Designing a 

modular project requires the development of a hardware and software framework that supports 

plug and play functionalities. This versatility characteristic defines the programmable and 

integrated approach PrISM stands for. 

 

Although PrISM was designed to be used in any application, it has an immediate potential 

application in conjunction with the Federal Aviation Administration (FAA) Oklahoma 
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Communications Engineering Team (OKCET) Laboratory. The lab has a wide range of 

communication devices and voice switch positions that need to be capable of interfacing with 

each other. Having a large number of connection points requires a large number of copper wire 

connections. These hardwire connections need to be routed in an optimal setup to achieve the 

required functionality while operating at a high capacity in a minimum of space. As seen on 

Figure II.1, all the devices set in the lab are connected to a large demarcation point. Copper wire 

connections should be routed from the demarcation point to a switch matrix that can intelligently 

connect user-defined devices together or connect them to phone lines that access devices with the 

outside world. The example on Figure II.1 shows two different voice switch positions connected 

via the switch matrix shown at the bottom of the diagram. This connection is marked in red, 

connecting voice switch position 1 radio 1 transmit to voice switch position 2 radio 2 receive. 
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Figure II.1 Hardware Overview 

 

The OKCET laboratory provided an opportunity to use the PRISM functioning as a switch 

matrix capable of routing between a large number of devices with the possibility of expansion 

into the thousands. The lab required the ability to achieve multiple simultaneous connections for 

testing different pieces of equipment at the same time. To fulfil these requirements, in an A x B 

matrix, the number of rows, A, is a smaller number representing the number of simultaneous 

connections allowed; whereas the number of columns B, will be a larger number representing the 

number of devices that would be able to interface with each other. In the case at hand, A can be a 

number such as 8 or 16, while B needs to be able to grow into the thousands because of the 

number of devices the laboratory wants to have plugged in the switch matrix. Therefore, the 
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hardware chosen to accomplish the task must have the ability to be easily expanded so it will be 

able to meet any future needs that the laboratory might have. 
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II Objective 

II.1 Introduction 

The complete development of a fully customizable, user-defined hardware-software suite for 

automated signal routing with an open-ended functionality profile required choosing the 

appropriate platform. Additionally, since PrISM has found an immediate application for proof of 

concept testing, there was a need for clear hardware and software benchmarks. The project was a 

collaboration with industry representatives. Therefore, to successfully accomplish the laid-out 

objectives, the industry representatives needed to be satisfied with the results as well.  

 

The software used to incorporate the logic was required to perform intelligent switching and to 

control the hardware that would be suited for the task as well as any potential hardware for 

another functionality. Making this match was important, and set the tone for the entire project. 

Both the hardware and software had to be flexible to allow for expandability in terms of size and 

function, and have the ability to work in concert with each other. Due to their variety of 

hardware, and the ease of use of their software, National Instruments (NI) products were chosen 

for this project. NI hardware is intrinsically controlled by LabVIEW software, which is unique in 

its software development capabilities and is compatible with all NI products. These products 

include a wide variety of communication and electrical engineering related equipment. This was 

very important to achieve the objective of building a future-proof system, with the capability to 

accept other hardware if necessary. 
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II.2 Hardware Objectives 

The NI hardware chosen for the switch matrix was the PXI-2800 SwitchBlock Carrier. The 

SwitchBlock can carry matrix relay cards with an array of switching relays which can be 

arranged in a large switch matrix. The PXI-2800 SwitchBlock is shown in Figure II.2, with all 

six of the card slots filled with matrix relay cards. 

 

 

Figure II.2 PXI-2800 

 

The base for a PXI system is a PXI chassis, which can vary in the number of slots available. For 

a large system, the largest possible chassis is recommended, up to 18 slots. These slots can be 

taken up by different modules, depending on the need of the system. The SwitchBlock takes up 4 

slots on a PXI chassis, and multiple SwitchBlocks can be connected together. Each SwitchBlock 

has 6 slots that can be occupied by matrix relay cards. The matrix relay cards also have a variety 

of options to choose from. There are multiple resources from NI on building large scale matrices 
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[1]. Since the system requires a connection to multiple devices, the expansion plan was laid out 

in a column expanding configuration as pictured in Figure II.3, shown in the white paper Matrix 

Expansion Guide by NI [2].  

 

 

Figure II.3. Column Expansion 

 

There are multiple considerations that must be taken when choosing the type of relays and the 

switching logic in a switch matrix [3] [4] [5]. NI has an array of switch matrix cards with reed 

relays that serve as switching points [6]. Reed relays are commonly used as switching points for 

switch matrices [7] [8]. The other available option is electromechanical relays, which have their 

advantages in higher current and power allowance, while occupying more space than the reed 

relays [9] [10]. After considering the previously mentioned white papers from NI [1] [2], as well 

as consulting with the industry end user for the planned product, a decision was made to go with 

the electromechanical relays over the reed relays. In this first application of PrISM, the OKCET 

laboratory had the capability of using PRISM to match the specifications and functionality of 

their current switch matrix system. One of these specifications is an allowed switching current of 

up to 2 A. This higher current specification is only available with the bulkier electromechanical 

relays. A possibility for a larger system would be to mix and match low current devices on reed 
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relay matrices, and higher current devices on electromechanical relay matrices. In this way, 

PrISM could utilize the most optimal space-saving setup. The drawback is the inability to 

connect these two together, because the reed relays can’t handle currents up to 2A.  

 

There are two different electromechanical relays available that are SwitchBlock compatible: 

4x71 and 8x34. The 8x34 card was chosen, because it allows for at least 8 simultaneous 

connections at any time. The predicted load of the OKCET laboratory end users would likely 

require more than 4 simultaneous connections at any given time. These specifications are listed 

in Table II.1. 

 

Hardware Specifications - NI 2834 

  Prototype Projected Use 

Number of Device Connections  34 1000+ 

Number of Bus Lines 8 8 

Max Switching Current 2.0 A 2.0 A 

Max Switching Power 60 W 60 W 

Switch Relay Type EM EM 

Table II.1. NI 2834 Hardware Specifications 
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II.3 Software Objectives 

A set of switch requirements was created to meet the software benchmarks for PrISM. These 

requirements will govern the development of an algorithm to run this system. Additionally, 

setting up a palette of features for the industry end user is also important for the success of the 

proposed system. These include, but are not restricted to, a login system for an administrator and 

users, a screen to display active connections and possible connections to be made, help menu, 

troubleshooting guide, and report generation. These requirements are listed in Table II.2. 

 

Algorithm Software Specifications - Prototype 

Device Choice  

• Graphical (selecting the devices from images that 

are grouped by device and signal type). 

• Text tree (selecting the devices from a list forming a 

text tree where each branch is a device or signal 

type). 

Switch Relay 

Positions 

• Graphical (pictorial representations of current 

configuration, showing devices and buses in use). 

• Text/Table (tabular representation of the switch 

configuration, listing the devices for each 

connection and the bus line they occupy). 

Routing 

• Intelligent routing where the algorithm chooses the 

first free bus for every new connection. 

• Options for locking down buses or latching another 

device on an existing connection. 

• All buses active notification. 

Programmable 

Connections 

• Timed connect/disconnect 

• Triggered connect/disconnect 

Log 
• Create a log of connections made 

• Report generation on user command 

Purge 
Administrator only purge all connections 

functionality 

Table II.2. Software Specifications 
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II.4 Collaboration Objectives 

This project was developed as a collaboration between industry and academia. Such 

collaborative ventures are beneficial to both parties. The university parties acquire skill sets that 

are valuable for their future endeavors beyond their education. Industry representatives are able 

to harness the power of shared resources with members from the university to achieve industry-

oriented goals. Such collaborations have been successfully accomplished via a wide array of 

university-industry interactions [11] [12] [13] [14]. While these collaboration efforts do open 

new opportunities, the afore-mentioned "costs" and "benefits" to these collaborations need to be 

taken in consideration to optimize the interaction [15] [16]. 

 

The modular aspect of PrISM allows for future expansion of the available functionalities for the 

end user. A successful thesis project could ensure that the industry representatives turn to the 

same academic resources for future projects as well. Streamlining the future of an open-ended 

project has been an objective of other university-industry collaborations [17]. In turn, this would 

widen the range of accessible projects, allowing future students to learn more skills in a broader 

array of fields. This has been done at the undergraduate as well as at the graduate level such as 

this thesis. Similar graduate student joint collaborations have been accomplished successfully in 

previous studies [12] [18]. 

