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ABSTRACT 

Reynolds Averaged Navier-Stokes (RANS) models still represent the most common 

turbulence modeling technique used in Computational Fluid Dynamics (CFD) today. RANS 

models are preferred primarily due to their relatively low computational demand and ease of use. 

The general RANS framework utilizes the ensemble averaged form of the Navier Stokes equations 

in which all turbulent scales are modelled, and hence requires reduced computational effort 

compared to scale resolving methods. Despite their popularity, RANS models have been found to 

perform poorly in flows with separated shear layers, unsteady wakes, and temporally evolving 

flows. There has been ongoing progress towards high-fidelity methods such as Large Eddy 

Simulation (LES) to more accurately represent these flow features.  LES models apply filters to 

the equations of fluid motion to resolve the large turbulent structures that are responsible for energy 

transfer. The smaller scales however, are represented using a sub-grid scale (SGS) model. LES 

models perform well in separated shear layers where large eddies dictate the energy and 

momentum transfer, due to the small time and length scales associated with near wall flow. The 

costs associated with LES are a major limiting factor in their adoption in industrial and academic 

research. This has led to the development of Hybrid RANS-LES (HRL) models which offer 

improved performance over RANS models while being relatively inexpensive compared to LES 

models. The hybrid modeling approach aims to provide the best of both worlds. In hybrid models, 

LES models are used far away from the wall to resolve large scale structures primarily responsible 

for the transfer of momentum and energy, while the wall bounded turbulence is treated using a 

RANS model. However, HRL models suffer from inherent drawbacks associated with their 

handling of RANS to LES transition in addition to a high degree of grid sensitivity. The present 

study proposes advanced turbulence modeling strategies within the hybrid RANS-LES class of 
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models. Major contributions include: (i) evaluation of RANS and hybrid RANS-LES models for 

separated and non-stationary flows, (ii) development of time-filtering techniques for the dynamic 

Hybrid RANS-LES (DHRL) model to improve predictive capabilities for non-stationary periodic 

and non-periodic flows, and (iii) a new variant of the DHRL model for complex turbulent flows to 

address a known weakness in the DHRL formulation.  

First, the performance of the DHRL model is evaluated against popular RANS and HRL 

models for flow over a three-dimensional axisymmetric hill. DHRL model results indicate superior 

prediction of mean flow statistics and turbulent stresses. However, some discrepancy in Reynolds 

stress prediction and the lack of a smooth LES-mode away from the wall is observed. Second, 

static and dynamic time filters are implemented to extend the DHRL model from an ensemble 

averaged framework to a non-stationary framework. Results once again indicate superior model 

performance when compared to other models investigated. The model consistently reproduces 

results similar to pseudo-spectral LES and DNS data for mean flow and second moment statistics. 

Some underprediction in the outer layer is observed due to the model remaining partially in RANS 

mode, a known potential source of error for the DHRL model. Third, the dynamic time filtering 

(DTF) proposed in the previous study is extended via the incorporation of double exponential 

filtering for applications in flows with non-periodic and/or monotonically time-varying statistics. 

Results indicate an improvement in performance for high frequency oscillations in a pulsating 

channel and a good agreement with DNS data for temporally varying mixing layer. Discrepancies 

in temporal evolution of flow statistics is observed due to the imposed initial fluctuation, however 

the results indicate that it is able to accurately simulate the appropriate flow physics, and fine 

tuning of the initial fluctuations would significantly improve predictive capabilities. Additionally, 

benchmark DNS data for medium and low frequency oscillation is added to supplement the 
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existing DNS for high frequency oscillations. Finally, the performance of a new variant of the 

DHRL model with an improved blending parameter is investigated for the test cases of fully 

developed channel, three-dimensional axisymmetric hill, and pulsating channel. The new model 

variant introduces a blending parameter that smoothly transitions the model from RANS-to-LES 

in regions where RANS tends to significant overpredict turbulent stresses. Results indicate an 

improvement over the baseline model for all the cases previously investigated. 
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CHAPTER I 

 

INTRODUCTION 

 

 

From the flow of streams to moving clouds, turbulence is ubiquitous. We encounter 

turbulence on a daily basis and rarely stop to think about it. For example, when we use a spoon to 

stir our tea, we are using turbulence to our advantage by enhancing the diffusion of thermal energy. 

Although humankind has tried to describe the behavior of fluids since the time of Aristotle and 

Archimedes in ancient Greece [59], it wasn’t until the mid-1700’s that the first solutions to the 

equations governing inviscid fluid dynamics were formulated by Leonhard Euler. Following 

Euler’s work, a significant breakthrough came about when Sir Isaac Newton’s law of viscosity 

was adopted in order to relate stress in a fluid to the velocity gradient. Eventually Claude-Louis 

Navier and George Gabriel Stokes are ultimately credited to have derived the fundamental 

equations governing fluid flow although they arrived at the derivation independently in the mid-

1800’s [60].   

Since its inception, the Navier-Stokes equations have been validated on numerous 

occasions over the past 200 years, however, exact analytical solutions still elude us. One of the 

major hurdles towards obtaining a successful solution to the Navier-Stokes equations is the 

presence of non-linearities associated with turbulent flows. Modern fluid dynamics revolves 

around solving turbulent flow problems using iterative methods and approximate models using 

high performance computing (HPC). This branch of engineering is known as computational fluid 

dynamics (CFD). Like any technology-based innovation, the evolution in CFD research has 

tracked the progress in computer development over the decades. As computational power has 
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grown over the years, our ability to solve problems that seemed impossible only a few years ago, 

are now possible. This advancement in computing has fostered the development of numerical tools 

that allow engineers to leverage CFD in day-to-day design and analysis instead of physically 

testing products and new designs. Modern CFD codes have been implemented to effectively tackle 

some of the most difficult engineering problems known to man. For example, in the biomedical 

industry, blood flows in arteries can be simulated using CFD to understand and visualize serious 

medical conditions such as Hypertrophic Cardiomyopathy (HCM). In the aerospace industry, CFD 

reduces the need to physically build test components. Parts are designed using Computer Aided 

Design (CAD) software and tested using CFD to allow preliminary evaluation of their 

performance.  

One of the critical technology barriers for consistently implementing accurate and efficient 

CFD techniques is turbulence modeling. Turbulence modeling is the development of advanced 

physics based mathematical models that predict effects associated with turbulence. Richard 

Feynman, the famous Nobel Laureate for Physics, once described turbulence as “the most 

important unsolved problem of classical physics.” The presence of a large range of scales of 

motion, high Reynolds numbers, strong three-dimensionality, time dependence, and non-

linearities makes turbulence notoriously difficult to predict. One of the earliest attempts at 

successfully developing a mathematical model for turbulence was carried out by Joseph Valentin 

Boussinesq in 1877 who suggested that turbulence was, in a sense, similar to the molecular 

diffusion process and proposed the Boussinesq eddy viscosity hypothesis. In 1925, Ludwig Prandtl 

proposed a relatively simple method for calculating eddy viscosity by estimating the mixing length 

analogous to the concept of mean-free path of a gas in thermodynamics. Later in 1945, Prandtl 
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proposed a model where the eddy viscosity was dependent upon turbulent kinetic energy using a 

differential equation.  

Modern turbulence modeling approaches can be broadly categorized into three different 

classes: Reynolds Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and Direct 

Numerical Simulation (DNS). RANS solves only the ensemble or time-averaged equations of fluid 

motion and models all scales of fluctuating motion, LES solves the Navier-Stokes equations for 

some scales while DNS explicitly solves the Navier-Stokes equations for all scales of motion. The 

theoretical accuracy of each of these methods is directly proportional to the range of resolved 

scales, as is the computational expense. Hence, DNS is the most accurate numerical method 

available today, but it is prohibitively expensive and cannot be employed to solve complex flow 

problems without the use of supercomputers. Even LES can be too expensive for engineering 

purposes based on the resolution of the method, requiring several days or even weeks of runtime 

on typical High-Performance Computing (HPC) architectures. Although not as accurate as DNS 

or LES, a RANS solution can be obtained using a laptop for most everyday engineering problems 

with some degree of accuracy. Recently, an emerging class of models, Hybrid RANS-LES (HRL), 

have been developed to provide a reasonable compromise between the accuracy of LES and the 

efficiency of RANS. The concept of HRL modeling is still relatively new, with the first model 

versions introduced in the late 1990s. As the name suggests, the HRL modeling strategy is based 

on using RANS to model smaller dissipative scales in near-wall regions while larger energy 

carrying scales are resolved using LES in regions farther from the wall.  

The two most common methods of combining RANS and LES are zonal and non-zonal 

methods. The zonal approach effectively divides the computational domain into regions where 

RANS or LES models are applied separately. For example, near-wall regions are typically assigned 
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to a RANS model, while LES model is applied to regions away from the wall where large eddies 

persist. One of the major difficulties associated with zonal modeling is the treatment of RANS-to-

LES transition zones. Since RANS does not support turbulent fluctuations, an internal forcing 

mechanism or turbulence generator is often required to resolve the correct stress and velocity in 

the interface before reaching the LES zone. The non-zonal approach seeks to smoothly transition 

RANS-to-LES based on flow statistics. Some of the most well known non-zonal models are the 

Detached Eddy Simulation (DES), Delayed Detached Eddy Simulation (DDES), and Improved 

Delayed Detached Eddy Simulation (IDDES). Although these non-zonal HRL models have been 

successfully validated and utilized in the aerospace industry for complex flow simulations, most 

HRL models have strict grid generation requirements and can suffer from non-physical RANS-to-

LES transition resulting in modeled stress depletion (MSD). Research focused on improving these 

models to facilitate high-fidelity CFD solutions for complex scientific and engineering problems 

is therefore active and, is a major focus of the present work. 

The primary goal of this research is to develop, implement, and validate advanced 

turbulence modeling strategies within the hybrid RANS-LES modeling framework. Also 

highlighted are some of the key deficiencies with traditional hybrid RANS-LES models while 

analysing the performance of the baseline and a new variant of the Dynamic Hybrid RANS-LES 

(DHRL) model for complex turbulent flows. The DHRL model performance is evaluated against 

Reynolds-Averaged Navier-Stokes (RANS), Monotonically Integrated Large Eddy Simulation 

(MILES), Detached Eddy Simulation (DES), Delayed Detached Eddy Simulation (DDES), 

Multiscale LES model, and benchmark LES, DNS, and experimental studies for canonical test 

cases such as fully turbulent channel flows, flow over a three-dimensional axisymmetric hill, and 

non-stationary pulsating channel flow. Results obtained from the simulations in terms of mean 
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flow statistics, pressure distribution, Reynolds stress distribution, and turbulence characteristics 

are presented and discussed in detail for each test case.  

The main objectives of this research are: 

1. Evaluation of the performance of the dynamic hybrid RANS-LES (DHRL) model 

for simulating the flow over a 3D axisymmetric hill including comparison to 

numerical results from RANS, DES, DDES, Multiscale LES model, and 

experimental data. Results obtained from the simulations in terms of mean flow 

statistics, pressure distribution, and turbulence characteristics are presented and 

discussed in detail. Some of the HRL model performance along with the DHRL 

model was also compared to benchmark numerical simulations.  

2. Development of static and dynamic time-filtering techniques for non-stationary 

periodic and non-periodic turbulent flows. The present study investigates the 

performance of the DHRL model with two temporal filtering techniques: 

Exponential Time Averaging (ETA) with static filter and Dynamic Time Filtering 

(DTF). These techniques are compared against an industry standard RANS model, 

MILES, and two conventional HRL models. Model performance is evaluated based 

on comparison to previously documented DNS and LES results.  

3. Development of double exponential averaging to enhance trend predictive 

capabilities of the dynamic time filtering technique for non-stationary flows 

including flows with monotonically varying statistics. In this study, the 

performance of the DHRL model with a double exponential dynamic time filtering 

(DDTF) methodology is evaluated against a RANS model, a conventional HRL 

model, implicit LES, and the DHRL model with DTF for a pulsating channel and a 
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temporally-varying turbulent mixing layer. Model performance is evaluated based 

on comparisons to existing experimental and Direct Numerical Simulation (DNS) 

results. 

4. Development of a new DHRL model variant with improved RANS-to-LES 

blending. The alternate blending parameter is developed using a new statistical term 

that is sensitized to indicate the presence of resolvable LES content in regions of 

the flow where RANS stress is significantly overpredicted. Three variants of the 

new DHRL model are validated for fully turbulent channel flow, flow over a three-

dimensional axisymmetric hill, and non-stationary flow in a pulsating channel 

against RANS, HRL, DNS and experimental data.  
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

Literature review for the three main test cases evaluated in this study is presented below.  

2.1 Flow over three-dimensional axisymmetric hill 

Flow over a three-dimensional axisymmetric hill is a challenging test case for 

Computational Fluid Dynamics (CFD) using Reynolds-Average Navier-Stokes (RANS) and 

Hybrid RANS-LES (HRL) models. As the flow approaches the hill, it is first decelerated near the 

foot of the hill and then accelerated upwards. Flow eventually separates just downstream of the 

crest of the hill in response to the adverse pressure gradient caused by the curvature of the hill. The 

separation region behind the hill is characterized by the presence of intermittent wakes, separation 

bubbles, vortices, and regions of spatially varying turbulence intensity. The separated flow forms 

two sets of counter-rotating vortices with high levels of flow unsteadiness and turbulent kinetic 

energy (TKE). This type of unsteady behavior is quite commonly observed in hydrodynamics, 

energy extraction, dispersion of air pollutants, and in aviation applications [38]. It is because of 

these highly unsteady flow features, conventional Reynolds-Averaged Navier-Stokes (RANS) 

models fail to accurately capture the flow physics. Also, the prediction of separation location and 

size of the separation bubble are sensitive to changes in Reynolds number (Re) and turbulent 

fluctuations. Although, Direct Numerical Solution (DNS) can provide an accurate description of 

the flow physics, it is computationally not feasible. Previously documented studies [7-10] have 
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focused on the use of variants of Detached Eddy Simulation (DES), LES and hybrid RANS-LES 

(HRL) techniques in an attempt to accurately model this type of flow. 

Experimental studies of flow over an axisymmetric hill were carried out by Ishihara et al. 

[1]. Results indicated that flow separation occurred at the top of the hill followed by reattachment 

at the foot of the hill. This phenomenon was also accompanied by a low frequency motion in the 

wall layer downstream of the hill. Simpson et al. [2] carried out experiments using Laser-Doppler 

Velocimetry (LDV) at Re=1.3x105 with an approach turbulent boundary layer height of δ =H/2. 

Results from the experiments indicated that the flow was symmetric about the centerline, while 

complex vortical separations were observed on the leeward side of the hill. These structures 

merged into two large vortices on the outer regions of the hill and were responsible for the 

production of large amounts of turbulence. The experimental results also showed the presence of 

low frequency motion, similar to the observations made by Ishihara et al. [1], which contributed 

to turbulent diffusion. Further experiments were carried out by Byun et al. [9] using 3D fibre-optic 

LDV techniques for two different hill heights (δ = H  and δ = H/2). Although the shapes of the 

bumps were different, the study once again confirmed the presence of two vortical structures on 

the leeside of the hill formed by the separated flow. The study also suggested the use Unsteady- 

RANS (URANS) and LES to capture the physics of the separated region especially the effects of 

low-frequency vortex shedding. 

Several numerical simulations of detached flows with fixed separation locations, such as 

flow over a backward facing step have been performed with varying degrees of success [3,4]. 

Because of the slowly changing gradients caused by the curvature of the hill, accurate prediction 

separation and reattachment is a daunting task for both RANS and HRL models alike. Recently, 

Chitta et al. [5] successfully employed a four-equation transition sensitive and rotation-curvature 
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corrected eddy viscosity (RANS) model [6] to significantly improve the CFD results compared to 

more traditional RANS model forms. The new model improved prediction of pressure distribution 

over the hill surface and accurately captured the formation of a pair of separation bubbles on the 

leeward side of the hill. There remained, however, discrepancies regarding the height of the 

recirculation bubble and maximum pressure values downstream of the hill.  

RANS and LES studies were carried out by Temmerman et al. [7] at Re=1.3x104 with an 

incoming boundary layer height of δ=H/2. The results indicated the presence of a horseshoe vortex 

upstream of the hill which was not previously mentioned in the experimental results. The 

investigation also revealed the inability of RANS models to capture non-local turbulence features 

associated with large-scale structures. According to numerical simulations performed by Persson 

et al. [8], RANS models display poor predictive capability especially in the wake region when 

compared to detached eddy simulation (DES), and LES models. DES results, however, depended 

strongly on the value of freestream turbulent viscosity. For a high level of inflow viscosity, RANS-

like results were observed, while improved accuracy was obtained with a lower incoming turbulent 

viscosity. The DES results were found to be less accurate than LES regardless of the inlet value of 

turbulent viscosity. Patel et al. [9] used LES with a Localized Dynamic sub-grid Kinetic-energy 

Model (LDKM) to simulate the flow around the hill. The results indicated good quantitative 

agreement with measured data in terms of near-wall mean flow statistics and the model correctly 

resolved two counter-rotating vortex pairs downstream on the lee-side. Although promising, some 

discrepancies were observed in the outer regions of the flow. Despite some drawbacks, the authors 

concluded that because LDKM was able resolve the complex near-wall flow with reasonable 

accuracy, the model is sufficient for this class of flows. 
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Davidson et al. [10] documented simulations using Hybrid RANS-LES (HRL) and LES 

models. For the HRL model, an unsteady RANS (URANS) was employed to resolve flow for y+≤ 

40 (y+= dimensionless wall distance) before switching to an LES formulation farther from the wall. 

Results indicated that the HRL model with forcing at the RANS-LES interface had improved 

predictive capabilities, while the resolved turbulence from the HRL model with no forcing was 

gradually dissipated. LES, on the other hand, was less accurate than either of the HRL models. 

Garcia et al. [11] performed a comprehensive study of the flow behavior, using the dynamic 

Smagorinsky model [12]. The study provided detailed analysis of the structure and behavior of the 

flowfield around of the hill. Although the velocity and pressure profiles were close to experimental 

data, the results indicated some differences. According to simulation results, flow reversal tapered 

leading to separation followed by the presence of two foci and two saddle points in the separation 

region. However, experimental data shows the separation location to be further downstream and 

the presence of two foci and only one saddle point in the separated zone. Although, Byun, Simpson, 

and Ma et al. [13-15] did conjecture that to satisfy topological rules, three foci and three saddle 

points should have been observed in the separation zone. The study did, however, an explanation 

for the presence of a high turbulent region upstream of the separation zone which influences the 

location of separation. Also, the authors pointed out that the simulations predicted separated flow 

at all times during the simulations as opposed to the speculated intermittent attachment and re-

attachment based on the bimodal velocity in the experiments [1]. Overall, the study provided a 

useful insight into to structure and behavior of the flow around the hill and is considered a 

benchmark for evaluation of hybrid RANS-LES and LES models. 
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2.2 Non-stationary pulsating channel flow 

Turbulent flows in engineering applications such as flow over airfoils, immersed bodies, 

stenosed arteries, heat exchangers, and in gas turbine engines are often accompanied by imposed 

unsteadiness, large-scale vortex shedding, and the interaction of different scales of motion. 

