
i

UNIVERSITY OF CENTRAL OKLAHOMA
Edmond, Oklahoma

Jackson College of Graduate Studies

Electromagnetic Field Distribution and Power Absorption of 3D
Spherical Objects

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the

 requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING PHYSICS-
MECHANICAL ENGINEERING

By

Timothy M. Collins Jr.

Edmond, Oklahoma

MAY 2017

iii

ABTRACT OF THESIS

Electromagnetic Field Distribution and Power Absorption of 3D Spherical Objects

Timothy M. Collins Jr.

Thesis Advisor: Dr. Mohammad R. Hossan

Microwave and radiofrequency heating has great promise in many engineering and biomedical

applications because of its non-contact, volumetric heat generation and selective heating.

However, the heating patterns and temperature distributions are non-uniform and difficult to

control. Electromagnetic power absorption guides the heating pattern which is a complex function

of dielectric properties, electromagnetic frequencies, size, and shape of the target object. A closed

form expression of power absorption with functional relationship with various parameters is

obtained for a spherical shaped dielectric object using Maxwell’s equations in spherical

coordinate. Maxwell’s equations are solved using vector potentials and separation of variables.

Mathematical tools such as Bessel functions, Legendre Polynomials, infinite series, and complex

number expressions are employed in finding the solution. The electromagnetic power absorption

is calculated from the knowledge of electromagnetic field within the object using Poynting

theorem. The analytical expression of the electric field, magnetic field, and power generation

within the sphere are coded in MATLAB and FORTRAN to get numerical results for spherical

shaped meat balls of 1.0, 2.0, 3.0 and 5.0 cm radii with varying properties and electromagnetic

frequencies of 2800 MHz, 2450 MHz, 915 MHz, and 300 MHz. Origin Labs is utilized to produce 1-

D plots and also 2-D polar plots by reading the data text files generated in the FORTRAN program.

Results show that the presence of local maxima of electric and magnetic field strength due to the

constructive interference of the electromagnetic wave in the target object. The spatial distribution

of microwave power absorption follows the trend of electromagnetic field distribution. The

iv

locations of local maxima and minima of power absorption and electromagnetic field distributions

vary with the radius of the sphere and applied frequencies. The results also show that the

strength of the absorbed electromagnetic wave at the 2450 MHz is most non-uniform at the

radius of 3 cm nugget. The smallest (1 cm radius) and largest (5 cm radius) dielectric radii show a

lower electromagnetic and power generation peak values but a more even distribution of energy

overall. Analysis reveals the correlations of propagating wavelength, penetration depth of

electromagnetic waves and size of the beef nuggets. Results indicate that the uniform and

effective electromagnetic power absorption can be facilitated by proper design of the object of

interest and selection of appropriate frequencies. This rigorous analytic investigation will provide

significant insight in understanding the power absorption and temperature distribution

mechanism for spherical shaped objects under electromagnetic wave (microwave and

radiofrequency) treatment.

v

 ACKNOWLEDGEMENT

I would like to thank Dr. Hossan, Dr. Lemley, Dr. Xu, Dr. Chen, Dr. Wilson, Dr. Hughes, and
Dr. Bingabr for their support and assistance during my graduate sojourn at UCO.
Completion of this degree would have been impossible without their assistance. I would
also like to thank Mr. Rada, Mr. St. John, Ms. Dels, and Ms. Alaee for their friendship,
employment opportunities, and assistance as well.

vi

TABLE OF CONTENTS

Thesis Committee Approval Page .. ii
Abstract of Thesis .. iii
Acknowledgement .. v

 List of Tables and Figures ... vii

CHAPTER 1: Introduction .. 2
1.1 Background of the Study
1.2 Statement of the Problem

CHAPTER 2: Literature Review .. 8

 2.1 Theoretical Background
 2.1.1 Literature Survey Overview
 2.2 Literature Survey: Experimental Studies
 2.3 Literature Survey: Numerical Studies
 2.4 Literature Survey: Analytical Studies
 2.5 Research Goals

CHAPTER 3: Theory ... 22

 3.1 Governing Equations

CHAPTER 4: Solution Methodology .. 27
 4.1 Assumptions
 4.2 Boundary Conditions
 4.3 Analysis of Wave Equation in Spherical Object
 4.4 Closed Form Electric and Magnetic Expression for a Solid
 Sphere
 4.5 Power Generation Term

CHAPTER 5: Results and Discussion .. 46

 5.1 Effect of Sphere Size on Electric Field and Power Absorption
 Distribution along Centerline
 5.2 Effect of Sphere Sizes on Planar Electric Field and Power
 Absorption Distribution
 5.3 Electric Field and Power Absorption Distribution at Different
 Cutting Lines
 5.4 Effect of Frequencies on Electric Field and Power Absorption
 Distribution
 5.5 Electric Field and Power Generation Strength along Sphere
 Centerline

CHAPTER 6: Summary and Conclusions .. 62

vii

LIST OF TABLES AND FIGURES

 Table 1: Dielectric Properties of Spherical Beef Nuggets at

Different Frequencies ..……………………………….……………………. 46
Table 2: Properties and Input Parameters ... 46

 Figure 2.1: Comparison between three wave modes ………………………. 9

 Figure 2.2: Uniform TEM plane wave ……………………………………….……. 10
 Figure 2.3: Temperature Distribution in 2% Agar Gel Cylinders ……… 13
 Figure 2.4: Amplitude of E-wave and H-wave Scattering …….…………. 14

Figure 2.5: Comparison of Temperature Contours ..…………..………….. 15
Figure 2.6: Time-Average Total Absorbed Power .……………..…….…..... 16
Figure 2.7: Evolution in Time of Temperature Profile …………………….. 17

 Figure 2.8: Maxwell’s and Lambert’s Model Predicted
 Microwave Power Absorption ..………………..………………….. 18

 Figure 2.9: Absorbed Power Distribution along Centerline of
 Cylindrical Foodstuff .….………………………………………………… 19
Figure 4.1: Plane Wave and Dielectric Sphere System ….………………… 29

 Figure 5.1: Electric Field Strength along Centerline of Spherical
 Beef Nugget …………………………………………………………………. 47

 Figure 5.2: Power Generation along Centerline of Spherical
 Beef Nugget……………………………..………………………………. 49

 Figure 5.3: Electric Field Distribution Cross Section within
 Spherical Beef Nuggets…………………………………………….. 50

 Figure 5.4: Power Distribution Cross Section within Spherical
 Beef Nuggets ..………….………………….………………………………. 51

 Figure 5.5: Electric Field Strength along Six Line Paths within
 Spherical Beef Nuggets …………………….………………………….. 53

 Figure 5.6: Power Generation Strength along Six Line Paths
 within Spherical Beef Nuggets ..……….…………………………… 55

 Figure 5.7: Electric Field Distribution and Power Generation
 Distribution Cross Sections within Spherical Beef

 Nuggets for Three Frequencies .……………….………………….. 57
 Figure 5.8: Electric Field Strength along Sphere Centerline ……………. 59
 Figure 5.9: Power Generation Strength along Sphere Centerline …… 60

 APPENDIX: Source Code ..……………………………………………………………….. 65

1

Electromagnetic Field Distribution and Power Absorption of 3D
Spherical Objects

2

Chapter 1:

Introduction

The use of microwave ovens to heat and cook food is seemingly ubiquitous in modern life. Microwave

heating utilizes electromagnetic (EM) waves in the frequency range between 300 MHz and 300 GHz.

Heating can be accomplished in lower frequencies of the electromagnetic spectrum as well, such as

radiofrequency (3 kHz to 300 MHz) heating. Electromagnetic heating has emerged as one of the most

promising heating mechanisms as electromagnetic irradiation imparts several advantages over the use

of conventional ovens such as: 1. Electromagnetic heating possesses higher energy efficiency since

heating is focused on the target object and surroundings are not greatly affected by the EM radiation1;

2. The ability to begin heating all areas of the object instantaneously rather than a transfer of heat

energy from the outside to the inside2; 3. It does not require physical contact and provides shorter

processing time3; 4. In mass scale industrial material processing, it provides pollution free, environment

friendly heating process4; 5. It can be designed for material selective heating for composite material

processing5. The electromagnetic heating mechanism has been demonstrated not only in food

processing but also in many other engineering applications such as polymer processing, contaminated

soil remediation, waste processing, minerals processing and activated carbon regeneration, superficial

tissue disease treatment, drilling in oil and gas industries, etc3,4,6,7.

Electromagnetic heating, i.e. microwave and radiofrequency heating, is accomplished by the excitation

of polar molecules in dielectric material by the alternating amplitude of the electric component of the

electromagnetic wave. These excited molecules exhibit “dipole moments” due to their polar

construction that causes them to flip and rotate with the passing of the electromagnetic wave. As the

amplitude and orientation of the electromagnetic wave changes, the orientation of the polar molecule

also changes in the attempt to minimize the dipole moment. With high frequency waves, the effect

3

causes significant friction as a result of this molecular motion 2. In foodstuffs, water, in particular, is one

of the major source of molecular motion due to its polar nature. Fat molecules also are subject to this

molecular motion. Prompt heating can be accomplished with radiofrequency and microwave radiation,

as heat is generated internally within the target object. However, due to the nature of how a substance

is heated under this method, electromagnetic heating is generally non-uniform, often leading to uneven

heating of the host material 2.

1.1 Background of the Study

The non-uniformity of electromagnetic heating is due to several factors, including:

constructive/destructive wave interactions within the target object, electromagnetic properties of the

specimen such as dielectric losses and electrical permittivity, physical properties such as shape, size and

material phase, and strength of incident electromagnetic wave energy in the target object. Non-uniform

heating poses a number of challenges in material and food processing. Uneven heating can alter

chemical composition and texture of the materials. In foodstuffs, the texturing is often over-emphasized

if the extremes between hot and cold regions are significant enough. Overcooking and burning often

result due to a higher degree of uneven heating. While overheating can result in distorted taste and

burning, undercooking can present its own set of problems. For instances, food processing requires a

minimum cooking temperature for safe consumption. Certain foods, such as meat products, are more

pathologically active at certain temperatures for bacterial growth or other pathogens; uneven heating

can facilitate these temperatures which are not desirable and can pose serious health issues8. In

addition, the non-uniformity of heating limits widespread use, especially as a replacement for

conventional heating methods 9. Better understanding of the electromagnetic heating mechanism, and

the effects of parameters on heating patterns and control, can be put to good use in many industries

including material and food processing.

4

A tremendous effort has been invested in understanding and improving control of electromagnetic

heating through experimental and numerical methods4,10,11. Experimental techniques, such as measuring

real-time temperature at the different parts and depths of the specimen as a function of

electromagnetic energy incident on the specimen, reveals information that can be correlated with

material and process parameters 8. Although experiment reveals critical information and helps us

understanding the process, sometimes it is more convenient to perform numerical and theoretical study

to grasp the mechanism and physics behind it. Especially since electromagnetic heating is mostly

dependent on the electro-thermo-physical properties of the specimen, transformation of one set of

results to another condition is not possible. Numerical techniques such as Finite Element Analysis (FEA)

and/or Finite Volume Methods (FVM) are used to model the interaction of the irradiating

electromagnetic radiation with the dielectric material 12,13. Numerical modeling and simulation allows

greater flexibility in changing material compositions, electro-thermo-physical properties, and process

parameters to analyze the effect of electromagnetic irradiation14.

Despite numerous experimental and numerical studies of electromagnetic heating, the fundamental

mechanism and protocols for optimization of process parameters have not been developed yet.

Analytical methods seek to find a closed form solution that describes the interaction of the

electromagnetic waves with the host material. A handful of pure analytical studies have been reported

that can enhance the understanding underlying physics of electromagnetic heating for limited geometric

shapes and conditions. Lately, Hossan et al. provided closed-form analytical expression for

electromagnetic power absorption and temperature distribution in rectangular15 and cylindrical shaped

objects9.

In the analytical derivation of closed form expressions of power absorption and electromagnetic field

distribution, there are two approaches; - i) Lambert’s law, which is based on the assumption that the

electromagnetic radiation decays exponentially and there are no reflection and interference in wave

5

propagation and ii) Maxwell’s equation for electromagnetic waves. Maxwell’s equation is regarded as

the most accurate method and it is imperative to use Maxwell’s equation to evaluate absorption of

electromagnetic wave energy in small sized samples16. The solution of Maxwell’s equation provides the

distribution of the electromagnetic fields. With the knowledge of the electromagnetic field distributions

within the object, the Poynting theorem is utilized to determine the distribution of power within the

object. The Poynting theorem has been utilized with numerical as well as analytical modeling in several

works. Ayappa et al. produced numerical results of power distribution and heating within lossy dielectric

cylindrical rods using 2D finite element analysis 12. Hossan et al. showed that an analytical result for the

microwave heating of rectangular shaped foodstuffs could be generated using Poynting theorem 15. In

another work, Hossan et al. showed an equivalent result for cylindrical shaped foodstuffs 9.

For larger objects (especially those that can be modeled as semi-infinite in some of the spatial

dimensions), Lambert’s law can generate results with acceptable accuracy for some special cases.

However, Lambert’s law cannot generate accurate results of microwave power generation in small sized

foodstuffs (such as nuggets) 17. Lambert’s law predicts microwave power generation as a simple

exponential decay model where wave reflections are neglected in the underlying mathematics 14. Curet

et al. published work that highlights the key differences between the two approaches 18. Modeling with

Lambert’s law can be implemented in a more straightforward fashion, without needing intimate

knowledge of the object’s electromagnetic field intensities 18. Computationally speaking, Maxwell’s law

is more intensive on siliconic resources, although simplifications can be made in certain cases that

permit use of electronic spreadsheets 19.

1.2 Statement of the Problem

Although there are some reported works that provide an analytical expression for the microwave power

absorption for rectangular and cylindrical shaped objects, there are no analytical closed form

6

expressions of electric, magnetic and electromagnetic power absorption for a three dimensional

spherical shaped object. Spherical shape objects under electromagnetic treatment requires solving

Maxwell’s equation in the spherical coordinate system. A more common mathematical arrangement

involves allowing the electromagnetic waves to impinge radially from all directions, which can be

modeled as three dimensional radial direction impingement. Therefore the goal of this thesis is to

obtain a closed form solution to the electric field, magnetic field, and power distribution in small,

spherical dielectric foodstuffs, utilizing the spherical coordinate system and vertical impingement of

electromagnetic waves. Based on Hossan et al.’s previous work with rectangular 15 and cylindrical 9

objects and Balanis’ work with dielectric scattering 20, the transverse electric and magnetic (TEM) wave

is transformed into spherical coordinates. Three dimensional Maxwell’s equations in spherical

coordinates are solved using vector potentials and separation of variables to evaluate the distribution of

the electric and magnetic fields within the target object21. The analytical expression of the electric and

magnetic fields are then used to find a closed-form solution of electromagnetic power absorption using

Poynting theorem. The expression is evaluated for various sizes of meat balls and varying

electromagnetic wave frequencies and properties.

7

References

1. Tewari G. Microwave and Radio‐Frequency Heating. Advances in thermal and non-thermal food
preservation. 2007:91-98.

2. M. E. C. Oliveira ASF. Microwave heating of foodstuffs. Journal of Food Engineering.
2001;53(6):347-359.

3. Stern CH. A Transient Heat Transfer Model for Selectvie Microwave Heating of Multilayer
Material Systems. International Microwave Power Institute. 1998;33(4):207-215.

4. Jones D, Lelyveld T, Mavrofidis S, Kingman S, Miles N. Microwave heating applications in
environmental engineering—a review. Resources, conservation and recycling. 2002;34(2):75-90.

5. Kasi Balamurugan Mani MRH, Prashanta Dutta. Thermal analysis of microwave assisted bonding
of poly(methyl methacrylate) substrates in mircofluidic devices. International Journal of Heat
and Mass Transfer. 2013;58:229-239.

6. Jacobsen S, Stauffer PR, Neuman DG. Dual-mode antenna design for microwave heating and
noninvasive thermometry of superficial tissue disease. IEEE Transactions on Biomedical
Engineering. 2000;47(11):1500-1509.

7. Jerby E, Dikhtyar V, Aktushev O, Grosglick U. The microwave drill. Science. 2002;298(5593):587-
589.

8. Goksoy EO. Non-Uniformity of Surface Temperatures After Microwave Heating of Poultry Meat.
International Microwave Power Institute. 1999;34(3):149-160.

9. Mohammad Robiul Hossan DB, Prashanta, Dutta. Analysis of microwave heating for cylindrical
shaped objects. International Journal of Heat and Mass Transfer. 2010:5129-5138.

10. Lidström P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis—a review.
Tetrahedron. 2001;57(45):9225-9283.

11. Vadivambal R, Jayas D. Non-uniform temperature distribution during microwave heating of food
materials—a review. Food and Bioprocess Technology. 2010;3(2):161-171.

12. K. G. Ayappa HTD, E. A. Davis, J. Gordon. Two-Dimensional Finite Element Analysis of Microwave
Heating. AlChE Journal. 1992:1577-1592.

13. Joseph B. Keller DG. Exact Non-reflecting Boundary Conditions. Journal of Computational
Physics. 1988;82:172-192.

14. Ayappa K. Modelling transport processes during microwave heating: a review. Reviews in
chemical engineering. 1997;13(2):1.

15. Hossan MR, Dutta P. Effects of temperature dependent properties in electromagnetic heating.
International journal of heat and mass transfer. 2012;55(13):3412-3422.

16. BARRINGER SA, DAVIS EA, GORDON J, AYAPPA KG, DAVIS H. Microwave‐Heating Temperature
Profiles for Thin Slabs Compared to Maxwell and Lambert Law Predictions. Journal of Food
Science. 1995;60(5):1137-1142.

17. Ayappa K, Davis H, Crapiste G, Davis E, Gordon J. Microwave heating: an evaluation of power
formulations. Chemical engineering science. 1991;46(4):1005-1016.

18. Curet S, Rouaud O, Boillereaux L. Microwave tempering and heating in a single-mode cavity:
Numerical and experimental investigations. Chemical Engineering and Processing: Process
Intensification. 2008;47(9-10):1656-1665.

19. Fleischman GJ. Predicting temperature range in food slabs undergoing short-term/high-power
microwave heating. Journal of Food Engineering. 1999;40(1999):81-88.

20. Balanis CA. Advanced Engineering Electromagnetics. 2nd ed. Hoboken, NJ: John Wiley & Sons;
2012.

21. Balanis CA. Advanced Engineering Electromagnetics. Hoboken, NJ: John WIley & Sons; 2012:260.

8

Chapter 2:

Literature Review

In this study, the power generation within small spherical foodstuffs irradiated with dual-source planar

electromagnetic waves is investigated. The goal of this research is to follow a completely analytical

solution methodology, with the aim of finding a closed-form solution to electromagnetic power

absorption as a function of dielectric and physical properties of the target object. Heat generation due

to power absorption is studied for various electromagnetic frequencies. After defining key theoretical

tenets and mathematical techniques, this chapter provides a brief overview of the current state of

electromagnetic heating research, applications, methodologies, limitations and future directions. Finally,

the chapter will conclude regarding questions the research aims to answer and how this research will

contribute in the field.

2.1 Theoretical Background

Electromagnetic waves, particularly the planar variety, often radiate in particular orientations or

polarizations. The specific polarizations typically seen with traveling plane waves are the Transverse

Electric (TE), Transverse Magnetic (TM) and Transverse Electromagnetic (TEM). The spatial

arrangements of each waveform can be seen in Figure 2.1. Of the three modes, TEM is of the lowest

energy configuration (lowest-order mode). A microwave oven can theoretically produce waves of any of

the three configurations, but TEM waves are usually simple and convenient to model 1.

A transverse electric wave is a specific field configuration that does not have an electric field component

in the direction of wave propagation. As an example, in the Cartesian coordinate system, a TEz (referred

to as transverse electric to z) wave does not have an electric component of the electromagnetic wave

that exists in the z-direction; however, the electric field components in the x & y directions, and all of

9

the magnetic field (x, y, & z) components can exist 2. This sort of waveform is represented in Figure 2.1

(b). A transverse magnetic (TM) wave behaves in a similar fashion, only in this case the magnetic

component of the wave is the focus of the attention. For instance, a TMz (transverse magnetic to z)

wave in Cartesian coordinates does not have a magnetic component in wave propagating direction, i.e.

in this case the z-direction. However the magnetic field components in the x and y directions, and all of

the electric field (x, y, & z) components can exist 3. Figure 2.1 (c) represents such a waveform. A

transverse electromagnetic wave does not have an electric or magnetic component in the direction of

propagation 4. For instance, a TEMz (transverse electromagnetic to z) wave in the Cartesian coordinate

system does not have an electric or magnetic field component in the z direction. Figure 2.1 (a) highlights

such a waveform. The classification of electromagnetic wave based on the direction of electric and

magnetic field is usually described as mode. Waveguides are used to guide different modes of

electromagnetic waves. Regardless the electromagnetic wave mode, electromagnetic heating functions

within the frequency range of 3 kHz – 300 MHz (radiofrequency heating) and 300 MHz- 300 GHz

(microwave heating). In the US, specific frequencies for heating or other purposes is specified by the

Federal Communications Commission (FCC).

Figure 1:

Figure 2.1: A comparison between the three wave modes, (a) TEM, (b) TE, (c), TM, in Cartesian coordinates. k represents the

direction of wave travel, and E and M represent the electric and magnetic components of the electromagnetic wave,
respectfully.

10

As a further mathematical simplification, uniform plane waves are often employed, as seen in Figure 2.2.

While wave propagation is not truly planar in the physical world, making the plane wave or uniform

plane wave simplification is often used for convenience in finding a mathematical solution. The

electromagnetic wave is represented by Maxwell’s equation. The electric and magnetic field distribution

of the object subjected to electromagnetic wave heat treatment are predicted by the solution of

Maxwell’s equation. The knowledge of the electromagnetic field distribution, material properties and

wave characteristics (i.e. absorption, penetration and reflection) are used to find the power generation

within the target object.

Figure 2.2: An example of a uniform TEM plane wave1.

2.1.1 Literature Survey Overview

The study of electromagnetic power absorption and heating has become a subject of growing interest in

many engineering, food science, and biomedical applications. A tremendous effort has been invested to

understand fundamental mechanisms and relations among functional parameters through experimental

techniques, computer modeling and simulation, and theoretical investigation with advanced

mathematical tools. Experimental studies provide the opportunity of real-time, physical impact of

electromagnetic wave impingement, recording behaviors of microwave-dielectric interaction, heat, and

temperature distribution of the target object. However, experimental techniques are expensive, require

11

trial and error, and take up significant time and resource commitments. Certain studies, such as those

seeking to understand the behaviors of microwave-dielectric interaction that closely model real-world

setups, are best studied using experimental methods. Computer modeling and simulation of

electromagnetic treatment can optimize experimental protocols and save time and resources.

Numerical analysis and simulation can predict the distribution of microwave power absorption and heat

generation in various conditions in a short period of time. On the other hand, the theoretical/analytical

investigation provides fundamental insight and underlying physics behind a phenomenon. Analytical

solutions provide closed-form mathematical expressions of electromagnetic power absorption and heat

generation that relates functional relationships among various parameters. It also provides benchmark

solutions that can be used to test the accuracy of numerical and computer modeling and simulation.

This thesis works presents an analytical expression for the electromagnetic power absorption and heat

generation for spherical shaped objects subjected to electromagnetic treatment.

2.2 Literature Survey: Experimental Studies

Knowledge of accurate material properties can greatly influence the quality of microwave heating

studies. Detailed dielectric measurements on liquid and solid foodstuffs were performed by E. C. To 5 to

establish a predictive model for dielectric properties under the influence of microwave radiation. Several

temperatures and frequencies were used in the study. It was determined that dielectric losses for the

liquid under study could not be predicted from a linear, additive, composition-based model. Dielectric

measurements for solid food products were also reported in various literature 5-8 . Curet et. al 6 studied

the microwave heating of tylose subjected to an incident sinusoidal wave. Both experimental and

numerical techniques were employed and compared different approaches of modeling microwave heat

generation such as Maxwell’s equations and Lambert’s law. Estimates of dielectric properties for the

frozen phase were deduced and gave comparable results between numerical results and experimental

data. Resonance phenomena in the frozen state could only be predicted using Maxwell’s equations,

12

while good agreement could be found between Maxwell’s equations, Lambert’s law, and experimental

data for thin, non-frozen objects. This study provided the criteria of different approaches of modeling to

predict accurate power absorption, heat generation and temperature distribution of frozen and non-

frozen objects by comparing experimental results6. Distribution of power absorption is uneven in

microwave heating of specimens which facilitates non-uniform temperature distribution. Goksoy 7

investigated the ability of microwave ovens and use of various shielding techniques to achieve

sufficiently uniform surface temperatures on pieces of poultry meat. The goal of the study was to reduce

numbers of surface bacteria without significantly changing the original texture of the poultry. The study

concluded that such a surface treatment produced unreliable results. Kelen et. al 9 mapped the heat

distribution in corn starch-based granule layers for the purposes of quantitatively evaluating and

optimizing the even distribution of microwave energy to facilitate higher quality pharmaceutical

microwave vacuum drying. Results show that regulating the hottest areas during the drying process can

optimize the distribution of heat and avoid over-heating the hottest regions in the layers. The

continuous and pulsed microwave heating techniques had also been investigated to provide uniformity

in heat generation and temperature distribution. It is reported that the pulsed microwave heating

techniques can provide more uniform heat distribution for certain conditions10. Gunasekaran 10

performed temperature distribution studies with agar gel cylinders heated with a microwave oven.

Results indicated when the same average power level settings were applied with both pulsed and

continuous microwave heating, the temperature distribution was more uniform under pulsed heating,

as can be seen for a certain case in Figure 2.3.

13

Figure 2.3: Temperature distribution in 2% agar gel cylinders, 4 cm radius, after 4 min of heating by using an average microwave
absorbed power of 225 W under continuous (Mode A) and pulsed (Mode B) microwave applications.10

 The experimental studies show that the electromagnetic heating and temperature distributions are

dependent on electromagnetic power absorption which is a complex function of physical and dielectric

properties of the target object7-11.

2.3 Literature Survey: Numerical Studies

Plane wave scattering studies using computers and numerical methods such as Finite Element Methods

/ Finite Element Analysis can be found as far back as the 1970’s. Bussey 12 outlined a theoretical

scattering solution for a plane wave irradiating the side of a lossy multilayer dielectric cylinder of infinite

length. Numerical values of the modal scattering coefficient for TE and TM modes are given for several

single and multilayer cylinders. To allow for the study of dielectrics of complex shape, Chang 13 made use

of the unimoment method to calculate the scattered fields of dielectric cylinders of inhomogeneous

materials and/or arbitrary cross sections [Figure 2.4].

