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Microwave and radiofrequency heating has great promise in many engineering and biomedical 

applications because of its non-contact, volumetric heat generation and selective heating. 

However, the heating patterns and temperature distributions are non-uniform and difficult to 

control. Electromagnetic power absorption guides the heating pattern which is a complex function 

of dielectric properties, electromagnetic frequencies, size, and shape of the target object. A closed 

form expression of power absorption with functional relationship with various parameters is 

obtained for a spherical shaped dielectric object using Maxwell’s equations in spherical 

coordinate. Maxwell’s equations are solved using vector potentials and separation of variables. 

Mathematical tools such as Bessel functions, Legendre Polynomials, infinite series, and complex 

number expressions are employed in finding the solution. The electromagnetic power absorption 

is calculated from the knowledge of electromagnetic field within the object using Poynting 

theorem. The analytical expression of the electric field, magnetic field, and power generation 

within the sphere are coded in MATLAB and FORTRAN to get numerical results for spherical 

shaped meat balls of 1.0, 2.0, 3.0 and 5.0 cm radii with varying properties and electromagnetic 

frequencies of 2800 MHz, 2450 MHz, 915 MHz, and 300 MHz. Origin Labs is utilized to produce 1-

D plots and also 2-D polar plots by reading the data text files generated in the FORTRAN program. 

Results show that the presence of local maxima of electric and magnetic field strength due to the 

constructive interference of the electromagnetic wave in the target object. The spatial distribution 

of microwave power absorption follows the trend of electromagnetic field distribution. The 
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locations of local maxima and minima of power absorption and electromagnetic field distributions 

vary with the radius of the sphere and applied frequencies. The results also show that the 

strength of the absorbed electromagnetic wave at the 2450 MHz is most non-uniform at the 

radius of 3 cm nugget. The smallest ( 1 cm radius) and largest (5 cm radius) dielectric radii show a 

lower electromagnetic and power generation peak values but a more even distribution of energy 

overall.  Analysis reveals the correlations of propagating wavelength, penetration depth of 

electromagnetic waves and size of the beef nuggets. Results indicate that the uniform and 

effective electromagnetic power absorption can be facilitated by proper design of the object of 

interest and selection of appropriate frequencies. This rigorous analytic investigation will provide 

significant insight in understanding the power absorption and temperature distribution 

mechanism for spherical shaped objects under electromagnetic wave (microwave and 

radiofrequency) treatment. 
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Chapter 1: 

Introduction 

The use of microwave ovens to heat and cook food is seemingly ubiquitous in modern life. Microwave 

heating utilizes electromagnetic (EM) waves in the frequency range between 300 MHz and 300 GHz. 

Heating can be accomplished in lower frequencies of the electromagnetic spectrum as well, such as 

radiofrequency (3 kHz to 300 MHz) heating. Electromagnetic heating has emerged as one of the most 

promising heating mechanisms as electromagnetic irradiation imparts several advantages over the use 

of conventional ovens such as: 1. Electromagnetic heating possesses higher energy efficiency since 

heating is focused on the target object and surroundings are not greatly affected by the EM radiation1; 

2. The ability to begin heating all areas of the object instantaneously rather than a transfer of heat 

energy from the outside to the inside2; 3. It does not require physical contact and provides shorter 

processing time3; 4. In mass scale industrial material processing, it provides pollution free, environment 

friendly heating process4; 5. It can be designed for material selective heating for composite material 

processing5. The electromagnetic heating mechanism has been demonstrated not only in food 

processing but also in many other engineering applications such as polymer processing, contaminated 

soil remediation, waste processing, minerals processing and activated carbon regeneration, superficial 

tissue disease treatment, drilling in oil and gas industries, etc3,4,6,7.  

Electromagnetic heating, i.e. microwave and radiofrequency heating, is accomplished by the excitation 

of polar molecules in dielectric material by the alternating amplitude of the electric component of the 

electromagnetic wave. These excited molecules exhibit “dipole moments” due to their polar 

construction that causes them to flip and rotate with the passing of the electromagnetic wave. As the 

amplitude and orientation of the electromagnetic wave changes, the orientation of the polar molecule 

also changes in the attempt to minimize the dipole moment. With high frequency waves, the effect 
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causes significant friction as a result of this molecular motion 2. In foodstuffs, water, in particular, is one 

of the major source of molecular motion due to its polar nature. Fat molecules also are subject to this 

molecular motion. Prompt heating can be accomplished with radiofrequency and microwave radiation, 

as heat is generated internally within the target object. However, due to the nature of how a substance 

is heated under this method, electromagnetic heating is generally non-uniform, often leading to uneven 

heating of the host material 2.  

1.1 Background of the Study 

The non-uniformity of electromagnetic heating is due to several factors, including: 

constructive/destructive wave interactions within the target object, electromagnetic properties of the 

specimen such as dielectric losses and electrical permittivity, physical properties such as shape, size and 

material phase, and strength of incident electromagnetic wave energy in the target object. Non-uniform 

heating poses a number of challenges in material and food processing. Uneven heating can alter 

chemical composition and texture of the materials. In foodstuffs, the texturing is often over-emphasized 

if the extremes between hot and cold regions are significant enough. Overcooking and burning often 

result due to a higher degree of uneven heating. While overheating can result in distorted taste and 

burning, undercooking can present its own set of problems. For instances, food processing requires a 

minimum cooking temperature for safe consumption.  Certain foods, such as meat products, are more 

pathologically active at certain temperatures for bacterial growth or other pathogens; uneven heating 

can facilitate these temperatures which are not desirable and can pose serious health issues8. In 

addition, the non-uniformity of heating limits widespread use, especially as a replacement for 

conventional heating methods 9. Better understanding of the electromagnetic heating mechanism, and 

the effects of parameters on heating patterns and control, can be put to good use in many industries 

including material and food processing. 
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A tremendous effort has been invested in understanding and improving control of electromagnetic 

heating through experimental and numerical methods4,10,11. Experimental techniques, such as measuring 

real-time temperature at the different parts and depths of the specimen as a function of 

electromagnetic energy incident on the specimen, reveals information that can be correlated with 

material and process parameters 8. Although experiment reveals critical information and helps us 

understanding the process, sometimes it is more convenient to perform numerical and theoretical study 

to grasp the mechanism and physics behind it. Especially since electromagnetic heating is mostly 

dependent on the electro-thermo-physical properties of the specimen, transformation of one set of 

results to another condition is not possible. Numerical techniques such as Finite Element Analysis (FEA) 

and/or Finite Volume Methods (FVM) are used to model the interaction of the irradiating 

electromagnetic radiation with the dielectric material 12,13. Numerical modeling and simulation allows 

greater flexibility in changing material compositions, electro-thermo-physical properties, and process 

parameters to analyze the effect of electromagnetic irradiation14.  

Despite numerous experimental and numerical studies of electromagnetic heating, the fundamental 

mechanism and protocols for optimization of process parameters have not been developed yet. 

Analytical methods seek to find a closed form solution that describes the interaction of the 

electromagnetic waves with the host material. A handful of pure analytical studies have been reported 

that can enhance the understanding underlying physics of electromagnetic heating for limited geometric 

shapes and conditions. Lately, Hossan et al. provided closed-form analytical expression for 

electromagnetic power absorption and temperature distribution in rectangular15 and cylindrical shaped 

objects9.   

In the analytical derivation of closed form expressions of power absorption and electromagnetic field 

distribution, there are two approaches; - i) Lambert’s law, which is based on the assumption that the 

electromagnetic radiation decays exponentially and there are no reflection and interference in wave 
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propagation and ii) Maxwell’s equation for electromagnetic waves. Maxwell’s equation is regarded as 

the most accurate method and it is imperative to use Maxwell’s equation to evaluate absorption of 

electromagnetic wave energy in small sized samples16. The solution of Maxwell’s equation provides the 

distribution of the electromagnetic fields. With the knowledge of the electromagnetic field distributions 

within the object, the Poynting theorem is utilized to determine the distribution of power within the 

object. The Poynting theorem has been utilized with numerical as well as analytical modeling in several 

works. Ayappa et al. produced numerical results of power distribution and heating within lossy dielectric 

cylindrical rods using 2D finite element analysis 12. Hossan et al. showed that an analytical result for the 

microwave heating of rectangular shaped foodstuffs could be generated using Poynting theorem 15. In 

another work, Hossan et al. showed an equivalent result for cylindrical shaped foodstuffs 9.  

For larger objects (especially those that can be modeled as semi-infinite in some of the spatial 

dimensions), Lambert’s law can generate results with acceptable accuracy for some special cases. 

However, Lambert’s law cannot generate accurate results of microwave power generation in small sized 

foodstuffs (such as nuggets) 17. Lambert’s law predicts microwave power generation as a simple 

exponential decay model where wave reflections are neglected in the underlying mathematics 14. Curet 

et al. published work that highlights the key differences between the two approaches 18. Modeling with 

Lambert’s law can be implemented in a more straightforward fashion, without needing intimate 

knowledge of the object’s electromagnetic field intensities 18. Computationally speaking, Maxwell’s law 

is more intensive on siliconic resources, although simplifications can be made in certain cases that 

permit use of electronic spreadsheets 19. 

1.2 Statement of the Problem 

Although there are some reported works that provide an analytical expression for the microwave power 

absorption for rectangular and cylindrical shaped objects, there are no analytical closed form 
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expressions of electric, magnetic and electromagnetic power absorption for a three dimensional 

spherical shaped object. Spherical shape objects under electromagnetic treatment requires solving 

Maxwell’s equation in the spherical coordinate system. A more common mathematical arrangement 

involves allowing the electromagnetic waves to impinge radially from all directions, which can be 

modeled as three dimensional radial direction impingement.  Therefore the goal of this thesis is to 

obtain a closed form solution to the electric field, magnetic field, and power distribution in small, 

spherical dielectric foodstuffs, utilizing the spherical coordinate system and vertical impingement of 

electromagnetic waves. Based on Hossan et al.’s previous work with rectangular 15 and cylindrical 9 

objects and Balanis’ work with dielectric scattering 20, the transverse electric and magnetic (TEM) wave 

is transformed into spherical coordinates.  Three dimensional Maxwell’s equations in spherical 

coordinates are solved using vector potentials and separation of variables to evaluate the distribution of 

the electric and magnetic fields within the target object21. The analytical expression of the electric and 

magnetic fields are then used to find a closed-form solution of electromagnetic power absorption using 

Poynting theorem. The expression is evaluated for various sizes of meat balls and varying 

electromagnetic wave frequencies and properties.  
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Chapter 2: 

Literature Review 

In this study, the power generation within small spherical foodstuffs irradiated with dual-source planar 

electromagnetic waves is investigated. The goal of this research is to follow a completely analytical 

solution methodology, with the aim of finding a closed-form solution to electromagnetic power 

absorption as a function of dielectric and physical properties of the target object. Heat generation due 

to power absorption is studied for various electromagnetic frequencies. After defining key theoretical 

tenets and mathematical techniques, this chapter provides a brief overview of the current state of 

electromagnetic heating research, applications, methodologies, limitations and future directions. Finally, 

the chapter will conclude regarding questions the research aims to answer and how this research will 

contribute in the field.  

2.1 Theoretical Background 

Electromagnetic waves, particularly the planar variety, often radiate in particular orientations or 

polarizations. The specific polarizations typically seen with traveling plane waves are the Transverse 

Electric (TE), Transverse Magnetic (TM) and Transverse Electromagnetic (TEM). The spatial 

arrangements of each waveform can be seen in Figure 2.1. Of the three modes, TEM is of the lowest 

energy configuration (lowest-order mode). A microwave oven can theoretically produce waves of any of 

the three configurations, but TEM waves are usually simple and convenient to model 1. 

A transverse electric wave is a specific field configuration that does not have an electric field component 

in the direction of wave propagation. As an example, in the Cartesian coordinate system, a TEz (referred 

to as transverse electric to z) wave does not have an electric component of the electromagnetic wave 

that exists in the z-direction; however, the electric field components in the x & y directions, and all of 
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the magnetic field (x, y, & z) components can exist 2. This sort of waveform is represented in Figure 2.1 

(b).  A transverse magnetic (TM) wave behaves in a similar fashion, only in this case the magnetic 

component of the wave is the focus of the attention. For instance, a TMz (transverse magnetic to z) 

wave in Cartesian coordinates does not have a magnetic component in wave propagating direction, i.e. 

in this case the z-direction. However the magnetic field components in the x and y directions, and all of 

the electric field (x, y, & z) components can exist 3. Figure 2.1 (c) represents such a waveform. A 

transverse electromagnetic wave does not have an electric or magnetic component in the direction of 

propagation 4. For instance, a TEMz (transverse electromagnetic to z) wave in the Cartesian coordinate 

system does not have an electric or magnetic field component in the z direction. Figure 2.1 (a) highlights 

such a waveform. The classification of electromagnetic wave based on the direction of electric and 

magnetic field is usually described as mode. Waveguides are used to guide different modes of 

electromagnetic waves. Regardless the electromagnetic wave mode, electromagnetic heating functions 

within the frequency range of 3 kHz – 300 MHz (radiofrequency heating) and 300 MHz- 300 GHz 

(microwave heating). In the US, specific frequencies for heating or other purposes is specified by the 

Federal Communications Commission (FCC). 

 

Figure 1: 

 

 

Figure 2.1: A comparison between the three wave modes, (a) TEM, (b) TE, (c), TM, in Cartesian coordinates. k  represents the 

direction of wave travel, and E  and M  represent the electric and magnetic components of the electromagnetic wave, 
respectfully. 
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As a further mathematical simplification, uniform plane waves are often employed, as seen in Figure 2.2. 

While wave propagation is not truly planar in the physical world, making the plane wave or uniform 

plane wave simplification is often used for convenience in finding a mathematical solution. The 

electromagnetic wave is represented by Maxwell’s equation. The electric and magnetic field distribution 

of the object subjected to electromagnetic wave heat treatment are predicted by the solution of 

Maxwell’s equation. The knowledge of the electromagnetic field distribution, material properties and 

wave characteristics (i.e. absorption, penetration and reflection) are used to find the power generation 

within the target object.  

 

Figure 2.2: An example of a uniform TEM plane wave1. 

2.1.1 Literature Survey Overview 

The study of electromagnetic power absorption and heating has become a subject of growing interest in 

many engineering, food science, and biomedical applications. A tremendous effort has been invested to 

understand fundamental mechanisms and relations among functional parameters through experimental 

techniques, computer modeling and simulation, and theoretical investigation with advanced 

mathematical tools.  Experimental studies provide the opportunity of real-time, physical impact of 

electromagnetic wave impingement, recording behaviors of microwave-dielectric interaction, heat, and 

temperature distribution of the target object. However, experimental techniques are expensive, require 
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trial and error, and take up significant time and resource commitments.  Certain studies, such as those 

seeking to understand the behaviors of microwave-dielectric interaction that closely model real-world 

setups, are best studied using experimental methods. Computer modeling and simulation of 

electromagnetic treatment can optimize experimental protocols and save time and resources.  

Numerical analysis and simulation can predict the distribution of microwave power absorption and heat 

generation in various conditions in a short period of time. On the other hand, the theoretical/analytical 

investigation provides fundamental insight and underlying physics behind a phenomenon.  Analytical 

solutions provide closed-form mathematical expressions of electromagnetic power absorption and heat 

generation that relates functional relationships among various parameters. It also provides benchmark 

solutions that can be used to test the accuracy of numerical and computer modeling and simulation. 

This thesis works presents an analytical expression for the electromagnetic power absorption and heat 

generation for spherical shaped objects subjected to electromagnetic treatment.  

2.2 Literature Survey: Experimental Studies 

Knowledge of accurate material properties can greatly influence the quality of microwave heating 

studies. Detailed dielectric measurements on liquid and solid foodstuffs were performed by E. C. To 5 to 

establish a predictive model for dielectric properties under the influence of microwave radiation. Several 

temperatures and frequencies were used in the study. It was determined that dielectric losses for the 

liquid under study could not be predicted from a linear, additive, composition-based model. Dielectric 

measurements for solid food products were also reported in various literature 5-8 . Curet et. al 6 studied 

the microwave heating of tylose subjected to an incident sinusoidal wave. Both experimental and 

numerical techniques were employed and compared different approaches of modeling microwave heat 

generation such as Maxwell’s equations and Lambert’s law. Estimates of dielectric properties for the 

frozen phase were deduced and gave comparable results between numerical results and experimental 

data. Resonance phenomena in the frozen state could only be predicted using Maxwell’s equations, 
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while good agreement could be found between Maxwell’s equations, Lambert’s law, and experimental 

data for thin, non-frozen objects. This study provided the criteria of different approaches of modeling to 

predict accurate power absorption, heat generation and temperature distribution of frozen and non-

frozen objects by comparing experimental results6. Distribution of power absorption is uneven in 

microwave heating of specimens which facilitates non-uniform temperature distribution. Goksoy 7 

investigated the ability of microwave ovens and use of various shielding techniques to achieve 

sufficiently uniform surface temperatures on pieces of poultry meat. The goal of the study was to reduce 

numbers of surface bacteria without significantly changing the original texture of the poultry. The study 

concluded that such a surface treatment produced unreliable results. Kelen et. al 9 mapped the heat 

distribution in corn starch-based granule layers for the purposes of quantitatively evaluating and 

optimizing the even distribution of microwave energy to facilitate higher quality pharmaceutical 

microwave vacuum drying. Results show that regulating the hottest areas during the drying process can 

optimize the distribution of heat and avoid over-heating the hottest regions in the layers. The 

continuous and pulsed microwave heating techniques had also been investigated to provide uniformity 

in heat generation and temperature distribution. It is reported that the pulsed microwave heating 

techniques can provide more uniform heat distribution for certain conditions10. Gunasekaran 10 

performed temperature distribution studies with agar gel cylinders heated with a microwave oven. 

Results indicated when the same average power level settings were applied with both pulsed and 

continuous microwave heating, the temperature distribution was more uniform under pulsed heating, 

as can be seen for a certain case in Figure 2.3. 
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Figure 2.3: Temperature distribution in 2% agar gel cylinders, 4 cm radius, after 4 min of heating by using an average microwave 
absorbed power of 225 W under continuous (Mode A) and pulsed (Mode B) microwave applications.10 

 The experimental studies show that the electromagnetic heating and temperature distributions are 

dependent on electromagnetic power absorption which is a complex function of physical and dielectric 

properties of the target object7-11. 

2.3 Literature Survey: Numerical Studies 

Plane wave scattering studies using computers and numerical methods such as Finite Element Methods 

/ Finite Element Analysis can be found as far back as the 1970’s. Bussey 12 outlined a theoretical 

scattering solution for a plane wave irradiating the side of a lossy multilayer dielectric cylinder of infinite 

length. Numerical values of the modal scattering coefficient for TE and TM modes are given for several 

single and multilayer cylinders. To allow for the study of dielectrics of complex shape, Chang 13 made use 

of the unimoment method to calculate the scattered fields of dielectric cylinders of inhomogeneous 

materials and/or arbitrary cross sections [Figure 2.4].  
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Figure 2.4: Amplitude of E-wave and H-wave scattering far-field pattern for off-centered circular cylinder.13 

Use of this method involves finite element analysis inside a mathematical circle enclosing the 

inhomogeneous body, with the goal of greater simplicity and efficiency in programming. Ayappa et. al 14 

made use of Galerkin finite elements to investigate power absorption profiles in homogeneous, 

isotropic, multilayered slabs irradiated with microwave plane waves from opposite sides. An expression 

for critical slab thickness in which Lambert’s law can be substituted for Maxwell’s equation in the 

transient heat equation was determined. For slab thicknesses above the critical thickness value, 

temperature profiles were within 0.5% of those predicted by Maxwell’s equation. To conserve 

computational resources, and to increase the accuracy of the solutions within the dielectric, Ayappa et. 

al 15 utilized Galerkin finite elements to predict the distribution of temperature in cylindrical and square 

dielectric rods exposed to incident plane waves. The numerical approach employed a radiation 

boundary condition (RBC) to limit the total domain of the analysis. Temperature dependent dielectric 

properties were incorporated into the modeling. Results showed that, for cylindrical rods, the 

distribution of power is a strong function of the cylinder’s radius. For square rods, the areas of greatest 

power generation tended to be in the middle, and the corners. When both the cylindrical and square 



15 

 

dielectric rods where thicker, a greater effect of heating could be seen on the side/face incident to the 

irradiating plane wave. Figure 2.5 illustrates this effect. 

 

Figure 2.5: Comparison of temperature contours for cylindrical and square rods exposed to TEz polarized plane waves.15  

 Thermal runaway was observed for materials with high dielectric loss. The polarization of the incident 

wave also influenced the temperature distribution, for instance, TMz polarization giving a more 

pronounced heating effect than TEz polarization. The utilization of radio frequency waves was also 

investigated to minimize the non-uniformity of microwave heating. Oliveira 16 performed numerical 

studies on the distribution of thermal energy within foodstuffs by solving Maxwell’s equation and 

incorporating the solution as a source term in the transient heat equation. The finite element method 

was used in the simulations. Results showed that the sample size and shape had a significant effect on 

power distribution and heating within the sample. The radiation penetration was more effective at 

lower frequencies as opposed to higher frequencies. Romano 17 developed a 3D multi-physics 
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mathematical model to model the microwave heating rate and power distribution within 3D foodstuffs 

of cubical, cylindrical, and spherical shapes. Numerical modeling was employed, using a dual microwave 

source with 180 degrees between the emitters. Temperature dependent dielectric and physical 

properties were employed in the model. Results showed that the shape of objects had a significant 

effect on the distribution of heat and power within the sample [Figure 2.6]. The cubic shape exhibits 

fast, uniform heating and good absorption of power, while cylinders responded better when the ends 

were placed 90 degrees with the incoming radiation. Spherical objects responded the least favorably. 

Numerical studies also revealed that temperature distribution and heat generation are mostly 

dependent on the electromagnetic power absorption, which is a complex function of electro-physical 

parameters of the target object.  

 

Figure 2.6: Time-average total absorbed power (Ptot) by each sample after 900 s of heating, with respect to output power (Pout), 
of 100, 200, 300 and 400 W.17 

2.4 Literature Survey: Analytical Studies 

A variety of analytical solutions have been attempted in 1-D, 2-D, and 3-D configurations, in the 

Cartesian and Cylindrical coordinate systems. For 1-D dielectric systems modeled in rectangular 

coordinate systems, Nachman et. al 18 studied the heating patterns of muti-layered slabs irradiated by 

microwaves.  



17 

 

 

Figure 2.7: Evolution in time of the temperature profile in a thermally insulated three-layered material in the presence of a 

reflector (L = 0.49).18 

A general expression was derived for volumetric power absorption taking into account transmissions 

and reflections at the interfaces. A numerical method was used to determine the temperature 

distribution within the material. Both Dirichlet and Neumann-type boundary conditions were 

considered. The special case where cooling fluid is circulated inside the slabs was also investigated and 

was found to significantly alter the heating pattern. It was also found that placing a reflector after the 

slab and opposite the EM source could alter the temperature distribution within the slab. The region 

between the slab and the reflector was heated more prominently. In another paper, Fleischman 19 

utilized integral transformation techniques to obtain a closed form 1-D solution to the heat equation for 

short-term/high-power microwave heated food slabs. When using a simplified closed form solution, 

better uniformity in temperature distribution was obtained when microwave processing time was 

limited to 40 seconds. Results from the full form solution showed temperature variation within beef 

slabs to be most sensitive to slab width and heating time. Slabs of 1-3 cm width interval showed the 

greatest extremes. Lastly, the least variation in temperature values for slabs were observed in the 3-4 

cm width interval. Finally, Mani et al. 20 developed a mathematical model for investigating the bonding 

of multiple PMMA slabs using microwave heated dielectric material. Maxwell’s equation was used to 

map electric field distribution under plane wave configuration. The Poynting theorem was used to 
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volumetrically find the power absorbed by each layer. Results showed dielectric properties, layer 

thickness, heat transfer coefficient and processing time have great influence on the heating pattern. 

Yang 11 compared the predicted radial temperature distribution in a 2D cylindrical shaped model food 

object using finite-difference models based on Maxwell’s equations and Lambert’s law [Figure 2.8]. 

 

Figure 2.8: Maxwell’s and Lambert’s model predicted microwave power absorbed during continuous heating of 2% agar gel 
cylinders (3.5 and 4.0 cm radius) as a function of radial distance for sample center. The electric field is oriented along the vertical 
z-axis of the cylinder.11 

The microwave power absorption and temperature distribution were compared with experimental data 

gathered from microwave heated agar gel cylinders. Results indicated that power-absorption efficiency 

increased as sample volume increased. Ignoring edge effects, there was also no appreciable variation in 

temperature along the longitudinal direction of the cylinder. The power absorption results derived from 

Maxwell’s equation showed nodal/anti-nodal wave interactions of the incoming microwave radiation, 

while Lambert’s law results demonstrated exponential decay. The study suggests Maxwell’s equations 

predict temperature generation within the sample most accurately. It was also shown that pulsed 

microwave heating allows for more uniform heating. Hossan et al.21 reported microwave power 

absorption and temperature distribution in 3D cylindrical object subject to microwave radiation.  
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Figure 2.9: Absorbed power distribution along centerline of a cylindrical foodstuff for f=2450 MHz.21 

An analytical solution for both microwave power absorption and temperature distribution was 

presented. Such parameters as cylinder length, diameter, heat transfer coefficient, and the frequency of 

the incoming microwave radiation were varied to study their specific effects on the temperature 

distribution inside the material. It was determined that 21: 1. The electric field distribution within the 

food sample closely mirrored power generation. 2. The length of the food cylinder had a significant 

effect on the temperature distribution in the material. 3. The change in temperature in the radial 

direction of the cylinder is significantly affected by the heat transfer coefficient. 4. No clear trend with 

axial temperature distribution as cylinder length is varied. 5. Internal heat generation exceeds heat lost 

to the ambient environment. 6. An optimum length may exist for a frequency and food type where the 

thermodynamic efficiency of the heating system is at an optimum. Lately, Hossan et al. 22 investigated 

the effects of temperature dependent properties in a three dimensional rectangular food slab 

undergoing microwave and radio frequency heating. A closed form solution to the temperature 

distribution within the object was determined by solving Maxwell’s equation and utilizing integral 

transformation techniques. It was found that incident frequency, sample thickness, and processing time 

have significant influence on the heating pattern. Radio frequency electromagnetic wave radiation 
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provides more uniform heat generation and hence the overall uniformity of the heating within the 

sample was improved. 