Because of their significance, these types of flows are of considerable interest to the computational 

fluid dynamics (CFD) community as a test for newly developed turbulence models and numerical 

methods. Often these problems are notoriously difficult to model and may require high fidelity 

numerical methods with large computational resources. The pulsating channel flow is one such 

problem. The presence of unsteady turbulent boundary layers, complex interaction between the 

mean and time-dependent components of the flow, and regions of spatially and temporally varying 

statistical quantities presents a unique set of challenges for existing and newly developed 

turbulence models. 

Unsteady turbulent boundary layers can either be oscillating (zero temporal mean) or 

pulsating (non-zero temporal mean). Experimental results suggest that, for a purely oscillating 

case, the flow remains stable for Res (Reynolds number based on Stokes thickness) less than 400. 

As Res is increased, the flow is intermittent between laminar and turbulent until Res = 800 [16], 

after which the flow becomes fully turbulent. On the other hand, for a pulsating channel flow with 

low frequency oscillations, turbulence has time to relax to the local equilibrium. With an increase 

in pulsating frequency, the ratio between the intensity of streamwise fluctuation and turbulent 

kinetic energy shows signs of phase dependence indicating that production and dissipation are also 

out of phase.  

Since the early 1960’s, several experiments have been carried out in an attempt to describe 

the physics of oscillating and pulsating boundary layer flows. Sarpkaya [17] studied the response 
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of coherent turbulent structures in an oscillating pipe using Laser Induced Fluorescence (LIF), 

while Gündoğdu and Çarpinlioğlu [18,19] performed detailed studies describing the theory of 

pulsatile flow in a channel for laminar, transitional, and turbulent regimes. Both studies suggested 

further investigations into oscillatory, pulsatile, and non-canonical flows to ensure a better 

understanding of the underlying physics involved in turbulent processes. Experiments in a 

reciprocating wind tunnel using LDV (Laser Doppler Velocimetry) and hot wire anemometry were 

carried out by Hino et al. [16]. The authors concluded that in the acceleration phase, turbulence is 

generated by instabilities close to the wall but is not allowed to grow. As the flow begins to 

decelerate, large amounts of turbulence are generated near the wall. They also found that the 

turbulent energy-spectrum closely follows the Kolmogorov spectrum in the acceleration phase 

while following a steep power law for the deceleration phase denoting a large amount of 

dissipation from high frequency turbulent oscillations. 

Spalart et al. [20] performed DNS calculations for the turbulent solution to Stokes' second 

problem. Results indicated that the oscillating boundary layer behaves as a function of both, the 

Reynolds number and the phase angle. For Re<600, the flow undergoes a preliminary transition to 

a pre-turbulent state followed by a second transition between Re 600-800 which is similar to the 

observations made in [16]. LES calculations using a fourth-order finite difference scheme and 

commutative filter suggested by Vasilyev et al. [21] was carried out by Lund [22]. According to 

the author, explicit filtering improved the accuracy of LES. Such improvements include a better 

description of the logarithmic region, near wall anisotropy of the velocity fluctuations, and the 

shear stress estimation of the sub-grid scale model. He concluded that mesh refinement and explicit 

filtering both improve results since numerical results are damped out by both mechanisms, but 

they do so with a considerable increase in cost.  
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RANS (Reynolds Averaged Navier-Stokes), LES, and DNS calculations of pulsating flows 

were carried out extensively by Scotti et al. [23,24]. Results indicated that eddy viscosity models 

significantly overestimated the Reynolds stresses, turbulent kinetic energy and dissipation. LES 

model results indicated that high frequencies are damped before reaching the log layer, with the 

cut-off frequency being proportional to the mean turbulent intensity. LES data also agreed with 

experimental observations that turbulent fluctuations tend to appear towards the end of the 

acceleration phase and the phase difference between the turbulent quantities in the generation 

region was more dependent on the driving frequency while away from the generation regions the 

phase difference remained fairly constant.  

2.3 Non-stationary temporally evolving channel flow 

Similar to the non-stationary pulsating channel flow, the temporally evolving non-

stationary flows introduce their own set of challenges. These types of flows require high fidelity 

numerical methods to accurately capture flow behavior such as laminar to turbulent transition, 

growth and suppression of turbulent fluctuation, and temporally evolving gradients. Because of 

these complex flow features, traditional numerical and turbulence modeling techniques are often 

unable to accurately resolve the flow statistics.   

Ansari et al. [25] performed DNS of a turbulent mixing layer using low-gradient laminar 

(ML1) and high-gradient laminar (ML2) initial velocity profiles. The ML1 simulations indicated 

the presence of vortex roll up and streamwise vortices observed in experimental studies. These 

vortical structures were responsible for enhancing the intensity of the turbulent fluctuations and 

scalar mixing in agreement with experimental observations. However, the simulations predicted 

higher normal RMS when compared to experiments indicating the presence of large-scale coherent 

structures for the ML1 flow. The ML2 simulations allowed a longer turbulent development than 
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the ML1 while lacking the high-energy large-scale structures observed in the ML1 simulations. 

The ML2 simulations were in close agreement with experimental observations. It was concluded 

that two-dimensional vortex roll-ups and streamwise vortices both contribute to growth of mixing 

layers. The authors concluded that the long-time character of the laminar boundary layer and 

turbulent boundary layer mixing layers are similar and that both layers reach a universal self-

similar rate.    
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CHAPTER III 

 

TURBULENCE MODELING AND NUMERICAL APPROACHES 

 

 

3.1 TURBULENCE MODELING APPROACHES 

Computational Fluid Dynamics simulations were performed using unsteady three-

dimensional finite-volume computational fluid dynamics (CFD) for a single-phase incompressible 

fluid. The SA, k-ω SST, MILES, SA-DES, SA-DDES, SST Multiscale, and the dynamic hybrid 

RANS-LES (DHRL) model were used to model the effects of turbulence via the use of eddy-

viscosity or turbulent-viscosity which models the effect of turbulent mixing as an increase in the 

effective diffusion rate of momentum. The following section provides brief descriptions of the 

models with their relevant equations.  

3.1.1    Reynolds Averaged Navier-Stokes (RANS) Models 

RANS modeling framework revolves around solving the Navier-Stokes equations for 

mass, momentum, and energy for an average description of the flow, while the effects of complex 

turbulent interactions are modeled via additional transport equations based on statistical quantities. 

For RANS models, the instantaneous velocity field is decomposed into the sum of mean and 

fluctuating components as shown in the following equation. 

𝑢(𝑥, 𝑡) = 𝑢̅(𝑥, 𝑡) + 𝑢′(𝑥, 𝑡)                                                      (1) 

where 𝑢̅(𝑥, 𝑡) is the mean-velocity and 𝑢′(𝑥, 𝑡) is the fluctuating velocity. Once substituted into 

the Navier-Stokes equations and ensemble-averaged, the RANS equations are obtained. The 
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RANS mass and momentum conservation equations for a compressible single species fluid are 

given below :- 

𝜕̅

𝜕t
+
𝜕(̅𝑢𝑖)

𝜕𝑥𝑖
= 0                                     (2) 

𝜕

𝜕𝑡
(̅𝑢̅𝑖)  +  

𝜕

𝜕𝑥𝑗
(̅𝑢̅𝑖𝑢̅𝑗) = −

𝜕𝑝̅

𝜕𝑥𝑖 
+

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗 + 𝜏𝑖𝑗)                                 (3) 

where 𝜎𝑖𝑗 is the viscous stress tensor and 𝜏𝑖𝑗 is the Reynolds stress tensor defined as:  

𝜎𝑖𝑗 =  𝜇 [(
𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑗
+
𝜕𝑢𝑗̅̅ ̅

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗

𝜕𝑢𝑘̅̅ ̅̅

𝜕𝑥𝑘
]                                              (4) 

𝜏𝑖𝑗 = − (𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅ − 𝜌̅𝑢𝑖̅𝑢𝑖̅)                                                   (5) 

where the overbar symbol (𝑢𝑖̅) signifies an ensemble average.  

The use of transport equations to model all scales of turbulent motion makes RANS models 

very efficient. Coupled with low computational requirement and the relative ease to use, RANS 

models have remained an industry standard since their inception.  

3.1.1.1 Splart-Allmaras (SA) Model 

The Spalart-Allmaras or the SA model [26] is a one-equation model that solves a transport 

equation for the kinematic eddy (turbulent) viscosity. The SA model was designed specifically for 

aerospace applications involving wall-bounded flows and has been shown perform well for 

boundary layers subjected to adverse pressure gradients. The transport equation for the modified 

viscosity (𝜈) is given by: 

𝐷𝜌𝜈̃

𝐷𝑡
= 𝐺𝜈 − 𝑌𝜈 +

1

𝜎𝜈̃
[
𝜕

𝜕𝑥𝑗
{(𝜇 + 𝜌𝜈)

𝜕𝜈̃

𝜕𝑥𝑗
} + 𝐶𝑏2𝜌

𝜕𝜈̃

𝜕𝑥𝑗

𝜕𝜈̃

𝜕𝑥𝑗
] + 𝑆𝜈̃                        (6) 

𝐺𝜈 = 𝐶𝑏1𝜌𝑆̃𝜈                                                              (7) 
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𝑌𝜈=𝐶𝜔1𝜌𝑓𝜔 (
𝜈̃

𝑑
)
2

                                                          (8) 

where 𝐺𝜈 is the production term, and  𝑌𝜈 is the destruction term in the near-wall region due to 

wall blocking and viscous damping, 𝜎𝜈̃ and 𝐶𝑏2 are the constants, 𝜈 is the molecular kinematic 

viscosity, 𝑆𝜈̃ is a user-defined source term, and d is the distance to the nearest wall.   

3.1.1.2 Shear Stress Transport (SST) k-ω RANS Model 

The Shear Stress Transport (SST) k-ω RANS model developed by Menter [27] is a two-

equation eddy viscosity model that solves for turbulent kinetic energy (k) and specific dissipation 

rate (ω). The model was developed to combine the near-wall benefits of the standard k-ω and the 

free-stream performance of the k-ε model. The SST k-ω is one of the most widely used RANS 

turbulence models for industrial and academic CFD simulations. The model has demonstrated 

improved performance compared against other two-equation models for a wide range of flows 

including turbulent boundary layers, jets, and adverse pressure gradients.  The key model equations 

are shown below:- 

𝐷𝜌𝑘

𝐷𝑡
= 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽∗𝜌𝜔𝑘 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
]                                         (9) 

𝐷𝜌𝜔

𝐷𝑡
= 

𝛾

𝜈𝑡
𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
                      (10) 

  𝜈𝑡 =
𝑎1𝑘

𝑚𝑎𝑥(𝑎1𝜔,𝑆𝐹2)
                                                                 (11) 

𝐹1 = 𝑡𝑎𝑛ℎ (𝑎𝑟𝑔1
4)                                                                (12) 

        𝐹2 = 𝑡𝑎𝑛ℎ (𝑎𝑟𝑔2
2)                                                               (13) 

𝑎𝑟𝑔1 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (
√𝑘

0.09𝑤𝑦
;
500𝜈

𝑦2𝜔
) ;

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦
2
)                                           (14) 

𝑎𝑟𝑔2 = 𝑚𝑎𝑥 (2
√𝑘

0.09𝑤𝑦
;
500𝜈

𝑦2𝜔
)                                                       (15) 
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where νt is the kinematic turbulent or eddy viscosity, and F1 is the switching function. For F1 = 1, 

the model operates in a k-ω form, while for a value of F1 = 0, an approximation to the k-ε model 

form is obtained. 

3.1.2 Large Eddy Simulation (LES) 

Similar to the RANS approach, the LES modeling framework decomposes the flowfield 

based on scales of motion. Using filters, large energy carrying structures are explicitly resolved, 

while small dissipative scales of motion are modeled using sub-grid scale models. Eq. (16) shows 

the decomposition of the velocity field used in the LES modeling approach.  

𝑢(𝑥, 𝑡) = 𝑢̂(𝑥, 𝑡) + 𝑢′(𝑥, 𝑡)                                                               (16) 

where 𝑢̂(𝑥, 𝑡) is the filtered velocity and 𝑢′(𝑥, 𝑡) is the unresolved velocity. By substituting Eq. 

(16) into the Navier-Stokes equations, the filtered Navier-Stokes equations for mass and 

momentum for a single-phase, single-species compressible fluid with negligible body forces are 

obtained :  

𝜕𝜌̂

𝜕𝑡
 + 

𝜕

𝜕𝑥𝑗
(𝜌̂𝑢𝑗̂)  = 0                                      (17) 

𝜕

𝜕𝑡
(𝜌̂𝑢𝑖̂)  +  

𝜕

𝜕𝑥𝑗
(𝜌̂𝑢𝑖̂𝑢𝑗̂)  =  −

𝜕𝑝

𝜕𝑥𝑖
 + 

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗 + 𝜏𝑖𝑗)                 (18) 

where the hat overbar symbol (^) signifies an undefined filtering operation. The viscous and sub-

filter stress tensors are defined as:  

𝜎𝑖𝑗 =  𝜇 [(
𝜕𝑢𝑖̂

𝜕𝑥𝑗
+
𝜕𝑢𝑗̂

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗

𝜕𝑢𝑖̂

𝜕𝑥𝑘
]                                              (19) 

𝜏𝑖𝑗 = − (𝜌𝑢𝑖𝑢𝑗̂ − 𝜌̂𝑢𝑖̂𝑢𝑗̂)                                                   (20) 
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Closure of the filtered Navier-Stokes equations require modeling of the sub-filter stress tensor τij. 

Use of sub-grid scale models or RANS models are two different approaches to modeling the sub-

filter stress tensor. 

3.1.2.1 Monotonically Integrated Large Eddy Simulation (MILES) 

Proposed by Fureby et al. [28], the Monotonically Integrated Large Eddy Simulation 

(MILES) approach utilizes the inherent dissipative nature of finite volume methods to numerically 

model the effect of sub-grid scales of motion on the resolved scales. In the MILES approach for 

an incompressible fluid, the sub-filter term shown in Eq. (20) reduces to: 

𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̂ − 𝑢𝑖̂𝑢𝑗̂= 0                                                   (21) 

For the present study, the MILES approach was implemented by simply running the 

simulation with no turbulence model and using a low-dissipation upwind-biased numerical 

scheme (OGRE).  

3.1.2.2 Detached Eddy Simulation (DES) 

Proposed by Spalart et al., the Detached Eddy Simulation (DES) [29] is a hybrid RANS-

LES model that locally blends RANS and LES models based on the distance to the nearest wall. 

In near-wall regions where the turbulent length scale is smaller than local grid scale, the model 

operates in RANS mode, while in regions away from wall that are dominated by large scale 

structures for which the turbulent length scales are larger than the local grid scale, an LES model 

is used to resolve the flowfield. The initial DES model proposed by Spalart modified the wall 

distance, d, in the destruction term of the SA model to be implemented as a RANS-to-LES blending 

parameter given by:     

𝑑̃ = 𝑚𝑖𝑛 (𝑑, 𝐶𝐷𝐸𝑆∆)                                                            (22) 
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where d is the distance to the nearest wall, CDES is a constant of calibration, and ∆ corresponds to 

the local grid scale. In regions of relatively tight grid spacing, the modified destruction term has 

the effect of lowering eddy viscosity. This allows the DES model to act like a sub-grid scale model 

when the local grid scale is smaller than the distance to the nearest wall which is the case outside 

the boundary layer. 

 Further implementations of the DES model with other RANS models were carried out by 

Menter et al. [30,31] by modifying the turbulent length scales. Although not investigated in this 

study, the SST-DES model is one such example. The SST-DES model includes such a modification 

to the dissipation term of the turbulent kinetic energy equation, Eq. (6), of the SST- k-ω RANS 

model shown below: 

𝐷𝜌𝑘

𝐷𝑡
=  𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽∗𝜌𝜔𝑘𝐹𝐷𝐸𝑆 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
]                                  (23) 

𝐹𝐷𝐸𝑆 = 𝑚𝑎𝑥 (
𝐿𝑡

𝐶𝐷𝐸𝑆∆
, 1)                                                       (24) 

𝐶𝐷𝐸𝑆 = 0.61                                                               (25) 

∆ = 𝑚𝑎𝑥(𝛥𝑥, 𝛥𝑦, 𝛥𝑧)                                                          (26) 

𝐿𝑡 =
√𝑘

𝛽∗𝜔
                                                                   (27) 

where FDES is the switching function used for RANS-to-LES transition, and 𝐿𝑡 is the modeled 

turbulent length scale from the SST- k-ω RANS model. In regions of the flow where the turbulent 

length scale is larger than the local grid scale, i.e. 𝐿𝑡 > CDES∆, the model operates in LES mode, 

while in near-wall regions where turbulent length scale is smaller than the local grid scale, i.e. 𝐿𝑡 

< CDES∆, the model operates in RANS mode. This model behaves similar to a k-equation sub-grid 

scale LES model with the dissipation equation remaining decoupled from the turbulent kinetic 

energy equation in the LES part of the spectrum.  
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Past studies have highlighted the relative effectiveness of DES based models in predicting 

unsteady flows with complex wakes and separated shear layers when compared to traditional 

RANS models. However, because of strict grid generation requirements and relative sensitivity to 

changes in grid resolution, more advanced methods such as DDES have been developed. 

3.1.2.3 Delayed Detached-Eddy Simulation (DDES) 

The Delayed Detached Eddy Simulation (DDES) [32] was formulated to address some of 

the issues with the DES framework. For a traditional grid with high aspect ratio cells near the wall 

and in the boundary layer, the grid spacing in the flow direction is large such that ∆ =

max (∆𝑥, ∆𝑦, ∆𝑧)  ≫ 𝑑 (distance to nearest wall) and the model remains in RANS mode. Outside 

the boundary layer where ∆ ≪ 𝑑, the model effectively transitions to LES. For complex geometries 

where ∆ ~ 𝑑, LES mode can be activated inside the boundary layer where the grid is not refined 

enough to sustain the resolved turbulence. The DDES model attempts to correct this issue by 

delaying the RANS to LES transition. The DES length scale 𝑑̃ is redefined by the following 

equation : 

𝑑̃ = 𝑑 − 𝑓𝑑max(0, 𝑑 − 𝐶𝐷𝐸𝑆∆𝑚𝑎𝑥)                                         (28) 

𝑓𝑑 = 1 − tanh((8𝑟𝑑)
3)                                                  (29) 

  𝑟𝑑 =
𝜈̃

√
𝜕𝑢𝑖̅̅̅̅

𝜕𝑥𝑗
 
𝜕𝑢𝑖̅̅̅̅

𝜕𝑥𝑗
 𝜅2𝑑2

                                                        (30) 

𝜈 =  𝜈𝑡 + 𝜈                                                           (31) 
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where 𝜈𝑡 is the eddy viscosity, ν is the molecular kinematic viscosity, 𝑈𝑖,𝑗 are the velocity 

gradients, κ is Von Kármán constant, and d is the distance to the nearest wall. The RANS-to-LES 

transition is carried out by rd which equals 1 in a logarithmic layer, and falls gradually towards 0 

at the edge of the boundary layer. Also, the addition of ν in the numerator corrects the very near-

wall behavior by ensuring that 𝑟𝑑  remains greater than 0. 