14

Figure 2.4: Amplitude of E-wave and H-wave scattering far-field pattern for off-centered circular cylinder.13

Use of this method involves finite element analysis inside a mathematical circle enclosing the

inhomogeneous body, with the goal of greater simplicity and efficiency in programming. Ayappa et. al 14

made use of Galerkin finite elements to investigate power absorption profiles in homogeneous,

isotropic, multilayered slabs irradiated with microwave plane waves from opposite sides. An expression

for critical slab thickness in which Lambert’s law can be substituted for Maxwell’s equation in the

transient heat equation was determined. For slab thicknesses above the critical thickness value,

temperature profiles were within 0.5% of those predicted by Maxwell’s equation. To conserve

computational resources, and to increase the accuracy of the solutions within the dielectric, Ayappa et.

al 15 utilized Galerkin finite elements to predict the distribution of temperature in cylindrical and square

dielectric rods exposed to incident plane waves. The numerical approach employed a radiation

boundary condition (RBC) to limit the total domain of the analysis. Temperature dependent dielectric

properties were incorporated into the modeling. Results showed that, for cylindrical rods, the

distribution of power is a strong function of the cylinder’s radius. For square rods, the areas of greatest

power generation tended to be in the middle, and the corners. When both the cylindrical and square

15

dielectric rods where thicker, a greater effect of heating could be seen on the side/face incident to the

irradiating plane wave. Figure 2.5 illustrates this effect.

Figure 2.5: Comparison of temperature contours for cylindrical and square rods exposed to TEz polarized plane waves.15

 Thermal runaway was observed for materials with high dielectric loss. The polarization of the incident

wave also influenced the temperature distribution, for instance, TMz polarization giving a more

pronounced heating effect than TEz polarization. The utilization of radio frequency waves was also

investigated to minimize the non-uniformity of microwave heating. Oliveira 16 performed numerical

studies on the distribution of thermal energy within foodstuffs by solving Maxwell’s equation and

incorporating the solution as a source term in the transient heat equation. The finite element method

was used in the simulations. Results showed that the sample size and shape had a significant effect on

power distribution and heating within the sample. The radiation penetration was more effective at

lower frequencies as opposed to higher frequencies. Romano 17 developed a 3D multi-physics

16

mathematical model to model the microwave heating rate and power distribution within 3D foodstuffs

of cubical, cylindrical, and spherical shapes. Numerical modeling was employed, using a dual microwave

source with 180 degrees between the emitters. Temperature dependent dielectric and physical

properties were employed in the model. Results showed that the shape of objects had a significant

effect on the distribution of heat and power within the sample [Figure 2.6]. The cubic shape exhibits

fast, uniform heating and good absorption of power, while cylinders responded better when the ends

were placed 90 degrees with the incoming radiation. Spherical objects responded the least favorably.

Numerical studies also revealed that temperature distribution and heat generation are mostly

dependent on the electromagnetic power absorption, which is a complex function of electro-physical

parameters of the target object.

Figure 2.6: Time-average total absorbed power (Ptot) by each sample after 900 s of heating, with respect to output power (Pout),
of 100, 200, 300 and 400 W.17

2.4 Literature Survey: Analytical Studies

A variety of analytical solutions have been attempted in 1-D, 2-D, and 3-D configurations, in the

Cartesian and Cylindrical coordinate systems. For 1-D dielectric systems modeled in rectangular

coordinate systems, Nachman et. al 18 studied the heating patterns of muti-layered slabs irradiated by

microwaves.

17

Figure 2.7: Evolution in time of the temperature profile in a thermally insulated three-layered material in the presence of a

reflector (L = 0.49).18

A general expression was derived for volumetric power absorption taking into account transmissions

and reflections at the interfaces. A numerical method was used to determine the temperature

distribution within the material. Both Dirichlet and Neumann-type boundary conditions were

considered. The special case where cooling fluid is circulated inside the slabs was also investigated and

was found to significantly alter the heating pattern. It was also found that placing a reflector after the

slab and opposite the EM source could alter the temperature distribution within the slab. The region

between the slab and the reflector was heated more prominently. In another paper, Fleischman 19

utilized integral transformation techniques to obtain a closed form 1-D solution to the heat equation for

short-term/high-power microwave heated food slabs. When using a simplified closed form solution,

better uniformity in temperature distribution was obtained when microwave processing time was

limited to 40 seconds. Results from the full form solution showed temperature variation within beef

slabs to be most sensitive to slab width and heating time. Slabs of 1-3 cm width interval showed the

greatest extremes. Lastly, the least variation in temperature values for slabs were observed in the 3-4

cm width interval. Finally, Mani et al. 20 developed a mathematical model for investigating the bonding

of multiple PMMA slabs using microwave heated dielectric material. Maxwell’s equation was used to

map electric field distribution under plane wave configuration. The Poynting theorem was used to

18

volumetrically find the power absorbed by each layer. Results showed dielectric properties, layer

thickness, heat transfer coefficient and processing time have great influence on the heating pattern.

Yang 11 compared the predicted radial temperature distribution in a 2D cylindrical shaped model food

object using finite-difference models based on Maxwell’s equations and Lambert’s law [Figure 2.8].

Figure 2.8: Maxwell’s and Lambert’s model predicted microwave power absorbed during continuous heating of 2% agar gel
cylinders (3.5 and 4.0 cm radius) as a function of radial distance for sample center. The electric field is oriented along the vertical
z-axis of the cylinder.11

The microwave power absorption and temperature distribution were compared with experimental data

gathered from microwave heated agar gel cylinders. Results indicated that power-absorption efficiency

increased as sample volume increased. Ignoring edge effects, there was also no appreciable variation in

temperature along the longitudinal direction of the cylinder. The power absorption results derived from

Maxwell’s equation showed nodal/anti-nodal wave interactions of the incoming microwave radiation,

while Lambert’s law results demonstrated exponential decay. The study suggests Maxwell’s equations

predict temperature generation within the sample most accurately. It was also shown that pulsed

microwave heating allows for more uniform heating. Hossan et al.21 reported microwave power

absorption and temperature distribution in 3D cylindrical object subject to microwave radiation.

19

Figure 2.9: Absorbed power distribution along centerline of a cylindrical foodstuff for f=2450 MHz.21

An analytical solution for both microwave power absorption and temperature distribution was

presented. Such parameters as cylinder length, diameter, heat transfer coefficient, and the frequency of

the incoming microwave radiation were varied to study their specific effects on the temperature

distribution inside the material. It was determined that 21: 1. The electric field distribution within the

food sample closely mirrored power generation. 2. The length of the food cylinder had a significant

effect on the temperature distribution in the material. 3. The change in temperature in the radial

direction of the cylinder is significantly affected by the heat transfer coefficient. 4. No clear trend with

axial temperature distribution as cylinder length is varied. 5. Internal heat generation exceeds heat lost

to the ambient environment. 6. An optimum length may exist for a frequency and food type where the

thermodynamic efficiency of the heating system is at an optimum. Lately, Hossan et al. 22 investigated

the effects of temperature dependent properties in a three dimensional rectangular food slab

undergoing microwave and radio frequency heating. A closed form solution to the temperature

distribution within the object was determined by solving Maxwell’s equation and utilizing integral

transformation techniques. It was found that incident frequency, sample thickness, and processing time

have significant influence on the heating pattern. Radio frequency electromagnetic wave radiation

20

provides more uniform heat generation and hence the overall uniformity of the heating within the

sample was improved.

2.5 Research Goals

Despite numerous experimental and numerical studies on electromagnetic power absorption and

heating, there are only a few handful of pure analytical works that can provide some theoretical insight

about the mechanism of this technology. Moreover, to the best of the Author’s knowledge, there are no

studies available that present analytical closed-form solutions of electromagnetic power absorption for

3D spherical shaped objects. Therefore, the goal of this thesis is to find a closed-form expression of

electromagnetic field and power absorption distribution in a spherical shaped object subjected to planar

impingement of electromagnetic radiation. The incoming electromagnetic waves are modeled as

transverse electric and magnetic (TEM) waves. The three dimensional Maxwell’s equation in spherical

coordinate for TEM wave is solved using vector potentials, and separation of variables. The

electromagnetic field distribution and power absorption are plotted for different sizes of beef nugget.

The theory, governing equation, assumptions and model domains are described in the next chapter.

21

References

1. Balanis CA. Advanced engineering electromagnetics. John Wiley & Sons; 2012.
2. Balanis CA. Transverse Electric Modes: Source-Free Region. Advanced Engineering

Electromagnetics. 2nd ed. Hoboken, NJ: John Wiley and Sons; 2012:276.
3. Balanis CA. Transverse Magnetic Modes: Source-Free Region. Advanced Engineering

Electromagnetics. 2nd ed. Hoboken, NJ: John Wiley and Sons; 2012:272-273.
4. Balanis CA. Transverse Electromagnetic Modes: Source-Free Region. Advanced Engineering

Electromagnetics. 2nd ed. Hoboken, NJ: John Wiley and Sons; 2012:265.
5. To EC. Dielectric Properties of Food Materials. Journal of Microwave Power. 1974;9(4):303-315.
6. Curet S, Rouaud O, Boillereaux L. Microwave tempering and heating in a single-mode cavity:

Numerical and experimental investigations. Chemical Engineering and Processing: Process
Intensification. 2008;47(9-10):1656-1665.

7. Goksoy EO. Non-Uniformity of Surface Temperatures After Microwave Heating of Poultry Meat.
International Microwave Power Institute. 1999;34(3):149-160.

8. BARRINGER SA, DAVIS EA, GORDON J, AYAPPA KG, DAVIS H. Microwave‐Heating Temperature
Profiles for Thin Slabs Compared to Maxwell and Lambert Law Predictions. Journal of Food
Science. 1995;60(5):1137-1142.

9. Kelen Á, Ress S, Nagy T, Pallai E, Pintye-Hódi K. Mapping of temperature distribution in
pharmaceutical microwave vacuum drying. Powder Technology. 2006;162(2):133-137.

10. Gunasekaran S. Effect of experiemental parameters on temperature distribution during
continuous and pulsed microwave heating. Journal of Food Engineering. 2006;78:1452-1456.

11. Yang HWaG, S. Comparison of temperature distribution in model food cylinders based on
Maxwell's equations and Lambert's law during pulsed microwave heating. Journal of Food
Engineering. 2004:445-453.

12. Howard E. Bussey JHR. Scattering by a Lossy Dielectric CIrcular Cylindrical Multilayer, Numerical
Values. IEEE Transactions on Antennas and Propagation. 1975:723-725.

13. Shu-Kong Chang KKM. Application of the Unimoment Method to Electromagnetic Scattering of
Dielectric Cylinders. IEEE Transactions on Antennas and Propagation. 1976;24(1):35-42.

14. Ayappa KG, Davis HT, Crapiste G, Davis EA, Gordon J. Microwave heating: an evaluation of
power formulations. Chemical Engineering Science. 1991;46(4):1005-1016.

15. K. G. Ayappa HTD, E. A. Davis, J. Gordon. Two-Dimensional Finite Element Analysis of Microwave
Heating. AlChE Journal. 1992:1577-1592.

16. M. E. C. Oliveira ASF. Microwave heating of foodstuffs. Journal of Food Engineering.
2001;53(6):347-359.

17. Romano V, Marra F. A numerical analysis of radio frequency heating of regular shaped foodstuff.
Journal of Food Engineering. 2008;84(3):449-457.

18. M. Nachman GT. Heating Pattern in a Multi-layered Material Exposed to Microwaves. IEEE
Transactions on Microwave THeory and Techniques. 1984;32(5):547-552.

19. Fleischman GJ. Predicting temperature range in food slabs undergoing short-term/high-power
microwave heating. Journal of Food Engineering. 1999;40(1999):81-88.

20. Kasi Balamurugan Mani MRH, Prashanta Dutta. Thermal analysis of microwave assisted bonding
of poly(methyl methacrylate) substrates in mircofluidic devices. International Journal of Heat
and Mass Transfer. 2013;58:229-239.

21. Hossan MR, Byun D, Dutta P. Analysis of microwave heating for cylindrical shaped objects.
International Journal of Heat and Mass Transfer. 2010;53(23):5129-5138.

22. M. R. Hossan PD. Effects of temperature dependent properties in electromagnetic heating.
International Journal of Heat and Mass Transfer. 2012;55:3412-3422.

22

Chapter 3:

Theory

Generally, electromagnetic heating uses electromagnetic waves within the range of 3 kHz-300 GHz.

Radiofrequency heating is in the range of 3 kHz-300 MHz, and microwave heating is in the 300 MHz-300

GHz range. Most materials that respond to radiofrequency or microwave heating contain polar

molecules such as water and molecules of low heat capacity such as fat and oil. Polar molecules are

molecules that have a positive charge in one side (or pole) of the molecule and have a negative charge

on the other side (or pole). When a material composed of polar and/or low heat capacity molecules is

subjected to an electromagnetic field in the radio/microwave frequency, the molecules start rotating in

the attempt to align with the direction of the incoming electromagnetic field. This rotation creates

friction (and therefore heat) in the material. This heat generation and its spatial distribution are

dependent on the electromagnetic field distribution within the target object. Hence the electromagnetic

heat generation can be explained by examining the electromagnetic field distribution within the target

object. The electromagnetic field is governed by Maxwell’s equation and the following section presents

Maxwell’s equation, relevant assumptions, and Poynting theorem for evaluating electromagnetic power

absorption or heat generation.

3.1 Governing Equation

Maxwell’s equations govern the electromagnetic field distribution within the material, as given

below 1

t

B

ME

 (3-1a)

23

t

D

JH

 (3-1b)

eqD

 (3-1c)

mqB

 (3-1d)

where E

 is the electric field intensity, M

 is the magnetic current density, B

 is the magnetic

flux density, H

 is the magnetic field intensity, J

 is the electric current density, D

 is the electric

flux density, eq is the electric charge density, and mvq is the magnetic charge density. The time

harmonic version of Maxwell’s equations, i.e. using time-harmonic electromagnetic waves, is

convenient to represent high frequency (radio and microwave) electromagnetic heating. Many

practical systems lend well to the time-harmonic formulation, where the time variation is of

cosinusoidal form, represented in this work by tie . Using the time-harmonic formulation, the

instantaneous representations of Maxwell’s equation can be related to their complex forms by

the following expressions

]),,(Re[);,,(tiezyxEtzyx

E (3-2a)

]),,(Re[);,,(tiezyxHtzyx

H (3-2b)

]),,(Re[);,,(tiezyxDtzyx

D (3-2c)

]),,(Re[);,,(tiezyxBtzyx

B (3-2d)

]),,(Re[);,,(tiezyxJtzyx

J (3-2e)

]),,(Re[);,,(tiezyxMtzyx

M (3-2f)

24

]),,(Re[);,,(ti

e ezyxqtzyx
 q (3-2g)

]),,(Re[);,,(ti

mmv ezyxqtzyx
q (3-2h)

where E

 is the electric field intensity, M

 is the magnetic current density, B

 is the magnetic

flux density, H

 is the magnetic field intensity, J

 is the electric current density, D

 is the

electric flux density, eq is the electric charge density, and mvq is the magnetic charge density,

all in complex spatial form. x, y, and z represent the three spatial dimensions, t represents time,

 is angular frequency and i represents the imaginary number. With substitution, and

differentiation for (1a-1b), equations (1a-1d) take on the following form 1

BiME

 (3-3a)

DiJH

 (3-3b)

eqD

 (3-3c)

mqB

 (3-3d)

The knowledge of the electromagnetic field is utilized to find the power generation using

Poynting theorem. In the following work, Poynting theorem for determining power generation

within the material is given by 2

]Re[
2

1 *HEqav

 (3-4a)

)]
2

1
(Re[*HEQgen

 (3-4b)

25

Where avq is the time-average Poynting vector (average power density) over one period, *H

is

the complex conjugate of the magnetic field, and
genQ is the generated power in the material.

26

References

1. Balanis CA. Advanced Engineering Electromagnetics. Hoboken, NJ: John Wiley & Sons; 2012:21-
22.

2. Meredith RJ. Engineers' handbook of industrial microwave heating. IET; 1998.

27

Chapter 4:

Solution Methodology

Maxwell’s equation presented in Chapter 3 governs the general electromagnetic waves. However, when

it comes to a specific application of heat generation through radiofrequency and microwave radiation,

the consideration of material properties, material constitutive laws, and boundary conditions are critical

for finding a solution of the electromagnetic fields within the specimen. Using material constitutive laws

and consideration of heating conditions, Maxwell’s equation can be simplified into a single partial

differential equation. The following sections provides necessary assumptions, boundary conditions and

solution methodology.

4.1 Assumptions

In this study, a spherical object of homogeneous, dielectric construction is subjected to electromagnetic

heating. Uniform plane waves, also known as transverse electromagnetic (TEM) waves, are utilized to

model the incoming electromagnetic (EM) radiation. While the TEM waves generated in a real system

are not usually uniform, such a simplification allows an analytical study to be carried out, and gives

results that closely approximate the behavior of a real microwave oven. The following assumptions are

made for this study

(i) Food system is linear and follows linear material constitutive laws.

(ii) The system satisfies the electroneutrality condition.

(iii) Dielectric properties are temperature independent.

(iv) The incident EM radiation are uniform TEM waves.

(v) Material properties are temperature independent

28

4.2 Boundary Conditions

In this work, the impingent of uniform TEM plane waves propagate in the +z and –z directions. The

waves are transformed from a Cartesian coordinate system representation to a spherical coordinates

form so that the target spherical object is equivalently exposed to electromagnetic radiation radially in

all directions. For a lossy dielectric sphere, continuity of the tangential electric and magnetic fields are

required 1. Therefore boundary conditions are as follows

)20,0,()20,0,(arEarE tt
 (4-1a)

)20,0,()20,0,(arEarE tt
 (4-1b)

)20,0,()20,0,(arHarH tt
 (4-1c)

)20,0,()20,0,(arHarH tt
 (4-1d)

where tE represents the theta component of the electric wave inside the sphere, tE represents the

theta component of the electric wave outside the sphere, tE represents the phi component of the

electric wave inside the sphere, tE represents the phi component of the electric wave outside the

sphere tH represents the theta component of the magnetic wave inside the sphere, tH represents

the theta component of the magnetic wave outside the sphere, tH represents the phi component of

29

the magnetic wave inside the sphere, tH represents the phi component of the magnetic wave outside

the sphere, and a is the outer radius of the sphere.

4.3 Analysis of Wave Equation in Spherical Object

Consider a lossy dielectric spherical object subjected to TEM electromagnetic radiation as shown in the

Figure 4.1. Based on the assumptions mentioned in Section 4.1, the object under study is electrically

neutral (source free) i.e. 0 mvev qqMJ

 and the following material constitutive relations are

employed2,3

ED

 (4-2a)

Figure 4.1: Plane wave and dielectric sphere system as modeled in research.

30

HB

 (4-2b)

Where is permeability, and is permittivity. Maxwell’s equations take on the following form

HiE

 (4-3a)

EiH

 (4-3b)

0 E

 (4-3c)

0 H

 (4-3d)

Where 1i is an imaginary number, and is angular frequency. Two auxiliary functions known as

vector potentials: A

 (magnetic vector potential), and F

 (electric vector potential), are employed in

finding a solution 4. To utilize vector potentials, it is helpful to define separate A

 and F

 vector

potential components for the E

 and H

 fields. Using vector identities and Lorenz conditions,

Maxwell’s equations can be expressed in terms of vector potentials as follows

022 AA

 (4-4a)

 022 FF

 (4-4b)

Where represents phase constant, and 22 . Vector potentials are usually considered strictly

mathematical tools, even though the resulting electromagnetic radiated fields (E

, H

) represent

physically measurable quantities. The vector potentials (A

and F

) are defined such a way that each of

this vector has both electric and magnetic field component. In other words, the total electric field will

have contributions from the magnetic vector potential as well as the electric vector potential. Therefore

31

total electric field and magnetic field can be found in terms of vector potentials using superposition 5 as

follows

FA EEE

 (4-5a)

FA HHH

 (4-5b)

where AE

 is the electrical component of vector potential A

, AH

is the magnetic component of vector

potential A

, FE

 is the electric component of vector potential F

 and FH

 is the magnetic component

of vector potential F

. The vector potential component is given by 5

)(
1

AiAiEA

 (4-6a)

AH A

1 (4-6b)

FEF

1
 (4-6c)

)(
1

FiFiH F

 (4-6d)

The solution of electric and magnetic field (equation 4-5a and 4-5b) through vector potentials can be

further simplified using vector identities and substituting AA HiE

 and FF HiE

as follows 6

A
i

FE

11 (4-7a)

AF
i

H

11 (4-7b)

32

The two step sequence for determining the electromagnetic radiated fields using vector potentials are

as follows: 1. A

 and F

 are determined by integration of Maxwell’s equations; 2. A

 and F

 are then

differentiated to arrive at the solution for the electromagnetic radiated fields (E

and H

).

To find the expression for A

 and F

, an electric and a magnetic scalar potential functions are defined

as , A
i

e

1
 and F

i
m

1
 respectively. With these two potential scalar

functions, Maxwell’s equation is rewritten as 6

eiAA

2
 (4-8a)

miFF

2
 (4-8b)

Considering rTE and rTM modes separately allows m and e to be determined in terms of

),,(rFr
and),,(rAr

, respectively 6. Since propagation is happening in the radial direction,

utilizing the r components of eqns (4-8a) and (4-8b), the following relations are obtained 6

0)(22
r

Fr

 (4-9a)

0)(22
r

Ar

 (4-9b)

Solutions to rF and rA are found by separation of variables 6 and can be expressed

)()()(),,(),,(hgrfrArF rr (4-10)

where)(rf ,)(g , and)(h must be represented by appropriate wave functions that satisfy the

wave equation in spherical coordinates. Solutions to these functions take on the following forms 6

33

)(ˆ)(11 rJrf n A (4-11a)

)(ˆ)()2(

12 rHBrf n (4-11b)

)(cos)(1 m

nPCg (4-11c)

)sin()cos()(12 mDmCh (4-11d)

Where 1A , 1B , 1C , 2C , and 1D represent arbitrary constants; nĴ is an alternate form of spherical

Bessel functions of the 1st kind, of order n, respectively;
)2(ˆ

nH are also an alternate form of spherical

Hankel functions of the 2nd kind, of order n, respectively;
m

nP is the associated Legendre function of the

1st kind of order m and degree n, respectively;)(cos2 mC and)sin(1 mD are “cosinusoids” of order m,

and m and n are whole, positive integers. Depending on the region the waveform is being modeled,

solutions to rF and rA take on the following two forms

)()()(),,(),,(1 hgrfrArF rr (4-12a)

for the incident portion of the wave, and for when the waveform is inside the object

)()()(),,(),,(2 hgrfrArF rr (4-12b)

for the reflected portion of the incident wave. The spherical Bessel and Hankel functions represented in

eqns (4-11a) and (4-11b) can be related to regular Bessel and Hankel functions as follows 6

)()(ˆ rrbrB nn =)(
2

)(
2

2/12/1 rB
r

rB
r

r nn

 (4-13)

34

where nB represents nJ , or
)2(

nH . This alternative form of the spherical Bessel and Hankel functions

satisfy the differential equation below 6

0ˆ)1(
2

2

2

2

 nB

r

nn

dr

d
 (4-14)

4.4 Closed Form Electric and Magnetic Expression for a Solid Sphere

The methodology for determining the electric and magnetic field distributions and power generation

within a dielectric sphere involves three main sequences: 1. Making use of vector potentials to find

solutions for rF and rA 5; 2. Using the solutions for rF and rA to determine the three special

components ,,r of the electric),,(rE

 and magnetic),,(rH

 fields ; 3. Utilizing the Poynting

theorem and the conservation-of-energy equation to determine power generation 7. The physical model

used in the research is a dual source uniform TEM plane wave as shown in Figure 4.1, with one source

situated directly above the dielectric sphere, and the second source situated below. The electric

component of both EM waves are situated along the positive x-axis. The magnetic component of the

upper EM source is directed along the negative component of the y-axis, and the magnetic component

of the lower EM source is directed along the positive y-axis. As uniform plane waves are natively

represented in the rectangular coordinate system, a transformation to spherical coordinates will be

utilized to allow their use in the following derivations. An infinite sum of spherical wave functions will be

used to represent the electromagnetic plane waves 1

 cos
0

cos

nn

n

n

rizi

x PrjaeeE

 (4-15a)

 cos
0

cos

nn

n

n

rizi

x PrjbeeE

 (4-15b)

35

where

xE represents the lower plane wave source with the amplitude of the electric component of the

EM wave polarized in the x-direction,

xE represents the upper plane wave source with the amplitude of

the electric component of the EM wave polarized in the x-direction, r is the radial distance from the

origin of the spherical polar coordinate system, is an angle 0 to radians as measured from the +z

axis, 12 nia n

n , 12 nib n

n ,)(rjn is a spherical Bessel function of the 1st kind of order n,

 cosnP is a Legendre polynomial of order n, with cos varying between -1 and 1, and n is a

positive integer. The polarized electric fields of the upper and lower incident uniform plane waves are

expressed in the r component within the sphere as follows

 coscoscos riri

o

in

r ee
ri

EE (4-16)

where oE is the amplitude of the electric field, r is the radial distance from the origin of the spherical

polar coordinate system, is an angle 0 to radians as measured from the +z axis, is an angle 0 to 2

radians as measured from the +x axis. Utilizing eqns (4-15a, 4-15b, and 4-16), the r component of the

incident electric field can be written as follows

1

1

2
)(cos)(ˆ

)(

cos

n

nnno

in

r PrJc
r

iEE

 (4-17)

where nnn abc , oE is the amplitude of the electric field, r is the radial distance from the origin of the

spherical polar coordinate system, cos1

nP is an associated Legendre function of order 1 and degree n,

with cos varying between -1 and 1, is an angle 0 to radians as measured from the +z axis, is an

angle 0 to 2 radians as measured from the +x axis, and n is a positive integer.