2.5 Research Goals 

Despite numerous experimental and numerical studies on electromagnetic power absorption and 

heating, there are only a few handful of pure analytical works that can provide some theoretical insight 

about the mechanism of this technology. Moreover, to the best of the Author’s knowledge, there are no 

studies available that present analytical closed-form solutions of electromagnetic power absorption for 

3D spherical shaped objects. Therefore, the goal of this thesis is to find a closed-form expression of 

electromagnetic field and power absorption distribution in a spherical shaped object subjected to planar 

impingement of electromagnetic radiation. The incoming electromagnetic waves are modeled as 

transverse electric and magnetic (TEM) waves.  The three dimensional Maxwell’s equation in spherical 

coordinate for TEM wave is solved using vector potentials, and separation of variables. The 

electromagnetic field distribution and power absorption are plotted for different sizes of beef nugget. 

The theory, governing equation, assumptions and model domains are described in the next chapter.   

 

 

 

 

 

 



21 

 

References 

1. Balanis CA. Advanced engineering electromagnetics. John Wiley & Sons; 2012. 
2. Balanis CA. Transverse Electric Modes: Source-Free Region. Advanced Engineering 

Electromagnetics. 2nd ed. Hoboken, NJ: John Wiley and Sons; 2012:276. 
3. Balanis CA. Transverse Magnetic Modes: Source-Free Region. Advanced Engineering 

Electromagnetics. 2nd ed. Hoboken, NJ: John Wiley and Sons; 2012:272-273. 
4. Balanis CA. Transverse Electromagnetic Modes: Source-Free Region. Advanced Engineering 

Electromagnetics. 2nd ed. Hoboken, NJ: John Wiley and Sons; 2012:265. 
5. To EC. Dielectric Properties of Food Materials. Journal of Microwave Power. 1974;9(4):303-315. 
6. Curet S, Rouaud O, Boillereaux L. Microwave tempering and heating in a single-mode cavity: 

Numerical and experimental investigations. Chemical Engineering and Processing: Process 
Intensification. 2008;47(9-10):1656-1665. 

7. Goksoy EO. Non-Uniformity of Surface Temperatures After Microwave Heating of Poultry Meat. 
International Microwave Power Institute. 1999;34(3):149-160. 

8. BARRINGER SA, DAVIS EA, GORDON J, AYAPPA KG, DAVIS H. Microwave‐Heating Temperature 
Profiles for Thin Slabs Compared to Maxwell and Lambert Law Predictions. Journal of Food 
Science. 1995;60(5):1137-1142. 

9. Kelen Á, Ress S, Nagy T, Pallai E, Pintye-Hódi K. Mapping of temperature distribution in 
pharmaceutical microwave vacuum drying. Powder Technology. 2006;162(2):133-137. 

10. Gunasekaran S. Effect of experiemental parameters on temperature distribution during 
continuous and pulsed microwave heating. Journal of Food Engineering. 2006;78:1452-1456. 

11. Yang HWaG, S. Comparison of temperature distribution in model food cylinders based on 
Maxwell's equations and Lambert's law during pulsed microwave heating. Journal of Food 
Engineering. 2004:445-453. 

12. Howard E. Bussey JHR. Scattering by a Lossy Dielectric CIrcular Cylindrical Multilayer, Numerical 
Values. IEEE Transactions on Antennas and Propagation. 1975:723-725. 

13. Shu-Kong Chang KKM. Application of the Unimoment Method to Electromagnetic Scattering of 
Dielectric Cylinders. IEEE Transactions on Antennas and Propagation. 1976;24(1):35-42. 

14. Ayappa KG, Davis HT, Crapiste G, Davis EA, Gordon J. Microwave heating: an evaluation of 
power formulations. Chemical Engineering Science. 1991;46(4):1005-1016. 

15. K. G. Ayappa HTD, E. A. Davis, J. Gordon. Two-Dimensional Finite Element Analysis of Microwave 
Heating. AlChE Journal. 1992:1577-1592. 

16. M. E. C. Oliveira ASF. Microwave heating of foodstuffs. Journal of Food Engineering. 
2001;53(6):347-359. 

17. Romano V, Marra F. A numerical analysis of radio frequency heating of regular shaped foodstuff. 
Journal of Food Engineering. 2008;84(3):449-457. 

18. M. Nachman GT. Heating Pattern in a Multi-layered Material Exposed to Microwaves. IEEE 
Transactions on Microwave THeory and Techniques. 1984;32(5):547-552. 

19. Fleischman GJ. Predicting temperature range in food slabs undergoing short-term/high-power 
microwave heating. Journal of Food Engineering. 1999;40(1999):81-88. 

20. Kasi Balamurugan Mani MRH, Prashanta Dutta. Thermal analysis of microwave assisted bonding 
of poly(methyl methacrylate) substrates in mircofluidic devices. International Journal of Heat 
and Mass Transfer. 2013;58:229-239. 

21. Hossan MR, Byun D, Dutta P. Analysis of microwave heating for cylindrical shaped objects. 
International Journal of Heat and Mass Transfer. 2010;53(23):5129-5138. 

22. M. R. Hossan PD. Effects of temperature dependent properties in electromagnetic heating. 
International Journal of Heat and Mass Transfer. 2012;55:3412-3422. 



22 

 

Chapter 3: 

Theory 

Generally, electromagnetic heating uses electromagnetic waves within the range of 3 kHz-300 GHz. 

Radiofrequency heating is in the range of 3 kHz-300 MHz, and microwave heating is in the 300 MHz-300 

GHz range. Most materials that respond to radiofrequency or microwave heating contain polar 

molecules such as water and molecules of low heat capacity such as fat and oil. Polar molecules are 

molecules that have a positive charge in one side (or pole) of the molecule and have a negative charge 

on the other side (or pole). When a material composed of polar and/or low heat capacity molecules is 

subjected to an electromagnetic field in the radio/microwave frequency, the molecules start rotating in 

the attempt to align with the direction of the incoming electromagnetic field. This rotation creates 

friction (and therefore heat) in the material.  This heat generation and its spatial distribution are 

dependent on the electromagnetic field distribution within the target object. Hence the electromagnetic 

heat generation can be explained by examining the electromagnetic field distribution within the target 

object. The electromagnetic field is governed by Maxwell’s equation and the following section presents 

Maxwell’s equation, relevant assumptions, and Poynting theorem for evaluating electromagnetic power 

absorption or heat generation.  

3.1 Governing Equation 

Maxwell’s equations govern the electromagnetic field distribution within the material, as given 

below 1 

t



B

ME




          (3-1a) 
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t



D

JH




          (3-1b) 

eqD 


           (3-1c)

mqB 


           (3-1d) 

where E


 is the electric field intensity, M


 is the magnetic current density, B


 is the magnetic 

flux density, H


 is the magnetic field intensity, J


 is the electric current density, D


 is the electric 

flux density, eq  is the electric charge density, and mvq  is the magnetic charge density. The time 

harmonic version of Maxwell’s equations, i.e. using time-harmonic electromagnetic waves, is 

convenient to represent high frequency (radio and microwave) electromagnetic heating. Many 

practical systems lend well to the time-harmonic formulation, where the time variation is of 

cosinusoidal form, represented in this work by tie  . Using the time-harmonic formulation, the 

instantaneous representations of Maxwell’s equation can be related to their complex forms by 

the following expressions 

]),,(Re[);,,( tiezyxEtzyx 


E         (3-2a) 

]),,(Re[);,,( tiezyxHtzyx 


H         (3-2b) 

]),,(Re[);,,( tiezyxDtzyx 


D         (3-2c) 

]),,(Re[);,,( tiezyxBtzyx 


B         (3-2d) 

]),,(Re[);,,( tiezyxJtzyx 


J         (3-2e) 

]),,(Re[);,,( tiezyxMtzyx 


M         (3-2f) 
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]),,(Re[);,,( ti

e ezyxqtzyx 
 q         (3-2g) 

]),,(Re[);,,( ti

mmv ezyxqtzyx 
q         (3-2h) 

where E


 is the electric field intensity, M


 is the magnetic current density, B


 is the magnetic 

flux density, H


 is the magnetic field intensity, J


 is the electric current density, D


 is the 

electric flux density, eq  is the electric charge density, and mvq  is the magnetic charge density, 

all in complex spatial form. x, y, and z represent the three spatial dimensions, t represents time, 

  is angular frequency and i represents the imaginary number. With substitution, and 

differentiation for (1a-1b), equations (1a-1d) take on the following form 1  

BiME


           (3-3a) 

DiJH


           (3-3b) 

eqD 


           (3-3c) 

mqB 


           (3-3d) 

The knowledge of the electromagnetic field is utilized to find the power generation using 

Poynting theorem. In the following work, Poynting theorem for determining power generation 

within the material is given by 2 

]Re[
2

1 *HEqav


           (3-4a) 

)]
2

1
(Re[ *HEQgen


          (3-4b) 
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Where avq is the time-average Poynting vector (average power density) over one period, *H


is 

the complex conjugate of the magnetic field, and 
genQ is the generated power in the material. 
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Chapter 4: 

Solution Methodology 

Maxwell’s equation presented in Chapter 3 governs the general electromagnetic waves. However, when 

it comes to a specific application of heat generation through radiofrequency and microwave radiation, 

the consideration of material properties, material constitutive laws, and boundary conditions are critical 

for finding a solution of the electromagnetic fields within the specimen. Using material constitutive laws 

and consideration of heating conditions, Maxwell’s equation can be simplified into a single partial 

differential equation. The following sections provides necessary assumptions, boundary conditions and 

solution methodology.   

4.1 Assumptions 

In this study, a spherical object of homogeneous, dielectric construction is subjected to electromagnetic 

heating. Uniform plane waves, also known as transverse electromagnetic (TEM) waves, are utilized to 

model the incoming electromagnetic (EM) radiation. While the TEM waves generated in a real system 

are not usually uniform, such a simplification allows an analytical study to be carried out, and gives 

results that closely approximate the behavior of a real microwave oven. The following assumptions are 

made for this study 

(i) Food system is linear and follows linear material constitutive laws. 

(ii) The system satisfies the electroneutrality condition. 

(iii) Dielectric properties are temperature independent. 

(iv) The incident EM radiation are uniform TEM waves. 

(v) Material properties are temperature independent  
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4.2 Boundary Conditions 

In this work, the impingent of uniform TEM plane waves propagate in the +z and –z directions. The 

waves are transformed from a Cartesian coordinate system representation to a spherical coordinates 

form so that the target spherical object is equivalently exposed to electromagnetic radiation radially in 

all directions.  For a lossy dielectric sphere, continuity of the tangential electric and magnetic fields are 

required 1. Therefore boundary conditions are as follows 

)20,0,()20,0,(     arEarE tt
     (4-1a) 

)20,0,()20,0,(     arEarE tt
    (4-1b) 

)20,0,()20,0,(     arHarH tt
    (4-1c) 

)20,0,()20,0,(     arHarH tt
    (4-1d) 

where tE represents the theta component of the electric wave inside the sphere, tE  represents the 

theta component of the electric wave outside the sphere, tE  represents the phi component of the 

electric wave inside the sphere, tE  represents the phi component of the electric wave outside the 

sphere tH  represents the theta component of the magnetic wave inside the sphere, tH  represents 

the theta component of the magnetic wave outside the sphere, tH  represents the phi component of 
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the magnetic wave inside the sphere, tH  represents the phi component of the magnetic wave outside 

the sphere, and a is the outer radius of the sphere. 

 

4.3 Analysis of Wave Equation in Spherical Object 

Consider a lossy dielectric spherical object subjected to TEM electromagnetic radiation as shown in the 

Figure 4.1.  Based on the assumptions mentioned in Section 4.1, the object under study is electrically 

neutral (source free) i.e. 0 mvev qqMJ


 and the following material constitutive relations are 

employed2,3 

ED


            (4-2a) 

Figure 4.1: Plane wave and dielectric sphere system as modeled in research. 
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HB


            (4-2b) 

Where  is permeability, and   is permittivity. Maxwell’s equations take on the following form 

HiE


           (4-3a) 

EiH


           (4-3b) 

0 E


            (4-3c) 

0 H


            (4-3d) 

Where 1i  is an imaginary number, and   is angular frequency.  Two auxiliary functions known as 

vector potentials: A


 (magnetic vector potential), and F


 (electric vector potential), are employed in 

finding a solution 4. To utilize vector potentials, it is helpful to define separate A


 and F


 vector 

potential components for the E


 and H


 fields. Using vector identities and Lorenz conditions, 

Maxwell’s equations can be expressed in terms of vector potentials as follows  

022  AA


           (4-4a) 

 022  FF


           (4-4b) 

Where   represents phase constant, and  22  . Vector potentials are usually considered strictly 

mathematical tools, even though the resulting electromagnetic radiated fields ( E


, H


) represent 

physically measurable quantities. The vector potentials ( A


and F


 ) are defined such a way that each of 

this vector has both electric and magnetic field component. In other words, the total electric field will 

have contributions from the magnetic vector potential as well as the electric vector potential. Therefore 



31 

 

total electric field and magnetic field can be found in terms of vector potentials using superposition 5  as 

follows 

FA EEE


            (4-5a) 

FA HHH


           (4-5b) 

where AE


 is the electrical component of vector potential A


, AH


is the magnetic component of vector 

potential A


, FE


 is the electric component of vector potential F


 and FH


  is the magnetic component 

of vector potential F


.  The vector potential component is given by 5 

)(
1

AiAiEA





          (4-6a) 

AH A






1           (4-6b) 

FEF






1
          (4-6c) 

)(
1

FiFiH F





          (4-6d) 

The solution of electric and magnetic field (equation 4-5a and 4-5b) through vector potentials can be 

further simplified using vector identities and substituting AA HiE


  and FF HiE


  

as follows 6  

A
i

FE





11         (4-7a) 

AF
i

H





11         (4-7b) 
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The two step sequence for determining the electromagnetic radiated fields using vector potentials are 

as follows: 1. A


 and F


 are determined by integration of Maxwell’s equations; 2. A


 and F


 are then 

differentiated to arrive at the solution for the electromagnetic radiated fields ( E


and H


).  

To find the expression for  A


 and F


, an electric  and a magnetic scalar potential functions are defined 

as ,  A
i

e







1
 and F

i
m







1
 respectively. With these two potential scalar 

functions, Maxwell’s equation is rewritten as 6  

eiAA  


2
        (4-8a) 

miFF  


2
        (4-8b)  

Considering rTE and rTM modes separately allows m and e to be determined in terms of 

),,( rFr
and ),,( rAr

, respectively 6. Since propagation is happening in the radial direction, 

utilizing the r components of eqns (4-8a) and (4-8b), the following relations are obtained 6 

0)( 22 
r

Fr


          (4-9a) 

0)( 22 
r

Ar


          (4-9b) 

Solutions to rF  and rA are found by separation of variables 6 and can be expressed 

)()()(),,(),,(  hgrfrArF rr        (4-10) 

where )(rf , )(g , and )(h  must be represented by appropriate wave functions that satisfy the 

wave equation in spherical coordinates. Solutions to these functions take on the following forms 6 
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)(ˆ)( 11 rJrf n A           (4-11a) 

)(ˆ)( )2(

12 rHBrf n            (4-11b) 

)(cos)( 1  m

nPCg            (4-11c) 

)sin()cos()( 12  mDmCh          (4-11d) 

Where 1A , 1B , 1C , 2C , and 1D  represent arbitrary constants; nĴ  is an alternate form of spherical 

Bessel functions of the 1st kind, of order n, respectively; 
)2(ˆ

nH are also an alternate form of spherical 

Hankel functions of the 2nd kind, of order n, respectively; 
m

nP  is the associated Legendre function of the 

1st kind of order m and degree n, respectively; )(cos2 mC and )sin(1 mD are “cosinusoids” of order m, 

and m  and n  are whole, positive integers. Depending on the region the waveform is being modeled, 

solutions to rF and rA take on the following two forms 

)()()(),,(),,( 1  hgrfrArF rr        (4-12a) 

for the incident portion of the wave, and for when the waveform is inside the object 

)()()(),,(),,( 2  hgrfrArF rr        (4-12b) 

for the reflected portion of the incident wave. The spherical Bessel and Hankel functions represented in 

eqns (4-11a) and (4-11b) can be related to regular Bessel and Hankel functions as follows 6 

)()(ˆ rrbrB nn   = )(
2

)(
2

2/12/1 rB
r

rB
r

r nn 






       (4-13) 
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where nB  represents nJ , or 
)2(

nH . This alternative form of the spherical Bessel and Hankel functions 

satisfy the differential equation below 6 

0ˆ)1(
2

2

2

2








 
 nB

r

nn

dr

d
         (4-14) 

4.4 Closed Form Electric and Magnetic Expression for a Solid Sphere 

The methodology for determining the electric and magnetic field distributions and power generation 

within a dielectric sphere involves three main sequences: 1. Making use of vector potentials  to find 

solutions for rF  and rA  5;  2. Using the solutions for rF  and rA  to determine the three special 

components   ,,r  of the electric ),,( rE


 and magnetic ),,( rH


 fields ; 3. Utilizing the Poynting 

theorem and the conservation-of-energy equation to determine power generation 7. The physical model 

used in the research is a dual source uniform TEM plane wave as shown in Figure 4.1, with one source 

situated directly above the dielectric sphere, and the second source situated below. The electric 

component of both EM waves are situated along the positive x-axis. The magnetic component of the 

upper EM source is directed along the negative component of the y-axis, and the magnetic component 

of the lower EM source is directed along the positive y-axis. As uniform plane waves are natively 

represented in the rectangular coordinate system, a transformation to spherical coordinates will be 

utilized to allow their use in the following derivations. An infinite sum of spherical wave functions will be 

used to represent the electromagnetic plane waves 1 
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where 


xE represents the lower plane wave source with the amplitude of the electric component of the 

EM wave polarized in the x-direction, 


xE represents the upper plane wave source with the amplitude of 

the electric component of the EM wave polarized in the x-direction, r is the radial distance from the 

origin of the spherical polar coordinate system,   is an angle 0 to  radians as measured from the +z 

axis,  12   nia n

n ,  12  nib n

n , )( rjn   is a spherical Bessel function of the 1st kind of order n, 

 cosnP  is a Legendre polynomial of order n, with cos  varying between -1 and 1, and n  is a 

positive integer. The polarized electric fields of the upper and lower incident uniform plane waves are 

expressed in the r component within the sphere as follows  
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where oE  is the amplitude of the electric field, r is the radial distance from the origin of the spherical 

polar coordinate system,   is an angle 0 to  radians as measured from the +z axis,  is an angle 0 to 2 

radians as measured from the +x axis. Utilizing eqns (4-15a, 4-15b, and 4-16), the r component of the 

incident electric field can be written as follows 
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where nnn abc  , oE  is the amplitude of the electric field, r is the radial distance from the origin of the 

spherical polar coordinate system,  cos1

nP  is an associated Legendre function of order 1 and degree n, 

with cos  varying between -1 and 1,   is an angle 0 to  radians as measured from the +z axis,  is an 

angle 0 to 2 radians as measured from the +x axis, and n is a positive integer. 
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A similar solution methodology yields the following equations for the r component of the incident wave 

of the magnetic field 
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where nnn bad  , oH is the amplitude of the magnetic field, r is the radial distance from the origin of 

the spherical polar coordinate system, 



  . 

in

rA  is obtained by equating (4-17) with (4-7a) and 

considering only rTM modes ( ),,(ˆ rAaA rr
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where nnn abc  , oE  is the amplitude of the electric field, nĴ is an alternate form of the spherical 

Bessel function of the 1st kind and order n, r is the radial distance from the origin of the spherical polar 

coordinate system,  cos1

nP  is an associated Legendre function of order 1 and degree n, with cos  

varying between -1 and 1,  is an angle 0 to  radians as measured from the +z axis is an angle 0 to 2 

radians as measured from the +x axis, and n is a positive integer. in

rF  is obtained by equating (4-18a) 

with (4-7b) and considering only rTE modes ( ),,(ˆ rFaF rr
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where nnn bad  , oE  is the amplitude of the electric field, r is the radial distance from the origin of 

the spherical polar coordinate system, with cos  varying between -1 and 1,   is an angle 0 to  radians 

as measured from the +z axis,  is an angle 0 to 2 radians as measured from the +x axis, and n is a 

positive integer. As some of the incoming EM radiation is reflected by the surface of the sphere, the 

reflected portion of the wave also must be considered. The reflected portions of the incoming EM 

radiation, in terms of magnetic and electric vector potentials, are as follows  
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)(ˆ)(ˆ)(ˆ )2( rYirJrH nnn            (4-21c) 

where ne  and nf  will be found using appropriate boundary conditions, and r is the radial distance from 

the origin of the spherical polar coordinate system; Eqns (4-21a) and (4-21b) differ from eqns (4-19) and 

(4-20) by the replacement of the spherical Bessel function, nĴ , with the Hankel function of the second 

kind, 
)2(ˆ

nH , in order to represent outward traveling waves. The complete representation of the magnetic 

and electric vector potential, as it exists outside of the dielectric sphere, is a summation of the incident 

and reflected fields 
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where 
t

rA  represents the magnetic vector potential outside of the spherical dielectric, 
t

rF  represents 

the electric vector potential outside of the spherical dielectric, and r is the radial distance outside of the 

dielectric sphere, with the origin being set at the center of the spherical polar coordinate system. 

Considering the rTE  and rTM modes, and making use of eqns (4-7a) and (4-7b), the spherical vector 

components of the electric and magnetic fields, for the space outside the sphere, can be determined to 

be the following  
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t

rE  and 
t

rH  are unique from the other spherical components of the electric and magnetic fields in 

that the radial component of the total electric field outside the dielectric sphere depends solely on the 

radial component of the total magnetic vector potential outside the dielectric sphere, and the radial 

component of the total magnetic field outside the dielectric sphere depends solely on the radial 
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component of the total electric vector potential outside the dielectric sphere. In the solution to follow, 

  in eqns (4-23a – 4-23f) will be replaced with o , the free space phase constant, when representing 

EM waves outside the sphere. For the portion of the incident EM wave that penetrates the dielectric 

sphere, all of the wave can be considered absorbed and so the magnetic and electric vector potentials 

take on simplified forms of eqns. (4-21a) and (4-21b) 
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Where 
t

rA  represents the magnetic vector potential inside the spherical dielectric, 
t

rF  represents the 

electric vector potential inside the spherical dielectric, ng  and nh  are constants to be determined by 

boundary conditions, d  is the lossy dielectric phase constant, d  is the lossy dielectric wave 

impedance, o  is the free space wave impedance, o  is the free space permittivity, r  is the relative 

complex permittivity, r   is the real part of the relative complex permittivity, r   is the imaginary part 
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of the relative complex permittivity, o  is the free space permeability, r  is the relative complex 

permeability, r is the real part of the relative complex permeability, and r   is the imaginary part of 

the relative complex permeability. The spherical vector components of the electric and magnetic fields, 

for the space inside the sphere, take on a familiar form 
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Determining the three spherical components of the electric and magnetic fields, for the regions outside 

and inside the dielectric sphere, is accomplished by the following sequence:  Plugging the solutions for 

i

rA   (4-22a) and 
i

rF  (4-22b) into eqns. (4-23a – 4-23f), and inserting 
i

rA  (4-24a) and 
i

rF  (4-24b) 

into eqns. (4-25a – 4-25f) allows the electric and magnetic field components, for the regions outside and 

inside the sphere, respectively, to be expressed solely in terms of the spherically transformed incident 

plane waves 
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For regions outside the dielectric sphere, the three spatial components of the electric and magnetic 

fields, respectively, take on the following form 
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For regions inside the dielectric sphere, the three spatial components of the electric and magnetic fields, 

respectively, take on the following form 
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Treating the real and imaginary terms of the tangential components of the electric and magnetic fields 

separately allows the coefficients ne , nf , ng  and nh  to be expressed in terms of known quantities 
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where nnn abc  , nnn bad  ,  12   nia n

n , and  12  nib n

n . 

4.5 Power Generation Term 

To determine the power generation within the sphere, the following conservation of energy equation in 

differential form is employed 8 
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where iM


 represents impressed (source) magnetic current density, 


iJ


 is the complex conjugate 

impressed electric current density,   is the conductivity of the material, and ro  .  

Since 0 

ii JM


, and the power generated within the sphere is a real quantity, the following 

relation is arrived upon 
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where genQ  represents the power generated within the sphere, 
 EEE

 2

, 
 HHH

 2

, 

 
ˆˆˆ   ttt

r EErEE


,  
ˆˆˆ   ttt

r HHrHH


, E


 is the complex conjugate of E


, and H


 is 

the complex conjugate of H


. Since the region outside the sphere is treated as free space (free space 

wave number o ) and the region inside the sphere is modeled as a lossy dielectric (wave number d ), 

only the portion of the electric and magnetic field that propagates within the sphere need be 

considered.  
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Chapter 5: 

Results and Discussion 

The analytical expressions for the electric field, magnetic field, and power distribution are obtained by 

solving Maxwell’s equation for TEM waves in spherical coordinates. The expressions are evaluated for 

typical beef nuggets which are usually in spherical shape. The sizes and electromagnetic frequencies are 

varied to help understand heat generation distribution. The dielectric properties of beef nuggets for 

various electromagnetic frequencies are found from literature 1. The incident electromagnetic energy 

flux (
2

00EcI  ) is kept constant and is considered to be 3 W/cm2.  This is equivalent to a 1.2 kW 

household microwave oven and the equivalent incident electric field strength 0E  is found to be 4754.3 

V/m.  Table 1 lists the four microwave heating frequencies used in this study with corresponding 

dielectric constant and dielectric loss.  

Table 1: Dielectric properties of spherical beef nugget at different frequencies. 

Properties/frequency (MHz) 2800 2450 915 300 

Dielectric constant, ' 1 33.6 30.5 35.4 38 

Dielectric loss, " 1 12.6 9.6 16 47 

Four separate beef nugget radii were studied: 1.0 cm, 2.0 cm, 3.0 cm, and 5.0 cm. These radii were 

chosen to correspond to common nugget sizes for use in frozen foods.  

Table 2: Properties and input parameters. 

Parameters Values 

Incidence microwave energy flux, I (W/cm2) 3 

Equivalent microwave power level (kW) 1.2 

Electric field strength, E0 (V/m) 4754.3 

Radii of spherical beef nuggets, r0 (cm) 1.0, 2.0, 3.0, 5.0 
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In the sub sections to follow, results from various combinations of radii, frequency, and cross sections 
are presented.   

5.1 Effect of Sphere Sizes on Electric Field and Power Absorption Distribution along 

Centerline 

The absolute Electric field strength along the centerline of spherical beef nuggets for radii 0.01 m, 0.02 

m, 0.03 m, and 0.05 m are presented in Figure 5.1. The irradiating frequency is 2450 MHz which is the 

frequency for household microwave ovens. The radii of each sphere is non-dimensionalized to allow 

ease of comparison. 

