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ABSTRACT

The immune system is the first line of defense against cancer. The immune system

regularly detects and destroys cancer cells. Despite this continuous protection, certain

cancers are able to escape detection or destruction by the immune system. Research in

recent decades has addressed the possibility of enlisting the help of the immune system

to detect and destroy cancer cells. One compelling treatment uses a laser, an immune

stimulant called glycated chitosan (GC), and a light absorbing dye called indocyanine

green to convince the immune system to incite a systemic attack against both primary

and metastatic tumors. In successful treatments, all tumors are completely destroyed and

patients develop long-term immunity against tumors. While attempting to locate and

destroy tumor cells, the cells of the immune system face competing pressures. On one

hand are the immune cells that detect and attempt to control tumor cells (typically the

target of the immune response is a foreign invader), and on the other hand are the immune

cells that prevent the response from growing dangerously out of control. By policing certain

immune cell populations, regulatory T cells (Tregs) play an important role in keeping the

overall immune response under control. But, in doing so, these Tregs indirectly protect

cancer cells.

We describe post-treatment immune dynamics with mathematical models, and predic-

tions of clinical treatment outcomes can be drawn from model predictions. Currently we

emphasize the role of cytotoxic T cells and dendritic cells in the laser-initiated immune

response, but we have also studied the roles of B cells and helper T cells. Our model is

based on experimental studies with the dimethylbenza(a)nthracene-4 (DMBA-4) metastatic

mammary tumor line in the rat animal model. We have used our model to determine clinical

outcomes based on the effects of two key treatment factors: the dose and role of GC, and

the manipulation of Treg activity. Treatment outcome is improved by the pro-immune

stimulatory properties of GC and worsened by the proposed pro-tumor activity of Tregs.

The results from our studies indicate potential treatment designs that could be used to

improve treatment outcome or highlight additional areas that should be targeted for future

experimentation with animal models.
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CHAPTER 1

INTRODUCTION

To begin our work mathematically modeling a potential mechanism underlying a novel

anti-tumor immunotherapy, we give a brief introduction to cancerous tumor growth, cancer

immunotherapies, existing cancer models, and immunology. The activities of the immune

system cells listed are not limited to anti-tumor immunity. However, the descriptions of

each cell type will be limited to the proposed role that each cell plays in the anti-tumor

laser immunotherapy treatment.

1.1 Cancerous Tumor Growth

Cancerous tumors form when one or more of an organism’s cells ceases to operate in

accordance with its normal cellular cycle. This can be caused by random mutations in a

segment of a cell’s DNA that controls for programmed cell death or apoptosis. This can also

be caused by a mutation in the segment of DNA that controls cellular division, in which a

cell makes a copy of itself [1, 2, 3]. An organism’s innate immune system, the cells of its

immune system requiring no preliminary activation to combat invaders, constantly surveys

its surroundings. When a cancerous cell is recognized, innate cells can kill it [4]. However,

when all of these checkpoints have failed to eradicate cancer cells, uncontrolled proliferation

and migration of cancer cells can occur. This uncontrolled cancer cell growth can interfere

with normal organ function on a scale that can cause the death of an organism. Cancer cell

migration, or metastasis, makes the task of curing a patient of cancer much more difficult.

An isolated tumor that has not metastasized stays fixed in a single location, so it is easier to

locate for treatment. However, when tumor cells branch off a primary tumor and spread to

other locations, the act of surgically removing tumors of the primary tumor cell line can be

tremendously difficult [1, 2, 3]. This implies that cancer therapies must be able to eradicate

tumors in numerous, and possibly unidentifiable, locations.
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1.2 Cancer Immunotherapies

There are many types of therapies for cancer aimed at using immune components,

termed immunotherapies. Numerous vaccines have been created that have caused significant

regression of cancerous tumors in some patients [5, 6]. There are also viral therapies that

aim to use oncolytic (cell lysing) viruses to infect and kill tumor cells [7, 8, 9]. This therapy

can also indirectly inform the immune system that cancer cells are present due to the fact

that a patient’s immune system can recognize the presence of viruses [8, 9]. When immune

cells recognize that a cancer cell is infected with a virus, they will force the cancer cell

into apoptosis to kill the cell [8, 9]. It is also possible to extract a patient’s immune cells,

train them to fight cancer, and then re-inject them back into the patient. This immune cell

extraction and training before re-injection has been shown to be quite effective in treating

cervical cancers [10].

Anti-tumor laser immunotherapy is a promising approach to treating cancerous tumors

[11, 12, 13, 14, 15, 16, 17, 18]. Laser immunotherapy uses a laser to kill cancer cells, which

releases a cancer signal to the immune system, in the form of proteins. With the aid of

immune stimulants, this therapy has been shown to be quite effective in treating patients

with metastatic tumors [11, 12, 13, 14, 15, 16, 17, 18]. Our focus is the anti-tumor laser

immunotherapy performed in the laboratory on rats inoculated with metastatic mammary

tumors [15].

1.3 Mathematical Models of Cancer Immunology

The concept of modeling immunological responses to cancer is certainly not new. There

is a balance between biological detail and mathematical simplicity when writing models

of biological processes. Many models are polarized towards mathematical complexity, and

include less explicit treatment for individual immune cells. The more complex mathematical

models frequently address three components: an overall cancer or tumor burden, an immune

effectivity, and drug or chemical concentration affecting the immune component [19]. This

type of model is phenomenological in nature, which makes biological interpretation of

variables and parameter units less obvious. However, the limited number of equations in

such a model implies fewer unknowns which can make parameter estimation more feasible.

Including a more explicit treatment of individual immune cell types makes models more

descriptive and easier to explain in a biological context. Increased biological detail implies

an increase in the number of variables and model parameters, which is demonstrated in
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[20, 21]. These ordinary differential equation models explicitly include components for

cancer, several types of immune cells, or immune-affecting chemicals and chemotherapy

drugs. One incentive in writing a more biologically descriptive model is that it can be

used in a variety of contexts. In such models, one type of treatment can easily be replaced

by another to analyze multiple treatment scenarios. Models using immunotherapy and/or

chemotherapy of cancer could be altered slightly to incorporate an oncolytic virotherapy

model [22].

1.4 Categories of Immunity

The immune system has two major categories: the innate immune system and the

adaptive immune system. The innate immune system, named for the fact that it is common

among all animals, includes cells that are always actively seeking and destroying invaders

that have entered an organism [4]. Innate immunity is the first line of defense against a

new threat to an organism [4]. The adaptive immune system, on the other hand, must

be activated in order to combat an invader [4]. Adaptive immunity is appropriately called

“adaptive” because each threat type will lead to a unique secondary, or adaptive, immune

response. The adaptive component of the immune system is capable of remembering a past

invader or threat, which means that an organism’s immune system will progressively adapt

to the host’s surroundings [4].

1.5 Dendritic Cells (DCs)

The adaptive immune response to cancerous tumors begins with the uptake and pro-

cessing of tumor antigen, which are the roles of dendritic cells [23, 24, 25, 26, 27, 28, 29].