36

A similar solution methodology yields the following equations for the r component of the incident wave

of the magnetic field

1

1

2
)(cos)(ˆ

)(

sin

n

nnno

in

r PrJd
r

iHH

 (4-18a)

o

o

E
H (4-18b)

where nnn bad , oH is the amplitude of the magnetic field, r is the radial distance from the origin of

the spherical polar coordinate system,

 .

in

rA is obtained by equating (4-17) with (4-7a) and

considering only rTM modes (),,(ˆ rAaA rr

 and 0F

)

1

1)(cos)(ˆcos

n

nnn
oin

r PrJc
E

A

 (4-19)

where nnn abc , oE is the amplitude of the electric field, nĴ is an alternate form of the spherical

Bessel function of the 1st kind and order n, r is the radial distance from the origin of the spherical polar

coordinate system, cos1

nP is an associated Legendre function of order 1 and degree n, with cos

varying between -1 and 1, is an angle 0 to radians as measured from the +z axis is an angle 0 to 2

radians as measured from the +x axis, and n is a positive integer. in

rF is obtained by equating (4-18a)

with (4-7b) and considering only rTE modes (),,(ˆ rFaF rr

 and 0A

)

1

1)(cos)(ˆsin

n

nnn
oin

r PrJd
E

F

 (4-20)

37

where nnn bad , oE is the amplitude of the electric field, r is the radial distance from the origin of

the spherical polar coordinate system, with cos varying between -1 and 1, is an angle 0 to radians

as measured from the +z axis, is an angle 0 to 2 radians as measured from the +x axis, and n is a

positive integer. As some of the incoming EM radiation is reflected by the surface of the sphere, the

reflected portion of the wave also must be considered. The reflected portions of the incoming EM

radiation, in terms of magnetic and electric vector potentials, are as follows

1

1)2()(cos)(ˆcos

n

nnn
os

r PrHe
E

A

 (4-21a)

1

1)2()(cos)(ˆsin

n

nnn
os

r PrHf
E

F

 (4-21b)

)(ˆ)(ˆ)(ˆ)2(rYirJrH nnn (4-21c)

where ne and nf will be found using appropriate boundary conditions, and r is the radial distance from

the origin of the spherical polar coordinate system; Eqns (4-21a) and (4-21b) differ from eqns (4-19) and

(4-20) by the replacement of the spherical Bessel function, nĴ , with the Hankel function of the second

kind,
)2(ˆ

nH , in order to represent outward traveling waves. The complete representation of the magnetic

and electric vector potential, as it exists outside of the dielectric sphere, is a summation of the incident

and reflected fields

1

1)2()(cos))(ˆ)(ˆ(
cos

n

nnnnn
os

r

in

r

t

r PrHerJc
E

AAA

 (4-22a)

1

1)2()(cos))(ˆ)(ˆ(
sin

n

nnnnn
os

r

in

r

t

r PrHfrJd
E

FFF

 (4-22b)

38

where
t

rA represents the magnetic vector potential outside of the spherical dielectric,
t

rF represents

the electric vector potential outside of the spherical dielectric, and r is the radial distance outside of the

dielectric sphere, with the origin being set at the center of the spherical polar coordinate system.

Considering the rTE and rTM modes, and making use of eqns (4-7a) and (4-7b), the spherical vector

components of the electric and magnetic fields, for the space outside the sphere, can be determined to

be the following

 t

r

t

r A
ri

E 2

2

21

 (4-23a)

t

r

t

rt F

rr

A

ri
E

sin

1111
2

 (4-23b)

t

r

t

rt F

rr

A

ri
E

11

sin

11
2

 (4-23c)

 t

r

t

r F
ri

H 2

2

21

 (4-23d)

r

F

ri

A

r
H

t

r

t

rt
2

11

sin

11
 (4-23e)

r

F

ri

A

r
H

t

r

t

rt
2

sin

1111
 (4-23f)

t

rE and
t

rH are unique from the other spherical components of the electric and magnetic fields in

that the radial component of the total electric field outside the dielectric sphere depends solely on the

radial component of the total magnetic vector potential outside the dielectric sphere, and the radial

component of the total magnetic field outside the dielectric sphere depends solely on the radial

39

component of the total electric vector potential outside the dielectric sphere. In the solution to follow,

 in eqns (4-23a – 4-23f) will be replaced with o , the free space phase constant, when representing

EM waves outside the sphere. For the portion of the incident EM wave that penetrates the dielectric

sphere, all of the wave can be considered absorbed and so the magnetic and electric vector potentials

take on simplified forms of eqns. (4-21a) and (4-21b)

1

1)(cos)(ˆcos

n

ndnn

ot

r PrJg
E

A

 (4-24a)

1

1)(cos)(ˆsin

n

ndnn

d

ot

r PrJh
E

F

 (4-24b)

r

r
o

d

d

d

 rroddd (4-24c, 4-24d)

ord ord (4-24e, 4-24f)

o

o

o

 ooo (4-24g, 4-24h)

rrr i rrr i (4-24i, 4-24j)

Where
t

rA represents the magnetic vector potential inside the spherical dielectric,
t

rF represents the

electric vector potential inside the spherical dielectric, ng and nh are constants to be determined by

boundary conditions, d is the lossy dielectric phase constant, d is the lossy dielectric wave

impedance, o is the free space wave impedance, o is the free space permittivity, r is the relative

complex permittivity, r is the real part of the relative complex permittivity, r is the imaginary part

40

of the relative complex permittivity, o is the free space permeability, r is the relative complex

permeability, r is the real part of the relative complex permeability, and r is the imaginary part of

the relative complex permeability. The spherical vector components of the electric and magnetic fields,

for the space inside the sphere, take on a familiar form

 t

rd

dd

t

r A
ri

E 2

2

21

 (4-25a)

t

r

d

t

r

dd

t F

rr

A

ri
E

sin

1111
2

 (4-25b)

t

r

d

t

r

dd

t F

rr

A

ri
E

11

sin

11
2

 (4-25c)

 t

rd

dd

t

r F
ri

H 2

2

21

 (4-25d)

r

F

ri

A

r
H

t

r

dd

t

r

d

t
2

11

sin

11
 (4-25e)

r

F

ri

A

r
H

t

r

dd

t

r

d

t
2

sin

1111
 (4-25f)

Determining the three spherical components of the electric and magnetic fields, for the regions outside

and inside the dielectric sphere, is accomplished by the following sequence: Plugging the solutions for

i

rA (4-22a) and
i

rF (4-22b) into eqns. (4-23a – 4-23f), and inserting
i

rA (4-24a) and
i

rF (4-24b)

into eqns. (4-25a – 4-25f) allows the electric and magnetic field components, for the regions outside and

inside the sphere, respectively, to be expressed solely in terms of the spherically transformed incident

plane waves

41

For regions outside the dielectric sphere, the three spatial components of the electric and magnetic

fields, respectively, take on the following form

)(cos)(ˆ)(ˆ)(ˆ)(ˆcos 1

1

)2()2(n

n

ononnononno

t

r PrHrHerJrJciEE

 (4-26a)

1

1)2()(cos)(ˆ)(ˆcos

n

nonnonn

o

ot PrHerJc
r

E
iE

1

1)2()(cos)(ˆ)(ˆ
sin

cos

n

nonnonn

o

o PrHfrJd
r

E

 (4-26b)

1

1)2()(cos)(ˆ)(ˆ
sin

sin

n

nonnonn

o

ot PrHerJc
r

E
iE

1

1)2()(cos)(ˆ)(ˆsin

n

nonnonn

o

o PrHfrJd
r

E

 (4-26c)

)(cos)(ˆ)(ˆ)(ˆ)(ˆsin 1

1

)2()2(

n

n

ononnononn

o

ot

r PrHrHfrJrJd
E

iH

 (4-26d)

1

1)2()(cos)(ˆ)(ˆ
sin

sin

n

nonnonn

oo

ot PrHerJc
r

E
H

1

1)2()(cos)(ˆ)(ˆsin

n

nonnonn

oo

o PrHfrJd
r

E
i

 (4-26e)

42

1

1)2()(cos)(ˆ)(ˆcos

n

nonnonn

oo

ot PrHerJc
r

E
H

1

1)2()(cos)(ˆ)(ˆ
sin

cos

n

nonnonn

oo

o PrHfrJd
r

E
i

 (4-26f)

For regions inside the dielectric sphere, the three spatial components of the electric and magnetic fields,

respectively, take on the following form

)(cos)(ˆ)(ˆcos 1

1

 n

n

dndnno

t

r PrJrJgiEE

 (4-26g)

1

1

1

1)(cos)(ˆ
sin

cos
)(cos)(ˆcos

n

ndnn

d

o

n

ndnn

d

ot PrJh
r

E
PrJg

r

E
iE

 (4-26h)

1

1

1

1)(cos)(ˆcos
)(cos)(ˆ

sin

cos

n

ndnn

d

o

n

ndnn

d

ot PrJh
r

E
PrJg

r

E
iE

 (4-26i)

)(cos)(ˆ)(ˆsin 1

1

n

n

dndnn

d

ot

r PrJrJh
E

iH

 (4-26h)

1

1

1

1)(cos)(ˆsin
)(cos)(ˆ

sin

sin

n

ndnn

dd

o

n

ndnn

dd

ot PrJh
r

E
iPrJg

r

E
H

 (4-26i)

1

1

1

1)(cos)(ˆ
sin

cos
)(cos)(ˆcos

n

ndnn

dd

o

n

ndnn

dd

ot PrJh
r

E
iPrJg

r

E
H

 (4-26j)

where)(ˆ
)(

)(ˆ
2

2

rB
r

rB nn

 ,)(ˆ

)(
)(ˆ rB

r
rB nn

 ,)(cos

)(cos
)(cos 11

 nn PP

 ,

sin

)(cos
,)(ˆ)(ˆ rJrB nn or)(ˆ rH n ,)(ˆ)(ˆ rJrB nn or)(ˆ rH n , and

)(ˆ)(ˆ rJrB nn or)(ˆ rH n .

43

Treating the real and imaginary terms of the tangential components of the electric and magnetic fields

separately allows the coefficients ne , nf , ng and nh to be expressed in terms of known quantities

odnonddnon

oondndondn
nn

aJaHaJaH

aJaJaJaJ
ce

)(ˆ)(ˆ)(ˆ)(ˆ

)(ˆ)(ˆ)(ˆ)(ˆ

)2()2(

 (4-27a)

odnonddnon

oondndondn
nn

aJaHaJaH

aJaJaJaJ
df

)(ˆ)(ˆ)(ˆ)(ˆ

)(ˆ)(ˆ)(ˆ)(ˆ

)2()2(

 (4-27b)

 odnonddnono

onononondd
nn

aJaHaJaH

aJaHaJaH
cg

)(ˆ)(ˆ)(ˆ)(ˆ

)(ˆ)(ˆ)(ˆ)(ˆ

)2()2(

)2()2(

 (4-27c)

 odnonddnono

onononondd
nn

aJaHaJaH

aJaHaJaH
dh

)(ˆ)(ˆ)(ˆ)(ˆ

)(ˆ)(ˆ)(ˆ)(ˆ

)2()2(

)2()2(

 (4-27d)

where nnn abc , nnn bad , 12 nia n

n , and 12 nib n

n .

4.5 Power Generation Term

To determine the power generation within the sphere, the following conservation of energy equation in

differential form is employed 8

222

4

1

4

1
2

2

1

2

1

2

1

2

1
EHiEJEMHHE ii

 (4-28)

where iM

 represents impressed (source) magnetic current density,

iJ

 is the complex conjugate

impressed electric current density, is the conductivity of the material, and ro .

Since 0

ii JM

, and the power generated within the sphere is a real quantity, the following

relation is arrived upon

44

22

2

1

2

1
HEQ rorogen

 (4-29)

where genQ represents the power generated within the sphere,
 EEE

 2

,
 HHH

 2

,

ˆˆˆ ttt

r EErEE

,
ˆˆˆ ttt

r HHrHH

, E

 is the complex conjugate of E

, and H

 is

the complex conjugate of H

. Since the region outside the sphere is treated as free space (free space

wave number o) and the region inside the sphere is modeled as a lossy dielectric (wave number d),

only the portion of the electric and magnetic field that propagates within the sphere need be

considered.

45

References

1. Balanis CA. Advanced Engineering Electromagnetics. 2nd ed. Hoboken, NJ: John Wiley & Sons;
2012:654.

2. G. Rossy JAP. Foundations and Industrial Applications of Microwaves and Radio Frequency Fields:
Physical and Chemical Processes. West Sussex, England: John Wiley & Sons; 1995:10-12.

3. Frenske KM, Devendra. Dielectric Materials at Microwave Frequencies. Applied Microwave &
Wireless.

4. Balanis CA. Radiation Integrals and Auxiliary Potential Functions. Antenna Theory: Analysis and
Design, 3rd ed. Hoboken, NJ: John Wiley & Sons; 2005:133-135.

5. Balanis CA. The Vector Potential A. Advanced Engineering Electromagnetics. 2nd ed. Hoboken,
NJ: John Wiley & Sons; 2012:260-265.

6. Balanis CA. Spherical Transmission Lines and Cavities. Advanced Engineering Electromagnetics.
2nd ed. Hoboken, NJ: John Wiley & Sons; 2012:549-557.

7. Balanis CA. Power and Energy. Advanced Engineering Electromagnetics. 2nd ed. Hoboken, NJ:
John Wiley & Sons; 2012:25-29.

8. Balanis CA. Advanced Engineering Electromagnetics, 2nd Ed. Hoboken, NJ: John Wiley & Sons,
Inc.; 2012:25-29.

46

Chapter 5:

Results and Discussion

The analytical expressions for the electric field, magnetic field, and power distribution are obtained by

solving Maxwell’s equation for TEM waves in spherical coordinates. The expressions are evaluated for

typical beef nuggets which are usually in spherical shape. The sizes and electromagnetic frequencies are

varied to help understand heat generation distribution. The dielectric properties of beef nuggets for

various electromagnetic frequencies are found from literature 1. The incident electromagnetic energy

flux (
2

00EcI) is kept constant and is considered to be 3 W/cm2. This is equivalent to a 1.2 kW

household microwave oven and the equivalent incident electric field strength 0E is found to be 4754.3

V/m. Table 1 lists the four microwave heating frequencies used in this study with corresponding

dielectric constant and dielectric loss.

Table 1: Dielectric properties of spherical beef nugget at different frequencies.

Properties/frequency (MHz) 2800 2450 915 300

Dielectric constant, ' 1 33.6 30.5 35.4 38

Dielectric loss, " 1 12.6 9.6 16 47

Four separate beef nugget radii were studied: 1.0 cm, 2.0 cm, 3.0 cm, and 5.0 cm. These radii were

chosen to correspond to common nugget sizes for use in frozen foods.

Table 2: Properties and input parameters.

Parameters Values

Incidence microwave energy flux, I (W/cm2) 3

Equivalent microwave power level (kW) 1.2

Electric field strength, E0 (V/m) 4754.3

Radii of spherical beef nuggets, r0 (cm) 1.0, 2.0, 3.0, 5.0

47

In the sub sections to follow, results from various combinations of radii, frequency, and cross sections
are presented.

5.1 Effect of Sphere Sizes on Electric Field and Power Absorption Distribution along

Centerline

The absolute Electric field strength along the centerline of spherical beef nuggets for radii 0.01 m, 0.02

m, 0.03 m, and 0.05 m are presented in Figure 5.1. The irradiating frequency is 2450 MHz which is the

frequency for household microwave ovens. The radii of each sphere is non-dimensionalized to allow

ease of comparison.

Figure 5.1: Electric field strength along centerline of spherical beef nugget.

48

It can be observed that the number of peaks in the electric field distribution increase in number as the

radius of the beef sphere increases. In all cases, the highest peak of the electric field is found at the

center of the sphere. When the electromagnetic field is propagating in the opposite direction, the

superposition of waves are taking place and resonance of the wave is happening at the center. At the

frequency of 2450 MHz, the propagation wavelength in the beef nugget is calculated from the equations

reported in 2 and found to be 2.18 cm. The locations of the peaks are dependent on the wavelength and

radius of the sphere 1. The greatest peaks of the electric field strength is seen in 0.02 m radius sphere

because it is closer to the propagation wavelength and positive interference, i.e. resonance, is

happening between the two waves propagating towards the center. Only one peak is seen in the

smallest sphere because the radius of the sphere is much smaller than the incident wavelength of the

electromagnetic radiation. Similar trends of electric field distribution and peaks are reported in previous

works for rectangular and cylindrical shaped objects under electromagnetic heating 3,4. The

corresponding electromagnetic power absorption along the centerline of spherical beef nuggets for

2450 MHz electromagnetic radiation are shown in Figure 5.2. The radii of each sphere is non-

dimensionalized for better comparison among the nuggets. The power distribution follows the trend of

electric field distribution. From the distribution, it is evident that along the centerline, the smallest and

largest sphere provides more uniform heat generation compared to the other sizes. The overall power

absorption, i.e. heat generation patterns, are discussed the following sections.

49

Figure 5.2: Power generation along centerline of spherical beef nugget.

5.2 Effect of Sphere Sizes on Planar Electric Field and Power Absorption Distribution

Figure 5.3 depicts the absolute strength of the E-field generated within spherical beef nuggets of four

differing radii as mentioned in the above section for a typical microwave heating frequency of 2450

MHz. The results are presented as a 2D slice running through the center of the nuggets vertically and

looking down the +y axis. For ease of comparison, each radii are non-dimensionalized. Results show the

nature of the electric field intensity, especially in the case of (a), (b), and (c), takes on the form of

horizontal layers or bands, with the greatest intensity taking place in the inner oval region. In (b), the

greatest region of activity can be seen as a vertical two-ring structure, with an especially active region

50

where the two “rings” meet in the center of the plot. The greatest value of the electric field in (b) is over

two times that of (a). For (c), the most active regions are something of a continuation of what was seen

in the case of (b), with the addition of two extra “stacks” on top of the previously seen vertical two-ring

structure. The greatest value of the electric field in (c) is less than that of (b), but is still nearly two times

that of (a). A much more complex and diverse pattern can be observed for (d). The hot “tips” at the end

of the large X can be seen at theta = 60, 120, 240, and 300 degrees, are strongest at phi = 0 and 180

degrees, and least powerful at phi = 90 and 270 degrees. It is at the tips that the greatest electric field

intensity is observed.

Figure 5.3: Electric Field Distribution Cross Section within Spherical Beef Nuggets of radii (a) 1.0 cm, (b) 2.0 cm, (c) 3.0 cm, and
(d) 5.0 cm. Here f = 2450 MHz.

51

The corresponding electromagnetic power absorption for four different nugget sizes are shown in Figure

5.4. The results again show that the power absorption distribution closely follow the trends of electric

field distribution. The peak electromagnetic power absorption is taking place at the inner core of the

sphere for 1.0 cm, 2.0 cm and 3.0 cm radius of beef nuggets (i.e. Figures 5.4a, 5.4b and 5.4c

respectively), however the largest size of nugget, i.e. 5.0 cm radius, experiences the highest energy

absorption at the surface in Figure 5.4d. So at the frequency of 2450 MHz, the 5.0 cm nugget will most

likely to have surface burning and the 3.0 cm nugget will experience repetitive hot and cold zones

throughout the nugget.

Figure 5.4: Power Distribution Cross Section within Spherical Beef Nuggets of radii (a) 1.0cm, (b) 2.0cm, (c) 3.0cm, and (d)
5.0cm. Here f = 2450 MHz.

At the frequency of 2450 MHz, the penetration depth for the beef nugget is calculated using equation

presented in 2 and found to be 1.58 cm. At this depth, the electromagnetic radiation decays

52

exponentially. So at the larger size of nugget, i.e. 5.0 cm radius beef sphere, the highest absorption

happens at the surface instead of the core of the nugget. This is also evident from the electric field and

power absorption distribution along the centerline in Figures 5.1 and 5.2. For (a) two circular zones of

low power generation can be seen situated at the top and bottom of the nugget, i.e. core heating is

most likely for smaller nuggets. The maximum recorded generated power for any of the radii is observed

for 2.0 cm nugget shown in figure 5.4b since the wavelength of electromagnetic wave is close to the

radius of the nugget as explained in the previous section.

5.3 Electric Field and Power Absorption Distribution at Different Cutting Lines

Figure 5.5 depicts the strength of the absolute electric field as a line beginning at the center of the

sphere and extending to the outer surface of the sphere for six separate cutting lines at electromagnetic

frequency of 2450 MHz to elucidate the orientation effect of TEM wave impingement. The results are

presented for all four beef nuggets of 1.0 cm, 2.0 cm, 3.0 cm, and 5.0 cm radii in non-dimensionless

form. A general trend of peaks and valleys increasing with greater radii can be observed, particularly for

(a), (b), and (d), and to a lesser extent, (c). For all results, the maximum peak value for the electric field

strength observed with the 0.02 m radius sphere at the center of the sphere as seen in previous

sections. It is interesting to note the more pronounced damping of the electric field strength near the

surface of the sphere for the 0.02 m and 0.03 m radii at the chosen angles for (e) and (f). Apart from

what is seen for the radii of 0.02 m, the observed values for the remaining radii are very similar to the

preceding figure. Even more damping of the electric field strength near the surface of the sphere, for all

studied radii, can be observed for (c), (e), and (f).

53

Figure 5.5: Electric Field Strength along six Line Paths within Spherical Beef Nuggets of radii 1.0 cm, 2.0 cm, 3.0 cm, and 5.0 cm.
Here f = 2450 MHz.

54

Figure 5.6 traces the strength of the generated power as a line beginning at the center of the sphere and

extending to the outer surface of the sphere for six separate combinations of theta and phi at

electromagnetic frequency of 2450 MHz. The trend of the differences in strength between peaks and

valleys increasing in spheres with greater radii can be observed for the generated power as well. The

maximum peak value for the strength of the generated power observed for the 0.02 m radius sphere in

(a), (b) and (d). This maximum value is generated at the center of the sphere for all radii. A similar

pattern can be seen with phi set to 115 degrees. The more pronounced damping of the strength of the

generated power near the surface of the sphere for the 0.02 m and 0.03 m radii can be observed for (e)

and (f). A similar trend can be seen in this case as well. More pronounced damping of the strength

generated power, near the surface of the sphere, for all studied radii, can be observed for the chosen

angles for theta and phi (a) – (f). Compared to (a) – (d), a lessening of damping can be seen for the 0.02

m and 0.03 m radii towards the outer surface of the sphere in (e) and (f).

55

Figure 5.6: Power Generation strength along six Line Paths within Spherical Beef Nuggets of radii 1.0 cm, 2.0 cm, 3.0 cm, and 5.0
cm. Here f = 2450 MHz.

56

5.4 Effect of Frequencies on Electric Field and Power Absorption Distribution

Three different frequencies are employed to elucidate the effect of frequencies on electromagnetic

power absorption within the beef nugget of 2.0 cm radius. A 2.0 cm radius beef nugget is selected from

the previous results of the 2450 MHz treatment because at this size, it generates highest power

absorption. Also at 2450 MHz, the propagation wavelength within the beef nugget is 2.18 cm, which is

close to the size of the nugget. Figure 5.7 depicts the absolute strength of the E-field generated in the

spherical nugget of the 2.0 cm radii and corresponding power absorption. The incident electromagnetic

energy flux is kept same which is 3 W/cm2. It is interesting to note that the distribution of the electric

field drastically changes at the different frequencies. At the lower frequency, electric field distribution is

much more uniform. Also, the maximum strength of the electric field increases with frequency, which

can be observed looking at (a), then (c), and then (e).

57

The corresponding power absorption distribution follows the pattern of electric field distributions as

seen all other cases. Although power absorption in lower frequencies are smaller compared to the

(e)

(a)

(c)

(b)

(d)

(f)

Figure 5.7: Electric Field Distribution and Power Generation Distribution Cross Sections within Spherical Beef Nuggets of radius
2.0cm for three different frequencies. (a) E field for f = 2450 MHz, (b) P gen for f = 2450 MHz, (c) E field for f = 915 MHz, (d) P
gen for f = 915 MHz, (e) E field for f = 300 MHz, and (f) P gen for f = 300 MHz.

58

higher frequencies, the distribution are much more uniform. This will lead to more uniform temperature

distributions when the nuggets are treated with lower electromagnetic frequencies. This is because at

the lower frequencies the dielectric constant and dielectric loss increases and hence they change the

electromagnetic wavelength within the nugget. For instance, the propagation wavelength at 300 MHz is

14.25 cm, which is much larger than the size of the nugget.

5.5 Electric Field and Power Generation Strength along Sphere Centerline

The effect of frequencies of the four different nugget sizes along the center line are described in Figure

5.8. Each of the four spheres is irradiated with electromagnetic radiation in four different frequencies,

and the electric field distribution of each frequency, for each sphere radius, are displayed in an overlay

fashion. Lower frequencies in general showcase more uniform electric field strength along the

centerline, while the higher frequencies show greater extremes between maximum and minimum field

strength, with higher peak values increasing with frequency (a) – (d). The greatest value for the electric

field can be observed in (a), (b), and (c) at the sphere center for all frequencies. For (d) the electric field

results follow a similar trend, except for the 2800 MHz frequency, which shows the outer surface to

have the largest recorded electric field values. For (b) and (c), the 2450 MHz frequencies record the

highest electric field strength. For (a) and (d), 2800 MHz frequencies register the largest electric field

strengths. It is interesting to note the greater variation in overall waveform and maximum and minimum

values when comparing (a) and (b) to (c) and (d) for the 915 MHz frequency. For all other frequencies,

the overall waveform remains the same, with variations in the strength and the total number of peaks

and valleys. It is interesting to note a general trend of a more even distribution of the electric field

strength along the total length of the centerline of the sphere as the radius of the sphere increases. This

trend is especially apparent in (d).

59

Figure 5.8: Electric Field Strength along Sphere Centerline within Spherical Beef Nuggets radii (a) 1.0 cm, (b) 2.0 cm, (c) 3.0 cm,
and (d) 5.0 cm.

Figure 5.9 visualizes the absolute strength of the power generated along the centerline of beef spheres

of varying radii. As before, each of the four spheres are irradiated with four different electromagnetic

frequencies, and the results of each frequency, for a specific sphere radius, are overlaid on each sub-

figure (a) – (d) for ease of comparison. Lower frequencies in general showcase more uniform electric

field strength along the centerline (the exception being the 915 MHz frequency reading (d)), while the

higher frequencies commonly show greater extremes between maximum and minimum field strength,

with peak power generation values increasing with frequency. It is interesting to note that the maximum

power generation is seen at 2800 MHz for (a) and (b), and 2450 MHz for (c). In (d), the 915 MHz

frequency produces the maximum power generation value. The largest power generation values are

60

observed for (b) at the center of the sphere for the 2800 MHz frequency. The next largest power

generation value is seen in (c) for the 2450 MHz frequency. The third and fourth highest power

generation values can be observed in (a) and (d), respectively. In (d), a general trend of enhanced power

generation at the top and bottom of the sphere centerline is noted. The highest recorded value for

power generation of any of the four frequencies is at the 915 MHz value.

Figure 5.9: Power Generation strength along Sphere Centerline of Spherical Beef Nuggets radii (a) 1.0 cm, (b) 2.0 cm, (c) 3.0 cm,
and (d) 5.0 cm.

61

References

1. Ayappa KG, Davis HT, Crapiste G, Davis EA, Gordon J. Microwave heating: an evaluation of
power formulations. Chemical Engineering Science. 1991;46(4):1005-1016.