 

Figure 5.1: Electric field strength along centerline of spherical beef nugget. 
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It can be observed that the number of peaks in the electric field distribution increase in number as the 

radius of the beef sphere increases. In all cases, the highest peak of the electric field is found at the 

center of the sphere. When the electromagnetic field is propagating in the opposite direction, the 

superposition of waves are taking place and resonance of the wave is happening at the center. At the 

frequency of 2450 MHz, the propagation wavelength in the beef nugget is calculated from the equations 

reported in 2 and found to be 2.18 cm.  The locations of the peaks are dependent on the wavelength and 

radius of the sphere 1. The greatest peaks of the electric field strength is seen in 0.02 m radius sphere 

because it is closer to the propagation wavelength and positive interference, i.e. resonance, is 

happening between the two waves propagating towards the center.  Only one peak is seen in the 

smallest sphere because the radius of the sphere is much smaller than the incident wavelength of the 

electromagnetic radiation. Similar trends of electric field distribution and peaks are reported in previous 

works for rectangular and cylindrical shaped objects under electromagnetic heating 3,4. The 

corresponding electromagnetic power absorption along the centerline of spherical beef nuggets for 

2450 MHz electromagnetic radiation are shown in Figure 5.2. The radii of each sphere is non-

dimensionalized for better comparison among the nuggets. The power distribution follows the trend of 

electric field distribution. From the distribution, it is evident that along the centerline, the smallest and 

largest sphere provides more uniform heat generation compared to the other sizes. The overall power 

absorption, i.e. heat generation patterns, are discussed the following sections. 



49 

 

 

 

Figure 5.2: Power generation along centerline of spherical beef nugget. 

5.2 Effect of Sphere Sizes on Planar Electric Field and Power Absorption Distribution  

Figure 5.3 depicts the absolute strength of the E-field generated within spherical beef nuggets of four 

differing radii as mentioned in the above section for a typical microwave heating frequency of 2450 

MHz. The results are presented as a 2D slice running through the center of the nuggets vertically and 

looking down the +y axis. For ease of comparison, each radii are non-dimensionalized. Results show the 

nature of the electric field intensity, especially in the case of (a), (b), and (c), takes on the form of 

horizontal layers or bands, with the greatest intensity taking place in the inner oval region. In (b), the 

greatest region of activity can be seen as a vertical two-ring structure, with an especially active region 
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where the two “rings” meet in the center of the plot. The greatest value of the electric field in (b) is over 

two times that of (a). For (c), the most active regions are something of a continuation of what was seen 

in the case of (b), with the addition of two extra “stacks” on top of the previously seen vertical two-ring 

structure. The greatest value of the electric field in (c) is less than that of (b), but is still nearly two times 

that of (a). A much more complex and diverse pattern can be observed for (d). The hot “tips” at the end 

of the large X can be seen at theta = 60, 120, 240, and 300 degrees, are strongest at phi = 0 and 180 

degrees, and least powerful at phi = 90 and 270 degrees. It is at the tips that the greatest electric field 

intensity is observed. 

 

Figure 5.3: Electric Field Distribution Cross Section within Spherical Beef Nuggets of radii (a) 1.0 cm, (b) 2.0 cm, (c) 3.0 cm, and 
(d) 5.0 cm. Here f = 2450 MHz. 
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The corresponding electromagnetic power absorption for four different nugget sizes are shown in Figure 

5.4. The results again show that the power absorption distribution closely follow the trends of electric 

field distribution. The peak electromagnetic power absorption is taking place at the inner core of the 

sphere for 1.0 cm, 2.0 cm and 3.0 cm radius of beef nuggets (i.e. Figures 5.4a, 5.4b and 5.4c 

respectively), however the largest size of nugget, i.e. 5.0 cm radius, experiences the highest energy 

absorption at the surface in Figure 5.4d. So at the frequency of 2450 MHz, the 5.0 cm nugget will most 

likely to have surface burning and the 3.0 cm nugget will experience repetitive hot and cold zones 

throughout the nugget.  

 

Figure 5.4: Power Distribution Cross Section within Spherical Beef Nuggets of radii (a) 1.0cm, (b) 2.0cm, (c) 3.0cm, and (d) 
5.0cm. Here f = 2450 MHz. 

At the frequency of 2450 MHz, the penetration depth for the beef nugget is calculated using equation 

presented in 2 and found to be 1.58 cm. At this depth, the electromagnetic radiation decays 
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exponentially. So at the larger size of nugget, i.e. 5.0 cm radius beef sphere, the highest absorption 

happens at the surface instead of the core of the nugget. This is also evident from the electric field and 

power absorption distribution along the centerline in Figures 5.1 and 5.2. For (a) two circular zones of 

low power generation can be seen situated at the top and bottom of the nugget, i.e. core heating is 

most likely for smaller nuggets. The maximum recorded generated power for any of the radii is observed 

for 2.0 cm nugget shown in figure 5.4b since the wavelength of electromagnetic wave is close to the 

radius of the nugget as explained in the previous section.  

5.3 Electric Field and Power Absorption Distribution at Different Cutting Lines  

Figure 5.5 depicts the strength of the absolute electric field as a line beginning at the center of the 

sphere and extending to the outer surface of the sphere for six separate cutting lines at electromagnetic 

frequency of 2450 MHz to elucidate the orientation effect of TEM wave impingement. The results are 

presented for all four beef nuggets of 1.0 cm, 2.0 cm, 3.0 cm, and 5.0 cm radii in non-dimensionless 

form. A general trend of peaks and valleys increasing with greater radii can be observed, particularly for 

(a), (b), and (d), and to a lesser extent, (c). For all results, the maximum peak value for the electric field 

strength observed with the 0.02 m radius sphere at the center of the sphere as seen in previous 

sections. It is interesting to note the more pronounced damping of the electric field strength near the 

surface of the sphere for the 0.02 m and 0.03 m radii at the chosen angles for (e) and (f). Apart from 

what is seen for the radii of 0.02 m, the observed values for the remaining radii are very similar to the 

preceding figure. Even more damping of the electric field strength near the surface of the sphere, for all 

studied radii, can be observed for (c), (e), and (f). 
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Figure 5.5: Electric Field Strength along six Line Paths within Spherical Beef Nuggets of radii 1.0 cm, 2.0 cm, 3.0 cm, and 5.0 cm. 
Here f = 2450 MHz. 
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Figure 5.6 traces the strength of the generated power as a line beginning at the center of the sphere and 

extending to the outer surface of the sphere for six separate combinations of theta and phi at 

electromagnetic frequency of 2450 MHz.  The trend of the differences in strength between peaks and 

valleys increasing in spheres with greater radii can be observed for the generated power as well. The 

maximum peak value for the strength of the generated power observed for the 0.02 m radius sphere in 

(a), (b) and (d). This maximum value is generated at the center of the sphere for all radii.  A similar 

pattern can be seen with phi set to 115 degrees. The more pronounced damping of the strength of the 

generated power near the surface of the sphere for the 0.02 m and 0.03 m radii can be observed for (e) 

and (f). A similar trend can be seen in this case as well. More pronounced damping of the strength 

generated power, near the surface of the sphere, for all studied radii, can be observed for the chosen 

angles for theta and phi (a) – (f). Compared to (a) – (d), a lessening of damping can be seen for the 0.02 

m and 0.03 m radii towards the outer surface of the sphere in (e) and (f).  
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Figure 5.6: Power Generation strength along six Line Paths within Spherical Beef Nuggets of radii 1.0 cm, 2.0 cm, 3.0 cm, and 5.0 
cm. Here f = 2450 MHz. 
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5.4 Effect of Frequencies on Electric Field and Power Absorption Distribution  

Three different frequencies are employed to elucidate the effect of frequencies on electromagnetic 

power absorption within the beef nugget of 2.0 cm radius. A 2.0 cm radius beef nugget is selected from 

the previous results of the 2450 MHz treatment because at this size, it generates highest power 

absorption. Also at 2450 MHz, the propagation wavelength within the beef nugget is 2.18 cm, which is 

close to the size of the nugget. Figure 5.7 depicts the absolute strength of the E-field generated in the 

spherical nugget of the 2.0 cm radii and corresponding power absorption. The incident electromagnetic 

energy flux is kept same which is 3 W/cm2. It is interesting to note that the distribution of the electric 

field drastically changes at the different frequencies. At the lower frequency, electric field distribution is 

much more uniform. Also, the maximum strength of the electric field increases with frequency, which 

can be observed looking at (a), then (c), and then (e).  
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The corresponding power absorption distribution follows the pattern of electric field distributions as 

seen all other cases. Although power absorption in lower frequencies are smaller compared to the 

(e) 

(a) 

(c) 

(b) 

(d) 

(f) 

Figure 5.7: Electric Field Distribution and Power Generation Distribution Cross Sections within Spherical Beef Nuggets of radius 
2.0cm for three different frequencies. (a) E field for f = 2450 MHz, (b) P gen for f = 2450 MHz, (c) E field for f = 915 MHz, (d) P 
gen for f = 915 MHz, (e) E field for f = 300 MHz, and (f) P gen for f = 300 MHz. 
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higher frequencies, the distribution are much more uniform. This will lead to more uniform temperature 

distributions when the nuggets are treated with lower electromagnetic frequencies. This is because at 

the lower frequencies the dielectric constant and dielectric loss increases and hence they change the 

electromagnetic wavelength within the nugget. For instance, the propagation wavelength at 300 MHz is 

14.25 cm, which is much larger than the size of the nugget.  

 

5.5 Electric Field and Power Generation Strength along Sphere Centerline 

The effect of frequencies of the four different nugget sizes along the center line are described in Figure 

5.8. Each of the four spheres is irradiated with electromagnetic radiation in four different frequencies, 

and the electric field distribution of each frequency, for each sphere radius, are displayed in an overlay 

fashion. Lower frequencies in general showcase more uniform electric field strength along the 

centerline, while the higher frequencies show greater extremes between maximum and minimum field 

strength, with higher peak values increasing with frequency (a) – (d). The greatest value for the electric 

field can be observed in (a), (b), and (c) at the sphere center for all frequencies. For (d) the electric field 

results follow a similar trend, except for the 2800 MHz frequency, which shows the outer surface to 

have the largest recorded electric field values. For (b) and (c), the 2450 MHz frequencies record the 

highest electric field strength. For (a) and (d), 2800 MHz frequencies register the largest electric field 

strengths. It is interesting to note the greater variation in overall waveform and maximum and minimum 

values when comparing (a) and (b) to (c) and (d) for the 915 MHz frequency. For all other frequencies, 

the overall waveform remains the same, with variations in the strength and the total number of peaks 

and valleys. It is interesting to note a general trend of a more even distribution of the electric field 

strength along the total length of the centerline of the sphere as the radius of the sphere increases. This 

trend is especially apparent in (d). 
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Figure 5.8: Electric Field Strength along Sphere Centerline within Spherical Beef Nuggets radii (a) 1.0 cm, (b) 2.0 cm, (c) 3.0 cm, 
and (d) 5.0 cm. 

 

Figure 5.9 visualizes the absolute strength of the power generated along the centerline of beef spheres 

of varying radii. As before, each of the four spheres are irradiated with four different electromagnetic 

frequencies, and the results of each frequency, for a specific sphere radius, are overlaid on each sub-

figure (a) – (d) for ease of comparison. Lower frequencies in general showcase more uniform electric 

field strength along the centerline (the exception being the 915 MHz frequency reading (d)), while the 

higher frequencies commonly show greater extremes between maximum and minimum field strength, 

with peak power generation values increasing with frequency. It is interesting to note that the maximum 

power generation is seen at 2800 MHz for (a) and (b), and 2450 MHz for (c). In (d), the 915 MHz 

frequency produces the maximum power generation value. The largest power generation values are 
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observed for (b) at the center of the sphere for the 2800 MHz frequency. The next largest power 

generation value is seen in (c) for the 2450 MHz frequency. The third and fourth highest power 

generation values can be observed in (a) and (d), respectively. In (d), a general trend of enhanced power 

generation at the top and bottom of the sphere centerline is noted. The highest recorded value for 

power generation of any of the four frequencies is at the 915 MHz value. 

 

 

Figure 5.9: Power Generation strength along Sphere Centerline of Spherical Beef Nuggets radii (a) 1.0 cm, (b) 2.0 cm, (c) 3.0 cm, 
and  (d) 5.0 cm. 
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Chapter 6: 

Summary and Conclusions 

A closed form solution is obtained for the electric field, magnetic field, and power generation 

distributions within a spherical shaped dielectric object using Maxwell’s equation. The transverse 

electric and magnetic (TEM) wave in spherical coordinate is solved using vector potentials and 

separation of variables. Mathematical tools such as Bessel functions, Legendre Polynomials, Infinite 

series, and complex number expressions are employed in finding a closed form expression. The 

continuity boundary conditions from outside to the inside of the object for the tangential components 

of the electric and magnetic field are used. The electromagnetic power absorption is obtained from the 

knowledge of the electric and magnetic field distributions using Poynting theorem.  

The closed form expression of the electric field and power absorption are evaluated for beef nuggets of 

four different sizes (radii of 1.0 cm, 2.0 cm, 3.0 cm and 5 .0 cm) and frequencies of 2800 MHz, 2450 

MHz, 915 MHz, and 300 MHz. Numerical tools such as Maple, MATLAB, and the FORTRAN coding 

language were used as a CAS, graphing, and as a means of generating data, respectfully. Origin Labs was 

utilized to produce 1-D plots and also 2-D polar plots by reading in the data text files generated in the 

FORTRAN program.  

Results show the presence of local maxima and minima of electric strength within the target object due 

to the constructive interference of electromagnetic wave impingement throughout the sphere. The local 

maxima and minima of electric field strength vary depending on the sizes and applied frequencies. The 

lower frequencies, i.e. longer wavelengths, have less peaks and valleys in the electric field distribution 

for the same sized nugget exposed to different applied frequencies. The spatial distribution of 

microwave power absorption follows the trend of the electromagnetic field distribution. The number 
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and locations of local maxima and minima of power absorption also depend on the radius of the sphere 

and applied frequencies. For instance, the results show that that the strength of the absorbed 

electromagnetic wave at the 2450 MHz range has 3 weak peaks close to the center at the vertical plane 

of the 5.0 cm radius nugget while it has only one peak at the center of the 1.0 cm radius nugget for the 

same vertical plane passing through the center of the nugget.   

Results indicate that there is a correlation among the electric field and power absorption distribution, 

propagating wavelength within the nugget, and penetration depth and size of the nugget. For instance, 

the 300 MHz frequency provides uniform electric field and power absorption distribution for all sizes of 

nuggets in this study. This is because the propagating wavelength is about 15 cm, which is much larger 

than all nugget radii considered in this study. Results also show that 2800 MHz and 2450 MHz can 

provide core heating for 2.0 cm and 3.0 cm radii nuggets while they can facilitate surface burning for the 

5.0 cm radius nugget. The analysis shows that the uniform and effective electromagnetic power 

absorption can be facilitated by proper design of the object of interest and selection of appropriate 

electromagnetic frequencies. The variations of the fundamental parameters (dielectric properties, size, 

frequency, etc.) could affect a profound change on the electromagnetic distribution within the chosen 

dielectric sphere.  
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Future Work: 

The following future work can be recommended to elucidate the effect of other parameters on heat 

generation and temperature distribution in spherical shaped object: 

1. Generate results and study for different applications such as microwave heat treatment of 

cancer tissues or cells. 

2. Solve three dimensional transient heat equation with electromagnetic heat generation in 

spherical coordinate for spherical shaped objects.  

3. Incorporation of temperature dependent properties in numerical algorithm for evaluating heat 

generation and temperature distribution.  
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Appendix: 

FORTRAN Source Code to Generate 3D Spherical Data for Electric Field, Magnetic Field, and 
Power Generation 

!      

! File:   E_H_P_Dbl_spherical_calculator.f95 

! Author: Timothy M. Collins Jr. 

! 

! Started on August 24, 2015 

! Finished on September 14, 2015 

! Transcription of original MATLAB code 

 

program EHPSphCalc  

!this program calculates and stores, in spherical polar coordinates, the  

!absolute Electric and Magnetic fields and the (absolute) Power generated  

!in a lossy spherical dielectric irradiated by two planar EM radiation  

!sources. These sources are arranged 180 deg apart and both point at the  

!sphere. One source is placed directly above the sphere, and the other placed 

!directly below the sphere. The E components of both EM waves are polarized  

!along the "+" x-axis. 

!One H component of the EM wave (top side) is polarized along the "+" y-axis,  

!while the other component (bottom side) is polarized along the "-" y-axis.  

!values are calculated (and stored) at specific r, theta, and phi values; 

!these steps are regulated by pre-arranged step sizes. This version of the 

!program only calculates E, H, and P for the region inside the sphere. 

 

implicit none 

 

 

!<<<< user modifiable values >>>> 

 

! E-field constant (V/m) 

real (kind=8) :: Econst_o = 4754.3 

 

!number of summed terms for bessel, hankel and legendre functions 

integer :: MaxN = 50 

 

!radius of sphere (m) 
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real (kind=8) :: a = 0.01D+00 

 

!max radius E and H-field is calculated to (m) 

real (kind=8) :: b = 0.01D+00 

 

!frequency of EM wave 

real (kind=8) :: f = 2800.0D+6 

 

!<<<<     --------------     >>>> 

 

 

!more constants 

!moved PI to here to fix NaN issue with results. 

real (kind=8) :: PI = 4.0D+00*datan(1.0D+00) 

real (kind=8) :: uo, w 

real (kind=8) :: eo = 8.8541878176D-12 

 

 

!<<<< user modifiable values >>>> 

 

!dielectric constant 

real (kind=8) :: erp = 33.6D+00 

!dielectric loss 

real (kind=8) :: erdp = 12.6D+00 

!set to "1" if material other than ferrite 

real (kind=8) :: urp = 1.0D+00 

!set to "0" if material other than ferrite 

real (kind=8) :: urdp = 0.0D+00 

 

!<<<<  ------------------   >>>> 

 

 

!characters for printing data description fields for display in data files 

character :: radiusTxt*5 = 'r (m)' 

character :: ndRadiusTxt*8 = 'r (n.d.)' 

character :: thetaTxt*8 = 'Th (deg)' 

character :: thetaRtxt*8 = 'Th (rad)' 

character :: phiTxt*8 = 'Ph (deg)' 
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character :: phiRtxt*8 = 'Ph (rad)' 

character :: EabsTxt*11 = 'E abs (V/m)' 

character :: HabsTxt*11 = 'H abs (A/m)' 

character :: PabsTxt*13 = 'P abs (W/m^3)' 

 

 

!declaring more vars 

complex (kind=8) :: j = (0.0D+00,1.0D+00) 

complex (kind=8) :: er, ed 

complex (kind=8) :: ur, ud 

complex (kind=8) :: Bo, Bd 

complex (kind=8) :: no, nd 

 

 

!vars for calc E, H, and P abs at specific r, theta, phi 

real (kind=8) :: rStep, thetaStep, thetaMin, thetaMax, phiStep 

real (kind=8) :: r, theta, thetaR, phi, phiR, x 

real (kind=8) :: Esquared, Hsquared, Pabs, ans_EsquaredDblReal, ans_HsquaredDblReal, ans_Pabs 

integer :: rIntStep, rMaxStep, thetaIntStep, thetaMaxStep, phiIntStep, phiMaxStep 

integer :: aMax 

 

 

!vars for E, H, and P abs estimation at r=0 

integer :: counter, rIntStep2, thetaIntStep2, phiIntStep2 

integer :: rIntStep3, thetaIntStep3, phiIntStep3 

real (kind=8) :: EabsZero, HabsZero, PabsZero 

real (kind=8) :: EabsTemp, HabsTemp, PabsTemp 

real (kind=8) :: EabsZeroFinal, HabsZeroFinal, PabsZeroFinal 

 

 

!vars and arrays for building printable 2-dim arrays for E, H, and P abs 

integer :: maxRow, maxCol, col_E, col_H, col_P 

integer :: counterE, counterH, counterP 

integer :: rIntStepE, thetaIntStepE, phiIntStepE 

integer :: rIntStepH, thetaIntStepH, phiIntStepH 

integer :: rIntStepP, thetaIntStepP, phiIntStepP 

real (kind=8), allocatable, dimension(:,:) :: EabsDblWrite 

real (kind=8), allocatable, dimension(:,:) :: HabsDblWrite 
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real (kind=8), allocatable, dimension(:,:) :: PabsDblWrite 

 

!additional vars for loop control when writing results to text files 

integer :: wCE, wCH, wCP 

 

 

!declaring 3-dim arrays for storing E, H and P results. size is variable. 

real (kind=8), allocatable, dimension(:,:,:) :: EabsDbl3Darray 

real (kind=8), allocatable, dimension(:,:,:) :: HabsDbl3Darray 

real (kind=8), allocatable, dimension(:,:,:) :: PabsDbl3Darray 

 

 

!declaring 1-dim arrays for storing r, theta, phi values as they are stepped from min 

!to maximum values 

real (kind=8), allocatable, dimension(:) :: rArray 

real (kind=8), allocatable, dimension(:) :: rNoDimArray 

real (kind=8), allocatable, dimension(:) :: thetaArray 

real (kind=8), allocatable, dimension(:) :: phiArray 

 

 

!<<<< user modifiable values >>>> 

 

!this dimension is in meters. this variable sets the step size for "r" as it progresses 

!from the center of the sphere (r=0) to the max radius that E, H, and P is calculated to (r=b).  

!try to select step size that divides "a" without a remainder. 

rStep = 0.002D+00 

 

!this dimension is in degrees. this is the size of the steps that the E and H 

!calc will step through as phi progresses from 0 to 180 deg. 

thetaStep = 30.0D+00 

 

!this is the absolute min value for theta that will be considered 0 deg in 

!calcs. choose thetaStep, thetaMin, and thetaMax carefully! cannot = 0 exactly! 

thetaMin = 0.01D+00 

 

!this is the absolute max value for theta that will be considered 180 deg  

!in calcs. choose thetaStep, thetaMin, and thetaMax carefully! cannot = 180 exactly! 

thetaMax = 179.99D+00 
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!this dimension is in degrees. this is the size of the steps that the E and H 

!calc will step through as phi progresses from 0 to 360 deg. 

phiStep = 60.0D+00 

 

!<<<< -------------------- >>>> 

 

 

!assigning values needed to send to calc subroutines 

 

uo = 4*PI*1.0D-7 

!angular frequency 

w = 2*PI*f 

!another error the compiler didn't catch! 

!PI = 4.0D+00*datan(1.0D+00) 

 

 

!further assignments needed to generate values to send to calc subroutines 

 

er = erp - j*erdp 

ur = urp - j*urdp 

ed = er*eo 

ud = ur*uo 

Bo = w*dsqrt(eo*uo) 

Bd = Bo*zsqrt(er*ur) 

no = dsqrt(uo/eo) 

nd = no*zsqrt(ur/er) 

 

 

!determines the total number of steps (nearest integer [round up]) from  

!r-min (r=0) to r-max (r=b) 

rMaxStep = CEILING(b/rStep); 

 

!needed as MaxStep=1 when r=0. 

rMaxStep = rMaxStep + 1; 

 

!determines the total number of steps (nearest integer) from  

!r-min (r=0) to r-sphere (r=a) 
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aMax = NINT(a/rStep); 

 

!needed since aMax=1 when r=0. 

aMax = aMax+1; 

 

!number of (integer) steps to step theta through calculations. rounding 

!down to ensure total angle range is <= 180. 

thetaMaxStep = FLOOR((180.0D+00)/thetaStep); 

 

!this is so theta = 0 is included 

thetaMaxStep = thetaMaxStep + 1; 

 

!number of (integer) steps to step phi through calculations. rounding 

!down to ensure total angle range is <= 360. 

phiMaxStep = FLOOR((360.0D+00)/phiStep); 

 

!this is so phi = 0 is included 

phiMaxStep = phiMaxStep + 1; 

 

 

!settting sizes for arrays 

 

!three 3D arrays to hold calc'd values. 

allocate(EabsDbl3Darray(rMaxStep,thetaMaxStep,phiMaxStep)) 

allocate(HabsDbl3Darray(rMaxStep,thetaMaxStep,phiMaxStep)) 

allocate(PabsDbl3Darray(rMaxStep,thetaMaxStep,phiMaxStep)) 

 

!these arrays will be used later when formatting the data from the above 3D arrays to allow 

writing to files. 

allocate(rArray(rMaxStep)) 

allocate(rNoDimArray(rMaxStep)) 

allocate(thetaArray(thetaMaxStep)) 

allocate(phiArray(phiMaxStep)) 

 

 

!set values at r=0 

 

rArray(1) = 0.0D+00 
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rNoDimArray(1) = 0.0D+00 

 

 

 

!<<<< the following sequence of code would be good to move to a subroutine in a future version of 

this program >>>> 

 

!hoping for more precision using integer rather than r (real number) directly 

do rIntStep = 2,aMax,1 

     

    !using integer to step through radius sizes from r-min to r-max. easier 

    !to store integer steps in 3D array. deliberately avoiding case of r=0  

    !for now (will address later in program) 

    r = 0.0D+00 + rStep*(rIntStep - 1); 

     

    !recording actual value of r to its own array 

    rArray(rIntStep) = r; 

     

    !recording actual value of dimensionless r to its own array. since the 

    !dielectric sphere is the main item of intrest, the true radius (a) is 

    !used to non-dimensionalize. 

    rNoDimArray(rIntStep) = r/a; 

     

    !using integers to progress theta angle from 0 to 180 deg (much like for r). 

    do thetaIntStep = 1,thetaMaxStep,1 

         

        !using integer to step through radius sizes from theta-min to  

        !theta-max. easier to store integer steps in 3D array. reducing int 

        !stepper by 1 in below eqn to make math correct. 

        theta = 0.0D+00 + thetaStep*(thetaIntStep - 1); !angle in deg 

         

        !recording actual value of theta to its own array 

        thetaArray(thetaIntStep) = theta; 

         

        !actual value used in following E/H calcs 

        thetaR = theta*(PI/(180.0D+00)); !radians 
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        !the following two if statements adjust the value of theta used in 

        !the calc equations when the true value of theta actually equals 0  

        !or 180. this is done to keep theta values from reaching the  

        !calculating equations that would cause the associated function to 

        !crash. in the case of theta, 0 and 180 will cause the 

        !calc equations to fail. a sufficient estimate for theta in 

        !these cases is a slight off centering from the true value of theta. 

        !this slight variation can be adjusted by thetaMin and thetaMax  

        !vars. 