Tumor antigen consists of tumor cell protein fragments released by laser-induced cellular

apoptosis [30]. Laser irradiation of a primary tumor usually lasts for about 10 min-

utes, which causes the release of tumor antigen to the neighboring tissues and blood

[11, 12, 13, 14, 15, 16, 17, 18]. Naive or inactive dendritic cells then take in antigen, which

initiates and drives their activation process [23, 24, 25, 26, 31, 27, 28, 32, 29, 33, 34, 35]. The

initial stage of activation is one of migration to the surrounding lymph nodes, during which

dendritic cells continually process antigen into peptides and load them onto their surface

for presentation to naive cytotoxic T cells, helper T cells, and B cells [23, 26, 31, 36, 34, 35].

Upon reaching the lymph nodes, dendritic cells are fully activated and capable of presenting

to several naive T and B cells. As long as tumor cell killing is occurring, antigen will
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continually be released via tumor cell apoptosis. Therefore, dendritic cells will continue to

carry out this process until all tumor cells have been eradicated [11, 12, 13, 14, 15, 16, 17, 18].

1.6 T Cells

T cells perform a variety of tasks after activation via antigen presentation. Each type

of T cell has a unique role in the immune response, ranging from killing tumor cells to

defending tumor cells [37, 38, 39].

1.6.1 Cytotoxic T Lymphocytes (CTLs)

Before antigen presentation, naive CTLs remain in the lymph nodes [40]. Once antigen

is presented to a naive CTL, the cell becomes activated and leaves the lymph node to

begin clonal proliferation [41]. In this process, CTLs drastically increase in number in

proportion to the severity of the infection (surviving primary and metastatic tumor cells).

After proliferation, CTLs travel to all tumor sites to begin infiltrating tumors and killing

tumor cells [40]. The lifespan of CTLs will depend on how active they are at the “battle site”

[4], how effective immunosuppressive activity is in the tumor microenvironment [42, 43, 44],

and whether or not these cells are restimulated by other immune cells [4].

1.6.2 Helper T Cells

Similar to CTLs, helper T cells remain in the lymph nodes in a naive state prior to

antigen presentation [45, 4]. Once activated via antigen presenting dendritic cells, helper T

cells leave the lymph nodes to proliferate [45, 4]. Unlike CTLs, activated helper T cells are

involved in the activation or stimulation of other immune cells [45, 4, 46, 47, 48, 49, 50].

Activated helper T cells have been shown to help CTLs proliferate by releasing a growth

factor called interleukin 2 (IL-2) [47, 50, 45, 46, 4]. During B cell-helper T cell contact,

activated helper T cells can provide a stimulatory influence on antigen-primed B cells with

a type of surface protein called CD40L [4].

1.6.3 Regulatory T Cells (Tregs)

In order to achieve the desired clinical outcome (complete tumor cell eradication), the

immune response must continue until all tumor cells have been eradicated. However,

complete eradication also needs to be followed by a cessation of the adaptive immune

response to prevent autoimmune disease [4]. In general, regulatory T cells help bring the

immune response to an eventual end in several important ways. Regulatory T cells can kill
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antigen presenting dendritic cells, and alter dendritic cell function to become toxic towards

CTLs [42]. Tregs can also hinder the activation and migration of dendritic cells [51]. Tregs

are also capable of directly killing active CTLs or decreasing proliferation rates of active

CTLs [42, 4]. This type of suppressive activity actually prevents an organism’s own immune

system from attacking healthy cells once the threat is over [4]. Unfortunately, this means

that Tregs aid cancerous tumors to actually keep CTLs from killing tumor cells [51, 43]. One

of the primary focuses of cancer immunotherapy is adequately suppressing Tregs to allow

for an immune response sufficient to eradicate all tumor cells while not overly suppressing

Tregs, which can cause autoimmune disease [52, 51, 43, 44].

1.7 B Cells and Antibodies

B cells congregate in the lymph nodes until antigen has been presented and eventual

activation occurs [4]. However, in many cases these cells still require an additional stimulus

from activated helper T cells to be activated [4]. After antigen presentation and a secondary

stimulus via activated helper T cells has occurred, B cells become fully activated plasma

B cells that can produce antibodies specific to the laser irradiated tumor cells [12, 53, 4].

These antibodies then move to the site of tumors and “tag” them for destruction by innate

immune cells like natural killer cells (NKs) or macrophages [12, 53, 4, 54]. Activated B cells

can also activate naive helper T cells [4].

1.8 Immunoadjuvants and Elements of Treatment

Immune adjuvants affect different components of the immune system in a variety of ways.

Ultimately, their purpose is to make the immune response more efficient [55]. Adjuvants

are used with vaccines in order to help facilitate antigen uptake and processing via antigen

presenting cells like dendritic cells [55]. They can also increase dendritic cell migration rates

and make antigen presentation to cytotoxic T cells more efficient [55]. In anti-tumor laser

immunotherapy, the immune adjuvant GC is injected intratumorally either before or after

laser treatment [11, 12, 13, 14, 15, 16, 17, 18]. It is not entirely known exactly how GC

affects the immune system, but one observed outcome is that macrophages and natural killer

cells become more active at tumor sites as GC concentration increases [56]. However, its

administration has been shown to lead to a more robust adaptive immune response similar

to that of other adjuvants [12, 15, 18, 56]. Therefore, we analyze the effects of GC based

on the assumption that this substance behaves similarly to other immune adjuvants.



CHAPTER 2

MATHEMATICAL MODEL

We have written and analyzed a model that includes only DCs, CTLs, tumor cells, and

tumor antigen (see appendix for related models). However, we are able to implicitly study

the effects of Tregs, helper T cells, B cells, and antibodies by varying parameters in our

model. This allows us to analyze a model that is roughly half the size of the full system and

has far fewer parameters (compare the model in Equations 2.1 to the similar, but expanded,

model in Equations A.1). Based on work presented in [11, 12, 13, 14, 15, 16, 17, 18], we iden-

tify a subset of host immune cells activated during tumor immunotherapy that contribute

to tumor eradication (see Figure 2.1). We propose that these cells and their interactions

are the mechanism that underlies tumor clearance via laser immunotherapy (LIT).

Primary

Tumor

(P )

CTL

Killing

LIT-Induced

Antigen (Ac)

Metastatic

Tumor

(M)

CTL

Killing

Naive

Dendritic

(D0)

Migrating

Dendritic

(DM )

Lymphatic

Dendritic

(DL)

Naive

CTL

(T0)

CTL

priming

Active

CTL (TA)

Proliferating

CTL (Ti)

Figure 2.1. Conceptual model of antitumor laser immunotherapy. After LIT, antigen (Ac)
is released. Naive dendritic cells (D0) take up antigen, begin migrating (DM ), and reach
lymph nodes (DL) to present antigen to naive CTLs (T0). CTLs enter stages of proliferation
(T1 − Tn). After proliferation, CTLs (TA) kill primary (P ) and metastatic (M) tumors.
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2.1 Mathematical Model

The model is a system of first-order, nonlinear, ordinary differential equations that are

nearly autonomous, with the exception of a forcing function. The function φ(t) is a unitless

time-dependent treatment function responsible for primary tumor cell death driven by the

laser-tissue interaction. In Equations 2.1, we track each stage of maturation of DCs and

CTLs, the tumor antigen load, and the primary and metastatic tumor burdens.(
Naive

Dendritic

) dD0

dt
= sd − (αAc + δD0)D0(

Migratory
Dendritic

) dDM

dt
= εMαAcD0 − (η + δDM

)DM(
Lymphatic
Dendritic

) dDL

dt
= εLηDM − δDL

DL(
Naive
CTL

) dT0
dt

= st − (βDL + δT0)T0(
1st stage

CTL

) dT1
dt

= ε1βDLT0 − (ξT1 + δT0)T1(
ith stage

CTL

) dTi
dt

= εiξTi−1 − (ξTi + δT0)Ti, for i = 2, . . . , n(
Active
CTL

) dTA
dt

= εAξTn − kδT0TA(
Primary
Tumor

) dP

dt
= γPP −

(
µ+ φ(t) +

λPTA
cp + TA

)
P(

Metastatic
Tumor

) dM

dt
= σµP + γMM −

(
λMTA
cm + TA

)
M(

Tumor
Antigen

) dAc

dt
= ρφ(t)P + p

(
λPTAP

cp + TA
+
λMTAM

cm + TA

)
− (ω + εAcαD0)Ac

(2.1)

Sample results of the model given in Equations 2.1 are illustrated in Figure 2.2 and Fig-

ure 2.3, which are explained in greater detail in the subsequent section (see Chapter 3,

specifically Section 3.2). Model parameters and units are shown in Table 2.2.