 

In order to complete the requirements set for PrISM, the system should match the functionality 

of the OKCET laboratory’s current outdated switch matrix, and have the ability to receive future 

modifications; such as adding more devices or adding completely new functionalities. Therefore, 

the hardware selected must be able to incorporate the variety of modular pieces capable of 
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performing other tasks for the industry end user. PrISM allows for additional functionality to be 

explored by another undergraduate or graduate body of work. Developing a system with this 

intrinsic ability is the final goal in this modular setup. As shown in other studies, diminishing 

these orientation and transaction-based gaps has been key in developing university-industry 

programs [19].  
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III Hardware Simulation 

The first step in determining whether the correct hardware platform was chosen was to perform a 

hardware simulation. NI provides the capability to simulate the hardware before purchasing any 

components. This ensures that the hardware is compatible and tested prior to acquisition. 

Demonstrating the platform effectiveness helps with getting approval for funds to purchase a 

prototype. Simulation with NI products is done in National Instruments Measurement 

Automation Explorer (NI MAX). The service provides a simple way to check the integrity of a 

designed system, and allows for a test of its full functionality [20] [21] [22].  

 

The system will perform large-scale switching with a varying number of devices connected to 

the matrix. A flexible design allows for the end user to change the parameters of the system. The 

primary parameter is the number of devices connected, which determines the number of physical 

connections that need to be in place to handle every device that will be connected to the grid. ‘A’ 

will be the number of devices that need to connect to the matrix, and ‘B’ would be the number of 

simultaneous connections available [3] [4] [5]. In the first case of a matrix AxB (A is rows, B is 

columns), the design would represent a fixed group of devices, A, to be connected to a different 

set of devices, B. In this case, the rows would be filled in with devices from group A and 

columns would be devices from group B. A and B would be the number of devices in each 

group. In another case, all the devices can be connected to each other at any given time. This is 

also handled by AxB matrix, with the columns being a different device, and the rows 

representing the multiple connections active at the same time. Communication with the industry 

representatives for this system is paramount for designing the specifications of the switch matrix. 

As specified by the NI expansion guide [2], the alignment on Figure II.3 was chosen. The matrix 
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that will grow in terms of how many devices are connected together by growing in one 

dimension would be preferable over having to grow the matrix in both dimensions. As described 

by NI, this would allow for a plug and play expansion by adding more cards on the same bus line 

[2]. 

 

As specified in the objective section, the immediate application of PrISM required a switch 

matrix with the capability of expanding the number of columns into the thousands. Another 

aspect that had to be kept in mind was the possibility of adding other functionalities, such as 

signal generation, measurement, power capabilities, etc. In the objective section, it was 

mentioned that a PXI platform was chosen to meet these end user specifications. PXI platforms 

are created by NI and provide the modular instrument platform needed for the completion of this 

project [10]. The PXI chosen for the prototype was a NI PXIe-1073, a 5-slot chassis that can 

hold a single NI PXI-2800 SwitchBlock. The PXI is sufficient for the proof of concept and can 

be expanded to accommodate future demands. 

 

Simulation with NI MAX was done with PXI-1036, which is similar to the NI PXIe-1073. As 

seen in Figure III.1, the NI PXI-2800 SwitchBlock occupies 4 of the slots available, with the 

added default PXI-8170 embedded controller. The embedded controller, the most common 

architecture available, dictates processing speed, streaming to disk, etc. [10]. The SwitchBlock is 

filled with 3 NI 2834 cards which have 34 slots each. In turn, this simulated configuration has a 

functioning 8x102 matrix, which means that there is room for up to 8 simultaneous connections 

and 102 different devices. 
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Figure III.1. NI MAX PXI Simulation 

 

Additionally, in NI MAX, the user can open the specific cards and see the state of the switch 

point relays. Figure III.2 represents the relay positions for the card SwitchBlock1Dev1 from 

Figure III.l. Some relays have been closed in order to establish a connection across them. In this 

case, the relay for connecting bus 0 across cards is tripped, b0, as well as the relays for devices 0 

and 6, which are connected via bus 0, to relays c0 and c6. 
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Figure III.2. Relay Positions in NI MAX 

 

A more helpful tool for visualizing the grid of the switch matrix, according to which connections 

are made in the NI MAX simulation, can be seen on Figure III.3. This representation shows a 

graphical grid view of the SwitchBlock1Dev1 on Figure III.l. As seen on the figure, there are 4 

buses that are utilized: 0, 1, 2, and 7. Buses 0 and 7 are connected to the next card in line, 

SwitchBlock1Dev2, which allows for more devices to be connected on the already used bus. 

Some of the devices have been connected as well: c0 to c13 via bus 2 and c7 to c0 via bus 1, etc. 
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Figure III.3. NI 2834 Card Test Panel 

 

The NI MAX simulation demonstrated that the correct hardware was chosen for the application. 

The next steps in the development of PrISM was to develop and apply software to control the 

simulated hardware.  
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IV Software Simulation 

Following the successful hardware simulation, the development of the software began by using 

the simulated hardware as a test bed for the application. An advantage of using the same 

developer for the software and hardware is their compatibility with other NI services. NI MAX 

allows for the simulation of the software in conjunction with the simulated hardware. Therefore, 

the programming could also be tested with NI MAX before any hardware was purchased. 

 

The modular integration aspect of this project also extends into the software section. The design 

of the PXI modular instrument was done in conjunction with LabVIEW, the NI software used for 

controlling NI instrumentation. Therefore, all the programming done in LabVIEW should be able 

to accept additional functionalities by following a modular approach in the algorithm 

development. 

 

 

Figure IV.1. Simulated Front Panel 

 



22 
 

Figure IV.1 shows the front panel of the switch matrix. The user first inserts the device name for 

the hardware that is used. In this example, the default name given in NI MAX is ETES. The user 

then selects the devices that will be connected and clicks on the “Connect” button. The 

connections made show up on the bottom part of the front panel. Figure IV.2 shows device 4 has 

been connected to device 1 via bus 0, and device 6 has been connected to device 2 via bus 1. Any 

of these connections can be disconnected by clicking on the “Disconnect” button. The 

“Disconnect All” button clears every connection that has been made. This setup was used as a 

proof of concept in order to proceed with purchasing hardware for the PrISM prototype. 

 

 

Figure IV.2 

 

The diagram shown on Figure IV.2 is the display that can be seen in NI MAX in the Test Panels 

tab. This tab shows the state of the relays in the simulated device, in a list where every relay has 

a name and an open/close state, or in a diagram like Figure III.2, where every pathway is drawn 

in a different color depending on the bus line that is occupied. As stated previously and seen in 
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Figure IV.2, device 4 is shown to be connected to device 1 via bus 0, and device 6 is connected 

to device 2 via bus 1. 

 

The previous results were the proof of concept demonstrating that the simulated software and 

hardware were working in concert. The project was then allowed to move on to the next stage of 

assembling the physical hardware which would be used as a test bed for the development of 

PrISM.  
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V Hardware Procurement and Setup 

The prototype was designed was made to demonstrate each aspect of PrISM. The hardware 

requirements were presented in Table II.1. 

 

The PXI chassis acquired for this project was a NI PXIe-1073, a 5 slot PXI model. The NI PXI-

2800 SwitchBlock carrier requires 4 spots, so the 1073 PXI chassis was adequate in that regard. 

The card purchased was a NI 2834 8x34 card. These specifications were enough for a proof of 

concept prototype design, where all of the hardware requirements could be fulfilled. Figure V.1 

shows the PXI chassis with the SwitchBlock with one NI 2834 card. The large cable that comes 

out of the card has the 34 pair pinouts for the copper connections that would be connected to the 

devices being tested. 

 

Figure V.1. PXI chassis with populated SwitchBlock 

 

Figure V.2 shows the other end of the cable running from the NI 2834 card in Figure V.1. The 

copper connectors are connected to a ribbon cable that was used to perform some testing on the 

device in order to identify the usable ports for the prototype. The green copper connector panel is 
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where the end-devices would be physically connected to the switch matrix, with 34 of the 

possible connector pairs leading to a connection made by PrISM. 