2. K. G. Ayappa HTD, E. A. Davis, J. Gordon. Two-Dimensional Finite Element Analysis of Microwave
Heating. AlChE Journal. 1992:1577-1592.

3. M. R. Hossan PD. Effects of temperature dependent properties in electromagnetic heating.
International Journal of Heat and Mass Transfer. 2012;55:3412-3422.

4. Mohammad Robiul Hossan DB, Prashanta, Dutta. Analysis of microwave heating for cylindrical
shaped objects. International Journal of Heat and Mass Transfer. 2010:5129-5138.

62

Chapter 6:

Summary and Conclusions

A closed form solution is obtained for the electric field, magnetic field, and power generation

distributions within a spherical shaped dielectric object using Maxwell’s equation. The transverse

electric and magnetic (TEM) wave in spherical coordinate is solved using vector potentials and

separation of variables. Mathematical tools such as Bessel functions, Legendre Polynomials, Infinite

series, and complex number expressions are employed in finding a closed form expression. The

continuity boundary conditions from outside to the inside of the object for the tangential components

of the electric and magnetic field are used. The electromagnetic power absorption is obtained from the

knowledge of the electric and magnetic field distributions using Poynting theorem.

The closed form expression of the electric field and power absorption are evaluated for beef nuggets of

four different sizes (radii of 1.0 cm, 2.0 cm, 3.0 cm and 5 .0 cm) and frequencies of 2800 MHz, 2450

MHz, 915 MHz, and 300 MHz. Numerical tools such as Maple, MATLAB, and the FORTRAN coding

language were used as a CAS, graphing, and as a means of generating data, respectfully. Origin Labs was

utilized to produce 1-D plots and also 2-D polar plots by reading in the data text files generated in the

FORTRAN program.

Results show the presence of local maxima and minima of electric strength within the target object due

to the constructive interference of electromagnetic wave impingement throughout the sphere. The local

maxima and minima of electric field strength vary depending on the sizes and applied frequencies. The

lower frequencies, i.e. longer wavelengths, have less peaks and valleys in the electric field distribution

for the same sized nugget exposed to different applied frequencies. The spatial distribution of

microwave power absorption follows the trend of the electromagnetic field distribution. The number

63

and locations of local maxima and minima of power absorption also depend on the radius of the sphere

and applied frequencies. For instance, the results show that that the strength of the absorbed

electromagnetic wave at the 2450 MHz range has 3 weak peaks close to the center at the vertical plane

of the 5.0 cm radius nugget while it has only one peak at the center of the 1.0 cm radius nugget for the

same vertical plane passing through the center of the nugget.

Results indicate that there is a correlation among the electric field and power absorption distribution,

propagating wavelength within the nugget, and penetration depth and size of the nugget. For instance,

the 300 MHz frequency provides uniform electric field and power absorption distribution for all sizes of

nuggets in this study. This is because the propagating wavelength is about 15 cm, which is much larger

than all nugget radii considered in this study. Results also show that 2800 MHz and 2450 MHz can

provide core heating for 2.0 cm and 3.0 cm radii nuggets while they can facilitate surface burning for the

5.0 cm radius nugget. The analysis shows that the uniform and effective electromagnetic power

absorption can be facilitated by proper design of the object of interest and selection of appropriate

electromagnetic frequencies. The variations of the fundamental parameters (dielectric properties, size,

frequency, etc.) could affect a profound change on the electromagnetic distribution within the chosen

dielectric sphere.

64

Future Work:

The following future work can be recommended to elucidate the effect of other parameters on heat

generation and temperature distribution in spherical shaped object:

1. Generate results and study for different applications such as microwave heat treatment of

cancer tissues or cells.

2. Solve three dimensional transient heat equation with electromagnetic heat generation in

spherical coordinate for spherical shaped objects.

3. Incorporation of temperature dependent properties in numerical algorithm for evaluating heat

generation and temperature distribution.

65

Appendix:

FORTRAN Source Code to Generate 3D Spherical Data for Electric Field, Magnetic Field, and
Power Generation

!

! File: E_H_P_Dbl_spherical_calculator.f95

! Author: Timothy M. Collins Jr.

!

! Started on August 24, 2015

! Finished on September 14, 2015

! Transcription of original MATLAB code

program EHPSphCalc

!this program calculates and stores, in spherical polar coordinates, the

!absolute Electric and Magnetic fields and the (absolute) Power generated

!in a lossy spherical dielectric irradiated by two planar EM radiation

!sources. These sources are arranged 180 deg apart and both point at the

!sphere. One source is placed directly above the sphere, and the other placed

!directly below the sphere. The E components of both EM waves are polarized

!along the "+" x-axis.

!One H component of the EM wave (top side) is polarized along the "+" y-axis,

!while the other component (bottom side) is polarized along the "-" y-axis.

!values are calculated (and stored) at specific r, theta, and phi values;

!these steps are regulated by pre-arranged step sizes. This version of the

!program only calculates E, H, and P for the region inside the sphere.

implicit none

!<<<< user modifiable values >>>>

! E-field constant (V/m)

real (kind=8) :: Econst_o = 4754.3

!number of summed terms for bessel, hankel and legendre functions

integer :: MaxN = 50

!radius of sphere (m)

66

real (kind=8) :: a = 0.01D+00

!max radius E and H-field is calculated to (m)

real (kind=8) :: b = 0.01D+00

!frequency of EM wave

real (kind=8) :: f = 2800.0D+6

!<<<< -------------- >>>>

!more constants

!moved PI to here to fix NaN issue with results.

real (kind=8) :: PI = 4.0D+00*datan(1.0D+00)

real (kind=8) :: uo, w

real (kind=8) :: eo = 8.8541878176D-12

!<<<< user modifiable values >>>>

!dielectric constant

real (kind=8) :: erp = 33.6D+00

!dielectric loss

real (kind=8) :: erdp = 12.6D+00

!set to "1" if material other than ferrite

real (kind=8) :: urp = 1.0D+00

!set to "0" if material other than ferrite

real (kind=8) :: urdp = 0.0D+00

!<<<< ------------------ >>>>

!characters for printing data description fields for display in data files

character :: radiusTxt*5 = 'r (m)'

character :: ndRadiusTxt*8 = 'r (n.d.)'

character :: thetaTxt*8 = 'Th (deg)'

character :: thetaRtxt*8 = 'Th (rad)'

character :: phiTxt*8 = 'Ph (deg)'

67

character :: phiRtxt*8 = 'Ph (rad)'

character :: EabsTxt*11 = 'E abs (V/m)'

character :: HabsTxt*11 = 'H abs (A/m)'

character :: PabsTxt*13 = 'P abs (W/m^3)'

!declaring more vars

complex (kind=8) :: j = (0.0D+00,1.0D+00)

complex (kind=8) :: er, ed

complex (kind=8) :: ur, ud

complex (kind=8) :: Bo, Bd

complex (kind=8) :: no, nd

!vars for calc E, H, and P abs at specific r, theta, phi

real (kind=8) :: rStep, thetaStep, thetaMin, thetaMax, phiStep

real (kind=8) :: r, theta, thetaR, phi, phiR, x

real (kind=8) :: Esquared, Hsquared, Pabs, ans_EsquaredDblReal, ans_HsquaredDblReal, ans_Pabs

integer :: rIntStep, rMaxStep, thetaIntStep, thetaMaxStep, phiIntStep, phiMaxStep

integer :: aMax

!vars for E, H, and P abs estimation at r=0

integer :: counter, rIntStep2, thetaIntStep2, phiIntStep2

integer :: rIntStep3, thetaIntStep3, phiIntStep3

real (kind=8) :: EabsZero, HabsZero, PabsZero

real (kind=8) :: EabsTemp, HabsTemp, PabsTemp

real (kind=8) :: EabsZeroFinal, HabsZeroFinal, PabsZeroFinal

!vars and arrays for building printable 2-dim arrays for E, H, and P abs

integer :: maxRow, maxCol, col_E, col_H, col_P

integer :: counterE, counterH, counterP

integer :: rIntStepE, thetaIntStepE, phiIntStepE

integer :: rIntStepH, thetaIntStepH, phiIntStepH

integer :: rIntStepP, thetaIntStepP, phiIntStepP

real (kind=8), allocatable, dimension(:,:) :: EabsDblWrite

real (kind=8), allocatable, dimension(:,:) :: HabsDblWrite

68

real (kind=8), allocatable, dimension(:,:) :: PabsDblWrite

!additional vars for loop control when writing results to text files

integer :: wCE, wCH, wCP

!declaring 3-dim arrays for storing E, H and P results. size is variable.

real (kind=8), allocatable, dimension(:,:,:) :: EabsDbl3Darray

real (kind=8), allocatable, dimension(:,:,:) :: HabsDbl3Darray

real (kind=8), allocatable, dimension(:,:,:) :: PabsDbl3Darray

!declaring 1-dim arrays for storing r, theta, phi values as they are stepped from min

!to maximum values

real (kind=8), allocatable, dimension(:) :: rArray

real (kind=8), allocatable, dimension(:) :: rNoDimArray

real (kind=8), allocatable, dimension(:) :: thetaArray

real (kind=8), allocatable, dimension(:) :: phiArray

!<<<< user modifiable values >>>>

!this dimension is in meters. this variable sets the step size for "r" as it progresses

!from the center of the sphere (r=0) to the max radius that E, H, and P is calculated to (r=b).

!try to select step size that divides "a" without a remainder.

rStep = 0.002D+00

!this dimension is in degrees. this is the size of the steps that the E and H

!calc will step through as phi progresses from 0 to 180 deg.

thetaStep = 30.0D+00

!this is the absolute min value for theta that will be considered 0 deg in

!calcs. choose thetaStep, thetaMin, and thetaMax carefully! cannot = 0 exactly!

thetaMin = 0.01D+00

!this is the absolute max value for theta that will be considered 180 deg

!in calcs. choose thetaStep, thetaMin, and thetaMax carefully! cannot = 180 exactly!

thetaMax = 179.99D+00

69

!this dimension is in degrees. this is the size of the steps that the E and H

!calc will step through as phi progresses from 0 to 360 deg.

phiStep = 60.0D+00

!<<<< -------------------- >>>>

!assigning values needed to send to calc subroutines

uo = 4*PI*1.0D-7

!angular frequency

w = 2*PI*f

!another error the compiler didn't catch!

!PI = 4.0D+00*datan(1.0D+00)

!further assignments needed to generate values to send to calc subroutines

er = erp - j*erdp

ur = urp - j*urdp

ed = er*eo

ud = ur*uo

Bo = w*dsqrt(eo*uo)

Bd = Bo*zsqrt(er*ur)

no = dsqrt(uo/eo)

nd = no*zsqrt(ur/er)

!determines the total number of steps (nearest integer [round up]) from

!r-min (r=0) to r-max (r=b)

rMaxStep = CEILING(b/rStep);

!needed as MaxStep=1 when r=0.

rMaxStep = rMaxStep + 1;

!determines the total number of steps (nearest integer) from

!r-min (r=0) to r-sphere (r=a)

70

aMax = NINT(a/rStep);

!needed since aMax=1 when r=0.

aMax = aMax+1;

!number of (integer) steps to step theta through calculations. rounding

!down to ensure total angle range is <= 180.

thetaMaxStep = FLOOR((180.0D+00)/thetaStep);

!this is so theta = 0 is included

thetaMaxStep = thetaMaxStep + 1;

!number of (integer) steps to step phi through calculations. rounding

!down to ensure total angle range is <= 360.

phiMaxStep = FLOOR((360.0D+00)/phiStep);

!this is so phi = 0 is included

phiMaxStep = phiMaxStep + 1;

!settting sizes for arrays

!three 3D arrays to hold calc'd values.

allocate(EabsDbl3Darray(rMaxStep,thetaMaxStep,phiMaxStep))

allocate(HabsDbl3Darray(rMaxStep,thetaMaxStep,phiMaxStep))

allocate(PabsDbl3Darray(rMaxStep,thetaMaxStep,phiMaxStep))

!these arrays will be used later when formatting the data from the above 3D arrays to allow

writing to files.

allocate(rArray(rMaxStep))

allocate(rNoDimArray(rMaxStep))

allocate(thetaArray(thetaMaxStep))

allocate(phiArray(phiMaxStep))

!set values at r=0

rArray(1) = 0.0D+00

71

rNoDimArray(1) = 0.0D+00

!<<<< the following sequence of code would be good to move to a subroutine in a future version of

this program >>>>

!hoping for more precision using integer rather than r (real number) directly

do rIntStep = 2,aMax,1

 !using integer to step through radius sizes from r-min to r-max. easier

 !to store integer steps in 3D array. deliberately avoiding case of r=0

 !for now (will address later in program)

 r = 0.0D+00 + rStep*(rIntStep - 1);

 !recording actual value of r to its own array

 rArray(rIntStep) = r;

 !recording actual value of dimensionless r to its own array. since the

 !dielectric sphere is the main item of intrest, the true radius (a) is

 !used to non-dimensionalize.

 rNoDimArray(rIntStep) = r/a;

 !using integers to progress theta angle from 0 to 180 deg (much like for r).

 do thetaIntStep = 1,thetaMaxStep,1

 !using integer to step through radius sizes from theta-min to

 !theta-max. easier to store integer steps in 3D array. reducing int

 !stepper by 1 in below eqn to make math correct.

 theta = 0.0D+00 + thetaStep*(thetaIntStep - 1); !angle in deg

 !recording actual value of theta to its own array

 thetaArray(thetaIntStep) = theta;

 !actual value used in following E/H calcs

 thetaR = theta*(PI/(180.0D+00)); !radians

72

 !the following two if statements adjust the value of theta used in

 !the calc equations when the true value of theta actually equals 0

 !or 180. this is done to keep theta values from reaching the

 !calculating equations that would cause the associated function to

 !crash. in the case of theta, 0 and 180 will cause the

 !calc equations to fail. a sufficient estimate for theta in

 !these cases is a slight off centering from the true value of theta.

 !this slight variation can be adjusted by thetaMin and thetaMax

 !vars.

 !allowing some wiggle room in case theta does not exactly equal 0.

 if (theta < (0.0D+00 + (0.5D+00)*thetaStep)) then

 !this is to approximate theta = 0 as close as possible.

 !following E/H calcs blows up if theta = 0 (exactly).

 theta = thetaMin;

 !actual value used in following E/H calcs

 thetaR = theta*(PI/(180.0D+00)); !radians

 end if

 !allowing some wiggle room in case theta does not exactly equal 180.

 if (theta > (180.0D+00 - (0.5D+00)*thetaStep)) then

 !this is to approximate theta = 180 as close as possible.

 !following E/H calcs blows up if theta = 180 (exactly).

 theta = thetaMax;

 !actual value used in following E/H calcs

 thetaR = theta*(PI/(180.0D+00)); !radians

 end if

 ! -1 < x < 1. used for associated legendre polynomials.

 x = dcos(thetaR);

 !using integers to progress phi angle from 0 to 360 deg (much

73

 !like for r and theta).

 do phiIntStep = 1,phiMaxStep,1

 !using integer to step through radius sizes from phi-min to

 !phi-max. easier to store integer steps in 3D array. reducing

 !int stepper by 1 in below eqn to make math correct.

 phi = 0.0D+00 + phiStep*(phiIntStep - 1); !angle in deg

 !storing the current value of phi (in deg)

 phiArray(phiIntStep) = phi;

 phiR = phi*(PI/(180.0D+00)); !conversion to radians

 !!test for math errors

 !print*, ' r is: ',r

 !calculating E squared before calc E abs. using temp var to hold

 !answer

 call

EdblSquaredStep(PI,MaxN,Bo,Bd,er,ur,r,thetaR,phiR,x,Econst_o,a,b,rMaxStep,aMax,rIntStep,ans_Esqua

redDblReal)

 !!test for math errors

 !print*, 'before assignment, Esquared is: ',Esquared, 'ans_EsquaredDblReal is:

',ans_EsquaredDblReal

 Esquared = ans_EsquaredDblReal

 !!test for math errors

 !print*, 'after assignment, Esquared is: ',Esquared

 !calculating H squared before calc H abs. using temp var to hold

 !answer.

 call

HdblSquaredStep(PI,MaxN,Bo,Bd,er,ur,no,nd,r,thetaR,phiR,x,Econst_o,a,b,rMaxStep,aMax,rIntStep,ans

_HsquaredDblReal)

 !!test for math errors

 !print*, 'before assignment, Hsquared is: ',Hsquared, 'ans_HsquaredDblReal is:

',ans_HsquaredDblReal

74

 Hsquared = ans_HsquaredDblReal

 !!test for math errors

 !print*, 'after assignment, Hsquared is: ',Hsquared

 !very straight forward! again, using temp var.

 call PowerAbsoluteSphereStep(w,eo,erdp,uo,urdp,Esquared,Hsquared,ans_Pabs)

 !!test for math errors

 !print*, 'ans_Pabs is: ',ans_Pabs

 Pabs = ans_Pabs

 !!test for math errors

 !print*, 'Pabs is: ',Pabs

 !the actual E abs value being stored in 3D array. this is for

 !specific r, theta, phi value.

 EabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) = dsqrt(Esquared);

 !!test for math errors

 !print*, 'final E abs value: ', EabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep)

 !the actual H abs value being stored in 3D array. this is for

 !specific r, theta, phi value.

 HabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) = dsqrt(Hsquared);

 !!test for math errors

 !print*, 'final H abs value: ', HabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep)

 !trivial, but simpler this way.

 PabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) = Pabs;

 !!test for math errors

 !print*, 'final P abs value: ',PabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep)

 !print*, ' r is: ',r

75

 end do

 end do

end do

!<<<< -- >>>>

!<<<< time to estimate E, H, and P at r=0. this section of code would also make a good candidate

!for placement in a subroutine, at a future date. >>>>

!this var keeps running total of all the data points, holding E, H, and P values,

!that are used in estimating E, H, and P abs at r=0.

counter = 0

EabsZero = 0.0D+00

!+++++ KILL ++++++++

!HabsZero = 0.0D+00

!+++++ END KILL ++++

PabsZero = 0.0D+00

!needed to access correct r value (one step out from r=0) in 3D arrays

rIntStep2 = 2

 !theta bounded to a certain range (all values not 0 or 180 deg) in this

 !portion of code.

 do thetaIntStep2 = 2,(thetaMaxStep - 1),1

76

 do phiIntStep2 = 1,(phiMaxStep - 1),1 !don't need dup. value at 360 deg.

 counter = counter + 1;

 !reading and storing E value as running total

 EabsTemp = EabsDbl3Darray(rIntStep2,thetaIntStep2,phiIntStep2);

 EabsZero = EabsZero + EabsTemp;

 !++++++++++++++++++++ KILL ++++++++++++++++++++

 !!reading and storing H value as running total

 !HabsTemp = HabsDbl3Darray(rIntStep2,thetaIntStep2,phiIntStep2);

 !

 !HabsZero = HabsZero + HabsTemp;

 !++++++++++++++++++ END KILL ++++++++++++++++++

 !reading and storing P value as running total

 PabsTemp = PabsDbl3Darray(rIntStep2,thetaIntStep2,phiIntStep2);

 PabsZero = PabsZero + PabsTemp;

 end do

 end do

!special case for when theta = 0 deg

rIntStep3 = 2

thetaIntStep3 = 1

phiIntStep3 = 1

!keep reading and storing in running totals

77

EabsTemp = EabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3)

EabsZero = EabsZero + EabsTemp

!++++++++++++++++++++ KILL ++++++++++++++++++++++++++++++++++++

!HabsTemp = HabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3)

!

!HabsZero = HabsZero + HabsTemp

!+++++++++++++++++++ END KILL +++++++++++++++++++++++++++++++++

PabsTemp = PabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3)

PabsZero = PabsZero + PabsTemp

counter = counter + 1

!special case for when theta = 180 deg

rIntStep3 = 2

thetaIntStep3 = thetaMaxStep

phiIntStep3 = 1

!keep reading and storing in running totals

EabsTemp = EabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3)

EabsZero = EabsZero + EabsTemp

!++++++++++++++++++++++++ KILL ++++++++++++++++++++++++++++++++

!HabsTemp = HabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3)

!

!HabsZero = HabsZero + HabsTemp

!++++++++++++++++++++++ END KILL ++++++++++++++++++++++++++++++

78

PabsTemp = PabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3)

PabsZero = PabsZero + PabsTemp

counter = counter + 1

!finally, time to determine best estimate of E, H, and P abs r=0 values.

EabsZeroFinal = EabsZero/counter

!correction to code. H = 0 (always) when r = 0 for this EM wave configuration.

!HabsZeroFinal = HabsZero/counter

HabsZeroFinal = 0.0D+00

PabsZeroFinal = PabsZero/counter

!<<<< -- >>>>

!<<<< the following sequence of code should be moved to a subroutine at a later date. >>>>

!this var determines the max number of rows needed to store the E, H, and P abs data in a

!2D array.

maxRow = (aMax - 1)*(thetaMaxStep)*(phiMaxStep) + 1

!this var only partially functional as total # of data columns have to be manually adjusted and

!the data writen to the files are based on what the user wants to see.

maxCol = 7

!sizing the 2-dim arrays for use later in the program

allocate(EabsDblWrite(maxRow,maxCol))

allocate(HabsDblWrite(maxRow,maxCol))

allocate(PabsDblWrite(maxRow,maxCol))

!<<<< -- >>>>

79

!<<<<this sequence of code will appropriately fill the EabsDblW array with data and then

!write the results to a file. said code should be moved to a subroutine in future. >>>>

!this bit of code takes care of the case when r=0. all values are "0" at r=0, except for E.

do col_E = 1,(maxCol-1),1

 EabsDblWrite(1,col_E) = 0.0D+00

end do

!value for Eabs when r=0

EabsDblWrite(1,maxCol) = EabsZeroFinal

!this var ensures the data from the various original arrays is placed in

!the correct row of the final 2D array

counterE = 1;

!writing the data to the E abs 2D array for eventual storage as a text file

do rIntStepE = 2,aMax,1

 do thetaIntStepE = 1,thetaMaxStep,1

 do phiIntStepE = 1,phiMaxStep,1

 counterE = counterE + 1

 !these series of commands writes the data collected in the

 !various arrays and places them in a 2D array. not able to realy automate column

 !selection as final output in file is dependent on what user wants to see.

 EabsDblWrite(counterE,1) = rArray(rIntStepE)

 EabsDblWrite(counterE,2) = rNoDimArray(rIntStepE)

 EabsDblWrite(counterE,3) = thetaArray(thetaIntStepE)

 EabsDblWrite(counterE,4) = thetaArray(thetaIntStepE)*(PI/(180.0D+00))

 EabsDblWrite(counterE,5) = phiArray(phiIntStepE)

 EabsDblWrite(counterE,6) = phiArray(phiIntStepE)*(PI/(180.0D+00))

 EabsDblWrite(counterE,7) = EabsDbl3Darray(rIntStepE,thetaIntStepE,phiIntStepE)

80

 end do

 end do

end do

!code sequence to write results to file

open(20, file='EabsDblSphData_f2800_r0p01_coarse_test.txt')

 write(20,10) radiusTxt, ndRadiusTxt, thetaTxt, thetaRtxt, phiTxt, phiRtxt, EabsTxt

 10 format(a9, a9, a9, a9, a9, a9, a20)

do wCE = 1,maxRow,1

 !have to keep total width of one line of code under 132 characters

 write(20,11) EabsDblWrite(wCE,1), EabsDblWrite(wCE,2), EabsDblWrite(wCE,3), &

 EabsDblWrite(wCE,4), EabsDblWrite(wCE,5), EabsDblWrite(wCE,6), EabsDblWrite(wCE,7)

 11 format(f9.5, f9.6, f9.4, f9.6, f9.4, f9.6, f20.10)

end do

close(20)

!<<<< -- >>>>

!<<<<this sequence of code will appropriately fill the HabsDblW array with data and then

!write the results to a file. said code should be moved to a subroutine in future. >>>>

!this bit of code takes care of the case when r=0. all values are "0" at r=0, except for H.

do col_H = 1,(maxCol-1),1

 HabsDblWrite(1,col_H) = 0.0D+00

end do

81

!value for Habs when r=0

HabsDblWrite(1,maxCol) = HabsZeroFinal

!this var ensures the data from the various original arrays is placed in

!the correct row of the final 2D array

counterH = 1;

!writing the data to the H abs 2D array for eventual storage as a text file

do rIntStepH = 2,aMax,1

 do thetaIntStepH = 1,thetaMaxStep,1

 do phiIntStepH = 1,phiMaxStep,1

 counterH = counterH + 1

 !these series of commands writes the data collected in the

 !various arrays and places them in a 2D array. not able to realy automate column

 !selection as final output in file is dependent on what user wants to see.

 HabsDblWrite(counterH,1) = rArray(rIntStepH)

 HabsDblWrite(counterH,2) = rNoDimArray(rIntStepH)

 HabsDblWrite(counterH,3) = thetaArray(thetaIntStepH)

 HabsDblWrite(counterH,4) = thetaArray(thetaIntStepH)*(PI/(180.0D+00))

 HabsDblWrite(counterH,5) = phiArray(phiIntStepH)

 HabsDblWrite(counterH,6) = phiArray(phiIntStepH)*(PI/(180.0D+00))

 HabsDblWrite(counterH,7) = HabsDbl3Darray(rIntStepH,thetaIntStepH,phiIntStepH)

 end do

 end do

end do

!code sequence to write results to file

82

open(21, file='HabsDblSphData_f2800_r0p01_coarse_test.txt')

 write(21,12) radiusTxt, ndRadiusTxt, thetaTxt, thetaRtxt, phiTxt, phiRtxt, HabsTxt

 12 format(a9, a9, a9, a9, a9, a9, a20)

do wCH = 1,maxRow,1

 !have to keep total width of one line of code under 132 characters

 write(21,13) HabsDblWrite(wCH,1), HabsDblWrite(wCH,2), HabsDblWrite(wCH,3),

HabsDblWrite(wCH,4), &

 HabsDblWrite(wCH,5), HabsDblWrite(wCH,6), HabsDblWrite(wCH,7)

 13 format(f9.5, f9.6, f9.4, f9.6, f9.4, f9.6, f20.10)

end do

close(21)

!<<<< -- >>>>

!<<<<this sequence of code will appropriately fill the PabsDblW array with data and then

!write the results to a file. said code should be moved to a subroutine in future. >>>>

!this bit of code takes care of the case when r=0. all values are "0" at r=0, except for P.

do col_P = 1,(maxCol-1),1

 PabsDblWrite(1,col_P) = 0.0D+00

end do

!value for Pabs when r=0

PabsDblWrite(1,maxCol) = PabsZeroFinal

!this var ensures the data from the various original arrays is placed in

!the correct row of the final 2D array

counterP = 1;

83

!writing the data to the H abs 2D array for eventual storage as a text file

do rIntStepP = 2,aMax,1

 do thetaIntStepP = 1,thetaMaxStep,1

 do phiIntStepP = 1,phiMaxStep,1

 counterP = counterP + 1

 !these series of commands writes the data collected in the

 !various arrays and places them in a 2D array. not able to realy automate column

 !selection as final output in file is dependent on what user wants to see.