Each of the equations governing immune dynamics is derived similarly based on the

underlying biological dynamics. Initially, there is a naive (inactive) population of cells

that eventually gives rise to intermediate and active populations. Both DCs and CTLs

go through intermediate developmental phases before complete activation occurs. Each

immune population naturally decays due to mortality at some natural rate, δDi for DCs and

δT0 for CTLs. Naive dendritic cells (D0) are produced at a constant rate sd. Naive dendritic

cells interact with tumor antigen (Ac) at a mass action rate α which drives a transition into

the migratory dendritic cell state (DM ) with efficiency εM . Migration occurs at rate η, as

migrating dendritic cells move to the lymph nodes. Upon some fraction (εL) reaching a

lymph node, we consider dendritic cells to be fully activated lymphatic dendritic cells (DL).
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Similarly for CTL equations, there is a constant supply rate st into the naive population

(T0). Once lymphatic DCs present antigen to naive CTLs at rate β, stimulated T cells enter
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Figure 2.2. Predicted tumor-immune dynamics demonstrating the general case of suc-
cessful treatment. Primary and metastatic tumor burden data from [15]. In the upper left
plot, solid blue dots are primary tumor burden experimental data and solid red triangles
are metastatic tumor burden experimental data. Solid, dashed, and dotted curves in each
plot are model simulations. Vertical dashed line in each plot represents the time of laser
treatment at t = 10 days. In the lower right plot, CTL dynamics are shown for n = 8
proliferative stages. The orange dashed curve in the lower right plot is the total number of
proliferating CTLs (i.e.

∑n
i=1 Ti(t)).
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Figure 2.3. (Left) Progression through the stages of proliferation with the highest curve
(t ≥ 40) being the active CTLs able to kill tumor cells. For t ≥ 40, the lowest curve
represents the first proliferative stage. Each successively higher curve represents the ith

proliferative stage for i = 2, 3, . . . , 8. (Right) The same CTL proliferative stages on a
smaller scale t ∈ [9, 15].

several stages of proliferation (T1 − Tn) where we chose n = 8 based on proliferation data

in the literature [57]. During the proliferative stages, each cell will clone itself, expanding

its lineage by a factor εi. This expansion gives rise to the ith-stage equation in the model.

Proliferative T cells move from one stage to the next at rate ξ. After the nth stage, CTLs

have fully proliferated and become completely activated (TA) and begin killing tumor cells.

Though not modeled, CTLs can be re-stimulated by other immune cells so that they live

for extended periods in the active state, but these cells generally die more quickly [4]. Thus,

we introduce a scaling factor k to account for increased CTL death.

With initial conditions at 105 cells, the primary tumor cells (P ) grow exponentially

at rate γp. We assume that primary tumor cells metastasize exponentially at some rate

µ giving rise to metastatic tumor cells (M) with efficiency σ. We do not address multiple

metastatic tumors explicitly, but instead track the aggregate population. The population of

metastatic tumor cells in our model is the total amount of cells that have left the primary

tumor and continue to expand. Once tumor cells become metastatic, they continue to

grow exponentially at rate γM . Killing of tumor cells is assumed to be proportional to the
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effectivity of CTL killing
TA

ci+TA
. Ultimately, the per capita killing rate λi and the constant

ci determines the effectiveness of killing.

Tumor antigen is partly created by laser irradiation of the primary tumor, which is

modeled by a time-dependent function φ(t). This function is equal to zero until time of

treatment at t = 10 days. It is defined as 0 for 0 ≤ t < 10 and as 0.1(t − 10)e−(t−10) for

t ≥ 10. Antigen is also created when CTLs kill primary and metastatic tumor cells which

is shown by the addition of terms
λpTAP
cp+TA

and
λmTAM
cm+TA

in the (Ac) equation. Antigen is

naturally cleared at rate ω and is taken up by naive DCs at rate α with efficiency εAc .

Tumor killing will continue, whether it is effective or not, until all antigen has been cleared.

2.2 Parameterization

Since patients have innate immune parameters in the absence of tumors, we have a group

of parameters associated to the patient himself (e.g. constant supplies for naive populations

st and sd). Still other parameters may be more closely associated to the tumors, such as

growth (γp and γM ) and antigenicity (ρ and σ), so we separate these parameters from the

rest. In planning and analyzing numerical experiments with Treg and GC effectivity, we are

able to partition parameters according to each category of influence. These relationships

are illustrated in Figure 2.4, which shows all of the treatment parameters organized into

essentially non-overlapping groups within the patient. A detailed list for each categorical

parameter is given in Table 2.2.

The patient encompasses all cellular and molecular components, so this can be defined

as the universal set of the diagram. Subsets for Treg and GC parameters intersect because

both have influence on the DC migration rate η. Similarly, GC and cancer parameters

intersect since both affect the rate of metastasis µ. Specific numerical values and ranges

are quoted in Table 2.2.
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Figure 2.4. Parameters categorized by innate patient associated parameters, cancer
associated parameters, Treg associated parameters, and GC associated parameters. The
patient parameter set includes all parameter subsets. The parameter εi is indexed by
i = 1, 2, . . . , 8 for proliferating cells and A for fully-activated cells.
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Table 2.1. Symbols, values, units, and references for patient parameters used in the system
given in Equations 2.1. These parameters are those that are innate to the patient in the
absence of cancer. Parameters without references were estimated by minimizing the root
mean squared error (RMSE) with LHS from data in [15].

Parameter Value Units Reference

Patient

st 3.3 T0 cells
day

estimated

sd 5 D0 cells
day

estimated

εL 0.95 DL cells
DM cells

estimated

λP 0.925 1
day

estimated

λM 0.875 1
day

estimated

δDM
0.027027027 1

day
[58]

δDL
0.1111111111 1

day
[4]

δT0 0.0187337076 1
day

[59]

cp 105 TA cells estimated

cm 104 TA cells estimated

ξ 0.25 1
day

estimated

εAc 1 Ac molecules
D0 cells

estimated
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Table 2.2. Symbols, values, units, and references for regulatory T cell, cancer, and glycated
chitosan parameters used in the system given in Equations 2.1. Treg dynamics, cancer
dynamics, and GC dynamics. Parameters without references were estimated by minimizing
the root mean squared error (RMSE) with LHS from data in [15].

