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Abstract: Wireless power transmission, or WPT, is a well-demonstrated property in

electrical science and physics. Coil-and-wave transmission (CWT) consists of two Tesla

coils, one powered by a controlled voltage source vsrc and one connected across a generic

load Z0, at a mid- to long range distance apart with spherical capacitors at each of their

top loads. The literature on the different methods of WPT varies widely, but research

of CWT is sparse, lacking especially in the area of computer simulation. Recently,

a physical experiment was conducted by Marzolf et al. in [1], and yielded surprising

resonant frequencies in the high frequency range. The goal of this research is to answer

the question of whether these reosnant frequencies originate in unexplained field effects or

in non-ideal circuit behavior, and establish a formal model to indicate at what frequencies

the resonant peaks occur as a first approximation. By carefully constructing a simulation

of the most geometrically simple, power efficient design in the work of Marzolf et al. using

the scientific software Octave, we investigate these frequencies computationally: first,

an ideal scenario that has no flux leakage or exterior losses is modelled mathematically

and simulated, and then, a non-ideal scenario that accounts for losses in the coils and

surroundings is modelled mathematically and simulated. Both models utilize a simple

formula for spherical capacitance for the top loads. After running these simulations

through detailed sampling up to 4 MHz, the ideal model could not account for the

resonant peaks, while the non-ideal model indicated the resonant peaks near the exact

frequency ranges that were observed in [1]. An unexpected characteristic of these results

was that coupling coefficients between the coils of the transmitter and receiver played

a noticeable part in the indication of resonant peaks. This demonstrates that unknown

field effects are not the primary driver of resonance in the ideal or non-ideal construction,

and raises inriguing questions about the circuit design’s relationship with resonance in

the locality about the coils.
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Chapter 1

Introduction

The validity of wireless power transfer (WPT) is a widely, and sometimes hotly, debated

topic. Most researchers agree that theoretical methods are available, but the practical-

ity of these methods is subject to intense scrutiny and viewed as near-impossible for

everyday far-field applications [2]. Thanks to both a revival of interest by large-value

companies (and, speculatively, by the spread of media detailing Tesla coils in action), a

new band of scientists, engineers, and erudite makers have attempted to pursue WPT

at a larger scale. The goal of this chapter is to present a technical overview of two sub-

jects of interest: first, a mechanical examination of coil-and-wave transmission (CWT),

which utilizes a powered Tesla coil to transmit to a receiving Tesla coil; second, a broad

analysis of other successful methods of far field WPT, including magnetic induction.

1.1 Coil-and-Wave Transmission (CWT)

CWT takes advantage of two modified Tesla coils, one acting as a transmitter and the

other acting as a receiver. In this setup, the transmitting Tesla coil is powered by an AC

power source, while the receiving Tesla coil is connected across a load Z0. Theoretical

explorations of this do exist, but are thin. Additionally, such articles are also few and

far between. As a result, much of this work is based on data collected from a design

group at UCO [1]. From experiments conducted by Marzolf et al., however, the efficiency

of power transferred across empty space is certainly low, both with respect to toroidal

top geometry and spherical top geometry. (Note that mixed geometries have not been

attempted using this method; this will be revisited and explored in a later section, and

critically evaluated in a later chapter.)

1



1: Introduction 2

1.1.1 Overview of the Mechanism

Figure 1.1 illustrates the ideal mechanism for the CWT system. An AC voltage source of

known quality, vsrc, is attached across a primary cylindrical coil of few turns, moderate

wire radius, and large coil diameter. This is coupled to a secondary coil with signif-

cantly more turns, smaller wire radius, and smaller coil diameter. The coupling forms

a transformer, which steps vsrc up by a large turn ratio (Np/Ns)
−1, where Np is the

number of turns in the primary coil and Ns is the number of turns in the secondary coil.

This stepped up voltage is then run across a spherical conductor, and generates an alter-

nating electric field ~E, creating time-dependent spherical waves. On the receiving end,

a spherical conductor receives this ~E field and subsequently generates its own current

density. This leads to a voltage, v2, which is then stepped down through a symmetric

transformer by the same turn ratio Np/Ns, resulting in a stepped-down voltage vout. A

load Z0 is connected across vout, and is used for readings.

vsrc

v01 v02

+

−

vout Z0

~E(t)

Figure 1.1: Ideal mechanism of CWT transfer.

There are several plausible ways to go about modelling the transmission of energy be-

tween the two spheres, each with their own advantages and disadvantages. A description

of each is laid out below.

1. Joint capacitors with a resistor: The two spheres may be modelled as two ca-

pacitors, Ct and Cr, in series with a resistor between them. This resistor would

have the characteristics of air, and thus take a massive resistivity on the order of

1016 Ωm over a distance l and an approximate cross-sectional area A. There ex-

ists an obvious downside to this approach: modelling the resistor depends heavily

on the status of the field through the air gap, and as such defies some conven-

tional evaluations. Further, as the input current will vary with time, field lines

may rectify and change directions between the two capacitors, and the resistor

model could vary in cross-sectional area, thus changing resistance over time as
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well. Some traditional circuit theory can certainly accommodate this, but contin-

ued use of simple assumptions of time-varying resistance would be better modelled

through a battery of tests or simulations of time-dependent geometries for the air

gap resistor, which lies beyond the scope of this work.

2. Capacitance of two conducting separate spheres: By taking one of Maxwell’s lesser-

used formulas as presented in [3] and [4], the capacitance between two spheres of

equal radius r at a certain distance l apart may be calculated to extremely close

precision as follows:

Cs = 2πεr

∞∑
n=1

sinh
[

ln(D +
√
D2 − 1)

]
sinh

[
n ln(D +

√
D2 − 1)

] ≈ 2πεr

[
ln 2 + γ − 1

2
ln(2D − 2)

]
.

Above, γ is the Euler constant (γ ≈ 0.5772156649), and D = l/2r > 1. There may

exist some discrepancies in this calculation due to the spheres’ proximity with the

ground; consequently, this model requires basic reformulation of the circuit such

that the two spheres are in fact one capacitor, Cs, acting in series with both the

transmitter and receiver circuits, and extended to a height such that capacitance

with the ground is no longer an issue. One incredible benefit of this method is

that voltage calculations are coerced into more intuitive forms, as the circuits are

no longer separated mathematically by an air gap except in the calculation of the

capacitance. However, a notable shortcoming is that the included formula claims

only to work for a short separation l between the two spheres. As before, an

interesting discussion may be had over such assumptions and calculations, but the

setup of a CWT system may not necessarily accommodate the close separation

restriction on l.

3. Electric field between two conducting spheres of shared characteristics: Similar to

method (1), the two spheres are modelled as two capacitors, Ct and Cr, where Ct

is the transmitting capacitor and Cr is the receiving capacitor. The electric field

generated from the transmitting capacitor is estimated using the following formula

for the capacitance of a conducting isolated sphere:

Ct = 4πεr.
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This same formula is re-evaluated at the receiving sphere after adequate transmis-

sion time; so, since the radius of each sphere is the same, Ct = Cr. Under this

paradigm, the circuit does not require reformulation, but careful analysis must

happen across the air gap to determine energy transfer, and subsequent voltage

readings, at the receiver circuit through an electric field. Although similar to mod-

elling a capacitor of two separated spheres, utilizing the electric field between Ct

and Cr would allow for more segmentation in most calculations that must take

place, though it should be noted that a similar reflection issue as in method (2)

may occur at short heights.

Despite its shortcomings, method (3) was determined to be appropriate for ideal and

non-ideal circuit analysis, given that treating the air gap as a resistor would lead to

extraordinary mathematical difficulty, and modelling the air gap as a capacitor between

two spheres yields uncertain reliability due to its limitation on separation distance.

1.1.2 Advantages and Disadvantages

Advantages that are not immediately obvious manifest in this approach. Modelling

CWT in this way, for example, may be extensible over distance. The future of CWT

arguably hinges on its practicality over distance, so this is no small feat. Also, since

selection of non-ideal properties in both the math and the code are imperative, our

model contains more modularity and segmentation than one might expect, leading to

additional room for modification and alternative theory should the need arise.

However, just as the advantages of this method are obfuscated, so too are its disadvan-

tages. Non-ideal modelling of CWT from a circuit perspective is, in a word, tedious.

Equivalence measures have to be taken across the transformers at each coupling, and

these are somewhat approximate. Careless use under the right circumstances could re-

sult in vastly different numbers than reality shows, something we hope to mitigate with

modelling these non-ideal conditions extremely carefully.

1.2 The Method of Simulating CWT

For both the ideal and non-ideal constructions, parasitic capacitance will be accounted

for. The reasoning for this in the non-ideal case might be obvious, but in the ideal

case, accounting for parasitic capacitance may increase the model’s accuracy-to-fit, as

the rough simulation and data taken in [1] accounted for this without accounting for
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leakage or magnetizing inductance. As expected, the main difference that exists in the

non-ideal from this is taking into account those quantities that were not in the ideal

case: magnetizing inductance, leakage inductance, and material resistance.

In the construction of an ideal and non-ideal simulation, geometry and paths are kept

simple for the sake of first approximation, which is yet another benefit of the third

listed approach of modelling capacitance. Taking simple partial derivatives across an

air gap, assuming no magnetic vector potential (again, for simplicity), evaluates elec-

tric field “throughtput” via the transmitting capacitor to the receiving capacitor. Upon

completion of both ideal and non-ideal models, their results and resonance patterns are

compared to that found in experimental data gathered by the design group at UCO in

[1]. This is how accuracy and feasibility will be determined in both cases.