 PabsDblWrite(counterP,1) = rArray(rIntStepP)

 PabsDblWrite(counterP,2) = rNoDimArray(rIntStepP)

 PabsDblWrite(counterP,3) = thetaArray(thetaIntStepP)

 PabsDblWrite(counterP,4) = thetaArray(thetaIntStepP)*(PI/(180.0D+00))

 PabsDblWrite(counterP,5) = phiArray(phiIntStepP)

 PabsDblWrite(counterP,6) = phiArray(phiIntStepP)*(PI/(180.0D+00))

 PabsDblWrite(counterP,7) = PabsDbl3Darray(rIntStepP,thetaIntStepP,phiIntStepP)

 end do

 end do

end do

!code sequence to write results to file

open(22, file='PabsDblSphData_f2800_r0p01_coarse_test.txt')

 write(22,14) radiusTxt, ndRadiusTxt, thetaTxt, thetaRtxt, phiTxt, phiRtxt, PabsTxt

 14 format(a9, a9, a9, a9, a9, a9, a21)

do wCP = 1,maxRow,1

 !have to keep total width of one line of code under 132 characters

 write(22,15) PabsDblWrite(wCP,1), PabsDblWrite(wCP,2), PabsDblWrite(wCP,3),

PabsDblWrite(wCP,4), &

 PabsDblWrite(wCP,5), PabsDblWrite(wCP,6), PabsDblWrite(wCP,7)

84

 15 format(f9.5, f9.6, f9.4, f9.6, f9.4, f9.6, 2E21.10)

end do

close(22)

!<<<< -- >>>>

end program EHPSphCalc

!++

subroutine PowerAbsoluteSphereStep(w,eo,erdp,uo,urdp,Esquared,Hsquared, ans_Pabs)

!this function calculates the absolute (generated) power within a lossy

!dielectric irradiated by a planar EM wave (of any configuration).

!The power is calculated at a

!specific r, theta and phi value (a point value), either inside or outside

!the sphere.

implicit none

!setting up the vars

real (kind = 8) :: w, eo, erdp, uo, urdp, Esquared, Hsquared, ans_Pabs

!the squared terms must have no imaginary components to them as this power

!equation only can work with real numbers.

ans_Pabs = ((1.0D+00)/(2.0D+00))*w*eo*erdp*Esquared + ((1.0D+00)/(2.0D+00))*w*uo*urdp*Hsquared

return

end subroutine PowerAbsoluteSphereStep

!++

subroutine

EdblSquaredStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EsquaredDblReal)

85

!calc's the absolute value of the complete E-field, at a specific r, theta, and phi, for the case

!of a spherical dielectric being irradiated by two planar EM waves, both facing the sphere, but

!spaced 180 degrees apart. The E components

!of the incoming EM waves are both assumed to be polarized along the positive x axis.

implicit none

!setting up the vars

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b

integer :: n, MaxStep, aMax, step

complex (kind = 8) :: er, ur, Bo, Bd

!final values for each component of E (r, theta, phi)

complex (kind = 8) :: ans_ErDbl, ans_EthetaDbl, ans_EphiDbl, EsquaredDbl

!final result must be real

real (kind = 8) :: ans_EsquaredDblReal

!calling the functions

call ErDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_ErDbl)

call EthetaDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EthetaDbl)

call EphiDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EphiDbl)

!!test for computational errors

!print*, 'r = ', r

!print*, 'ThR = ', ThR

!print*, 'PhR = ', PhR

!print*, 'ans_ErDbl = ',ans_ErDbl

!print*, 'ans_EthetaDbl = ',ans_EthetaDbl

!print*, 'ans_EphiDbl = ',ans_EphiDbl

!finding the squared result from the three (complex) components of E (r, theta, phi)

EsquaredDbl =

(ans_ErDbl*DCONJG(ans_ErDbl)+ans_EthetaDbl*DCONJG(ans_EthetaDbl)+ans_EphiDbl*DCONJG(ans_EphiDbl))

!!test for computational errors

!print*, 'EsquaredDbl = ',EsquaredDbl

86

!only need the real component

ans_EsquaredDblReal = REAL((EsquaredDbl),8)

!!test for computational errors

!print*, 'ans_EsquaredDblReal = ',ans_EsquaredDblReal

return

end subroutine EdblSquaredStep

!++

subroutine

HdblSquaredStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HsquaredDblReal)

!calc's the absolute value of the complete H-field, at a specific r, theta, and phi, for the case

!of a spherical dielectric being irradiated by two planar EM waves, both facing the sphere, but

!spaced 180 degrees apart. One H component

!of the EM wave (top side) is polarized along the "+" y-axis, while the other component (bottom

side)

!is polarized along the "-" y-axis.

implicit none

!setting up the vars

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b

integer :: n, MaxStep, aMax, step

complex (kind = 8) :: er, ur, no, nd, Bo, Bd

!final values for each component of H (r, theta, phi)

complex (kind = 8) :: ans_HrDbl, ans_HthetaDbl, ans_HphiDbl, HsquaredDbl

!final result must be real

real (kind = 8) :: ans_HsquaredDblReal

!calling the functions

call HrDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HrDbl)

87

call

HthetaDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HthetaDbl)

call HphiDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HphiDbl)

!!test for computational errors

!print*, 'r = ', r

!print*, 'ThR = ', ThR

!print*, 'PhR = ', PhR

!print*, 'ans_HrDbl = ',ans_HrDbl

!print*, 'ans_HthetaDbl = ',ans_HthetaDbl

!print*, 'ans_HphiDbl = ',ans_HphiDbl

!finding the squared result from the three (complex) components of H (r, theta, phi)

HsquaredDbl =

(ans_HrDbl*DCONJG(ans_HrDbl)+ans_HthetaDbl*DCONJG(ans_HthetaDbl)+ans_HphiDbl*DCONJG(ans_HphiDbl))

!!test for computational errors

!print*, 'HsquaredDbl = ',HsquaredDbl

!only need the real component

ans_HsquaredDblReal = REAL((HsquaredDbl),8)

!!test for computational errors

!print*, 'ans_HsquaredDblReal = ',ans_HsquaredDblReal

return

end subroutine HdblSquaredStep

!+++

subroutine ErDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_ErDbl)

!calc's r component of E-field for the case of a spherical dielectric being irradiated by

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. Both E components

!of the EM wave are assumed to be polarized along the positive x axis.

implicit none

88

!setting up the vars

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b

integer :: m, n, p, MaxStep, aMax, step

complex (kind = 8) :: er, ur, Bo, Bd, j

!final value to send out of subroutine is a single value of E for a single value of r

complex (kind = 8) :: ans_ErDbl

!these subroutine calls have to be formatted in arrays

complex (kind = 8) :: dBr2MSBJ_Bo(0:n)

complex (kind = 8) :: dBr2MSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bo(0:n)

complex (kind = 8) :: MSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bd(0:n)

complex (kind = 8) :: dBr2MSBJ_Bd(0:n)

!the commented out subroutine calls, as seen below, are to make it easier to adapt this

subroutine

!to other related subroutines

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n)!, ans_dn(0:n), ans_fn(0:n),

ans_hn(0:n)

real (kind = 8) :: ans_P1n(0:n)!, ans_dx_P1n(0:n), ans_P1n_div_SinThR(0:n)

!temporary holding locations for running total of E (Etotr) and each value of E at

!each instance of "n" (Ern).

complex (kind = 8) :: Etotr, Ern

!for complex values

j = (0.0D+00, 1.0D+00)

!calling the subroutines needed to determine Er

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n))

call dBr2ModSphBesJ(PI,n,Bd,r,dBr2MSBJ_Bd(0:n))

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n))

call dBr2ModSphBesJ(PI,n,Bo,r,dBr2MSBJ_Bo(0:n))

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n))

call dBr2ModSphHnk2(PI,n,Bo,r,dBr2MSH2_Bo(0:n))

89

call cn_dbl(n,ans_cn(0:n))

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n))

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n))

call AscLegendre(n,x,ans_P1n(0:n))

!!test for math errors

!print*,'Inside ErDblSphereStep subroutine'

!print*,'r = ',r,' ThR = ',ThR,' PhR = ', PhR

!!test for NaN error

!print*, 'Bo in ErdblSphereStep = ',Bo,'. Bd in ErdblSphereStep = ',Bd

!this if statement is for when "r" is less than or equal to the radius of the sphere.

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of

"r" steps

!that the E-field is calculated at each instance of "r", and may be greater than the number of

"r" steps that

!count out to the radius of the sphere.

if (step <= aMax .and. step <= MaxStep) then

 Etotr = (0.0D+00,0.0D+00)

 do m = 1,n,1

 Ern = (j*Eo*dcos(PhR))*ans_gn(m)*(dBr2MSBJ_Bd(m) + MSBJ_Bd(m))*ans_P1n(m)

 Etotr = Etotr + Ern

 !!test for math errors

 !print*,'n = ',m,' dBr2MSBJ_Bd = ',dBr2MSBJ_Bd(m)

 !print*,'n = ',m,' MSBJ_Bd = ',MSBJ_Bd(m)

 !!test to find Nan error

 !print*, 'gn for n = ',m,' in inner loop is: ',ans_gn(m)

 !print*, 'Etotr for n = ',m,' in inner loop is: ',Etotr

 end do

end if

90

!this if statement is for when r is greater than the radius of the sphere

if (step > aMax .and. step <= MaxStep) then

 Etotr = (0.0D+00,0.0D+00)

 do p = 1,n,1

 Ern = (j*Eo*dcos(PhR))*(ans_cn(p)*(dBr2MSBJ_Bo(p) + MSBJ_Bo(p)) &

 + ans_en(p)*(dBr2MSH2_Bo(p) + MSH2_Bo(p)))*ans_P1n(p)

 Etotr = Etotr + Ern

 !!test for math errors

 !print*,'n = ',p,' dBr2MSBJ_Bo = ',dBr2MSBJ_Bo(p)

 !print*,'n = ',p,' MSBJ_Bo = ',MSBJ_Bo(p)

 !print*,'n = ',p,' dBr2MSH2_Bo = ',dBr2MSH2_Bo(p)

 !print*,'n = ',p,' MSH2_Bo = ',MSH2_Bo(p)

 !!test to find Nan error

 !print*, 'cn for n = ',p,' in inner loop is: ',ans_cn(p)

 !print*, 'en for n = ',p,' in inner loop is: ',ans_en(p)

 !print*, 'Etotr for n = ',p,' in outer loop is: ',Etotr

 end do

end if

!the final result!

ans_ErDbl = Etotr

!!test for math errors

!print*,'Exiting ErDblSphereStep subroutine'

return

end subroutine ErDblSphereStep

!+++

subroutine HrDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HrDbl)

91

!calc's r component of H-field for the case of a spherical dielectric being irradiated by

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. One H component

!of the EM wave (top side) is polarized along the "+" y-axis, while the other component (bottom

side)

!is polarized along the "-" y-axis.

implicit none

!setting up the vars

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b

integer :: m, n, p, MaxStep, aMax, step

complex (kind = 8) :: er, ur, no, nd, Bo, Bd, j

!final value to send out of subroutine is a single value of H for a single value of r

complex (kind = 8) :: ans_HrDbl

!these subroutine calls have to be formatted in arrays

complex (kind = 8) :: dBr2MSBJ_Bo(0:n)

complex (kind = 8) :: dBr2MSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bo(0:n)

complex (kind = 8) :: MSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bd(0:n)

complex (kind = 8) :: dBr2MSBJ_Bd(0:n)

!the commented out subroutine calls, as seen below, are to make it easier to adapt this

subroutine

!to other related subroutines

complex (kind=8) :: ans_dn(0:n), ans_fn(0:n), ans_hn(0:n)!, ans_dn(0:n), ans_fn(0:n), ans_hn(0:n)

real (kind=8) :: ans_P1n(0:n)!, ans_dx_P1n(0:n), ans_P1n_div_SinThR(0:n)

!temporary holding locations for running total of H (Htotr) and each value of H at

!each instance of "n" (Hrn).

complex (kind=8) :: Htotr, Hrn

!for complex values

j = (0.0D+00, 1.0D+00)

!calling the subroutines needed to determine Hr

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n))

call dBr2ModSphBesJ(PI,n,Bd,r,dBr2MSBJ_Bd(0:n))

92

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n))

call dBr2ModSphBesJ(PI,n,Bo,r,dBr2MSBJ_Bo(0:n))

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n))

call dBr2ModSphHnk2(PI,n,Bo,r,dBr2MSH2_Bo(0:n))

call dn_dbl(n,ans_dn(0:n))

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n))

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n))

call AscLegendre(n,x,ans_P1n(0:n))

!this if statement is for when "r" is less than or equal to the radius of the sphere.

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of

"r" steps

!that the H-field is calculated at each instance of "r", and may be greater than the number of

"r" steps that

!count out to the radius of the sphere.

if (step <= aMax .and. step <= MaxStep) then

 Htotr = (0.0D+00,0.0D+00)

 do m = 1,n,1

 Hrn = -(j*Eo*dsin(PhR)/nd)*ans_hn(m)*(dBr2MSBJ_Bd(m) + MSBJ_Bd(m))*ans_P1n(m)

 Htotr = Htotr + Hrn

 end do

end if

!this if statement is for when r is greater than the radius of the sphere

if (step > aMax .and. step <= MaxStep) then

 Htotr = (0.0D+00,0.0D+00)

 do p = 1,n,1

 Hrn = -(j*Eo*dsin(PhR)/no)*(ans_dn(p)*(dBr2MSBJ_Bo(p) + MSBJ_Bo(p)) &

 + ans_fn(p)*(dBr2MSH2_Bo(p) + MSH2_Bo(p)))*ans_P1n(p)

93

 Htotr = Htotr + Hrn

 end do

end if

!the final result!

ans_HrDbl = Htotr

return

end subroutine HrDblSphereStep

!+++

subroutine

EthetaDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EthetaDbl)

!calc's theta component of E-field for the case of a spherical dielectric being irradiated by

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. Both E components

!of the EM wave are assumed to be polarized along the positive x-axis.

implicit none

!setting up the vars

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b

integer :: m, n, p, MaxStep, aMax, step

complex (kind = 8) :: er, ur, Bo, Bd, j

!final value to send out of subroutine is a single value of E for a single value of r

complex (kind = 8) :: ans_EthetaDbl

!these subroutine calls have to be formatted in arrays

complex (kind = 8) :: dBrMSBJ_Bo(0:n)

complex (kind = 8) :: dBrMSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bo(0:n)

complex (kind = 8) :: MSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bd(0:n)

complex (kind = 8) :: dBrMSBJ_Bd(0:n)

94

!any commented out subroutine calls, if seen below, are to make it easier to adapt this

subroutine

!to other related subroutines

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n), ans_dn(0:n), ans_fn(0:n),

ans_hn(0:n)

real (kind = 8) :: ans_dxP1n(0:n), ans_P1n_div_sinThR(0:n)!, ans_P1n(0:n)

!temporary holding locations for running total of E (Etotr) and each value of E at

!each instance of "n" (Ern).

complex (kind = 8) :: EtotTheta, Etheta_n

!for complex values

j = (0.0D+00, 1.0D+00)

!calling the subroutines needed to determine Er

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n))

call dBrModSphBesJ(PI,n,Bd,r,dBrMSBJ_Bd(0:n))

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n))

call dBrModSphBesJ(PI,n,Bo,r,dBrMSBJ_Bo(0:n))

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n))

call dBrModSphHnk2(PI,n,Bo,r,dBrMSH2_Bo(0:n))

call cn_dbl(n,ans_cn(0:n))

call dn_dbl(n,ans_dn(0:n))

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n))

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n))

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n))

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n))

!call AscLegendre(n,x,ans_P1n(0:n))

call dxAscLegendre(n,x,ans_dxP1n(0:n))

call AscLegDivSinThR(n,x,ans_P1n_div_sinThR(0:n))

!!test for math errors

!print*,'Inside EthetaDblSphereStep subroutine'

!print*,'r = ',r,' ThR = ',ThR,' PhR = ', PhR

95

!!test for NaN error

!print*, 'Bo in EthetadblSphereStep = ',Bo,'. Bd in EthetadblSphereStep = ',Bd

!this if statement is for when "r" is less than or equal to the radius of the sphere.

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of

"r" steps

!that the E-field is calculated at each instance of "r", and may be greater than the number of

"r" steps that

!count out to the radius of the sphere.

if (step <= aMax .and. step <= MaxStep) then

 EtotTheta = (0.0D+00,0.0D+00)

 do m = 1,n,1

 Etheta_n = (-j*Eo*dcos(PhR)/(Bd*r))*(ans_gn(m)*dBrMSBJ_Bd(m)*dsin(ThR)* &

 ans_dxP1n(m)) - (Eo*dcos(PhR)/(Bd*r))*(ans_hn(m)*MSBJ_Bd(m)*ans_P1n_div_sinThR(m))

 EtotTheta = EtotTheta + Etheta_n

 !!test for math errors

 !print*,'n = ',m,' dBrMSBJ_Bd = ',dBrMSBJ_Bd(m)

 !print*,'n = ',m,' MSBJ_Bd = ',MSBJ_Bd(m)

 end do

end if

!this if statement is for when r is greater than the radius of the sphere

if (step > aMax .and. step <= MaxStep) then

 EtotTheta = (0.0D+00,0.0D+00)

 do p = 1,n,1

 Etheta_n = (-j*Eo*dcos(PhR)/(Bo*r))*(ans_cn(p)*dBrMSBJ_Bo(p) + ans_en(p)*dBrMSH2_Bo(p)) &

 *dsin(ThR)*ans_dxP1n(p) - (Eo*dcos(PhR)/(Bo*r))*(ans_dn(p)*MSBJ_Bo(p) +

ans_fn(p)*MSH2_Bo(p)) &

 *ans_P1n_div_sinThR(p)

 EtotTheta = EtotTheta + Etheta_n

 !!test for math errors

96

 !print*,'n = ',p,' dBrMSBJ_Bo = ',dBrMSBJ_Bo(p)

 !print*,'n = ',p,' MSBJ_Bo = ',MSBJ_Bo(p)

 !print*,'n = ',p,' dBrMSH2_Bo = ',dBrMSH2_Bo(p)

 !print*,'n = ',p,' MSH2_Bo = ',MSH2_Bo(p)

 end do

end if

!the final result!

ans_EthetaDbl = EtotTheta

!!test for math errors

!print*,'Exiting EthetaDblSphereStep subroutine'

return

end subroutine EthetaDblSphereStep

!+++

subroutine

HthetaDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HthetaDbl)

!calc's theta component of H-field for the case of a spherical dielectric being irradiated by

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. One H component

!of the EM wave (top side) is polarized along the "+" y-axis, while the other component (bottom

side)

!is polarized along the "-" y-axis.

implicit none

!setting up the vars

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b

integer :: m, n, p, MaxStep, aMax, step

complex (kind = 8) :: er, ur, no, nd, Bo, Bd, j

!final value to send out of subroutine is a single value of E for a single value of r

complex (kind = 8) :: ans_HthetaDbl

97

!these subroutine calls have to be formatted in arrays

complex (kind = 8) :: dBrMSBJ_Bo(0:n)

complex (kind = 8) :: dBrMSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bo(0:n)

complex (kind = 8) :: MSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bd(0:n)

complex (kind = 8) :: dBrMSBJ_Bd(0:n)

!any commented out subroutine calls, if seen below, are to make it easier to adapt this

subroutine

!to other related subroutines

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n), ans_dn(0:n), ans_fn(0:n),

ans_hn(0:n)

real (kind = 8) :: ans_dxP1n(0:n), ans_P1n_div_sinThR(0:n)!,ans_P1n(0:n)

!temporary holding locations for running total of E (Etotr) and each value of E at

!each instance of "n" (Ern).

complex (kind = 8) :: HtotTheta, Htheta_n

!for complex values

j = (0.0D+00, 1.0D+00)

!calling the subroutines needed to determine Er

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n))

call dBrModSphBesJ(PI,n,Bd,r,dBrMSBJ_Bd(0:n))

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n))

call dBrModSphBesJ(PI,n,Bo,r,dBrMSBJ_Bo(0:n))

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n))

call dBrModSphHnk2(PI,n,Bo,r,dBrMSH2_Bo(0:n))

call cn_dbl(n,ans_cn(0:n))

call dn_dbl(n,ans_dn(0:n))

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n))

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n))

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n))

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n))

!call AscLegendre(n,x,ans_P1n(0:n))

call dxAscLegendre(n,x,ans_dxP1n(0:n))

98

call AscLegDivSinThR(n,x,ans_P1n_div_sinThR(0:n))

!this if statement is for when "r" is less than or equal to the radius of the sphere.

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of

"r" steps

!that the E-field is calculated at each instance of "r", and may be greater than the number of

"r" steps that

!count out to the radius of the sphere.

if (step <= aMax .and. step <= MaxStep) then

 HtotTheta = (0.0D+00,0.0D+00)

 do m = 1,n,1

 Htheta_n = (Eo*dsin(PhR)/(Bd*nd*r))*(ans_gn(m)*MSBJ_Bd(m)*ans_P1n_div_sinThR(m)) &

 + (j*Eo*dsin(PhR)/(Bd*nd*r))*(ans_hn(m)*dBrMSBJ_Bd(m)*dsin(ThR)*ans_dxP1n(m))

 HtotTheta = HtotTheta + Htheta_n

 end do

end if

!this if statement is for when r is greater than the radius of the sphere

if (step > aMax .and. step <= MaxStep) then

 HtotTheta = (0.0D+00,0.0D+00)

 do p = 1,n,1

 Htheta_n = (Eo*dsin(PhR)/(Bo*no*r))*(ans_cn(p)*MSBJ_Bo(p) + ans_en(p)*MSH2_Bo(p)) &

 *ans_P1n_div_sinThR(p) + (j*Eo*dsin(PhR)/(Bo*no*r))*(ans_dn(p)*dBrMSBJ_Bo(p) +

ans_fn(p)*dBrMSH2_Bo(p)) &

 *dsin(ThR)*ans_dxP1n(p)

 HtotTheta = HtotTheta + Htheta_n

 end do

end if

!the final result!

99

ans_HthetaDbl = HtotTheta

return

end subroutine HthetaDblSphereStep

!+++

subroutine EphiDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EphiDbl)

!calc's phi component of E-field for the case of a spherical dielectric being irradiated by

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. Both E components

!of the EM wave are assumed to be polarized along the positive x-axis.

implicit none

!setting up the vars

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b

integer :: m, n, p, MaxStep, aMax, step

complex (kind = 8) :: er, ur, Bo, Bd, j

!final value to send out of subroutine is a single value of E for a single value of r

complex (kind=8) :: ans_EphiDbl

!these subroutine calls have to be formatted in arrays

complex (kind = 8) :: dBrMSBJ_Bo(0:n)

complex (kind = 8) :: dBrMSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bo(0:n)

complex (kind = 8) :: MSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bd(0:n)

complex (kind = 8) :: dBrMSBJ_Bd(0:n)

!any commented out subroutine calls, if seen below, are to make it easier to adapt this

subroutine

!to other related subroutines

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n), ans_dn(0:n), ans_fn(0:n),

ans_hn(0:n)

real (kind = 8) :: ans_dxP1n(0:n), ans_P1n_div_sinThR(0:n)!,ans_P1n(0:n)

!temporary holding locations for running total of E (Etotr) and each value of E at

!each instance of "n" (Ern).

100

complex (kind = 8) :: EtotPhi, Ephi_n

!for complex values

j = (0.0D+00, 1.0D+00)

!calling the subroutines needed to determine Er

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n))

call dBrModSphBesJ(PI,n,Bd,r,dBrMSBJ_Bd(0:n))

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n))

call dBrModSphBesJ(PI,n,Bo,r,dBrMSBJ_Bo(0:n))

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n))

call dBrModSphHnk2(PI,n,Bo,r,dBrMSH2_Bo(0:n))

call cn_dbl(n,ans_cn(0:n))

call dn_dbl(n,ans_dn(0:n))

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n))

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n))

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n))

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n))

!call AscLegendre(n,x,ans_P1n(0:n))

call dxAscLegendre(n,x,ans_dxP1n(0:n))

call AscLegDivSinThR(n,x,ans_P1n_div_sinThR(0:n))

!!test for NaN error

!print*, 'Bo in EphidblSphereStep = ',Bo,' Bd in EphidblSphereStep = ',Bd

!this if statement is for when "r" is less than or equal to the radius of the sphere.