Parameter Value Units Reference

Cancer

γP 0.63 1
day

estimated

γM 0.2 1
day

estimated

µ 0.008 1
day

estimated

σ 0.45 M cells
P cell

estimated

ρ 100 Ac molecules
P cell · day

estimated

p 1 Ac molecules
tumor cell

estimated

ω 1 1
day

estimated

Treg

k 4.163995 unitless none

δD0 0.027027027 1
day

[58]

εA 3 TA cells
Tn cell

[60]

εi 3 Ti cells
Ti−1 cell

[60]

η 0.9 1
day

[4]

Glycated Chitosan

α 0.012 1
Molecule · day

estimated

β 0.0183622094883075 1
DL cell · day

estimated

εM 0.95 DM cells
D0 cell

estimated

η 0.9 1
day

[4]

µ 0.008 1
day

estimated



CHAPTER 3

ANALYSIS OF MATHEMATICAL MODEL

In order to understand the intricate details of anti-tumor laser immunotherapy as

described in [11, 12, 13, 14, 15, 16, 17, 18, 56], the following questions must be answered.

1. What is the baseline growth pattern for the DMBA-4 metastatic mammary tumor cell

line used in animal model studies for anti-tumor laser immunotherapy?

2. To link mathematical modeling results to animal model experimental data, can we

classify model dynamics and relate results to animal model data?

(a) What are the qualitative and quantitative properties of what would be considered

successful or failed treatment?

(b) In performing sensitivity analysis with parameters, what does the model predict

about the diversity of treatment outcomes?

(c) What features of anti-tumor laser immunotherapy can be modified and what impact

would these changes have on treatment outcome or post-treatment dynamics?

3. What is the role of GC in the development and dynamics of the immune response?

(a) How does GC affect tumor-immune dynamics after laser treatment, and how can

these effects be captured by and studied with a mathematical model?

(b) What model parameters could be changed to study the effects of varying levels of

glycated chitosan effectivity?

4. The importance of Treg suppression on immunotherapy outcome has been demonstrated

experimentally. Which modeled components are influenced by Treg regulation and would

benefit from Treg suppression?

(a) Since the model does not explicitly include Tregs, how can their effects be modeled

implicitly by changing key parameters that correspond to levels of Treg immuno-

suppressive activity?

(b) Can the model be used to link a patient’s clinical outcome with a given level of

Treg immunosuppressive activity?
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3.1 Sensitivity Analysis

In order to more comprehensively explore the post-treatment dynamics that the model

predicts, it is necessary to solve the model for a considerably large number of different

parameter sets. It is desirable to minimize the number of parameter sets that must be

sampled to develop an overall concept of the model’s behavior. We also sample parameters

within a pre-defined range to adhere to as many biologically known parameters as possible.

To accomplish these goals, a method called Latin Hypercube Sampling (LHS) is used to

randomly generate 1000 different parameter sets [61].

3.1.1 Latin Hypercube Sampling

For LHS, each parameter is considered a random variable with some probability distribu-

tion function [62, 61]. Each parameter distribution is then divided into n intervals of equal

probability from which values are selected without replacement [62, 61] (see Figure 3.1).

Thus, if there are k parameters and one desires to sample n values for each parameter from

its distribution, then the final result will be an n× k matrix of n generated values for each

of the k parameters.

The LHS method provides efficient approximation of each probability distribution func-

tion due to the fact that it allows only a single value to be randomly selected in any one

interval of the n-interval subdivision of the parameter probability distribution function

[62, 61]. The random nature of this selection technique also ensures that a large portion

of the parameter space is sampled [62]. LHS is superior to simple random sampling of

parameters, with the assumption of some probability distribution function for a given

parameter, due to more efficient and broad exploration of each parameter space [62, 61]

Subdivided Parameter Distribution

1 2 . . . n

0 1

0

1

Figure 3.1. Example of how
the uniform distribution for each
parameter is divided into equally
probable intervals from which sam-
pling will take place without re-
placement. Sampling the uniform
distribution with equally probable
intervals implies that the intervals
are all of the same length. Assum-
ing a different distribution would
lead to unequal intervals to ensure
equally probable selection.
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Figure 3.2. Scatterplot of 50 points in the unit plane sampled with (on left) random LHS
and (on right) simple random sampling (SRS) of the uniform distribution on [0,1]. Marginal
distribution histograms above and to the right scatterplot show the efficiency of random LHS
and SRS in estimating the uniform distribution on [0,1]. Based on this comparison between
LHS and SRS, it is clear that LHS is a better approximation of the uniform distribution
for the 50 points.

(see Figure 3.2).

Implementation of the Latin Hypercube design for sampling model parameters was done

using the randomLHS(n, k) function in the R [63] ‘lhs’ package [64], where n is the number

of generated parameter sets and k is the number of parameters. With the randomLHS()

function, values for each parameter are selected randomly from the uniform distribution

on [0, 1]. We constrained parameter values since biological rates are not arbitrary, so we are

able to define a minimum (pMin) and a maximum (pMax) for each parameter. We choose

pMin and pMax to be a scaled multiple of the baseline parameter value. In the context

of analyzing model sensitivity to changes in parameter values, the assumption of a uniform

distribution for each parameter could be replaced by another distribution. However, the

qualitative outcomes of model simulation will be the same regardless of the distribution

since sampled parameters will be scaled to be between pMin and pMax.

Once all n sets of parameters have been randomly selected, the result is an n×k matrix

(Latin Hypercube) where the ijth entry is the ith selection of the jth parameter. After the

n× k matrix is generated, parameters must be scaled so that they remain confined to our

pre-defined range. Transformation is calculated by
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pGen = pGen(pMax− pMin) + pMin

where pGen is one of the generated parameter values in the n×k matrix with corresponding

maximum and minimum values pMax and pMin. Since the parameter distribution is

defined to be uniform on [0, 1], the maximum value that pGen can have is 1. If this is the

case, then the above formula reduces to

pGen = pMax

where pGen is the given maximal value within its pre-defined range. Similarly, the minimum

value pGen can have is 0. If this is the case, then the rescaling formula becomes

pGen = pMin

where pGen is the given minimal value within its pre-defined range. After all entries in the

n×k matrix have been rescaled, the result is a new n×k matrix with n randomly generated

values for all k parameters such that each value is within its allowable range [pMin, pMax].

3.2 Predictions of Treatment Outcomes

Treatments are typically performed 10 - 15 days after approximately 105 viable DMBA-4

metastatic mammary tumor cells are injected into each rat [12, 13, 14, 15, 16, 17, 18].

Tumors are injected with a solution composed of a photosensitizing agent called indocyanine

green and the immunoadjuvant glycated chitosan, and then irradiated for about 10 minutes

[12, 13, 14, 15, 16, 17, 18]. Post-treatment, the primary tumor continues to grow until it

reaches a peak in a range of 30 - 50 days following treatment [12, 13, 14, 15, 16, 17, 18].

Once a global peak has been reached for primary tumor burden, tumors begin to shrink in

size to eventual depletion within 100 days after treatment [12, 13, 14, 15, 16, 17, 18]. Since

tumor burden of treated rats in these experiments exhibits exponential growth and decay,

the mathematical model takes this into account using the simple exponential population

growth model.