3.1.2.4 SST Multiscale Model 

Proposed by Nichols and Nelson [33,34], the SST Multiscale model is an alternative to the 

DES approach for constructing a hybrid RANS-LES model. Instead of using a single turbulent 

length scale, the SST Multiscale model uses an additional turbulent length scales usually 

associated with algebraic turbulence models. Relevant model equations are presented below:   

𝐿𝑇 = 𝑚𝑎𝑥 (6.0√
𝜈𝑡𝑅𝐴𝑁𝑆

Ω
, 𝑙𝑇)                                                 (32) 

𝑙𝑇 = 𝑘𝑅𝐴𝑁𝑆

3

2  / 𝜀𝑅𝐴𝑁𝑆                                                      (33) 

𝑘𝐿𝐸𝑆 = 𝑘𝑅𝐴𝑁𝑆𝑓𝑑                                                           (34) 

𝑓𝑑 =
1+𝑡𝑎𝑛ℎ(2𝜋(𝛬−0.5))

2
                                                       (35) 

𝛬 =
1

1+(
𝐿𝑇
𝐿𝑔
)4/3

                                                              (36) 

𝐿𝑔 = 𝑚𝑎𝑥 (𝛥𝑥, 𝛥𝑦, 𝛥𝑧)                                                      (37) 

𝜈𝑡𝐿𝐸𝑆 = 𝑚𝑖𝑛 (0.084𝐿𝑔√𝑘𝐿𝐸𝑆, 𝜈𝑡𝑅𝐴𝑁𝑆)                                         (38) 
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𝜈𝑡 = 𝜈𝑡𝑅𝐴𝑁𝑆𝑓𝑑 + (1 − 𝑓𝑑)𝜈𝑡𝐿𝐸𝑆                                               (39) 

In the above, LT is the effective turbulent length scale, √
νtRANS

Ω
 is the length scale derived from 

algebraic models, lT is the turbulent length scale of the two-equation RANS model, νtRANS  is the 

eddy viscosity from the unfiltered RANS model, Ω is the local mean flow vorticity, fd is a 

switching function, Lg is the local grid scale, Δx, Δy, and Δz denote the local grid spacing, νtLES is 

the sub-grid eddy viscosity, and νt is the effective viscosity. The damping function fd is used to 

smoothly transition between RANS and LES modes.  

3.2.5 Dynamic Hybrid RANS-LES model 

The dynamic hybrid RANS-LES (DHRL) model is a hybrid RANS-LES modeling 

framework developed by Walters et al. [35,36] for coupling any RANS model with any LES model. 

For an incompressible Newtonian fluid, the filtered Navier-Stokes momentum equation solved in 

a typical LES framework can be written as: 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢̂𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃̂

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(2𝜈𝑆̂𝑖𝑗) −

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗)                                (40) 

𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̂ − 𝑢𝑖̂𝑢𝑗̂                                                           (41) 

where (𝑠̂) is an undefined filtering operation, and 𝜏𝑖𝑗 is the sub-filter stress term. Analogous to the 

Reynolds Stress term (−𝑢𝑖
,𝑢𝑗
,̅̅ ̅̅ ̅) in a RANS modeling approach, the sub-filter stress (𝜏𝑖𝑗) term is a 

direct consequence of the filtering operation. In the DHRL framework, this term is modeled as a 

weighted sum of the sub-grid stress and the Reynolds stress obtained from a RANS model. The 

appropriate stress is computed using, 

𝜏𝑖𝑗 = 𝛼𝜏𝑖𝑗
𝑆𝐺𝑆 + (1 − 𝛼)𝜏𝑖𝑗

𝑅𝐴𝑁𝑆
                                            (42) 
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𝛼 =  
𝑢𝑖
"𝑢𝑗
"̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅

(𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅ − 𝜏𝑖𝑗

𝑆𝐺𝑆̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅ )
⁄                                           (43) 

where 𝛼 is the blending parameter. Based on local flow statistics, the sub-filter stress now 

transitions between a modeled Reynolds stress (𝜏𝑖𝑗
𝑅𝐴𝑁𝑆) and an LES sub-grid stress (𝜏𝑖𝑗

𝑆𝐺𝑆). The 

resolved and modeled stresses contain an overbar (𝜏𝑗̅) signifying ensemble or Reynolds-averaged 

quantities. Since the baseline version of the DHRL modeled was developed for stationary flows, 

the Reynolds-averaged quantities were obtaining by using a running time average for a large 

number of time-steps which is statistically analogous to an infinite time average. 

The DHRL model used in this study incorporates the SST k-ω model as its RANS 

component and MILES as the LES component. Since MILES does have an explicitly defined sub-

grid stress model but depends on numerical dissipation to model the effects of the small scales, we 

know that: 

𝜏𝑖𝑗
𝑆𝐺𝑆̅̅ ̅̅ ̅̅ = 0                                                                (44) 

and Eqs. (42) and (43) simplify to: 

𝜏𝑖𝑗 = (1 − 𝛼)𝜏𝑖𝑗
𝑅𝐴𝑁𝑆

                                                      (45) 

𝛼 =
𝑢𝑖"𝑢𝑗"
̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅

𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅

⁄                                                      (46) 

where, 

𝜏𝑖𝑗
𝑅𝐴𝑁𝑆 = 

2

3
𝑘𝛿𝑖𝑗 − 2𝑡𝑆𝑖𝑗̅̅̅̅                                                  (47) 

and Eq. (40) can now be written as: 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢̂𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃̂

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(2𝜈𝑆̂𝑖𝑗) −

𝜕

𝜕𝑥𝑗
((1 − 𝛼)𝜏𝑖𝑗

𝑅𝐴𝑁𝑆)                   (48) 
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Based on the ratio of resolved to modeled production, the value of 𝛼 is limited between 1 

and 0. In regions where sufficient turbulent fluctuations can be resolved, i.e. 𝑢𝑖"𝑢𝑗"
̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅ ≥  𝜏𝑖𝑗

𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅ , 

the model recovers pure LES as 𝛼 → 1. In regions where 𝑢𝑖"𝑢𝑗"
̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅ ≪  𝜏𝑖𝑗

𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅ , the model recovers 

pure RANS as 𝛼 → 0. Further details regarding the development of the DHRL model are discussed 

in Chapter VII. 

Compared to other HRL models, one major improvement of the DHRL modeling 

framework is the lack of any explicit grid terms in the blending parameter 𝛼. This allows the model 

to remain relatively insensitive to changes in grid resolution as shown in previous studies. 

3.2 NUMERICAL APPROACH 

This research uses a low- dissipation numerical scheme for simulation of all the turbulent 

flow for which at least a portion of the turbulence spectrum is resolved. The representative low-

dissipation scheme used is discussed below. 

3.2.1 Optimization-based Gradient RE-construction (OGRE) Scheme  

The low-dissipation numerical scheme used in this study is the Optimization-based 

Gradient RE-construction (OGRE) scheme [37]. OGRE is a face variable reconstruction method 

that utilizes iterative least-square gradient computation to minimize 2nd order dissipation on 

cartesian and structured grids. The left and right face states are calculated using Mach-number-

weighted averaging, while a slope limiter preserves local monotonicity. OGRE calculates an initial 

gradient using a weighted least-squares method of the form:  

𝜕𝜙̂

𝜕𝑥𝑖
= ∑𝑛=1:𝑁 𝜔𝑖,𝑛(𝜙𝑛−𝜙0)                                                     (49) 
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where 𝜙 is any primary variable,  𝜔𝑖 is the weight co-efficient, 𝜙𝑛 is the neighboring cell variable 

value of variable 𝜙, 𝜙0 is the current cell variable value, and N is the summation over neighboring 

cells. A modified gradient is then calculated using identical weight coefficients as: 

𝜕𝜙

𝜕𝑥𝑖
= ∑𝑛=1:𝑛 𝜔𝑖,𝑛 [(𝜙𝑛−𝜙0) + 0.5 (

𝜕𝜙̂

𝜕𝑥𝑖
|
0
−

𝜕𝜙̂

𝜕𝑥𝑖
|
𝑛
) 𝑟𝑗,0𝑛]                            (50) 

The initial cell gradient for a given cell and its neighbor are denoted by 
𝜕𝜙̂

𝜕𝑥𝑖
|
0
and 

𝜕𝜙̂

𝜕𝑥𝑖
|
𝑛

 and the 

direction vector pointing to each neighboring cell centroid is given by 𝑟𝑗,0𝑛. It has been shown for 

several previously documented numerical simulations that OGRE effectively reduces numerical 

dissipation in Cartesian and structured regions of meshes even for non-uniform aspect ratios and 

wall-normal cell stretching. From spectral analysis, the OGRE scheme has a been shown to 

eliminate up to the 3rd order dissipative error contribution for perfectly structured grids. 
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CHAPTER IV 

 

 

NUMERICAL SIMULATION OF A THREE-DIMENSIONAL AXISYMMETRIC HILL: 

PERFORMANCE EVALUATION OF RANS AND HYBRID RANS-LES TECHNQIUES 

 

 

 

4.1 INTRODUCTION AND OBJECTIVES 

The unsteady flow over a three-dimensional axisymmetric hill is of considerable 

importance to the Computational Fluid Dynamics (CFD) community because of the complex flow 

features associated with it. The incoming fully developed boundary layer is attached in the 

windward side with a small recirculation bubble at the foot of the hill. The flow separates at the 

apex of the hill and re-attaches close to the foot of the hill. Because of the separation, several key 

flow features dominate the separation region such as intermittent wakes, separation bubbles, 

vortices, and regions of varying turbulence intensities. This type of unsteady behavior is commonly 

associated in hydrodynamic applications, energy extraction, dispersion of air pollutants, and in 

aviation applications. These highly unsteady flow features are represented poorly using 

conventional Reynolds-averaged Navier-Stokes (RANS) models. Although Direct Numerical 

Solution (DNS) is capable of providing accurate descriptions of the flow physics, it is prohibitively 
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expensive. Most recent studies have focused on the use of Detached Eddy Simulation (DES), LES 

and hybrid RANS-LES (HRL) techniques to accurately model this type of flow. 

This study aims to demonstrate the predictive capabilities of a dynamic Hybrid-RANS LES 

(DHRL) model in resolving the flow around a 3D axisymmetric hill. The DHRL model proposed 

by Bhushan and Walters [35,36] is based on the concept of rigorous separation of Reynolds stress 

and sub-grid stress. The model attempts to improve on the shortcomings of traditional HRL models 

such as explicit grid dependence, delayed break down of shear layers, and modeled stress depletion 

in attached boundary layers. This study also aims to demonstrate the importance of using a low-

dissipation numerical scheme for practical simulation of turbulent flow for which at least a portion 

of the turbulence spectrum is resolved.  

4.2 NUMERICAL SETUP 

Numerical simulations were carried out in Loci-CHEM [39,40] which is a finite volume 

flow solver capable of modeling chemically reacting flows. CHEM employs density-based 

algorithms, implicit numerical methods, and high-resolution approximate Riemann solvers to 

solve chemically reacting viscous turbulent flows. The convective terms are discretized using a 

traditional upwind-biased second-order Roe flux formulation and with a low dissipation face 

variable scheme also known as the Optimization-based Gradient RE-construction (OGRE) 

scheme. 

  For the present simulations, low Mach number ideal gas flow was used to simulate flow 

in the incompressible regime. Velocity inlet and pressure outlet boundary conditions were applied 

in the upstream and downstream directions respectively, while the hill, bottom wall, and side walls 

were specified as no-slip wall boundaries. To match the experiments, a fully-developed turbulent 

boundary layer profile was enforced on the inlet plane and atmospheric pressure was considered 
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at the pressure outlet boundary. The incoming streamwise velocity profile was defined by the 

power law approximation 

𝑢𝑥 =

{
 
 

 
 𝑈0 (

𝑦

δ 
)

1

𝑛
    

𝑈0        

𝑈0(
3.2𝐻−𝑦

δ 
)
1

𝑛       

           

           𝑦 ≤ δ 

(3.2𝐻 − δ) ≥ 𝑦 ≥ δ                     (50) 

 3.2𝐻 ≥ 𝑦 ≥ (3.2H − δ) 

where the inlet velocity is 𝑈0 = 27.5 𝑚/𝑠, the boundary layer height is equal to one-half of the 

hill height (𝛿 = 𝐻/2), the exponent 𝑛 = log(𝑅𝑒), and y is the wall-normal distance. A Reynolds 

number of 𝑅𝑒𝜃 ≈ 7300 was approximated by using 𝑛 = 7, similar to the study carried out by 

Persson et al. [8]. Other inlet variables were calculated based on inlet freestream turbulence 

intensity and turbulent-to-molecular viscosity ratio of 0.1% and 10, respectively. Turbulent kinetic 

energy and specific dissipation rate for fully developed duct flow were specified at the inlet. For 

further details on inlet boundary conditions, readers are referred to [3,8-10] and Ansys Fluent User 

Guide [41].

4.3 COMPUTATIONAL DOMAIN 

Fig. 1 shows the shape of the hill is defined by Simpson et al. [7]  given by: 

𝑦(𝑟)

𝐻
= −

1

6.04844
[𝐽0(𝛬)𝐼0(𝛬

𝑟

𝑎
) − 𝐼0(𝛬)𝐽0(𝛬

𝑟

𝑎
)]                                   (51) 

where 𝛬=3.1926, height of the hill is given H=78mm, and   a=2H=156mm which is the radius of 

the circular base of the hill. 𝐽0 and 𝐼0 are the Bessel function of first kind, and the modified Bessel 

function of the first kind respectively. Figure 2 shows an isometric view of the computational 

domain with the hill mounted at the bottom of a channel. The domain extends up to 32H in the 

stream-wise direction, 11.6H in the cross-stream direction and 3.2H in the wall-normal direction. 
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The inlet, outlet and the cross-stream boundaries are located at 12.8H, 19.2H, and 5.8H, 

respectively, from the center of the hill.   

 

 
Figure 1. Side-view of the hill 

 

 

 
 

Figure 2. Isometric view of the domain 
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Table 1. Comparison of computational domain sizes used in past numerical studies 

STUDY DIMENSION (x, y, z) GRID SIZE (approximate) 

Present Study and [42] 32H x 3.2H x 11.6H 1x106 (Coarse Grid), 2.5x106 (Medium 

grid), and 4.5 x106 (Fine grid) 

Chitta et al. [5] 32H x 3.2H x 11.6H 6.85 x106 

Davidson et al. [10] 19.8H x 3.2H x 11.7H 1.72 x106 

 

 

 

Garcia et al. [11] 

20H x 3.2H x 11.7H 

13H x 3.2H x 11.7H 

134.5 x106 (GVR group) 

36.7x106 (LL group) 

 

 

 

Persson et al. [8] 

12H x 3.2H x 10H 

48.6H x 3.2H x 10H 

 

 

 

1x106, 2.09 x106, and 4.03 x106 

Patel et al. [9] 9.5H x 3.2H x 10H 5.08 x106 

 

Three multi-block structured grids were generated containing 1 million (coarse grid), 2.5 

million (medium grid) and, 4.5 million cells (fine grid) in Ansys. The boundary layer was resolved 

such that the non-dimensional wall distance or y+ of the first cell height was less than unity 

throughout the domain based on the flow conditions. The cell spacing away from the hill was 

gradually increased to reduce computational expense as shown figures 2 and 3. The cell 

distribution of each grid is provided in Table 1. The fine grid was used for all numerical simulations 

after results from a grid independence study were considered.  
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Figure 3. Close up view of the refined mesh around the hill 

 

Figure 4. Cell density of the refined grid around the hill 

 

4.5 RESULTS AND DISCUSSION 

Results obtained from all the models are discussed and validated against experimental data 

and other numerical data in the following section.  

4.5.1 Distribution of Pressure Coefficient on the Centerline z/H = 0 

Figures 5 and 6 compare the Cp distribution on the surface on the hill between experiments 

and numerical simulations respectively. Cp  is the dimensionless ratio of relative pressures given 

by Eq. (52): 
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Cp=
𝑃−𝑃∞
1

2
𝑈∞

2
                                                                    (52) 

where P is the static pressure at a given location, 𝑃∞ static freestream pressure,   is the density, 

and 𝑈∞ is the freestream velocity. 

Both, the experimental results and numerical simulations, have been displayed using the 

same scale.  As the flow approaches the hill, incoming boundary layer causes a small recirculation 

zone at the foot of the hill at x/H = -2 because of the stagnation zone at the foot of the hill. The 

presence of this recirculation region is not mentioned in the experimental results but was identified 

by Persson et al. [8] and by Chitta et al. [5]. After reattachment, the flow is accelerated towards 

the top of the hill where the lowest pressure is recovered. All the models predict the mean flow 

characteristics closely up to the top of the hill. The major differences in predictions are in the size 

and shape of the low-pressure region on the leeward side which causes a variation in the size and 

location of the separation bubble. The SST k-ω, SA-DDES, and SST Multiscale models predict 

lower pressure gradients and predict a late pressure recovery, while the SA-DES and the DHRL 

model predicts a sharp Cp recovery and a smaller separation bubble. 

 

Figure 5. Contours of Cp by Simpson et al. [2]                     
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(a)                                                                        (b) 

 

(c)                                                                        (d) 

 

(e) 

 

Figure 6. Contours of Cp for 4.5m grid using (a) SST Model, (b) SA DES Model, (c) SA 

DDES Model, (d) SST Multiscale Model, and (e) DHRL Model.  
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Figure 7 shows the variation of pressure coefficient on the centerline z/H = 0 for all the 

models considered in this study. As the flow approaches the foot of the hill on the windward side, 

a stagnation region is observed at -2 < z/H < -1.5 which is represented by an increase in Cp . As 

the flow moves further up the hill, because of streamline curvature, Cp starts to decrease sharply. 