 

 

Figure V.2. Copper Connectors to Switch Matrix  
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VI Algorithm Development 

VI.1 Introduction 

One of the objectives of the project was to ensure that the device can accept additional integrated 

functionalities, resulting in the "I" of the name PrISM. With this in mind, the algorithm was 

developed using an open-ended and template-oriented design. To achieve this functionality, 

several key points had to be addressed for the success of the project:  

 

• Configuration file(s) for different system parameters 

• Program templates for future functionalities expansion 

• Features for industry end user 

 

A configuration file is important for the robustness of the algorithm. A large switch matrix, 

tailored for the specific needs of the end user, requires many parameters to be met. A 

configuration file containing these parameters would allow the end user to change only the 

content of the file, without having to make alterations to the main portion of the algorithm. These 

parameters could be the number of connections available, the names of the devices and their 

positions, the number of bus lines to allow for simultaneous connections, etc. The configuration 

files chosen are displayed in Appendix B. 

 

The first configuration file, shown in Figure B.1 in Appendix B, has a description of the format 

for the user information that the program uses. This allows for the user in charge of the switch 

matrix to delegate login information to other potential users, and allow different levels of access. 

As seen from the chart, the first three entries have user names: user1, user2, and user3.  
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Following a tab delimiter, there are the passwords for these three users, which is “guest” for 

each, and a designation of 10. The designation of 10 is perceived as a guest user and is allowed 

limited functionality. The other two users available, “igor” and “jonathan”, have a password of 

admin, and a designation of 1. The designation of 1 is an administrator, which in addition to the 

basic functionalities, also has the ability to disconnect or latch onto anyone's connection, as well 

as disconnect all of the connections at once. These can be adjusted, or more tiers of access can be 

added, by putting different parameters (besides 1 for administrator and 10 for user) and using 

them appropriately in the algorithm. 

 

The second configuration file, shown in Figure B.2 in Appendix B, shows the device assignment 

format that is needed. A five-tiered system was developed for the proof of concept application of 

PrISM, in which corresponding tiers are: 

 

1) Communication System (Type of group of devices) 

2) Rack Name (physical position of the rack in the lab) 

3) Rack Number (physical position within the same rack name, usually numerated) 

4) Frequency (frequency designations of the devices within the same rack number) 

5) Device Name (transmit, receive, record, etc.) 

 

The first tier of communication systems contains different voice switch position communication 

systems. Placeholder names were used for the prototype version of the device. Similarly, 

arbitrary rack names and rack numbers were given, as well as commonly used frequencies and 

transmit (TX) and receive (RX) device names. These can be easily altered by changing the 
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device information text file. Afterwards, the graphical user interface will recognize the changes 

as soon as the system is rebooted. Another option for changing the device configuration files was 

presented via a front panel menu without changing the configuration text files. The current set of 

tiers and names were only applicable to the proof of concept use of PrISM. 
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VI.2 Logic Selection 

NI LabVIEW works by writing the logic into virtual instruments (VIs) [22]. These VIs are what 

controls the hardware via LabVIEW. In order to accommodate for the previously mentioned 

future development of added functionalities, all of the separate processes of this system were 

designed as separate subVIs. A subVI is a part of the NI hierarchical structure in programming, 

where a VI can be saved, and called in a different VI as a subVI [23]. This allows for a modular 

design of a main VI, which can call all of the subVIs that hold different functions as they are 

needed by the end user. This setup is essential for establishing organization that can accept new 

functionalities, while having a clear overview from a main VI serving as the staging area of the 

completed program. 

 

Lastly, as a part of this joint university-industry collaboration, some features were provided to 

the end user. Having an industry-oriented view of the set of deliverables in an education-oriented 

project was key to achieving success as shown by other literature [17]. The first of these 

previously mentioned features is a login system which looks at who is using the system at a 

specific time, allowing more options available for administrators versus a limited menu for a 

regular user. This allows an administrator to purge connections which a user might have 

forgotten about in running longer tests, or add new users into the system. Other features involve 

improving the design of the graphical user interface, making it more user-friendly and 

aesthetically pleasing for new users. An addition of a tutorial for new users would make the final 

system more user-friendly. 
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The model of computation used to meet the modularity and computing needs was chosen to be a 

finite state machine. State machines have been successfully employed in designing virtual 

machines with a need to dynamically respond to a changing environment [24] and in designing 

faster and more responsive systems than are usually available from vendors [25]. A state 

machine programmed in LabVIEW has the capability to run continuously and pick and choose 

which functions to perform at different times, as dictated by the needs of the user. LabVIEW has 

intrinsically developed queue operations, which allows for the development of a queued state 

machine. In a queued state machine, all the tasks that are to be accomplished are put in a queue 

by the producer, and as processing allows it, are performed by a designated consumer. The 

diagram of a basic queued state machine in LabVIEW is presented in Figure VI.1. 
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Figure VI.1. Basic Queued State Machine in LabVIEW 

 

LabVIEW has pre-existing intrinsic queue functionality, which allows for the usage of available 

VIs to perform the queue operations. The producer loop, as depicted in Figure VI.1, is an event 

structure inside of a while loop. The while loop is active for the entire time the application is up, 

or until there is an unexpected error which will terminate the queue, display a message and 

promptly close the application. The producer loop is triggered by different events, each event 

adding a queue item via the enqueue VI provided by LabVIEW. These events can be user button 
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clicks, errors, and timers. All of these elements are de-queued in the consumer loop. The 

consumer loop is a case structure nested in a while loop. The task that was queued by the 

producer is de-queued in the while loop of the consumer and executed. The case structure of the 

consumer has a number of different cases that depend on the tasks given by the producer. This 

ensures that every task given to the algorithm will be completed on a first come first served 

basis. While this is the functionality of a basic queued state machine, a modified version needed 

to be designed to suit the needs of this project. 

 

To accommodate the possible future applications that the end user might need, the state machine 

was altered to accept any number of VIs that can accomplish different functions. As previously 

mentioned, these functions can be a part of the current setup (connecting different devices, login 

logic, help items, etc.), or future developments that might be a part of the project (signal 

generation, signal measurement, remote capabilities, etc.). These VIs were placed in a sequence 

structure at the bottom of the algorithm, as pictured in Figure VI.2. 
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Figure VI.2. Queued State Machine example [24] 

 

The differences in the more sophisticated structure used in the project are marked 1.3 and 4 in 

Figure VI.2. 1.3 is a queue manager subVI that has the function of changing the order of tasks 

performed. Some tasks might require the ability to be put ahead of the pending tasks. An 

example for these emergencies might be an error or hitting the stop button. When either one of 

those is selected, the preference is for the program to stop. In those cases, a ring control was 

preselected with 'Front', which will mean that the case is automatically added to the front of the 

queue. The non-emergency cases, which would contain most of the normal functions required by 

the program, were preselected with the ring setting 'Back'. This means that these tasks will be 

performed on a first come, first served basis, as most of those are in line with the normal function 
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of the program, and don't need priority. The structure marked as 4 is a flat sequence structure. A 

flat sequence structure in LabVIEW executes whatever is placed inside of it left to right, pixel by 

pixel. In this case any VIs that can perform multiple functions run in parallel, starting from left to 

right. The design of these VIs requires them to be running on idle the entire time until being 

called for to perform some function. In that case, any user input will distribute different states to 

the parallel processes needed. These VIs that are dumped in the sequence structure will move 

away from the idle state. This can work for as many parallel processes as the final product might 

need. Therefore, PrISM can accommodate any future developments in the project by simply 

adding more Vis in this sequence structure.  
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VI.3 Algorithm Flow Design 

As previously mentioned, for the scope of this stage of the project, there were two main 

functions that had to be accomplished: connecting and disconnecting devices using a switch 

matrix, and providing a set of features for the industry end user. The following section will 

describe the logic in flow charts that were programmed in LabVIEW in order to operate the 

hardware. 

 

 

Figure VI.3. Main program flow chart 

 

The main program has the modified queued state machine setup pictured in Figure VI.3. There 

are some guidelines for appropriately reading the flow charts pictured VI.3-VI.6. Every 

rectangular bubble represents an action that is performed by the program. Every diamond shape 

is a query that the algorithm must go through to advance to the next stage. As specified in the 
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legend in Figure VI.3, the different colors for the parameters represent different variable types. 

Purple is a value change on a button (e.g. clicking the OK or Cancel button in a simple dialog, or 

a choice between Connect, Disconnect, Change User Info, or Purge), green is a true or false 

boolean, and blue is a numeric value. Prior to the main window being displayed, there is a login 

menu that the user has to navigate in order to access the main window. Depending on the 

credentials of the user, there are different options available on the main window. The main 

window itself is the gateway for all the possible parallel processes that can be called by the user 

at any time. These four parallel processes are Connect, Disconnect, Change User Info, and 

Purge. As noted in Figure VI.3, Purge is only available if the user has logged in as an 

administrator. The idle state that the main program is ON, that is: when none of the buttons are 

being pressed, displays the main window which has the four previously mentioned parallel 

processes ready for the user to select. In addition to these user initiated parallel processes, there 

are other events that can trigger parallel processes which not available to the user. These events 

are safeties like error shutdowns, stopping the application through an emergency button (the 

close button on the standard window), or other functions available to every other user, such as a 

logout button or an administrator-generated report.  