The model produces the general case of successful treatment outlined above with data

from [15]. The model simulation of the general treatment dynamics for tumor burden

shown in [12, 13, 14, 15, 16, 17, 18], as well as the associated immune system dynamics

predicted by the model is shown in Figure 3.3. Model solutions were found using lsoda()

function in the R ‘deSolve’ package [65]. Using LHS of patient parameters, 1000 parameter

sets were generated. The model was solved for each parameter set, and the solution that
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Figure 3.3. Reproduced from Figure 2.2 in Section 2.1. Predicted tumor-immune dynamics
demonstrating the general case of successful treatment. Primary and metastatic tumor
burden data from [15]. In the upper left plot, closed black dots are primary tumor burden
experimental data and open triangles are metastatic tumor burden experimental data. Solid
and dashed curves in each plot are model simulations. Vertical dashed line in each plot
represents the time of laser treatment at t = 10 days. In the lower right plot, CTL dynamics
are shown for n = 8 proliferative stages. The orange curve in the lower right plot is the
total number of proliferating CTLs (i.e.

∑n
i=1 Ti(t)).
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minimized the root mean squared error was chosen to produce Figure 3.3. The data chosen

for comparison is in [15]. The upper left-hand plot in Figure 3.3 shows model simulation for

primary and metastatic tumor burdens with tumor burden data for each tumor type. The

tumor burden simulation reflects experimental observations since the tumor burden curves

increase to a peak between days 20 and 40, and then gradually decay to zero by the end of

the simulated period. This figure also shows the dynamics of tumor antigens. The model

simulation shows that there is an abrupt increase due to laser treatment and CTL-mediated

tumor cell killing. Antigen is slowly cleared as the tumor burden curves decay to zero.

In the lower left plot of Figure 3.3, dendritic cell dynamics are shown. The simulation

shows an initially existing population of naive dendritic cells that quickly decays due to laser

treatment at t = 10 days. These naive cells quickly become migratory cells, which then

become lymphatic dendritic cells. The solid black curve in the dendritic cell plot represents

the number of lymphatic dendritic cells. Since the tumor burden curves gradually decay

until the end of the treatment simulation, the lymphatic dendritic cell curve does not

significantly deviate from its maximum.

The lower right plot of Figure 3.3 shows model simulation for CTL dynamics. The

simulation shows an initially existing population of naive CTLs that quickly decays due

to lymphatic dendritic cell interaction. The solid red curve represents the total number

of actively killing CTLs after all of the proliferative stages have been completed. This

simulation shows the slight delay between CTL activation and the introduction of CTLs to

the tumor sites. Simulated curves for actively killing CTLs quickly increase to a maximum

between days 40 and 50, and then gradually decay until the end of the simulated period.

Model simulation of each proliferative CTL stage and the actively killing CTLs is shown

in Figure 3.4. The lowest curve (t ≥ 40) in this plot represents the first proliferative stage.

Each successively higher curve represents the ith proliferative stage (for i = 2, 3, . . . , 8). The

solid red curve represents the actively killing CTL population. This simulation comes from

the same solution as shown in Figure 3.3, where proliferative stages were summed to draw

focus on the active CTL stage.

In experimentally treated animals, there are several types of qualitative treatment out-

comes ranging from tumor clearance resulting in patient survival to tumor escape resulting

in the death of the patient [11, 12, 13, 14, 15, 16, 17, 18]. Based on the results of animal

experiments [11, 12, 13, 14, 15, 16, 17, 18], one of the following clinical outcomes is assigned

to each model simulation (see Figure 3.5):
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Clearance - tumors are controlled quickly, primary tumor burden does not exceed 3×1010

cells, and primary tumor burden is below 100 cell by the end of the simulated study

period (solid green curves)

Slow Clearance - primary tumor burden clears slowly but not completely, there has not

been a relapse, and primary tumor burden does not exceed 3×1010 cells (dashed blue

curves)

Relapse - initial clearing of primary tumor burden with eventual re-growth to an obvious

peak, and primary tumor burden does not exceed 3×1010 cells (dotted purple curves)

Death - primary tumor burden exceeds 3×1010 cells and study animal is sacrificed (dashed

and dotted red curves)

It is known that different organisms within the same species routinely exhibit vastly

different immunities [4]. For the mathematical model, these immunological variances are

expressed by changes to model parameters. In line with the concept of random immune vari-

ability, 1000 different parameter sets were randomly generated by LHS. For each parameter

set, the model was solved with fixed initial conditions.
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Figure 3.5. Model simulations produced as patient parameters vary about baseline param-
eter set using LHS. All qualitatively different outcomes, as defined previously (Section 3.2),
are represented. (A) Changes in primary tumor burden as patient parameters vary. (B)
Changes in metastatic tumor burden as patient parameters vary.

3.3 Modeling the Effects of Glycated Chitosan (GC)

Immunoadjuvants are used to stimulate the immune system to achieve a more robust

immune response [66, 55]. In [11, 12, 13, 14, 15, 16, 17, 18, 56], the immunoadjuvant

glycated chitosan is used to stimulate the immune system in antitumor laser immunotherapy.

Immunoadjuvants have been shown to increase antigen uptake, aid in dendritic cell activa-

tion and maturation/migration, and aid in T cell activation [66, 55]. With the reasonable

assumption that glycated chitosan adopts a similar mode of immune stimulation, we can

model these effects by changing corresponding model parameters. Parameters that change

with varying levels of GC effectivity are:

• α - rate at which dendritic cells interact with antigen and become activated

• η - rate of dendritic cell migration

• εM - efficiency of naive to migratory dendritic cell conversion

• β - rate at which lymphatic dendritic cells interact with and activate naive CTLs

• µ - rate of primary tumor cell metastasis

Using LHS of GC parameters, 1000 different GC parameter sets were randomly gener-

ated. For each parameter set, the model was solved with fixed initial conditions to determine
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model sensitivity to changes in GC levels. Simulations were qualitatively classified by

changes in overall tumor dynamics as outlined previously in Section 3.2.

Model sensitivity to changes in GC parameters is demonstrated in Figure 3.6. The

first column of this figure represents tumor burden dynamics for each outcome. The most

noticeable change from the effects of GC is shown in the second column, which represents

dendritic cell dynamics for varying degrees of GC effectivity. In the last row, the extremely

low number of DCs in the lymph nodes affects the eventual number of activated CTLs. This

in turn produces a tumor burden that is uncontrolled, which corresponds to patient death.

A comparison of each clinical outcome on the same plot for selected cell types is given

by Figure 3.7. Figure 3.7(A), showing primary tumor burden dynamics, illustrates how

changes in GC parameters can alter clinical outcome from clearance (solid green curve) to

death (dotted red curve). Results are similar in Figure 3.7(B), but with metastatic tumor

burden instead. Figure 3.7(C-D) may seem somewhat contradictory since there are more

lymphatic dendritic cells and CTLs in the slow clearance case. However, from Table 3.1,

the rate of metastasis is larger in the clearance case when compared to the slow clearance

case. This leads to greater decline in primary tumor burden since tumor cells are both

metastasizing and being killed by CTLs simultaneously.

Table 3.1. Changes in GC parameters from one clinical treatment outcome to the next. η
is the DC migration rate to lymph nodes, β is the lymphatic DC - CTL interaction rate, εm
is the naive to migratory DC efficiency, µ is the rate of metastasis, and α is the interaction
rate between naive DC and free antigen.