Lowest mean pressure is recorded at x/H=0 at the top of the hill followed by flow separation 

indicated by the inflex in the Cp plot around x/H~0.8. Reattachment takes place between x/H=1.85 

and 2.25 when mean-pressure eventually recovers. All the models accurately predict the Cp values 

on the windward side (x/H < 0), and leeward side (x/H ≥ 3). In both these regions a RANS solution 

is predicted by all the HRLs. The SST k-ω and the SA-DDES models over-predict mean-pressures 

on the windward side at the stagnation region (x/H=-1.5). For x/H > -1, all the models behave 

similarly as the flow is accelerated towards the top of the hill. Only the SA-DDES and the DHRL 

models predict correct inflexion point at x/H = 0 and x/H= 1 which enables them to recover 

accurate mean-pressures and predict smaller recirculation bubble. The SST k-ω, SA-DES, and SST 

Multiscale models predict inflexion before x/H=1 and separate early. Also, the models do not 

recover pressure fast enough leading to exaggerated recirculation zones. Overall, the DHRL model 

predictions are superior to the other models. The model accurately predicts peak pressure zones 

with slight deviations in the inflexion regions along. The DHRL model also predicts the smallest 

recirculation zone with a reattachment location that is close to experimental observations. 
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(a)                                                                        (b) 

 

(c)                                                                            (d) 

 

     (e) 

Figure 7. CP profiles along the centerline z/H = 0. (a) SST, (b) SA-DES, (c)  

SA-DDES, (d) SST Multiscale, and (e) DHRL Model.  Simpson et al. [2];  coarse grid,   

 medium grid, and  fine grid. 
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4.5.2 Recirculation Zone Behind the Hill 

Figure 8 (a) thru (h) compares the separation and reattachment location of the flow for 

experimental observations and for each of the models considered in this study. For flows past bluff 

bodies, the size and shape of the obstruction plays a very important role in the location of boundary 

layer separation and reattachment. The SST k-ω RANS model predicts separation past the apex of 

the hill with a large recirculation region. Because of the lowered stress prediction, the reattachment 

location is delayed resulting in a large separation bubble. For the traditional HRL models, the 

RANS-LES transition takes place inside the boundary layer on the windward side of the hill. As 

the models switch to an LES form, eddy viscosity is lowered and the near wall momentum in the 

boundary layer is reduced. In the boundary layer around the apex of the hill, the models operate in 

LES. Since this region is dominated by small scale vortex shedding, the grid is too coarse to resolve 

enough fluctuations that would balance the lack of modeled stress. This phenomenon manifests 

itself as modeled-stress depletion (MSD) and is readily observable for the SA-DES and SST-

Multiscale model. Both these models separate early followed by large recirculation zone and 

delayed reattachment. In the recirculation zone, the flow is characterized by large scale vortex 

shedding and unsteady boundary layer separations. In this region, the SA-DES and SST Multiscale 

models initially switch to LES before reverting back to a RANS form. Since RANS models are 

shown to underpredict shear stress in separated flows, the prediction of the separation bubble is 

grossly overestimated. The SST k-ω model separates later and predict massive separation bubbles. 

The separation location of the SA-DDES model is also delayed as the DDES was formulated to 

address this very issue of early transition caused by modeled stress depletion. The model 

effectively delays separation but ultimately over-predicts the recirculation bubble size caused by 

predicted stress. Overall, the DHRL model prediction of the recirculation zone is closest to 
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experimental observations [2], with reattachment taking place just beyond the foot of the hill at 

x/H ~2.25. The DHRL model predicts RANS behavior till the apex of the hill followed by a 

transition to LES mode in the separated region. Since the DHRL model does not include any grid 

scale parameters in the RANS-LES blending, the model appears to be relatively insensitive to 

changes in aspect ratio between the boundary layer and the freestream regions. Figure 9 (h) 

highlights the ability of the DHRL model to resolve the separation region accurate for the coarse 

grid (1 million cell) using the DHRL model. The location of flow separation and the recirculation 

height recovered is comparable to the fine grid.  
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(a)                                                           (b) 

 
(c)                                                             (d) 

 
(e)                                                             (f) 

 
(g) 

 

Figure 8. Separation-bubble size comparison (a) Byun et al. [9], (b) SST, (c) SA DES,  

(d) SA DDES, (e) SST Multiscale, (f) DHRL, and (g) DHRL Model for coarse grid (1 million 

cell grid).  
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4.5.3 Streamwise Velocity Distribution at x= 3.69H 

Normalized streamwise velocity distribution profiles are shown in Figure 9. All the models 

considered in this study show velocity defects closer to the center of the hill, i.e. at z=0, especially 

in the boundary layer. This streamwise location is past the reattchement location for the 

experimental case where the turbulent boundary has re-formed. Major discrepancies in this region 

is caused by the over exaggerated separation bubble size predicted by some of the models. The 

SST k-ω model first underpredicts the value of 𝑢̅/𝑈𝑖𝑛 for z/H < -0.33, then overpredicts the value 

of 𝑢̅ for z/H ≥ -0.33. The SA-DES model predictions are an improvement over the SST k-ω model. 

The model qualitatively captured the velocity field with considerable accuracy for z/H ≥ -0.81. 

Major disagreements with experimental data occur directly behind the hill for 0 ≤ z/H ≤ -0.16 

where velocity is under-predicted. For z/H ≤ -1.79, the model over-estimates the near-wall velocity 

which leads to large separation region. The SA-DDES does not improve results when compared 

to the SA-DES model. In fact, the SA-DDES model considerably over-estimates the near-wall. 

The model, however, does provide improved predictions when compared to the SST k-ω model 

for z/H < -0.33. The SST Multiscale model predictions are on par with the SA-DES model. The 

model predicts velocity defect for z/H ≤ 0.33 and predictions are closer to experimental results. 

Finally, The DHRL model produces the least velocity defect especially in the near-wall regions 

however, some defects are present in the outer layer where the flow is separated z/H ≤ -0.33. 

Predictions improve considerably at stations farther away from the hill, z/H ≥ -0.81. Some of the 

inaccuracy near wall can be attributed to delayed transition from RANS to LES and vice versa.  
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(d) 

 

(e) 

Figure 9. < 𝒖̅ >/𝑼𝒊𝒏 at x= 3.69H for (a) SST, (b) SA-DES, (c) SA-DDES, (d) SST 

Multiscale, and (e) DHRL Model.  Simpson et al. [2];  coarse grid,   medium 

grid, and  fine grid. 
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4.5.4 Spanwise Velocity Distribution at x= 3.69H 

Figure 10 shows the distribution of normalized spanwise velocity behind the hill. As 

mentioned in the last section, some of the discrepancies in velocity is due to the exaggerated 

separation bubble predicted by some of the models. The SST k-ω model predicts the wrong 

direction of flow in the boundary layer for 0.16 ≤ z/H ≤ 0.81. For z/H > 0.81. Similar to the stream-

wise component, the SA-DES model improves the velocity prediction significantly from the SST 

k-ω model. The model captures the flow behavior qualitatively but fails to predict the magnitude 

with accuracy. Predictions are improved for z/H > 1.14 where the effects of turbulent fluctuations 

are dampened. The SA-DDES model predicts large velocity defects in the near wall region with 

flow going in the opposite direction for z/H ≤ 0.33. The outer region of the flow is predicted with 

considerable accuracy and very little disagreement with experimental observation is noticed. The 

SST Multiscale model behaves like the SST k-ω and adopts a similar behavior in the boundary 

layer. The model overestimates the separation bubble size shows significant velocity defects in the 

near-wall regions. Finally, The DHRL model predicts the correct direction of the flow in the 

boundary layer and predictions are closest to experimental results. 
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(d) 

(e) 

Figure 11. < 𝒘̅ >/𝑼𝒊𝒏 at x= 3.69H for (a) SST, (b) SA-DES, (c) SA-DDES, (d) SST 

Multiscale, and (e) DHRL Model.  Simpson et al. [2];  coarse grid,   medium 

grid, and  fine grid. 
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4.5.5 Profiles of Friction Velocity at x=3.63H 

Figure 11 compares the spanwise variation of normalized friction velocity (𝑢𝜏 𝑈𝑜⁄ ) at 

x/H=3.63 along several stations in the z-direction. According to experimental data, at z/H=0, peak 

value of friction velocity is observed due to the strong downwash of the vortices and eventually 

smooths out towards the outer edge of the hill. From numerical simulations, none of the models 

accurately resolves peak friction velocity. The SST Multiscale model recovers the peak values but 

overpredicts friction velocity along the z-direction. The DHRL model provides most agreement 

with experimental data for z/H ≤ -0.5 and z/H ≥ 0.3 but fail to predict peak friction velocity values 

at z/H=0. From figure 10 (e), it is clear that the DHRL model underpredicts velocity in the near-

wall region for z/H=0. This ultimately leads to inaccurate mean-stress prediction hence the absence 

of the peak friction velocity. According to the study conducted by Persson et al. [8], RANS models 

predict reduced mean-stress at z/H=0 where experimental stress attains peak value. Since the 

DHRL model primarily operates in the RANS framework at the wall, an alternative would be to 

use an improved RANS model within the DHRL framework. Chitta et al. [5] demonstrated that 

using a four-equation transition and rotation-curvatures sensitized model which improves the near-

wall mean-flow predictive capability. 
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(a)                                                                            (b) 

  
(c)                                                                           (d) 

   
(e) 

 

Figure 11. Profiles of friction velocity. (a) SST, (b) SA-DES, (c) SA-DDES, (d) SST 

Multiscale, and (e) DHRL Model.  Simpson et al. [2] with ±3% experimental error; 

coarse grid,   medium grid, and  fine grid. 
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4.5.6 Streamwise and Spanwise Velocity Distribution at x= 3.63H  

To highlight the relative performance and cost-effectiveness of the DHRL model, 

comparisons against benchmark numerical studies performed by Garcia et al. [11] and two of the 

best performing HRL models (SA-DES and SST Multiscale) from the previous sections are made 

in the following sections. Figures 13 and 14 show the distribution of streamwise and spanwise 

velocity profiles for the SA-DES, SST Multiscale, and DHRL model at x=3.63H evaluated against 

the experimental data [15] and provided by Garcia et al. [11]. The SA-DES model and the SST-

Multiscale models show poor agreement with experimental and benchmark data for x/H <1.10 and 

z/H <1.10. However, predictions are substantially improved for x/H ≥1.10 and z/H ≥1.10. 

Compared to SA-DES and SST Multiscale models, the DHRL model predictions are considerably 

more accurate. For streamwise velocity, some discrepancies arise in the location directly behind 

the hill (z/H=0), while predictions for the spanwise velocity are in close agreement with 

experimental data and numerical simulations.  
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 (a) 

 

 

(b) 

 

Figure 12. Plots of (a) < 𝒖̅ >/𝑼𝒊𝒏 and (b) < 𝒘̅ >/𝑼𝒊𝒏 at x= 3.63H.  Ma et al. [15],  LL 

and  GVR [11],  SST Multiscale , and SA-DES model 
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(a) 

 

 

(b) 

 

Figure 13. Plots of (a) < 𝒖̅ >/𝑼𝒊𝒏 and (b) < 𝒘̅ >/𝑼𝒊𝒏 at x= 3.63H.  Ma et al. [15],  LL 

and  GVR [11],  DHRL coarse grid,  DHRL medium grid, and DHRL  fine grid 
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4.5.7 Resolved Turbulent Kinetic Energy and Resolved Reynolds Stress distribution at x= 

3.63H 

Figures 14 and 15 compare resolved Turbulent Kinetic Energy (TKE) and Reynolds Stress 

plots for some of the HRL models considered in this study (SA-DES and SST Multiscale) and the 

DHRL model against experimental and benchmark numerical data. The SA-DES and SST 

Multiscale models overestimate resolved TKE considerably for z/H ≤ -0.65 due to the presence of 

large separation bubble. Predictions are somewhat improved for z/H= -1.10 before both models 

recover little resolved fluctuation for z/H = -1.79. The SA-DES and Similar behavior is observed 

the Reynolds stress profiles. Most of the unsteady interactions are in the separated region and 

eventually decay when unsteady content is no longer adequately resolved. The DHRL model 

results are a significant improvement over its HRL counterparts. The DHRL model effectively 

recovers the resolved TKE qualitatively with slightly higher magnitudes for z/H ≤ -0.65. However, 

resolved TKE predictions are less accurate resolved away from the centerline, i.e. for z/H=0, in 

the spanwise direction. This overprediction is caused due to lack of dissipative scales in the flow 

in these regions of high aspect ratio cells. The predicted Reynolds stress profiles are also in good 

agreement with experimental and numerical data.  
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Figure 14. Plots of (a) Resolved TKE/𝑼𝒊𝒏
𝟐
, (b) Resolved Reynolds Stress (𝒖′𝒗′̅̅ ̅̅ ̅)/𝑼𝒊𝒏

𝟐
 at x= 

3.69H.  Ma et al. [15],  LL and  GVR [11],  SA-DES, and  SST-Multiscale 

model 
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Figure 15. Plots of (a) Resolved TKE/𝑼𝒊𝒏
𝟐
, (b) Resolved Reynolds Stress (𝒖′𝒗′̅̅ ̅̅ ̅)/𝑼𝒊𝒏

𝟐
 at x= 

3.69H.  Ma et al. [15],  LL and  GVR [11],   DHRL coarse grid,  DHRL 

medium gird, and  DHRL fine grid 
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4.5.8 Contours of Turbulent Kinetic Energy  

Figure 16 compares contours of resolved TKE for the SA-DES, SST Multiscale and DHRL 

model against experimental data and numerical simulations carried out by Garcia et al. [11]. As 

the flow passes the crest of the hill, flow instabilities are initiated due to the adverse pressure 

gradient on the leeside of the hill. Eventually, the flow separates and thus a region of enhanced 

turbulent production is formed in the separated shear layer. Fig. 16 (a) shows the distribution of 

TKE and flow transport velocity vectors of TKE due to turbulent diffusion. The variation in the 

magnitudes of the turbulent diffusion vectors signify unsteadiness in the flow. Large amounts of 

TKE generated near the wall around x/H~0.3 and it is interesting to note that this location is quite 

upstream from the actual separation location which occurs around x/H~0.7. Similar behavior is 

exhibited by the LL group in the study performed by Garcia et al. [11]. The authors attribute this 

behavior to large production of TKE associated with thin shear layer. Overall the DHRL model 

performance is superior to the other HRL models and somewhat comparable to the GVR 

simulations.   
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 (a) (b) 
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Figure 16. 𝑻𝑲𝑬/𝑼𝒊𝒏
𝟐
 at x= 3.69H for (a) Byun et al. [14], (b) GVR and (c) LL [11], (d) SA-

DES, (e) SST Multiscale, and (f) DHRL Model 
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4.5.9 STRUCTURE OF FLOW BEHIND THE HILL 

The flow past the hill is complex due to the presence of strong spanwise and streamwise 

currents. The wake region is characterized by the presence of complex structures such as 

recirculation bubbles and vortices. The vortices are formed as a low-pressure region is created 

behind the hill as flow is accelerated flow around the sides and over the hill. This recirculation 

zone consists of two vortices or one counter rotating vortex pair (CRVP) that produces large 

amounts of turbulence along z/H=0 with low frequency motions, effectively contributing to 

turbulent mixing. Similar to the experimental observations [2] and numerical data from the GVR 

[11], the DHRL model clearly resolves two CRVPs on the center and two CRVPs along the edges 

of the hill. The coarse grid results also show the presence of two CRVPs except for some of the 

finer structures that are lost due to added numerical dissipation caused by the coarseness of the 

grid.  
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(a)                                              (b) 

 

 (c)                                              (d) 

Figure 17. Vortex structure. (a) Oil Flow Visualization [2], (b) Garcia [11], (c) DHRL, and 

(d) DHRL Model for coarse grid  
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4.6 CONCLUSIONS 

This study investigated the predictive capabilities of a dynamic Hybrid-RANS LES 

(DHRL) model against a RANS SST k-ω model, SA-Detached-Eddy Simulation (DES), SA-

Delayed Detached-Eddy Simulation (DDES) and, SST Multiscale model for the canonical case of 

flow over a 3D axisymmetric hill. The flowfield around the hill contains complex 3D structures 

such as unsteady separations, reattachment zones, counter rotating vortices, regions of spatially 

varying pressure gradients. For highly separated flows such as this, RANS methods have often 

produced unsatisfactory results, while LES simulations are often deemed too expensive for 

practical application. The DHRL formulation provides a suitable balance between accuracy and 

cost of computation. Results obtained from numerical simulations using SST k-ω model, SA-DES, 

SA-DDES, SST Multiscale model, and DHRL model were compared to experimental data 

provided by Simpson, Byun, and Ma et al. [2,13-15] and benchmark LES data obtained by Garcia 

et al. [11]. 

Coefficient of pressure distribution, separation bubble size, normalized streamwise and 

spanwise velocity, and normalized friction velocity profiles were first evaluated behind the hill at 

x/H = 3.69 against experimental observations made by Simpson and Byun et al. [2,13-14]. As 

expected, the SST k-ω model results were poor compared to experimental data. The model 

predicted early flow separation followed by a large recirculation zone on the leeward side of the 

hill. The failure of the SST k-ω model can be attributed to the fact that the RANS models remove 

most of the energy containing the large eddies present in the flowfield as an outcome of the 

Reynolds-Averaging process. The HRL (SA-DES, SA-DDES, and the SST Multiscale) models 

provided improved description of the flow field by suffer from grid sensitivity leading to modeled 

stress depletion (MSD). Among the traditional HRL models, SA-DES and the SST Multiscale 
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models predicted the velocity profiles with some accuracy away from z/H = 0, but failed to capture 

the correct spanwise velocity, pressure distribution, and friction velocity. The DHRL model 

predictions were closer to experimental data. The model profiles were captured with considerable 

accuracy and, the pressure distribution was in close agreement with experimental results. The 

DHRL model also predicted a smaller recirculation zone with delayed separation. 

Since the SA-DES and SST Multiscale model predicted velocity and friction velocity 

profiles with the most accuracy among the traditional HRL models, data obtained from both 

models and the DHRL model was compared at x/H=3.63 are against benchmark LES data provided 

by Garcia et al.[11] and experiments carried out by Byun and Ma et al. [14,15]. Although both 

HRL models performed relatively well and captured velocity profiles away from z/H=0 with 

considerable accuracy, there were major disagreements with experimental and benchmark data for 

resolved Turbulent Kinetic Energy (TKE) and Reynolds Stress. Because of the exaggerated 

separation region, large amount of TKE was predicted above the wall near the centerline z/H = 0. 