 

On one hand, the error and exit application functions that are possible events have a high priority 

level; the queue manager 1.3 pictured in Figure VI.2 assigns them to the front of the main 

function queue, as well as to the subVI queues which will cause them to shut down promptly. On 

the other hand, triggering the events that are in the normal scope of the program (such as 

connecting, disconnecting, user info, logins, etc.), causes the queue manager to put these tasks on 

the back of the queues on their respective subVIs. For example, clicking on the Connect button 
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would put an Add Connection task to the back of the queue for the subVI Connect. After this is 

accomplished, the main program goes back to its idle state, while all of the work is performed by 

the called subVI. The subVIs and their logic are explained in the following paragraphs.  

 

 

An important step in the logic of the algorithm is the existence of a connection name, which is 

saved as a number, and a tag which saves some data about each connection made. Each tag has 

four components: user, lock, bus, and device. The number that stands for connection name saves 

each connection made as a number, the first connection gets labeled as "1", the second "2", etc. 

This is done for logging and report-generation purposes. If an administrator wants to look at the 

history of the connections made, each report will have a report number, as well as connection 

numbers saved for each session the application is on. The application is designed to run 

continuously, and only people with the proper authority can shut down the processes that are 

ongoing in order to reboot the system or clear the connections in case complications arise. The 

other data fragment that is carried by every connection is the four tags: user, lock, bus, and 

device. The user tag logs which user has made a certain connection. Only people with the proper 

credentials can make connections, and only they can terminate their own connections. Therefore, 

the system needs to know the identity of the person who made each active connection at every 

time. An exception to this rule is an administrator, who can terminate any connection at any 

time. The lock tag checks if the user has locked down a connection. If the connection is locked, 

no one can latch another device onto the same bus line. If the state is unlocked, then additional 

connections can be made if the users desire to do so. The bus tag checks which bus is occupied 

by a connection, a tag mostly used internally in the logic of the connection forming, so that the 
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first available path is found through the switch matrix. The device tag checks which devices have 

been connected to the grid, making them unavailable for connections if they have been locked 

out, similarly only used by the algorithm. This will ensure that there are no conflicting cases of a 

device trying to make a connection exist. All of these tags are used by the connect and 

disconnect parallel processes. 

 

 

Figure VI.4. Connect flow chart 

 

The flow chart for the Connect subVI is shown in Figure VI.4. The same guidelines apply- the 

rectangular bubbles are different states and the diamonds are queries for the system. The same 

data types as Figure VI.3 apply as well. Whenever the user clicks on the Connect button, the 

system goes into a query where a hardware check is performed. If no buses are available for a 

connection to be made, the system automatically notifies the user that there are no possibilities 
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for a new connection to be made. In order to connect a new set of devices together in the matrix, 

there has to be a bus line available for this new connection to be achieved. In the current 

hardware connection, up to eight simultaneous connections are allowed. If all eight bus lines are 

busy at the same time, a message notifies the user that it is attempting to make a connection that 

the switch matrix is unable to do. After this message, the user is brought back to the main 

window. 

 

If there are available buses, the system goes to the next step which is the connect window. The 

connect window has some options for the user to choose. There is a choice of devices to select, a 

choice to select a lockdown on the channel, and an option to cancel the action and return to the 

main window. The connect window itself is a dialog pop-up window, and can be removed by 

selecting connection settings and clicking the connect button, or clicking the cancel button at any 

time. Both pathways lead the user back to the main menu. When the user selects the devices and 

clicks on the connect button, the system checks if those devices are available. Once again, there 

are two possible outcomes: the devices are available and the hardware makes the connection, or 

one or both devices are not available and the user sees a message and is brought back to the main 

window. 
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Figure VI.5. Disconnect flow chart 

 

The disconnect parallel process, pictured in Figure VI.5, follows a logic that is similar to the 

connect logic, with some major differences. When the user clicks on the disconnect button from 

the main menu, the system checks if there are any connections that have been made by the same 

user. If there aren't any connections available that the user has the authority to shut down, the 

system sends a message saying that there are no connections available to disconnect. On the 

other hand, if there are connections available, the user is taken to a different pop-up window. In 

this window, unlike the connect pop-up, there is a list of available connections that the user can 

disconnect. These available connections have buttons that are highlighted, and available to press 

on. The connections that are unavailable to be disconnected are grayed out, and the user cannot 

press down on those buttons. From this point, there are two options: the user can either select any 

of the available buttons and the hardware will disconnect the two devices connected on that bus 

line, or press cancel in order to return to the main menu without causing any changes to the 

switch matrix. 
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Figure VI.6. Change user info flow chart 

 

The change user info uses a different subVI from the connect and disconnect parallel processes. 

In this subVI, the user can change their login info, add new users, as well as delete old users. If 

the user has an administrator login, all of these options are available for selection. If the user 

does not have an administrator login, only the option to edit his/her own info is available. This 

was done as a feature to the industry end user, to allow for control over who can change the 

information of the users. This is important because in order to use the program, every new user 

needs to log in, which requires clearance from the administrator. 
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VII Software Results 

VII.1 Introduction 

The algorithm mentioned in the Algorithm Development section was programmed in LabVIEW, 

and the resulting product ran in conjunction with the purchased hardware. The function of the 

program was tested by presenting a series of scenarios in order to test for bugs and ensure that 

the logic is being executed properly. To make sure that the switch matrix was executing 

properly, the relays were checked in NI MAX after being tripped by the program. In addition to 

looking at simulated hardware, NI MAX can be used to observe the function of the connected 

hardware as well. All of the logic involved in creating new connections and disconnecting the 

older ones was accomplished. As a disclaimer, all the graphical user interface (GUI) presented in 

this paper is fully functional and all of the buttons accomplish the tasks they are designed to 

perform. 
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VII.2 Front Panel 

 

 

Figure VII.1. GUI Front Panel 

 

The graphical user interface was designed to be as user friendly as possible, while incorporating 

all of the required functionalities in a simple and clear package. The algorithm was opened in 

Figure VII.1, showing the default window that appears when the application is pulled up. The 

user is immediately prompted to enter their username and password, without allowing them to 

access any functionalities of the software. As seen in Figure VII.1, the pop-up window called 
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Login Query can’t be minimized before the login is successfully completed. If the user can't type 

the login information correctly, the program notifies the user which one of the username or 

password is wrong, and allows the user to reenter their information. The program looks at a 

configuration file of usernames and passwords, as shown in Figure B.1 in Appendix B. Adding 

new users can be done by an administrator, and regular users can only alter their own login 

information, such as changing their username or password. After the login is complete, the user 

has a multitude of ways to unlock the functionalities of the switch matrix.  

 

 

Figure VII.2. Switch Matrix Controls 
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As seen from Figure VII.2, there are multiple ways to access the options available to a switch 

matrix user. One way is to click on the buttons on the front panel, which have a blue plus symbol 

for adding, a blue minus symbol for removing, a green plus for latching, and a red minus for 

disconnecting all devices. The disconnect all devices option, as described in the algorithm 

development section, is only available for administrators, therefore it is grayed out in this case. 

Another way to access these software features is through the menu bar. The menu bar has 

multiple options which can be seen branched out in Figure VII.2. The options are the same: add 

connection, remove connection, latch connection or disconnect all. Additionally, there are 

keyboard shortcuts for most of these functions, they are listed on the side of each line. LabVIEW 

allows for a lot of intrinsic flexibility and functionality to add or remove options from the 

window. 

 

Each one of the previously mentioned options has full functionality at this stage of the project. 

The blue plus symbol button is a make a connection button, which will prompt a switch query to 

occur. The blue minus symbol button is a disconnect button, which will prompt a disconnect 

check on which connections are eligible. The green plus symbol is a latch connection which 

functions similarly to the disconnect button. It checks which connections are eligible for a latch. 

Both of these only show up next to the eligible connections when the logic allows them to. For 

example, if the user clicks on the disconnect, but none of the connections are theirs or there aren't 

connections, no button will show up to allow them to disconnect anything. The latch function 

follows a similar path. If the user who is logged in hasn’t made any, no latch buttons will appear. 