         

        !allowing some wiggle room in case theta does not exactly equal 0.             

        if (theta < (0.0D+00 + (0.5D+00)*thetaStep)) then 

 

            !this is to approximate theta = 0 as close as possible. 

            !following E/H calcs blows up if theta = 0 (exactly). 

            theta = thetaMin; 

             

            !actual value used in following E/H calcs             

            thetaR = theta*(PI/(180.0D+00)); !radians 

             

        end if 

         

        !allowing some wiggle room in case theta does not exactly equal 180. 

        if (theta > (180.0D+00 - (0.5D+00)*thetaStep)) then 

             

            !this is to approximate theta = 180 as close as possible. 

            !following E/H calcs blows up if theta = 180 (exactly). 

            theta = thetaMax; 

             

            !actual value used in following E/H calcs             

            thetaR = theta*(PI/(180.0D+00)); !radians 

             

        end if 

         

        ! -1 < x < 1. used for associated legendre polynomials. 

        x = dcos(thetaR); 

         

        !using integers to progress phi angle from 0 to 360 deg (much  
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        !like for r and theta). 

        do phiIntStep = 1,phiMaxStep,1 

                            

            !using integer to step through radius sizes from phi-min to  

            !phi-max. easier to store integer steps in 3D array. reducing  

            !int stepper by 1 in below eqn to make math correct. 

            phi = 0.0D+00 + phiStep*(phiIntStep - 1); !angle in deg 

             

            !storing the current value of phi (in deg) 

            phiArray(phiIntStep) = phi; 

             

            phiR = phi*(PI/(180.0D+00)); !conversion to radians 

             

             

             

            !!test for math errors 

            !print*, ' r is: ',r 

            !calculating E squared before calc E abs. using temp var to hold 

            !answer 

            call 

EdblSquaredStep(PI,MaxN,Bo,Bd,er,ur,r,thetaR,phiR,x,Econst_o,a,b,rMaxStep,aMax,rIntStep,ans_Esqua

redDblReal) 

             

            !!test for math errors 

            !print*, 'before assignment, Esquared is: ',Esquared, 'ans_EsquaredDblReal is: 

',ans_EsquaredDblReal 

             

            Esquared = ans_EsquaredDblReal 

             

            !!test for math errors 

            !print*, 'after assignment, Esquared is: ',Esquared 

             

            !calculating H squared before calc H abs. using temp var to hold 

            !answer. 

            call 

HdblSquaredStep(PI,MaxN,Bo,Bd,er,ur,no,nd,r,thetaR,phiR,x,Econst_o,a,b,rMaxStep,aMax,rIntStep,ans

_HsquaredDblReal) 

             

            !!test for math errors 

            !print*, 'before assignment, Hsquared is: ',Hsquared, 'ans_HsquaredDblReal is: 

',ans_HsquaredDblReal 
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            Hsquared = ans_HsquaredDblReal 

                         

            !!test for math errors 

            !print*, 'after assignment, Hsquared is: ',Hsquared 

             

            !very straight forward! again, using temp var. 

            call PowerAbsoluteSphereStep( w,eo,erdp,uo,urdp,Esquared,Hsquared,ans_Pabs) 

             

            !!test for math errors 

            !print*, 'ans_Pabs is: ',ans_Pabs 

             

            Pabs = ans_Pabs 

             

            !!test for math errors 

            !print*, 'Pabs is: ',Pabs 

             

             

            !the actual E abs value being stored in 3D array. this is for 

            !specific r, theta, phi value. 

            EabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) = dsqrt(Esquared); 

             

            !!test for math errors 

            !print*, 'final E abs value: ', EabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) 

  

            !the actual H abs value being stored in 3D array. this is for 

            !specific r, theta, phi value. 

            HabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) = dsqrt(Hsquared); 

             

            !!test for math errors 

            !print*, 'final H abs value: ', HabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) 

             

            !trivial, but simpler this way. 

            PabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) = Pabs; 

             

            !!test for math errors 

            !print*, 'final P abs value: ',PabsDbl3Darray(rIntStep,thetaIntStep,phiIntStep) 

            !print*, ' r is: ',r 



75 
 

             

        end do 

         

    end do 

     

end do  

     

!<<<< ---------------------------------------------------------------------------- >>>>     

 

 

 

!<<<< time to estimate E, H, and P at r=0. this section of code would also make a good candidate 

!for placement in a subroutine, at a future date. >>>> 

 

 

!this var keeps running total of all the data points, holding E, H, and P values, 

!that are used in estimating E, H, and P abs at r=0. 

 

counter = 0 

 

EabsZero = 0.0D+00 

 

!+++++ KILL ++++++++ 

!HabsZero = 0.0D+00 

!+++++ END KILL ++++ 

 

PabsZero = 0.0D+00 

 

 

!needed to access correct r value (one step out from r=0) in 3D arrays 

rIntStep2 = 2 

 

 

    !theta bounded to a certain range (all values not 0 or 180 deg) in this  

    !portion of code. 

     

    do thetaIntStep2 = 2,(thetaMaxStep - 1),1 
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        do phiIntStep2 = 1,(phiMaxStep - 1),1 !don't need dup. value at 360 deg. 

             

            counter = counter + 1; 

             

             

            !reading and storing E value as running total 

            EabsTemp = EabsDbl3Darray(rIntStep2,thetaIntStep2,phiIntStep2); 

             

            EabsZero = EabsZero + EabsTemp; 

             

            !++++++++++++++++++++ KILL ++++++++++++++++++++ 

            !!reading and storing H value as running total 

            !HabsTemp = HabsDbl3Darray(rIntStep2,thetaIntStep2,phiIntStep2); 

            ! 

            !HabsZero = HabsZero + HabsTemp; 

            !++++++++++++++++++ END KILL ++++++++++++++++++ 

             

            !reading and storing P value as running total 

            PabsTemp = PabsDbl3Darray(rIntStep2,thetaIntStep2,phiIntStep2); 

             

            PabsZero = PabsZero + PabsTemp; 

             

        end do 

         

    end do 

     

 

!special case for when theta = 0 deg     

 

rIntStep3 = 2     

 

thetaIntStep3 = 1     

     

phiIntStep3 = 1 

 

 

!keep reading and storing in running totals 
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EabsTemp = EabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3) 

             

EabsZero = EabsZero + EabsTemp 

 

!++++++++++++++++++++ KILL ++++++++++++++++++++++++++++++++++++ 

!HabsTemp = HabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3) 

!             

!HabsZero = HabsZero + HabsTemp 

!+++++++++++++++++++ END KILL +++++++++++++++++++++++++++++++++  

  

PabsTemp = PabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3) 

             

PabsZero = PabsZero + PabsTemp            

 

counter = counter + 1 

 

 

!special case for when theta = 180 deg     

     

rIntStep3 = 2 

 

thetaIntStep3 = thetaMaxStep     

     

phiIntStep3 = 1 

 

 

!keep reading and storing in running totals 

 

EabsTemp = EabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3) 

             

EabsZero = EabsZero + EabsTemp 

 

!++++++++++++++++++++++++ KILL ++++++++++++++++++++++++++++++++ 

!HabsTemp = HabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3) 

!             

!HabsZero = HabsZero + HabsTemp 

!++++++++++++++++++++++ END KILL ++++++++++++++++++++++++++++++ 
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PabsTemp = PabsDbl3Darray(rIntStep3,thetaIntStep3,phiIntStep3) 

             

PabsZero = PabsZero + PabsTemp             

 

counter = counter + 1 

 

 

!finally, time to determine best estimate of E, H, and P abs r=0 values.  

 

EabsZeroFinal = EabsZero/counter 

 

!correction to code. H = 0 (always) when r = 0 for this EM wave configuration. 

!HabsZeroFinal = HabsZero/counter 

HabsZeroFinal = 0.0D+00 

 

PabsZeroFinal = PabsZero/counter 

 

!<<<< -------------------------------------------------------------------- >>>> 

 

 

 

!<<<< the following sequence of code should be moved to a subroutine at a later date. >>>> 

 

 

!this var determines the max number of rows needed to store the E, H, and P abs data in a 

!2D array. 

maxRow = (aMax - 1)*(thetaMaxStep)*(phiMaxStep) + 1 

 

!this var only partially functional as total # of data columns have to be manually adjusted and 

!the data writen to the files are based on what the user wants to see. 

maxCol = 7 

 

!sizing the 2-dim arrays for use later in the program 

allocate(EabsDblWrite(maxRow,maxCol)) 

allocate(HabsDblWrite(maxRow,maxCol)) 

allocate(PabsDblWrite(maxRow,maxCol)) 

 

!<<<< ---------------------------------------------------------------- >>>> 
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!<<<<this sequence of code will appropriately fill the EabsDblW array with data and then 

!write the results to a file. said code should be moved to a subroutine in future. >>>> 

 

 

!this bit of code takes care of the case when r=0. all values are "0" at r=0, except for E. 

do col_E = 1,(maxCol-1),1 

    EabsDblWrite(1,col_E) = 0.0D+00 

end do 

 

!value for Eabs when r=0 

EabsDblWrite(1,maxCol) = EabsZeroFinal 

 

!this var ensures the data from the various original arrays is placed in 

!the correct row of the final 2D array 

counterE = 1; 

 

!writing the data to the E abs 2D array for eventual storage as a text file 

do rIntStepE = 2,aMax,1 

     

    do thetaIntStepE = 1,thetaMaxStep,1 

         

        do phiIntStepE = 1,phiMaxStep,1 

             

            counterE = counterE + 1 

             

            !these series of commands writes the data collected in the 

            !various arrays and places them in a 2D array. not able to realy automate column 

            !selection as final output in file is dependent on what user wants to see. 

            EabsDblWrite(counterE,1) = rArray(rIntStepE) 

            EabsDblWrite(counterE,2) = rNoDimArray(rIntStepE) 

            EabsDblWrite(counterE,3) = thetaArray(thetaIntStepE) 

            EabsDblWrite(counterE,4) = thetaArray(thetaIntStepE)*(PI/(180.0D+00)) 

            EabsDblWrite(counterE,5) = phiArray(phiIntStepE) 

            EabsDblWrite(counterE,6) = phiArray(phiIntStepE)*(PI/(180.0D+00)) 

            EabsDblWrite(counterE,7) = EabsDbl3Darray(rIntStepE,thetaIntStepE,phiIntStepE) 
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        end do 

         

    end do 

     

end do 

 

 

!code sequence to write results to file 

 

open(20, file='EabsDblSphData_f2800_r0p01_coarse_test.txt') 

 write(20,10) radiusTxt, ndRadiusTxt, thetaTxt, thetaRtxt, phiTxt, phiRtxt, EabsTxt 

 10 format(a9, a9, a9, a9, a9, a9, a20) 

 

do wCE = 1,maxRow,1 

    !have to keep total width of one line of code under 132 characters 

   write(20,11) EabsDblWrite(wCE,1), EabsDblWrite(wCE,2), EabsDblWrite(wCE,3), & 

   EabsDblWrite(wCE,4), EabsDblWrite(wCE,5), EabsDblWrite(wCE,6), EabsDblWrite(wCE,7) 

   11 format(f9.5, f9.6, f9.4, f9.6, f9.4, f9.6, f20.10)   

end do 

   

close(20) 

 

 

!<<<< ------------------------------------------------------------------ >>>> 

 

 

 

!<<<<this sequence of code will appropriately fill the HabsDblW array with data and then 

!write the results to a file. said code should be moved to a subroutine in future. >>>> 

 

 

!this bit of code takes care of the case when r=0. all values are "0" at r=0, except for H. 

do col_H = 1,(maxCol-1),1 

    HabsDblWrite(1,col_H) = 0.0D+00 

end do 
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!value for Habs when r=0 

HabsDblWrite(1,maxCol) = HabsZeroFinal 

 

 

!this var ensures the data from the various original arrays is placed in 

!the correct row of the final 2D array 

counterH = 1; 

 

 

!writing the data to the H abs 2D array for eventual storage as a text file 

do rIntStepH = 2,aMax,1 

     

    do thetaIntStepH = 1,thetaMaxStep,1 

         

        do phiIntStepH = 1,phiMaxStep,1 

             

            counterH = counterH + 1 

             

            !these series of commands writes the data collected in the 

            !various arrays and places them in a 2D array. not able to realy automate column 

            !selection as final output in file is dependent on what user wants to see. 

            HabsDblWrite(counterH,1) = rArray(rIntStepH) 

            HabsDblWrite(counterH,2) = rNoDimArray(rIntStepH) 

            HabsDblWrite(counterH,3) = thetaArray(thetaIntStepH) 

            HabsDblWrite(counterH,4) = thetaArray(thetaIntStepH)*(PI/(180.0D+00)) 

            HabsDblWrite(counterH,5) = phiArray(phiIntStepH) 

            HabsDblWrite(counterH,6) = phiArray(phiIntStepH)*(PI/(180.0D+00)) 

            HabsDblWrite(counterH,7) = HabsDbl3Darray(rIntStepH,thetaIntStepH,phiIntStepH) 

             

        end do 

         

    end do 

     

end do 

 

 

!code sequence to write results to file 
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open(21, file='HabsDblSphData_f2800_r0p01_coarse_test.txt') 

 write(21,12) radiusTxt, ndRadiusTxt, thetaTxt, thetaRtxt, phiTxt, phiRtxt, HabsTxt 

 12 format(a9, a9, a9, a9, a9, a9, a20) 

 

do wCH = 1,maxRow,1 

    !have to keep total width of one line of code under 132 characters 

   write(21,13) HabsDblWrite(wCH,1), HabsDblWrite(wCH,2), HabsDblWrite(wCH,3), 

HabsDblWrite(wCH,4), & 

   HabsDblWrite(wCH,5), HabsDblWrite(wCH,6), HabsDblWrite(wCH,7) 

   13 format(f9.5, f9.6, f9.4, f9.6, f9.4, f9.6, f20.10)   

end do 

   

close(21) 

 

 

!<<<< ------------------------------------------------------------------ >>>> 

 

 

 

!<<<<this sequence of code will appropriately fill the PabsDblW array with data and then 

!write the results to a file. said code should be moved to a subroutine in future. >>>> 

 

 

!this bit of code takes care of the case when r=0. all values are "0" at r=0, except for P. 

do col_P = 1,(maxCol-1),1 

    PabsDblWrite(1,col_P) = 0.0D+00 

end do 

 

 

!value for Pabs when r=0 

PabsDblWrite(1,maxCol) = PabsZeroFinal 

 

 

!this var ensures the data from the various original arrays is placed in 

!the correct row of the final 2D array 

counterP = 1; 
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!writing the data to the H abs 2D array for eventual storage as a text file 

do rIntStepP = 2,aMax,1 

     

    do thetaIntStepP = 1,thetaMaxStep,1 

         

        do phiIntStepP = 1,phiMaxStep,1 

             

            counterP = counterP + 1 

             

            !these series of commands writes the data collected in the 

            !various arrays and places them in a 2D array. not able to realy automate column 

            !selection as final output in file is dependent on what user wants to see. 

            PabsDblWrite(counterP,1) = rArray(rIntStepP) 

            PabsDblWrite(counterP,2) = rNoDimArray(rIntStepP) 

            PabsDblWrite(counterP,3) = thetaArray(thetaIntStepP) 

            PabsDblWrite(counterP,4) = thetaArray(thetaIntStepP)*(PI/(180.0D+00)) 

            PabsDblWrite(counterP,5) = phiArray(phiIntStepP) 

            PabsDblWrite(counterP,6) = phiArray(phiIntStepP)*(PI/(180.0D+00)) 

            PabsDblWrite(counterP,7) = PabsDbl3Darray(rIntStepP,thetaIntStepP,phiIntStepP) 

             

        end do 

         

    end do 

     

end do 

 

 

!code sequence to write results to file 

 

open(22, file='PabsDblSphData_f2800_r0p01_coarse_test.txt') 

 write(22,14) radiusTxt, ndRadiusTxt, thetaTxt, thetaRtxt, phiTxt, phiRtxt, PabsTxt 

 14 format(a9, a9, a9, a9, a9, a9, a21) 

 

do wCP = 1,maxRow,1 

    !have to keep total width of one line of code under 132 characters 

   write(22,15) PabsDblWrite(wCP,1), PabsDblWrite(wCP,2), PabsDblWrite(wCP,3), 

PabsDblWrite(wCP,4), & 

   PabsDblWrite(wCP,5), PabsDblWrite(wCP,6), PabsDblWrite(wCP,7) 
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   15 format(f9.5, f9.6, f9.4, f9.6, f9.4, f9.6, 2E21.10)   

end do 

   

close(22) 

 

 

!<<<< ------------------------------------------------------------------ >>>> 

 

 

 

end program EHPSphCalc 

 

 

!++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine PowerAbsoluteSphereStep(w,eo,erdp,uo,urdp,Esquared,Hsquared, ans_Pabs) 

!this function calculates the absolute (generated) power within a lossy 

!dielectric irradiated by a planar EM wave (of any configuration).  

!The power is calculated at a 

!specific r, theta and phi value (a point value), either inside or outside  

!the sphere. 

 

implicit none 

 

!setting up the vars 

real (kind = 8) :: w, eo, erdp, uo, urdp, Esquared, Hsquared, ans_Pabs 

 

!the squared terms must have no imaginary components to them as this power 

!equation only can work with real numbers. 

ans_Pabs = ((1.0D+00)/(2.0D+00))*w*eo*erdp*Esquared + ((1.0D+00)/(2.0D+00))*w*uo*urdp*Hsquared 

 

return 

end subroutine PowerAbsoluteSphereStep 

 

 

 

!++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine 

EdblSquaredStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EsquaredDblReal) 
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!calc's the absolute value of the complete E-field, at a specific r, theta, and phi, for the case  

!of a spherical dielectric being irradiated by two planar EM waves, both facing the sphere, but 

!spaced 180 degrees apart. The E components 

!of the incoming EM waves are both assumed to be polarized along the positive x axis.    

 

implicit none 

 

!setting up the vars 

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b 

integer :: n, MaxStep, aMax, step 

complex (kind = 8) :: er, ur, Bo, Bd 

 

!final values for each component of E (r, theta, phi) 

complex (kind = 8) :: ans_ErDbl, ans_EthetaDbl, ans_EphiDbl, EsquaredDbl 

 

!final result must be real 

real (kind = 8) :: ans_EsquaredDblReal 

     

!calling the functions 

call ErDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_ErDbl) 

call EthetaDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EthetaDbl) 

call EphiDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EphiDbl) 

 

!!test for computational errors 

!print*, 'r = ', r 

!print*, 'ThR = ', ThR 

!print*, 'PhR = ', PhR 

!print*, 'ans_ErDbl = ',ans_ErDbl 

!print*, 'ans_EthetaDbl = ',ans_EthetaDbl 

!print*, 'ans_EphiDbl = ',ans_EphiDbl  

 

!finding the squared result from the three (complex) components of E (r, theta, phi) 

EsquaredDbl = 

(ans_ErDbl*DCONJG(ans_ErDbl)+ans_EthetaDbl*DCONJG(ans_EthetaDbl)+ans_EphiDbl*DCONJG(ans_EphiDbl)) 

 

 

!!test for computational errors 

!print*, 'EsquaredDbl = ',EsquaredDbl  



86 
 

 

!only need the real component 

ans_EsquaredDblReal = REAL((EsquaredDbl),8) 

 

!!test for computational errors 

!print*, 'ans_EsquaredDblReal = ',ans_EsquaredDblReal  

    

    

return 

end subroutine EdblSquaredStep 

 

 

 

!++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine 

HdblSquaredStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HsquaredDblReal) 

!calc's the absolute value of the complete H-field, at a specific r, theta, and phi, for the case  

!of a spherical dielectric being irradiated by two planar EM waves, both facing the sphere, but 

!spaced 180 degrees apart. One H component 

!of the EM wave (top side) is polarized along the "+" y-axis, while the other component (bottom 

side) 

!is polarized along the "-" y-axis.  

 

implicit none 

 

!setting up the vars 

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b 

integer :: n, MaxStep, aMax, step 

complex (kind = 8) :: er, ur, no, nd, Bo, Bd 

 

!final values for each component of H (r, theta, phi) 

complex (kind = 8) :: ans_HrDbl, ans_HthetaDbl, ans_HphiDbl, HsquaredDbl 

 

!final result must be real 

real (kind = 8) :: ans_HsquaredDblReal 

     

!calling the functions 

call HrDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HrDbl) 



87 
 

call 

HthetaDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HthetaDbl) 

call HphiDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HphiDbl) 

 

!!test for computational errors 

!print*, 'r = ', r 

!print*, 'ThR = ', ThR 

!print*, 'PhR = ', PhR 

!print*, 'ans_HrDbl = ',ans_HrDbl 

!print*, 'ans_HthetaDbl = ',ans_HthetaDbl 

!print*, 'ans_HphiDbl = ',ans_HphiDbl 

 

!finding the squared result from the three (complex) components of H (r, theta, phi) 

HsquaredDbl = 

(ans_HrDbl*DCONJG(ans_HrDbl)+ans_HthetaDbl*DCONJG(ans_HthetaDbl)+ans_HphiDbl*DCONJG(ans_HphiDbl)) 

 

 

!!test for computational errors 

!print*, 'HsquaredDbl = ',HsquaredDbl  

 

!only need the real component 

ans_HsquaredDblReal = REAL((HsquaredDbl),8) 

 

!!test for computational errors 

!print*, 'ans_HsquaredDblReal = ',ans_HsquaredDblReal 

     

     

return 

end subroutine HdblSquaredStep 

 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine ErDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_ErDbl) 

!calc's r component of E-field for the case of a spherical dielectric being irradiated by 

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. Both E components 

!of the EM wave are assumed to be polarized along the positive x axis. 

 

implicit none 
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!setting up the vars 

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b 

integer :: m, n, p, MaxStep, aMax, step 

complex (kind = 8) :: er, ur, Bo, Bd, j 

 

!final value to send out of subroutine is a single value of E for a single value of r  

complex (kind = 8) :: ans_ErDbl 

 

!these subroutine calls have to be formatted in arrays 

complex (kind = 8) :: dBr2MSBJ_Bo(0:n) 

complex (kind = 8) :: dBr2MSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bo(0:n) 

complex (kind = 8) :: MSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bd(0:n) 

complex (kind = 8) :: dBr2MSBJ_Bd(0:n) 

!the commented out subroutine calls, as seen below, are to make it easier to adapt this 

subroutine  

!to other related subroutines  

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n)!, ans_dn(0:n), ans_fn(0:n), 

ans_hn(0:n) 

real (kind = 8) :: ans_P1n(0:n)!, ans_dx_P1n(0:n), ans_P1n_div_SinThR(0:n) 

 

!temporary holding locations for running total of E (Etotr) and each value of E at 

!each instance of "n" (Ern). 

complex (kind = 8) :: Etotr, Ern 

 

!for complex values 

j = (0.0D+00, 1.0D+00) 

 

!calling the subroutines needed to determine Er 

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n)) 

call dBr2ModSphBesJ(PI,n,Bd,r,dBr2MSBJ_Bd(0:n)) 

 

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n)) 

call dBr2ModSphBesJ(PI,n,Bo,r,dBr2MSBJ_Bo(0:n)) 

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n)) 

call dBr2ModSphHnk2(PI,n,Bo,r,dBr2MSH2_Bo(0:n)) 
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call cn_dbl(n,ans_cn(0:n)) 

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n)) 

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n)) 

 

call AscLegendre(n,x,ans_P1n(0:n)) 

 

!!test for math errors 

!print*,'Inside ErDblSphereStep subroutine' 

!print*,'r = ',r,' ThR = ',ThR,' PhR = ', PhR 

 

!!test for NaN error 

!print*, 'Bo in ErdblSphereStep = ',Bo,'. Bd in ErdblSphereStep = ',Bd 

 

!this if statement is for when "r" is less than or equal to the radius of the sphere. 

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of 

"r" steps 

!that the E-field is calculated at each instance of "r", and may be greater than the number of 

"r" steps that 

!count out to the radius of the sphere. 

if (step <= aMax .and. step <= MaxStep) then 

    Etotr = (0.0D+00,0.0D+00) 

     

    do m = 1,n,1 

        Ern = (j*Eo*dcos(PhR))*ans_gn(m)*(dBr2MSBJ_Bd(m) + MSBJ_Bd(m))*ans_P1n(m) 

         

        Etotr = Etotr + Ern 

         

        !!test for math errors 

        !print*,'n = ',m,' dBr2MSBJ_Bd = ',dBr2MSBJ_Bd(m) 

        !print*,'n = ',m,' MSBJ_Bd = ',MSBJ_Bd(m) 

         

        !!test to find Nan error 

        !print*, 'gn for n = ',m,' in inner loop is: ',ans_gn(m) 

        !print*, 'Etotr for n = ',m,' in inner loop is: ',Etotr 

         

    end do 

     

end if 
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!this if statement is for when r is greater than the radius of the sphere     

if (step > aMax .and. step <= MaxStep) then 

    Etotr = (0.0D+00,0.0D+00) 

     

    do p = 1,n,1 

        Ern = (j*Eo*dcos(PhR))*(ans_cn(p)*(dBr2MSBJ_Bo(p) + MSBJ_Bo(p)) & 

        + ans_en(p)*(dBr2MSH2_Bo(p) + MSH2_Bo(p)))*ans_P1n(p) 

         

        Etotr = Etotr + Ern 

         

        !!test for math errors 

        !print*,'n = ',p,' dBr2MSBJ_Bo = ',dBr2MSBJ_Bo(p) 

        !print*,'n = ',p,' MSBJ_Bo = ',MSBJ_Bo(p) 

        !print*,'n = ',p,' dBr2MSH2_Bo = ',dBr2MSH2_Bo(p) 

        !print*,'n = ',p,' MSH2_Bo = ',MSH2_Bo(p) 

         

        !!test to find Nan error 

        !print*, 'cn for n = ',p,' in inner loop is: ',ans_cn(p) 

        !print*, 'en for n = ',p,' in inner loop is: ',ans_en(p) 

        !print*, 'Etotr for n = ',p,' in outer loop is: ',Etotr 

         

    end do 

     

end if 

 

!the final result! 

ans_ErDbl = Etotr 

 

!!test for math errors 

!print*,'Exiting ErDblSphereStep subroutine' 

 

return 

end subroutine ErDblSphereStep 

 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine HrDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HrDbl) 
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!calc's r component of H-field for the case of a spherical dielectric being irradiated by 

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. One H component 

!of the EM wave (top side) is polarized along the "+" y-axis, while the other component (bottom 

side) 

!is polarized along the "-" y-axis. 