The DHRL model predicted velocity profiles and turbulent statistics with greater accuracy. The 

streamwise and spanwise velocity predictions were close to experimental data and in some cases 

superior to benchmark numerical data for z/H ³ -0.65. The model predicted resolved TKE and 

Reynolds with relatively well however, major disagreements for resolved TKE occurred for z/H ³ 

-0.65. Because cells in this region are stretched rapidly to reduce computational cost, fluctuations 

smaller than grid scale are removed from the spectrum. This effectively reduces TKE dissipation 

leading to large overpredictions relatively close to the wall. Overall, the DHRL model 

outperformed the traditional HRL models and highlighted some of the advantages of the DHRL 

modeling framework. It must be mentioned that DES and DDES results can be improved 

significantly by following strict grid generation guidelines as suggested by Spalart et al. [43].  
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In conclusion, the DHRL model improved overall performance versus the other model 

forms investigated and showed relative insensitivity to mesh refinement level when compared to 

RANS and the other HRLs in this study. There was some deviation of DHRL model from 

experimental results for friction velocity and some near-wall statistics, but that can be attributed 

to the limitation of the RANS model used in this study. A transition sensitive, rotation and curvature 

corrected model such as the k-kL-ω-v2 [6] model, proposed by Chitta et al., could be a more suitable 

RANS model for this case. Throughout the study, the DHRL model predicted the flow with 

accuracy even with a coarser grid. In some cases, the DHRL model was able to capture importance 

flow physics with considerable accuracy for a fraction of the computing cost when compared to 

benchmark data. There were some discrepancies due to a part of the spectrum that was lost due to 

the coarseness of the mesh but the overall performance of the DHRL model for this type of 

complex flow is a testament to the robustness and superiority of the DHRL modeling framework 

over conventional HRL modeling techniques. 
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CHAPTER V 

 

 

STATIC AND DYNAMIC TIME FILTERING TECHNIQUES FOR HYBRID RANS-LES 

SIMULATION OF NON-STATIONARY TURBULENT FLOWS 

 

 

 

5.1 INTRODUCTION AND OBJECTIVES 

Because of the complexities associated with simulating non-stationary pulsating flows, 

explicit filtering operations can be used to improve predictive capabilities of LES models. It is a 

common assumption that the finite difference operators coupled with a sub-grid-stress model for 

an implicitly filtered LES, acts as a low pass filter by damping out high wavenumber flow 

structures. Though practical enough for most problems, there are drawbacks to this technique. One 

such issue is the contamination of the solution due to the lack of control over high frequency 

oscillations in the wave spectrum. Since there is no explicitly defined filter, high-frequency 

oscillations can interfere with the resolved portion of the spectrum and affect the dynamics of 

turbulence across a wide range of scales. This problem is easily mitigated by using an explicit 

filtering operation. Although a very useful alternative, the cost of using explicitly filtered LES is 

considerably higher than implicit LES.  

An alternative approach is to make use of finite time filtering, in which turbulent statistics 

are obtained based on values of the dependent variables at previous time steps. The temporal filter 
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size reflects the extent of the filtering operator into the past. Ideally, for the purpose of computing 

turbulence statistics, the temporal filter size will be significantly larger than the characteristic time 

scale of fluid turbulence, and significantly smaller than the characteristic time scale of any imposed 

unsteadiness (non-stationarity) of the flow field. Different choices for the filter type are available, 

but one such filter that is particularly attractive due to its ease of implementation is the exponential 

time filter or exponential time average (ETA), which allows the filtered value at any given time 

step in the simulation to be obtained solely as a function of the time step size, the filter size, the 

instantaneous value of the dependent variable at the current time step, and the filtered value of the 

dependent variable at the previous time step. As such, the ETA method is adopted in this study as 

a potential method for extending the DHRL model to non-stationary flows. 

The objective of this study is to investigate the performance of the dynamic hybrid RANS-

LES (DHRL) [35-36] model with a suitable time filtering technique for non-stationary flows. Two 

different filtering approaches are investigated: Exponential Time-Averaging (ETA) with a static 

filter and a Dynamic Time-Filtering (DTF) technique. Initially, the predictive capabilities of three 

static filters with ETA incorporated in the DHRL model are evaluated against LES data from [24], 

MILES and baseline DHRL models. The results indicate that a smaller filter width is suitable for 

low-forcing while, a large filter with is more appropriate with high forcing frequency. This suggest 

that for flows with a large difference in turbulent time scale and forcing time scale, i.e. low-

frequency oscillation, a smaller filter width is ideal. Although useful, the ETA with static filter 

relies heavily on user estimation to determine the appropriate filter width. For more complex flows, 

ETA with static filters may not be suitable. To address the issue of user dependence and to account 

for the changes in turbulent and forcing time-scales, the Dynamic Time Filtering (DTF) technique 

is proposed. As the name suggests, the DTF technique adjusts the filter width based on turbulent 
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statistics to resolve non-stationary flows accurately without the need of a user defined filter width. 

Performance of the DHRL model with the DTF are compared against the LES study conducted by 

Scotti et al. [24], Monotonically Integrated LES (MILES), a RANS model (SST k-ω), two 

conventional hybrid RANS-LES models (SST multiscale and SST-based detached eddy 

simulation), the baseline DHRL model, and the DHRL model with the static ETA methods. Results 

show that DTF shows improvement over the baseline ETA model throughout the entire forcing 

frequency spectrum for pulsating channel flow while having no detrimental effects when used in 

stationary channel flow.  

5.2 NOVEL TIME-FILTERING APPROACHES 

In order to extend the DHRL modeling framework to non-stationary flows, an alternative 

averaging technique is required. A relatively straightforward approach is to adopt causal time 

filtering. For the present study, the ETA and the DTF techniques would utilize exponential time 

averaging instead of Reynolds-Averaging. 

5.2.1 Exponential Time Averaging 

Exponential time averaging (ETA) is a 1st order infinite impulse response filter originally 

used in statistical applications such as stock market analysis [44]. The technique has previously 

been adopted for use in CFD applications, for example Pruett et al. [45] analyzed the use of 

exponential time averaging for the development of time-filtered large eddy simulation methods.  

For an arbitrary time-dependent variable ϕ, the exponential time averaged value ϕ̅ is 

defined as: 

𝜙̅(𝑡) =  
1

𝛥𝑓
∫ 𝑒𝑥𝑝 (

𝜏−𝑡

𝛥𝑓
)

𝑡

−∞
𝜙(𝜏)𝑑𝜏                                              (53)  
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where the filtered value of ϕ̅ is obtained as a weighted average of all previous values of ϕ, with 

the most recent values most heavily weighted. The filter size Δf determines how rapidly the 

weighting drops off as time is integrated into the past. The equivalent differential form is: 

𝑑𝜙̅

𝑑𝑡
= 

1

𝛥𝑓
(𝜙 − 𝜙̅)                                                           (54) 

where above is a causal filter with the key advantage that the rate of change of the filtered value 

at time t is calculable based only on values of ϕ and ϕ̅ at time t. A discrete analog is obtained by 

substituting a first-order backward difference approximation for the temporal derivative, with the 

result: 

𝜙̅(𝑡) = 𝛽𝜙(𝑡) + (1 − 𝛽)𝜙̅(𝑡 − ∆𝑡)                                             (55) 

where, 

𝛽 =
∆𝑡

∆𝑡+𝛥𝑓
                                                                  (56) 

During a CFD simulation, successive values of a filtered variable can be computed at each 

time step based only on the filtered value at the previous time step and the instantaneous value at 

the current time step. In the limit of zero filter size, the filtered value is equal to the instantaneous 

value. The running time-averaging operation used for stationary flow is formally similar to the 

above with the difference that the smoothing factor β is given by Eq. (56). 

𝛽 =
∆𝑡

𝑡
                                                                  (57) 

The filtering operation defined in Eq. (53) and numerically implemented by Eq. (55) was 

used to obtain a non-stationary approximation to the Reynolds-averaging operation. 
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It is apparent, however, that the filtering operation defined by Eq. (53) is not an exact 

equivalent to the infinite ensemble average implied by Reynolds averaging, even under conditions 

of ergodicity and zero numerical error. It is proposed, however, that the exponential time filter is 

a sufficiently accurate approximation of the Reynolds average that it can be used to provide an 

effective basis for application of the DHRL framework to non-stationary flowfields. 

5.2.2 Exponential Time Averaging (ETA) with static filters 

As an initial approach to determining an appropriate filter-width relevant for this particular 

problem, three different filter widths based on the time of one pulsation cycle (T) was chosen as 

shown in Table 3. It must be remembered that the filter width for any particular simulation using 

static filters is uniform in space and constant in time, and that filtering and differentiation 

operations commute. 

 

Table 1. Time filtering method used in the simulations for each frequency 

 

Model 

 

Time Averaging 

Method 

 

 

Filter Width (Δf) 

 

 

SST- k-ω 

SST Multiscale 

MILES 

DHRL 

DHRL1 

DHRL2 

DHRL3 

 

Infinite 

Infinite 

Infinite 

Infinite 

Exponential 

Exponential 

Exponential 

 

 

N/A 

N/A 

N/A 

N/A 

1/2 Cycle Static Filter (Δf = 𝜋 𝜔⁄  𝑜𝑟 𝑇 2⁄ ) 

1/4 Cycle Static Filter (Δf = 𝜋 2𝜔⁄  𝑜𝑟 𝑇 4⁄ ) 

1/8 Cycle Static Filter (Δf = 𝜋 4𝜔⁄  𝑜𝑟 𝑇 8⁄ ) 

 

 



66 | P a g e  
 

 

5.2.3 Dynamic Time Filtering (DTF) 

Similar to the ETA method outlined above, but with a spatially and temporally varying 

filter size, the Dynamic Time Filter (DTF) is selected based on an approximation of the large-eddy 

time scale of the turbulence. The goal of the dynamic filtering is to use a sufficiently large filter 

size, where and when needed, to obtain a reasonable approximation of Reynolds-averaged 

statistics, while limiting any tendency of the filter to smooth large-scale or imposed unsteady flow 

features.  

For the current DHRL implementation, the filter width ∆f used in Eq. (58) is computed at 

each mesh location and at each time step as: 

∆𝑓= 𝜓 √𝑚𝑎𝑥(𝑆𝑖̅𝑗𝑆𝑖̅𝑗 , 𝐶𝜇𝜔2)⁄                                                   (58) 

where ψ is a calibration constant, S̅ij is the mean rate of strain, ω is the specific dissipation rate, 

and Cμ is a constant with value 0.09. It is evident that the filter width is assumed to be inversely 

proportional to a large-eddy time scale, which is in turn assumed to be the proportional to the 

greater of the mean strain rate or the specific dissipation rate from the k-ω SST RANS model. 

Initially, a calibration constant ψ = 50 was chosen and is used for this study. Investigation of the 

influence of the value of the calibration coefficient is reserved for future studies. 

5.3 NUMERICAL SETUP 

The pulsating channel simulations were carried out using the CFD code Loci-CHEM 

[39,40]. Loci-CHEM is a three-dimensional density-based finite-volume solver using implicit 

numerical methods and high-resolution approximate Riemann solvers. Since the current study 
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involves incompressible flow, all simulations were run with Mach Number on the order 0.1 based 

on average streamwise velocity. All post processing and data reduction was done using ParaView.  

5.3.1 Forcing Functions and Parameters 

A forcing function based on a time-dependent pressure gradient was applied as a source 

term in the streamwise momentum equation. The forcing term is given by: 

𝑑𝑃𝑓

𝑑𝑥
= ∆𝑃0[1 + 𝐴 𝑐𝑜𝑠(𝜔𝑡)]/ 𝐿𝑥                                                (59) 

where 
𝑑𝑃𝑓

𝑑𝑥
 is the time-dependent pressure gradient in the source term, A is the non-dimensional 

amplitude of oscillation, ω is the forcing frequency, and ∆P0/Lx is the steady pressure gradient.   

Table 2 and Eqs. (60-64) provide a list of variables used for boundary condition 

calculations. Reτ is the Reynolds number based on mean friction velocity, δ is the channel half-

height, and ω+ is the forcing frequency in wall units. For additional variables and definitions, the 

readers are referred to [24]. 

Table 2. Parameters used in the simulations 

Variable High Frequency Medium Frequency Low Frequency 

Reτ  350 350 350 

ω+
 0.04 0.01 0.0016 

A 200 50 8 

 

𝑅𝑒𝜏 =
𝑢𝜏𝛿

𝜈
                                                            (60)                 

  𝜔+ =
𝜔𝜈

𝑢𝜏2
                                                            (61)                  

   𝑢𝜏 = √
𝜏𝑤𝑎𝑙𝑙

𝜌
                                                         (62) 
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u+ =
u

uτ
                                                            (63)                 

    y+ =
yuτ

ν
                                                           (64) 

5.3.2 Data Analysis 

As discussed above, neither exponentially filtered averages nor infinite-time averages of 

statistics reflect a true ensemble average for the present study. Planar averaging or phase averaging 

must be employed to accurately compare data to DNS and LES studies [24]. In the present work, 

instantaneous statistics of variables are planar averaged in post-processing using the averaging 

operation: 

〈𝑓〉(𝑦, 𝑡) =
1

𝐿𝑧𝐿𝑥
∫ ∫ 𝑓(𝑥, 𝑦, 𝑧, 𝑡)

𝐿𝑥
0

𝐿𝑧
0

𝑑𝑥 𝑑𝑧                                            (65) 

 

where 〈f〉 is the planar averaged value of any arbitrary flow variable f, x and z are the streamwise 

and spanwise coordinate directions respectively, and y is the wall-normal direction. 

5.3.3 Computational Domain and Boundary Conditions 

Figure 1 shows the computation domain used in this study, which is identical to [46,47]. 

The domain extends to Lx = 3πδ in the x-direction, Ly = 2δ in the y-direction, and Lz = πδ in the 

z-direction. Periodic boundary conditions were specified in the streamwise (x) and spanwise (z) 

directions, while a no-slip boundary condition was specified on the top and bottom walls. 
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(a)                                                                               (b) 

 

(c) 

Figure 1. Side-view of (a) coarse grid, (b) fine grid, and (c) isometric-view of the domain 

Grid Generation & Sensitivity Study 

The boundary layer was constructed such that the non-dimensional wall distance or y+ was 

maintained at less than unity for the first cell, while cells were stretched normal to the wall to 

reduce computational expense. To validate computational grids for the present study, steady 

channel flow simulations at Reτ = 350 were carried out using MILES and SST k-ω model for two 

grid resolutions, 64x64x64 (coarse grid) and 128x128x128 (fine grid) respectively. Simulations 

were run for at least 40 cycles with a time step size of 10−5 seconds for the 64x64x64 grid and 

10−6 seconds for the 128x128x128 grid. Convergence was determined by ensuring that key 

variables reached limit cycle behavior. 
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Table 3. Grid sizes used in the grid sensitivity study 

 

Mesh Type 

 

 

Coarse Grid 

 

Fine Grid 

 

Mesh Size 

 

 

64x64x64 

 

128x128x128 

 

 

Figure 2. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for steady channel flow. SST k-ω Model Coarse,  SST k-ω 

Model Fine, and       Log-Law. 

Figure 2 shows the variation of normalized friction velocity (u+) against dimensionless wall 

distance (y+), given by Eqs. (46) and (47) respectively, for a steady channel flow at Reτ = 350 using 

the SST k-ω model and MILES with both 64x64x64 and 128x128x128 grids. The results indicate 

minimal difference in the profiles of the SST k-ω model suggesting that the model behavior is very 

nearly independent of the grid resolution. Based on the results of Figure 2, all numerical simulation 

data presented in this study was obtained from simulations performed using the 64x64x64 grid 

based on the grid sensitivity study and to for comparison with LES data in [24].   
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5.4 RESULTS AND DISCUSSION 

5.4.1 Static-Filter Results 

This section will investigate the performance of the three proposed static filters with 

exponential time-averaging (ETA) against LES, MILES and baseline DHRL model. 

5.4.1.1 AC-DC Components 

In order to better understand the response of the mean flow to the time-varying pressure 

gradient forcing, results for pulsating flow are decomposed into a time-mean component (DC) and 

a time fluctuating component (AC). Figure 3 shows the variation of normalized friction velocity 

(u+) versus dimensionless wall distance (y+) for the AC and DC components of the flow for the 

high frequency case. Results are shown for MILES and for the DHRL model with the stationary 

formulation (DHRL) and the three ETA versions with varying filter size (DHRL1, DHRL2, 

DHRL3). According to Figure 3 all models are in close agreement with DNS and LES data [24] 

for the AC component. The models behave almost identically in the outer layers of the flow with 

minor disagreements with the experimental data in the buffer layer. For the DC component shown 

in Figure 3, laminar (MILES), DHRL1, DHRL2 and, DHRL3 models overpredict the velocity in 

the buffer layer and the outer layer while the DHRL model provides the best agreement with 

experimental data.  
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(a)                                                                            (b) 

Figure 3. (a) AC, and (b) DC component of streamwise velocity for high frequency case.  

LES [24], DNS [24],  MILES,  DHRL, + DHRL1, DHRL2, and  DHRL3 

 

5.4.1.2 Time Varying Mean Velocity 

Figures 4, 5, and 6 show the variation of normalized mean velocity (u+) versus 

dimensionless wall distance (y+) at 8 equidistant phases during a pulsation cycle. In each figure, 

t/T=0.75 and t/T=0.25 mark the beginning of the acceleration and deceleration phases respectively. 

For the high frequency case, the presence of a distinct logarithmic layer can be observed. At 

different phases during the cycle, the log layer is moved upwards and downwards by the changing 

core velocity while the outer layer remains virtually unaffected by the flow. MILES and all DHRL 

variants reproduce the velocity profiles with reasonable accuracy. Overall, the DHRL model, 

provides the best agreement with experimental data. MILES overpredicts the velocity in the log 

layer and the DHRL models with ETA (DHRL1, DHRL2, and DHRL3) overpredict velocity in 

the outer layers as seen from Figures 4, 5, and 6.  
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The effects of the forcing term are much more prominent in the velocity profiles of the 

medium frequency case. A distinct logarithmic layer is present only during a part of the cycle when 

the velocity is maximum. Also, a strong coupling of the logarithmic and outer layer can be seen in 

the deceleration phase of the cycle. In the acceleration phase, DHRL1, DHRL2, and DHRL3 

models slightly overpredict velocity in the log layer with major defects in the outer-layer. As the 

flow starts to decelerate, the DHRL1 and DHRL2 model predictions improve with minor 

deviations in the log-layer but the DHRL3 model consistently predicts a minor velocity defect in 

the buffer and log-layers. Overall, the baseline DHRL model consistently provides the most 

accurate predictions. The DHRL ETA variants with the larger filter widths, i.e. DHRL1 and 

DHRL2, are in better agreement with experimental data than DHRL3 suggesting that the use of 

larger filter widths is most effective for high frequency oscillations. A similar behavior is  

At low frequency, the entire channel is affected by slow modulations originating from the 

imposed forcing function. Throughout the acceleration phase, the DHRL models with ETA predict 

velocity with accuracy while, MILES and DHRL models overpredict the velocity. As the flow 

starts to decelerate causing enhanced mixing, DHRL2 and DHRL3 models follow experimental 

data closely while all the other models show large disagreements with experimental data. As the 

flow continues to slow down, DHRL1 recovers the correct velocity while MILES and DHRL 

models continue overpredicting velocity. Throughout the cycle, the explicitly filtered models 

provide reasonable agreement in the inner parts of the flow while slightly overpredicting velocity 

in the outer layers.  