Outcome η β εM µ α

Clearance 1.003541 0.0001248971 0.6624288 0.1869302 8.190×10−5

Slow
Clearance

0.9220876 3.157×10−5 0.8573427 0.05970596 1.267×10−5

Dead 1.391807 4.086×10−5 0.04326611 0.03730337 7.844×10−5

changes in GC parameters can alter clinical outcome from clearance (solid green curve) to

death (dotted red curve). Results are similar in Figure 3.7(B), but with metastatic tumor

burden instead. Figure 3.7(C-D) may seem somewhat contradictory since there are more
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lymphatic dendritic cells and CTLs in the slow clearance case. However, from Table 3.1,

the rate of metastasis is larger in the clearance case when compared to the slow clearance

case. This leads to greater decline in primary tumor burden since tumor cells are both

metastasizing and being killed by CTLs simultaneously.
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Figure 3.6. For each clinical outcome (corresponding to rows) defined by tumor dynamics,
simulations for each cell type are shown. Clinical outcome is highly correlated with the
maintenance of CTLs throughout the simulated treatment. This indirectly indicates that
clinical outcome becomes more favorable as GC effectivity increases. Variation in GC
parameters did not produce clinical outcome of tumor relapse.
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outcome of slow clearance (prolonged survival) is in dashed blue curve, and the clinical
outcome of death is in dotted red. Variation in GC parameters did not produce clinical
outcome of tumor relapse.

3.4 Regulatory T Cell Experimental Simulation

Based on the immunosuppressive activity of regulatory T cells outlined in Section 1.6.3,

Treg effects can be modeled by their influence on corresponding model parameters. Param-
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eters that change with varying levels of Treg activity are:

• δD0 - naive dendritic cell death rate (changes due to Tregs killing DCs)

• εA - proliferation constant for CTLs (changes due to Treg interference)

• k - death scaling constant for active CTLs (changes due to Tregs killing CTLs)

• η - migration rate for dendritic cells to lymph nodes (changes due to Treg interference).

Using LHS of Treg parameters, we randomly sampled 1000 different parameter sets

from each Treg parameter’s uniform distribution. Sampled parameters were then scaled to

a conservative range about each predefined baseline parameter value. The model was solved

for each parameter set with fixed initial conditions to produce results shown in Figures 3.8

and 3.9, which are classified according to overall tumor burden dynamics outlined previously

in Section 3.2.

The motivation for using LHS of Treg parameters primarily comes from the desire to

efficiently explore the Treg parameter space. The interpretation of the hypercube matrix

output is that each row corresponds to a unique level of Treg effectivity. The uniqueness

comes from the fact that each row contains no identical entries to any other row. This

is highly representative of the random variability in each individual’s immune parameters.

However, since we desire to search a Treg parameter space with a much larger range than

would generally be attributed to natural individual variation, we may also interpret each

row of the hypercube matrix to represent the effects of various immunosuppressive drugs

on Treg activity.

We interpreted the hypercube generated with Treg parameters as a combination of

1000 different patients undergoing immunotherapy treatment with the aid of some kind

of immunosuppressive drug inhibiting Treg activity. As shown in Figure 3.8, the model

simulations have sufficient variability to be partitioned with each of our clinical treatment

outcome definitions. The first column of Figure 3.8 represents the change in tumor burden

dynamics as Treg effectivity increases from top to bottom (primary-solid blue and metastatic

dashed-red). In the second column, the most obvious variability exists in the lymphatic

dendritic cell population (solid-black). In the best case (clearance), lymphatic dendritic

cells saturate the lymph nodes for the majority of the simulated study period.

Ultimately, clinical treatment outcome appears to be most strongly correlated with

CTL dynamics shown in the third column. There is an obvious decline in active CTL load

(solid-red) from top to bottom. An important thing to note is that active CTL load is much
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Figure 3.8. For each clinical outcome (corresponding to figure rows) defined by tumor
dynamics, simulations for each cell type are shown. This figure demonstrates how clinical
outcome is highly correlated with the maintenance of CTLs throughout the simulated
treatment. This indirectly indicates that clinical outcome becomes more favorable as Tregs
become less effective in killing CTLs. Horizontal axes represent time in days.



27

lower than proliferative stage CTL load (dashed-orange). This is an indication that Tregs

are either killing active CTLs most efficiently or interfering with proliferation in the last

row of Figure 3.8. Dynamics of all cells are driven by the complex combination of all Treg

activities, which can be accounted for with changes to Treg parameters (δD0 , k, εA, and η).
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Figure 3.9. Depiction of changes in cellular dynamics as Treg activity changes. In each
panel, the clinical outcome of clearance (i.e., patient survival) is in solid green, the clinical
outcome of slow clearance (prolonged survival) is in dashed blue curve, the clinical outcome
of relapse (possible prolonged survival) is in dotted purple, and the clinical outcome of death
is in dotted-dashed red.

Figure 3.9 shows each clinical outcome for selected cells on the same plot. Primary tumor

dynamics are given in Figure 3.9(A) with the clearance (solid green), slow clearance (dashed
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blue), relapse (dotted purple), and death (dashed and dotted red). Results are similar in

Figure 3.9(B), but represent metastatic tumor dynamics instead. As stated previously in

the discussion of Figure 3.8, the dendritic cell populations do not exhibit a large degree

of sensitivity to Treg parameters. This conclusion is supported by Figure 3.9(C), which

shows very little variation in lymphatic DC dynamics. The strongest correlation between

the tumor dynamics, as they are clinically defined, and immune dynamics comes from

Figure 3.9(D). Clearance, the ideal clinical outcome, is correlated with the highest CTL

load (solid green curve). As Treg effectivity increases, CTL load decreases and tumor

dynamics reflect less favorable clinical outcomes.

Based on Table 3.2, the outcomes shown in Figure 3.8 and Figure 3.9 are understandable.

Naive dendritic cell death increases from clearance to death, CTL fatalities increase from

clearance to death, and CTL proliferation decreases from clearance to death. Dendritic cell

migration does not follow an intuitive trend since the relapse and death cases occur with the

highest migration rates. However, this simply reflects the model’s negligible sensitivity to

changes in dendritic cell migration rates in comparison to changes in proliferation or death

rates for CTLs.

Table 3.2. Changes in Treg parameters from one clinical treatment outcome to the next.
δD0 is the naive DC death rate, k is the active CTL death constant, η is the migratory rate
for migrating DCs, and εA is the proliferation factor of CTLs.

Outcome δD0 k η εA

Clearance 0.006218062 1.817664 2.954493 4.052652

Slow
Clearance

0.006218062 4.490838 1.10697 3.138794

Relapse 0.02390397 9.126924 3.046669 3.047921

Dead 0.02635106 6.259964 3.412577 2.251934



CHAPTER 4

DISCUSSION

4.1 Summary

The interactions between dendritic cells, the complete T cell repertoire, and antibodies

with cancerous tumor cells and their antigens has been modeled as a system of first order

ordinary differential equations [67, 68]. However, the overall treatment/post-treatment

dynamics can be captured by explicitly modeling only laser treatment, DCs, the cytotoxic

T cell subset, primary and metastatic tumor cells, and tumor antigen (see Equations 2.1

and B.1).

Ultimately, in this thesis we neglected explicit treatment of helper T cells, B cells,

and antibodies while achieving similar tumor dynamics. We justify the omission of such

immune components based on the fact that CTL effectivity is partially a function of

the activity of helper T cells and B cells. This means that a reparameterization of our

reduced-equation model (Equations 2.1) accounts for the effects of helper T cells and B

cells. This allows for a significant reduction in the number of unknown model parameters

and allows us to experiment with the effects of implicitly modeled components through

strategic reparameterization.