It should be noted that the function embedding performed in the code utilized by the

simulations is extraordinary, and would be difficult to construct without a syntax to

declare anonymous, immediate functions, and pass them directly to other anonymous

functions, such as that that exists in MATLAB or Octave. Despite Octave being used

for this coding, syntax compatibility exists between Octave and MATLAB; as such, the

code is made in such a way as to attempt to preserve this compatibility.



Chapter 2

The Status of Literature on WPT

The portrait of competing mechanisms in the first chapter of this text is heavily based

on the underlying physics of each system being well-investgated. There exists no need

for difficult, esoteric physics or engineering in the scope of any apparatus of concern

(although extensibility will be discussed later in this work). Indeed, a wide variety

of literature exists on the subject, and much of the difficulty of analysis lies in the

computational demands placed on any human or machine solver. Alarmingly, however,

very little intellectual stock is invested in CWT in published format. The reasons for this

are not obvious, but one quickly notices a proliferation of WPT research that focuses

almost exclusively on the varying methods of magnetic induction. Even so, much of this

literature is sufficient only for extremely narrow scopes of experimentation.

2.1 The Dearth of CWT Literature

CWT applications have been examined in a cursory capacity, but have not been thor-

oughly investigated in recent years. As mentioned in the previous section, this is a

surprising find. Reasons for this fall solely on the shoulders of efficiency and mystery,

however [2], and as it stands, CWT appears to be in danger of being circumvented for

magnetic resonance methods. As CWT is closely based on Tesla’s approach [5], ample

time has passed for modified versions of CWT to arise [6] [7]. A large mindshare exists

on re-examining demonstrations of Tesla’s work [8] [2] in terms of its efficiency over

large distances, but rely on justifying magnetic resonance cases for good short range

alternatives.

6



2: The Status of Literature on WPT 7

Thankfully, rigorous research into solution-finding has continued. Some of the most ef-

ficient, analytic work done on the topic of solution-finding for CWT was conducted by

Liu et. al. in their incisive solutions for a retarded phase factor in an ideal case [9] [10]

[11], and serves as an implicit basis for the examination of the phase factor in this work.

Simulations are used regularly to examine antennas, EM effects at far range, and EM in

extreme circumstances and conditions, and seem to be a natural fit for simulating WPT.

However, once again, there are seemingly few analytic examinations of CWT that exist

that make use of simulation or multiphysics modelling and, once again, this remains

surprising. Strangely, simulation is thoroughly used in the construction of magnetic

resonance apparatus and theory, but seems to have not found strong footing in CWT

methodology as of this writing.

2.2 A Plethora of SRMI and LRMI Special Cases

A large subfield of applied ODEs revolves around magnetic coupling. In the work of

Christianto and Smarandache [12], numerical solutions are found for coupled magnetic

systems. Meanwhile, in another work featuring Christianto [13], an exact solution is

found for the same system. Several more articles and works follow this same pattern, and

partake heavily in simulation to verify those results. In truth, this is a very convenient

field of research to seek out, as it has multiple applications in electronics, imaging, and

fabrication, but it also narrows the pool of available research for CWT somewhat further.

2.3 Questions of Quality and Validity

Questions arise about much of this research. CWT has by no means been abandoned,

but what factors cause it to lose its value in the literature? Why are more simulations

not being conducted? Certainly power efficiency plays a role, and a corollary to the

more pessimistic reader would center on if investigation into CWT should any longer be

conducted at all with the advent of strong-promising additional methods [2] [14]. Our

work may very well open some doors to these questions, even though that is not its

intended purpose.



Chapter 3

Modelling CWT Using an Ideal

Configuration

3.1 Setup

The following diagram is based on an ideal configuration of the laboratory setup in [1]:

vsrc

v0t

N1 N2

Cp1

Ct Cr
Z0

v0r

N3 N4

Cp2
vout

+

−

Figure 3.1: Ideal mechanism of CWT transfer with parasitic capacitance.

The circuit looks simple at first glance, but the air gap between the two spheres requires

more examination, and is more complicated than it appears. Below, each component is

described in summary.

Transformer couplings: The N1, N2 coupling and the N3, N4 coupling represent the

first and second transformer couplings, respectively. These take the usual form where

for some primary winding Np and secondary winding Ns, a step-up comparison has that

Ns > Np and a step-down configuration has that Np > Ns.

Spherical capacitors: The capacitors, C, represented on the diagram by a capacitor sym-

bol wrapped in a circle, symbolize the spherical capacitors being used as a transmitter-

receiver system. Although these look to be “dangling components” similar to antenna

relays, the diagram is a bit beguiling as the isolated spherical capacitors are, in fact,

8



3: Overview of CWT Laboratory Model 9

connected through a complete circuit. Also, the mechanics are somewhat distinct from

the behavior of an antenna relay, and the math surrounding an antenna relay system is

not necessarily the most efficient methodology to rely on. Consequently, careful wave

analysis is used across the air gap between Ct and Cr, and will be detailed in following

sections.

Parasitic capacitance: On the circuit diagram, the parasitic capacitors, Cp, represent

the stray capacitance that the secondary coil on the transmitter and the primary coil on

the receiver exhibit. This effect is negligible at low frequencies, but since the scope of

the simulation extends to relatively high (∼ 3 MHz) frequencies, parasitic capacitance

must be accounted for.

Dual grounding: A quirk of this diagram’s setup is that there are two distinct “earth”

grounds, v0t (for the transmitter circuit) and v0r (for the receiver circuit). This is due to

the nature of the experiment being run: extremely high voltages run the risk of conduct-

ing through an insufficient ground, especially when contending with the resitivity of air,

which is on the order of 1014 Ω · m. It should be noted that one of the approaches inves-

tigated relies on examining resonant frequencies through the length of the ground and

the coils, and as such, the distinction between these two points is even more imperative.

Load on receiver: Finally, a generic load of impedance Z0 is included for indication of

power transmission. This is the load across which vout is measured. In the laboratory

experiment conducted by [1], this load was an LED. A voltmeter may be attached across

this load without noticeable consequence to the circuit, and is thus not diagrammed.

3.2 Formulation

3.2.1 Circuit Analysis and Equivalence

By operating with impedances, we are able to use common formulas and properties for

passive circuits efficiently for this model. As expected, let

Zp1 = 1/jωCp1,

ZCt = 1/jωCt,

ZCr = 1/jωCr,

Zp2 = 1/jωCp2.
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Now let I1 and I2 be loop currents around the first and second loops in the transmitter

circuit after the secondary coil, and I3 and I4 be loop currents around the first and

second loops in the receiver circuit before the primary coil, as illustrated below:

vsrc

v0t

Cp1

CtI1 I2 Cr
Z0

v0r

Cp2

I3 I4

vout

+

−

Figure 3.2: Ideal mechanism of CWT transfer with loop currents.

Now first by evaluating Figure 3.1 using ideal transformer equations and using KVL

with loop currents, we find that

(
N2

N1

)
vsrc = vCt,

as the voltage across the parasitic capacitor readily substitutes out. (Note: For conve-

nience in the future, we will set a1 = N1/N2 and a2 = N3/N4.) So, since vsrc is sinusoidal

(AC) in the usual way, where

vsrc(t) = Vmax sin(ωt),

this will reflect in the relationship between the voltage across vCt:

vCt =

(
N2

N1

)
Vmax sin(ωt).

Using mesh analysis, then, a basic system of equations for both the transmitter (currents

I1 and I2) and the receiver (currents I3 and I4) can be set up with impedances of each

circuit, as expected:

−a1vsrc + (I1 − I2)ZCp1 = 0

−(I1 − I2)ZCp1 + I2ZCt = 0

 Transmitter

−I3ZCr + (I3 − I4)ZCp2 = 0

−(I3 − I4)ZCp2 + a 2
2 I4Z0 = 0

 Receiver
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However, we also take I3ZCr = vCr, which is treated as a constant with respect to its

loop current. We then may solve for each loop current using basic algebraic means:

I1 = a1
vsrc

ZCp1

(
ZCp1
ZCt

+ 1

)
,

I2 = a1
vsrc

ZCt
,

I3 =
vCr
ZCp2

(
ZCp2
a 2

2Z0
+ 1

)
,

I4 =
vCr
a 2

2Z0
.

The phasor of vout is gained from repeated substitution:

vout = I4Z0 =
vCr
a 2

2

=
I3ZCr
a 2

2

=
vCr
a 2

2

ZCr
ZCp2

(
ZCp2
a 2

2Z0
+ 1

)
.

By writing each impedance in explicit form, then, we have

vout(ω) =
vCr
a 2

2

Cp2
Cr

(
1− j 1

a 2
2Z0ωCp2

)
. (3.1)

3.2.2 Model Coil Equivalence Assumptions

For our model, we assume several important equivalence parameters. The primary coil

of the transmitter has the same physical characteristics as the secondary coil of the

receiver, and the secondary coil of the transmitter has the same physical characteristics

as the primary coil of the receiver, such that ideal calculations fall into place. Also, the

following coil counts are equivalent, and given a match variable n for convenience:

N1 = N4 = n1

N2 = N3 = n2

This is somewhat essential for the ideal model, as will be detailed in §3.3.

3.2.3 Generic Formulations of Capacitor Field Interactions

The key to further analysis is determining what sort of coupling the two equations have.