The results in Figure 4 support the previous suggestion that, for high frequency pulsating 

flow, the DHRL model formulated for stationary flow performs the best. In this case the velocity 
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component due to the oscillating pressure gradient are treated as part of the fluctuating (rather than 

mean) velocity. However, as the frequency decreases, this description is less accurate. For the low 

frequency case shown in Figure 6, the stationary version of the model (DHRL) shows significant 

discrepancy with the LES results of [9]. The best agreement is obtained with the DHRL ETA 

variants with the two smallest temporal filter widths (DHRL2 and DHRL3). When the difference 

between the forcing time scale and the turbulence time scale becomes large, i.e. when there is 

significant temporal scale separation, the use of exponential time filtering is more appropriate. In 

that case, the periodic component of the velocity due to the oscillating pressure gradient is more 

appropriately treated as a time-dependent contribution to the mean flow rather than as a fluctuating 

component. Taken as a whole these results are encouraging. They suggest that the appropriate filter 

size may perhaps be computed based on the turbulent time scale rather than the imposed 

unsteadiness. Since this time scale varies spatially in the flow, it may require a dynamic filtering 

operation in which the temporal filter size is not spatially uniform.  
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Figure 4. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for high-frequency case.  LES [24],  MILES,  DHRL, + 

DHRL1, DHRL2, and  DHRL3
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Figure 5. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for medium-frequency case  LES [24],  MILES,  DHRL, + 

DHRL1, DHRL2, and  DHRL3 

0

10

20

30

40

1 10 100

U
+

log y+

t/T=0

0

10

20

30

40

1 10 100

U
+

log y+

t/T=0.125

0

10

20

30

40

1 10 100

U
+

log y+

t/T=0.25

0

10

20

30

40

1 10 100

U
+

log y+

t/T=0.375

-10

0

10

20

30

1 10 100

U
+

log y+

t/T=0.5

-10

0

10

20

30

1 10 100

U
+

log y+

t/T=0.625

-10

0

10

20

30

1 10 100

U
+

log y+

t/T=0.75

-10

0

10

20

30

1 10 100

U
+

log y+

t/T=0.875



77 | P a g e  
 

 

 
 

Figure 6. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for low-frequency case.  LES [24],  MILES,  DHRL, + 

DHRL1, DHRL2, and  DHRL3 
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5.4.2 Dynamic Time Filtering Results 

This section will investigate the performance of the DTF with exponential time-averaging 

against LES, MILES, SST k-ω, Multiscale, DHRL, and DHRL ETA models. 

5.4.2.1 Steady Pressure Driven Flow (Reτ = 350 & 590) 

Simulations of steady pressure-driven channel flow were carried out for Reτ=350 and 

Reτ=590 to verify the effect of using the DTF technique with DHRL model for a stationary flow. 

Results from all the models are in qualitative agreement with LES data from [24]. For both cases, 

all the models predict the behavior in the viscous sub-layer with considerable accuracy with major 

velocity defects appearing in the log-layer. The SST Multiscale model undergoes RANS-LES 

transition too close to the wall and underpredicts velocity in the log-layer for both cases. For Reτ 

= 590, MILES overpredicts velocity in the log-layer as LES is under-resolved in this region for the 

coarse grid, resulting in the well-known "log-layer mismatch". The baseline DHRL model 

underpredicts velocity in the outer layer for Reτ = 350, a behavior that can be attributed to increased 

modeled stress from the underlying RANS model. The DHRL model with DTF behaves like the 

baseline DHRL model up to the log layer but remains in LES mode in the middle region of the 

channel to predict the velocity profile with greater accuracy.  
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(a)                                                                          (b) 

Figure 7. 𝑼+ 𝒗𝒔 𝒍𝒐𝒈 (𝒀+) for steady channel flow at (a) Reτ=350 and (b) flow at Reτ=590.  

(a) Scotti et al. [24]; (b)  Moser et al. [48];  MILES, - - - DHRL,  DHRL DTF,                

 SST k-ω, and  SST Multiscale Model 

5.4.2.2 Pulsating Channel Flow 

In the previous section, the ETA with static filtering is a potentially attractive solution for 

applying the DHRL model for these types of problems. Despite improving the predictive 

capabilities of DHRL, ETA required considerable user input when considering an appropriate time 

filter width to be used in the averaging process. The filter widths were chosen arbitrarily to be 

based on forcing frequency. The DTF method eliminates user input by automatically selecting and 

dynamically altering the filter width based on local turbulent statistics. Users still have the option 

to alter the calibration constant (𝜓), allowing some measure of tunability, however for the present 

study a constant value of 50 was chosen based on preliminary numerical investigations. Table 4 

lists the naming convention for different models used in this study along with filtering methods 

and sizes used in this study. 
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Table 4. Time filtering method used for each model 

Model Time Averaging Method Time Filtering Method 

 

SST k-ω 

MILES 

SST MULTISCALE 

DHRL 

DHRL ETA 

DHRL DTF 

 

 

Infinite 

Infinite 

Infinite 

Infinite 

Exponential 

Exponential 

 

N/A 

N/A 

N/A  

N/A 

1/4 Cycle Static ETA (∆𝑓 = 𝜋/2𝜔 𝑜𝑟 𝑇/4)  

Dynamic Time Filtering (DTF) 

 

 

5.4.2.3 AC-DC Mean Velocity Components 

Figure 8 shows the normalized result for the three pulsating frequencies investigated. For 

the AC component in the high frequency case, all models are in close agreement with LES data 

with minor mismatch in the log-layer. For the DC component, all the models follow LES data in 

[24] closely in the buffer layer with the majority of the models overpredicting velocity in the log-

layer. The SST Multiscale model transitions to LES in the log-layer and revert to RANS in the 

outer layer, while the DHRL model with infinite time-averaging and the DHRL model with DTF 

follow LES data closely.  

For the AC component in the medium frequency case, all the models show significant 

velocity defect in the buffer layer all the way up to the log layer. MILES and the DHRL models 

underpredict velocity throughout the cycle but successfully capture the overall trend of the LES 

data. The SST k-ω and the DHRL model with DTF follow LES values closely in the log and outer-

layer with some defects in the near wall regions. SST Multiscale model initially overpredicts 

velocity in the near-wall regions before switching to switch to LES in the log-layer and 

underpredicting velocity. Most of the models are in better agreement with LES data for the DC 
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part of the flow. All the baseline hybrid models show velocity defects in the log layer. However, 

the DHRL model with DTF predicts accurate mean velocity throughout the channel with only 

minor defects in the log-layer. The DHRL model with DTF behaves very similarly to the SST k-

ω model throughout the flow. It appears that the DTF technique allows the DHRL model to remain 

in RANS mode in the outer regions of the flow where the baseline DHRL model is more LES 

dominant. The SST Multiscale model behavior is quite similar to that of the baseline DHRL model. 

Both predict near wall velocity reasonably well, but transition to LES in the log-layer and 

underpredict velocity.  

In the low frequency case, the overall behavior of all the models for AC and DC parts of 

the flow are similar to the medium frequency case. The baseline hybrid models predict near-wall 

velocity with reasonable accuracy, then underpredict velocity in the log and outer-layers of the 

flow. The SST k-ω and the DHRL model with DTF are in best agreement with LES data. However, 

there is some velocity defect for the DHRL model with DTF in the outer layer caused by increased 

resolved turbulence production. 

The analysis of the AC and DC components suggest that the DTF technique helps the 

DHRL model to accurately capture the flow physics throughout the imposed frequency spectrum 

and consistently provide superior results compared to the baseline DHRL model with infinite time-

averaging.  
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(a)                                                                             (b) 

 

(c)                                                                           (d) 

 

(e)                                                                           (f) 

 

Figure 8. Streamwise velocity components (a) High Frequency AC and (b) DC; (c) Medium 

Frequency AC and (d) DC; (e) Low Frequency AC and (f) DC.  LES [24];  MILES,        

   DHRL,  DHRL DTF,  SST k-ω,  and  SST Multiscale Model 
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5.4.2.4 Time-Varying Mean Velocity 

Figures 9, 10, and 11 show mean velocity versus wall distance at 8 equidistant times 

during a single pulsation cycle. Results are shown for all models in table 2. 

For all three of the forcing frequencies investigated, most of the models accurately capture 

the flow in the near-wall regions with major disagreements only appearing within the log-layer or 

wake region. For high frequency oscillations, all of the models predict the flow in the viscous sub-

layer and the buffer layer accurately. SST k-ω shows significant velocity defects in this region 

only in the acceleration phase. In the log-layer, the SST Multiscale model underpredicts velocity 

throughout the cycle. In the outer layer, the baseline DHRL model continues to follow LES data, 

while the DHRL model with ETA overpredicts velocity. In Figure 4 it was shown that all the ETA 

models overpredicted velocity in the outer layer with defects that increased as filter width was 

decreased. The DHRL model with DTF corrects this issue by dynamically adjusting the filter width 

based on turbulent statistics instead of relying on a user-defined filter width.  

For the medium frequency case, the effects of the forcing frequency on the velocity profile 

appear to be more significant. As mentioned earlier, the presence of a distinct log-layer can be 

observed only for some parts of the cycle. Similar to the high frequency case, most models capture 

the velocity profile trend of the LES data with some accuracy. In the acceleration phase, all the 

models overpredict velocity close to the wall. The SST Multiscale model undergoes RANS-LES 

transition just outside the buffer layer. In the log-layer, the SST Multiscale model underpredicts 

velocity while the DHRL model variants slightly overpredict velocity. In the deceleration phase, a 

similar trend is observed. The SST Multiscale model underpredicts velocity for majority of the 

flow, while the RANS model overpredicts velocity. Once again, all of the DHRL model variants 

show improved predictive capabilities when compared to the other models in the study.  
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For low frequency oscillations, the velocity profile exhibits slow modulations throughout 

the cycle. All three models show some defects in the log-layer but capture the correct velocity in 

the outer layer. The baseline DHRL model shows significant defect towards the end of the 

acceleration phase, but the DHRL models with ETA and DTF consistently follow LES data. All 

models without any filtering method predict incorrect velocity profiles towards the end of 

acceleration phase due to enhanced mixing as the flow starts to decelerate. Appropriate filtering 

techniques apparently enable the DHRL model with ETA and DTF to resolve turbulence more 

effectively. As flow continues to decelerate, the DHRL model with DTF resolves the mean 

velocity profile with reasonable accuracy with minor defects appearing in the outer layer.  

Overall, the results from Figures 9, 10 and 11 suggest that the DHRL model with DTF 

provides improved predictive capability when compared to ETA with a static filter size. For the 

high frequency case, the DHRL model with DTF behaves almost identically to the baseline DHRL 

model. Since for this case the turbulent time scale and characteristic mean time scale due to the 

imposed pulsation frequency are similar, the velocity component due to the oscillating pressure 

gradient is treated in the model as a part of the fluctuating velocity. As the forcing frequency is 

reduced, the separation between the turbulent time scales and the forcing frequency becomes 

larger. For these frequencies, the DHRL model with DTF dynamically adjusts the filter width 

based on the turbulent statistics.  
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Figure 9. 𝑼+ 𝒗𝒔 𝒍𝒐𝒈 (𝒀+) for high-frequency case.  LES [24]; MILES,  DHRL,  

DHRL DTF,  DHRL ETA ,  SST k-ω, and  SST Multiscale Model 
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Figure 10. 𝒖+ 𝒗𝒔 𝒍𝒐𝒈 (𝒚+) for medium-frequency case.  LES [24]; MILES,  DHRL, 

 DHRL DTF,  DHRL ETA,  SST k-ω, and  SST Multiscale Model
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Figure 11. 𝑼+ 𝒗𝒔 𝒍𝒐𝒈 (𝒀+) for low-frequency case.  LES [24]; MILES,  DHRL,  

DHRL DTF,  DHRL ETA,  SST k-ω, and  SST Multiscale Model
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5.4.2.5 Behavior of the blending parameter (α) for the DHRL model variants 

Figure 12 shows the variation of the blending parameter (α) for steady-channel flows at 

Reτ=350 and Reτ=590. For channel flows in relatively coarse grids, MILES is generally 

underresolved in the log-layer (log-layer mismatch). The DHRL model supplements the lack of 

resolved stress contribution in this region by adding a modeled stress component to improve 

predictions. Ideally, for turbulent channel flows, it is preferable for the DHRL model to be in a 

LES-biased mode with small RANS contributions. However, in coarse grids at low Reynolds 

numbers, the baseline DHRL model operates in a RANS-biased state throughout the height of the 

channel in response to the lack of significant resolved fluctuations. Although mean-flow features 

are well predicted by the RANS model, Reynolds stress are significantly underpredict due to the 

lack of resolved fluctuations.  

  

Figure 12. α for baseline DHRL model Reτ=350 and --- Reτ=590 

Figure 13 shows the distribution of AC and DC components of the blending parameter (α) 

for all the DHRL model variants throughout the forcing frequency spectrum. The baseline DHRL 

model treats the velocity fluctuations due to the oscillating pressure gradient as part of the mean-

flow throughout the forcing spectrum. This behavior is appropriate for high frequency oscillations 

since the imposed pulsation time-scale and the turbulent time-scales are of similar order. Hence, 

the AC component of the flow is appropriately described by the DHRL model in RANS-biased 

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

α

y/h



89 | P a g e  
 

mode. However, for lower frequency oscillations, the baseline formulation is unable to adequately 

separate the time-dependent velocity from turbulent fluctuations leading to increased RANS 

contribution and severe velocity defects. The implementation of the ETA and the DTF improves 

predictions as the models can effectively distinguish between the time-dependent components of 

the flow and turbulent fluctuations. Both models effectively adjust the relative RANS-LES 

contributions and significant improvements are observed for medium and low frequency 

oscillations. Overall, the DHRL DTF model performance is closer to the desirable behavior 

throughout the forcing spectrum and it provides the best agreement to LES data.  

 

 

 

Figure 13. Distribution of α for Baseline DHRL model  ;  DHRL ETA ; DHRL DTF    
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5.4.2.6 Reynolds Stresses 

Figure 14 compares AC and DC components of Reynolds-stresses for high frequency 

oscillations of some of the models investigated against DNS and LES calculations in [9]. 

MILES, baseline DHRL, and the DHRL DTF models are in qualitative agreement with DNS and 

LES data while, the DHRL ETA and SST Multiscale predictions are poor in comparison. MILES 

overpredicts the DC component of the Reynolds stresses but underpredicts the AC component. 

The baseline DHRL and the DHRL-DTF models provide relatively accurate descriptions of the 

u1'u1'̅̅ ̅̅ ̅̅  and  u1'u2'̅̅ ̅̅ ̅̅  components. Some defects are observed in the buffer and log-layers however, 

predictions are comparable to LES results in the outer regions of the flow.  

 

 

 

 

 

0

2.5

5

0 0.5 1

− (𝒖𝟏′𝒖𝟏′) AC

δ
0

5

10

0 0.5 1

− (𝒖𝟏′𝒖𝟏′) DC

δ

0

0.1

0.2

0 0.5 1

− (𝒖2′𝒖2′)AC

δ
0

0.5

1

0 0.5 1

− (𝒖2′𝒖2′)𝐃C

δ



91 | P a g e  
 

 

 

Figure 14. AC and DC components of resolved Reynolds stresses for high-frequency 

oscillations.  DNS [24], LES [24],  MILES, --- DHRL,  DHRL ETA,  DHRL 

DTF RESOLVED,  and  SST MULTISCALE 
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DHRL model variants predictions are close to LES only during the deceleration phase where 

turbulence production is enhanced.   

Results for Reynolds shear stress, shown in figures 18-20, indicates that MILES 

performance is superior to all the models investigated in this study. Although MILES overpredicts 

stresses during the deceleration phase, results from the acceleration phase is well correlated to LES 

data. Since the DHRL model tends to remain RANS-biased for Reτ=350, all the DHRL variants 

underpredict stresses. Correlations during the acceleration phase is poor as the model fails to 

accurately predict increased momentum and energy transfer between u and v components of the 

velocity. Similar to the low-frequency oscillations, some improvements in the predictive 

capabilities of the DHRL model variants are observed in the deceleration phase due to enhanced 

turbulence production. 

Overall, the DHRL-DTF models provide the best descriptions of the flow. Both models 

track the general behavior of the LES model reasonably well for the high and medium-frequency 

oscillations with major defects appearing for low-frequency oscillations.    
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Figure 15. Plots of resolved (ui'ui'̅̅ ̅̅ ̅̅ ) vs y+ for high-frequency oscillations . LES [24],  

MILES, --- DHRL, DHRL ETA,  DHRL DTF, and  SST MULTISCALE 
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Figure 16. Plots of resolved (ui'ui'̅̅ ̅̅ ̅̅ ) vs y+  for medium-frequency oscillations . LES [24],  

MILES, --- DHRL, DHRL ETA,  DHRL DTF, and  SST MULTISCALE 
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Figure 17. Plots of resolved (ui'ui'̅̅ ̅̅ ̅̅ ) vs y+ low-frequency oscillations. LES [24],  MILES, --

- DHRL, DHRL ETA,  DHRL DTF, and  SST MULTISCALE 
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Figure 18. Plots of resolved (𝒖′𝒗′̅̅ ̅̅ ̅) vs y+ for high -frequency oscillations. LES [24],  

MILES, --- DHRL, DHRL ETA,  DHRL DTF, and  SST MULTISCALE 
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Figure 19. Plots of resolved (𝒖′𝒗′̅̅ ̅̅ ̅) vs y+ medium-frequency oscillations. LES [24],  

MILES, --- DHRL, DHRL ETA,  DHRL DTF, and  SST MULTISCALE 
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Figure 20. Plots of resolved (𝒖′𝒗′̅̅ ̅̅ ̅) vs y+ low-frequency oscillations. LES [24],  MILES, --

- DHRL, DHRL ETA,  DHRL DTF, and  SST MULTISCALE 
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5.4.2.8 Stream-wise Velocity Fluctuations  

Figures 21 and 22 show contours of stream-wise velocity fluctuations for high and low-

frequency oscillations at y+=10. In [24], t/T=2/8 signifies zero contribution from the forcing 

function which is identical to t/T=0 used in this study.  