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of

"r" steps

!that the E-field is calculated at each instance of "r", and may be greater than the number of

"r" steps that

!count out to the radius of the sphere.

if (step <= aMax .and. step <= MaxStep) then

 EtotPhi = (0.0D+00,0.0D+00)

 do m = 1,n,1

 Ephi_n = (-j*Eo*dsin(PhR)/(Bd*r))*(ans_gn(m)*dBrMSBJ_Bd(m)*ans_P1n_div_sinThR(m)) &

101

 - (Eo*dsin(PhR)/(Bd*r))*(ans_hn(m)*MSBJ_Bd(m)*dsin(ThR)*ans_dxP1n(m))

 EtotPhi = EtotPhi + Ephi_n

 end do

end if

!this if statement is for when r is greater than the radius of the sphere

if (step > aMax .and. step <= MaxStep) then

 EtotPhi = (0.0D+00,0.0D+00)

 do p = 1,n,1

 Ephi_n = (-j*Eo*dsin(PhR)/(Bo*r))*(ans_cn(p)*dBrMSBJ_Bo(p) + ans_en(p)*dBrMSH2_Bo(p)) &

 *ans_P1n_div_sinThR(p) - (Eo*dsin(PhR)/(Bo*r))*(ans_dn(p)*MSBJ_Bo(p) +

ans_fn(p)*MSH2_Bo(p)) &

 *dsin(ThR)*ans_dxP1n(p)

 EtotPhi = EtotPhi + Ephi_n

 end do

end if

!the final result!

ans_EphiDbl = EtotPhi

return

end subroutine EphiDblSphereStep

!+++

subroutine

HphiDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HphiDbl)

!calc's phi component of H-field for the case of a spherical dielectric being irradiated by

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. One H component

!of the EM wave (top side) is polarized along the "+" y-axis, while the other component (bottom

side)

102

!is polarized along the "-" y-axis.

implicit none

!setting up the vars

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b

integer :: m, n, p, MaxStep, aMax, step

complex (kind = 8) :: er, ur, no, nd, Bo, Bd, j

!final value to send out of subroutine is a single value of E for a single value of r

complex (kind = 8) :: ans_HphiDbl

!these subroutine calls have to be formatted in arrays

complex (kind = 8) :: dBrMSBJ_Bo(0:n)

complex (kind = 8) :: dBrMSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bo(0:n)

complex (kind = 8) :: MSH2_Bo(0:n)

complex (kind = 8) :: MSBJ_Bd(0:n)

complex (kind = 8) :: dBrMSBJ_Bd(0:n)

!any commented out subroutine calls, if seen below, are to make it easier to adapt this

subroutine

!to other related subroutines

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n), ans_dn(0:n), ans_fn(0:n),

ans_hn(0:n)

real (kind = 8) :: ans_dxP1n(0:n), ans_P1n_div_sinThR(0:n)!,ans_P1n(0:n)

!temporary holding locations for running total of E (Etotr) and each value of E at

!each instance of "n" (Ern).

complex (kind = 8) :: HtotPhi, Hphi_n

!for complex values

j = (0.0D+00, 1.0D+00)

!calling the subroutines needed to determine Er

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n))

call dBrModSphBesJ(PI,n,Bd,r,dBrMSBJ_Bd(0:n))

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n))

call dBrModSphBesJ(PI,n,Bo,r,dBrMSBJ_Bo(0:n))

103

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n))

call dBrModSphHnk2(PI,n,Bo,r,dBrMSH2_Bo(0:n))

call cn_dbl(n,ans_cn(0:n))

call dn_dbl(n,ans_dn(0:n))

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n))

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n))

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n))

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n))

!call AscLegendre(n,x,ans_P1n(0:n))

call dxAscLegendre(n,x,ans_dxP1n(0:n))

call AscLegDivSinThR(n,x,ans_P1n_div_sinThR(0:n))

!this if statement is for when "r" is less than or equal to the radius of the sphere.

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of

"r" steps

!that the E-field is calculated at each instance of "r", and may be greater than the number of

"r" steps that

!count out to the radius of the sphere.

if (step <= aMax .and. step <= MaxStep) then

 HtotPhi = (0.0D+00,0.0D+00)

 do m = 1,n,1

 Hphi_n = (-Eo*dcos(PhR)/(Bd*nd*r))*(ans_gn(m)*MSBJ_Bd(m)*dsin(ThR)*ans_dxP1n(m)) &

 - (j*Eo*dcos(PhR)/(Bd*nd*r))*(ans_hn(m)*dBrMSBJ_Bd(m)*ans_P1n_div_sinThR(m))

 HtotPhi = HtotPhi + Hphi_n

 end do

end if

!this if statement is for when r is greater than the radius of the sphere

if (step > aMax .and. step <= MaxStep) then

 HtotPhi = (0.0D+00,0.0D+00)

 do p = 1,n,1

104

 Hphi_n = (-Eo*dcos(PhR)/(Bo*no*r))*(ans_cn(p)*MSBJ_Bo(p) + ans_en(p)*MSH2_Bo(p)) &

 *dsin(ThR)*ans_dxP1n(p) - (j*Eo*dcos(PhR)/(Bo*no*r))*(ans_dn(p)*dBrMSBJ_Bo(p) +

ans_fn(p)*dBrMSH2_Bo(p)) &

 *ans_P1n_div_sinThR(p)

 HtotPhi = HtotPhi + Hphi_n

 end do

end if

!the final result!

ans_HphiDbl = HtotPhi

return

end subroutine HphiDblSphereStep

!+++

subroutine ModSphBesJ(PI,n,k,r,ans_MSBJ)

 !calc's modified spherical bessel funct of 1st kind

 implicit none

 real (kind = 8), intent(in) :: PI

 integer, intent(in) :: n

 integer :: l

 real (kind = 8) :: v,vm

 real (kind = 8), intent(in) :: r

 complex (kind = 8) :: cbj(0:n)

 complex (kind = 8) :: cdj(0:n)

 complex (kind = 8) :: cby(0:n)

 complex (kind = 8) :: cdy(0:n)

 complex (kind = 8), intent(out) :: ans_MSBJ(0:n)

 complex (kind = 8) :: z

 complex (kind = 8), intent(in) :: k

105

 v = n + 0.5D+00

 z = k*r

 ! !test for math errors

 ! print*,'in ModSphBesJ subroutine'

 ! print*,'k = ',k,' r = ',r

 call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n))

 do l = 0,n

 !D+00 added to "2"

 ans_MSBJ(l) = zsqrt(PI*k*r/(2.0D+00))*cbj(l)

 ! !test for math errors

 ! print*, 'n is: ',l

 ! print*,'J(n+1/2) = ',cbj(l)

 ! print*,'MSBJ(n) = ', ans_MSBJ(l)

 end do

 ! !test for math errors

 ! print*, 'exiting subroutine ModSphBesJ.'

 return

end subroutine ModSphBesJ

!+++

subroutine ModSphHnk2(PI,n,k,r,ans_MSH2)

 !calc's modified spherical hankel function of 2nd kind

 !MSHankel(2) = MSBJ -j*MSBY

 implicit none

 real (kind = 8), intent(in) :: PI

 integer, intent(in) :: n

 integer :: l

 complex (kind = 8) j

 complex (kind = 8), intent(out) :: ans_MSH2(0:n)

106

 complex (kind = 8) cbj(0:n)

 complex (kind = 8) cdj(0:n)

 complex (kind = 8) cby(0:n)

 complex (kind = 8) cdy(0:n)

 real (kind = 8) v,vm

 real (kind = 8), intent(in) :: r

 complex (kind = 8) z

 complex (kind = 8), intent(in) :: k

 j=(0.0D+00,1.0D+00)

 v = n + 0.5D+00

 z = k*r

 ! !testing for math errors

 ! print*,'in ModSphHnk2 subroutine'

 ! print*,'k = ',k,' r = ',r

 call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n))

 do l = 0,n

 !D+00 added to "2"

 ans_MSH2(l) = zsqrt(PI*k*r/(2.0D+00))*(cbj(l) - (j*cby(l)))

 ! !test for math errors

 ! print*, 'n is ',l, ' ans_MSH2 is ', ans_MSH2(l)

 ! print*, 'J(n+1/2) = ',cbj(l)

 ! print*, 'Y(n+1/2) = ',cby(l)

 ! print*, 'H2(n) = ',(cbj(l) - (j*cby(l)))

 ! print*, 'ans_MSH2(n) = ',ans_MSH2(l)

 end do

 ! !testing for math errors

 ! print*, 'exiting subroutine ModSphHnk2.'

 return

end subroutine ModSphHnk2

107

!+++

subroutine dBrModSphBesJ(PI,n,k,r,ans_dkrMSBJ)

 !calc's derivative of modified spherical bessel funct of 1st kind

 implicit none

 real (kind = 8) :: PI

 integer :: n

 integer :: m,l_0,l_1, l_2, l_3

 real (kind = 8) :: v, vm, w

 real (kind = 8) :: r

 complex (kind = 8) :: cbj(0:n)

 complex (kind = 8) :: cdj(0:n)

 complex (kind = 8) :: cby(0:n)

 complex (kind = 8) :: cdy(0:n)

 !these four complex arrays are needed for the second component of the derivative of MSBJ

routine.

 !they are related to n by: m=n+1

 complex (kind = 8), allocatable, dimension(:) :: cbj2

 complex (kind = 8), allocatable, dimension(:) :: cdj2

 complex (kind = 8), allocatable, dimension(:) :: cby2

 complex (kind = 8), allocatable, dimension(:) :: cdy2

 complex (kind = 8) :: dkrMSBJ1(0:n)

 complex (kind = 8) :: dkrMSBJ2(0:n)

 complex (kind = 8) :: dkrMSBJ3(0:n)

 complex (kind = 8) :: ans_dkrMSBJ(0:n)

 complex (kind = 8) :: z

 complex (kind = 8) :: k

 !!test

 !print*, 'in subroutine. after var declarations.'

 m = n + 1

 !now that m is known, exact array sizes can be assigned to these four complex arrays.

 allocate(cbj2(0:m))

 allocate(cdj2(0:m))

 allocate(cby2(0:m))

 allocate(cdy2(0:m))

 !!test

108

 !print*, 'in subroutine. after allocations for "m".'

 v = n + 0.5D+00

 z = k*r

 !print*,'PI is: ',PI,' k is: ',k,' r is: ',r,' z is: ',z

 ! !testing for math errors

 ! print*,'in dBrModSphBesJ subroutine'

 ! print*,' k = ',k,' r = ',r

 call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n))

 !broke derivative of besselJ into three parts for ease of programming

 !!test

 !print*, 'in subroutine. after calling cjyva (v=n+0.5)'

 !first part

 do l_1 = 0,n

 !D+00 added to "0.25" and "2"

 dkrMSBJ1(l_1) = ((0.25D+00)*(dsqrt(2.0D+00)*PI)/zsqrt(PI*k*r))*cbj(l_1)

 !!test

 !print*, 'dkrMSBJ1 numerator is: ',(1/4)*(dsqrt(2.0D+00)*PI)

 !print*, 'dkrMSBJ1 denominator is: ',zsqrt(PI*k*r)

 ! !testing for math errors

 ! print*, 'n = ', l_1,' Jn+1/2 = ',cbj(l_1)

 end do

 !!test

 !print*, 'in subroutine. after determining dkrMSBJ1.'

 !third part

 do l_3 = 0,n

 !!!!!!! <<<<<need to re-familarize with cjyva sub routine>>>>>

 !D+00 added to "0.5" and "2"

 dkrMSBJ3(l_3) = (0.5D+00)*zsqrt((2.0D+00)*PI*k*r)*((l_3 +

((1.0D+00)/(2.0D+00)))*cbj(l_3))/(k*r)

109

 !!!!!!! <<<<<need to re-familarize with cjyva sub routine>>>>>

 !!test

 !print*, 'dkrMSBJ3 numerator is: ',(1/2)*zsqrt(2*PI*k*r)

 !print*, 'dkrMSBJ3 denominator is: ',(k*r)

 !print*, 'l_3 = ', l_3,' dkrMSBJ3 = ', dkrMSBJ3(l_3),' cbj = ',cbj(l_3)

 end do

 !!test

 !print*, 'in subroutine. after determining dkrMSBJ3.'

 w = n + 1.5D+00

 !!test

 !w=m+0.5

 call cjyva(w,z,vm,cbj2(0:m),cdj2(0:m),cby2(0:m),cdy2(0:m))

 !!test

 !print*, 'in subroutine. after calling cjyva for w=n+1.5.'

 !second part

 !because w=n+1.5, and because of the way cbj2 (and the others) calcuate values for each

member of the array, the array values

 !from cbj2 (and the others) must be shifted over by one value when assigning the results to

ans_dkrMSBJ2 array.

 do l_2 = 1,m

 !D+00 added to "0.5" and "2"

 dkrMSBJ2(l_2 - 1) = -(0.5D+00)*zsqrt((2.0D+00)*PI*k*r)*cbj2(l_2) !note deliberate shift

in array.

 ! !test for math errors

 ! print*, 'n = ', l_2 - 1,' Jn+3/2 = ',cbj2(l_2)

 end do

 !!test

 !print*, 'in subroutine. after determining dkrMSBJ2.'

 !putting all three parts together for final answer

 do l_0 = 0,n

 ans_dkrMSBJ(l_0) = dkrMSBJ1(l_0) + dkrMSBJ2(l_0) + dkrMSBJ3(l_0)

 ! !test

110

 ! print*, 'n = ', l_0,' dkrMSBJ(n) = ', ans_dkrMSBJ(l_0)

 end do

 !!test

 !print*, 'in subroutine. after determining dkrMSBJ.'

 deallocate(cbj2)

 !!test

 !print*, 'in subroutine. after deallocating cbj2'

 deallocate(cdj2)

 !!test

 !print*, 'in subroutine. after deallocating cdj2'

 deallocate(cby2)

 !!test

 !print*, 'in subroutine. after deallocating cby2'

 deallocate(cdy2)

 !!test

 !print*, 'in subroutine. after deallocating cdy2'

 ! !test

 ! print*, 'exiting subroutine dBrModSphBesJ.'

 return

end subroutine dBrModSphBesJ

!++

subroutine dBrModSphHnk2(PI,n,k,r,ans_dkrMSH2)

 !calc's derivative of modified spherical hankel funct of 2nd kind

 !MSHankel(2) = MSBJ -j*MSBY

 implicit none

 real (kind = 8), intent(in) :: PI

 integer :: m, l_0, l_1, l_2, l_3

 integer, intent(in) :: n

 real (kind = 8) v,vm,w

 real (kind = 8), intent(in) :: r

 complex (kind = 8) cbj(0:n)

 complex (kind = 8) cdj(0:n)

111

 complex (kind = 8) cby(0:n)

 complex (kind = 8) cdy(0:n)

 !these four complex arrays are needed for the second component of the derivative of MSBJ

routine.

 !they are related to n by: m=n+1

 complex (kind = 8), allocatable, dimension(:) :: cbj2

 complex (kind = 8), allocatable, dimension(:) :: cdj2

 complex (kind = 8), allocatable, dimension(:) :: cby2

 complex (kind = 8), allocatable, dimension(:) :: cdy2

 complex (kind = 8) j

 complex (kind = 8), intent(out) :: ans_dkrMSH2(0:n)

 complex (kind = 8) dkrMSH2_1(0:n)

 complex (kind = 8) dkrMSH2_2(0:n)

 complex (kind = 8) dkrMSH2_3(0:n)

 complex (kind = 8) z

 complex (kind = 8), intent(in) :: k

 m = n + 1

 !now that m is known, exact array sizes can be assigned to these four complex arrays.

 allocate(cbj2(0:m))

 allocate(cdj2(0:m))

 allocate(cby2(0:m))

 allocate(cdy2(0:m))

 j = (0.0D+00,1.0D+00)

 v = n + 0.5D+00

 z = k*r

 ! !testing for math errors

 ! print*,'in dBrModSphHnk2 subroutine'

 ! print*,'k = ',k,' r = ',r

 call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n))

 !broke derivative of hankel2 into three parts for ease of programming

 !first part

112

 do l_1 = 0,n

 !D+00 added to "0.25" and "2"

 dkrMSH2_1(l_1) = ((0.25D+00)*(PI*dsqrt(2.0D+00))/zsqrt(PI*k*r))*(cbj(l_1) - (j*cby(l_1)))

 ! !test

 ! print*, 'n = ',l_1,' H2(n+1/2) = ',(cbj(l_1) - (j*cby(l_1)))

 end do

 !third part

 do l_3 = 0,n

 !D+00 added to "0.5" and "2"

 dkrMSH2_3(l_3) = (0.5D+00)*zsqrt((2.0D+00)*PI*k*r)*(l_3+(0.5D+00))*(cbj(l_3) -

(j*cby(l_3)))/(k*r)

 !!test

 !print*, 'l3=', l_3,' dkrMSH2_3=', dkrMSH2_3(l_3)

 end do

 w = n + 1.5D+00

 call cjyva(w,z,vm,cbj2(0:m),cdj2(0:m),cby2(0:m),cdy2(0:m))

 !second part

 !because w=n+1.5, and because of the way cbj2 (and the others) calcuate values for each

member of the array, the array values

 !from cbj2 (and the others) must be shifted over by one value when assigning the results to

ans_dkrMSH2_2 array.

 do l_2 = 1,m

 !D+00 added to "0.5" and "2"

 dkrMSH2_2(l_2 - 1) = -(0.5D+00)*zsqrt((2.0D+00)*PI*k*r)*(cbj2(l_2) - (j*cby2(l_2)))

 ! !test

 ! print*, 'n = ',l_2 - 1,' H2(n+3/2) = ',(cbj2(l_2) -(j*cby(l_2)))

 end do

 !putting all three parts together for final answer

 do l_0 = 0,n

 ans_dkrMSH2(l_0) = dkrMSH2_1(l_0)+dkrMSH2_2(l_0)+dkrMSH2_3(l_0)

 ! !test

 ! print*, 'n = ', l_0,' dkrMSH2(n) = ', ans_dkrMSH2(l_0)

 end do

113

 deallocate(cbj2)

 deallocate(cdj2)

 deallocate(cby2)

 deallocate(cdy2)

 ! !test

 ! print*, 'exiting subroutine dBrModSphHnk2.'

 return

end subroutine dBrModSphHnk2

!+++

subroutine dBr2ModSphBesJ(PI,n,k,r,ans_dkr2MSBJ)

 !calc's 2nd derivative of modified spherical bessel funct of 1st kind

 implicit none

 real (kind = 8) :: PI

 integer, intent(in) :: n

 integer :: m, l_0, l_1, l_2

 real (kind = 8) :: v, vm, w

 real (kind = 8) :: r

 complex (kind = 8) cbj(0:n)

 complex (kind = 8) cdj(0:n)

 complex (kind = 8) cby(0:n)

 complex (kind = 8) cdy(0:n)

 !these four complex arrays are needed for the second component of the derivative of MSBJ

routine.

 !they are used for the "n+3/2" case and are related to n by: m=n+1

 complex (kind = 8), allocatable, dimension(:) :: cbj2

 complex (kind = 8), allocatable, dimension(:) :: cdj2

 complex (kind = 8), allocatable, dimension(:) :: cby2

 complex (kind = 8), allocatable, dimension(:) :: cdy2

 complex (kind = 8) BesselJ12(0:n)

 complex (kind = 8) BesselJ32(0:n)

 !complex (kind = 8) dkr2MSBJ3(0:n)

114

 complex (kind = 8) :: ans_dkr2MSBJ(0:n)

 complex (kind = 8) :: z

 complex (kind = 8) :: k

 !!test

 !print*, 'in subroutine. after var declarations.'

 m = n + 1

 !now that m is known, exact array sizes can be assigned to these four complex arrays.

 allocate(cbj2(0:m))

 allocate(cdj2(0:m))

 allocate(cby2(0:m))

 allocate(cdy2(0:m))

 !!test

 !print*, 'in subroutine. after allocations for "m".'

 v = n + 0.5D+00

 z = k*r

 call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n))

 !broke derivative of besselJ into three parts for ease of programming

 !!test

 !print*, 'in subroutine. after calling cjyva (v=n+0.5)'

 !!test for math errors

 !print*,'r = ',r,' k = ',k,' z = k*r = ',k*r

 !print*,'PI = ',PI,' z = ',z

 ! !test for math errors

 ! print*, 'in subroutine dBr2ModSphBesJ.'

 ! print*,' k = ',k,' r = ',r

 !first part

 do l_1 = 0,n

 BesselJ12(l_1) = cbj(l_1)

 !!test for math error

115

 !print*, 'l1 = ', l_1,' BesselJ12 = ', BesselJ12(l_1)

 end do

 !!test

 !print*, 'in subroutine. after determining dkr2MSBJ12.'

 w = n + 1.5D+00

 !!test

 !w = m + 0.5

 call cjyva(w,z,vm,cbj2(0:m),cdj2(0:m),cby2(0:m),cdy2(0:m))

 !!test

 !print*, 'in subroutine. after calling cjyva for w=n+1.5.'

 !second part

 !because w=n+1.5, and because of the way cbj2 (and the others) calcuate values for each

member of the array, the array values

 !from cbj2 (and the others) must be shifted over by one value when assigning the results to

ans_dkrMSBJ2 array.

 do l_2 = 1,m

 BesselJ32(l_2 - 1) = cbj2(l_2) !note deliberate shift in array.

 !!test for math error

 !print*, 'l2 - 1 = ', l_2 - 1,' BesselJ32 = ', BesselJ32(l_2-1)

 end do

 !!test

 !print*, 'in subroutine. after determining dkrMSBJ2.'

 !putting all parts together for final answer

 do l_0=0,n

 ans_dkr2MSBJ(l_0) = -

(0.125D+00)*((dsqrt(2.0D+00)*BesselJ12(l_0)*(PI**2.0D+00))/((PI*k*r)**(3.0D+00/2.0D+00))) &

 + (1.0D+00/2.0D+00)*dsqrt(2.0D+00)*(-BesselJ32(l_0)+(((l_0 +

1.0D+00/2.0D+00)*BesselJ12(l_0))/ &

 (k*r)))*PI/(zsqrt(PI*k*r)) + (1.0D+00/2.0D+00)*dsqrt(2.0D+00)*zsqrt(PI*k*r)* &

 (-BesselJ12(l_0) + (((l_0 + 3.0D+00/2.0D+00)*BesselJ32(l_0))/(k*r)) &

 - (((l_0 + 1.0D+00/2.0D+00)*BesselJ12(l_0))/((k*r)**2.0D+00)) + ((l_0 + 1.0D+00/2.0D+00)

&

 *(-BesselJ32(l_0) + (((l_0 + 1.0D+00/2.0D+00)*BesselJ12(l_0))/(k*r))))/(k*r))

 ! !test

116

 ! print*, 'n = ', l_0,' dkr2MSBJ(n) = ', ans_dkr2MSBJ(l_0)

 end do

 !!test

 !print*, 'in subroutine. after determining dkr2MSBJ.'

 deallocate(cbj2)

 !!test

 !print*, 'in subroutine. after deallocating cbj2'

 deallocate(cdj2)

 !!test

 !print*, 'in subroutine. after deallocating cdj2'

 deallocate(cby2)

 !!test

 !print*, 'in subroutine. after deallocating cby2'

 deallocate(cdy2)

 !!test

 !print*, 'in subroutine. after deallocating cdy2'

 ! !test

 ! print*, 'exiting subroutine dBr2ModSphBesJ.'

 return

end subroutine dBr2ModSphBesJ

!+++

subroutine dBr2ModSphHnk2(PI,n,k,r,ans_dkr2MSH2)

 !calc's 2nd derivative of modified spherical hankel funct of 2nd kind

 implicit none

 real (kind = 8), intent(in) :: PI

 integer, intent(in) :: n

 integer :: m, l_0, l_1, l_2

 real (kind = 8) v, vm, w

 real (kind = 8), intent(in) :: r

 complex (kind = 8) cbj(0:n)

 complex (kind = 8) cdj(0:n)

117

 complex (kind = 8) cby(0:n)

 complex (kind = 8) cdy(0:n)

 !these four complex arrays are needed for the second component of the derivative of MSBJ

routine.

 !they are used for the "n+3/2" case and are related to n by: m=n+1

 complex (kind = 8), allocatable, dimension(:) :: cbj2

 complex (kind = 8), allocatable, dimension(:) :: cdj2

 complex (kind = 8), allocatable, dimension(:) :: cby2

 complex (kind = 8), allocatable, dimension(:) :: cdy2

 complex (kind = 8) Hankel212(0:n)

 complex (kind = 8) Hankel232(0:n)

 !complex (kind = 8) dkr2MSH23(0:n)

 complex (kind = 8), intent(out) :: ans_dkr2MSH2(0:n)

 complex (kind = 8) z, j

 complex (kind = 8), intent(in) :: k

 !!test

 !print*, 'in subroutine. after var declarations.'

 m = n + 1

 !now that m is known, exact array sizes can be assigned to these four complex arrays.

 allocate(cbj2(0:m))

 allocate(cdj2(0:m))

 allocate(cby2(0:m))

 allocate(cdy2(0:m))

 ! !test for math errors

 ! print*, 'in subroutine dBr2ModSphHnk2.'

 j = (0.0D+00,1.0D+00)

 v = n + 0.5D+00

 z = k*r

 ! !testing for math errors

 ! print*,'k = ',k,' r = ',r

 call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n))

 !broke derivative of besselJ into three parts for ease of programming

118

 !!test

 !print*, 'in subroutine. after calling cjyva (v=n+0.5)'

 !first part

 do l_1 = 0,n

 Hankel212(l_1) = (cbj(l_1) - (j*cby(l_1)))

 ! !testing for math errors

 ! print*, 'n = ', l_1,' Hankel212(n) = ', Hankel212(l_1)

 end do

 !!test

 !print*, 'in subroutine. after determining dkr2MSH212.'

 w = n + 1.5D+00

 !!test

 !w = m + 0.5

 call cjyva(w,z,vm,cbj2(0:m),cdj2(0:m),cby2(0:m),cdy2(0:m))

 !!test

 !print*, 'in subroutine. after calling cjyva for w=n+1.5.'

 !second part

 !because w=n+1.5, and because of the way cbj2 (and the others) calcuate values for each

member of the array, the array values

 !from cbj2 (and the others) must be shifted over by one value when assigning the results to

ans_dkrMSBJ2 array.

 do l_2 = 1,m

 Hankel232(l_2-1) = (cbj2(l_2) - (j*cby2(l_2))) !note deliberate shift in array.

 ! !test for math errors

 ! print*, 'n = ', l_2 - 1,' Hankel232(n) = ', Hankel232(l_2 - 1)

 end do

 !!test

 !print*, 'in subroutine. after determining dkrMSBJ2.'