As described in §1.1.1, the paradigm that we select will allow us first to model each
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capacitor as an isolated sphere of equivalent radius rC , such that

Ct = Cr = 4πεrC .

Now, with capacitors, recall that Q = V C. At the transmitting capacitor, this property

is useful for determining the radiative electric field ~E about the sphere, and is used in

the following way:

QCt = vCt · Ct =

[(
n2

n1

)
Vmax sin(ωt)

]
· 4πεrC .

By describing the electric field in the usual way for a conducting sphere, such that

~E =
Q

4πεr2
r̂,

then we have the following for an emanating electric field ~E at displacement r from the

transmitting sphere of charge QCt:

~E =

(
n2

n1

)
rCVmax

r2
sin(ωt) r̂. (3.2)

From this, we may also gather a voltage across the air gap. For an electric field, the

potential φ about the field source is related to the electric field as

~E = −∇φ.

If we assume a straight path along x between the spheres, then this is easily approximated

by using the partial derivative in the x direction:

E = −∂φ
∂x
≈ −∆V

∆x

−→ ∆V = −E∆x = −E∆r.

So, by using this approximation and by taking the transmitting and receiving capacitors

to be located at rt = 0 and rr, we have

vCr = vCt −
n2

n1

rCVmax

r2
r

(rr − 0) sin(ωt).
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Substituting vCt = n2
n1
Vmax sin(ωt) in yields an explicit form for the voltage at the re-

ceiver:

vCr =
n2

n1
Vmax

(
1− rC

rr

)
sin(ωt). (3.3)

It bears saying that although this is an appropriate first approximation, as with the

rest of the composition of the ideal model, there are certain assumptions that make our

model notably more efficient in handling WPT than what may be dictated in reality.

In this case, we assume a straight path r in line with an electric field generated at Ct

transmitting to Cr. Although path independence lends credibility to this assumption,

it is thought that some “rectification” of the electric field’s linear waves contributes to

the transmission efficiency over time. Because of this, during computation, we may only

safely assume these properties only after some time has passed.

3.3 End Computation

A convenient formulation can be made for vout follows from equations (3.1) and (3.3) in

phasor form (without sin ωt):

vout(ω) =
Vmax

a2

Cp2
Cr

(
1− rC

rr

)(
1− j 1

a 2
2Z0ωCp2

)
. (3.4)

Each of these constants has a given value based on experimentation:

rC = 0.06 m,

rr = 1 m,

Ct = Cr = 6.673 pF,

Cp1 = Cp2 = 4.274 pF,

Vmax = 15 V,

a2 = 100.

This is a detailed, idealized description of vout as a function of ω, which will be simulated

as such. Cp1 and Cp2 are expected to be the same in the ideal case, as we model them

both off of the higher turned coils. We will see in the non-ideal scenario in chapter 4
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that modelling parasitic capacitance for the secondary coil on the transmitter is also

sufficient. Note that rr is always in reference to rt = 0.



Chapter 4

Modelling CWT Using a

Non-Ideal Configuration

4.1 Setup

The following diagram is a generic, non-ideal description of the tested CWT laboratory

setup:

vsrc

R1 Ll1

Cp1

Ll2 R2

v0t

R3 Ll3

v0r

Ll4 R4

Z0Lm1 Lm2

Ct Cr

N1 N2 N3 N4

Cp2

Figure 4.1: Experimental setup with representative and physical components

Unlike the ideal case, one must cautiously discern between physical components and

additions to the circuit that are representative of losses of energy or magnetomotive-

affected areas, especially across inductors that are built into the diagram. Each of these

physical or representative components is discussed in detail here.

Magnetizing inductance: Inductors represented by Lm are not physical inductors, but

representative of the magnetizing inductance that excites the transformer core, and is

inversely proportional to the reluctance, R, of the transformer core. This is described

in greater detail later. The core of each of these transformers is essentially air, so this

is largely minimized, though not something to be overlooked.

15
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Leakage inductance: The Ll inductors are also not physical components; instead, they

represent leakage inductace across each coil that is utilized in each transformer. These

are also non-negligible, even in most idealized transformers [15].

Resistance of media: The resistors, R, built into series with the leakage inductors repre-

sent numerous resistive factors in the coils used across each transformer. Due simply to

the nature of the step-up transformation that must be performed for power to be notice-

ably apparent from the transmitter to the receiver, these resistive factors are important

to include for thoroughness in analysis, particularly due to how much of a transformation

is performed at each coupling in the transformers.

Transformer couplings: As in the ideal configuration, the N1, N2 coupling and the N3,

N4 coupling represent the first and second transformer couplings, respectively, where

the first coupling is a step-up transformer and the second coupling is a step-down trans-

former.

Spherical capacitors: The same ideal configured capacitors, C, are represented on the

diagram by a capacitor symbol wrapped in a circle, and are used as a transmitter-receiver

system as before. The same detail work is conducted here to model the power transfer

over the air gap between Ct and Cr.

Parasitic capacitance: This is the same as the ideal scenario. On the circuit diagram,

the parasitic capacitors, Cp, represent the stray capacitance that the secondary coil on

the transmitter and the primary coil on the receiver exhibit. This effect is negligible at

low frequencies, but since the scope of the simulation extends to relatively high (∼ 3

MHz) frequencies, parasitic capacitance must be accounted for.

Dual grounding: Similarly to the ideal case, there are two distinct “earth” grounds, v0t

(for the transmitter circuit) and v0r (for the receiver circuit). The same qualities that

plague the ideal case are present here, but the analysis relative to grounding becomes

inherently more complicated in the non-ideal case.

Load on receiver: The same load that was present in the ideal case, Z0, is used here.

Powering an LED in a non-ideal circuit like this may normally require in-depth discus-

sion, but our main concern is whether the load is powered or not, so Z0 is modelled as

an Ohmic load for simplicity even in the non-ideal configuration.
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4.2 Formulation

4.2.1 Circuit Analysis and Equivalence

For the non-ideal model, known quantities are absolutely crucial to simplicity for nu-

merical solving. As in the ideal case, we may arbitrarily take vsrc as sinusoidal with no

initial phase offset:

vsrc(t) = Vmax sin(ωt).

We begin by attempting to find equivalent circuit segments for each independent “loop”

of the circuit. To do this, we work with, and combine, impedances throughout the

circuit on the first approach. This allows us to avoid the use of differential equations

in a multi-coupled system. Under this paradigm, the individual component impedances

are defined as below:

ZR1 = R1 Zl1 = jωLl1 ZCt = 1/jωCt

ZR2 = R2 Zl2 = jωLl2 ZCp1 = 1/jωCp1

ZR3 = R3 Zl3 = jωLl3 ZCp2 = 1/jωCp2

ZR4 = R4 Zl4 = jωLl4 ZCr = 1/jωCr

Zm1 = jωLm1

Zm2 = jωLm2

We abbreviate this process by combining components that are in obvious series (see

figure 4.1):

Z1 = ZR1 + Zl1 = R1 + jωLl1,

Z2 = ZR2 + Zl2 + ZCt = R2 + jωLl2 + 1/jωCt,

Z3 = ZR3 + Zl3 = R3 + jωLl3,

Z4 = ZR4 + Zl4 + Z0 = R4 + jωLl4 + Z0.

The modified circuit now takes on a simpler form, as seen in Figure 4.2.

(Note: Here, unconventional notation for the transformers is used, and is partially

pared from notation utilized in [15] to describe a simpler version of an imperfect air

core transformer. Mathematically, e1, e2, e3, and e4 represent voltages across each side

of the transformer couplings and hold the relationships such that e1 = Lm1 · dim1/dt,
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vsrc

Z1

ZCp1

Z2

ZCr

Z3 Z4

Zm1 Zm2‖p2
(Ct)

N1 N2 N3 N4

+

−

e1

+

−

e2

+

−

e3

+

−

e4

Figure 4.2: Experimental setup with series combined impedances

e2 = e1 · N2/N1, e3 = Lm2 · dim2/dt, and e4 = e3 · N4/N3. We may arbitrarily define

N1/N2 = a1 and N3/N4 = a2 for ease of formulation and use. This notation is henceforth

used extensively in our work.)

Now that in the second loop, Z2 and ZCp1 are in parallel, and in the third loop, Zm2

and ZCp2 are in parallel (the second case being described on the diagram for brevity).

Using this information, basic parallel impedance calculations can now be used to wrap

the impedance “totals” together, simplifying the circuit even further. Below, each ZTn

expression represents a combination:

ZT1 = Z1 = R1 + jωLl1

ZT2 =

(
1

Z2
+

1

ZCp1

)−1

=

(
1

R2 + jωLl2 + 1/jωCt
+ jωCp1

)−1

ZT3 =

(
1

Z3
+

1

Zm2‖p2

)−1

=

(
1

R3 + jωLl3
+

1

Zm2‖p2

)−1

ZT4 = Z4 = R4 + jωLl4 + Z0.

Figure 4.3 illustrates how this system will look based on the combined impedances along

leakage and resistance-of-medium. With this approach, we could begin more intensive

analysis by applying KVL and KCL to the phasor forms of impedances of the symoblic,

non-ideal quantities as well.

vsrc

ZT1 ZT2

ZCr

ZT3 ZT4

Zm1

(Ct)

N1 N2 N3 N4

+

−

e1

+

−

e2

+

−

e3

+

−

e4

Figure 4.3: Experimental setup with combined impedances along medium resistance
and medium leakage
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However, linkage may be established by making use of properties of an ideal transformer:

Z ′ =

(
Np

Ns

)2

Z ⇐⇒ Z =

(
Ns

Np

)2

Z ′.