The system will not allow for the user to latch onto another user’s connection. Also, there is a 

hard cap on how many devices can be connected at one time, currently set to four. The 
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disconnect all button is only available when an administrator is logged in, as shown in the 

current setup. 

 

 

Figure VII.3 Switch Query Menu 

 

After pressing the blue plus symbol make a connection button, there is the switch query that 

appears as a pop-up window. While the pop-up switch query window is up, the user is unable to 

go back and click any other buttons on the main window. The switch query allows for a few 

selections to be made. If the user wants to go back to the main window without making a change, 

he can click on the cancel button at any time and the switch matrix will remain unaltered. There 

are two ways the user can add items. With each selection, the system moves through the five 



47 
 

tiers of device groupings to find the device the user was looking for. The five-tiered system was 

explained in section VI Algorithm Development when showing how the configuration file for 

devices installed works. Even though the functionality is not quite necessary for the prototype 

level, a search bar allows for the user to search through each tier in order to find the system, rack 

name, rack number, or frequency that they need. This would be of immense use when the full 

switch matrix is deployed, and the user can choose from thousands of devices. Currently the 

system searches through the few options available with ease. The switch query performs a 

variety of checks to make sure that the connection can be made: 

 

• Validity of device name 

• Different devices need to be selected within the same switch query 

• That any of the devices selected are not in use already 

• There are enough devices to make a connection (in this case at least two, but no more 

than four) 

 

To add to the ease of use and the functionality of the switch query, the user can always go back a 

tier as well, if the wrong button was pressed, in order to save the progress of the other devices 

selected prior to making the error. This can be a tedious task, especially when there are 

thousands of devices and small deviations in names are crucial. Going back is achieved by 

clicking on the previous button which will negate the choice made in the previous tier of device 

nomenclature. 
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Figure VII.4 Establishing a connection 

 

In this example, following the selection of the devices listed as NVS R4 position CWP10 

frequency 119 receive, and NVS R4 position CWP10 frequency 119 transmit from the switch 

query presented in Figure VII.3, the system will then make the connection via the easiest route it 

can find. As seen in Figure VII.4, the connection from device 1 to device 3 was made via bus 0, 

which was the first bus that was not in use. The main window has a large section where the user 

can see what is being occupied by each of the bus lines. As seen in Figure VII.3, the only 

connection made was the one that was presented in this paragraph, and all of the other bus lines 
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are still free. The user can select whether this section is visible by checking the connections 

visibility box that is under the button selections. This will allow the user to declutter the main 

window when the connection details are not needed. Additionally, there are other options that 

allow the user to view their own connections, as well as a graphical overview for all of the 

connections that have been made. 

 

 

Figure VII.5. Connection made from NI MAX 

 

As seen in Figure VII.5, the connection was made on the physical switch matrix as well. The 

representation shown in this figure is as shown in NI MAX when viewing the NI 2834 card that 

is installed in the PXI SwitchBlock. The connection translates what is being shown to the user in 

the front panel of the GUI to what is happening on the physical switch matrix, where two relays 

were tripped in order to connect the two devices together. The channels c1 and c3 can be found 

to house the devices that were shown to the user by comparing the device list found in Appendix 

B Figure B.2. 
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Figure VII.6 Multiple connections 

 

Figure VII.6 shows the result of making more connections on the switch matrix. The program 

finds the first available bus for each one, and after checking that there are no extraneous 

connections made, proceeds to make the physical connection. As seen from Figure VII.6, there 

are three different connections that have been made. Each one of the devices connected is 

different, since the system doesn’t allow for the same device to be connected across bus lines. 

The limit is four devices per each connection. These can be other transmitters or receivers, or 

measuring devices. As seen from the tab on the connections visibility section, the user is viewing 
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the detailed connections window. This allows for the user to see each one of the eight available 

buses, and each connection shows exactly which devices are connected to it, and which user has 

made the specific connection. In this case, each connection has been made by the user “igor”. 

 

 

Figure VII.7 

 

Looking at the connections that were made in the main window in Figure VII.6, we can 

recognize that five simultaneous connections are active. These are supposed to occupy the first 

five available buses: bus 0 through 4. As seen in Figure VII.7, the NI MAX representation on 

these five simultaneous connections is exactly as seen in the main window in Figure VII.6. There 

are five pairs of devices, each connected on a separate bus line from each other, all in the correct 

spots. Figure VII.6 shows that the algorithm can correctly sort through the information requested 

by the user, and assign the proper switch matrix relays to be closed. 
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Figure VII.8. Disconnect button population 

 

Clicking on the disconnect button makes disconnect buttons appear next to each eligible 

connection in the main window, as shown in Figure VII.8. Unlike the connect pop-up, this 

window will not allow the user to click on any options until he has selected a disconnect option. 

The algorithm looks at the connections that have been made and populates the buttons for bus 

lines that can be disconnected. The selection process for the disconnect button population 

depends on which user selects it. In order to display a button, it needs to run through the 

following logic: make sure there is a connection set up on the bus, and make sure that the user 
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that is logged in has made the original connection. This would not allow one user to disconnect a 

junction that another user has previously created. This is overwritten if the current user is an 

administrator, who can disconnect any other user’s connection. 

 

 

Figure VII.9. Disconnect resulting connection 

 

Figure VII.9 shows the main window after disconnecting the devices that were connected on the 

second bus line. The program recognized which bus needed to be disconnected, and left the other 
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connections in place in case there were other tests running on those connections. After this, the 

devices disconnected become available for future usage. 

 

 

Figure VII.10 Latch button population 

 

Once the user has clicked on the latch connection button, the latch buttons populate the main 

window next to the connections that are eligible to accept an additional device. This is shown in 

Figure VII.10, where the latch buttons appear next to three connections. The second bus line 



55 
 

doesn't have a connection, therefore there is no opportunity to latch another device. The first and 

third bus line have two devices, which means that other devices can be latched.  

 

 

Figure VII.11 Latch outcome 

 

As seen in Figure VII.11, the latching connection was made on the first bus line, where there are 

three devices connected. 
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Figure VII.12. Error Messages 

 

There are multiple routes for the algorithm to recognize that there are mistakes in the logic of the 

user, and send quick dialog windows in order to ensure the user knows why the connection 

cannot be established. An example is shown in Figure VII.12, in which a dialog notifies the user 

that the device chosen is busy. This can correspond to a device chosen in the current connection 

establishment or a previously made connection. If all eight buses are taken, a message will notify 

the user that another connection cannot be made. 
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Figure VII.13. Different user login 

 

As seen from Figure VII.13, whenever a different user has logged into PrISM, there are multiple 

changes that happen to the user interface. The window on top of the screen shows the updated 

user info. When the new user (user1) makes a connection, it is reflected next to the adjacent bar 

(in this case, on the second bus). 
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Figure VII.14. Menus for different user 

 

The algorithm doesn't allow for the new user to change any of the already established 

connections from the previous user. In this case, user2 can only disconnect or latch onto his 

connection on the second bus, and all the other buses are not allowing the option to be changed 

in any way.  
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Figure VII.15. Menus for different user (administrator) 

 

Unlike the previous example, if the user is an administrator, the system recognizes this, and 

allows for any changes to be done to any of the connections. This can be seen on Figure VII.15. 

Another function available to administrators is the disconnect all button which was grayed out in 

all the previous screenshots of the front panel. With the addition of this button, the full 

functionality of the program is available to the administrator. 
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Figure VII.16. Disconnect All result 

 

Figure VII.16 shows what happens after an administrator has clicked on the disconnect all 

button. All connections have been removed, and all buses are free to be used. 

 

After demonstrating the 3.0 version to the engineers for the industry representative, they made 

some suggestions about features they would like to see as we were approaching the testing 

phase of PrISM. These features were the ability to configure the devices available for 

connections depending on their physical location, as well as the availability of a help menu and 
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a tutorial. All of the features were made available first in the 3.1 version, and then finally in the 

debugged 3.2 version of the program. This was the version used for the completion of the first 

round of the testing section. Version 3.3 was developed with further improvements, and this 

was used for the second round of tests. 
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VII.3 Configuration Menu  

 The configuration devices option was made available only to users with administrator access. 

This was done in order avoid situations where any user might change the information regardless 

of their full knowledge of the system. The menu looks slightly different for an administrator in 

this version, with the addition of one more button when the user has selected the switch matrix.  