 

implicit none 

 

!setting up the vars 

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b 

integer :: m, n, p, MaxStep, aMax, step 

complex (kind = 8) :: er, ur, no, nd, Bo, Bd, j 

 

!final value to send out of subroutine is a single value of H for a single value of r  

complex (kind = 8) :: ans_HrDbl 

 

!these subroutine calls have to be formatted in arrays 

complex (kind = 8) :: dBr2MSBJ_Bo(0:n) 

complex (kind = 8) :: dBr2MSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bo(0:n) 

complex (kind = 8) :: MSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bd(0:n) 

complex (kind = 8) :: dBr2MSBJ_Bd(0:n) 

!the commented out subroutine calls, as seen below, are to make it easier to adapt this 

subroutine  

!to other related subroutines  

complex (kind=8) :: ans_dn(0:n), ans_fn(0:n), ans_hn(0:n)!, ans_dn(0:n), ans_fn(0:n), ans_hn(0:n) 

real (kind=8) :: ans_P1n(0:n)!, ans_dx_P1n(0:n), ans_P1n_div_SinThR(0:n) 

 

!temporary holding locations for running total of H (Htotr) and each value of H at 

!each instance of "n" (Hrn). 

complex (kind=8) :: Htotr, Hrn 

 

!for complex values 

j = (0.0D+00, 1.0D+00) 

 

!calling the subroutines needed to determine Hr 

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n)) 

call dBr2ModSphBesJ(PI,n,Bd,r,dBr2MSBJ_Bd(0:n)) 
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call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n)) 

call dBr2ModSphBesJ(PI,n,Bo,r,dBr2MSBJ_Bo(0:n)) 

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n)) 

call dBr2ModSphHnk2(PI,n,Bo,r,dBr2MSH2_Bo(0:n)) 

 

call dn_dbl(n,ans_dn(0:n)) 

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n)) 

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n)) 

 

call AscLegendre(n,x,ans_P1n(0:n)) 

 

 

!this if statement is for when "r" is less than or equal to the radius of the sphere. 

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of 

"r" steps 

!that the H-field is calculated at each instance of "r", and may be greater than the number of 

"r" steps that 

!count out to the radius of the sphere. 

if (step <= aMax .and. step <= MaxStep) then 

    Htotr = (0.0D+00,0.0D+00) 

     

    do m = 1,n,1 

        Hrn = -(j*Eo*dsin(PhR)/nd)*ans_hn(m)*(dBr2MSBJ_Bd(m) + MSBJ_Bd(m))*ans_P1n(m) 

         

        Htotr = Htotr + Hrn 

         

    end do 

     

end if 

 

!this if statement is for when r is greater than the radius of the sphere     

if (step > aMax .and. step <= MaxStep) then 

    Htotr = (0.0D+00,0.0D+00) 

     

    do p = 1,n,1 

        Hrn = -(j*Eo*dsin(PhR)/no)*(ans_dn(p)*(dBr2MSBJ_Bo(p) + MSBJ_Bo(p)) & 

        + ans_fn(p)*(dBr2MSH2_Bo(p) + MSH2_Bo(p)))*ans_P1n(p) 
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        Htotr = Htotr + Hrn 

         

    end do 

     

end if 

 

!the final result! 

ans_HrDbl = Htotr 

 

return 

end subroutine HrDblSphereStep 

 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine 

EthetaDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EthetaDbl) 

!calc's theta component of E-field for the case of a spherical dielectric being irradiated by 

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. Both E components 

!of the EM wave are assumed to be polarized along the positive x-axis. 

 

implicit none 

 

!setting up the vars 

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b 

integer :: m, n, p, MaxStep, aMax, step 

complex (kind = 8) :: er, ur, Bo, Bd, j 

 

!final value to send out of subroutine is a single value of E for a single value of r  

complex (kind = 8) :: ans_EthetaDbl 

 

!these subroutine calls have to be formatted in arrays 

complex (kind = 8) :: dBrMSBJ_Bo(0:n) 

complex (kind = 8) :: dBrMSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bo(0:n) 

complex (kind = 8) :: MSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bd(0:n) 

complex (kind = 8) :: dBrMSBJ_Bd(0:n) 
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!any commented out subroutine calls, if seen below, are to make it easier to adapt this 

subroutine  

!to other related subroutines  

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n), ans_dn(0:n), ans_fn(0:n), 

ans_hn(0:n) 

real (kind = 8) :: ans_dxP1n(0:n), ans_P1n_div_sinThR(0:n)!, ans_P1n(0:n)  

 

!temporary holding locations for running total of E (Etotr) and each value of E at 

!each instance of "n" (Ern). 

complex (kind = 8) :: EtotTheta, Etheta_n 

 

!for complex values 

j = (0.0D+00, 1.0D+00) 

 

!calling the subroutines needed to determine Er 

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n)) 

call dBrModSphBesJ(PI,n,Bd,r,dBrMSBJ_Bd(0:n)) 

 

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n)) 

call dBrModSphBesJ(PI,n,Bo,r,dBrMSBJ_Bo(0:n)) 

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n)) 

call dBrModSphHnk2(PI,n,Bo,r,dBrMSH2_Bo(0:n)) 

 

call cn_dbl(n,ans_cn(0:n)) 

call dn_dbl(n,ans_dn(0:n)) 

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n)) 

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n)) 

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n)) 

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n)) 

 

!call AscLegendre(n,x,ans_P1n(0:n)) 

call dxAscLegendre(n,x,ans_dxP1n(0:n)) 

call AscLegDivSinThR(n,x,ans_P1n_div_sinThR(0:n)) 

 

 

!!test for math errors 

!print*,'Inside EthetaDblSphereStep subroutine' 

!print*,'r = ',r,' ThR = ',ThR,' PhR = ', PhR 
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!!test for NaN error 

!print*, 'Bo in EthetadblSphereStep = ',Bo,'. Bd in EthetadblSphereStep = ',Bd 

 

!this if statement is for when "r" is less than or equal to the radius of the sphere. 

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of 

"r" steps 

!that the E-field is calculated at each instance of "r", and may be greater than the number of 

"r" steps that 

!count out to the radius of the sphere. 

if (step <= aMax .and. step <= MaxStep) then 

    EtotTheta = (0.0D+00,0.0D+00) 

     

    do m = 1,n,1 

        Etheta_n = (-j*Eo*dcos(PhR)/(Bd*r))*(ans_gn(m)*dBrMSBJ_Bd(m)*dsin(ThR)* & 

        ans_dxP1n(m)) - (Eo*dcos(PhR)/(Bd*r))*(ans_hn(m)*MSBJ_Bd(m)*ans_P1n_div_sinThR(m)) 

         

        EtotTheta = EtotTheta + Etheta_n 

         

        !!test for math errors 

        !print*,'n = ',m,' dBrMSBJ_Bd = ',dBrMSBJ_Bd(m) 

        !print*,'n = ',m,' MSBJ_Bd = ',MSBJ_Bd(m) 

         

    end do 

     

end if 

 

!this if statement is for when r is greater than the radius of the sphere     

if (step > aMax .and. step <= MaxStep) then 

    EtotTheta = (0.0D+00,0.0D+00) 

     

    do p = 1,n,1 

        Etheta_n = (-j*Eo*dcos(PhR)/(Bo*r))*(ans_cn(p)*dBrMSBJ_Bo(p) + ans_en(p)*dBrMSH2_Bo(p)) & 

        *dsin(ThR)*ans_dxP1n(p) - (Eo*dcos(PhR)/(Bo*r))*(ans_dn(p)*MSBJ_Bo(p) + 

ans_fn(p)*MSH2_Bo(p)) & 

        *ans_P1n_div_sinThR(p) 

         

        EtotTheta = EtotTheta + Etheta_n 

         

        !!test for math errors 
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        !print*,'n = ',p,' dBrMSBJ_Bo = ',dBrMSBJ_Bo(p) 

        !print*,'n = ',p,' MSBJ_Bo = ',MSBJ_Bo(p) 

        !print*,'n = ',p,' dBrMSH2_Bo = ',dBrMSH2_Bo(p) 

        !print*,'n = ',p,' MSH2_Bo = ',MSH2_Bo(p) 

         

    end do 

     

end if 

 

!the final result! 

ans_EthetaDbl = EtotTheta 

 

!!test for math errors 

!print*,'Exiting EthetaDblSphereStep subroutine' 

 

return 

end subroutine EthetaDblSphereStep 

 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine 

HthetaDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HthetaDbl) 

!calc's theta component of H-field for the case of a spherical dielectric being irradiated by 

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. One H component 

!of the EM wave (top side) is polarized along the "+" y-axis, while the other component (bottom 

side) 

!is polarized along the "-" y-axis. 

 

implicit none 

 

!setting up the vars 

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b 

integer :: m, n, p, MaxStep, aMax, step 

complex (kind = 8) :: er, ur, no, nd, Bo, Bd, j 

 

!final value to send out of subroutine is a single value of E for a single value of r  

complex (kind = 8) :: ans_HthetaDbl 
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!these subroutine calls have to be formatted in arrays 

complex (kind = 8) :: dBrMSBJ_Bo(0:n) 

complex (kind = 8) :: dBrMSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bo(0:n) 

complex (kind = 8) :: MSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bd(0:n) 

complex (kind = 8) :: dBrMSBJ_Bd(0:n) 

!any commented out subroutine calls, if seen below, are to make it easier to adapt this 

subroutine  

!to other related subroutines  

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n), ans_dn(0:n), ans_fn(0:n), 

ans_hn(0:n) 

real (kind = 8) :: ans_dxP1n(0:n), ans_P1n_div_sinThR(0:n)!,ans_P1n(0:n) 

 

!temporary holding locations for running total of E (Etotr) and each value of E at 

!each instance of "n" (Ern). 

complex (kind = 8) :: HtotTheta, Htheta_n 

 

!for complex values 

j = (0.0D+00, 1.0D+00) 

 

!calling the subroutines needed to determine Er 

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n)) 

call dBrModSphBesJ(PI,n,Bd,r,dBrMSBJ_Bd(0:n)) 

 

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n)) 

call dBrModSphBesJ(PI,n,Bo,r,dBrMSBJ_Bo(0:n)) 

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n)) 

call dBrModSphHnk2(PI,n,Bo,r,dBrMSH2_Bo(0:n)) 

 

call cn_dbl(n,ans_cn(0:n)) 

call dn_dbl(n,ans_dn(0:n)) 

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n)) 

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n)) 

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n)) 

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n)) 

 

!call AscLegendre(n,x,ans_P1n(0:n)) 

call dxAscLegendre(n,x,ans_dxP1n(0:n)) 
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call AscLegDivSinThR(n,x,ans_P1n_div_sinThR(0:n)) 

 

 

!this if statement is for when "r" is less than or equal to the radius of the sphere. 

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of 

"r" steps 

!that the E-field is calculated at each instance of "r", and may be greater than the number of 

"r" steps that 

!count out to the radius of the sphere. 

if (step <= aMax .and. step <= MaxStep) then 

    HtotTheta = (0.0D+00,0.0D+00) 

     

    do m = 1,n,1 

        Htheta_n = (Eo*dsin(PhR)/(Bd*nd*r))*(ans_gn(m)*MSBJ_Bd(m)*ans_P1n_div_sinThR(m)) & 

         + (j*Eo*dsin(PhR)/(Bd*nd*r))*(ans_hn(m)*dBrMSBJ_Bd(m)*dsin(ThR)*ans_dxP1n(m)) 

         

        HtotTheta = HtotTheta + Htheta_n 

         

    end do 

     

end if 

 

!this if statement is for when r is greater than the radius of the sphere     

if (step > aMax .and. step <= MaxStep) then 

    HtotTheta = (0.0D+00,0.0D+00) 

     

    do p = 1,n,1 

        Htheta_n = (Eo*dsin(PhR)/(Bo*no*r))*(ans_cn(p)*MSBJ_Bo(p) + ans_en(p)*MSH2_Bo(p)) & 

        *ans_P1n_div_sinThR(p) + (j*Eo*dsin(PhR)/(Bo*no*r))*(ans_dn(p)*dBrMSBJ_Bo(p) + 

ans_fn(p)*dBrMSH2_Bo(p)) & 

        *dsin(ThR)*ans_dxP1n(p) 

         

        HtotTheta = HtotTheta + Htheta_n 

         

    end do 

     

end if 

 

!the final result! 
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ans_HthetaDbl = HtotTheta 

 

return 

end subroutine HthetaDblSphereStep 

 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine EphiDblSphereStep(PI,n,Bo,Bd,er,ur,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_EphiDbl) 

!calc's phi component of E-field for the case of a spherical dielectric being irradiated by 

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. Both E components 

!of the EM wave are assumed to be polarized along the positive x-axis. 

 

implicit none 

 

!setting up the vars 

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b 

integer :: m, n, p, MaxStep, aMax, step 

complex (kind = 8) :: er, ur, Bo, Bd, j 

 

!final value to send out of subroutine is a single value of E for a single value of r  

complex (kind=8) :: ans_EphiDbl 

 

!these subroutine calls have to be formatted in arrays 

complex (kind = 8) :: dBrMSBJ_Bo(0:n) 

complex (kind = 8) :: dBrMSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bo(0:n) 

complex (kind = 8) :: MSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bd(0:n) 

complex (kind = 8) :: dBrMSBJ_Bd(0:n) 

!any commented out subroutine calls, if seen below, are to make it easier to adapt this 

subroutine  

!to other related subroutines  

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n), ans_dn(0:n), ans_fn(0:n), 

ans_hn(0:n) 

real (kind = 8) :: ans_dxP1n(0:n), ans_P1n_div_sinThR(0:n)!,ans_P1n(0:n) 

 

!temporary holding locations for running total of E (Etotr) and each value of E at 

!each instance of "n" (Ern). 
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complex (kind = 8) :: EtotPhi, Ephi_n 

 

!for complex values 

j = (0.0D+00, 1.0D+00) 

 

!calling the subroutines needed to determine Er 

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n)) 

call dBrModSphBesJ(PI,n,Bd,r,dBrMSBJ_Bd(0:n)) 

 

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n)) 

call dBrModSphBesJ(PI,n,Bo,r,dBrMSBJ_Bo(0:n)) 

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n)) 

call dBrModSphHnk2(PI,n,Bo,r,dBrMSH2_Bo(0:n)) 

 

call cn_dbl(n,ans_cn(0:n)) 

call dn_dbl(n,ans_dn(0:n)) 

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n)) 

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n)) 

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n)) 

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n)) 

 

!call AscLegendre(n,x,ans_P1n(0:n)) 

call dxAscLegendre(n,x,ans_dxP1n(0:n)) 

call AscLegDivSinThR(n,x,ans_P1n_div_sinThR(0:n)) 

 

!!test for NaN error 

!print*, 'Bo in EphidblSphereStep = ',Bo,' Bd in EphidblSphereStep = ',Bd 

 

!this if statement is for when "r" is less than or equal to the radius of the sphere. 

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of 

"r" steps 

!that the E-field is calculated at each instance of "r", and may be greater than the number of 

"r" steps that 

!count out to the radius of the sphere. 

if (step <= aMax .and. step <= MaxStep) then 

    EtotPhi = (0.0D+00,0.0D+00) 

     

    do m = 1,n,1 

        Ephi_n = (-j*Eo*dsin(PhR)/(Bd*r))*(ans_gn(m)*dBrMSBJ_Bd(m)*ans_P1n_div_sinThR(m)) & 
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        - (Eo*dsin(PhR)/(Bd*r))*(ans_hn(m)*MSBJ_Bd(m)*dsin(ThR)*ans_dxP1n(m)) 

         

        EtotPhi = EtotPhi + Ephi_n 

         

    end do 

     

end if 

 

!this if statement is for when r is greater than the radius of the sphere     

if (step > aMax .and. step <= MaxStep) then 

    EtotPhi = (0.0D+00,0.0D+00) 

     

    do p = 1,n,1 

        Ephi_n = (-j*Eo*dsin(PhR)/(Bo*r))*(ans_cn(p)*dBrMSBJ_Bo(p) + ans_en(p)*dBrMSH2_Bo(p)) & 

        *ans_P1n_div_sinThR(p) - (Eo*dsin(PhR)/(Bo*r))*(ans_dn(p)*MSBJ_Bo(p) + 

ans_fn(p)*MSH2_Bo(p)) & 

        *dsin(ThR)*ans_dxP1n(p) 

         

        EtotPhi = EtotPhi + Ephi_n 

         

    end do 

     

end if 

 

!the final result! 

ans_EphiDbl = EtotPhi 

 

return 

end subroutine EphiDblSphereStep 

 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine 

HphiDblSphereStep(PI,n,Bo,Bd,er,ur,no,nd,r,ThR,PhR,x,Eo,a,b,MaxStep,aMax,step,ans_HphiDbl) 

!calc's phi component of H-field for the case of a spherical dielectric being irradiated by 

!two planar EM waves, both facing the sphere, but spaced 180 degrees apart. One H component 

!of the EM wave (top side) is polarized along the "+" y-axis, while the other component (bottom 

side) 
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!is polarized along the "-" y-axis. 

 

implicit none 

 

!setting up the vars 

real (kind = 8) :: PI, r, ThR, PhR, x, Eo, a, b 

integer :: m, n, p, MaxStep, aMax, step 

complex (kind = 8) :: er, ur, no, nd, Bo, Bd, j 

 

!final value to send out of subroutine is a single value of E for a single value of r  

complex (kind = 8) :: ans_HphiDbl 

 

!these subroutine calls have to be formatted in arrays 

complex (kind = 8) :: dBrMSBJ_Bo(0:n) 

complex (kind = 8) :: dBrMSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bo(0:n) 

complex (kind = 8) :: MSH2_Bo(0:n) 

complex (kind = 8) :: MSBJ_Bd(0:n) 

complex (kind = 8) :: dBrMSBJ_Bd(0:n) 

!any commented out subroutine calls, if seen below, are to make it easier to adapt this 

subroutine  

!to other related subroutines  

complex (kind = 8) :: ans_cn(0:n), ans_en(0:n), ans_gn(0:n), ans_dn(0:n), ans_fn(0:n), 

ans_hn(0:n) 

real (kind = 8) :: ans_dxP1n(0:n), ans_P1n_div_sinThR(0:n)!,ans_P1n(0:n) 

 

!temporary holding locations for running total of E (Etotr) and each value of E at 

!each instance of "n" (Ern). 

complex (kind = 8) :: HtotPhi, Hphi_n 

 

!for complex values 

j = (0.0D+00, 1.0D+00) 

 

!calling the subroutines needed to determine Er 

call ModSphBesJ(PI,n,Bd,r,MSBJ_Bd(0:n)) 

call dBrModSphBesJ(PI,n,Bd,r,dBrMSBJ_Bd(0:n)) 

 

call ModSphBesJ(PI,n,Bo,r,MSBJ_Bo(0:n)) 

call dBrModSphBesJ(PI,n,Bo,r,dBrMSBJ_Bo(0:n)) 



103 
 

call ModSphHnk2(PI,n,Bo,r,MSH2_Bo(0:n)) 

call dBrModSphHnk2(PI,n,Bo,r,dBrMSH2_Bo(0:n)) 

 

call cn_dbl(n,ans_cn(0:n)) 

call dn_dbl(n,ans_dn(0:n)) 

call en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en(0:n)) 

call fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn(0:n)) 

call gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn(0:n)) 

call hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn(0:n)) 

 

!call AscLegendre(n,x,ans_P1n(0:n)) 

call dxAscLegendre(n,x,ans_dxP1n(0:n)) 

call AscLegDivSinThR(n,x,ans_P1n_div_sinThR(0:n)) 

 

 

!this if statement is for when "r" is less than or equal to the radius of the sphere. 

!"aMax" is the number of sequential steps from r=0 to r=a and "MaxStep" is the total number of 

"r" steps 

!that the E-field is calculated at each instance of "r", and may be greater than the number of 

"r" steps that 

!count out to the radius of the sphere. 

if (step <= aMax .and. step <= MaxStep) then 

    HtotPhi = (0.0D+00,0.0D+00) 

     

    do m = 1,n,1 

        Hphi_n = (-Eo*dcos(PhR)/(Bd*nd*r))*(ans_gn(m)*MSBJ_Bd(m)*dsin(ThR)*ans_dxP1n(m)) & 

         - (j*Eo*dcos(PhR)/(Bd*nd*r))*(ans_hn(m)*dBrMSBJ_Bd(m)*ans_P1n_div_sinThR(m)) 

         

        HtotPhi = HtotPhi + Hphi_n 

         

    end do 

     

end if 

 

!this if statement is for when r is greater than the radius of the sphere     

if (step > aMax .and. step <= MaxStep) then 

    HtotPhi = (0.0D+00,0.0D+00) 

     

    do p = 1,n,1 
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        Hphi_n = (-Eo*dcos(PhR)/(Bo*no*r))*(ans_cn(p)*MSBJ_Bo(p) + ans_en(p)*MSH2_Bo(p)) & 

        *dsin(ThR)*ans_dxP1n(p) - (j*Eo*dcos(PhR)/(Bo*no*r))*(ans_dn(p)*dBrMSBJ_Bo(p) + 

ans_fn(p)*dBrMSH2_Bo(p)) & 

        *ans_P1n_div_sinThR(p) 

         

        HtotPhi = HtotPhi + Hphi_n 

         

    end do 

     

end if 

 

!the final result! 

ans_HphiDbl = HtotPhi 

 

return 

end subroutine HphiDblSphereStep 

 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine ModSphBesJ(PI,n,k,r,ans_MSBJ) 

    !calc's modified spherical bessel funct of 1st kind 

    implicit none 

     

    real (kind = 8), intent(in) :: PI 

    integer, intent(in) :: n  

    integer :: l 

     

    real (kind = 8) :: v,vm  

    real (kind = 8), intent(in) :: r  

    complex (kind = 8) :: cbj(0:n) 

    complex (kind = 8) :: cdj(0:n) 

    complex (kind = 8) :: cby(0:n) 

    complex (kind = 8) :: cdy(0:n) 

    complex (kind = 8), intent(out) :: ans_MSBJ(0:n) 

    complex (kind = 8) :: z 

    complex (kind = 8), intent(in) :: k 
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    v = n + 0.5D+00 

    z = k*r 

     

   ! !test for math errors 

   ! print*,'in ModSphBesJ subroutine' 

   ! print*,'k = ',k,' r = ',r 

     

    call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n)) 

    do l = 0,n 

        !D+00 added to "2" 

        ans_MSBJ(l) = zsqrt(PI*k*r/(2.0D+00))*cbj(l) 

         

       ! !test for math errors 

       ! print*, 'n is: ',l 

       ! print*,'J(n+1/2) = ',cbj(l)  

       ! print*,'MSBJ(n) = ', ans_MSBJ(l) 

         

         

    end do 

     

   ! !test for math errors 

   ! print*, 'exiting subroutine ModSphBesJ.' 

     

     

    return 

end subroutine ModSphBesJ 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine ModSphHnk2(PI,n,k,r,ans_MSH2) 

    !calc's modified spherical hankel function of 2nd kind 

    !MSHankel(2) = MSBJ -j*MSBY 

    implicit none 

    real (kind = 8), intent(in) :: PI 

    integer, intent(in) :: n  

    integer :: l 

     

    complex (kind = 8) j 

    complex (kind = 8), intent(out) :: ans_MSH2(0:n) 



106 
 

    complex (kind = 8) cbj(0:n) 

    complex (kind = 8) cdj(0:n) 

    complex (kind = 8) cby(0:n) 

    complex (kind = 8) cdy(0:n) 

    real (kind = 8) v,vm 

    real (kind = 8), intent(in) :: r 

    complex (kind = 8) z  

    complex (kind = 8), intent(in) :: k 

     

    j=(0.0D+00,1.0D+00) 

    v = n + 0.5D+00 

    z = k*r 

     

   ! !testing for math errors 

   ! print*,'in ModSphHnk2 subroutine' 

   ! print*,'k = ',k,' r = ',r 

     

    call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n)) 

    do l = 0,n 

        !D+00 added to "2" 

        ans_MSH2(l) = zsqrt(PI*k*r/(2.0D+00))*(cbj(l) - (j*cby(l))) 

         

       ! !test for math errors 

       ! print*, 'n is ',l, ' ans_MSH2 is ', ans_MSH2(l) 

       ! print*, 'J(n+1/2) = ',cbj(l) 

       ! print*, 'Y(n+1/2) = ',cby(l) 

       ! print*, 'H2(n) = ',(cbj(l) - (j*cby(l))) 

       ! print*, 'ans_MSH2(n) = ',ans_MSH2(l) 

         

    end do 

     

   ! !testing for math errors 

   ! print*, 'exiting subroutine ModSphHnk2.' 

     

     

    return 

end subroutine ModSphHnk2 
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!+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine dBrModSphBesJ(PI,n,k,r,ans_dkrMSBJ) 

    !calc's derivative of modified spherical bessel funct of 1st kind 

    implicit none 

    real (kind = 8) :: PI 

    integer :: n 

    integer :: m,l_0,l_1, l_2, l_3 

     

    real (kind = 8) :: v, vm, w 

    real (kind = 8) :: r 

    complex (kind = 8) :: cbj(0:n) 

    complex (kind = 8) :: cdj(0:n) 

    complex (kind = 8) :: cby(0:n) 

    complex (kind = 8) :: cdy(0:n) 

     

    !these four complex arrays are needed for the second component of the derivative of MSBJ 

routine. 

    !they are related to n by: m=n+1 

    complex (kind = 8), allocatable, dimension(:) :: cbj2 

    complex (kind = 8), allocatable, dimension(:) :: cdj2 

    complex (kind = 8), allocatable, dimension(:) :: cby2 

    complex (kind = 8), allocatable, dimension(:) :: cdy2 

     

    complex (kind = 8) :: dkrMSBJ1(0:n) 

    complex (kind = 8) :: dkrMSBJ2(0:n) 

    complex (kind = 8) :: dkrMSBJ3(0:n) 

    complex (kind = 8) :: ans_dkrMSBJ(0:n) 

    complex (kind = 8) :: z  

    complex (kind = 8) :: k 

    !!test 

    !print*, 'in subroutine. after var declarations.' 

    m = n + 1 

    !now that m is known, exact array sizes can be assigned to these four complex arrays. 

    allocate(cbj2(0:m)) 

    allocate(cdj2(0:m)) 

    allocate(cby2(0:m)) 

    allocate(cdy2(0:m)) 

    !!test 
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    !print*, 'in subroutine. after allocations for "m".' 