Analysis presented in Chapter 3 suggests that anti-tumor laser immunotherapy can be

accurately simulated with models like those presented in Chapter 2. As shown in Figure 3.3,

the model is capable of simulating post-treatment tumor dynamics similar to those seen

experimentally [15]. Because the model parameters are biologically realistic, the model can

be used for clinical treatment outcome predictions.

Systematically studying the effects of glycated chitosan and regulatory T cells with

LHS leads to diverse changes in tumor burden dynamics. The clinical outcome definitions

outlined in Chapter 3 allowed for partitioning of model simulations as a function of GC and

Treg parameters. It is important to make clinical outcome definitions to determine how

successful treatment will be for any given set of parameters or initial conditions.
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Treg analysis suggests that a drug used for Treg suppression needs to primarily inhibit

their ability to affect CTL death and proliferation, because clinical outcomes correlate most

strongly with changes in CTL load over the course of the simulated study period (Figure 3.8).

Treg effects on dendritic cells in model simulations suggest a more complex relationship

between clinical outcome and DC dynamics; there is not a large degree of variability in DC

dynamics between the outcome cases. GC analysis suggests that clinical outcomes may be

less sensitive to changes in GC parameters than in the case for Treg parameters. However,

tumor dynamics still exhibit enough variability to partition simulations with three of the

defined clinical outcomes (Figure 3.6).

4.2 Suggested experiments

The analysis of anti-tumor laser immunotherapy from a modeling perspective suggests

a variety of experimental treatments to be performed in the laboratory. The following list

discusses a few experiments that might be useful in improving treatment efficacy.

1. Since it is possible to extract CTLs for the purpose of priming for a particular invader,

one suggestion would be to pursue this possibility alongside laser treatment. The goal

would be to train CTLs to attack the treated tumor cell line and build a substantial

CTL load for injection into the patient. The motivation comes from the fact that early

tumor infiltration is best in order to eradicate tumors. An injected population could

theoretically begin attacking primary and metastatic tumors soon after treatment before

a second line of activated CTLs arrives. This theory is supported by results found in

Section 3.2 (Figure 3.5).

2. Train dendritic cells before re-injecting them. The ultimate goal would be to activate as

many CTLs as possible, which might be enhanced through a larger number of primed

dendritic cells (Figure 3.5).

3. The timing of treatment tends to be crucial to patients with aggressively growing tumors.

Typically, treatments in anti-tumor laser immunotherapy are performed 7 to 10 days

post-inoculation. A possible experiment might be to wait a longer period of time before

treatment so that treatment efficacy could be tested in a much later stage of tumor

development.

4. Since tumor dynamics seem to be most closely tied to changes in Treg parameters, it

might be beneficial to try to derive a drug that either decreases the number of Tregs or
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mitigates their ability to kill CTLs or affect CTL proliferation. The latter drug effect is

supported by Treg analysis in Section 3.4 (Figures 3.8 and 3.9).



CHAPTER 5

FUTURE WORK

5.1 Modeling

Many tumors exhibit growth patterns that cannot be explained with a simple exponen-

tial growth model. Exponential growth is used in the current model of anti-tumor laser

immunotherapy because the tumor burden data suggests this type of growth. However,

we can use the model to look at this treatment for other tumor cell lines. Some tumors

can be modeled with logistic growth, rP
(
1− P

K

)
. The logistic growth model includes

the assumption that there is some carrying capacity K that will affect overall population

dynamics. This carrying capacity is a type of ceiling for tumor growth, which is related to

nutrient availability and space. It would be quite simple to substitute a logistic term into

the primary and metastatic tumor equations to study other tumor types. The current model

can be used to study laser immunotherapy on any tumor cell line that exhibits exponential

growth. This would simply call for a reparameterization of the current model to account

for differences between tumor types.

The laser-tissue interaction in anti-tumor immunotherapy is much more complex than

the simple time-dependent treatment function used in the current model. In order to truly

understand primary tumor cell death as a function of laser heat, it is necessary to determine

how heat diffuses through a non-homogeneous tumor mass to produce cell death. This calls

for an application of the heat equation. The ability to quantify tumor cell death as a function

of heat shock would allow us to update the treatment function in the current model.

5.2 Experimentation

The model can easily be used to test experiments that are expensive to perform in the

laboratory setting. One such experiment would be to simulate the injection of a pre-primed

population of CTLs post-treatment to study how this would affect tumor dynamics. This

could be done by first solving the model until simulated injection was to take place and



33

then using the output as the initial conditions for post-injection dynamics. The CTL initial

condition would dramatically increase for the post-injection period. This could also be

done for dendritic cells by changing the initial condition for DCs after simulated injection

of pre-primed DCs.

As described in the previous section, the model could be reparameterized to study other

exponentially growing tumor lines undergoing laser immunotherapy. For tumors that reach

a carrying capacity well before the death of the patient, the logistic growth model might

be more accurate. With a minor change to the primary and metastatic tumor equations,

simulated laser immunotherapy treatment could be performed on tumors expected to exhibit

logistic growth.

5.3 Speculation

Based on the model’s sensitivity to changes in CTL dynamics, simulating the injection

of pre-primed CTLs would most likely yield a more successful treatment. Theoretically, this

should also be true if performed in the laboratory alongside anti-tumor laser immunotherapy.

Since the model is less sensitive to DC dynamics, one could surmise that clinical out-

comes would not be as sensitive to changes in DC populations by priming DCs outside

the patient. If GC primarily affects dendritic cells, this would indicate that changes in

GC administration should not have extreme implications for clinical treatment outcomes.

However, considering the comparison of clinical outcomes influenced by GC versus other

common adjuvants shown in [16], the effects of GC may be more complex than our current

understanding yields.

It may be most important to focus on methods to suppress Tregs due to the model’s

enhanced sensitivity to Treg parameters. If it is possible to suppress these cells in the tumor

microenvironment for an extended period of time, then the model suggests that CTLs will

be effective in tumor cell destruction.



APPENDIX A

IMMUNOLOGICALLY EXPANDED

MODEL

In our initial model, tumors were destroyed almost instantly with the chosen parameter-

ization. Based on the tumor burden data, this time course was not accurate. The proposed

mechanism behind the model on the next page is that antibody production is essential

to tumor cell destruction. This possible mechanism was suggested in [11], so we chose to

extend the model based on this hypothesis.

Since B cells produce antibodies upon activation, this required modeling three stages of

B cell development. However, activation of B cells requires stimulus by activated helper T

cells after B cells have received antigen via dendritic cells. Therefore, we modeled helper

T cells, B cells, and antibodies in order to account for a delay in tumor cell destruction.

Once tumors are tagged by selective antibodies, activated CTLs can then recognize them

for destruction. We also hypothesized that tumors may shed antibodies after some time, so

this introduced a small amount of feedback into the model. That is, tagged tumors could be

recycled back into the untagged tumor population and escape immune surveillance. This

meant that only sufficient antibody concentration would ultimately lead to a successful

treatment.

Upon further investigation of the antibody-induced tumor cell killing mechanism, we

could not reasonably conclude that this was the model that best fit the biology. This

divergence was based on several immunological facts that were previously unknown. One

of which, is fact that activated CTLs only need to be primed by a specific antigen in order

to effectively eradicate an invader. Evidence of this is given by studies in which CTLs

are extracted and trained to attack a specific tumor cell line and then re-injected, which

eventually leads to complete tumor destruction.