Version 3.2 and subsequent versions also includes enlarged icons for better visibility in 

demonstrations and presentations. After clicking the button, the window as shown in Figure 

VII.17 shows up. On the left side, the user is allowed to write the information of the device they 

want to add, and on the right, there is a list of the devices that were configured at the time. The 

devices have the same tiered labels, with the addition of the sixth column with the physical 

positions of the channels for the specific device, and the seventh column with the number of 

connections for each.  

 

  
Figure VII.17. Configuration Query display 
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VII.4 Help Menu  

The help menu was added as another desired functionality of the PrISM GUI. Instead of going 

for a generic glossary help menu, the design involved an interactive help menu, where the users 

can see screenshots of the GUI and navigate themselves. This is depicted on Figure VII.18, 

where the main menu is pulled up, with buttons pointing to all of the functionalities that can be 

reached from the main menu.  

 

  

  

Figure VII.18. Help Menu function 
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VII.5 Tutorial Menu  

 The last feature that was included in PrISM 3.2 was the addition of a tutorial option. This would 

pull up a different window as shown in Figure VII.19. Whenever the user goes through the parts 

of the tutorial, their progress is tracked. This can be printed out for confirmation that the new 

user has learned how to operate PrISM. The tutorial is available for new users of the program; 

completion of it is required the first time they log in. Administrators and returning users can use 

the functionality of PrISM without completing this tutorial again.  

  

  

Figure VII.19 Tutorial Menu Function 
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VIII Results 

VIII.1 Introduction 

Following the design of the software and hardware setup, PrISM was deployed at the OKCET 

laboratory to begin making connections between real world communication devices. To test the 

functionality of PrISM, a series of tests were performed at the laboratory with the cooperation of 

their engineering team. Verification was performed by connecting different configurations of the 

current switch matrix, PrISM, communication devices, and testing devices. This was done in 

order to ensure that every scenario was covered, proving that PrISM did not add any distortion or 

delay to the signals observed. 
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VIII.2 PrISM Connections Testing 

In order to check for communication device signal quality with the addition of PrISM, the first 

tests were performed by connecting it to the demarcation point. The first devices connected to 

the demarcation point were a battery and a digital multimeter. This setup is depicted in Figure 

VIII.1. 

 

 

Figure VIII.1. Demarcation point setup (no communication devices) 

  

PrISM 
PC 

Interface 
Demarc 

TIMS
1 

VTIMS 
Battery DMM 

TIMS
2 



67 
 

The following preliminary tests were performed prior to proceeding with the connection to actual 

communication devices: 

 

• Connection 

• Multiple Connections 

• Impairment 

• Signal to Noise Ratio (SNR) 

 

The connection check was done solely to ensure that a signal was going through the hardware 

connection points as expected from the graphical user interface. This is depicted in Appendix 

D.1, where there are two different values for the signal loss across the connection. These two 

different losses are due to using two different devices. One was using a HALCYON 

Transmission Impairment Measurement Set (TIMS), shown in Figure VIII.2, and the other using 

the Virtual TIMS (VTIMS), another graduate student project from UCO. The power loss across 

the connections was minimal and had statistically insignificant numbers, most likely due to the 

wire connections in the demarcation point.  
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Figure VIII.2. HALCYON TIMS 

 

A test for multiple connections was ran by making sure that multiple devices can be connected at 

the same time without interference between them. This test connected the devices on multiple 

channels, and the results can be seen in Appendix D.2. 

 

The second round of tests was run solely with the VTIMS. The tests were a series of impairment 

tests that can be reviewed as a part of Appendix F. The report automatically fills out failed tests 

as red.  There were no failed tests, hence there were no red fields in the results from the VTIMS. 

The test results for multiple channels are shown in Appendix D.3. 

 

The last connection test to the demarcation point was signal to noise ratio (SNR). The first test, 

shown in Appendix D.4, shows the different end devices that were tested. In order to ensure that 
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there was no error from the measurement devices, the TIMS and VTIMS were used as 

transmitter and receivers in various combinations. The SNR for all of these configurations was at 

least 50dBrnc, which is beyond the IEEE communication standard and those referenced by other 

papers involving research with voice quality [26] [27] [28] [29]. The second SNR test was 

performed on different channels, as shown in Appendix D.5, to show that there is no noise being 

introduced by the PrISM hardware. Once again, all the values were beyond the IEEE 

communication standards. 
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VIII.3 Communication Devices, VXI, and PrISM Testing 

The second round of tests involved connecting PrISM to the communication devices inside the 

OKCET laboratory, the final demonstration of its full functionality. This was done as 

demonstrated in Figure VIII.3. PrISM was connected to the devices through the existing switch 

matrix instead of directly to the demarcation point because these connections were going to be 

made to a live device. Another set of connections had to be made to avoid disconnecting any live 

communication devices to the existing switch matrix. Regardless, if the tests through PrISM and 

the existing switch matrix are passing, then going only through PrISM would only enhance the 

signal quality. This is because bypassing the current VXI (VME eXtensions for Instrumentation) 

Switch would only remove hardware for the connection between end-devices. The tests were 

performed on selected communications devices and testing equipment from the OKCET lab. 

 

 

Figure VIII.3. Communication devices setup 

 

The first test was performed in order to make sure that the connections through PrISM and the 

existing switch matrix were being made as requested from the graphical user interface. The tests 

ran were visual and audible, checking whether the dial tone and an audible voice signal were 
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going through. The dial tone was sent from device SS1 and picked up by device SS2, and vice 

versa. When one would dial the specific input, the other would signal that there is a line that can 

be picked up. After picking up the line on both sides, a standard voice check was confirmed. The 

parties on both sides of the line could hear each other loud and clear. Both tests results are shown 

in Appendix E.1. 

 

Following the basic voice check test, a frequency analysis was set up by using the TIMS and 

VTIMS as transmitters and receivers in various configurations. Because of the notch filters 

inside the SS cards, an altered frequency of 704Hz was used in order to test for any anomalies. 

The results were consistently showing a loss of 16dB with no measurable frequency shift. The 

16dB loss is standard for passing through two SS cards. The results of these tests are shown in 

Appendix E.2. 

 

However, the most important tests were performed in order to check the signal quality that is 

being transmitted by looking at the voice quality. This is of paramount importance because these 

devices are designed to transmit human voice between airplanes, radio control towers, etc. 

Adding any signal impurities by introducing new hardware would make the validity of the 

replacement system hard to justify. This was done using a Dual Universal Telephony Adapter 

(Dual UTA), by looking at the results for one-way-delay (OWD), Perceptual Evaluation of 

Speech Quality (PESQ) [30] [31] [32], and Perceptual Speech Quality Measure Mean Opinion 

Score (PSQM MOS) [33] [34]. The tests were done in parallel by communication between SS1 

and SS2 through PrISM and the existing switch matrix (as shown in Figure VIII.3), as well as by 

connecting the devices only to the existing switch matrix (skipping PrISM). If the voice quality 
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by going through PrISM is insignificantly different from the one without PrISM, then we can 

conclude that the test has been passed. As seen from the results in Appendix E.3, the results for 

going through PrISM are very similar to the ones without it. This means that PrISM introduces 

negligible delay or signal quality deterioration. Some of the tests even show an insignificant 

improvement by connecting PrISM, this being only due to the variance of the tests. 
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VIII.4 Communcation Devices and PrISM Connection 

For the third round of tests, PrISM bypassed another switch matrix, connecting directly to the 

demarcation point. The full setup of the system, including PrISM in the connection, is shown in 

Figure VIII.4. 

 

 

Figure VIII.4. Demarc Only System Testing Overview 

 

The connections of the systems were done using the automated connection making in PrISM. 

The menu as depicted in PrISM is shown in Figure VIII.5, and the NI-MAX hardware 

representation is shown in Figure VIII.6. 

 

PC Interface 

VTIMS 
IVSR NVS 

Demarc PrISM 
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Figure VIII.5. Testing Setup in PrISM 
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Figure VIII.6. Testing Setup in NI-MAX 

 

Like the previous test results, the results of this round of tests were positive. The one-way delay, 

PESQ, and PESQ-MOS results can be seen in Appendix E.4. The one-way delay is slightly 

longer using PrISM, but this difference is statistically insignificant. The PESQ and PESQ-MOS 

signal quality metrics are slightly higher using PrISM. This can be attributed to Voice 2 having 

some issues during the tests that didn’t include PrISM. The measurement algorithm seemed to 

have a difficult time with Voice 2. With those results removed from consideration, the signal 

quality measurements are almost identical with or without PrISM. The results from the VTIMS 

tests are shown in Appendix F.3 (without PrISM) and F.4 (with PrISM). 
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IX Conclusions 

The results prove that the hardware-software combination in PrISM can operate a switch matrix 

from a user-friendly GUI, while providing all of the functionality needed from a large switching 

point system. The project was successfully merged with the thesis project of another UCO 

student, in order to provide the addition of a testing suite for impairment in communication 

devices. The addition of the project means that PrISM can perform the tests by being called on 

by the already developed queued state machine. The implication of this is that any additional 

modular pieces can be added as long as they are written in the same format to be recognized by 

PrISM. All of these modular pieces can correspond to their own hardware, all being controlled in 

parallel from the same graphical user interface. 