     

    v = n + 0.5D+00 

    z = k*r 

     

    !print*,'PI is: ',PI,' k is: ',k,' r is: ',r,' z is: ',z 

     

   ! !testing for math errors 

   ! print*,'in dBrModSphBesJ subroutine' 

   ! print*,' k = ',k,' r = ',r 

     

    call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n)) 

    !broke derivative of besselJ into three parts for ease of programming 

    !!test 

    !print*, 'in subroutine. after calling cjyva (v=n+0.5)' 

     

    !first part 

    do l_1 = 0,n 

        !D+00 added to "0.25" and "2" 

        dkrMSBJ1(l_1) = ((0.25D+00)*(dsqrt(2.0D+00)*PI)/zsqrt(PI*k*r))*cbj(l_1) 

        !!test 

        !print*, 'dkrMSBJ1 numerator is: ',(1/4)*(dsqrt(2.0D+00)*PI) 

        !print*, 'dkrMSBJ1 denominator is: ',zsqrt(PI*k*r) 

         

       ! !testing for math errors 

       ! print*, 'n = ', l_1,' Jn+1/2 = ',cbj(l_1) 

     

    end do 

    !!test 

    !print*, 'in subroutine. after determining dkrMSBJ1.' 

    !third part 

    do l_3 = 0,n 

         

        !!!!!!! <<<<<need to re-familarize with cjyva sub routine>>>>> 

         

        !D+00 added to "0.5" and "2" 

        dkrMSBJ3(l_3) = (0.5D+00)*zsqrt((2.0D+00)*PI*k*r)*((l_3 + 

((1.0D+00)/(2.0D+00)))*cbj(l_3))/(k*r) 
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        !!!!!!! <<<<<need to re-familarize with cjyva sub routine>>>>> 

         

        !!test 

        !print*, 'dkrMSBJ3 numerator is: ',(1/2)*zsqrt(2*PI*k*r) 

        !print*, 'dkrMSBJ3 denominator is: ',(k*r) 

        !print*, 'l_3 = ', l_3,' dkrMSBJ3 = ', dkrMSBJ3(l_3),' cbj = ',cbj(l_3) 

    end do 

   !!test 

    !print*, 'in subroutine. after determining dkrMSBJ3.' 

    w = n + 1.5D+00 

    !!test 

    !w=m+0.5 

    call cjyva(w,z,vm,cbj2(0:m),cdj2(0:m),cby2(0:m),cdy2(0:m)) 

    !!test 

    !print*, 'in subroutine. after calling cjyva for w=n+1.5.' 

    !second part 

     

    !because w=n+1.5, and because of the way cbj2 (and the others) calcuate values for each 

member of the array, the array values  

    !from cbj2 (and the others) must be shifted over by one value when assigning the results to 

ans_dkrMSBJ2 array.  

    do l_2 = 1,m 

        !D+00 added to "0.5" and "2" 

        dkrMSBJ2(l_2 - 1) = -(0.5D+00)*zsqrt((2.0D+00)*PI*k*r)*cbj2(l_2) !note deliberate shift 

in array. 

        

      ! !test for math errors 

      ! print*, 'n = ', l_2 - 1,' Jn+3/2 = ',cbj2(l_2) 

        

    end do 

     

    !!test 

    !print*, 'in subroutine. after determining dkrMSBJ2.' 

    !putting all three parts together for final answer 

    do l_0 = 0,n 

        ans_dkrMSBJ(l_0) = dkrMSBJ1(l_0) + dkrMSBJ2(l_0) + dkrMSBJ3(l_0) 

         

       ! !test 
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       ! print*, 'n = ', l_0,' dkrMSBJ(n) = ', ans_dkrMSBJ(l_0) 

         

         

    end do 

    !!test 

    !print*, 'in subroutine. after determining dkrMSBJ.' 

    deallocate(cbj2) 

    !!test 

    !print*, 'in subroutine. after deallocating cbj2' 

    deallocate(cdj2) 

    !!test 

    !print*, 'in subroutine. after deallocating cdj2' 

    deallocate(cby2) 

    !!test 

    !print*, 'in subroutine. after deallocating cby2' 

    deallocate(cdy2) 

    !!test 

    !print*, 'in subroutine. after deallocating cdy2' 

     

   ! !test 

   ! print*, 'exiting subroutine dBrModSphBesJ.' 

     

    return 

end subroutine dBrModSphBesJ 

 

!++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine dBrModSphHnk2(PI,n,k,r,ans_dkrMSH2) 

    !calc's derivative of modified spherical hankel funct of 2nd kind 

    !MSHankel(2) = MSBJ -j*MSBY 

    implicit none 

    real (kind = 8), intent(in) :: PI 

    integer :: m, l_0, l_1, l_2, l_3 

    integer, intent(in) :: n 

     

    real (kind = 8) v,vm,w 

    real (kind = 8), intent(in) :: r 

    complex (kind = 8) cbj(0:n) 

    complex (kind = 8) cdj(0:n) 
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    complex (kind = 8) cby(0:n) 

    complex (kind = 8) cdy(0:n) 

 

    !these four complex arrays are needed for the second component of the derivative of MSBJ 

routine. 

    !they are related to n by: m=n+1 

    complex (kind = 8), allocatable, dimension(:) :: cbj2 

    complex (kind = 8), allocatable, dimension(:) :: cdj2 

    complex (kind = 8), allocatable, dimension(:) :: cby2 

    complex (kind = 8), allocatable, dimension(:) :: cdy2 

     

    complex (kind = 8) j 

    complex (kind = 8), intent(out) :: ans_dkrMSH2(0:n) 

    complex (kind = 8) dkrMSH2_1(0:n) 

    complex (kind = 8) dkrMSH2_2(0:n) 

    complex (kind = 8) dkrMSH2_3(0:n) 

    complex (kind = 8) z 

    complex (kind = 8), intent(in) :: k 

     

    m = n + 1 

    !now that m is known, exact array sizes can be assigned to these four complex arrays. 

    allocate(cbj2(0:m)) 

    allocate(cdj2(0:m)) 

    allocate(cby2(0:m)) 

    allocate(cdy2(0:m)) 

     

    j = (0.0D+00,1.0D+00) 

    v = n + 0.5D+00 

    z = k*r 

     

   ! !testing for math errors 

   ! print*,'in dBrModSphHnk2 subroutine' 

   ! print*,'k = ',k,' r = ',r 

     

    call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n)) 

    !broke derivative of hankel2 into three parts for ease of programming 

     

    !first part 
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    do l_1 = 0,n 

        !D+00 added to "0.25" and "2" 

        dkrMSH2_1(l_1) = ((0.25D+00)*(PI*dsqrt(2.0D+00))/zsqrt(PI*k*r))*(cbj(l_1) - (j*cby(l_1))) 

       ! !test 

       ! print*, 'n = ',l_1,' H2(n+1/2) = ',(cbj(l_1) - (j*cby(l_1))) 

    end do 

     

    !third part 

    do l_3 = 0,n 

        !D+00 added to "0.5" and "2" 

        dkrMSH2_3(l_3) = (0.5D+00)*zsqrt((2.0D+00)*PI*k*r)*(l_3+(0.5D+00))*(cbj(l_3) - 

(j*cby(l_3)))/(k*r) 

        !!test 

        !print*, 'l3=', l_3,' dkrMSH2_3=', dkrMSH2_3(l_3) 

    end do 

         

    w = n + 1.5D+00 

    call cjyva(w,z,vm,cbj2(0:m),cdj2(0:m),cby2(0:m),cdy2(0:m)) 

     

    !second part 

     

    !because w=n+1.5, and because of the way cbj2 (and the others) calcuate values for each 

member of the array, the array values  

    !from cbj2 (and the others) must be shifted over by one value when assigning the results to 

ans_dkrMSH2_2 array.  

    do l_2 = 1,m 

        !D+00 added to "0.5" and "2" 

        dkrMSH2_2(l_2 - 1) = -(0.5D+00)*zsqrt((2.0D+00)*PI*k*r)*(cbj2(l_2) - (j*cby2(l_2))) 

       ! !test 

       ! print*, 'n = ',l_2 - 1,' H2(n+3/2) = ',(cbj2(l_2) -(j*cby(l_2))) 

    end do 

     

    !putting all three parts together for final answer 

    do l_0 = 0,n 

        ans_dkrMSH2(l_0) = dkrMSH2_1(l_0)+dkrMSH2_2(l_0)+dkrMSH2_3(l_0) 

       ! !test 

       ! print*, 'n = ', l_0,' dkrMSH2(n) = ', ans_dkrMSH2(l_0) 

    end do 
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    deallocate(cbj2) 

    deallocate(cdj2) 

    deallocate(cby2) 

    deallocate(cdy2) 

     

   ! !test 

   ! print*, 'exiting subroutine dBrModSphHnk2.' 

     

     

    return 

end subroutine dBrModSphHnk2 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine dBr2ModSphBesJ(PI,n,k,r,ans_dkr2MSBJ) 

    !calc's 2nd derivative of modified spherical bessel funct of 1st kind 

    implicit none 

    real (kind = 8) :: PI 

    integer, intent(in) :: n 

    integer :: m, l_0, l_1, l_2 

     

    real (kind = 8) :: v, vm, w 

    real (kind = 8) :: r 

    complex (kind = 8) cbj(0:n) 

    complex (kind = 8) cdj(0:n) 

    complex (kind = 8) cby(0:n) 

    complex (kind = 8) cdy(0:n) 

     

    !these four complex arrays are needed for the second component of the derivative of MSBJ 

routine. 

    !they are used for the "n+3/2" case and are related to n by: m=n+1 

    complex (kind = 8), allocatable, dimension(:) :: cbj2 

    complex (kind = 8), allocatable, dimension(:) :: cdj2 

    complex (kind = 8), allocatable, dimension(:) :: cby2 

    complex (kind = 8), allocatable, dimension(:) :: cdy2 

     

    complex (kind = 8) BesselJ12(0:n) 

    complex (kind = 8) BesselJ32(0:n) 

    !complex (kind = 8) dkr2MSBJ3(0:n) 
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    complex (kind = 8) :: ans_dkr2MSBJ(0:n) 

    complex (kind = 8) :: z  

    complex (kind = 8) :: k 

    !!test 

    !print*, 'in subroutine. after var declarations.' 

    m = n + 1 

    !now that m is known, exact array sizes can be assigned to these four complex arrays. 

    allocate(cbj2(0:m)) 

    allocate(cdj2(0:m)) 

    allocate(cby2(0:m)) 

    allocate(cdy2(0:m)) 

    !!test 

    !print*, 'in subroutine. after allocations for "m".' 

     

    v = n + 0.5D+00 

    z = k*r 

     

    call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n)) 

    !broke derivative of besselJ into three parts for ease of programming 

    !!test 

    !print*, 'in subroutine. after calling cjyva (v=n+0.5)' 

     

        !!test for math errors 

        !print*,'r = ',r,' k = ',k,' z = k*r = ',k*r 

        !print*,'PI = ',PI,' z = ',z 

         

         

       ! !test for math errors 

       ! print*, 'in subroutine dBr2ModSphBesJ.' 

       ! print*,' k = ',k,' r = ',r 

         

     

     

    !first part 

    do l_1 = 0,n 

        BesselJ12(l_1) = cbj(l_1) 

         

        !!test for math error 
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        !print*, 'l1 = ', l_1,' BesselJ12 = ', BesselJ12(l_1) 

         

    end do 

    !!test 

    !print*, 'in subroutine. after determining dkr2MSBJ12.' 

     

    w = n + 1.5D+00 

    !!test 

    !w = m + 0.5 

    call cjyva(w,z,vm,cbj2(0:m),cdj2(0:m),cby2(0:m),cdy2(0:m)) 

    !!test 

    !print*, 'in subroutine. after calling cjyva for w=n+1.5.' 

    !second part 

     

    !because w=n+1.5, and because of the way cbj2 (and the others) calcuate values for each 

member of the array, the array values  

    !from cbj2 (and the others) must be shifted over by one value when assigning the results to 

ans_dkrMSBJ2 array.  

    do l_2 = 1,m 

        BesselJ32(l_2 - 1) = cbj2(l_2) !note deliberate shift in array. 

         

        !!test for math error 

        !print*, 'l2 - 1 = ', l_2 - 1,' BesselJ32 = ', BesselJ32(l_2-1) 

         

    end do 

    !!test 

    !print*, 'in subroutine. after determining dkrMSBJ2.' 

    !putting all parts together for final answer 

    do l_0=0,n 

        ans_dkr2MSBJ(l_0) = -

(0.125D+00)*((dsqrt(2.0D+00)*BesselJ12(l_0)*(PI**2.0D+00))/((PI*k*r)**(3.0D+00/2.0D+00))) & 

        + (1.0D+00/2.0D+00)*dsqrt(2.0D+00)*( -BesselJ32(l_0)+(((l_0 + 

1.0D+00/2.0D+00)*BesselJ12(l_0))/ & 

        (k*r)) )*PI/(zsqrt(PI*k*r)) + (1.0D+00/2.0D+00)*dsqrt(2.0D+00)*zsqrt(PI*k*r)* & 

        ( -BesselJ12(l_0) + (((l_0 + 3.0D+00/2.0D+00)*BesselJ32(l_0))/(k*r)) & 

        - (((l_0 + 1.0D+00/2.0D+00)*BesselJ12(l_0))/((k*r)**2.0D+00)) + ( (l_0 + 1.0D+00/2.0D+00) 

& 

        *( -BesselJ32(l_0) + (((l_0 + 1.0D+00/2.0D+00)*BesselJ12(l_0))/(k*r)) ) )/(k*r) ) 

         

       ! !test 
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       ! print*, 'n = ', l_0,' dkr2MSBJ(n) = ', ans_dkr2MSBJ(l_0) 

        

    end do 

    !!test 

    !print*, 'in subroutine. after determining dkr2MSBJ.' 

    deallocate(cbj2) 

    !!test 

    !print*, 'in subroutine. after deallocating cbj2' 

    deallocate(cdj2) 

    !!test 

    !print*, 'in subroutine. after deallocating cdj2' 

    deallocate(cby2) 

    !!test 

    !print*, 'in subroutine. after deallocating cby2' 

    deallocate(cdy2) 

    !!test 

    !print*, 'in subroutine. after deallocating cdy2' 

     

   ! !test 

   ! print*, 'exiting subroutine dBr2ModSphBesJ.' 

     

     

    return 

end subroutine dBr2ModSphBesJ 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine dBr2ModSphHnk2(PI,n,k,r,ans_dkr2MSH2) 

    !calc's 2nd derivative of modified spherical hankel funct of 2nd kind 

    implicit none 

    real (kind = 8), intent(in) :: PI 

    integer, intent(in) :: n 

    integer :: m, l_0, l_1, l_2 

     

    real (kind = 8) v, vm, w 

    real (kind = 8), intent(in) :: r 

    complex (kind = 8) cbj(0:n) 

    complex (kind = 8) cdj(0:n) 
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    complex (kind = 8) cby(0:n) 

    complex (kind = 8) cdy(0:n) 

     

    !these four complex arrays are needed for the second component of the derivative of MSBJ 

routine. 

    !they are used for the "n+3/2" case and are related to n by: m=n+1 

    complex (kind = 8), allocatable, dimension(:) :: cbj2 

    complex (kind = 8), allocatable, dimension(:) :: cdj2 

    complex (kind = 8), allocatable, dimension(:) :: cby2 

    complex (kind = 8), allocatable, dimension(:) :: cdy2 

     

    complex (kind = 8) Hankel212(0:n) 

    complex (kind = 8) Hankel232(0:n) 

    !complex (kind = 8) dkr2MSH23(0:n) 

    complex (kind = 8), intent(out) :: ans_dkr2MSH2(0:n) 

    complex (kind = 8) z, j  

    complex (kind = 8), intent(in) :: k 

    !!test 

    !print*, 'in subroutine. after var declarations.' 

    m = n + 1 

    !now that m is known, exact array sizes can be assigned to these four complex arrays. 

    allocate(cbj2(0:m)) 

    allocate(cdj2(0:m)) 

    allocate(cby2(0:m)) 

    allocate(cdy2(0:m)) 

     

   ! !test for math errors 

   ! print*, 'in subroutine dBr2ModSphHnk2.' 

     

    j = (0.0D+00,1.0D+00) 

    v = n + 0.5D+00 

    z = k*r 

     

   ! !testing for math errors 

   ! print*,'k = ',k,' r = ',r 

     

    call cjyva(v,z,vm, cbj(0:n), cdj(0:n), cby(0:n), cdy(0:n)) 

    !broke derivative of besselJ into three parts for ease of programming 
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    !!test 

    !print*, 'in subroutine. after calling cjyva (v=n+0.5)' 

     

    !first part 

    do l_1 = 0,n 

        Hankel212(l_1) = (cbj(l_1) - (j*cby(l_1))) 

         

       ! !testing for math errors 

       ! print*, 'n = ', l_1,' Hankel212(n) = ', Hankel212(l_1) 

         

    end do 

    !!test 

    !print*, 'in subroutine. after determining dkr2MSH212.' 

     

    w = n + 1.5D+00 

    !!test 

    !w = m + 0.5 

    call cjyva(w,z,vm,cbj2(0:m),cdj2(0:m),cby2(0:m),cdy2(0:m)) 

    !!test 

    !print*, 'in subroutine. after calling cjyva for w=n+1.5.' 

    !second part 

     

    !because w=n+1.5, and because of the way cbj2 (and the others) calcuate values for each 

member of the array, the array values  

    !from cbj2 (and the others) must be shifted over by one value when assigning the results to 

ans_dkrMSBJ2 array.  

    do l_2 = 1,m 

        Hankel232(l_2-1) = (cbj2(l_2) - (j*cby2(l_2))) !note deliberate shift in array. 

         

       ! !test for math errors 

       ! print*, 'n = ', l_2 - 1,' Hankel232(n) = ', Hankel232(l_2 - 1) 

         

    end do 

    !!test 

    !print*, 'in subroutine. after determining dkrMSBJ2.' 

    !putting all parts together for final answer 

    do l_0 = 0,n 

        ans_dkr2MSH2(l_0) = -

(0.125D+00)*((dsqrt(2.0D+00)*Hankel212(l_0)*(PI**2.0D+00))/((PI*k*r)**(3.0D+00/2.0D+00))) & 
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        + (1.0D+00/2.0D+00)*dsqrt(2.0D+00)*( -Hankel232(l_0)+(((l_0 + 

(1.0D+00/2.0D+00))*Hankel212(l_0))/ & 

        (k*r)) )*PI/(zsqrt(PI*k*r)) + (1.0D+00/2.0D+00)*dsqrt(2.0D+00)*zsqrt(PI*k*r)* & 

        ( -Hankel212(l_0) + (((l_0 + (3.0D+00/2.0D+00))*Hankel232(l_0))/(k*r)) & 

        - (((l_0 + (1.0D+00/2.0D+00))*Hankel212(l_0))/((k*r)**2.0D+00)) + ( (l_0 + 

(1.0D+00/2.0D+00)) & 

        *( -Hankel232(l_0) + (((l_0 + (1.0D+00/2.0D+00))*Hankel212(l_0))/(k*r)) ) )/(k*r) ) 

         

       ! !test for math errors 

       ! print*, 'n = ', l_0,' dkr2MSH2(n) = ', ans_dkr2MSH2(l_0) 

     

    end do 

    !!test 

    !print*, 'in subroutine. after determining dkr2MSBJ.' 

    deallocate(cbj2) 

    !!test 

    !print*, 'in subroutine. after deallocating cbj2' 

    deallocate(cdj2) 

    !!test 

    !print*, 'in subroutine. after deallocating cdj2' 

    deallocate(cby2) 

    !!test 

    !print*, 'in subroutine. after deallocating cby2' 

    deallocate(cdy2) 

    !!test 

    !print*, 'in subroutine. after deallocating cdy2' 

     

   ! !test for math errors 

   ! print*, 'exiting subroutine dBr2ModSphHnk2.' 

     

    return 

end subroutine dBr2ModSphHnk2 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

!changed from function to subroutine 

subroutine cn_dbl(n, ans_cn) 

    implicit none 

    !complex (kind = 8), allocatable, dimension(:) :: ans_an 
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    integer, intent(in) :: n  

    integer :: l 

    complex (kind = 8) :: j 

    complex (kind = 8), intent(out) :: ans_cn(1:n)  !start with ans_an at 1. 

    j=(0.0D+00,1.0D+00) 

    !allocate(ans_an(0:n)) 

    do l=1,n     

        ans_cn(l) = ((j**l) - (j**(-l)))*(((2.0D+00)*l + 1)/(l*(l + 1))) 

         

        !!test for Nan errors 

        !print*, 'ans_cn for n= ',l,' is: ',ans_cn(l) 

         

       ! !test for math errors 

       ! print*,'cn for n = ',l,' is: ',ans_cn(l) 

         

    end do 

    !!deallocate(ans_an) 

    !print*, 'just about to exit subroutine cn_dbl' 

    return 

end subroutine cn_dbl 

     

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine dn_dbl(n, ans_dn) 

    implicit none 

    !complex (kind=8), allocatable, dimension(:) :: ans_an 

    integer, intent(in) :: n  

    integer :: l 

    complex (kind = 8) :: j 

    complex (kind = 8), intent(out) :: ans_dn(1:n)  !start with ans_an at 1. 

    j = (0.0D+00,1.0D+00) 

    !allocate(ans_an(0:n)) 

    do l = 1,n     

        ans_dn(l) = ((j**l) + (j**(-l)))*(((2.0D+00)*l + 1)/(l*(l + 1))) 

         

        !!test for Nan errors 

        !print*, 'ans_dn for n= ',l,' is: ',ans_dn(l) 
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       ! !test for math errors 

       ! print*,'dn for n = ',l,' is: ',ans_dn(l) 

         

    end do 

    !deallocate(ans_an) 

    !print*, 'just about to exit subroutine dn_dbl' 

    return 

end subroutine dn_dbl 

 

 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine en_dbl(n,PI,Bo,Bd,a,er,ur,ans_en) 

    implicit none 

     

    !specifically for en 

    integer :: n, l_0, l_1, l_2 

    real (kind = 8) a,PI 

    complex (kind = 8) ur,er,Bo,Bd !Bo is technically real, but leaving complex for simplicity 

sake 

    complex (kind = 8) ans_cn(1:n) !test with ans_an starting at 1. 

    complex (kind = 8) ans_en(0:n) 

    complex (kind = 8) ans_en_top(0:n) 

    complex (kind = 8) ans_en_bot(0:n) 

     

   !!try this modification to avoid SIGABRT error at end of S.R. bn 

    !complex (kind=8), allocatable, dimension(:) :: ans_an 

    !complex (kind=8), allocatable, dimension(:) ans_bn 

    !complex (kind=8), allocatable, dimension(:) :: ans_bn_top 

    !complex (kind=8), allocatable, dimension(:) :: ans_bn_bot   

     

     

    !specifically for function calls 

    complex (kind = 8) ans_MSBJ_Boa(0:n) 

    complex (kind = 8) ans_MSBJ_Bda(0:n) 

    complex (kind = 8) ans_dBrMSBJ_Boa(0:n) 

    complex (kind = 8) ans_dBrMSBJ_Bda(0:n) 

    complex (kind = 8) ans_MSH2_Boa(0:n) 
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    complex (kind = 8) ans_dBrMSH2_Boa(0:n) 

     

    !!try this modification to avoid SIGABRT error at end of S.R. bn    

    !!specifically for function calls 

    !complex (kind=8), allocatable, dimension(:) ::  ans_MSBJ_k1a 

    !complex (kind=8), allocatable, dimension(:) ::  ans_MSBJ_k2a 

    !complex (kind=8), allocatable, dimension(:) ::  ans_dkrMSBJ_k1a 

    !complex (kind=8), allocatable, dimension(:) ::  ans_dkrMSBJ_k2a 

    !complex (kind=8), allocatable, dimension(:) ::  ans_MSH2_k2a 

    !complex (kind=8), allocatable, dimension(:) ::  ans_dkrMSH2_k2a     

    

    !!try this modification to avoid SIGABRT error at end of S.R. bn     

    !allocate(ans_an(1:n)) 

    !allocate(ans_bn(0:n)) 

    !allocate(ans_bn_top(0:n)) 

    !allocate(ans_bn_bot(0:n)) 

    !allocate(ans_MSBJ_k1a(0:n)) 

    !allocate(ans_MSBJ_k2a(0:n)) 

    !allocate(ans_dkrMSBJ_k1a(0:n)) 

    !allocate(ans_dkrMSBJ_k2a(0:n)) 

    !allocate(ans_MSH2_k2a(0:n)) 

    !allocate(ans_dkrMSH2_k2a(0:n))   

     

    !note ans_cn array starts at "1" 

    call cn_dbl(n, ans_cn(1:n)) 

     

    ! calling  modified spherical bessel and hankel functions and derivatives of said functions 

    call ModSphBesJ(PI,n,Bo,a,ans_MSBJ_Boa(0:n)) 

    call ModSphBesJ(PI,n,Bd,a,ans_MSBJ_Bda(0:n)) 

    call dBrModSphBesJ(PI,n,Bo,a,ans_dBrMSBJ_Boa(0:n)) 

    call dBrModSphBesJ(PI,n,Bd,a,ans_dBrMSBJ_Bda(0:n)) 

    call ModSphHnk2(PI,n,Bo,a,ans_MSH2_Boa(0:n)) 

    call dBrModSphHnk2(PI,n,Bo,a,ans_dBrMSH2_Boa(0:n)) 

    !!test 

    !print*, 'in bn. after MSB and MSH subroutine calls' 

     

     

   ! !testing for math errors 
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   ! print*,'a = ',a,' Bo = ',Bo,' Bd = ',Bd 

     

     

    !split ans_en into top and bottom equations 

    do l_1 = 0,n 

        if (l_1 == 0) then 

            !var below was, in error, originally assigned value as if real 

            ans_en_top(l_1) = (0.0D+00, 0.0D+00) !this is needed to kill zeroth order ans_bn term 

as ans_an is undefined at l_1=0 

        else 

            !pesky 132 char limit! 

            ans_en_top(l_1) = (-ans_cn(l_1))*(ans_dBrMSBJ_Bda(l_1)*ans_MSBJ_Boa(l_1)*zsqrt(ur) &  

            - ans_MSBJ_Bda(l_1)*ans_dBrMSBJ_Boa(l_1)*zsqrt(er)) 

        end if 

        !!test 

        !print*, 'l_1 is ',l_1,'en top is: ', ans_en_top(l_1) 

         

    end do 

    !!test 

    !print*, 'in bn. after ans_bn_top assignments.' 

    do l_2 = 0,n 

        if (l_2 == 0) then 

            !var below was, in error, originally assigned value as if real 

            ans_en_bot(l_2) = (1.0D+00, 1.0D+00) !exact value not important as will ultimately be 

multiplied by zero for l_2=0. 

        else 

            ans_en_bot(l_2) = ans_MSH2_Boa(l_2)*ans_dBrMSBJ_Bda(l_2)*zsqrt(ur) & 

            - ans_dBrMSH2_Boa(l_2)*ans_MSBJ_Bda(l_2)*zsqrt(er) 

        end if 

        !!test 

        !print*, 'l_2 is ',l_2,'en bot is: ', ans_en_bot(l_2) 

         

    end do 

    !!test 

    !print*, 'in bn. after ans_bn_bot assignments.' 