This reflection of impedances is crucial, albeit routine for more involved transformer

analysis. Despite accounting for losses in the transformer circuit, we are still able to

assume ideal equations for the junction of the transformer junction; this is an excep-

tionally important part of analysis presented in [15] and similar earlier literature (see

pp. 202-207 of [16] for an in-depth primary analysis of the “T” equivalent circuit). This

also allows an equivalent conjunction of both circuits to be used, and significantly sim-

plifies analysis by allowing an equivalent circuit to be used in place of a transformer by

incorporating a1 and a2 factors.

For the lefthand circuit containing Ct across e1, the following diagram illustrates its

equivalent by accounting for the transformer linkage from the primary side:

vsrc

ZT1

Zm1

Z ′T2

+

−

e1

+

−

e2

N1 N2

The same type of scaling can be used with the receiver circuit, with the main difference

being the replacement of vsrc with v2:

+

−

v2

ZT3

Zm2

Z ′T4

+

−

e3

+

−

e4

N3 N4

Each new simplified circuit contains a new referential quantity, Z ′T2 and Z ′T4. Each

of these new quantities makes use of the familiar turn ratios a1 and a2, where Z ′T2 =

(a1)2ZT2 and Z ′T4 = (a2)2ZT4, as described above. The simplified circuits take on el-

ementary forms across e1 and e3, so we may apply KVL and KCL once again. In the

same manner as before, loop currents may be illustrated in order to aid in the mesh

analysis of the circuit at the open terminals. An illustration of this is shown in Figure

4.4 for each circuit.

A tremendous benefit from this approach is that the transformer junction may now be

treated as a short, provided that we account for the transformed voltage, current, and
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impedance values using technical and mathematical gymnastics. Something else that

must be accounted for as we approach the mesh analysis of the receiver and transmitter

circuits, however, is that e1 and e3 are elevated by the transformer junctions to e2 and

e4, respectively, just as before. As a result, power and energy conservation must play

a fundamental role in the logic behind this analysis, particularly for the discussion of

transmission must be included. Thankfully, since the transformer junctions have been

idealized by reflecting the loads ZT2 and ZT4 into Z ′T2 and Z ′T4, much of this power

conservation will already be accounted for, and separate analysis will be simple. For

now, we turn our lens to the circuits at hand separately using well-known methods.

vsrc

ZT1

Zm1

Z ′T2

+

−

e1

+

−

e2

N1 N2

�
I1

�
I ′2

(a) Simplified transmitter cir-
cuit with loop currents.

+

−

ZCr

ZT3 Z ′T4

+

−

e3

+

−

e4

N3 N4

�
I ′3

(b) Simplified receiver circuit
with loop currents.

Figure 4.4: Setup for simplified analysis on both transmitter and receiver circuits.

Remember that the voltage for e1 and e3 may now be treated as mathematical shorts,

since the load through e2 and e4 have been accounted for in Z ′T2 and Z ′T4. To simplify

this analysis further, we note that if the transformer junction behaves as a short, then

Z ′T2 is in parallel with Zm1:

Z‖1 =

(
1

Zm1
+

1

Z ′T2

)−1

.

For the receiver circuit, ZT3 is in series with Z ′T4:

ZT3+T4′ = ZT3 + Z ′T4.

Now, ZT1 is in series with Z‖1:

Zs1 = ZT1 +

(
1

Zm1
+

1

Z ′T2

)−1

.

Thus the two total impedances for the grouped circuits are

Zs1 = ZT1 +

(
1

Zm1
+

1

Z ′T2

)−1

,
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Zs2 = ZT3 + Z ′T4.

The following circuit diagrams illustrate this transformation:

vsrc Zs1 Zs2ZCr

+

v2

−

Although this appears to be an oversimplification of the nonideal transformers’ circuitry,

one must remember that much of the conversion hinges on building the turn ratios, a1 =

N1/N2 and a2 = N3/N4, into the circuit conversions mathematically. It is obvious from

our simplified circuit that vsrc = ItZs1 and v2 = IrZs2 (where It and Ir are individual

loop currents for the transmitter and receiver circuits, respectively), but the impedances

may be written explicitly. Doing so yields multiple values in terms of inductances and

turn ratios:

Zs1 = R1 + jωLl1 +

(
1

jωLm1
+

a−2
1

R2 + jωLl2 + 1/jωCt

+ a−2
1 jωCp1

)−1

,

Zs2 = a 2
2 (R4 + jωLl4 + Z0) +

(
1

R3 + jωLl3
+

1

jωLm2
+ jωCp2

)−1

.

If we impose loop currents It and Ir for the transmitter and receiver circuits, we have

that

vsrc = It

[
R1 + jωLl1 +

(
1

jωLm1
+

a−2
1

R2 + jωLl2 + 1/jωCt

+ a−2
1 jωCp1

)−1]
, (4.1)

v2 = Ir

[
a 2
2 (R4 + jωLl4 + Z0) +

(
1

R3 + jωLl3
+

1

jωLm2
+ jωCp2

)−1]
. (4.2)

By using equation (4.1) to determine It, common methods for parallel and series circuits,

including current division, may be used to determine the voltage across the transmitting

capacitor, Ct, through use of its loading, ZCt, incorporated into Z ′T2. We are able to

first create a system of equations using KVL and loop currents (see figures 4.2, 4.3, and

4.4):

ZT1 + Zm1 −Zm1

−Zm1 a 2
1Zp1‖T2 + Zm1

I1

I ′2

 =

vsrc

0

 .
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A similar system may be found for the receiving circuit with input voltage v2, or more

appropriately, vCr:ZT3 + Zm2‖p2 −Zm2‖p2

−Zm2‖p2 a 2
2ZT4 + Zm2‖p2

I3

I ′4

 =

vCr
0

 .
In the above systems, I1 and I ′2 represent loop currents (with I ′2 travelling through the

mirrored components) of the transmitter, while I3 and I ′4 represent loop currents (with

I ′4 travelling through the mirroed components) of the receiver. Solving both of these

systems computationally, we obtain the results

I1

I ′2

 =

−
vsrc(Zm1+a 2

1 Zp1‖T2)

Z2
m1−(ZT1+Zm1)(Zm1+a 2

1 Zp1‖T2)

− vsrcZm1

Z2
m1−(ZT1+Zm1)(Zm1+a 2

1 Zp1‖T2)

 ,

I3

I ′4

 =

−
vCr(a

2
2 ZT4+Zm2‖p2)

Z2
m2‖p2−(ZT3+Zm2‖p2)(Zm2‖p2+a 2

2 ZT4)

− vCrZm2‖p2
Z2
m2‖p2−(ZT3+Zm2‖p2)(Zm2‖p2+a 2

2 ZT4)

 .

Since I ′2 is the current that flows through Z ′T2, using simple current division from here

allows us to find the current through Z2, defined here as Ia:

Ia =
ZCp1

ZCp1 + Z2
I ′2.

Similary, we can find the current flowing through Z0, defined here as Ib, by simply

appealing to the fact that Z ′T4 is a series combination:

Ib = I ′4.

Note that since the impedance of the transmitting capacitor ZCt is a series element in

Z2, taking vCt = IaZCt will successfully find the voltage at the transmitting capacitor.

Similarly, since Z0 is a series element in Z ′T4, the same argument can be made using

e4 = IbZ0. Thus,

vCt = −
ZCtZCp1
ZCp1 + Z2

[
Zm1

Z2
m1 − (ZT1 + Zm1)(Zm1 + a 2

1Zp1‖T2)

]
vsrc, (4.3)
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e4 = −
[

Z0Zm2‖p2

Z2
m2‖p2 − (ZT3 + Zm2‖p2)(Zm2‖p2 + a 2

2ZT4)

]
vCr. (4.4)

4.2.2 Experimental Properties and Eccentric Physical Effects

Due to the less normative parameters of the experiment, multiple lesser-used electro-

magnetic properties exhibited in each part of the circuit must be examined. Notably,

physical examination of these properties in [1] is somewhat lacking, but may still be ac-

counted for by using the appropriate theory here. This presents an interesting secondary

point to observe about our circuit model; namely, we examine these properties in detail

here so that they may balance the simulation.

4.2.2.1 Equivalence Parameters

The primary coil, L1, of the transmitter has the same physical characteristics as the

secondary coil of the receiver, L4, and the secondary coil of the transmitter, L2, has the

same physical characteristics as the primary coil of the receiver, L3, such that

A1 = A4,

A2 = A3,

l1 = l4 = π · d1 · n1,

l2 = l3 = π · d2 · n2,

ρ1 = ρ2 = ρ3 = ρ4 = ρCu,

µ1 = µ2 = µ3 = µ4 = µCu = κCuµ0.

Further, the following quantities are not only equivalent but measured, and given a

match variable n for convenience:

N1 = N4 = n1,

N2 = N3 = n2.

This will prove to be immensely useful later.

4.2.2.2 Inductance and Geometry of Capacitors

Note here that the leakage inductances, Ll, and the magnetizing inductances, Lm, still

require explicit definition, but there is something of a way around this using mutual
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inductance. First, we make use of an esoteric property of leakage inductance used in

[17], [18], and [19] that allows the primary coil’s inductance, Lp, and the secondary

coil’s inductance, Ls, to be related to their mutual inductance factor, M . Leakage

inductance on both sides of the transformer may then be accounted for using a coupling

coefficient, k, defined similarly to a measure of efficiency, where we let |M | = k
√
LpLs

with 0 ≤ k ≤ 1:

Llp = Lp − kLp = Lp −
(
|M |√
LpLs

)
Lp,

Lls = Ls − kLs = Ls −
(
|M |√
LpLs

)
Ls.