 

The university-industry collaboration that drove this project to its completion has proven to be 

successful in merging these two environments, as has been done in other projects [11] [12] [16]. 

The hardware/software pairing is fully functional and ready to be used for the current 

application. The success of this project was achieved via thorough and informative 

communication by the university counterpart, seeking expertise and feedback from the industry 

representatives. All hardware benchmarks that were set for the project were met. In addition, the 

integration of PrISM with communication devices introduced no visible signal deterioration, 

impairment, or delay. 

 

In order to achieve the previously mentioned streamlined project development between the two 

entities [17], there is communication underway in order to develop more projects that can use the 

developed PXI platform. One such project, as previously mentioned, is the possible use of a PXI 
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controlled virtual transmission impairment measurement set in order to perform line integrity 

testing. The project can be developed by using compatible programming techniques, in order to 

develop an embedded VTIMS. The goal is to enhance the functionality of PrISM, as shown in 

Figure IX.1. 

 

 

Figure IX.1. OKCET Lab Projected Overview 

 

Further developments on this project will conclude with the completion of the graduate student 

thesis that the project is centered around. Other possible projects that can be spawned of the 

basic PrISM software are, but are not limited to: 

 

• Remote control of the switch matrix and testing 

(VTIMS) 

(VTIMS) 
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• Continued development of a basic login system 

• Report generation on user request 

• Usage of embedded controllers 

 

The main addition to the current PrISM setup would be remote-control capability. The addition 

of this functionality would involve another project with its own set of hardware and software to 

interface PrISM to another end-device (computer, laptop, tablet, etc.). Another set of challenges 

for this project is the different firewall/login setups for different applications of PrISM. NI has a 

lot of options and capabilities for remote control of a PXI [35] [36]. The identification of the 

necessary hardware and functionality was not in the scope of this project, but it can be utilized by 

another project due to the modular setup of PrISM and the capabilities of integrating other NI 

hardware.  

 

One drawback from using prepackaged NI hardware and software is the cost. Making this project 

a more viable commercial product that could be more widely used would require lowering the 

upfront cost of buying the hardware needed for each setup. Further research into developing an 

embedded controller and hardware system that can accommodate for the functionality needed 

can reduce the total cost. Customized hardware solutions can cost a lot less when bought in a 

large volume compared to the flexible NI packaged products. 

 

All of these future options allow for multiple projects to be spawned by using PrISM as the 

graphical user interface in this switch matrix setup. This justifies the emphasis that was put on 

setting up PrISM as an integrated, modular platform.  



79 
 

Bibliography 

 

[1]  N. Instruments, "Creating a Large Switch Matrix [White paper]," National Instruments, 2009. 

[2]  N. Instruments, "Matrix Switch Expansions Guide," National Instruments, 2006. 

[3]  G. Dimitrakopoulos, Designing Network On-Chip Architectures in the NanoScale Era, Chapman and 

Hall, 2010, pp. 67-88. 

[4]  K. Y. Chan, "Monolothic Crossbar MEMS Switch Matrix," IEEE MTT-S International, 2008.  

[5]  R. D. Hoare, "A Near-Optimal Real-Time Hardware Scheduler for Large Cardinality Crossbar 

Switches," in SC Conference, Microwave Symposium Digest, 2006.  

[6]  N. Instruments, "NI-DAQmx Device Pinouts," 2011. [Online]. Available: http://www.ni.com/white-

paper/4053/en/. [Accessed 22 December 2014]. 

[7]  B. Campbel, "Automatic Systems Facilitate Efficient Reed Relay Characterization," Electronics 

Industry, vol. 10, no. 10, pp. 37-39, 1984.  

[8]  L. Xu, J. Zhang and B. Miedzinski, "New Design of Multi-Contact Reed Relay for Improving 

Switching Load Capacity," in Annual Holm Conference of Electrical Contacts, 1998.  

[9]  E. Malone and H. Lipson, "Freefirn Fabrication of a Complete Electromechanical Relay," in Solid 

Freeform Fabrication Symposium, 2007.  

[10]  N. Instruments, "Choosing the Right PXI System Architecture," 2013. [Online]. Available: 

http://www.ni.com/white-paper/2722/en/. 

[11]  P. J. de Jongh and C. M. Erasmus, "Industry-directed training and research programmes: The BMI 

experience," South African Journal of Science, vol. 110, no. 11/12, pp. 17-24, 2014.  

[12]  C. E. Waters, S. Alvine and M. Eble-Hankins, "Industry-Experienced Graduate Student Program: 

Innovative Collaboration in Architectural Engineering at the University of Nebraska, Lincoln," 

Journal of Architectural Engineering, vol. 18, no. 1, pp. 61-63, 2012.  

[13]  G. Abramo, C. D'Angelo and F. Di Costa, "University-Industry Research Collaboration: A Model to 

Asses University Capability," Higher Education, vol. 62, no. 2, pp. 163-181, 2011.  

[14]  G. Watts, "Collaboration Between Academia and Industry is Key o UK Research Success," BMJ, vol. 

342, no. 2, pp. D1970-d1970, 2011.  



80 
 

[15]  T. Behrens and D. Gray, "Unintended Consequences of Cooperative Research: Impact of Industry 

Sponsorship on Climate for Academic Freedom and Other Graduate Student Outcome," Research 

Policy, vol. 30, no. 2, pp. 179-199, 2001.  

[16]  O. Lucia, J. M. Burdio, J. M. Acero, L. A. Barragan and J. R. Garcia, "Educational Opportunities Based 

on the University-Industry synergies in an Open Innovation Framework.," European Journal of 

Engineering Education, vol. 37, no. 1, pp. 15-28, 2012.  

[17]  C. Nielsen and K. Cappelen, "Exploring the Mechanisms of Knowledge Transfer in University-

Industry Collaborations: A Study of Companies, Students, and Researchers.," Higher Education 

Quarterly, vol. 68, no. 4, pp. 375-393, 2014.  

[18]  M. Wolcott, S. Brown, M. King, D. Ascher-Barnstone, T. Beyeruther and K. Olsen, "Model for 

Faculy, Student, and Practioner Development in Sustainability Engineering Through an Integrated 

Design Experience," Journal of Professional Issues in Engineering Education and Practice, vol. 137, 

no. 2, p. 94, 2011.  

[19]  J. Bruneel, P. D'Este and A. Salter, "Investigating The Factors That Diminish The Barriers to 

University-Industry Collaboration," Research Policy, vol. 39, no. 7, pp. 858-868, 2010.  

[20]  N. Instruments, "NI-DAQmx Simulated Devices," 2013. [Online]. Available: 

http://www.ni.com/white-paper/3698/en/. [Accessed 22 December 2014]. 

[21]  N. Instruments, "Using Test Panels in Measurement & Automation Explorer for Devices Supported 

by NI-DAQmx," 2010. [Online]. Available: http://www.ni.com/white-paper/4638/en/. [Accessed 22 

December 2014]. 

[22]  N. Instruments, "Virtual Devices," 2013. [Online]. Available: http://www.ni.com/white-

paper/4752/en/. [Accessed 27 December 2014]. 

[23]  N. Instruments, "Tutorial: Sub-VIs," 2008. [Online]. Available: http://www.ni.com/white-

paper/7593/en/. [Accessed 27 December 2014]. 

[24]  L. Hao and G. Stitt, "Virtual Finite-State-Machine Architectures for Fast Compilation and 

Portability," in IEEE 24t International Conference on Application-Specific Systems, Architectures and 

Processors, 2013.  

[25]  L. Anthony, "LabVIEW Queued State Machine Architecture," National Instruments, 2013. 

[26]  S. Rein, F. Fitzek and M. Reisslein, "Enabling Improved Speaker Recognition by Voice Quality 

Estimation," in IASTED International Conference on Internet and Multimedia Systems and 

Applications, 2003.  