With new parameterization of the original model, we were able to accurately simulate

what is shown in tumor burden data. This allowed us to re-adopt a smaller model that is
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computationally more manageable and biologically more accurate. As before, the function

φ(t) is a time-dependent treatment function that drives tumor death.

(
Naive

Dendritic

) dD0

dt
= sd − αAcD0 − δD0

D0(
Migratory
Dendritic

) dDM

dt
= εMαAcD0 − ηDM − δDM

DM(
Lymphatic
Dendritic

) dDL

dt
= εLηDM − k1(βT0 + bB0 + ψH0)DL − δLDL(

Naive
CTL

) dT0
dt

= st − βDLT0 − δT0
T0(

Active
CTL

) dTA
dt

= νtβDLT0 − k2δT0
TA(

Naive
B Cell

) dB0

dt
= sb − bB0DL − δB0B0(

Stimulated
B Cell

) dBs

dt
= εsbB0DL − τHABs − δBs

Bs(
Plasma
B Cell

) dBp

dt
= νbτHABs − δBp

Bp(
IgG

Antibody

) dG

dt
= zBp − δGG− θ(P0 +M0)G(

Naive
Helper T

) dH0

dt
= sh − (ξBp + ψDL)H0 − δH0H0(

Active
Helper T

) dHA

dt
= νh(ξBp + ψDL)H0 − δHA

HA(
Untagged
Primary

) dP0

dt
= (1− µ)γp(P0 + εxP1)− (φ(t) + θG+ λ0TA + δp)P0(

Tagged
Primary

) dP1

dt
= (1− εx)(1− µ)γpP1 + εGθGP0 − (λ1TA + δp)P1(

Untagged
Metastatic

) dM0

dt
= γm(M0 + εxM1) + σµγp(P0 + εxP1)− (θG+ λ0TA + δM )M0(

Tagged
Metastatic

) dM1

dt
= (1− εx)γmM1 + (1− εx)σµγpP1 + εGθGM0 − (λ1TA + δM )M1(

Tumor
Antigen

) dAc

dt
= ρφ(t)P0 + pTA(λ0P0 + λ0M0 + λ1M1 + λ1P1)− (ω + αAc)D0

(A.1)

Excluding the antibody-mediated tumor cell destruction mechanism for post-treatment

dynamics, we can remove all B cell, helper T cell, and antibody related equations to

produce our initial model without CTL proliferation. This reduces the number of tumor

cell equations that we must track for post-treatment dynamics. Essentially, four tumor cell

equations in the expanded model become two equations in the reduced model.



APPENDIX B

REDUCED MODEL WITHOUT CTL

PROLIFERATION

With the reduced model without CTL proliferation, we have been able to accurately

predict clinical treatment outcomes as a function of GC and Treg effectivity. This model

has been very useful in that it has the capacity to explain a very complex system of events

taking place in anti-tumor immunotherapy, but it is also relatively small and easy to explain.

Interactions, in particular CTL-tumor cell interaction, are all modeled with mass-action

kinetics. However, CTL dynamics are not perfectly portrayed since overall numbers of

these cells are considerably low upon activation and tumor cell killing is simply too efficient.

Also, this model is quite stiff so solving can produce a large degree of numerical error. The

reduced model without proliferation is given as follows:

(Naive Dendr)
dD0

dt
= sd − αAcD0 − δD0D0

(Migratory Dendr)
dDM

dt
= εMαAcD0 − ηDM − δDM

DM

(Lymphatic Dendr)
dDL

dt
= εLηDM − δDL

DL

(Naive CTL)
dT0
dt

= st − βDLT0 − δT0T0

(Active CTL)
dTA
dt

= εAβDLT0 − kδT0TA

(Prim Tumor)
dP

dt
= γPP − (µ+ φ(t)− λPTA)P

(Meta Tumor)
dM

dt
= σµP + γMM − λMTAM

(Tumor Antigen)
dAc

dt
= ρφ(t)P + pTA(λPP + λMM)− ωAc − αAcD0

(B.1)



APPENDIX C

MODEL OF CTL PROLIFERATION

In order to model the delay in tumor cell destruction without arbitrarily changing

parameters to achieve this goal, we wrote the following proliferation model for CTLs upon

activation. The purpose of this was to simulate a more realistic number of CTLs after

activation and to accurately capture the time course of tumor - CTL interaction. Each

successive proliferative stage equation multiplies the addition from the previous proliferative

stage equation by some scaling factor εi in order to model cellular cloning from one stage

to the next. The end result is a large number of active CTLs that travels to the sites of

tumors and begins attacking them.

The proliferation equations given in Equations C.1:

(1st stage CTL)
dT1
dt

= ε1βDLT0 − ξT1 − δT0T1

(2nd stage CTL)
dT2
dt

= ε2ξT1 − ξT2 − δT0T2

(3rd stage CTL)
dT3
dt

= ε3ξT2 − ξT3 − δT0T3

(4th stage CTL)
dT4
dt

= ε4ξT3 − ξT4 − δT0T4

(5th stage CTL)
dT5
dt

= ε5ξT4 − ξT5 − δT0T5

(6th stage CTL)
dT6
dt

= ε6ξT5 − ξT6 − δT0T6

(7th stage CTL)
dT7
dt

= ε7ξT6 − ξT7 − δT0T7

(8th stage CTL)
dT8
dt

= ε8ξT7 − ξT8 − δT0T8

(Final stage CTL)
dTA
dt

= εAξT8 − kδT0TA

(C.1)

A comparison between CTL dynamics with and without proliferation is given in Fig-

ure C.1. Without proliferation, CTL killing of tumor cells must be extremely efficient

since the total number of CTLs at any given time is quite low. With the appropriate
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parameterization and mass-action killing, we have modeled post-treatment tumor dynamics

accurately with our non-proliferation model. However, this model is not the most accurate

fit for the underlying immunology and can produce extensive numerical error when solving

the model. Figure C.1 is plotted on a log-scale, so the difference between CTLs with

proliferation vs. without is several orders of magnitude for the majority of the simulated

treatment period.
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Figure C.1. Comparison of CTL dynamics with proliferation (solid-red) and without
proliferation (dashed-purple). Plot is on a log scale, so overall CTL loads differ by several
orders of magnitude as shown by vertical axis labels.



APPENDIX D

NON MASS-ACTION VS. MASS-ACTION

TUMOR CELL KILLING

Tumor dynamics change significantly from those in model Equations B.1 by adding

proliferation into the model. Since there are so many CTLs after proliferation, killing

happens very quickly if modeled by mass-action. By replacing the mass-action term λpPTA

by
λpPTA
cp+TA

, we diverge from the concept of individual CTLs killing tumor cells. The latter

term allows us to track tumor dynamics as a function of CTL effectivity in killing. As

shown in the left panel of Figure D.1, primary tumor burden with proliferative CTLs

reaches a peak later in the simulated period and decays more slowly. Similarly in the

right panel of Figure D.1, metastatic tumor burden begins decaying much more slowly in

the proliferative case for CTLs. This is a direct result of the non mass-action killing found

in model equations 2.1.
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Figure D.1. Comparison of tumor dynamics with proliferation and non mass-action killing
(solid-red) and without proliferation and mass-action killing (dashed-purple). Left: Primary
tumor burdens. Right: Metastatic tumor burdens. Time scale is in days.
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