    !final expression 

    do l_0 = 0,n 

        ans_en(l_0) = ans_en_top(l_0)/ans_en_bot(l_0) 
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        !test for math errors 

        !print*, 'en is ',l_0,'en is: ', ans_en(l_0) 

         

       ! !test for math errors 

       ! print*,'en for n = ',l_0,' is: ',ans_en(l_0) 

         

    end do 

    !!test 

    !print*, 'after ans_bn calculated' 

 

    !try this modification to avoid SIGABRT error at end of subroutine bn     

    !deallocate(ans_an) 

    !deallocate(ans_bn) 

    !deallocate(ans_bn_top) 

    !deallocate(ans_bn_bot) 

    !deallocate(ans_MSBJ_k1a) 

    !deallocate(ans_MSBJ_k2a) 

    !deallocate(ans_dkrMSBJ_k1a) 

    !deallocate(ans_dkrMSBJ_k2a) 

    !deallocate(ans_MSH2_k2a) 

    !deallocate(ans_dkrMSH2_k2a) 

         

    !test 

    !print*, 'just before leaving subroutine en_dbl.' 

    !!<><><><><> E-field program crashes HERE <><><><><>! 

    return 

end subroutine en_dbl 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

subroutine fn_dbl(n,PI,Bo,Bd,a,er,ur,ans_fn) 

    implicit none 

     

    !specifically for fn 

    integer :: n, l_0, l_1, l_2 

    real (kind = 8) a,PI 

    complex (kind = 8) ur,er,Bo,Bd !Bo is technically real, but leaving complex for simplicity 

sake 
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    complex (kind = 8) ans_dn(1:n) !test with ans_an starting at 1. 

    complex (kind = 8) ans_fn(0:n) 

    complex (kind = 8) ans_fn_top(0:n) 

    complex (kind = 8) ans_fn_bot(0:n) 

    

    !specifically for function calls 

    complex (kind = 8) ans_MSBJ_Boa(0:n) 

    complex (kind = 8) ans_MSBJ_Bda(0:n) 

    complex (kind = 8) ans_dBrMSBJ_Boa(0:n) 

    complex (kind = 8) ans_dBrMSBJ_Bda(0:n) 

    complex (kind = 8) ans_MSH2_Boa(0:n) 

    complex (kind = 8) ans_dBrMSH2_Boa(0:n) 

     

    !note ans_an array starts at "1" 

    call dn_dbl(n, ans_dn(1:n)) 

    !calling modified spherical bessel and hankel functions and derivatives of said functions 

    call ModSphBesJ(PI,n,Bo,a,ans_MSBJ_Boa(0:n)) 

    call ModSphBesJ(PI,n,Bd,a,ans_MSBJ_Bda(0:n)) 

    call dBrModSphBesJ(PI,n,Bo,a,ans_dBrMSBJ_Boa(0:n)) 

    call dBrModSphBesJ(PI,n,Bd,a,ans_dBrMSBJ_Bda(0:n)) 

    call ModSphHnk2(PI,n,Bo,a,ans_MSH2_Boa(0:n)) 

    call dBrModSphHnk2(PI,n,Bo,a,ans_dBrMSH2_Boa(0:n)) 

     

     

   ! !testing for math errors 

   ! print*,'a = ',a,' Bo = ',Bo,' Bd = ',Bd 

     

     

    !split ans_fn into top and bottom equations 

    do l_1 = 0,n 

        if (l_1 == 0) then 

            ans_fn_top(l_1) = (0.0D+00, 0.0D+00) !needed to kill ans_cn(0) as ans_an undefined at 

l_1=0 

        else 

            !pesky 132 char limit! 

            ans_fn_top(l_1) = -ans_dn(l_1)*(ans_MSBJ_Bda(l_1)*ans_dBrMSBJ_Boa(l_1)*zsqrt(ur) & 

            - ans_dBrMSBJ_Bda(l_1)*ans_MSBJ_Boa(l_1)*zsqrt(er)) 

        !!test 
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        !print*, 'l_1 is ',l_1,'fn top is: ', ans_fn_top(l_1) 

         

        end if 

    end do 

     

    do l_2 = 0,n 

        if (l_2 == 0) then 

            ans_fn_bot(l_2) = (1.0D+00, 1.0D+00) !exact value not important as will be multiplied 

by zero anyway 

        else 

            ans_fn_bot(l_2) = ans_dBrMSH2_Boa(l_2)*ans_MSBJ_Bda(l_2)*zsqrt(ur) & 

            - ans_MSH2_Boa(l_2)*ans_dBrMSBJ_Bda(l_2)*zsqrt(er) 

        !!test 

        !print*, 'l_2 is ',l_2,'fn bot is: ', ans_fn_bot(l_2) 

         

        end if 

    end do 

     

    !final expression 

    do l_0 = 0,n        

        ans_fn(l_0) = ans_fn_top(l_0)/ans_fn_bot(l_0) 

        !!test 

        !print*, 'l_0 is ',l_0,'fn is: ', ans_fn(l_0) 

         

       ! !test for math errors 

       ! print*,'fn for n = ',l_0,' is: ',ans_fn(l_0) 

         

    end do 

     

    !!test 

    !print*, 'just before leaving subroutine fn_dbl' 

     

    return 

end subroutine fn_dbl 

 

!++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

subroutine gn_dbl(n,PI,Bo,Bd,a,er,ur,ans_gn) 
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    implicit none 

     

         

    !specifically for fn 

    integer :: n, l_0, l_1, l_2 

    real (kind = 8) a,PI 

    complex (kind = 8) ur,er,Bo,Bd !Bo is technically real, but leaving complex for simplicity 

sake 

    complex (kind = 8) ans_cn(1:n) !test with ans_an starting at 1. 

    complex (kind = 8) ans_gn(0:n) 

    complex (kind = 8) ans_gn_top(0:n) 

    complex (kind = 8) ans_gn_bot(0:n) 

    

    !specifically for function calls 

    complex (kind = 8) ans_MSBJ_Boa(0:n) 

    complex (kind = 8) ans_MSBJ_Bda(0:n) 

    complex (kind = 8) ans_dBrMSBJ_Boa(0:n) 

    complex (kind = 8) ans_dBrMSBJ_Bda(0:n) 

    complex (kind = 8) ans_MSH2_Boa(0:n) 

    complex (kind = 8) ans_dBrMSH2_Boa(0:n) 

     

    !note ans_an array starts at "1" 

    call cn_dbl(n, ans_cn(1:n)) 

    call ModSphBesJ(PI,n,Bo,a,ans_MSBJ_Boa(0:n)) 

    call ModSphBesJ(PI,n,Bd,a,ans_MSBJ_Bda(0:n)) 

    call dBrModSphBesJ(PI,n,Bo,a,ans_dBrMSBJ_Boa(0:n)) 

    call dBrModSphBesJ(PI,n,Bd,a,ans_dBrMSBJ_Bda(0:n)) 

    call ModSphHnk2(PI,n,Bo,a,ans_MSH2_Boa(0:n)) 

    call dBrModSphHnk2(PI,n,Bo,a,ans_dBrMSH2_Boa(0:n)) 

     

     

   ! !testing for math errors 

   ! print*,'a = ',a,' Bo = ',Bo,' Bd = ',Bd 

     

     

    !split ans_gn into top and bottom equations 

    do l_1 = 0,n 

        if (l_1 == 0) then 
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            ans_gn_top(l_1) = (0.0D+00, 0.0D+00) !needed since ans_cn(0) is undefined 

        else 

            !pesky 132 char limit! 

            ans_gn_top(l_1) = ans_cn(l_1)*ur*zsqrt(er)*(ans_MSH2_Boa(l_1)*ans_dBrMSBJ_Boa(l_1) & 

            - ans_dBrMSH2_Boa(l_1)*ans_MSBJ_Boa(l_1)) 

        !!test 

        !print*, 'l_1 is ',l_1,'gn top is: ', ans_gn_top(l_1) 

         

        end if 

    end do 

         

    do l_2 = 0,n 

        if (l_2 == 0) then 

            ans_gn_bot(l_2) = (1.0D+00, 1.0D+00) !only needs non-zero value. will be multiplied 

by zero anyway 

        else 

            ans_gn_bot(l_2) = ans_MSH2_Boa(l_2)*ans_dBrMSBJ_Bda(l_2)*zsqrt(ur) & 

            - ans_dBrMSH2_Boa(l_2)*ans_MSBJ_Bda(l_2)*zsqrt(er) 

        !!test 

        !print*, 'l_2 is ',l_2,'gn bot is: ', ans_gn_top(l_2) 

         

        end if 

    end do 

     

    !final expression 

    do l_0 = 0,n 

        ans_gn(l_0) = ans_gn_top(l_0)/ans_gn_bot(l_0) 

        !!test 

        !print*, 'l_0 is ',l_0,'gn is: ', ans_gn(l_0) 

         

       ! !test for math errors 

       ! print*,'gn for n = ',l_0,' is: ',ans_gn(l_0) 

         

    end do 

     

    !!test 

    !print*, 'just before leaving subroutine gn_dbl' 
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    return 

end subroutine gn_dbl 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

subroutine hn_dbl(n,PI,Bo,Bd,a,er,ur,ans_hn) 

    implicit none 

   

      !specifically for hn 

    integer :: n, l_0, l_1, l_2 

    real (kind = 8) a,PI 

    complex (kind = 8) ur,er,Bo,Bd !Bo is technically real, but leaving complex for simplicity 

sake 

    complex (kind = 8) ans_dn(1:n) !test with ans_an starting at 1. 

    complex (kind = 8) ans_hn(0:n) 

    complex (kind = 8) ans_hn_top(0:n) 

    complex (kind = 8) ans_hn_bot(0:n) 

    

    !specifically for function calls 

    complex (kind = 8) ans_MSBJ_Boa(0:n) 

    complex (kind = 8) ans_MSBJ_Bda(0:n) 

    complex (kind = 8) ans_dBrMSBJ_Boa(0:n) 

    complex (kind = 8) ans_dBrMSBJ_Bda(0:n) 

    complex (kind = 8) ans_MSH2_Boa(0:n) 

    complex (kind = 8) ans_dBrMSH2_Boa(0:n) 

     

    !note ans_an begins at "1" 

    call dn_dbl(n, ans_dn(1:n)) 

    call ModSphBesJ(PI,n,Bo,a,ans_MSBJ_Boa(0:n)) 

    call ModSphBesJ(PI,n,Bd,a,ans_MSBJ_Bda(0:n)) 

    call dBrModSphBesJ(PI,n,Bo,a,ans_dBrMSBJ_Boa(0:n)) 

    call dBrModSphBesJ(PI,n,Bd,a,ans_dBrMSBJ_Bda(0:n)) 

    call ModSphHnk2(PI,n,Bo,a,ans_MSH2_Boa(0:n)) 

    call dBrModSphHnk2(PI,n,Bo,a,ans_dBrMSH2_Boa(0:n)) 

     

     

   ! !testing for math errors 

   ! print*,'a = ',a,' Bo = ',Bo,' Bd = ',Bd 
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    !split ans_hn into top and bottom equations 

     

    do l_1 = 0,n 

        if (l_1 == 0) then 

            ans_hn_top(l_1) = (0.0D+00, 0.0D+00) !needed since ans_dn(0) undefined 

        else 

            !pesky 132 char limit! 

            ans_hn_top(l_1) = -ans_dn(l_1)*ur*zsqrt(er)*(ans_MSH2_Boa(l_1)*ans_dBrMSBJ_Boa(l_1) & 

            - ans_dBrMSH2_Boa(l_1)*ans_MSBJ_Boa(l_1)) 

        !!test 

        !print*, 'l_1 is ',l_1,'hn top is: ', ans_hn_top(l_1) 

         

        end if 

    end do 

     

    do l_2 = 0,n 

        if (l_2 == 0) then 

            ans_hn_bot(l_2) = (1.0D+00, 1.0D+00) !any value will do since will be multiplied by 

zero anyway 

        else 

            ans_hn_bot(l_2) = ans_dBrMSH2_Boa(l_2)*ans_MSBJ_Bda(l_2)*zsqrt(ur) & 

            - ans_MSH2_Boa(l_2)*ans_dBrMSBJ_Bda(l_2)*zsqrt(er) 

        !!test 

        !print*, 'l_2 is ',l_2,'hn bot is: ', ans_hn_top(l_2) 

         

        end if 

    end do 

     

    !final expression 

    do l_0 = 0,n 

        ans_hn(l_0) = ans_hn_top(l_0)/ans_hn_bot(l_0) 

        !!test 

        !print*, 'l_0 is ',l_0,'hn is: ', ans_hn(l_0) 

         

       ! !test for math errors 

       ! print*,'hn for n = ',l_0,' is: ',ans_hn(l_0) 
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    end do 

     

    !!test 

    !print*, 'just before leaving subroutine hn_dbl' 

     

    return 

end subroutine hn_dbl 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  

subroutine AscLegendre(n,x,ans_P1n_corr) 

    implicit none 

     

    integer :: m,n,q, p!for math error testing 

    real (kind = 8) x 

    !only ans_P1n returned 

    !real (kind=8), allocatable, dimension(:) :: ans_P1n 

    !real (kind=8), allocatable, dimension(:) :: ans_dxP1n 

    !allocate(ans_P1n(0:n)) 

    !allocate(ans_dxP1n(0:n)) 

    real (kind = 8) ans_P1n(0:n) 

    real (kind = 8) ans_P1n_corr(0:n) 

    real (kind = 8) ans_dxP1n(0:n) 

     

     

    !only order of m=1 used  

    m=1 

     

call lpmns ( m, n, x, ans_P1n(0:n), ans_dxP1n(0:n)) 

 

 

!T-MATT-> 9/11/15-> this loop is to correct for the sign error present in the original  

!source code. 

do q = 0,n 

     

    ans_P1n_corr(q) = -ans_P1n(q) 
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end do 

 

 

!!testing for math errors 

!print*,'x = ',x 

 

!!testing for math errors 

!do p = 0,n 

!     

!    if (x < 0.6) then 

!     

!    print*,'x = ',x,' n = ',p,' ans_P1n_corr = ',ans_P1n_corr(p) 

!     

!    end if 

!     

!end do 

 

!tidy up memory allocations 

!deallocate(ans_P1n) 

!deallocate(ans_dxP1n) 

 

    !!test 

    !print*, 'just before leaving subroutine AscLegendre' 

     

    return 

end subroutine AscLegendre 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

subroutine dxAscLegendre(n,x,ans_dxP1n_corr) 

    implicit none 

     

    integer :: m,n,q, p!to test for math errors 

    real (kind = 8) x 

    !only ans_dxP1n returned 

    !real (kind=8), allocatable, dimension(:) :: ans_P1n 

    !real (kind=8), allocatable, dimension(:) :: ans_dxP1n 

    !allocate(ans_P1n(0:n)) 
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    !allocate(ans_dxP1n(0:n)) 

    real (kind = 8) ans_P1n(0:n) 

    real (kind = 8) ans_dxP1n(0:n) 

    real (kind = 8) ans_dxP1n_corr(0:n) 

     

    !only order of m=1 used  

    m=1 

     

call lpmns ( m, n, x, ans_P1n(0:n), ans_dxP1n(0:n)) 

 

 

!T-MATT-> 9/11/15-> this loop is to correct for the sign error present in the original  

!source code. 

do q = 0,n 

     

    ans_dxP1n_corr(q) = -ans_dxP1n(q) 

     

end do 

 

 

!!testing for math errors 

!print*,'x = ',x 

 

!!testing for math errors 

!do p = 0,n 

!     

!    if (x < 0.6) then 

!     

!   print*,'x = ',x,' n = ',p,' ans_dxP1n_corr = ',ans_dxP1n_corr(p) 

!     

!    end if 

!     

!end do 

 

!tidy up memory allocations 

!deallocate(ans_P1n) 

!deallocate(ans_dxP1n) 
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    !!test 

    !print*, 'just before leaving subroutine dxAscLegendre'    

 

    return 

end subroutine dxAscLegendre 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

subroutine AscLegDivSinThR(n,x,ans_P1n_div_sinThR) 

!this subroutine greatly simplifies the mathematics involved in determeining 

!the answer. It also corrects a sign error present in the original  

!AscLegDivSinThR code.     

     

    implicit none 

     

    integer :: m,n,q, p!to test for math errors 

    real (kind = 8) x, sinThR 

    real (kind = 8) ans_P1n(0:n) 

    real (kind = 8) ans_dxP1n(0:n) 

    real (kind = 8) ans_p1n_div_sinThR(0:n) 

     

    !only order of m=1 used  

    m=1 

     

call lpmns ( m, n, x, ans_P1n(0:n), ans_dxP1n(0:n)) 

 

sinThR = (1.0D+00 - x*x)**(1.0D+00/2+0D+00) 

 

!!testing for math errors 

!print*,'x = ',x 

 

do q = 0,n 

     

    !T-MATT->9/11/15->"-" added to correct for sign error in ans_P1n subroutine 

    ans_P1n_div_sinThR(q) = -(ans_P1n(q))/sinThR 

 

end do 
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!!testing for math errors 

!do p = 0,n 

!     

!    if (x < 0.6) then 

!     

!    print*,'x = ',x,' n = ',p,' ans_P1n_div_sinThR = ',ans_P1n_div_sinThR(p) 

!     

!    end if 

!     

!end do 

 

    !!test 

    !print*, 'just before leaving subroutine dxAscLegendre'    

 

    return 

end subroutine AscLegDivSinThR 

 

 

!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

subroutine AscLegDivSinThR_old(n,x,ans_P1n_div_sinThR) 

 !this subroutine is equivalent to "AscLegendre", divided by sin(theta). 

 !for high quality results, this subroutine works a little differently 

 implicit none 

     

    integer :: q,n,l 

    real (kind = 8) x 

    !only ans_P1n_div_sinThR returned 

    real (kind = 8), allocatable, dimension(:) :: pn 

    real (kind = 8), allocatable, dimension(:) :: pd 

    !real (kind = 8), allocatable, dimension(:) :: ans_P1n_div_sinThR 

    real (kind = 8) ans_p1n_div_sinThR(0:n) 

     

    q=n+1 

    allocate(pn(0:q)) 

    allocate(pd(0:q)) 

    !allocate(ans_P1n_div_sinThR(0:n)) 
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    !only order of m=1 used  

    !q=n+1 

     

    !!testing for math errors 

    !print*,'x = ',x 

     

call lpn ( q, x, pn(0:q), pd(0:q) ) 

do l=0,n 

    !q needs to equal to n+1 in order to use formula below 

    ans_P1n_div_sinThR(l) = (-1)*((l + 1)*pn(l + 1)-(l + 1)*x*pn(l))/((x**2.0D+00) - 1) 

     

!    if (x < 0.5) then 

!         

!        !testing for math errors 

!        print*,'x = ',x,' n = ',l,' ans_P1n_div_sinThR = ',ans_P1n_div_sinThR(l) 

!        print*,'n = ',l,' legendreP = ',pn(l) 

!         

!    end if 

     

     

end do 

     

!tidy up memory allocations 

deallocate(pn) 

deallocate(pd) 

!deallocate(ans_P1n_div_sinThR)    

 

    !!test 

    !print*, 'just before leaving subroutine AscLegDivSinThR' 

     

    return 

end subroutine AscLegDivSinThR_old 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

subroutine cjyva ( v, z, vm, cbj, cdj, cby, cdy ) 
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!*****************************************************************************80 

! 

!! CJYVA: Bessel functions and derivatives, Jv(z) and Yv(z) of complex argument. 

! 

!  Licensing: 

! 

!    This routine is copyrighted by Shanjie Zhang and Jianming Jin.  However,  

!    they give permission to incorporate this routine into a user program  

!    provided that the copyright is acknowledged. 

! 

!  Modified: 

! 

!    03 August 2012 

! 

!  Author: 

! 

!    Shanjie Zhang, Jianming Jin 

! 

!  Reference: 

! 

!    Shanjie Zhang, Jianming Jin, 

!    Computation of Special Functions, 

!    Wiley, 1996, 

!    ISBN: 0-471-11963-6, 

!    LC: QA351.C45. 

! 

!  Parameters: 

! 

!    Input, real ( kind = 8 ) V, the order of Jv(z) and Yv(z). 

! 

!    Input, complex ( kind = 8 ) Z, the argument.  !modification by T-MATT 

! 

!    Output, real ( kind = 8 ) VM, the highest order computed. 

! 

!    Output, real ( kind = 8 ) CBJ(0:*), CDJ(0:*), CBY(0:*), CDY(0:*),  

!    the values of Jn+v0(z), Jn+v0'(z), Yn+v0(z), Yn+v0'(z). 

! 

  implicit none 
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  real ( kind = 8 ) a0 

  complex ( kind = 8 ) ca 

  complex ( kind = 8 ) ca0 

  complex ( kind = 8 ) cb 

  complex ( kind = 8 ),intent(out) :: cbj(0:*) !modification by T-MATT 

  complex ( kind = 8 ),intent(out) :: cby(0:*) !modification by T-MATT 

  complex ( kind = 8 ) cck 

  complex ( kind = 8 ),intent(out) :: cdj(0:*) !modification by T-MATT 

  complex ( kind = 8 ),intent(out) :: cdy(0:*) !modification by T-MATT 

  complex ( kind = 8 ) cec 

  complex ( kind = 8 ) cf 

  complex ( kind = 8 ) cf0 

  complex ( kind = 8 ) cf1 

  complex ( kind = 8 ) cf2 

  complex ( kind = 8 ) cfac0 

  complex ( kind = 8 ) cfac1 

  complex ( kind = 8 ) cg0 

  complex ( kind = 8 ) cg1 

  complex ( kind = 8 ) ch0 

  complex ( kind = 8 ) ch1 

  complex ( kind = 8 ) ch2 

  complex ( kind = 8 ) ci 

  complex ( kind = 8 ) cju0 

  complex ( kind = 8 ) cju1 

  complex ( kind = 8 ) cjv0 

  complex ( kind = 8 ) cjv1 

  complex ( kind = 8 ) cjvl 

  complex ( kind = 8 ) cp11 

  complex ( kind = 8 ) cp12 

  complex ( kind = 8 ) cp21 

  complex ( kind = 8 ) cp22 

  complex ( kind = 8 ) cpz 

  complex ( kind = 8 ) cqz 

  complex ( kind = 8 ) cr 

  complex ( kind = 8 ) cr0 

  complex ( kind = 8 ) cr1 

  complex ( kind = 8 ) crp 
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  complex ( kind = 8 ) crq 

  complex ( kind = 8 ) cs 

  complex ( kind = 8 ) cs0 

  complex ( kind = 8 ) cs1 

  complex ( kind = 8 ) csk 

  complex ( kind = 8 ) cyk 

  complex ( kind = 8 ) cyl1 

  complex ( kind = 8 ) cyl2 

  complex ( kind = 8 ) cylk 

  complex ( kind = 8 ) cyv0 

  complex ( kind = 8 ) cyv1 

  real ( kind = 8 ) ga 

  real ( kind = 8 ) gb 

  integer ( kind = 4 ) j 

  integer ( kind = 4 ) k 

  integer ( kind = 4 ) k0 

  integer ( kind = 4 ) l 

  integer ( kind = 4 ) lb 

  integer ( kind = 4 ) lb0 

  integer ( kind = 4 ) m 

  integer ( kind = 4 ) msta1 

  integer ( kind = 4 ) msta2 

  integer ( kind = 4 ) n 

  real ( kind = 8 ) pi 

  real ( kind = 8 ) pv0 

  real ( kind = 8 ) pv1 

  real ( kind = 8 ) rp2 

  real ( kind = 8 ),intent(in) :: v !modification by T-MATT 

  real ( kind = 8 ) v0 

  real ( kind = 8 ) vg 

  real ( kind = 8 ) vl 

  real ( kind = 8 ),intent(out) :: vm !modification by T-MATT 

  real ( kind = 8 ) vv 

  real ( kind = 8 ) w0 

  real ( kind = 8 ) w1 

  real ( kind = 8 ) wa 

  real ( kind = 8 ) ya0 

  real ( kind = 8 ) ya1 
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  real ( kind = 8 ) yak 

  complex ( kind = 8 ),intent(in) :: z !modification by T-MATT 

  complex ( kind = 8 ) z1 

  complex ( kind = 8 ) z2 

  complex ( kind = 8 ) zk 

 

  pi = 3.141592653589793D+00 

  rp2 = 0.63661977236758D+00 

  ci = cmplx ( 0.0D+00, 1.0D+00, kind = 8 ) 

  a0 = abs ( z ) 

  z1 = z 

  z2 = z * z 

  n = int ( v ) 

  v0 = v - n 

  pv0 = pi * v0 

  pv1 = pi * ( 1.0D+00 + v0 ) 