 !putting all parts together for final answer

 do l_0 = 0,n

 ans_dkr2MSH2(l_0) = -

(0.125D+00)*((dsqrt(2.0D+00)*Hankel212(l_0)*(PI**2.0D+00))/((PI*k*r)**(3.0D+00/2.0D+00))) &

119

 + (1.0D+00/2.0D+00)*dsqrt(2.0D+00)*(-Hankel232(l_0)+(((l_0 +

(1.0D+00/2.0D+00))*Hankel212(l_0))/ &

 (k*r)))*PI/(zsqrt(PI*k*r)) + (1.0D+00/2.0D+00)*dsqrt(2.0D+00)*zsqrt(PI*k*r)* &

 (-Hankel212(l_0) + (((l_0 + (3.0D+00/2.0D+00))*Hankel232(l_0))/(k*r)) &

 - (((l_0 + (1.0D+00/2.0D+00))*Hankel212(l_0))/((k*r)**2.0D+00)) + ((l_0 +

(1.0D+00/2.0D+00)) &

 *(-Hankel232(l_0) + (((l_0 + (1.0D+00/2.0D+00))*Hankel212(l_0))/(k*r))))/(k*r))

 ! !test for math errors

 ! print*, 'n = ', l_0,' dkr2MSH2(n) = ', ans_dkr2MSH2(l_0)

 end do

 !!test

 !print*, 'in subroutine. after determining dkr2MSBJ.'

 deallocate(cbj2)

 !!test

 !print*, 'in subroutine. after deallocating cbj2'

 deallocate(cdj2)

 !!test

 !print*, 'in subroutine. after deallocating cdj2'

 deallocate(cby2)

 !!test

 !print*, 'in subroutine. after deallocating cby2'

 deallocate(cdy2)

 !!test

 !print*, 'in subroutine. after deallocating cdy2'

 ! !test for math errors

 ! print*, 'exiting subroutine dBr2ModSphHnk2.'

 return

end subroutine dBr2ModSphHnk2

!+++

!changed from function to subroutine

subroutine cn_dbl(n, ans_cn)

 implicit none

 !complex (kind = 8), allocatable, dimension(:) :: ans_an

120

 integer, intent(in) :: n

 integer :: l

 complex (kind = 8) :: j

 complex (kind = 8), intent(out) :: ans_cn(1:n) !start with ans_an at 1.

 j=(0.0D+00,1.0D+00)

 !allocate(ans_an(0:n))

 do l=1,n

 ans_cn(l) = ((j**l) - (j**(-l)))*(((2.0D+00)*l + 1)/(l*(l + 1)))

 !!test for Nan errors

 !print*, 'ans_cn for n= ',l,' is: ',ans_cn(l)

 ! !test for math errors

 ! print*,'cn for n = ',l,' is: ',ans_cn(l)

 end do

 !!deallocate(ans_an)

 !print*, 'just about to exit subroutine cn_dbl'

 return

end subroutine cn_dbl

!+++

subroutine dn_dbl(n, ans_dn)

 implicit none

 !complex (kind=8), allocatable, dimension(:) :: ans_an

 integer, intent(in) :: n

 integer :: l

 complex (kind = 8) :: j

 complex (kind = 8), intent(out) :: ans_dn(1:n) !start with ans_an at 1.

 j = (0.0D+00,1.0D+00)

 !allocate(ans_an(0:n))

 do l = 1,n

 ans_dn(l) = ((j**l) + (j**(-l)))*(((2.0D+00)*l + 1)/(l*(l + 1)))

 !!test for Nan errors

 !print*, 'ans_dn for n= ',l,' is: ',ans_dn(l)

121

 ! !test for math errors

 ! print*,'dn for n = ',l,' is: ',ans_dn(l)

 end do

 !deallocate(ans_an)

 !print*, 'just about to exit subroutine dn_dbl'

 return

end subroutine dn_dbl

!+++

subroutine en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en)

 implicit none

 !specifically for en

 integer :: n, l_0, l_1, l_2

 real (kind = 8) a,PI

 complex (kind = 8) ur,er,Bo,Bd !Bo is technically real, but leaving complex for simplicity

sake

 complex (kind = 8) ans_cn(1:n) !test with ans_an starting at 1.

 complex (kind = 8) ans_en(0:n)

 complex (kind = 8) ans_en_top(0:n)

 complex (kind = 8) ans_en_bot(0:n)

 !!try this modification to avoid SIGABRT error at end of S.R. bn

 !complex (kind=8), allocatable, dimension(:) :: ans_an

 !complex (kind=8), allocatable, dimension(:) ans_bn

 !complex (kind=8), allocatable, dimension(:) :: ans_bn_top

 !complex (kind=8), allocatable, dimension(:) :: ans_bn_bot

 !specifically for function calls

 complex (kind = 8) ans_MSBJ_Boa(0:n)

 complex (kind = 8) ans_MSBJ_Bda(0:n)

 complex (kind = 8) ans_dBrMSBJ_Boa(0:n)

 complex (kind = 8) ans_dBrMSBJ_Bda(0:n)

 complex (kind = 8) ans_MSH2_Boa(0:n)

122

 complex (kind = 8) ans_dBrMSH2_Boa(0:n)

 !!try this modification to avoid SIGABRT error at end of S.R. bn

 !!specifically for function calls

 !complex (kind=8), allocatable, dimension(:) :: ans_MSBJ_k1a

 !complex (kind=8), allocatable, dimension(:) :: ans_MSBJ_k2a

 !complex (kind=8), allocatable, dimension(:) :: ans_dkrMSBJ_k1a

 !complex (kind=8), allocatable, dimension(:) :: ans_dkrMSBJ_k2a

 !complex (kind=8), allocatable, dimension(:) :: ans_MSH2_k2a

 !complex (kind=8), allocatable, dimension(:) :: ans_dkrMSH2_k2a

 !!try this modification to avoid SIGABRT error at end of S.R. bn

 !allocate(ans_an(1:n))

 !allocate(ans_bn(0:n))

 !allocate(ans_bn_top(0:n))

 !allocate(ans_bn_bot(0:n))

 !allocate(ans_MSBJ_k1a(0:n))

 !allocate(ans_MSBJ_k2a(0:n))

 !allocate(ans_dkrMSBJ_k1a(0:n))

 !allocate(ans_dkrMSBJ_k2a(0:n))

 !allocate(ans_MSH2_k2a(0:n))

 !allocate(ans_dkrMSH2_k2a(0:n))

 !note ans_cn array starts at "1"

 call cn_dbl(n, ans_cn(1:n))

 ! calling modified spherical bessel and hankel functions and derivatives of said functions

 call ModSphBesJ(PI,n,Bo,a,ans_MSBJ_Boa(0:n))

 call ModSphBesJ(PI,n,Bd,a,ans_MSBJ_Bda(0:n))

 call dBrModSphBesJ(PI,n,Bo,a,ans_dBrMSBJ_Boa(0:n))

 call dBrModSphBesJ(PI,n,Bd,a,ans_dBrMSBJ_Bda(0:n))

 call ModSphHnk2(PI,n,Bo,a,ans_MSH2_Boa(0:n))

 call dBrModSphHnk2(PI,n,Bo,a,ans_dBrMSH2_Boa(0:n))

 !!test

 !print*, 'in bn. after MSB and MSH subroutine calls'

 ! !testing for math errors

123

 ! print*,'a = ',a,' Bo = ',Bo,' Bd = ',Bd

 !split ans_en into top and bottom equations

 do l_1 = 0,n

 if (l_1 == 0) then

 !var below was, in error, originally assigned value as if real

 ans_en_top(l_1) = (0.0D+00, 0.0D+00) !this is needed to kill zeroth order ans_bn term

as ans_an is undefined at l_1=0

 else

 !pesky 132 char limit!

 ans_en_top(l_1) = (-ans_cn(l_1))*(ans_dBrMSBJ_Bda(l_1)*ans_MSBJ_Boa(l_1)*zsqrt(ur) &

 - ans_MSBJ_Bda(l_1)*ans_dBrMSBJ_Boa(l_1)*zsqrt(er))

 end if

 !!test

 !print*, 'l_1 is ',l_1,'en top is: ', ans_en_top(l_1)

 end do

 !!test

 !print*, 'in bn. after ans_bn_top assignments.'

 do l_2 = 0,n

 if (l_2 == 0) then

 !var below was, in error, originally assigned value as if real

 ans_en_bot(l_2) = (1.0D+00, 1.0D+00) !exact value not important as will ultimately be

multiplied by zero for l_2=0.

 else

 ans_en_bot(l_2) = ans_MSH2_Boa(l_2)*ans_dBrMSBJ_Bda(l_2)*zsqrt(ur) &

 - ans_dBrMSH2_Boa(l_2)*ans_MSBJ_Bda(l_2)*zsqrt(er)

 end if

 !!test

 !print*, 'l_2 is ',l_2,'en bot is: ', ans_en_bot(l_2)

 end do

 !!test

 !print*, 'in bn. after ans_bn_bot assignments.'

 !final expression

 do l_0 = 0,n

 ans_en(l_0) = ans_en_top(l_0)/ans_en_bot(l_0)

124

 !test for math errors

 !print*, 'en is ',l_0,'en is: ', ans_en(l_0)

 ! !test for math errors

 ! print*,'en for n = ',l_0,' is: ',ans_en(l_0)

 end do

 !!test

 !print*, 'after ans_bn calculated'

 !try this modification to avoid SIGABRT error at end of subroutine bn

 !deallocate(ans_an)

 !deallocate(ans_bn)

 !deallocate(ans_bn_top)

 !deallocate(ans_bn_bot)

 !deallocate(ans_MSBJ_k1a)

 !deallocate(ans_MSBJ_k2a)

 !deallocate(ans_dkrMSBJ_k1a)

 !deallocate(ans_dkrMSBJ_k2a)

 !deallocate(ans_MSH2_k2a)

 !deallocate(ans_dkrMSH2_k2a)

 !test

 !print*, 'just before leaving subroutine en_dbl.'

 !!<><><><><> E-field program crashes HERE <><><><><>!

 return

end subroutine en_dbl

!+++

subroutine fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn)

 implicit none

 !specifically for fn

 integer :: n, l_0, l_1, l_2

 real (kind = 8) a,PI

 complex (kind = 8) ur,er,Bo,Bd !Bo is technically real, but leaving complex for simplicity

sake

125

 complex (kind = 8) ans_dn(1:n) !test with ans_an starting at 1.

 complex (kind = 8) ans_fn(0:n)

 complex (kind = 8) ans_fn_top(0:n)

 complex (kind = 8) ans_fn_bot(0:n)

 !specifically for function calls

 complex (kind = 8) ans_MSBJ_Boa(0:n)

 complex (kind = 8) ans_MSBJ_Bda(0:n)

 complex (kind = 8) ans_dBrMSBJ_Boa(0:n)

 complex (kind = 8) ans_dBrMSBJ_Bda(0:n)

 complex (kind = 8) ans_MSH2_Boa(0:n)

 complex (kind = 8) ans_dBrMSH2_Boa(0:n)

 !note ans_an array starts at "1"

 call dn_dbl(n, ans_dn(1:n))

 !calling modified spherical bessel and hankel functions and derivatives of said functions

 call ModSphBesJ(PI,n,Bo,a,ans_MSBJ_Boa(0:n))

 call ModSphBesJ(PI,n,Bd,a,ans_MSBJ_Bda(0:n))

 call dBrModSphBesJ(PI,n,Bo,a,ans_dBrMSBJ_Boa(0:n))

 call dBrModSphBesJ(PI,n,Bd,a,ans_dBrMSBJ_Bda(0:n))

 call ModSphHnk2(PI,n,Bo,a,ans_MSH2_Boa(0:n))

 call dBrModSphHnk2(PI,n,Bo,a,ans_dBrMSH2_Boa(0:n))

 ! !testing for math errors

 ! print*,'a = ',a,' Bo = ',Bo,' Bd = ',Bd

 !split ans_fn into top and bottom equations

 do l_1 = 0,n

 if (l_1 == 0) then

 ans_fn_top(l_1) = (0.0D+00, 0.0D+00) !needed to kill ans_cn(0) as ans_an undefined at

l_1=0

 else

 !pesky 132 char limit!

 ans_fn_top(l_1) = -ans_dn(l_1)*(ans_MSBJ_Bda(l_1)*ans_dBrMSBJ_Boa(l_1)*zsqrt(ur) &

 - ans_dBrMSBJ_Bda(l_1)*ans_MSBJ_Boa(l_1)*zsqrt(er))

 !!test

126

 !print*, 'l_1 is ',l_1,'fn top is: ', ans_fn_top(l_1)

 end if

 end do

 do l_2 = 0,n

 if (l_2 == 0) then

 ans_fn_bot(l_2) = (1.0D+00, 1.0D+00) !exact value not important as will be multiplied

by zero anyway

 else

 ans_fn_bot(l_2) = ans_dBrMSH2_Boa(l_2)*ans_MSBJ_Bda(l_2)*zsqrt(ur) &

 - ans_MSH2_Boa(l_2)*ans_dBrMSBJ_Bda(l_2)*zsqrt(er)

 !!test

 !print*, 'l_2 is ',l_2,'fn bot is: ', ans_fn_bot(l_2)

 end if

 end do

 !final expression

 do l_0 = 0,n

 ans_fn(l_0) = ans_fn_top(l_0)/ans_fn_bot(l_0)

 !!test

 !print*, 'l_0 is ',l_0,'fn is: ', ans_fn(l_0)

 ! !test for math errors

 ! print*,'fn for n = ',l_0,' is: ',ans_fn(l_0)

 end do

 !!test

 !print*, 'just before leaving subroutine fn_dbl'

 return

end subroutine fn_dbl

!++

subroutine gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn)

127

 implicit none

 !specifically for fn

 integer :: n, l_0, l_1, l_2

 real (kind = 8) a,PI

 complex (kind = 8) ur,er,Bo,Bd !Bo is technically real, but leaving complex for simplicity

sake

 complex (kind = 8) ans_cn(1:n) !test with ans_an starting at 1.

 complex (kind = 8) ans_gn(0:n)

 complex (kind = 8) ans_gn_top(0:n)

 complex (kind = 8) ans_gn_bot(0:n)

 !specifically for function calls

 complex (kind = 8) ans_MSBJ_Boa(0:n)

 complex (kind = 8) ans_MSBJ_Bda(0:n)

 complex (kind = 8) ans_dBrMSBJ_Boa(0:n)

 complex (kind = 8) ans_dBrMSBJ_Bda(0:n)

 complex (kind = 8) ans_MSH2_Boa(0:n)

 complex (kind = 8) ans_dBrMSH2_Boa(0:n)

 !note ans_an array starts at "1"

 call cn_dbl(n, ans_cn(1:n))

 call ModSphBesJ(PI,n,Bo,a,ans_MSBJ_Boa(0:n))

 call ModSphBesJ(PI,n,Bd,a,ans_MSBJ_Bda(0:n))

 call dBrModSphBesJ(PI,n,Bo,a,ans_dBrMSBJ_Boa(0:n))

 call dBrModSphBesJ(PI,n,Bd,a,ans_dBrMSBJ_Bda(0:n))

 call ModSphHnk2(PI,n,Bo,a,ans_MSH2_Boa(0:n))

 call dBrModSphHnk2(PI,n,Bo,a,ans_dBrMSH2_Boa(0:n))

 ! !testing for math errors

 ! print*,'a = ',a,' Bo = ',Bo,' Bd = ',Bd

 !split ans_gn into top and bottom equations

 do l_1 = 0,n

 if (l_1 == 0) then

128

 ans_gn_top(l_1) = (0.0D+00, 0.0D+00) !needed since ans_cn(0) is undefined

 else

 !pesky 132 char limit!

 ans_gn_top(l_1) = ans_cn(l_1)*ur*zsqrt(er)*(ans_MSH2_Boa(l_1)*ans_dBrMSBJ_Boa(l_1) &

 - ans_dBrMSH2_Boa(l_1)*ans_MSBJ_Boa(l_1))

 !!test

 !print*, 'l_1 is ',l_1,'gn top is: ', ans_gn_top(l_1)

 end if

 end do

 do l_2 = 0,n

 if (l_2 == 0) then

 ans_gn_bot(l_2) = (1.0D+00, 1.0D+00) !only needs non-zero value. will be multiplied

by zero anyway

 else

 ans_gn_bot(l_2) = ans_MSH2_Boa(l_2)*ans_dBrMSBJ_Bda(l_2)*zsqrt(ur) &

 - ans_dBrMSH2_Boa(l_2)*ans_MSBJ_Bda(l_2)*zsqrt(er)

 !!test

 !print*, 'l_2 is ',l_2,'gn bot is: ', ans_gn_top(l_2)

 end if

 end do

 !final expression

 do l_0 = 0,n

 ans_gn(l_0) = ans_gn_top(l_0)/ans_gn_bot(l_0)

 !!test

 !print*, 'l_0 is ',l_0,'gn is: ', ans_gn(l_0)

 ! !test for math errors

 ! print*,'gn for n = ',l_0,' is: ',ans_gn(l_0)

 end do

 !!test

 !print*, 'just before leaving subroutine gn_dbl'

129

 return

end subroutine gn_dbl

!+++

subroutine hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn)

 implicit none

 !specifically for hn

 integer :: n, l_0, l_1, l_2

 real (kind = 8) a,PI

 complex (kind = 8) ur,er,Bo,Bd !Bo is technically real, but leaving complex for simplicity

sake

 complex (kind = 8) ans_dn(1:n) !test with ans_an starting at 1.

 complex (kind = 8) ans_hn(0:n)

 complex (kind = 8) ans_hn_top(0:n)

 complex (kind = 8) ans_hn_bot(0:n)

 !specifically for function calls

 complex (kind = 8) ans_MSBJ_Boa(0:n)

 complex (kind = 8) ans_MSBJ_Bda(0:n)

 complex (kind = 8) ans_dBrMSBJ_Boa(0:n)

 complex (kind = 8) ans_dBrMSBJ_Bda(0:n)

 complex (kind = 8) ans_MSH2_Boa(0:n)

 complex (kind = 8) ans_dBrMSH2_Boa(0:n)

 !note ans_an begins at "1"

 call dn_dbl(n, ans_dn(1:n))

 call ModSphBesJ(PI,n,Bo,a,ans_MSBJ_Boa(0:n))

 call ModSphBesJ(PI,n,Bd,a,ans_MSBJ_Bda(0:n))

 call dBrModSphBesJ(PI,n,Bo,a,ans_dBrMSBJ_Boa(0:n))

 call dBrModSphBesJ(PI,n,Bd,a,ans_dBrMSBJ_Bda(0:n))

 call ModSphHnk2(PI,n,Bo,a,ans_MSH2_Boa(0:n))

 call dBrModSphHnk2(PI,n,Bo,a,ans_dBrMSH2_Boa(0:n))

 ! !testing for math errors

 ! print*,'a = ',a,' Bo = ',Bo,' Bd = ',Bd

130

 !split ans_hn into top and bottom equations

 do l_1 = 0,n

 if (l_1 == 0) then

 ans_hn_top(l_1) = (0.0D+00, 0.0D+00) !needed since ans_dn(0) undefined

 else

 !pesky 132 char limit!

 ans_hn_top(l_1) = -ans_dn(l_1)*ur*zsqrt(er)*(ans_MSH2_Boa(l_1)*ans_dBrMSBJ_Boa(l_1) &

 - ans_dBrMSH2_Boa(l_1)*ans_MSBJ_Boa(l_1))

 !!test

 !print*, 'l_1 is ',l_1,'hn top is: ', ans_hn_top(l_1)

 end if

 end do

 do l_2 = 0,n

 if (l_2 == 0) then

 ans_hn_bot(l_2) = (1.0D+00, 1.0D+00) !any value will do since will be multiplied by

zero anyway

 else

 ans_hn_bot(l_2) = ans_dBrMSH2_Boa(l_2)*ans_MSBJ_Bda(l_2)*zsqrt(ur) &

 - ans_MSH2_Boa(l_2)*ans_dBrMSBJ_Bda(l_2)*zsqrt(er)

 !!test

 !print*, 'l_2 is ',l_2,'hn bot is: ', ans_hn_top(l_2)

 end if

 end do

 !final expression

 do l_0 = 0,n

 ans_hn(l_0) = ans_hn_top(l_0)/ans_hn_bot(l_0)

 !!test

 !print*, 'l_0 is ',l_0,'hn is: ', ans_hn(l_0)

 ! !test for math errors

 ! print*,'hn for n = ',l_0,' is: ',ans_hn(l_0)

131

 end do

 !!test

 !print*, 'just before leaving subroutine hn_dbl'

 return

end subroutine hn_dbl

!+++

subroutine AscLegendre(n,x,ans_P1n_corr)

 implicit none

 integer :: m,n,q, p!for math error testing

 real (kind = 8) x

 !only ans_P1n returned

 !real (kind=8), allocatable, dimension(:) :: ans_P1n

 !real (kind=8), allocatable, dimension(:) :: ans_dxP1n

 !allocate(ans_P1n(0:n))

 !allocate(ans_dxP1n(0:n))

 real (kind = 8) ans_P1n(0:n)

 real (kind = 8) ans_P1n_corr(0:n)

 real (kind = 8) ans_dxP1n(0:n)

 !only order of m=1 used

 m=1

call lpmns (m, n, x, ans_P1n(0:n), ans_dxP1n(0:n))

!T-MATT-> 9/11/15-> this loop is to correct for the sign error present in the original

!source code.

do q = 0,n

 ans_P1n_corr(q) = -ans_P1n(q)

132

end do

!!testing for math errors

!print*,'x = ',x

!!testing for math errors

!do p = 0,n

!

! if (x < 0.6) then

!

! print*,'x = ',x,' n = ',p,' ans_P1n_corr = ',ans_P1n_corr(p)

!

! end if

!

!end do

!tidy up memory allocations

!deallocate(ans_P1n)

!deallocate(ans_dxP1n)

 !!test

 !print*, 'just before leaving subroutine AscLegendre'

 return

end subroutine AscLegendre

!+++

subroutine dxAscLegendre(n,x,ans_dxP1n_corr)

 implicit none

 integer :: m,n,q, p!to test for math errors

 real (kind = 8) x

 !only ans_dxP1n returned

 !real (kind=8), allocatable, dimension(:) :: ans_P1n

 !real (kind=8), allocatable, dimension(:) :: ans_dxP1n

 !allocate(ans_P1n(0:n))

133

 !allocate(ans_dxP1n(0:n))

 real (kind = 8) ans_P1n(0:n)

 real (kind = 8) ans_dxP1n(0:n)

 real (kind = 8) ans_dxP1n_corr(0:n)

 !only order of m=1 used

 m=1

call lpmns (m, n, x, ans_P1n(0:n), ans_dxP1n(0:n))

!T-MATT-> 9/11/15-> this loop is to correct for the sign error present in the original

!source code.

do q = 0,n

 ans_dxP1n_corr(q) = -ans_dxP1n(q)

end do

!!testing for math errors

!print*,'x = ',x

!!testing for math errors

!do p = 0,n

!

! if (x < 0.6) then

!

! print*,'x = ',x,' n = ',p,' ans_dxP1n_corr = ',ans_dxP1n_corr(p)

!

! end if

!

!end do

!tidy up memory allocations

!deallocate(ans_P1n)

!deallocate(ans_dxP1n)

134

 !!test

 !print*, 'just before leaving subroutine dxAscLegendre'

 return

end subroutine dxAscLegendre

!+++

subroutine AscLegDivSinThR(n,x,ans_P1n_div_sinThR)

!this subroutine greatly simplifies the mathematics involved in determeining

!the answer. It also corrects a sign error present in the original

!AscLegDivSinThR code.

 implicit none

 integer :: m,n,q, p!to test for math errors

 real (kind = 8) x, sinThR

 real (kind = 8) ans_P1n(0:n)

 real (kind = 8) ans_dxP1n(0:n)

 real (kind = 8) ans_p1n_div_sinThR(0:n)

 !only order of m=1 used

 m=1

call lpmns (m, n, x, ans_P1n(0:n), ans_dxP1n(0:n))

sinThR = (1.0D+00 - x*x)**(1.0D+00/2+0D+00)

!!testing for math errors

!print*,'x = ',x

do q = 0,n

 !T-MATT->9/11/15->"-" added to correct for sign error in ans_P1n subroutine

 ans_P1n_div_sinThR(q) = -(ans_P1n(q))/sinThR

end do

135

!!testing for math errors

!do p = 0,n

!

! if (x < 0.6) then

!

! print*,'x = ',x,' n = ',p,' ans_P1n_div_sinThR = ',ans_P1n_div_sinThR(p)

!

! end if

!

!end do

 !!test

 !print*, 'just before leaving subroutine dxAscLegendre'

 return

end subroutine AscLegDivSinThR

!++

subroutine AscLegDivSinThR_old(n,x,ans_P1n_div_sinThR)

 !this subroutine is equivalent to "AscLegendre", divided by sin(theta).

 !for high quality results, this subroutine works a little differently

 implicit none

 integer :: q,n,l

 real (kind = 8) x

 !only ans_P1n_div_sinThR returned

 real (kind = 8), allocatable, dimension(:) :: pn

 real (kind = 8), allocatable, dimension(:) :: pd

 !real (kind = 8), allocatable, dimension(:) :: ans_P1n_div_sinThR

 real (kind = 8) ans_p1n_div_sinThR(0:n)

 q=n+1

 allocate(pn(0:q))

 allocate(pd(0:q))

 !allocate(ans_P1n_div_sinThR(0:n))

136

 !only order of m=1 used

 !q=n+1

 !!testing for math errors

 !print*,'x = ',x

call lpn (q, x, pn(0:q), pd(0:q))

do l=0,n

 !q needs to equal to n+1 in order to use formula below

 ans_P1n_div_sinThR(l) = (-1)*((l + 1)*pn(l + 1)-(l + 1)*x*pn(l))/((x**2.0D+00) - 1)

! if (x < 0.5) then

!

! !testing for math errors

! print*,'x = ',x,' n = ',l,' ans_P1n_div_sinThR = ',ans_P1n_div_sinThR(l)

! print*,'n = ',l,' legendreP = ',pn(l)

!

! end if

end do

!tidy up memory allocations

deallocate(pn)

deallocate(pd)

!deallocate(ans_P1n_div_sinThR)

 !!test

 !print*, 'just before leaving subroutine AscLegDivSinThR'

 return

end subroutine AscLegDivSinThR_old

!+++

subroutine cjyva (v, z, vm, cbj, cdj, cby, cdy)

137

!***80

!

!! CJYVA: Bessel functions and derivatives, Jv(z) and Yv(z) of complex argument.

!

! Licensing:

!

! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However,

! they give permission to incorporate this routine into a user program

! provided that the copyright is acknowledged.

!

! Modified:

!

! 03 August 2012

!

! Author:

!

! Shanjie Zhang, Jianming Jin

!

! Reference:

!

! Shanjie Zhang, Jianming Jin,

! Computation of Special Functions,

! Wiley, 1996,

! ISBN: 0-471-11963-6,

! LC: QA351.C45.

!

! Parameters:

!

! Input, real (kind = 8) V, the order of Jv(z) and Yv(z).

!

! Input, complex (kind = 8) Z, the argument. !modification by T-MATT

!

! Output, real (kind = 8) VM, the highest order computed.

!

! Output, real (kind = 8) CBJ(0:*), CDJ(0:*), CBY(0:*), CDY(0:*),

! the values of Jn+v0(z), Jn+v0'(z), Yn+v0(z), Yn+v0'(z).