Through basic algebraic manipulation, this becomes more approachable in terms of a,

for which a = Np/Ns:

Llp = Lp −
(
Np

Ns

)
M = Lp −

(
Np

Ns

)
k
√
LpLs,

Lls = Ls −
(
Ns

Np

)
M = Ls −

(
Ns

Np

)
k
√
LpLs.

Calling on a similar method from [17], [18], and [19] allows the magnetizing inductance,

Lm, of a transformer circuit to be related to the inductance of its primary coil, Lp, using

a coupling factor, k, defined below in the standard way:

Lm = kLp =
|M |√
LpLs

Lp = aM =

(
Np

Ns

)
M =

(
Np

Ns

)
k
√
LpLs.

Recall that k is a unitless coefficient, and a = Np/Ns =
√
Lp/Ls; thus, the above relation

works as expected without jeopardizing the integrity of the systems in question.

Several properties allow further simplification of this system to nearly pure algebra.

First, both transmitter and receiver capacitors have known a known radius rC :

(
d

2

)
t

=

(
d

2

)
r

= rC .

This allows for many options of treatment for the conducting spheres that compose our

capacitative system, which are detailed in a breakdown in Chapter 1.
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Second, note that for a solenoidal inductor of turn count N , coil length l, and wire

cross-sectional area A,

L =
N2µA

l
.

However, for a general coil (such as a primary coil whose wire thickness is a sizeable

fraction of its length), solenoidal assumptions may not necessarily be sufficient. An

approximation (laid out in great detail in [20]) may be used such that

L ≈ N2µd

2

[
ln

(
4d

r

)
− 2

]
,

where d is the coil diameter and r is the wire radius (tolerably). This approximation

is accurate to a sufficient degree - out to several decimal microhenries - and mitigates

further terms of O
(
(l/r)4

)
. This accuracy more than suffices for our work, so exact

forms of the approximation are not examined.

4.2.2.3 Resistance - Skin Effect, Proximity Effect, and Material Properties

For the thicker coils L1 and L4, skin effect must be accounted for. As detailed in

appendix A, the skin depth, δ, may be defined as

δ =

√
2ρ

ωµCu

for a good conductor such as copper. The attenuation effect this has on the thicker

coils’ resistances is notable compared to their width (8 awg, or 3.26 mm), and creates

a dependency on the frequency ω. In particular, since the current density J can be

measured with the skin effect as having, for some distance b from the surface of the

conductor,

J = J0e
−(1+j)b/δ,

then the resistance may be defined somewhat intuitively by using energy conservation.

(It should be noted that in the above formula, the imaginary component of the exponent

is representative of phase lag only.) The cross sectional area of the wire in the coils, A1

and A4, lends itself to the given current density J such that the current through the re-

sisting wire, I, sets up simply as I = JA. Let I0 = J0A and R0 be a geometric resistance
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in the traditional way such that R0 = ρl/A. Then by energy (voltage) conservation,

I0R0 = I0e
−(1+j)b/δR =⇒ R = R0e

(1+j)b/δ.

So, the resistance of each (thicker) coil at depth b becomes a function of ω:

Rb = R0 exp

[
(1 + j)

b√
2ρ/ωµ

]
or

Rb = R0 exp

[
(1 + j)b

√
ωµ

2ρ

]
.

This allows for a fixed ω to describe accurately the resistance of the interior of the

thicker coils. When b = 2δ, the resistance at this depth is 738% of the surface value,

and at b = 3δ, about 2,010% of the surface value. Consequently, a good approximation

for a cross sectional area of our original resistor may in fact be a disk with thickness 3δ,

centered by a hole. We account for this in the following way:

R1 = R4 ≈
ρCul1

π[r2
1 − (3δ − r1)2]

=
ρCuπ · d1 · 10

π(r2
1 − 9δ2 + 6δr1 − r2

1)

=
ρCu · 10d1

3(2δr1 − 3δ2)

=
10d1ρCu

3(2δr1 − 3δ2)
.

The dependence of R1 and R4 on δ leads to a dependence on ω:

R1 = R4 ≈
10d1ρCu

3

(
2r1

√
2ρCu
ωµCu

− 6ρCu
ωµCu

) . (4.5)

Each of these pieces of information helps to frame the laboratory setup around two

things: one, the voltage (and current) being induced across (and through) Ct, and two,

the voltage being measured at v2 (and in turn across Cr). Thanks to nearly all of

the information about each coil and capacitor being known, this process becomes much

simpler, despite the somewhat nasty setup above.
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4.2.3 Capacitor Field Interactions

For the non-ideal model, we make use of the same field approximations as what was used

in §3.2.3. This means taking another elementary potential difference along a single-lined

path by modelling the capacitor field interactions as the interactions of two separate ca-

pacitors with a transmitting electric field, ~E, between them. (Note that this was already

assumed in earlier model constructions in this chapter for the explicit construction of

the transmitter and receiver circuits, even in the non-ideal case.)

Besides the more complicated impedance coefficient, the approximation is largely the

same, and makes use of the same variables (again, our precise electric potential is rep-

resented by φ):

~E = −∇φ −→ E = −∂φ
∂x
.

First, finding the capacitance is similar to the ideal case, where both capacitors have a

radius rC :

Ct = Cr = 4πεrC .

Similarly, we appeal to the fact that Q = V C for any capacitor. As such, for the

transmitting capacitor,

QCt = vCt · Ct = −
ZCtZCp1
ZCp1 + Z2

[
Zm1

Z2
m1 − (ZT1 + Zm1)(Zm1 + a 2

1Zp1‖T2)

]
vsrc · 4πε0rC

= zvsrc · 4πε0rC ,

where z is an impedance coefficient as a function of ω implicitly. Now, using the electric

field of a sphere of charge, we substitue for Q:

~E =
zvsrcrC
r2

r̂.

Besides the more complicated impedance coefficient, the ~E field approximation is largely

the same as that in §3.2.3, and makes use of the same variables (again, our precise electric

potential is represented by φ, and the path is assumed monodirectional):

~E = −∇φ −→ E = −∂φ
∂x
≈ −∆V

∆x
,
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∆V = −E∆x = −E∆r.

Substituting for the change in voltage ∆V , the path ∆r and E, we get

vCr = vCt −
zvsrcrC
r2
r

(rr − 0) = vCt −
zvsrcrC
rr

.

(Note again that rt = 0 as reference.) Now by substituting for vCt explicitly,

vCr = −vsrc
ZCtZCp1
ZCp1 + Z2

[
Zm1

Z2
m1 − (ZT1 + Zm1)(Zm1 + a 2

1Zp1‖T2)

][
1− rC

rr

]
. (4.6)

The complexity of these calculations is expounded in the following section (§4.3).

4.3 End Computation

4.3.1 Symbolic Computational Forms

By substituing equation (4.6) into (4.4), a complicated unifying equation is created. For

convenience, we describe this in compressed notation as a phasor function of ω:

e4(ω) = zt(ω)zr(ω)Vmax

(
1− rC

rr

)
, (4.7)

where zt and zr are defined as

zt(ω) = −
ZCtZCp1
ZCp1 + Z2

[
Zm1

Z2
m1 − (ZT1 + Zm1)(Zm1 + a 2

1Zp1‖T2)

]
,

zr(ω) = −
[

Z0Zm2‖p2

Z2
m2‖p2 − (ZT3 + Zm2‖p2)(Zm2‖p2 + a 2

2ZT4)

]
.

with the following composite impedances:

ZT1 = Z1 = R1 + jωLl1,

ZT2 =

(
1

Z2
+

1

ZCp1

)−1

=

(
1

R2 + jωLl2 + 1/jωCt
+ jωCp1

)−1

,

ZT3 =

(
1

Z3
+

1

Zm2‖p2

)−1

=

(
1

R3 + jωLl3
+

1

Zm2‖p2

)−1

,

ZT4 = Z4 = R4 + jωLl4 + Z0,

ZCp1 = −j/ωCp1,

ZCp2 = −j/ωCp2,
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ZCt = −j/ωCt,

Zm1 = jωLm1,

Zm2 = jωLm2.

Note that the phasor representation of vsrc is simply Vmax. This highlights an interesting

comparison: despite the initial complexity, equation (4.9) bears a striking resemblance

to the ideal case of equation (3.3) in §3.3. However, the main, most difficult difference is

that a substantial portion of the non-ideal case is controlled by frequency outside of the

AC voltage input. It should also be noted that R1 and R4 are both skin effect functions

of ω (see §4.2.2.3). Both zt(ω) and zr(ω) would be extensively difficult to manually

simplify to a rectangular form of a complex number; however, numerical computation

may now take place while working with the knowledge that both R1 and R4 are functions

of ω. Despite this, the output voltage e4 can still be described as the composite of these

functions, and therefore a function of the frequency ω itself.

4.3.2 Component Numerical Information

Work must now be done to evaluate each of the constants present in equation (4.11).

Some of these constants are easier than others, while some require conditions laid out

in §4.2.

Resistances R1 and R4 are found by accounting for skin-effect driven geometry and show

frequency dependence, as described in §4.2, whereas resistances R2 and R3 are found

using the rudimentary resistance formula and yield a constant:

R1 = R4 =
3.42 Ω

106

(√
0.0267
ω − 0.0802

ω

) ,
R2 = R3 = 51.6 Ω.