 

  if ( a0 < 1.0D-100 ) then 

 

    do k = 0, n 

      cbj(k) = cmplx ( 0.0D+00, 0.0D+00, kind = 8 ) 

      cdj(k) = cmplx ( 0.0D+00, 0.0D+00, kind = 8 ) 

      cby(k) = - cmplx ( 1.0D+30, 0.0D+00, kind = 8 ) 

      cdy(k) = cmplx ( 1.0D+30, 0.0D+00, kind = 8 ) 

    end do 

 

    if ( v0 == 0.0D+00 ) then 

      cbj(0) = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      cdj(1) = cmplx ( 0.5D+00, 0.0D+00, kind = 8 ) 

    else 

      cdj(0) = cmplx ( 1.0D+30, 0.0D+00, kind = 8 ) 

    end if 

 

    vm = v                      

    return 

 

  end if 
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  if ( real ( z, kind = 8 ) < 0.0D+00 ) then 

    z1 = -z 

  end if 

 

  if ( a0 <= 12.0D+00 ) then 

 

    do l = 0, 1 

      vl = v0 + l 

      cjvl = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      cr = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      do k = 1, 40 

        cr = -0.25D+00 * cr * z2 / ( k * ( k + vl ) ) 

        cjvl = cjvl + cr 

        if ( abs ( cr ) < abs ( cjvl ) * 1.0D-15 ) then 

          exit 

        end if 

      end do 

 

      vg = 1.0D+00 + vl 

      call gamma ( vg, ga ) 

      ca = ( 0.5D+00 * z1 ) ** vl / ga 

 

      if ( l == 0 ) then 

        cjv0 = cjvl * ca 

      else 

        cjv1 = cjvl * ca 

      end if 

 

    end do 

 

  else 

 

    if ( a0 < 35.0D+00 ) then 

      k0 = 11 

    else if ( a0 <50.0D+00 ) then 

      k0 = 10 

    else 

      k0 = 8 
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    end if 

 

    do j = 0, 1 

      vv = 4.0D+00 * ( j + v0 ) * ( j + v0 ) 

      cpz = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      crp = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      do k = 1, k0 

        crp = - 0.78125D-02 * crp & 

          * ( vv - ( 4.0D+00 * k - 3.0D+00 ) ** 2 ) & 

          * ( vv - ( 4.0D+00 * k - 1.0D+00 ) ** 2 )  & 

          / ( k * ( 2.0D+00 * k - 1.0D+00 ) * z2 ) 

        cpz = cpz + crp 

      end do 

      cqz = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      crq = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      do k = 1, k0 

        crq = -0.78125D-02 * crq & 

          * ( vv - ( 4.0D+00 * k - 1.0D+00 ) ** 2 ) & 

          * ( vv - ( 4.0D+00 * k + 1.0D+00 ) ** 2 ) & 

          / ( k * ( 2.0D+00 * k + 1.0D+00 ) * z2 ) 

        cqz = cqz + crq 

      end do 

      cqz = 0.125D+00 * ( vv - 1.0D+00 ) * cqz / z1 

      zk = z1 - ( 0.5D+00 * ( j + v0 ) + 0.25D+00 ) * pi 

      ca0 = sqrt ( rp2 / z1 ) 

      cck = cos ( zk ) 

      csk = sin ( zk ) 

      if ( j == 0 ) then 

        cjv0 = ca0 * ( cpz * cck - cqz * csk ) 

        cyv0 = ca0 * ( cpz * csk + cqz * cck ) 

      else if ( j == 1 ) then 

        cjv1 = ca0 * ( cpz * cck - cqz * csk ) 

        cyv1 = ca0 * ( cpz * csk + cqz * cck ) 

      end if 

    end do 

 

  end if 
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  if ( a0 <= 12.0D+00 ) then 

 

    if ( v0 .ne. 0.0D+00 ) then 

 

      do l = 0, 1 

        vl = v0 + l 

        cjvl = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

        cr = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

        do k = 1, 40 

          cr = -0.25D+00 * cr * z2 / ( k * ( k - vl ) ) 

          cjvl = cjvl + cr 

          if ( abs ( cr ) < abs ( cjvl ) * 1.0D-15 ) then 

            exit 

          end if 

        end do 

 

        vg = 1.0D+00 - vl 

        call gamma ( vg, gb ) 

        cb = ( 2.0D+00 / z1 ) ** vl / gb 

        if ( l == 0 ) then 

          cju0 = cjvl * cb 

        else 

          cju1 = cjvl * cb 

        end if 

      end do 

      cyv0 = ( cjv0 * cos ( pv0 ) - cju0 ) / sin ( pv0 ) 

      cyv1 = ( cjv1 * cos ( pv1 ) - cju1 ) / sin ( pv1 ) 

 

    else 

 

      cec = log ( z1 / 2.0D+00 ) + 0.5772156649015329D+00 

      cs0 = cmplx ( 0.0D+00, 0.0D+00, kind = 8 ) 

      w0 = 0.0D+00 

      cr0 = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      do k = 1, 30 

        w0 = w0 + 1.0D+00 / k 

        cr0 = -0.25D+00 * cr0 / ( k * k ) * z2 

        cs0 = cs0 + cr0 * w0 
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      end do 

      cyv0 = rp2 * ( cec * cjv0 - cs0 ) 

      cs1 = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      w1 = 0.0D+00 

      cr1 = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

      do k = 1, 30 

        w1 = w1 + 1.0D+00 / k 

        cr1 = -0.25D+00 * cr1 / ( k * ( k + 1 ) ) * z2 

        cs1 = cs1 + cr1 * ( 2.0D+00 * w1 + 1.0D+00 / ( k + 1.0D+00 ) ) 

      end do 

      cyv1 = rp2 * ( cec * cjv1 - 1.0D+00 / z1 - 0.25D+00 * z1 * cs1 ) 

 

    end if 

 

  end if 

 

  if ( real ( z, kind = 8 ) < 0.0D+00 ) then 

 

    cfac0 = exp ( pv0 * ci ) 

    cfac1 = exp ( pv1 * ci ) 

 

    if ( imag ( z ) < 0.0D+00 ) then 

      cyv0 = cfac0 * cyv0 - 2.0D+00 * ci * cos ( pv0 ) * cjv0 

      cyv1 = cfac1 * cyv1 - 2.0D+00 * ci * cos ( pv1 ) * cjv1 

      cjv0 = cjv0 / cfac0 

      cjv1 = cjv1 / cfac1 

    else if ( 0.0D+00 < imag ( z ) ) then 

      cyv0 = cyv0 / cfac0 + 2.0D+00 * ci * cos ( pv0 ) * cjv0 

      cyv1 = cyv1 / cfac1 + 2.0D+00 * ci * cos ( pv1 ) * cjv1 

      cjv0 = cfac0 * cjv0 

      cjv1 = cfac1 * cjv1 

    end if 

 

  end if 

 

  cbj(0) = cjv0 

  cbj(1) = cjv1 
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  if ( 2 <= n .and. n <= int ( 0.25D+00 * a0 ) ) then 

 

    cf0 = cjv0 

    cf1 = cjv1 

    do k = 2, n 

      cf = 2.0D+00 * ( k + v0 - 1.0D+00 ) / z * cf1 - cf0 

      cbj(k) = cf 

      cf0 = cf1 

      cf1 = cf 

    end do 

 

  else if ( 2 <= n ) then 

 

    m = msta1 ( a0, 200 ) 

    if ( m < n ) then 

      n = m 

    else 

      m = msta2 ( a0, n, 15 ) 

    end if 

    cf2 = cmplx ( 0.0D+00, 0.0D+00, kind = 8 ) 

    cf1 = cmplx ( 1.0D-30, 0.0D+00, kind = 8 ) 

    do k = m, 0, -1 

      cf = 2.0D+00 * ( v0 + k + 1.0D+00 ) / z * cf1 - cf2 

      if ( k <= n ) then 

        cbj(k) = cf 

      end if 

      cf2 = cf1 

      cf1 = cf 

    end do 

    if ( abs ( cjv1 ) < abs ( cjv0 ) ) then 

      cs = cjv0 / cf 

    else 

      cs = cjv1 / cf2 

    end if 

 

    do k = 0, n 

      cbj(k) = cs * cbj(k) 

    end do 
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  end if 

 

    cdj(0) = v0 / z * cbj(0) - cbj(1) 

    do k = 1, n 

      cdj(k) = - ( k + v0 ) / z * cbj(k) + cbj(k-1) 

    end do 

 

    cby(0) = cyv0 

    cby(1) = cyv1 

    ya0 = abs ( cyv0 ) 

    lb = 0 

    cg0 = cyv0 

    cg1 = cyv1 

    do k = 2, n 

      cyk = 2.0D+00 * ( v0 + k - 1.0D+00 ) / z * cg1 - cg0 

      if ( abs ( cyk ) <= 1.0D+290 ) then 

        yak = abs ( cyk ) 

        ya1 = abs ( cg0 ) 

        if ( yak < ya0 .and. yak < ya1 ) then 

          lb = k 

        end if 

        cby(k) = cyk 

        cg0 = cg1 

        cg1 = cyk 

      end if 

    end do 

 

    if ( 4 < lb .and. imag ( z ) /= 0.0D+00 ) then 

 

      do 

 

        if ( lb == lb0 ) then 

          exit 

        end if 

 

        ch2 = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

        ch1 = cmplx ( 0.0D+00, 0.0D+00, kind = 8 ) 
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        lb0 = lb 

        do k = lb, 1, -1 

          ch0 = 2.0D+00 * ( k + v0 ) / z * ch1 - ch2 

          ch2 = ch1 

          ch1 = ch0 

        end do 

        cp12 = ch0 

        cp22 = ch2 

        ch2 = cmplx ( 0.0D+00, 0.0D+00, kind = 8 ) 

        ch1 = cmplx ( 1.0D+00, 0.0D+00, kind = 8 ) 

        do k = lb, 1, -1 

          ch0 = 2.0D+00 * ( k + v0 ) / z * ch1 - ch2 

          ch2 = ch1 

          ch1 = ch0 

        end do 

        cp11 = ch0 

        cp21 = ch2 

 

        if ( lb == n ) then 

          cbj(lb+1) = 2.0D+00 * ( lb + v0 ) / z * cbj(lb) - cbj(lb-1) 

        end if 

 

        if ( abs ( cbj(1) ) < abs ( cbj(0) ) ) then 

          cby(lb+1) = ( cbj(lb+1) * cyv0 - 2.0D+00 * cp11 / ( pi * z ) ) & 

            / cbj(0) 

          cby(lb) = ( cbj(lb) * cyv0 + 2.0D+00 * cp12 / ( pi * z ) ) / cbj(0) 

        else 

          cby(lb+1) = ( cbj(lb+1) * cyv1 - 2.0D+00 * cp21 / ( pi * z ) ) & 

            / cbj(1) 

          cby(lb) = ( cbj(lb) * cyv1 + 2.0D+00 * cp22 / ( pi * z ) ) / cbj(1) 

        end if 

 

        cyl2 = cby(lb+1) 

        cyl1 = cby(lb) 

        do k = lb - 1, 0, -1 

          cylk = 2.0D+00 * ( k + v0 + 1.0D+00 ) / z * cyl1 - cyl2 

          cby(k) = cylk 

          cyl2 = cyl1 
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          cyl1 = cylk 

        end do 

 

      cyl1 = cby(lb) 

      cyl2 = cby(lb+1) 

      do k = lb + 1, n - 1 

        cylk = 2.0D+00 * ( k + v0 ) / z * cyl2 - cyl1 

        cby(k+1) = cylk 

        cyl1 = cyl2 

        cyl2 = cylk 

      end do 

 

      do k = 2, n 

        wa = abs ( cby(k) ) 

        if ( wa < abs ( cby(k-1) ) ) then 

          lb = k 

        end if 

      end do 

 

    end do 

 

  end if 

 

  cdy(0) = v0 / z * cby(0) - cby(1) 

  do k = 1, n 

    cdy(k) = cby(k-1) - ( k + v0 ) / z * cby(k) 

  end do 

  vm = n + v0 

 

  return 

end subroutine cjyva 

 

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

    subroutine gamma ( x, ga ) 

 

!*****************************************************************************80 

! 
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!! GAMMA evaluates the Gamma function. 

! 

!  Licensing: 

! 

!    The original FORTRAN77 version of this routine is copyrighted by  

!    Shanjie Zhang and Jianming Jin.  However, they give permission to  

!    incorporate this routine into a user program that the copyright  

!    is acknowledged. 

! 

!  Modified: 

! 

!    08 September 2007 

! 

!  Author: 

! 

!    Original FORTRAN77 version by Shanjie Zhang, Jianming Jin. 

!    FORTRAN90 version by John Burkardt. 

! 

!  Reference: 

! 

!    Shanjie Zhang, Jianming Jin, 

!    Computation of Special Functions, 

!    Wiley, 1996, 

!    ISBN: 0-471-11963-6, 

!    LC: QA351.C45 

! 

!  Parameters: 

! 

!    Input, real ( kind = 8 ) X, the argument. 

!    X must not be 0, or any negative integer. 

! 

!    Output, real ( kind = 8 ) GA, the value of the Gamma function. 

! 

  implicit none 

 

  real ( kind = 8 ), dimension ( 26 ) :: g = (/ & 

    1.0D+00, & 

    0.5772156649015329D+00, & 



150 
 

   -0.6558780715202538D+00, & 

   -0.420026350340952D-01, & 

    0.1665386113822915D+00, & 

   -0.421977345555443D-01, & 

   -0.96219715278770D-02, & 

    0.72189432466630D-02, & 

   -0.11651675918591D-02, & 

   -0.2152416741149D-03, & 

    0.1280502823882D-03, &  

   -0.201348547807D-04, & 

   -0.12504934821D-05, & 

    0.11330272320D-05, & 

   -0.2056338417D-06, &  

    0.61160950D-08, & 

    0.50020075D-08, & 

   -0.11812746D-08, & 

    0.1043427D-09, &  

    0.77823D-11, & 

   -0.36968D-11, & 

    0.51D-12, & 

   -0.206D-13, & 

   -0.54D-14, & 

    0.14D-14, & 

    0.1D-15 /) 

  real ( kind = 8 ), intent(out) :: ga !modification by T-MATT 

  real ( kind = 8 ) gr 

  integer ( kind = 4 ) k 

  integer ( kind = 4 ) m 

  integer ( kind = 4 ) m1 

  real ( kind = 8 ), parameter :: pi = 3.141592653589793D+00 

  real ( kind = 8 ) r 

  real ( kind = 8 ), intent(in) :: x !modification by T-MATT 

  real ( kind = 8 ) z 

 

  if ( x == aint ( x ) ) then 

 

    if ( 0.0D+00 < x ) then 

      ga = 1.0D+00 
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      m1 = int ( x ) - 1 

      do k = 2, m1 

        ga = ga * k 

      end do 

    else 

      ga = 1.0D+300 

    end if 

 

  else 

 

    if ( 1.0D+00 < abs ( x ) ) then 

      z = abs ( x ) 

      m = int ( z ) 

      r = 1.0D+00 

      do k = 1, m 

        r = r * ( z - real ( k, kind = 8 ) ) 

      end do 

      z = z - real ( m, kind = 8 ) 

    else 

      z = x 

    end if 

 

    gr = g(26) 

    do k = 25, 1, -1 

      gr = gr * z + g(k) 

    end do 

 

    ga = 1.0D+00 / ( gr * z ) 

 

    if ( 1.0D+00 < abs ( x ) ) then 

      ga = ga * r 

      if ( x < 0.0D+00 ) then 

        ga = - pi / ( x* ga * sin ( pi * x ) ) 

      end if 

    end if 

 

  end if 
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  return 

end subroutine gamma 

 

function msta1 ( x, mp ) 

 

!*****************************************************************************80 

! 

!! MSTA1 determines a backward recurrence starting point for Jn(x). 

! 

!  Discussion: 

! 

!    This procedure determines the starting point for backward   

!    recurrence such that the magnitude of     

!    Jn(x) at that point is about 10^(-MP). 

! 

!  Licensing: 

! 

!    This routine is copyrighted by Shanjie Zhang and Jianming Jin.  However,  

!    they give permission to incorporate this routine into a user program  

!    provided that the copyright is acknowledged. 

! 

!  Modified: 

! 

!    08 July 2012 

! 

!  Author: 

! 

!    Shanjie Zhang, Jianming Jin 

! 

!  Reference: 

! 

!    Shanjie Zhang, Jianming Jin, 

!    Computation of Special Functions, 

!    Wiley, 1996, 

!    ISBN: 0-471-11963-6, 

!    LC: QA351.C45. 

! 

!  Parameters: 
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! 

!    Input, real ( kind = 8 ) X, the argument. 

! 

!    Input, integer ( kind = 4 ) MP, the negative logarithm of the  

!    desired magnitude. 

! 

!    Output, integer ( kind = 4 ) MSTA1, the starting point. 

! 

  implicit none 

 

  real ( kind = 8 ) a0 

  real ( kind = 8 ) envj 

  real ( kind = 8 ) f 

  real ( kind = 8 ) f0 

  real ( kind = 8 ) f1 

  integer ( kind = 4 ) it 

  integer ( kind = 4 ) mp 

  integer ( kind = 4 ) msta1 

  integer ( kind = 4 ) n0 

  integer ( kind = 4 ) n1 

  integer ( kind = 4 ) nn 

  real ( kind = 8 ) x 

 

  a0 = abs ( x ) 

  n0 = int ( 1.1D+00 * a0 ) + 1 

  f0 = envj ( n0, a0 ) - mp 

  n1 = n0 + 5 

  f1 = envj ( n1, a0 ) - mp 

  do it = 1, 20        

    nn = n1 - ( n1 - n0 ) / ( 1.0D+00 - f0 / f1 )                   

    f = envj ( nn, a0 ) - mp 

    if ( abs ( nn - n1 ) < 1 ) then 

      exit 

    end if 

    n0 = n1 

    f0 = f1 

    n1 = nn 

    f1 = f 
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  end do 

 

  msta1 = nn 

 

  return 

end function msta1 

 

function msta2 ( x, n, mp ) 

 

!*****************************************************************************80 

! 

!! MSTA2 determines a backward recurrence starting point for Jn(x). 

! 

!  Discussion: 

! 

!    This procedure determines the starting point for a backward 

!    recurrence such that all Jn(x) has MP significant digits. 

! 

!  Licensing: 

! 

!    This routine is copyrighted by Shanjie Zhang and Jianming Jin.  However,  

!    they give permission to incorporate this routine into a user program  

!    provided that the copyright is acknowledged. 

! 

!  Modified: 

! 

!    08 July 2012 

! 

!  Author: 

! 

!    Shanjie Zhang, Jianming Jin 

! 

!  Reference: 

! 

!    Shanjie Zhang, Jianming Jin, 

!    Computation of Special Functions, 

!    Wiley, 1996, 

!    ISBN: 0-471-11963-6, 



155 
 

!    LC: QA351.C45. 

! 

!  Parameters: 

! 

!    Input, real ( kind = 8 ) X, the argument of Jn(x). 

! 

!    Input, integer ( kind = 4 ) N, the order of Jn(x). 

! 

!    Input, integer ( kind = 4 ) MP, the number of significant digits. 

! 

!    Output, integer ( kind = 4 ) MSTA2, the starting point. 

! 

  implicit none 

 

  real ( kind = 8 ) a0 

  real ( kind = 8 ) ejn 

  real ( kind = 8 ) envj 

  real ( kind = 8 ) f 

  real ( kind = 8 ) f0 

  real ( kind = 8 ) f1 

  real ( kind = 8 ) hmp 

  integer ( kind = 4 ) it 

  integer ( kind = 4 ) mp 

  integer ( kind = 4 ) msta2 

  integer ( kind = 4 ) n 

  integer ( kind = 4 ) n0 

  integer ( kind = 4 ) n1 

  integer ( kind = 4 ) nn 

  real ( kind = 8 ) obj 

  real ( kind = 8 ) x 

 

  a0 = abs ( x ) 

  hmp = 0.5D+00 * mp 

  ejn = envj ( n, a0 ) 

 

  if ( ejn <= hmp ) then 

    obj = mp 

    n0 = int ( 1.1D+00 * a0 ) 
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  else 

    obj = hmp + ejn 

    n0 = n 

  end if 

 

  f0 = envj ( n0, a0 ) - obj 

  n1 = n0 + 5 

  f1 = envj ( n1, a0 ) - obj 

 

  do it = 1, 20 

    nn = n1 - ( n1 - n0 ) / ( 1.0D+00 - f0 / f1 ) 

    f = envj ( nn, a0 ) - obj 

    if ( abs ( nn - n1 ) < 1 ) then 

      exit 

    end if 

    n0 = n1 

    f0 = f1 

    n1 = nn 

    f1 = f 

  end do 

 

  msta2 = nn + 10 

 

  return 

end function msta2 

 

function envj ( n, x ) 

 

!*****************************************************************************80 

! 

!! ENVJ is a utility function used by MSTA1 and MSTA2. 

! 

!  Licensing: 

! 

!    This routine is copyrighted by Shanjie Zhang and Jianming Jin.  However,  

!    they give permission to incorporate this routine into a user program  

!    provided that the copyright is acknowledged. 

! 
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!  Modified: 

! 

!    14 March 2012 

! 

!  Author: 

! 

!    Shanjie Zhang, Jianming Jin 

! 

!  Reference: 

! 

!    Shanjie Zhang, Jianming Jin, 

!    Computation of Special Functions, 

!    Wiley, 1996, 

!    ISBN: 0-471-11963-6, 

!    LC: QA351.C45. 

! 

!  Parameters: 

! 

!    Input, integer ( kind = 4 ) N, ? 

! 

!    Input, real ( kind = 8 ) X, ? 

! 

!    Output, real ( kind = 8 ) ENVJ, ? 

! 

  implicit none 

 

  real ( kind = 8 ) envj 

  integer ( kind = 4 ) n 

  real ( kind = 8 ) x 

 

  envj = 0.5D+00 * log10 ( 6.28D+00 * n ) - n * log10 ( 1.36D+00 * x / n ) 

 

  return 

end function envj 

 

subroutine lpmns ( m, n, x, pm, pd ) 

 

!*****************************************************************************80 
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! 

!! LPMNS computes associated Legendre functions Pmn(X) and derivatives P'mn(x). 

! 

!  Licensing: 

! 

!    This routine is copyrighted by Shanjie Zhang and Jianming Jin.  However,  

!    they give permission to incorporate this routine into a user program  

!    provided that the copyright is acknowledged. 

! 

!  Modified: 

! 

!    18 July 2012 

! 

!  Author: 

! 

!    Shanjie Zhang, Jianming Jin 

! 

!  Reference: 

! 

!    Shanjie Zhang, Jianming Jin, 

!    Computation of Special Functions, 

!    Wiley, 1996, 

!    ISBN: 0-471-11963-6, 

!    LC: QA351.C45. 

! 

!  Parameters: 

! 

!    Input, integer ( kind = 4 ) M, the order of Pmn(x). 

! 

!    Input, integer ( kind = 4 ) N, the degree of Pmn(x). 

! 

!    Input, real ( kind = 8 ) X, the argument. 

! 

!    Output, real ( kind = 8 ) PM(0:N), PD(0:N), the values and derivatives 

!    of the function from degree 0 to N. 

! 

  implicit none 
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  integer ( kind = 4 ) n 

 

  integer ( kind = 4 ) k 

  integer ( kind = 4 ) m 

  real ( kind = 8 ) pm(0:n) 

  real ( kind = 8 ) pm0 

  real ( kind = 8 ) pm1 

  real ( kind = 8 ) pm2 

  real ( kind = 8 ) pmk 

  real ( kind = 8 ) pd(0:n) 

  real ( kind = 8 ) x 

  real ( kind = 8 ) x0 

 

  do k = 0, n 

    pm(k) = 0.0D+00 

    pd(k) = 0.0D+00 

  end do 

 

  if ( abs ( x ) == 1.0D+00 ) then 

 

    do k = 0, n 

      if ( m == 0 ) then 

        pm(k) = 1.0D+00 

        pd(k) = 0.5D+00 * k * ( k + 1.0D+00 ) 

        if ( x < 0.0D+00 ) then 

          pm(k) = ( -1.0D+00 ) ** k * pm(k) 

          pd(k) = ( -1.0D+00 ) ** ( k + 1 ) * pd(k) 

        end if 

      else if ( m == 1 ) then 

        pd(k) = 1.0D+300 

      else if ( m == 2 ) then 

        pd(k) = -0.25D+00 * ( k + 2.0D+00 ) * ( k + 1.0D+00 ) & 

          * k * ( k - 1.0D+00 ) 

        if ( x < 0.0D+00 ) then 

          pd(k) = ( -1.0D+00 ) ** ( k + 1 ) * pd(k) 

        end if 

      end if 

    end do 
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    return 

  end if 

 

  x0 = abs ( 1.0D+00 - x * x ) 

  pm0 = 1.0D+00 

  pmk = pm0 

  do k = 1, m 

    pmk = ( 2.0D+00 * k - 1.0D+00 ) * sqrt ( x0 ) * pm0 

    pm0 = pmk 

  end do 

  pm1 = ( 2.0D+00 * m + 1.0D+00 ) * x * pm0 

  pm(m) = pmk 

  pm(m+1) = pm1 

  do k = m + 2, n 

    pm2 = ( ( 2.0D+00 * k - 1.0D+00 ) * x * pm1 & 

      - ( k + m - 1.0D+00 ) * pmk ) / ( k - m ) 

    pm(k) = pm2 

    pmk = pm1 

    pm1 = pm2 

  end do 

 

  pd(0) = ( ( 1.0D+00 - m ) * pm(1) - x * pm(0) ) & 

    / ( x * x - 1.0D+00 )   

  do k = 1, n 

    pd(k) = ( k * x * pm(k) - ( k + m ) * pm(k-1) ) & 

      / ( x * x - 1.0D+00 ) 

  end do 

 

  return 

end subroutine lpmns 

 

subroutine lpn ( n, x, pn, pd ) 

 

!*****************************************************************************80 

! 

!! LPN computes Legendre polynomials Pn(x) and derivatives Pn'(x). 

! 

!  Licensing: 
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! 

!    This routine is copyrighted by Shanjie Zhang and Jianming Jin.  However,  

!    they give permission to incorporate this routine into a user program  

!    provided that the copyright is acknowledged. 

! 

!  Modified: 

! 

!    07 July 2012 

! 

!  Author: 

! 

!    Shanjie Zhang, Jianming Jin 

! 

!  Reference: 

! 

!    Shanjie Zhang, Jianming Jin, 

!    Computation of Special Functions, 

!    Wiley, 1996, 

!    ISBN: 0-471-11963-6, 

!    LC: QA351.C45. 

! 

!  Parameters: 

! 

!    Input, integer ( kind = 4 ) N, the maximum degree. 

! 

!    Input, real ( kind = 8 ) X, the argument. 

! 

!    Output, real ( kind = 8 ) PN(0:N), PD(0:N), the values and derivatives 

!    of the polyomials of degrees 0 to N at X. 

! 

  implicit none 

 

  integer ( kind = 4 ) n 

 

  integer ( kind = 4 ) k 

  real ( kind = 8 ) p0 

  real ( kind = 8 ) p1 

  real ( kind = 8 ) pd(0:n) 
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  real ( kind = 8 ) pf 

  real ( kind = 8 ) pn(0:n) 

  real ( kind = 8 ) x 

 

  pn(0) = 1.0D+00 

  pn(1) = x 

  pd(0) = 0.0D+00 

  pd(1) = 1.0D+00 

  p0 = 1.0D+00 

  p1 = x 

 

  do k = 2, n 

 

    pf = ( 2.0D+00 * k - 1.0D+00 ) / k * x * p1 & 

      - ( k - 1.0D+00 ) / k * p0 

    pn(k) = pf 

 

    if ( abs ( x ) == 1.0D+00 ) then 

      pd(k) = 0.5D+00 * x ** ( k + 1 ) * k * ( k + 1.0D+00 ) 

    else 

      pd(k) = k * ( p1 - x * pf ) / ( 1.0D+00 - x * x ) 

    end if 

 

    p0 = p1 

    p1 = pf 

 

  end do 

 

  return 

end subroutine lpn 
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