For high-frequency oscillation, as the imposed forcing starts to accelerate the flow, large 

streaky structures can be observed. This behavior is consistent with energy transfer between u and 

v components. As the effect of forcing is reduced, these streaks slowly disappear and, in the 

deceleration phase the flow is fully turbulent. The DHRL model with DTF, baseline DHRL model, 

and MILES resolve velocity fluctuations with considerable accuracy. On the other hand, the DHRL 

model with ETA filters out most of the small-scale fluctuations but retains the overall features of 

the flow.    

For low-frequency oscillations, the separation between the acceleration and deceleration 

phases is more apparent. At the beginning of the acceleration phase when forcing is small, the flow 

is nearly quiescent with streaks of fluctuations appearing in some parts of the flow. As the flow 

reaches maximum velocity and starts decelerating, these streaks transition to turbulence and the 

entire channel is filled with turbulent structures. Towards the end of the deceleration phase, the 

flow starts to gradually relaminarize and very little turbulent fluctuations can be observed during 

the beginning of the acceleration phase. All the DHRL variants and MILES predict the flow 

features with considerable accuracy. It is interesting to note that the DHRL DTF and ETA models 

have some observable phase lag towards the end of the acceleration phase. This can be attributed 

to the limitation of the exponential averaging technique in responding to changing trends. A 

potential solution to this issue would be to use double exponential averaging which can react to 

changing trends more accurately.  
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(a) 

 
(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 21. Contours of stream-wise velocity fluctuation at y+=10 for high-frequency 

oscillations at 8 equidistant times in one cycle. (a) Scotti et al. [24], (b) DHRL DTF, (c) 

DHRL Baseline, (d) MILES, and (e) DHRL ETA 2 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 22. Contours of stream-wise velocity fluctuation at y+=10 for low-frequency 

oscillations at 8 equidistant times in one cycle. (a) Scotti et al. [24], (b) DHRL DTF, (c) 

DHRL Baseline, (d) MILES, and (e) DHRL ETA 2 
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5.4 CONCLUSIONS 

This study investigates the performance of a Dynamic Hybrid RANS-LES (DHRL) model 

with two newly proposed time-filtering techniques: The Exponential Time Averaging (ETA) with 

static filter width and, the Dynamic Time-Filtering (DTF). Both techniques offer attractive 

solutions to solving non-stationary flows using the (DHRL) framework. Results for the DHRL-

ETA and DHRL-DTF are compared against Large-Eddy Simulation (MILES), a fully turbulent 

RANS (SST k-ω) model, a conventional hybrid RANS-LES (SST Multiscale) model, the baseline 

DHRL model, and previously published Large Eddy Simulation (LES) and Direct Numerical 

Simulation (DNS) study performed by Scotti et al. [24] for a pulsating channel. 

Results using the ETA with static filters highlighted some key improvements of the model 

when compared to baseline DHRL model and MILES. As the difference between the turbulent 

time-scales and forcing time-scales is increased, i.e. forcing frequency is reduced, smaller filter 

widths improve the DHRL ETA model performance compared to the baseline model and MILES. 

Since all three variants of the DHRL ETA model perform best for a particular forcing frequency, 

the choice of appropriate filter width is user-dependent and for flows with changing turbulent time-

scale to forcing time-scale, the use ETA with static filters may not be ideal. To address this 

limitation of the DHRL-ETA and to derive appropriate filter widths from flow physics, the 

Dynamic Time Filtering (DTF) technique is proposed. As the name suggests, the DTF technique 

dynamically adjusts the filter width based on turbulent statistics to improve predictions. To better 

validate the DTF technique, numerical simulations for steady channel flow at Reτ = 350 and Reτ = 

590 were also performed. The DHRL DTF model performance was almost identical to the baseline 

DHRL model performance showing that the model does not suffer from any detrimental effects 

when used in stationary flows. Results from Pulsating Channel flow highlighted some key 
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improvements for the DTF technique. Velocity plots indicated that the RANS model predicts near-

wall behavior with considerable accuracy but shows velocity defects in the outer regions of the 

flow for some forcing frequencies. The DES and the HRL models effectively capture near-wall 

effects but underpredict velocity in the log-law region for high and medium frequency oscillations. 

For low forcing frequency, the DES adopts a RANS-like behavior, while the HRL model continues 

to show large velocity defects away from the wall. The DHRL model with DTF more consistently 

provides accurate results throughout the forcing frequency spectrum with minimal defects when 

compared to the LES [24] model data. Analysis of Reynolds Stress indicated some limitations of 

the DTF technique that will likely be improved by implementing a better RANS-LES blending 

parameter or using a more refined grid. 

In conclusion, the ETA and DTF techniques appear to substantially improve the predictive 

capability of the DHRL model. In addition, the DTF method requires less user input and 

dynamically adjusts filter width based on local turbulent statistics. Further work is required to 

validate this method for other complex non-stationary flows in order to propose further 

improvements. Future work will include implementation of the DTF method in a new DHRL 

model variant with improved RANS to LES blending function and the incorporation of a 

potentially more accurate exponential averaging technique.  
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CHAPTER VI 

 

 

NUMERICAL SIMULATION OF NON-STATIONARY TURBULENT FLOWS USING 

DOUBLE EXPOENTIAL DYNAMIC TIME FILTERING TECHNIQUE 

 

 

 

6.1 INTRODUCTION AND OBJECTIVES 

Non-stationary turbulent flows are often observed in nature and in industrial applications. 

Examples include maneuvering marine and aerospace vehicles as well as flow in engines during 

transient operation. These types of flows are generally accompanied by complex physics such as 

time-varying unsteadiness, interactions of various scales of motion, changing pressure gradients, 

vortex shedding, and flow transition. Because of their importance, these types of flows are of 

significant interest in Computational Fluid Dynamics (CFD) as a test for validating turbulence 

models and numerical methods. However, due to their complexity, these problems often require 

substantial computational resources and high-fidelity numerical methods to solve. The pulsating 

flow in a channel and the temporally evolving mixing layers are canonical examples of such 

problems, representing non-stationary wall-bounded and free shear flow, respectively. 

Recently, RANS and hybrid RANS-LES studies of pulsating channel flow were carried out 

by Jamal and Walters [46,47] using static-exponential (ETA) and dynamic-exponential (DTF) 

time-filtering techniques to validate the performance of the dynamic Hybrid RANS-LES (DHRL) 

model. The approach relied on obtaining one-point statistics to improve the performance of the 
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blending parameter used in the DHRL model for non-stationary flows. Both the studies highlighted 

the improved performance of the DHRL model with the ETA and the DTF against traditional 

RANS and hybrid RANS-LES models throughout the frequency spectrum. The studies also 

highlighted the superior performance of the DTF technique over the already improved ETA in 

resolving the flow accurately. The authors concluded that appropriate selecting of filter widths is 

necessary to accurately resolve the pulsatile behavior of the flow. For high frequency oscillations, 

a larger filter width is suggested as it is more appropriate to treat the high frequency oscillations 

as a part of the fluctuating velocity since their timescales are close to the characteristic large-eddy 

time scale of the turbulence. As the frequency of the forcing is reduced, significant scale-separation 

between the turbulence and the imposed oscillations make it more ideal to reduce filter width in 

order to treat the imposed fluctuations as a time-dependent contribution to the mean velocity. 

The main objective of this study is to propose a novel time-filtering technique for periodic 

and non-periodic statistically non-stationary flows within the dynamic hybrid RANS-LES (DHRL) 

framework. The new Double-exponential Dynamic Time Filtering (DDTF) technique is compared 

and validated against the baseline Dynamic Time Filtering (DTF) technique for flow in a pulsating 

channel and for a temporally-varying mixing layer. The performance of the DHRL model with the 

DDTF technique is validated against a RANS model (SST k-ω), the SST multiscale hybrid RANS-

LES model, the DHRL model with DTF, and against previously published pseudo-spectral LES 

[24] and DNS [25] results. Results indicate that the DDTF technique shows an improvement over 

the DTF technique for the high-frequency pulsating channel case and the mixing layer. Some 

drawbacks are observed for medium and low frequency pulsations in the outer layer of the flow 

which can be attributed to under-resolved LES. Additionally, results from DNS are presented for 

flow in a pulsating channel case for high, medium, and low frequency oscillations. This effort adds 
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to the existing DNS study conducted by Scotti et al. [24] for high frequency oscillations and 

validates the performance of the studies performed in [46,47].  

6.2 MODELING APPROACHES 

Numerical simulations of pulsatile flow in a channel and temporally-varying mixing layer 

were performed for a single phase fluid using a pseudo-spectral solver and unsteady three-

dimensional finite-volume Computational Fluid Dynamics (CFD). The following sections discuss 

the various modeling techniques and numerical methods used in this study.  

6.2.1 Direct Numerical Simulation 

The DNS studies in this research were performed using the parallel pseudo-spectral 

solver, ParaSpectra [49,50]. The solver discretizes incompressible Navier-Stokes equations using 

FFT along the homogenous streamwise and spanwise directions and Chebyshev polynomials in 

the wall normal direction. The solver is parallelized using a hybrid OpenMP/MPI approach to 

effectively utilize the distributed and shared memory across and within nodes of HPC systems. 

The solvers scale up to 16K processors on up to 1 billion grid points. The solver has been 

extensively validated for LES of channel, mixing layer and jet flows, and for DNS of channel flow 

at Ret =180 and 590. 

6.2.2 Double-Exponential Dynamic Time Filtering (DDTF) 

For any arbitrary time-dependent variable 𝜙, the exponential time averaged value of the 

variable is given by, 

𝜙̅(𝑡) =  
1

Δ𝑓
∫ exp (

𝜏−𝑡

Δ𝑓
)

𝑡

−∞
𝜙(𝜏)𝑑𝜏                                        (66) 
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where 𝜙̅ is the time-averaged filtered value obtained from a weighted average of all previous 

values of 𝜙. An equivalent differential form for Eq.66 is given by, 

𝑑𝜙̅

𝑑𝑡
= 

1

Δ𝑓
(𝜙 − 𝜙̅)                                                       (67) 

where Δ𝑓 is the filter width used to determine how quickly the weighting decays as time is 

integrated into the past. Using a first order backward difference approximation for the temporal 

derivative yields  

𝜙̅(𝑡) = 𝛽𝜙(𝑡) + (1 − 𝛽)𝜙̅(𝑡 − ∆𝑡)                                          (68) 

which alternatively can be written as, 

𝜙̅(𝑡) = 𝜙̅(𝑡 − ∆𝑡) + 𝛽(𝜙(𝑡) − (𝑡 − ∆𝑡))                                    (69) 

where 𝜙(𝑡) is the value of the variable at time t, 𝜙̅(𝑡 − ∆𝑡) is the exponential average at previous 

time-step, and 𝛽 is a smoothing factor that controls the rate at which data enters the calculation.  

Although the performance of the DTF was significantly improved over the static ETA, 

evidence of temporal lag was observed in the outer layers of the mean flow. In the DTF 

implementation, the filter width is dependent on flow statistics. Analogous to a feedback loop, 

when the flow statistics change, the filter width changes in response. The effect of this can been 

seen in the AC component analysis in [46,47] where the model significantly overpredicts velocities 

in the log to outer layer transition region. Since moving and exponential average are backward-

looking indicators, the double exponential moving average was developed by Patrick Mulloy [51] 

in 1994 in an attempt to mitigate some of the lag associated with traditional averaging methods. 

The double exponential average of a variable 𝜙 is defined as,   
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𝜙̆(𝑡) = 2𝜙̅(𝑡) − 𝜙̿(𝑡)                                                         (70) 

 

where 𝜙̆ is the double exponentially averaged variable, 𝜙̅ is the exponentially averaged variable, 

and 𝜙̿ is the exponential average of the exponentially-averaged variable. For additional details, 

readers are referred to [51]. 

6.3 SOLVER & DATA ANALYSIS 

DNS calculations of pulsating channel flow were carried out using the pseudo-spectral 

solver ParaSpectra, while density-based finite-volume simulations were carried out using Loci-

CHEM [39,40]. Loci-CHEM uses high-resolution approximate Riemann solvers and implicit 

numerical methods. For the present study, all simulations were run with a Mach number close to 

0.1 based on average streamwise velocity to simulate incompressible flow conditions. 

Postprocessing was carried out using Tecplot and ParaView.  

For statistically non-stationary flows, neither infinite-time-averaging nor exponential 

averaging is exactly equal to a true ensemble average. Hence, for the present study, instantaneous 

variables are planar averaged along statistically homogeneous directions during post processing: 

〈𝑓〉(𝑦, 𝑡) =
1

𝐿𝑥𝐿𝑧
∫ ∫ 𝑓(𝑥, 𝑦, 𝑧, 𝑡)

𝐿𝑥
0

𝐿𝑧
0

𝑑𝑥 𝑑𝑧                                     (71) 

where 〈𝑓〉 is the planar averaged value of any arbitrary flow variable 𝑓, 𝑥 and 𝑧 are the streamwise 

and spanwise coordinate directions respectively, and 𝑦 is the wall-normal direction. Alternatively, 

phase averaging used by Scotti et al. [24] is equivalent to an ensemble average for non-stationary 

flows. 

 



109 | P a g e  
 

6.4 PULSATING CHANNEL FLOW 

Simulation setup and results from fully developed and pulsating channel flow are discussed 

in this section. 

6.4.1 Direct Numerical Simulation setup 

Direct Numerical Simulations (DNS) for flow in a pulsating channel was performed using 

the pseudo-spectral solver ParaSpectra [49,50]. Initially, simulations for a steady channel flow at 

Reτ = 350 were run until a stable converged solution was obtained, then the time-dependent 

pressure gradient term was added to simulate the pulsatile nature of the flow. Table 1 shows some 

of the parameter used by Scotti et al. [24] and the present study.  

Table 1. Flow parameters 

Flow Parameters 

Scotti et al. (2001) [24] Present Study 

Frequency 

High Medium Low High Med. Low 

Re,0 350 350 

Domain size 3h2hh 3h2hh 

Grid 128129192 192129192 

u - 0.048276 

 - 1.3810-4 

 - 1 

 200 50 8 200 50 8 

Forcing 
𝑑𝑃

𝑑𝑥
=
𝑑𝑃0
𝑑𝑥

[1 + 𝛼 cos(𝜔𝑡)] 

𝝎+ 0.04 0.01 0.0016 0.04 0.01 0.0016 

𝑹𝒆𝒔 100 200 500 100 200 500 

 

Variables for each forcing frequency were obtained using the following relationships given by 

Eqs. (30-32):    

𝑅𝑒𝜏 =
𝑢𝜏δ

𝜈
                                                              (72)             
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  𝑅𝑒𝑠 = 𝑈0√
2

𝜔𝜈
                                                          (73)          

  𝜔+ =
𝜔𝜈

𝑢𝜏2
                                                              (74) 

where, Reτ is the Reynolds number based on mean friction velocity, Res is the Reynolds number 

based on Stokes length, and ω+ is the forcing frequency expressed in wall units.  

6.5 RESULTS AND DISCUSSION 

In this section simulation results from DNS and DHRL-DDTF are validated against the 

numerical study performed by Scotti et al. [24]. 

6.5.1 Direct Numerical Simulation Validation  

DNS results were validated first for the alternating (AC) and mean (DC) components of 

the mean flow. Figure 1 shows the variation of AC and DC components of the normalized velocity 

(u+) against dimensionless wall distance (y+) for high, medium, and low frequency-imposed 

oscillations. These components were obtained via a decomposition of the normalized-planar-

averaged velocity at eight equidistant times in one cycle by applying Fast Fourier Transform at 

each wall normal location.  

For the DC component in high-frequency oscillations, the ParaSpectra results are in close 

agreement with the LES and DNS study performed by Scotti et al. [24]. Some disagreement can 

be observed in the outer layer where the ParaSpectra results underpredict velocity when compared 

to the previous LES and DNS results. Comparison of medium-frequency and low-frequency 

performance between the pseudo-spectral LES and the DNS results from ParaSpectra. Although 

DNS data from Scotti et al. [24] is not available for the medium and low-frequency cases, the 

behavior of ParaSpectra is identical to the DNS simulation behavior. Both the previously validated 
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LES model and ParaSpectra DNS are in close agreement for the majority of the inner layer, while 

some differences appear in the buffer-log layer transition and which carries into the outer layer. It 

can be concluded that the DNS data presented in this study is in good agreement with DNS and 

the LES performed by Scotti el al.  

 

 

 

Figure 1. AC & DC component of streamwise velocity;  DNS Scotti et al. [24] (only high-

frequency), LES Scotti et al. [4],  DNS ParaSpectra
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6.5.2 Double Dynamic Filtering Validation (DDTF) 

This section presents validation of the performance of the DHRL model with the Double 

Dynamic Time Filtering (DDTF) technique. Results presented below are compared against DNS 

and LES data from [24]; SST k-ω, SST multiscale, and DHRL DTF data from [47]. 

6.5.3 Steady Channel Flow 

Figure 2 shows the distribution of normalized-friction-velocity (u+) against dimensionless 

wall distance (y+) for a steady channel flow at Reτ = 350. Similar to the approach taken in [47], the 

DHRL DDTF was first validated for a statistically stationary case in order to observe any 

detrimental effects arising from its use. Results indicate that all the models compared in this study 

are in close agreement with LES data [24] in the viscous sub-layer. Halfway through the buffer 

layer, the SST multiscale modle transitions to LES and underpredicts velocity in the log-layer. 

Since the closely packed cells in the boundary layer region grow to larger aspect ratio cells in the 

buffer layer, the SST multiscale model incorrectly transitions to LES due to modeled stress 

depletion. Throughout the majority of the log-layer, all the models are in fair agreement with each 

other and with the log-law. The SST k-ω model underpredicts velocity near the center of the 

channel, this behavior is commonly observed for RANS models. Interestingly, both the DHRL 

model variants also follow this trend. Although there is enough resolved fluctuations to support 

LES mode in this region, the modeled RANS stresses are relatively high. So, the DHRL models 

remains in a RANS biased state and underpredicts mean velocity. 
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Figure 2. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for steady channel flow at Reτ=350;  log-law,  Scotti et al. [24], 

 DHRL DTF,  SST k-ω,  SST Multiscale Model, and  DHRL DDTF 

6.5.4 Pulsating Channel Flow 

In [47], the DTF was presented as a potential solution for using the DHRL model to solve 

statistically non-stationary flow problems. Since the selection of a relevant time scale for different 

problems may be difficult, the DTF technique approximated the filter width to be proportional to 

the large-eddy time-scale. This also alleviated issues that stemmed from using a temporally static 

filter in [46]. Although the DTF was a significant improvement in terms of performance and user-

independence, lag due to exponential averaging persisted during parts of pulsation cycle. Since a 

faster response to the filter width is desired, the double dynamic filtering is presented as a potential 

solution.  