For the inductances of each coil, constants are found as well:

L1 = L4 = 5.22× 10−5 H or 52.2 µH,

L2 = L3 = 0.168 H or 1.68× 105 µH.

From these, the magnetizing and leakage values, Lm and Ll, are found for the transmitter

and receiver circuits. These non-ideal quantities have a dependence on the coupling
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coefficient k:

Ll1 = Ll4 = 52.2− 29.6k µH,

Ll2 = Ll3 = (1.68− 2.96k)× 105 µH,

Lm1 = 29.6k µH,

Lm2 = 2.96k × 105 µH.

Note that both Ll2 and Ll3 will only exhibit non-negative inductance when k ≤ 0.568.

We therefore consider this value of coupling as a critical point, as values greater than

0.568 theoretically create negative leakage inductance.

We evaluate the capacitors differently depending on their role in the circuit. For the

spherical capacitors Ct and Cr, we have that

Ct = Cr = 6.673× 10−12 F or 6.673 pF.

For the parasitic capacitance Cp1 and Cp2, we make use of Medhurst’s formula (see

Appendix A and Appendix C) with a cubic interpolated H value for l/D = 5.1 for Cp1

and Cp2, similar to chapter 3:

Cp1 = Cp2 = 4.274 pF.

Accounting for each of the functions of k and the separate functions of ω puts a high

degree of complexity on solving for this model. One can see certain singularities that

arise in the denominator of the expression, but simulation is still essential even for

numerical results.
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Simulation Results

Based on information from the ideal and non-ideal models, throughput voltage curves

were modelled fairly successfully in both cases in regard to data compared. Strange

discrepancies did manifest, some of which may be due to the simplicity of the assumed

geometry regarding the electric field and the capacitor interactions.

5.1 Ideal Model

Results for the ideal model behaved almost exactly like a diminishing voltage through-

put, with very little evidence that resonance occurs on its own. In Figure 5.1, the red

series is the voltage across the load in the lab setup. As can be seen in this compari-

son against Figure 5.2, the ideal simulation as constructed was not useful for locating

resonant frequencies. It should be noted that the general trend of max magnitude of

the voltage across the load, however, was extremely close asymptotically. The simula-

tion behaves strangely around low frequencies, but this is to be expected – this project

focused exclusively on higher frequency ranges to model.

5.2 Non-ideal Model

(See pages 32-33 for figures.)

For the non-ideal model (Figures 5.3, 5.4, and 5.5), we simulated several different cou-

pling coefficients between each set of coils on the transmitter and receiver, and achieved

good results. It is immediately clear that the non-ideal model is a much better fit, and

even serves to locate a resonant frequency between 1.5 and 1.75 MHz that shows up

31
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in the data collected as well. Strangely, this resonance frequency happens only at ex-

tremely low coupling between the primary and secondary coils on each side (k = 0.1).

Other resonances show up near the low frequency range, and spike to magnitudes well

beyond feasible for the circuit, but this is mathematically and computationally expected,

as this indicates computational singularity around these points as desired. The largest

match that we see is around the 500 kHz region, in which the spikes simulated by the

students at UCO using COMSOL Multiphysics match up extraordinarily well with the

spikes evaluated in our model. A particularly critical transfer happens when k = 0.568,

and this shows here as well. The resonance about this region is extremely high even for

a computationally desired result, and when modelling with lower ticks between domain

points, the curve for k = 0.568 dropped off substantially. This seems to indicate an

extremely narrow band – between 250 kHz and 750 kHz – that seems to result in spiked

power transfer via resonance. This is especially true when compared with the modelled

(blue) and actual (red) curves of the UCO design group. Another strange phenomenon

that seems to occur is the lining up of phase drops and peaks with resonant frequen-

cies, particularly along a curve of extremely high phase values that travels back to the

extremes (from about 2MHz at k = 0.2 to 4 MHz at 2 < k < 4). There is a pattern to

this phase distribution, but it lies beyond the scope of this work.
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Figure 5.1: Lab results of physical study
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Figure 5.2: Ideal simulation results
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Conclusions

As may have been expected, the ideal model utilizing first approximation of spherical

capacitor interaction did not perform well. No clear discernible resonant frequencies

were found, and the model behaved for the most part as though no resonance, except

near the origin, could take place. Even this was questionable, as our model was only

designed for high frequency purposes. However, the magnitude of the ideal model was,

for the most part, on par with the lab results we compared against. Still, this certainly

indicates a need for deeper consideration, even in the ideal case, than just parasitic ca-

pacitance.

On the other hand, the non-ideal model performed excellently. Calculated results and

physical results from the UCO research group matched up very well with the non-ideal

simulated results, and even found substantial overlap at a resonance between 1.5 and

1.75 MHz. However, results of our simulations seem to indicate that exterior factors are

at play as well: for reasons beyond the scope of investigation of this project, it seems

that the more efficient the coupling between the coils on the transmitter and receiver,

the less likely a resonant frequency is to arise. This could be, in part, due to the heavy

load placed on the system by considerations of magnetizing and leakage inductance, but

the most consistent pattern was that of the resonant spikes between 250 and 750 kHz.

No matter what the coupling coefficient was, there was always a resonant spike in this

region. A pattern of phase drops emerged based on frequency and coupling coefficient

as well. Perhaps most surprisingly, though, was the fact that modelling the transmit-

ting and receiving spheres as two separate capacitors separated by a linear distance was

nearly sufficient for simulating real world data. This admittedly defied expectations,
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and reaffirmed that basic approximations in this regard work well for limited capacity

applications, and even more so demonstrated feasibility that is essential to the survival

of this approach to WPT.

Because of the unexpected behavior of our non-ideal simulation, opportunity for exten-

sibility is ripe. For example, the coupling coefficient k was controlled to be the same

value on either side of the non-ideal circuit. In reality, this could vary, perhaps even

over time as per saturation by the magnetic flux, independently of each side. Another

investigation could be done into one of the other methods of dealing with the capacitance

of the spheres, such as treating them as a single capacitor of two adjact spheres across

an air gap as laid out in Chapter 1. This could mitigate some of the unknown offset

that we see with the treatment of a linear electric field between Ct and Cr, and account

for more electric flux at the receiving sphere. A magnetic circuit differential equation

version of this system should be investigated further, espeically one that may account

for saturation and fluctuation in magnetic reluctance.

While the ideal model was uneventful in its results, the non-ideal model was a much

better (if strange) fit, and illustrated an important, and somewhat unaccounted for,

relationship between the coupling coefficient k, frequency ω, and resonant voltage.



Appendix A

Formulas

See Appendix E for more information regarding empirical formulas used in this section.

1. Maxwell’s Equations (differential form):

∇ · ~E =
ρ

ε0
,

∇× ~E = −∂
~B

∂t
,

∇ · ~B = 0,

∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
,

where ρ is the charge density with respect to a certain volume or other geometry,

and ~J is the current density.

2. Maxwell’s Equations (integro-differential form):

‹
∂V

~E · d ~A =
Qenc

ε0
,

‹
∂V

~B · d ~A = 0,

˛
∂S

~E · d~L = −
¨
S

∂ ~B

∂t
· d ~A,

˛
∂S

~B · d~L = µ0Ienc + µ0ε0

¨
S

∂ ~E

∂t
· d ~A,

where an isolated ∂X indicates the boundary that encloses a given surface (or

volume) X. (The variables S and V are such a surface and volume, respectively.)

40



A: Formulas 41

3. Faraday’s Law:

E = −N dΦB

dt
,

where N is the number of turns in a given coil, and for magnetic field ~B and

normal area vector ~A, the magnetic flux ΦB is as

ΦB =

¨
S

~B · d ~A = BA cos θ = B⊥A.

4. Capacitance:

Q = V C,

i(t) = C
dv

dt
.

Note that this is the “classic” formula regarding the differential relationship be-

tween current, i(t), and voltage, v(t), as functions of time with a constant scale

factor capacitance, C. This is also applicable in a limited number of cases to

self-capacitance of a surface, plate, or other geometry (such as a conducting, non-

hollow sphere); however, the context of this experiment and model is only centered

on uses that this differential relationship may have for typical capacitance. In all

reality, the demands for this formula are not extraordinary in this work.

5. Capacitance of two concentric conductive hollow spheres:

C =
4πε0

1
r1
− 1

r2

=
4πε0r1r2

r2 − r1
,

where r1 and r2 are the radii of the interior and the outer sphere, respectively.

As these spheres are separated only by air, the permittivity and permeability may

be treated as those used for free space (ε0 and µ0) for the region between the

interior facing surfaces of the spheres. Note that this capacitance could be directly

improved by modifying the separation medium in the interior space separating the

two spheres, such that ε = εrε0 with a relative permittivity of εr > 1.
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6. Ohm’s Law:

~J = σ ~E,

or

~E = ρ ~J,

where ~E is the electric field motivating a current density ~J travelling through a

component or material of the given conductivity σ or resistivity ρ. For a certain

resistor or load with resistance R, an easier form is

V = IR,

where V is the voltage across the component and I is the current flowing through

it. For an AC circuit,

V = IZ,

where Z is the general impedance of a component, while V and I still represent

voltage and current, respectively. These latter two forms are used most often

through this work.

7. Voltage through an inductor along a circuit:

v(t) = L
di

dt
.