81 
 

[27]  S. Niranjan, S. Choudbury and J. D. Gibson, "MOSx and Voice Outage Rate in Wireless 

Communication," in International Wireless Communications and Mobile Computing Conference, 

2006.  

[28]  A. L. Bartos and D. J. Nelson, "Voice Capacity Under Quality Constraints for IEEE 802.11a based 

WLANs," in Asilomar Conference on Signals, Systems, and Computers, 2011.  

[29]  E. U. Warriach and K. Tei, "Fault Detection in Wireless Sensor Networks: A Machine Learning 

Approach," in IEEE 16th International Conference on Computational Science and Engineering, 2013.  

[30]  A. E. Conway, "Output-Based Method of Applying PESQ to Measure The Perceptual Quality of 

Framed Speech Signals," in IEEE Wireless Communcations and Networking Conference, 2004.  

[31]  S. Paulsen and T. Uhl, "Quanifying the Sustainability of Reference Signals for the PESQ Algorithm," 

in 3rd International Conference on Communcation Theory, Reliability, and Quality of Service CTRQ, 

2010.  

[32]  W. Y. Chan and T. H. Falk, Machine Assessment of Speech Communication Quality, 2012, pp. 587-

600. 

[33]  G. Yi and W. Zhang, "The Perceptual Objective Listening Quality Assessment Algorithm in 

Telecommunication: Introdcution of ITU-T New Metrics POLQA," in IEEE Communcations in China, 

2012.  

[34]  S. Wang, L. Nieto and E. Zielinski, "VoIP QoS Performance Evaluation in a Commercial 

Environment," in SPIE- The International Society for Optical Engineering, 2001.  

[35]  N. Instruments, "PXI Remote Control and System Expansion," 2017. [Online]. Available: 

http://www.ni.com/pdf/product-flyers/pxi-remote-control-and-system-expansion.pdf. [Accessed 

23 07 2017]. 

[36]  N. Instruments, "Thunderbolt 3 Remote Control of PXI Test Systems," 5 July 2017. [Online]. 

Available: http://www.ni.com/white-paper/53757/en/. [Accessed 23 July 2017]. 

 

 

  



82 
 

APPENDIX A - Hardware 

 

- Computer for interface with LabVIEW and most recent LabVIEW program. 

- NI PXIe-1073 PXI Chassis. 

- PXI-2800 SwitchBlock Carrier. 

- NI 2834 8x34 electromechanical relay card. 

- Additional wiring/setup. 

- Testing devices. 

- Sample end-devices for communication. 
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APPENDIX B - Configuration files 

 

Figure B.1 User Information  text file 

 

Figure B.2 Device Information  text file 
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APPENDIX C - System logic pathways 
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APPENDIX D - Testing Results (Demarc Connection) 

1. Connection Test 

Connection Test (TIMS 1004 Hz) 

Channel Connected to: Attenuation Test Success 

0 1 -0.1 dB Pass 

1 0 -0.1 dB Pass 

2 0 -0.1 dB Pass 

3 0 -0.1 dB Pass 

4 0 -0.1 dB Pass 

5 0 -0.1 dB Pass 

6 0 -0.1 dB Pass 

7 0 -0.1 dB Pass 

8 0 -0.1 dB Pass 

9 0 0.002 dB Pass 

10 0 -0.1 dB Pass 

11 0 -0.1 dB Pass 

12 0 -0.1 dB Pass 

13 0 0.002 dB Pass 

14 0 0.002 dB Pass 

15 0 0.002 dB Pass 

16 0 0.002 dB Pass 

17 0 0.002 dB Pass 

18 0 0.002 dB Pass 

19 0 0.002 dB Pass 

20 0 0.002 dB Pass 

21 0 0.002 dB Pass 

22 0 0.002 dB Pass 

23 0 0.002 dB Pass 

24 0 0.002 dB Pass 

 

2. Multiple Connection Test 

Multiple Connections Test 

Testing Number 

of Connections 

Devices Devices Fail to 

Connect 

Test Success 

2 VTIMS; DMM None Pass 

3 TIMS; VTIMS; DMM None Pass 

4 VTIMS; TIMS1; TIMS2; 

DMM 

None Pass 

 

3. Impairment Tests 

Impairment Test (using VTIMS) 
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Channel Connected to: Test(s) Failed Test Success 

0 1 None Pass 

1 0 None Pass 

2 0 None Pass 

3 0 None Pass 

4 0 None Pass 

5 0 None Pass 

6 0 None Pass 

7 0 None Pass 

8 0 None Pass 

9 0 None Pass 

10 0 None Pass 

12 0 None Pass 

18 0 None Pass 

24 0 None  Pass 

 

4. SNR 

SNR Ratio 

VTIMS to TIMS 53.3  

TIMS to VTIMS 92 

VTIMS to VTIMS 61 

TIMS to TIMS (same device) 89.9 

 

5. SNR Different Relays 

SNR Ratio 

TIMS 1 to TIMS 2 - bus 0 76.5 dBrnc 

TIMS 2 to TIMS 1 - bus 1 89.9 dBrnc 

TIMS 1 to TIMS 2 - bus 1 76.5 dBrnc 

TIMS 2 to TIMS 1 - bus 0 89.9 dBrnc 

TIMS 1 to TIMS 2 - bus 3 76.5 dBrnc 

TIMS 2 to TIMS 1 - bus 5 89.8 dBrnc 
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APPENDIX E - Testing Results (Devices Connection) 

 

1. Check Connections (Demarc and VXI system) 

Demarc and VXI system 

Test Result 

SS1 RX to SS2 TX (dial tone) Pass 

SS2 RX to SS1 TX (dial tone) Pass 

SS1 RX to SS2 TX (sound check) Pass 

SS2 RX to SS1 TX (sound check) Pass 

Connection: Made 

2. Passing frequency at 704 Hz 

TIMS tests 

TX RX Freq shift Result 

SS1 TIMS transmitting at -

10dB 

SS2 TIMS receiving at -

26dB 

None Pass 

SS2 TIMS transmitting at -

10dB 

SS1 TIMS receiving at -

26dB 

None Pass 

SS1 VTIMS transmitting at 

0dB 

SS2 TIMS receiving at -

16dB 

None Pass 

SS2 VTIMS transmitting at 

0dB 

SS1 TIMS receiving at -

16dB 

None Pass 

SS1 TIMS transmitting at -

10dB 

SS2 VTIMS receiving at -

26dB 

None Pass 

SS2 TIMS transmitting at -

10dB 

SS1 VTIMS receiving at -

26dB 

None Pass 

 

3. Delay and voice quality test 

Demarc and VXI system with and without PrISM 

Test Without PrISM With PrISM Result 

OWD (one way 

delay) 1 

3.9 ms 4.0 ms  

OWD 2 4.0 ms 4.0 ms  

OWD 3 3.9 ms 4.0 ms  

OWD Average 3.9 ms 4 ms Pass 

PESQ 1 3.67 3.42  

PESQ 2 3.67 3.87  

PESQ 3 3.67 3.67  

PESQ Average 3.67 3.69 Pass 

PSQM MOS 1 4.61 4.53  

PSQM MOS 2 4.61 4.69  
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PSQM MOS 3 4.61 4.61  

PSQM MOS 

Average 

4.61 4.61 Pass 

 

4. Delay and voice quality tests (Demarc Only) 

Demarc only with and without PrISM 

Test Without PrISM With PrISM Result 

OWD (one way delay) 1 60.4 ms 60.9 ms  

OWD 2 59.7 ms 59.8 ms  

OWD 3 59.1 ms 59.2 ms  

OWD Average 59.7 ms 60.0 ms Pass 

PESQ Voice 1 4.02 4.02  

PESQ Voice 2 3.59 4.19  

PESQ Voice 3 4.12 4.11  

PESQ Voice 4 4.11 4.11  

PESQ Voice 5 4.20 4.19  

PESQ Voice 6 4.16 4.17  

PESQ Average 4.03 4.13 Pass 

PSQM MOS 1 4.86 4.86  

PSQM MOS 2 4.65 4.87  

PSQM MOS 3 4.86 4.86  

PSQM MOS 4 4.90 4.90  

PSQM MOS 5 4.92 4.91  

PSQM MOS 6 4.91 4.91  

PSQM MOS Average 4.85 4.89 Pass 
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APPENDIX F - VTIMS Report 

 

1) Test 1 Report 1 – VXI System 
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2) Test 1 Report 2 
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3) Test 2 Report 1 – No VXI System 
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4) Test 2 Report 2 

 

 