!

 implicit none

138

 real (kind = 8) a0

 complex (kind = 8) ca

 complex (kind = 8) ca0

 complex (kind = 8) cb

 complex (kind = 8),intent(out) :: cbj(0:*) !modification by T-MATT

 complex (kind = 8),intent(out) :: cby(0:*) !modification by T-MATT

 complex (kind = 8) cck

 complex (kind = 8),intent(out) :: cdj(0:*) !modification by T-MATT

 complex (kind = 8),intent(out) :: cdy(0:*) !modification by T-MATT

 complex (kind = 8) cec

 complex (kind = 8) cf

 complex (kind = 8) cf0

 complex (kind = 8) cf1

 complex (kind = 8) cf2

 complex (kind = 8) cfac0

 complex (kind = 8) cfac1

 complex (kind = 8) cg0

 complex (kind = 8) cg1

 complex (kind = 8) ch0

 complex (kind = 8) ch1

 complex (kind = 8) ch2

 complex (kind = 8) ci

 complex (kind = 8) cju0

 complex (kind = 8) cju1

 complex (kind = 8) cjv0

 complex (kind = 8) cjv1

 complex (kind = 8) cjvl

 complex (kind = 8) cp11

 complex (kind = 8) cp12

 complex (kind = 8) cp21

 complex (kind = 8) cp22

 complex (kind = 8) cpz

 complex (kind = 8) cqz

 complex (kind = 8) cr

 complex (kind = 8) cr0

 complex (kind = 8) cr1

 complex (kind = 8) crp

139

 complex (kind = 8) crq

 complex (kind = 8) cs

 complex (kind = 8) cs0

 complex (kind = 8) cs1

 complex (kind = 8) csk

 complex (kind = 8) cyk

 complex (kind = 8) cyl1

 complex (kind = 8) cyl2

 complex (kind = 8) cylk

 complex (kind = 8) cyv0

 complex (kind = 8) cyv1

 real (kind = 8) ga

 real (kind = 8) gb

 integer (kind = 4) j

 integer (kind = 4) k

 integer (kind = 4) k0

 integer (kind = 4) l

 integer (kind = 4) lb

 integer (kind = 4) lb0

 integer (kind = 4) m

 integer (kind = 4) msta1

 integer (kind = 4) msta2

 integer (kind = 4) n

 real (kind = 8) pi

 real (kind = 8) pv0

 real (kind = 8) pv1

 real (kind = 8) rp2

 real (kind = 8),intent(in) :: v !modification by T-MATT

 real (kind = 8) v0

 real (kind = 8) vg

 real (kind = 8) vl

 real (kind = 8),intent(out) :: vm !modification by T-MATT

 real (kind = 8) vv

 real (kind = 8) w0

 real (kind = 8) w1

 real (kind = 8) wa

 real (kind = 8) ya0

 real (kind = 8) ya1

140

 real (kind = 8) yak

 complex (kind = 8),intent(in) :: z !modification by T-MATT

 complex (kind = 8) z1

 complex (kind = 8) z2

 complex (kind = 8) zk

 pi = 3.141592653589793D+00

 rp2 = 0.63661977236758D+00

 ci = cmplx (0.0D+00, 1.0D+00, kind = 8)

 a0 = abs (z)

 z1 = z

 z2 = z * z

 n = int (v)

 v0 = v - n

 pv0 = pi * v0

 pv1 = pi * (1.0D+00 + v0)

 if (a0 < 1.0D-100) then

 do k = 0, n

 cbj(k) = cmplx (0.0D+00, 0.0D+00, kind = 8)

 cdj(k) = cmplx (0.0D+00, 0.0D+00, kind = 8)

 cby(k) = - cmplx (1.0D+30, 0.0D+00, kind = 8)

 cdy(k) = cmplx (1.0D+30, 0.0D+00, kind = 8)

 end do

 if (v0 == 0.0D+00) then

 cbj(0) = cmplx (1.0D+00, 0.0D+00, kind = 8)

 cdj(1) = cmplx (0.5D+00, 0.0D+00, kind = 8)

 else

 cdj(0) = cmplx (1.0D+30, 0.0D+00, kind = 8)

 end if

 vm = v

 return

 end if

141

 if (real (z, kind = 8) < 0.0D+00) then

 z1 = -z

 end if

 if (a0 <= 12.0D+00) then

 do l = 0, 1

 vl = v0 + l

 cjvl = cmplx (1.0D+00, 0.0D+00, kind = 8)

 cr = cmplx (1.0D+00, 0.0D+00, kind = 8)

 do k = 1, 40

 cr = -0.25D+00 * cr * z2 / (k * (k + vl))

 cjvl = cjvl + cr

 if (abs (cr) < abs (cjvl) * 1.0D-15) then

 exit

 end if

 end do

 vg = 1.0D+00 + vl

 call gamma (vg, ga)

 ca = (0.5D+00 * z1) ** vl / ga

 if (l == 0) then

 cjv0 = cjvl * ca

 else

 cjv1 = cjvl * ca

 end if

 end do

 else

 if (a0 < 35.0D+00) then

 k0 = 11

 else if (a0 <50.0D+00) then

 k0 = 10

 else

 k0 = 8

142

 end if

 do j = 0, 1

 vv = 4.0D+00 * (j + v0) * (j + v0)

 cpz = cmplx (1.0D+00, 0.0D+00, kind = 8)

 crp = cmplx (1.0D+00, 0.0D+00, kind = 8)

 do k = 1, k0

 crp = - 0.78125D-02 * crp &

 * (vv - (4.0D+00 * k - 3.0D+00) ** 2) &

 * (vv - (4.0D+00 * k - 1.0D+00) ** 2) &

 / (k * (2.0D+00 * k - 1.0D+00) * z2)

 cpz = cpz + crp

 end do

 cqz = cmplx (1.0D+00, 0.0D+00, kind = 8)

 crq = cmplx (1.0D+00, 0.0D+00, kind = 8)

 do k = 1, k0

 crq = -0.78125D-02 * crq &

 * (vv - (4.0D+00 * k - 1.0D+00) ** 2) &

 * (vv - (4.0D+00 * k + 1.0D+00) ** 2) &

 / (k * (2.0D+00 * k + 1.0D+00) * z2)

 cqz = cqz + crq

 end do

 cqz = 0.125D+00 * (vv - 1.0D+00) * cqz / z1

 zk = z1 - (0.5D+00 * (j + v0) + 0.25D+00) * pi

 ca0 = sqrt (rp2 / z1)

 cck = cos (zk)

 csk = sin (zk)

 if (j == 0) then

 cjv0 = ca0 * (cpz * cck - cqz * csk)

 cyv0 = ca0 * (cpz * csk + cqz * cck)

 else if (j == 1) then

 cjv1 = ca0 * (cpz * cck - cqz * csk)

 cyv1 = ca0 * (cpz * csk + cqz * cck)

 end if

 end do

 end if

143

 if (a0 <= 12.0D+00) then

 if (v0 .ne. 0.0D+00) then

 do l = 0, 1

 vl = v0 + l

 cjvl = cmplx (1.0D+00, 0.0D+00, kind = 8)

 cr = cmplx (1.0D+00, 0.0D+00, kind = 8)

 do k = 1, 40

 cr = -0.25D+00 * cr * z2 / (k * (k - vl))

 cjvl = cjvl + cr

 if (abs (cr) < abs (cjvl) * 1.0D-15) then

 exit

 end if

 end do

 vg = 1.0D+00 - vl

 call gamma (vg, gb)

 cb = (2.0D+00 / z1) ** vl / gb

 if (l == 0) then

 cju0 = cjvl * cb

 else

 cju1 = cjvl * cb

 end if

 end do

 cyv0 = (cjv0 * cos (pv0) - cju0) / sin (pv0)

 cyv1 = (cjv1 * cos (pv1) - cju1) / sin (pv1)

 else

 cec = log (z1 / 2.0D+00) + 0.5772156649015329D+00

 cs0 = cmplx (0.0D+00, 0.0D+00, kind = 8)

 w0 = 0.0D+00

 cr0 = cmplx (1.0D+00, 0.0D+00, kind = 8)

 do k = 1, 30

 w0 = w0 + 1.0D+00 / k

 cr0 = -0.25D+00 * cr0 / (k * k) * z2

 cs0 = cs0 + cr0 * w0

144

 end do

 cyv0 = rp2 * (cec * cjv0 - cs0)

 cs1 = cmplx (1.0D+00, 0.0D+00, kind = 8)

 w1 = 0.0D+00

 cr1 = cmplx (1.0D+00, 0.0D+00, kind = 8)

 do k = 1, 30

 w1 = w1 + 1.0D+00 / k

 cr1 = -0.25D+00 * cr1 / (k * (k + 1)) * z2

 cs1 = cs1 + cr1 * (2.0D+00 * w1 + 1.0D+00 / (k + 1.0D+00))

 end do

 cyv1 = rp2 * (cec * cjv1 - 1.0D+00 / z1 - 0.25D+00 * z1 * cs1)

 end if

 end if

 if (real (z, kind = 8) < 0.0D+00) then

 cfac0 = exp (pv0 * ci)

 cfac1 = exp (pv1 * ci)

 if (imag (z) < 0.0D+00) then

 cyv0 = cfac0 * cyv0 - 2.0D+00 * ci * cos (pv0) * cjv0

 cyv1 = cfac1 * cyv1 - 2.0D+00 * ci * cos (pv1) * cjv1

 cjv0 = cjv0 / cfac0

 cjv1 = cjv1 / cfac1

 else if (0.0D+00 < imag (z)) then

 cyv0 = cyv0 / cfac0 + 2.0D+00 * ci * cos (pv0) * cjv0

 cyv1 = cyv1 / cfac1 + 2.0D+00 * ci * cos (pv1) * cjv1

 cjv0 = cfac0 * cjv0

 cjv1 = cfac1 * cjv1

 end if

 end if

 cbj(0) = cjv0

 cbj(1) = cjv1

145

 if (2 <= n .and. n <= int (0.25D+00 * a0)) then

 cf0 = cjv0

 cf1 = cjv1

 do k = 2, n

 cf = 2.0D+00 * (k + v0 - 1.0D+00) / z * cf1 - cf0

 cbj(k) = cf

 cf0 = cf1

 cf1 = cf

 end do

 else if (2 <= n) then

 m = msta1 (a0, 200)

 if (m < n) then

 n = m

 else

 m = msta2 (a0, n, 15)

 end if

 cf2 = cmplx (0.0D+00, 0.0D+00, kind = 8)

 cf1 = cmplx (1.0D-30, 0.0D+00, kind = 8)

 do k = m, 0, -1

 cf = 2.0D+00 * (v0 + k + 1.0D+00) / z * cf1 - cf2

 if (k <= n) then

 cbj(k) = cf

 end if

 cf2 = cf1

 cf1 = cf

 end do

 if (abs (cjv1) < abs (cjv0)) then

 cs = cjv0 / cf

 else

 cs = cjv1 / cf2

 end if

 do k = 0, n

 cbj(k) = cs * cbj(k)

 end do

146

 end if

 cdj(0) = v0 / z * cbj(0) - cbj(1)

 do k = 1, n

 cdj(k) = - (k + v0) / z * cbj(k) + cbj(k-1)

 end do

 cby(0) = cyv0

 cby(1) = cyv1

 ya0 = abs (cyv0)

 lb = 0

 cg0 = cyv0

 cg1 = cyv1

 do k = 2, n

 cyk = 2.0D+00 * (v0 + k - 1.0D+00) / z * cg1 - cg0

 if (abs (cyk) <= 1.0D+290) then

 yak = abs (cyk)

 ya1 = abs (cg0)

 if (yak < ya0 .and. yak < ya1) then

 lb = k

 end if

 cby(k) = cyk

 cg0 = cg1

 cg1 = cyk

 end if

 end do

 if (4 < lb .and. imag (z) /= 0.0D+00) then

 do

 if (lb == lb0) then

 exit

 end if

 ch2 = cmplx (1.0D+00, 0.0D+00, kind = 8)

 ch1 = cmplx (0.0D+00, 0.0D+00, kind = 8)

147

 lb0 = lb

 do k = lb, 1, -1

 ch0 = 2.0D+00 * (k + v0) / z * ch1 - ch2

 ch2 = ch1

 ch1 = ch0

 end do

 cp12 = ch0

 cp22 = ch2

 ch2 = cmplx (0.0D+00, 0.0D+00, kind = 8)

 ch1 = cmplx (1.0D+00, 0.0D+00, kind = 8)

 do k = lb, 1, -1

 ch0 = 2.0D+00 * (k + v0) / z * ch1 - ch2

 ch2 = ch1

 ch1 = ch0

 end do

 cp11 = ch0

 cp21 = ch2

 if (lb == n) then

 cbj(lb+1) = 2.0D+00 * (lb + v0) / z * cbj(lb) - cbj(lb-1)

 end if

 if (abs (cbj(1)) < abs (cbj(0))) then

 cby(lb+1) = (cbj(lb+1) * cyv0 - 2.0D+00 * cp11 / (pi * z)) &

 / cbj(0)

 cby(lb) = (cbj(lb) * cyv0 + 2.0D+00 * cp12 / (pi * z)) / cbj(0)

 else

 cby(lb+1) = (cbj(lb+1) * cyv1 - 2.0D+00 * cp21 / (pi * z)) &

 / cbj(1)

 cby(lb) = (cbj(lb) * cyv1 + 2.0D+00 * cp22 / (pi * z)) / cbj(1)

 end if

 cyl2 = cby(lb+1)

 cyl1 = cby(lb)

 do k = lb - 1, 0, -1

 cylk = 2.0D+00 * (k + v0 + 1.0D+00) / z * cyl1 - cyl2

 cby(k) = cylk

 cyl2 = cyl1

148

 cyl1 = cylk

 end do

 cyl1 = cby(lb)

 cyl2 = cby(lb+1)

 do k = lb + 1, n - 1

 cylk = 2.0D+00 * (k + v0) / z * cyl2 - cyl1

 cby(k+1) = cylk

 cyl1 = cyl2

 cyl2 = cylk

 end do

 do k = 2, n

 wa = abs (cby(k))

 if (wa < abs (cby(k-1))) then

 lb = k

 end if

 end do

 end do

 end if

 cdy(0) = v0 / z * cby(0) - cby(1)

 do k = 1, n

 cdy(k) = cby(k-1) - (k + v0) / z * cby(k)

 end do

 vm = n + v0

 return

end subroutine cjyva

!+++

 subroutine gamma (x, ga)

!***80

!

149

!! GAMMA evaluates the Gamma function.

!

! Licensing:

!

! The original FORTRAN77 version of this routine is copyrighted by

! Shanjie Zhang and Jianming Jin. However, they give permission to

! incorporate this routine into a user program that the copyright

! is acknowledged.

!

! Modified:

!

! 08 September 2007

!

! Author:

!

! Original FORTRAN77 version by Shanjie Zhang, Jianming Jin.

! FORTRAN90 version by John Burkardt.

!

! Reference:

!

! Shanjie Zhang, Jianming Jin,

! Computation of Special Functions,

! Wiley, 1996,

! ISBN: 0-471-11963-6,

! LC: QA351.C45

!

! Parameters:

!

! Input, real (kind = 8) X, the argument.

! X must not be 0, or any negative integer.

!

! Output, real (kind = 8) GA, the value of the Gamma function.

!

 implicit none

 real (kind = 8), dimension (26) :: g = (/ &

 1.0D+00, &

 0.5772156649015329D+00, &

150

 -0.6558780715202538D+00, &

 -0.420026350340952D-01, &

 0.1665386113822915D+00, &

 -0.421977345555443D-01, &

 -0.96219715278770D-02, &

 0.72189432466630D-02, &

 -0.11651675918591D-02, &

 -0.2152416741149D-03, &

 0.1280502823882D-03, &

 -0.201348547807D-04, &

 -0.12504934821D-05, &

 0.11330272320D-05, &

 -0.2056338417D-06, &

 0.61160950D-08, &

 0.50020075D-08, &

 -0.11812746D-08, &

 0.1043427D-09, &

 0.77823D-11, &

 -0.36968D-11, &

 0.51D-12, &

 -0.206D-13, &

 -0.54D-14, &

 0.14D-14, &

 0.1D-15 /)

 real (kind = 8), intent(out) :: ga !modification by T-MATT

 real (kind = 8) gr

 integer (kind = 4) k

 integer (kind = 4) m

 integer (kind = 4) m1

 real (kind = 8), parameter :: pi = 3.141592653589793D+00

 real (kind = 8) r

 real (kind = 8), intent(in) :: x !modification by T-MATT

 real (kind = 8) z

 if (x == aint (x)) then

 if (0.0D+00 < x) then

 ga = 1.0D+00

151

 m1 = int (x) - 1

 do k = 2, m1

 ga = ga * k

 end do

 else

 ga = 1.0D+300

 end if

 else

 if (1.0D+00 < abs (x)) then

 z = abs (x)

 m = int (z)

 r = 1.0D+00

 do k = 1, m

 r = r * (z - real (k, kind = 8))

 end do

 z = z - real (m, kind = 8)

 else

 z = x

 end if

 gr = g(26)

 do k = 25, 1, -1

 gr = gr * z + g(k)

 end do

 ga = 1.0D+00 / (gr * z)

 if (1.0D+00 < abs (x)) then

 ga = ga * r

 if (x < 0.0D+00) then

 ga = - pi / (x* ga * sin (pi * x))

 end if

 end if

 end if

152

 return

end subroutine gamma

function msta1 (x, mp)

!***80

!

!! MSTA1 determines a backward recurrence starting point for Jn(x).

!

! Discussion:

!

! This procedure determines the starting point for backward

! recurrence such that the magnitude of

! Jn(x) at that point is about 10^(-MP).

!

! Licensing:

!

! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However,

! they give permission to incorporate this routine into a user program

! provided that the copyright is acknowledged.

!

! Modified:

!

! 08 July 2012

!

! Author:

!

! Shanjie Zhang, Jianming Jin

!

! Reference:

!

! Shanjie Zhang, Jianming Jin,

! Computation of Special Functions,

! Wiley, 1996,

! ISBN: 0-471-11963-6,

! LC: QA351.C45.

!

! Parameters:

153

!

! Input, real (kind = 8) X, the argument.

!

! Input, integer (kind = 4) MP, the negative logarithm of the

! desired magnitude.

!

! Output, integer (kind = 4) MSTA1, the starting point.

!

 implicit none

 real (kind = 8) a0

 real (kind = 8) envj

 real (kind = 8) f

 real (kind = 8) f0

 real (kind = 8) f1

 integer (kind = 4) it

 integer (kind = 4) mp

 integer (kind = 4) msta1

 integer (kind = 4) n0

 integer (kind = 4) n1

 integer (kind = 4) nn

 real (kind = 8) x

 a0 = abs (x)

 n0 = int (1.1D+00 * a0) + 1

 f0 = envj (n0, a0) - mp

 n1 = n0 + 5

 f1 = envj (n1, a0) - mp

 do it = 1, 20

 nn = n1 - (n1 - n0) / (1.0D+00 - f0 / f1)

 f = envj (nn, a0) - mp

 if (abs (nn - n1) < 1) then

 exit

 end if

 n0 = n1

 f0 = f1

 n1 = nn

 f1 = f

154

 end do

 msta1 = nn

 return

end function msta1

function msta2 (x, n, mp)

!***80

!

!! MSTA2 determines a backward recurrence starting point for Jn(x).

!

! Discussion:

!

! This procedure determines the starting point for a backward

! recurrence such that all Jn(x) has MP significant digits.

!

! Licensing:

!

! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However,

! they give permission to incorporate this routine into a user program

! provided that the copyright is acknowledged.

!

! Modified:

!

! 08 July 2012

!

! Author:

!

! Shanjie Zhang, Jianming Jin

!

! Reference:

!

! Shanjie Zhang, Jianming Jin,

! Computation of Special Functions,

! Wiley, 1996,

! ISBN: 0-471-11963-6,

155

! LC: QA351.C45.

!

! Parameters:

!

! Input, real (kind = 8) X, the argument of Jn(x).

!

! Input, integer (kind = 4) N, the order of Jn(x).

!

! Input, integer (kind = 4) MP, the number of significant digits.

!

! Output, integer (kind = 4) MSTA2, the starting point.

!

 implicit none

 real (kind = 8) a0

 real (kind = 8) ejn

 real (kind = 8) envj

 real (kind = 8) f

 real (kind = 8) f0

 real (kind = 8) f1

 real (kind = 8) hmp

 integer (kind = 4) it

 integer (kind = 4) mp

 integer (kind = 4) msta2

 integer (kind = 4) n

 integer (kind = 4) n0

 integer (kind = 4) n1

 integer (kind = 4) nn

 real (kind = 8) obj

 real (kind = 8) x

 a0 = abs (x)

 hmp = 0.5D+00 * mp

 ejn = envj (n, a0)

 if (ejn <= hmp) then

 obj = mp

 n0 = int (1.1D+00 * a0)

156

 else

 obj = hmp + ejn

 n0 = n

 end if

 f0 = envj (n0, a0) - obj

 n1 = n0 + 5

 f1 = envj (n1, a0) - obj

 do it = 1, 20

 nn = n1 - (n1 - n0) / (1.0D+00 - f0 / f1)

 f = envj (nn, a0) - obj

 if (abs (nn - n1) < 1) then

 exit

 end if

 n0 = n1

 f0 = f1

 n1 = nn

 f1 = f

 end do

 msta2 = nn + 10

 return

end function msta2

function envj (n, x)

!***80

!

!! ENVJ is a utility function used by MSTA1 and MSTA2.

!

! Licensing:

!

! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However,

! they give permission to incorporate this routine into a user program

! provided that the copyright is acknowledged.

!

157

! Modified:

!

! 14 March 2012

!

! Author:

!

! Shanjie Zhang, Jianming Jin

!

! Reference:

!

! Shanjie Zhang, Jianming Jin,

! Computation of Special Functions,

! Wiley, 1996,

! ISBN: 0-471-11963-6,

! LC: QA351.C45.

!

! Parameters:

!

! Input, integer (kind = 4) N, ?

!

! Input, real (kind = 8) X, ?

!

! Output, real (kind = 8) ENVJ, ?

!

 implicit none

 real (kind = 8) envj

 integer (kind = 4) n

 real (kind = 8) x

 envj = 0.5D+00 * log10 (6.28D+00 * n) - n * log10 (1.36D+00 * x / n)

 return

end function envj

subroutine lpmns (m, n, x, pm, pd)

!***80

158

!

!! LPMNS computes associated Legendre functions Pmn(X) and derivatives P'mn(x).

!

! Licensing:

!

! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However,

! they give permission to incorporate this routine into a user program

! provided that the copyright is acknowledged.

!

! Modified:

!

! 18 July 2012

!

! Author:

!

! Shanjie Zhang, Jianming Jin

!

! Reference:

!

! Shanjie Zhang, Jianming Jin,

! Computation of Special Functions,

! Wiley, 1996,

! ISBN: 0-471-11963-6,

! LC: QA351.C45.

!

! Parameters:

!

! Input, integer (kind = 4) M, the order of Pmn(x).

!

! Input, integer (kind = 4) N, the degree of Pmn(x).

!

! Input, real (kind = 8) X, the argument.

!

! Output, real (kind = 8) PM(0:N), PD(0:N), the values and derivatives

! of the function from degree 0 to N.

!

 implicit none

159

 integer (kind = 4) n

 integer (kind = 4) k

 integer (kind = 4) m

 real (kind = 8) pm(0:n)

 real (kind = 8) pm0

 real (kind = 8) pm1

 real (kind = 8) pm2

 real (kind = 8) pmk

 real (kind = 8) pd(0:n)

 real (kind = 8) x

 real (kind = 8) x0

 do k = 0, n

 pm(k) = 0.0D+00

 pd(k) = 0.0D+00

 end do

 if (abs (x) == 1.0D+00) then

 do k = 0, n

 if (m == 0) then

 pm(k) = 1.0D+00

 pd(k) = 0.5D+00 * k * (k + 1.0D+00)

 if (x < 0.0D+00) then

 pm(k) = (-1.0D+00) ** k * pm(k)

 pd(k) = (-1.0D+00) ** (k + 1) * pd(k)

 end if

 else if (m == 1) then

 pd(k) = 1.0D+300

 else if (m == 2) then

 pd(k) = -0.25D+00 * (k + 2.0D+00) * (k + 1.0D+00) &

 * k * (k - 1.0D+00)

 if (x < 0.0D+00) then

 pd(k) = (-1.0D+00) ** (k + 1) * pd(k)

 end if

 end if

 end do

160

 return

 end if

 x0 = abs (1.0D+00 - x * x)

 pm0 = 1.0D+00

 pmk = pm0

 do k = 1, m

 pmk = (2.0D+00 * k - 1.0D+00) * sqrt (x0) * pm0

 pm0 = pmk

 end do

 pm1 = (2.0D+00 * m + 1.0D+00) * x * pm0

 pm(m) = pmk

 pm(m+1) = pm1

 do k = m + 2, n

 pm2 = ((2.0D+00 * k - 1.0D+00) * x * pm1 &

 - (k + m - 1.0D+00) * pmk) / (k - m)

 pm(k) = pm2

 pmk = pm1

 pm1 = pm2

 end do

 pd(0) = ((1.0D+00 - m) * pm(1) - x * pm(0)) &

 / (x * x - 1.0D+00)

 do k = 1, n

 pd(k) = (k * x * pm(k) - (k + m) * pm(k-1)) &

 / (x * x - 1.0D+00)

 end do

 return

end subroutine lpmns

subroutine lpn (n, x, pn, pd)

!***80

!

!! LPN computes Legendre polynomials Pn(x) and derivatives Pn'(x).

!

! Licensing:

161

!

! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However,

! they give permission to incorporate this routine into a user program

! provided that the copyright is acknowledged.

!

! Modified:

!

! 07 July 2012

!

! Author:

!

! Shanjie Zhang, Jianming Jin

!

! Reference:

!

! Shanjie Zhang, Jianming Jin,

! Computation of Special Functions,

! Wiley, 1996,

! ISBN: 0-471-11963-6,

! LC: QA351.C45.

!

! Parameters:

!

! Input, integer (kind = 4) N, the maximum degree.

!

! Input, real (kind = 8) X, the argument.

!

! Output, real (kind = 8) PN(0:N), PD(0:N), the values and derivatives

! of the polyomials of degrees 0 to N at X.

!

 implicit none

 integer (kind = 4) n

 integer (kind = 4) k

 real (kind = 8) p0

 real (kind = 8) p1

 real (kind = 8) pd(0:n)

162

 real (kind = 8) pf

 real (kind = 8) pn(0:n)

 real (kind = 8) x

 pn(0) = 1.0D+00

 pn(1) = x

 pd(0) = 0.0D+00

 pd(1) = 1.0D+00

 p0 = 1.0D+00

 p1 = x

 do k = 2, n

 pf = (2.0D+00 * k - 1.0D+00) / k * x * p1 &

 - (k - 1.0D+00) / k * p0

 pn(k) = pf

 if (abs (x) == 1.0D+00) then

 pd(k) = 0.5D+00 * x ** (k + 1) * k * (k + 1.0D+00)

 else

 pd(k) = k * (p1 - x * pf) / (1.0D+00 - x * x)

 end if

 p0 = p1

 p1 = pf

 end do

 return

end subroutine lpn

	Collins Thesis final.pdf
	0 - Cover Page final - BW
	1 - Thesis Title - BW
	2 - Introduction - BW
	3 - Literature Review - Color
	4 - Governing Equations - BW
	5 - Solution Methodology - Color
	6 - Results and Discussion - Color
	7 - Summary and Conclusion - BW
	8 - Source Code 3D Sphere V2 - BW