In the context of inductance through the coils used in experimentation, one must

apply caution in using a simple relationship such as this for the correct context.

Here, the voltage, v(t), is related to the current, i(t), through a scale factor of

inductance, L, that is used in the context of self-inductance and energy storage

through the utilization of a magnetic field. The use of mutual inductance may be

important, but the typical use of self-inductance L in this work will be through

resonant frequency calculations, among other esoteric applications.
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8. Self-inductance of a solenoid:

For a solenoid, or coil inductor, its self inductance L is give by

L =
N2µA

l
,

where N is the number of turns of the coil, µ is the coil material’s permeability

(such that µ = µrµ0, where µr is the relative permeability), A is the coiled wire’s

cross-sectional area, and l is the coiled wire’s length.

9. Self-capacitance of a helical inductor or solenoid (empirical) [21] [22]:

Cs = H · d,

where d is the diameter of the coil (in centimeters), and H is a proportionality

constant correlated to l/d (length to diameter), and is determined empirically

based on tabulated data (see Appendix E).

10. Wheeler’s formula for inductance through an inverted cone coil (see [23] and [24]

for more discussion on the helical component of this equation):

L1 =
(Nrave)

2

9r + 10h
,

L2 =
(Nrave)

2

8r + 11w
,

L =

√
(L1)2 sin2 α+ (L2)2 cos2 α,

where N is the number of turns in the coil, L1 is the helix factor of inductance,

L2 is the spiral factor of inductance, L is the total inductance, w is the effective

width of the coil (in inches), h is the height of the coil (in inches), rave is the

average radius of the coil (in inches), and α is the rise angle in degrees. Note that

all inductances in this formula are measured in microhenries (µH), and that the

conversion between inches and centimeters is 1 in = 2.54 cm. In this formula, there

exists a nondescript conversion factor (implicitly) between inches and microhenries.

11. Electromagnetic waves (general form):

~E = ~E0 cos(±ωt± βx),
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~B =
~E

c′
,

where for wave number β, wave velocity c′, and frequency ω,

c′ =
ω

β
.

12. Electromagnetic waves in lossy dielectric media (see [25]):

For a lossy medium with a given permittivity ε, resitivity ρ, and conductivity σ,

~E = ~E0e
−αx cos(ωt± βx),

~H =
~E0

|η|
e−αx cos(ωt± βx− θη),

where, for attenuation α, wave number β, intrinsic impedance η, and loss angle θ,

α = ω

√√√√µε

2

[√
1 +

[ σ
ωε

]2
− 1

]
,

β = ω

√√√√µε

2

[√
1 +

[ σ
ωε

]2
+ 1

]
,

|η| =
√√√√√ µ/ε√

1 +
[
σ
ωε

]2
,

tan 2θη = tan θ =
σ

ωε
,

where 0 ≤ θη ≤ π/4.

13. Skin depth of an electromagnetic wave propagating in a conductor:

For a conductive medium of a given permittivity ε, resistivity ρ, and conductivity

σ, the depth of penetration that an electromagnetic wave can travel before being

attenuated by a factor of e−1 (or about 37%) is described by δ:

δ =

√
2ρ

ωµ

√√
1 + (ρωε)2 + ρωε,

δ =
1

α
for sufficiently large σ/sufficiently small ρ,

where α = β =
√
πfµσ. For most materials that are not ferromagnetic, permeabil-

ity is near that of free space; that is, µ ≈ µ0. As before, ~E = ~E0e
−αx cos(ωt±βx).



Appendix B

Code

Octave was utilized to construct numerical solutions and a simulation of both the ideal

and non-ideal scenarios, with care taken to preserve MATLAB syntax for backwards

compatibility. As in our discussion, each portion of our simulation is divided into both

ideal and non-ideal scripted .m files.

B.1 Ideal Simulation

% Auxiliary constant declarations.

C_tr = 6.673e-12;

C_p12 = 4.274e-12;

n1 = 10;

n2 = 1000;

Vmax = 15;

rC = 0.06;

rr = 1;

rt = 0;

% Z_0 modelled as a constant resistance of 13 ohm based

% around common LED assumptions.

Z_0 = 13;

vcr = (n2/n1) * Vmax * (1 - rC * (rr - rt)/(rr^2));

% vout function declaration, and evaluation of max voltage

% through. Variables "coef" and "denomcoef" are coefficients

% outside of the main expression and by omega on the

% denominator, respectively.
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coef = vcr*C_p12/(1000/10)^2 /C_tr;

denomcoef = (1000/10)^2 * Z_0 * C_p12;

vout = @(w) coef .* (1 .- j.*1./(denomcoef.*w));

realvout = @(w) real(vout(w));

imagvout = @(w) imag(vout(w));

voutmax = @(w) sqrt((real(vout(w))).^2 + (imag(vout(w))).^2);

%Input values for function voltage function.

x = [250e3:5e3:4000e3];

% Output values of maximum transfer.

ymax = voutmax(x);

h = figure(1);

linewidth = 3;

plot(x,ymax);

hx = xlabel(’Frequency (MHz)’);

hy = ylabel(’Max Potential (V)’);

ht = title(’Maximum Potential Transfer at Resonance’);

set(h,"papersize",[10,10]);

set(hx,"fontsize",12);

set(hy,"fontsize",12);

set(ht,"fontsize",20);

set(gca,’XTick’,[0:500e3:4000e3]);

set(gca,"XTickLabel",’0’,’0.5’,’1.0’,’1.5’,’2.0’,’2.5’,’3.0’,’3.5’, ’4.0’);

B.2 Non-ideal Simulation

% Non-ideal experimental scenario. Here, a convention is used

% such that ’14’ symbolizes a quantity both applicable to

% coils 1 and 4, ’23’ symbolizes a quantity applicable to

% both coils 2 and 3, and ’tr’ symbolizes a quantity applicable

% to both the transmitter and receiver.

% Auxiliary constant declarations.

R_23 = 51.6;

L_14 = 5.22e-5;
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L_23 = 0.168;

C_tr = 6.673e-12;

C_p12 = 4.474e-12;

a_1 = 0.01;

a_2 = 100;

Vmax = 15;

rC = 0.06;

rr = 1;

rt = 0;

% Z_0 modelled as a constant resistance of 13 ohm used

% for simplicity (common LED saturation slope resistance).

Z_0 = 13;

% Passable function declarations. Here, ’w’ represents the

% frequency omega, and ’k’ is the coupling coefficient as

% expected. Note that these functions quickly become

% variable-dependent on both k and w.

% Auxiliary functions.

R_14 = @(w) 3.42 ./ ((sqrt(0.0267./w)-0.0802./w) .* 10^6);

Lleak14 = @(k) (52.2 .- 29.6.*k).*10^(-6);

Lleak23 = @(k) (1.68 .- 2.96.*k)*0.1;

Lmag1 = @(k) 29.6.*k;

Lmag2 = @(k) (2.96.*k).*0.1;

% Impedance functions for zt and zr.

ZCp = @(w) 1./(j.*w.*C_p12);

ZCt = @(w) 1./(j.*w.*C_tr);

Zm1 = @(k,w) j.*w.*Lmag1(k);

Zm2 = @(k,w) j.*w.*Lmag2(k);

Zm2p2 = @(k,w) (1./(Zm2(k,w)) .+ 1./(ZCp(w))).^(-1);

ZT1 = @(k,w) R_14(w) .+ j.*w.*Lleak14(k);

ZT2 = @(k,w) (1./(R_23 .+ j.*w.*Lleak23(k) .+ 1./(j.*w.*C_tr))

.+ j.*w.*C_p12).^(-1);

Zp1T2 = @(k,w) (1./(ZCp(w)) .+ 1./(ZT2(k,w))).^(-1);

ZT3 = @(k,w) (1./(R_23.+j.*w.*Lleak23(k)) .+ 1./(Zm2p2(k,w)));

ZT4 = @(k,w) R_14(w) .+ j.*w.*Lleak14(k) .+ Z_0;
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Z2 = @(k,w) R_23 .+ j.*w.*Lleak23(k) .+ 1./(j.*w.*C_tr);

% Numerator and denominator variables for zt and zr.

numzt = @(k,w) -1 .*ZCt(w).*ZCp(w).*Zm1(k,w);

numzr = @(k,w) -1 .*Z_0.*Zm2p2(k,w);

denzt = @(k,w) (ZCp(w).+ Z2(k,w)) .* ((Zm1(k,w)).^2

.- (ZT1(k,w).+Zm1(k,w)).*(Zm1(k,w) .+ a_1.^2 .* Zp1T2(k,w)));

denzr = @(k,w) Zm2p2(k,w).^2 - (ZT3(k,w) .+ Zm2p2(k,w))

.*(Zm2p2(k,w) .+ a_2^2 .* ZT4(k,w));

% Declaration of zr and zt.

zt = @(k,w) numzt(k,w) ./ denzt(k,w);

zr = @(k,w) numzr(k,w) ./ denzr(k,w);

% Evaluation of e4, rectangular phasor form.

e4 = @(k,w) zt(k,w).*zr(k,w).*Vmax.*(1.-(rC.*(rr.-rt))./(rr.^2));

% Input for inverse tangent for e4.

tanres = @(k,w) imag(e4(k,w)) ./ real(e4(k,w));

phase = @(k,w) atan(tanres(k,w));

% Amplitude of sinusoidal form of e4.

e4max = @(k,w) abs(e4(k,w));

% e4max calculations at coupled values of raising efficiency:

% k = 0.1, k = 0.1, k = 0.5, k = 0.9, and k = 1.

e4maxlc = @(w) e4max(0.1,w);

e4maxmc = @(w) e4max(0.5,w);

e4maxcc = @(w) e4max(0.568,w);

e4maxhc = @(w) e4max(0.9,w);

e4maxpc = @(w) e4max(1,w);

% Input values for frequency.
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x = [250e3:10e3:4000e3];

% Output values of maximum transfer at each coupling.

ymaxlc = e4maxlc(x);

ymaxmc = e4maxmc(x);

ymaxcc = e4maxcc(x);

ymaxhc = e4maxhc(x);

ymaxpc = e4maxpc(x);

% Figure 1: Max potential transfer.

h = figure(1);

linewidth = 3;

plot(x,ymaxlc,x,ymaxmc,x,ymaxcc,x,ymaxhc,x,ymaxpc);

hx = xlabel(’Frequency (MHz)’);

hy = ylabel(’Max Potential (V)’);

ht = title(’Maximum Potential Transfer at Resonance’);

hl = legend(’k = 0.1’,’k = 0.5’,’k=0.56’,’k = 0.9’, ’k = 1’);

set(h,"papersize",[10,10]);

set(hl,"fontsize",12);

set(hx,"fontsize",12);

set(hy,"fontsize",12);

set(ht,"fontsize",20);

set(gca,’XTick’,[0:0.5e6:4e6]);

set(gca,"XTickLabel",’0’,’0.5’,’1’,’1.5’,’2’,’2.5’,’3’,’3.5’,’4’);

% Input values for coupling coefficient for 3D graph of

% sine output with more efficient precision 3D input.

u = [0:0.008:1];

xn = [0:32e3:4000e3];

% Figure 2: 3D sine of max transfer with free coupling k.

hs = figure(2);

[X,Y] = meshgrid(u,xn);

Z = e4max(X,Y);

mesh(X,Y,Z);

hxs = xlabel(’Coupling Coefficient k’);

hys = ylabel(’Frequency (MHz)’);

hzs = zlabel(’Voltage (V)’);
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hts = title(’Max Potential at Resonance with Free Coupling’);

set(hs,"papersize",[10,10]);

set(hxs,"fontsize",12);

set(hys,"fontsize",12);

set(hzs,"fontsize",12);

set(hts,"fontsize",20);

set(gca,’YTick’,[0:1e6:4e6]);

set(gca,"YTickLabel",’0’,’1’,’2’,’3’,’4’);

% Figure 3: Phase of max transfer with free coupling k.

hph = figure(3);

[X,Y] = meshgrid(u,xn);

Z = phase(X,Y);

surf(X,Y,Z);

hxph = xlabel(’Coupling Coefficient k’);

hyph = ylabel(’Frequency (MHz)’);

hzph = zlabel(’Phase Angle (radians)’);

htph = title(’Phase of Max Potential at Output’);

set(hph,"papersize",[10,10]);

set(hxph,"fontsize",12);

set(hyph,"fontsize",12);

set(hzph,"fontsize",12);

set(htph,"fontsize",20);

set(gca,’YTick’,[0:1e6:4e6]);

set(gca,"YTickLabel",’0’,’1’,’2’,’3’,’4’);



Appendix C

Data and Figures for Empirical

Formulas

Figure C.1: American Wire Gauge (AWG) Equivalent Metric Measurements

Gauge (AWG) CS Area (mm2) Gauge (AWG) CS Area (mm2)

1 42.4 16 1.31

2 33.6 17 1.04

3 26.7 18 0.823

4 21.1 19 0.653

5 16.8 20 0.518

6 13.3 21 0.410

7 10.5 22 0.326

8 8.36 23 0.258

9 6.63 24 0.205

10 5.26 25 0.162

11 4.17 26 0.129

12 3.31 27 0.102

13 2.62 28 0.0810

14 2.08 29 0.0642

15 1.65 30 0.0509
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Table C.1: Table of Medhurst Values for Self-Capacitance

l/D Ratio H value (pF/cm)

50 5.8

40 4.6

30 3.4

25 2.9

20 2.36

15 1.86

10 1.32

9 1.22

8 1.12

7 1.01

6 0.92

5 0.81

4.5 0.77

4 0.72

3.5 0.67

3 0.61

2.5 0.56

2 0.5

1.5 0.47

1 0.46

0.9 0.46

0.8 0.47

0.7 0.47

0.6 0.48

0.5 0.5

0.45 0.52

0.4 0.54

0.36 0.57

0.3 0.6

0.25 0.64

0.2 0.7

0.15 0.79

0.1 0.96

Note: The cubic trendline f(l/D) = −0.00002(l/D)3 + 0.0021(l/D)2 + 0.0546(l/D) + 0.5244 (correlation
R2 = 0.9909) is used for interpolation of data not listed in table D.2 for the sake of our simulation. This
trendline is plotted in a diagram on the following page.
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Appendix D

Detailed Numerical Calculations

Work must now be done to evaluate each of the constants present in equation (4.11).
Some of these constants are easier than others, while some require conditions laid out
in §4.2.

By using the rudimentary formula for resistance R as related to resistivity ρ, and based
on data collected in [1], the medium resistances are calculated here (see Appendix D for
conversion from American wire gauage to metric). Note that the skin effect is accounted
for in the thicker coils, as described in §3.2.

R1 = R4 ≈
10d1ρCu

3

(
2r1

√
2ρCu
ωµCu

− 6ρCu
ωµCu

)
=

10(0.1986 m)(1.68× 10−8 Ωm)

3

[
0.00326 m

√
2(1.68×10−8 Ωm)

ω(0.999994)(4π×10−7 H/m)
− 6(1.68×10−8 Ωm)

ω(0.999994)(4π×10−7 H/m)

]
=

3.34× 10−8

0.00978
√

0.0267
ω − 0.0802

ω

Ω

=
3.42 Ω

106

(√
0.0267
ω − 0.0802

ω

) ,

R2 = R3 = ρ
l2
A2

= ρCu ·
π · d2 · n2

A2

= (1.68× 10−8 Ω m) · π · 0.0500 m · 1, 000

π · (30 awg/2)2

= (1.68× 10−8) · 50

(0.0001276)2
Ω

= 51.6 Ω.

A similar evaluation may be done for the inductances of each coil:

L1 = L4 ≈
n2

1µCud1

2

[
ln

(
4d1

r1

)
− 2

]
=

(102)(0.999994)(4π × 10−7 H/m)(0.1986 m)

2

[
ln

(
4(0.1986 m)

(8 awg/2)

)
− 2

]
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= (124.78× 10−7)

[
ln

(
0.7944

0.00163

)
− 2

]
H

= (124.78× 10−7)(4.189) H

= 5.22× 10−5 H or 52.2 µH,

L2 = L3 ≈
n2

2µCud2

2

[
ln

(
4d2

r2

)
− 2

]
=

(1, 0002)(0.999994)(4π × 10−7 H/m)(0.0500 m)

2

[
ln

(
4(0.0500 m)

(30 awg/2)

)
− 2

]
= (0.03142)

[
ln

(
0.200

0.0001275

)
− 2

]
H

= (0.03142)(5.358) H

= 0.168 H or 1.68× 105 µH.

Using these figures then allow us to calculate the magnetizing values Lm and leakage
values Ll for both transmitter and receiver. Letting k be a free value, we obtain the
following (recall that L1 = L4 and L2 = L3):

Ll1 = Ll4 = L1 −
(
n1

n2

)
k
√
L1L2

= 52.2−
(

10

1, 000

)
k
√

(52.2)(1.68)(105) µH

= 52.2− 29.6k µH,

Ll2 = Ll3 = L2 −
(
n2

n1

)
k
√
L1L2

= 1.68× 105 −
(

1000

10

)
k
√

(52.2)(1.68)(105) µH

= (1.68− 2.96k)× 105 µH.

For the magnetizing inductances,

Lm1 =

(
n1

n2

)
k
√
L1L2

=

(
10

1000

)
k
√

(52.2)(1.68)(105) µH

= 29.6k µH,

Lm2 =

(
n2

n1

)
k
√
L1L2

=

(
1000

10

)
k
√

(52.2)(1.68)(105) µH

= 2.96k × 105 µH.

Due to the large coefficient multiplying k, both Ll2 and Ll3 will only exhibit non-negative
inductance when k ≤ 0.568. This means that for any coupling that is more efficient,
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Ll2 and Ll3 will behave similarly to capacitors of an opposite phase to the initial as-
sumption, since the frequency ω is fixed. However, these details remain notable, but
somewhat ineffectual, against the mathematical setup of total impedance in both trans-
former circuits, as this will implicitly manifest in solutions that we find. Nonetheless, it
is important to note the repercussions of such a numerical result, especially the fact that
the magnetizing inductances Lm, simply by figuring, do not appear to be negligible, and
may in fact include numbers for a small parasitic capacitance effect.
For the spherical capacitors Ct and Cr,

Ct = Cr = 4πε0r

= 4π(8.85× 10−12 F/m)(0.06 m)

= 6.673× 10−12 F or 6.673 pF.

For the parasitic capacitance Cp1 and Cp2 using Medhurst’s formula (see Appendix A
and Appendix D) with a cubic interpolated H value for l/D = 5.1,

Cp1 = Cp2 = H · d2

= [−0.00002(5.1)3 + 0.0021(5.1)2 + 0.0546(5.1) + 0.5244] pF/cm · 5 cm

= 4.274 pF.
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