6.5.4.1 AC-DC Mean Velocity Components 

AC and DC mean velocity components are compared for all the model results in this study 

to [24,47]. Figure 3 shows the variation of normalized-friction-velocity (u+) against dimensionless 

wall distance (y+) for the three pulsating frequencies investigated.  
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For the high frequency oscillations, all the models are in good agreement with LES [24] for 

the AC component, however large differences appear in the DC component of the flow. Although 

the behavior in the viscous sub-layer is identical for all models, differences between the models 

can be observed in the buffer layer. The SST multiscale model transitions to LES early as was the 

case for the steady channel flow at Reτ = 350 shown in Fig. 2. The DHRL DDTF outperforms the 

DHRL DTF throughout the length of the channel. The DDTF reacts quicker to changes in the 

velocity gradient and is in close agreement with LES. 

For medium frequency oscillations. Significant deviations from the LES and ParaSpectra 

DNS is observed for the AC component, in the viscous sub-layer, buffer, and in the log-layer. The 

SST multiscale model once again transitions to LES early and underpredicts velocity. The SST k-

ω model slightly overpredicts velocity in the buffer layer, then underpredicts velocity in the log 

layer, before finally recovering the correct velocity in the outer layer. The DDTF is an 

improvement over the DTF in the buffer layer with both model tracking each other closely in the 

log and outer layers of the flow.         

For low-frequency oscillations, significant defects for the DTF and DDTF model are 

observed in both AC and DC components. For the majority of the channel, the DDTF is an 

improvement over the DTF. However, the DDTF severely underpredicts velocity in the outer-layer 

for the DC component similar to the SST k-ω behavior in Fig. 2.  
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(a)                                                    (b) 

 
(c)                                                    (d) 

 
(e)                                                    (f) 

 

Figure 3. AC & DC component of streamwise velocity (a) High Frequency AC, (b) High 

Frequency DC, (c) Medium Frequency AC, (d) Medium Frequency DC, (e) Low Frequency 

AC, (f) Low Frequency DC,  DNS Scotti et al. [24],  Scotti et al. [24];  DHRL DTF, 

 SST k-ω,  SST Multiscale Model,  DNS ParaSpectra ,  DHRL DDTF
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6.5.4.2 Time-Varying Mean Velocity 

Figures 4, 5, and 6 compare the normalized-friction-velocity (u+) against dimensionless 

wall distance (y+) at equidistant phases during each pulsation cycle and results are compared 

against previously available DNS and LES [24], and ParaSpectra DNS performed in this study. 

In the figures, t=0 signifies 
𝑑𝑃(𝑡)

𝑑𝑥
= 0, and the start of the forcing. To be consistent with the 

description in [24], (g) in each cycle marks the beginning of the acceleration phase, and (c) marks 

the beginning of the deceleration phase.  

One of the ever-present characteristics of the pulsating channel flow is the upward and 

downward modulation of the log-layer. The log-layer is markedly distinct for the high frequency 

oscillations and disappears during significant parts of the medium and low-frequency cycles. As 

mentioned in [47], this modulation of the log-layer adversely affects traditional HRL models. 

There is also some outer layer defect observed for the DHRL models for the lower frequency 

oscillations. For high frequency oscillations, all the models are in close agreement with LES and 

DNS data except the SST multiscale hybrid RANS-LES model. The model transitions to LES in 

the log and underpredicts velocity before recovering it in the outer layer. The presence of a distinct 

log-layer can be observed throughout the entire pulsation cycle.  

It is during the medium frequency oscillations that the effects of forcing become more 

apparent. The log-layer disappears during parts of the deceleration phase before reappearing in the 

acceleration phase. Once again, the SST multiscale model transitions to LES early and 

underpredicts velocity. At the start of the deceleration phase, the model overpredicts velocity in 

the buffer layer before grossly underpredicting velocity at the start of the acceleration phase. The 

other models show increased defects for the majority of the cycle, especially in the buffer layer. 
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The SST k-ω, the DHRL DTF and the DHRL DDTF models overpredict velocity in the buffer 

layer before providing improved predictions in the log-layer. The DDTF can observed to react to 

the changes in log-layer profile better, however during parts of the deceleration phase, peaks in 

velocity are observed for both the DHRL variants.  

Past studies [46,47] highlighted the difficulties associated with the accurate prediction of 

flow behavior for the low-frequency forced oscillations. Both, the SST k-ω and the SST multiscale 

models perform poorly in the buffer layer during the acceleration phase. The DHRL model variants 

are in best agreement with LES [24] and DNS data except for an abnormal increase in velocity at 

the start of the deceleration phase. The DHRL DDTF damps out the spike effectively however, the 

model is prone to underpredicting velocity in the outer layer  

Overall, the results for figures 8, 9, and 10 indicate some of the improvements of the DDTF 

formulation. The DHRL model with DDTF provides an improved response to changes in velocity 

throughout the frequency spectrum. For the high frequency case, the DDTF model improves the 

existing DHRL DTF performance by predicting more accurate flow physics. However, less 

significant improvement is observed for the medium and low frequency oscillations. Although the 

DDTF technique is an overall improvement over the DTF technique, velocity defects in the outer 

layer underscores some of the gains in performance. Future publications will address this issue 

using a more robust blending parameter that enables the model to remain in LES mode and provide 

improved prediction of flow physics.  
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Figure 4. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for high-frequency case.  Scotti et al. [24];  DHRL,  DHRL 

DTF, DHRL ETA ,  SST k-ω,  DHRL DDTF, and  SST Multiscale Model 
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Figure 5. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for medium-frequency case.  Scotti et al. [24];  DHRL,  

DHRL DTF,  DHRL ETA ,  SST k-ω,  DNS ParaSpectra,  DHRL DDTF, and  

SST Multiscale Model
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Figure 6. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for low-frequency case.  Scotti et al. [24];  DHRL,  DHRL 

DTF,  DHRL ETA,  SST k-ω,  DNS ParaSpectra,  DHRL DDTF, and  SST 

Multiscale Model
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6.6 TURBULENT MIXING LAYER 

The temporally evolving, planar, turbulent mixing layer is simulated for an initial Reynolds 

number of 𝑅𝑒𝛿𝑖=220 defined by the following equation: 

𝑅𝑒𝛿𝑖 =
𝛥𝑈0𝛿𝑖


= 220                                                      (75) 

where, 𝛿𝑖 is the initial vorticity thickness, 𝛥𝑈0 is the velocity difference between the two streams, 

and  is the kinematic viscosity.  

6.6.1 Computational Domain and Grid Generation 

Figure 7 shows the computational domain used in the present study. Detailed domain 

dimensions are provided in the DNS study [25] which allowed the development of three-

dimensional eigenmodes to initiate instabilities that would assist the flow transition to turbulence. 

Cells were grown outward from the channel centerline by resolving the initial vorticity thickness, 

δ𝑖 with 10 cells with a growth ratio of 1.4. The streamwise and spanwise boundaries were specified 

as periodic boundaries while the vertical boundaries were specified with a symmetry boundary 

condition. For further details about the recommended domain size, readers are referred to [25]. 

 

Figure 7. Computational domain 
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Table 2. Grid resolution comparison 

 

Study 

 

 

Grid Resolution 

 

 

DNS [25] 

 

512 x 256 x 257 

 

 

Present Study 

 

 

128 x 86 x 64 

 

 

Figure 8. Computational mesh distribution 

6.6.2 Problem Setup 

Flow was initialized using the profile given by Eq. (34), where 𝑈1(𝑦) is the initial 

profile, 𝑈0 is the initial freestream velocity, and 𝛿𝑖 is the initial vorticity thickness of each layer. 

Additionally, an infinitesimal, divergence-free perturbation was included with the velocity profile 

to mimic experimental noise. Figure 13 compares the initial velocity profiles used in the present 

study against DNS [25].   

𝑈1(𝑦)

𝑈0
= 𝑡𝑎𝑛ℎ [(

𝑦

𝛿𝑖
)]                                                   (76)  
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Figure 9. Initial velocity profile comparison  DNS Ansari [8]  DHRL DDTF 

 

6.6.3 Results and Discussion 

In this section DHRL-DDTF results are validated against the MILES and DNS study 

performed by Ansari [25]. Similar to the pulsating channel case, mean-statistics were obtained 

using planar-averaging of instantaneous data.  

6.6.3.1 Flow and turbulence statistics at 𝒕′=400 

Figure 10 compares the predicted distribution of mean-velocity, fluctuating velocity, and 

Reynolds shear stress at 𝑡′=400 in terms of initial momentum thickness, 𝑚 [52]. Also included 

for comparison are DNS results from Rogers et al. [52] and experimental data from Bell et al. [53]. 

Overall, the DHRL-DDTF model captures the complex flow features with considerable accuracy 

for all the statistics investigated in this section, however some deviation for DNS data can be 

observed the normal velocity fluctuation.  
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(a)                                                                       (b) 

 

(c)                                                                         (d) 

 

(e) 

 

Figure 10. Profiles of (a) Mean-velocity, (b) 𝒖′̅, (c) 𝒗′̅, (d) 𝒘′̅̅ ̅, and (e) Reynolds shear stress -

𝒖′𝒗′̅̅ ̅̅ ̅̅ ; DNS, Ansari [25], DNS Rogers and Moser [52], DNS Bell and Mehta [53], 

 MILES, and DHRL DDTF 
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6.6.3.2 Temporal evolution and turbulence statistics 

Figure 11 shows the temporal evolution of the flow in terms of mean velocity fluctuations 

and Reynolds shear stress as a function of non-dimensional time given by Eq. (77): 

𝑡′ =
𝑡𝛥𝑈0

𝛿𝑖 
                                                              (77) 

where t is physical time, 𝛥𝑈0 is the velocity difference between the two streams, and 𝛿𝑖  is the 

initial vorticity thickness.  

It is clear that the DHRL-DDTF model and MILES undergoes a slightly more rapid 

transition to turbulence initially when compared to the DNS. Peak values of streamwise and normal 

rms velocity fluctuations occur between 225<𝑡′<275 for both, DNS and simulations. Some 

differences in the prediction of self-similarity regions can also be observed. The DNS data shows 

self-similar behavior for 𝑡′>300, while the simulations exhibit self-similar behavior around 

𝑡′=250. Both DNS and the MILES and DHRL-DDTF simulations show a decline in centerline 

values for 𝑡′>350 suggesting that the largest eddies are no longer uncorrelated with themselves 

[8]. Both DHRL-DDTF and MILES exhibit similar behavior with some differences appearing in 

the prediction of Reynolds shear stress, where the DHRL-DDTF model shows slightly better 

agreement with DNS. Overall predictions are in qualitative agreement with DNS data and further 

fine-tuning of the initial perturbation would likely help replicate the initial laminar to turbulence 

transition more appropriately. It has been observed by [52] that the initial perturbation dictates the 

evolution of the flow. Hence, optimization of the initial disturbance would possibly yield more 

accurate data and help validate the performance of the DHRL-DDTF model more accurately. 
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(a)                                                                        (b) 

 

(c)                                                                        (d) 

Figure 11. Profiles of centerline values of (a) 𝒖′̅, (b) 𝒗′̅, (c) 𝒘′̅̅ ̅, and (d) Reynolds shear stress 

-𝒖′𝒗′̅̅ ̅̅ ̅̅ ; DNS Ansari [25]  MILES, and   DHRL DDTF 

 

6.7 CONCLUSIONS 

This study investigates the performance of a newly proposed Double Dynamic Time-

Filtering (DDTF) technique implemented in the DHRL model for two statistically non-stationary 
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Numerical Simulations (DNS) are performed to supplement non-existing datasets for medium and 

low frequency-imposed oscillation for a pulsating channel flow. The DHRL-DDTF performance 

0

0.1

0.2

0 100 200 300 400
tΔ𝑈0

𝑖

𝑢𝑐 ′

Δ𝑈0

0

0.1

0.2

0 100 200 300 400
tΔ𝑈0

𝑖

𝑣𝑐′

Δ𝑈0

0

0.1

0.2

0 200 400
tΔ𝑈0

𝑖

𝑤𝑐 ′

Δ𝑈0

0

0.01

0.02

0 100 200 300 400

U'

tΔ𝑈0
𝑖

−𝑢′v′

Δ𝑈0
2



127 | P a g e  
 

is compared against a fully turbulent RANS (SST k-ω) model, a conventional hybrid RANS-LES 

(SST Multiscale) model, the DHRL model with Dynamic Time Filtering (DTF), and previously 

published numerical simulations performed by Scotti et al. [24] for a pulsating channel. 

Additionally, the DHRL-DDTF model performance is further investigated against MILES and 

DNS study by Ansari [25] for a temporally varying mixing layer.  

The DNS study was performed using the pseudo-spectral solver ParaSpectra [49,50] to 

simulate the flow in a pulsating channel. Since previous DNS studies were not extended beyond 

high-frequency oscillation, the DNS performed in this study aims to supplement the existing 

dataset. Apart from a minor disagreement in the outer layer for the high-frequency oscillations , 

DNS data presented in this study using ParaSpectra were in close agreement with prior DNS and 

LES studies conducted by Scotti et al. [24].  

Following the validation of the DNS data, the newly proposed DDTF technique was 

validated for pulsating channel and temporally evolving turbulent channel flow. For the pulsating 

channel case, results indicate that RANS (SST k-ω) and the traditional hybrid RANS-LES model 

(SST multiscale) models fail to accurately describe all the flow features for medium and low-

frequency oscillations. The SST multiscale model captures near wall behavior reasonably well but 

suffers from early RANS-LES transition due to changes in grid density in the buffer and log-layer. 

The RANS model also exhibits velocity defects in the buffer layer for the medium and low 

frequency cases and tends to underpredict velocity in the outer layer as can be seen in Fig. 6. The 

DHRL model with DDTF more consistently provides accurate results throughout the forcing 

frequency spectrum and improves on the predictions of the DHRL model with DTF. The DDTF 

effectively incorporates trends in its velocity predictions and damps out some of sharp variations 
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in velocity for the low-frequency oscillations. However, the model consistently underpredicts 

velocity in the outer layer. 

For the temporally evolving mixing layer, the DHRL-DDTF model is in good agreement 

with DNS data for turbulence statistics at 𝑡′=400 but the model does not accurately predict the rate 

of transition to turbulence accurately. The temporal evolution of turbulence statistics is in 

qualitative agreement with DNS. The deviation from DNS can reduced by fine tuning the initial 

disturbance provided so that the evolution from transition to turbulence is more consistent with 

DNS.    

In conclusion, the results presented in this study highlight an improvement of the DDTF 

technique over the existing modeling techniques. The newly proposed DDTF technique improves 

the performance of the DHRL model for periodic and non-periodic statistically non-stationary 

flows while suffering from no detrimental effects when used in stationary-flows. Future effort will 

be focused on the implementation of the DDTF method in a new DHRL model with improved 

RANS to LES blending function along with variety of initial imposed fluctuations.  
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CHAPTER VII 

 

 

A NEW VARIANT OF THE DYNAMIC HYBRID RANS-LES MODEL FOR COMPLEX 

TURBULENT FLOWS 

 

 

 

7.1 INTRODUCTION AND OBJECTIVES 

Reynolds-averaged Navier-Stokes (RANS) models still represent the state-of-the-art for 

practical, engineering-level Computational Fluid Dynamics (CFD) simulations of industry 

relevant problems. Although RANS models have existed for over half a century, they are still 

preferred because of their inherent efficiency and robustness.  RANS models have been validated 

for an extensive number of cases and tend to perform well in terms of accuracy and computational 

expense for simple wall-bounded turbulent flows. The RANS framework is based on solution of 

the equations of fluid motion governing the ensemble-averaged flowfield. Effects of complex time-

dependent fluctuations in the flowfield are included via prescription of the unclosed terms in the 

ensemble-averaged equations. These terms are modeled as functions of the averaged flowfield and 

known local quantities such as wall distance, and often require the solution of additional transport 

equations for r model variables. Since RANS models only resolve the mean flowfield and rely on 

significant levels of empiricism in their construction, these models tend to perform rather poorly 

for complex three-dimensional problems or for cases where the details of the geometry lead to 
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complex flow physics such as separated shear layers and flows with rotation and curvature. With 

increasing demands and reliance on CFD for complex engineering designs in a range of industries, 

there is an increasing demand for improved modeling techniques that extend beyond classical 

RANS.  

  Since Direct Numerical Simulation (DNS) of complex, high Reynolds number turbulent 

flow is generally considered to be prohibitively expensive, LES is often viewed as the natural 

successor to RANS models. LES models apply filters to the equations of fluid motion to resolve 

the large turbulent structures.  The smaller scales however, are represented using a sub-grid scale 

(SGS) model. This approach removes a significant amount of empiricism associated with RANS 

models since large-scale, geometry dependent, and energy containing flow structures are fully 

resolved both spatially and temporally. This, however, comes at a considerable computational cost 

when compared to RANS, and the cost increases with increasing Reynolds number. Even with 

substantial improvements in computational power over the last several decades, LES is still 

uncommon in industry and remains widely used primarily in highly specialized research 

environments. Nevertheless, modern research is definitely headed in that direction [54].  

Recent developments in hybrid RANS-LES (HRL) modeling have paved a way for 

improved predictive capabilities over RANS while being more computationally efficient than LES. 

The fundamental premise of HRL models is to use a RANS-type model for wall-bounded 

turbulence in the boundary layer, while using an LES-type model to resolve large scale structures 

far from the wall. The two most common implementations of the HRL framework are zonal and 

non-zonal modeling. For zonal modeling, pre-specified regions in a flowfield are treated with 

RANS or LES based on the physics of the flow. Non-zonal methods on the other hand use some 

type of blending based on local flow variables to dictate RANS-to-LES transition. The Detached 
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Eddy Simulation (DES) by Spalart [29] is possibly the most well-known example of a non-zonal 

method. The DES model incorporates a modification to the one-equation Spalart-Allmaras (SA) 

model [26] to switch between RANS in wall-bounded regions and LES away from the wall by 

dynamically adjusting the contribution of modelled stress in the momentum equation. Although 

these models have had considerable success in predicting complex flow features where traditional 

RANS models have failed, HRL models suffer from some key weaknesses [4]. Since traditional 

HRL formulations contain grid metrics in their RANS-to-LES switching functions, one of the most 

common and recurring issues associated with HRL methods is modeled stress depletion (MSD). 

For some flows, sudden changes in grid size or aspect ratio triggers a non-physical RANS to LES 

transition inside the boundary layer or in regions where the grid is not refined enough to 

compensate for lowered modeled stress. Although potential solutions for MSD were proposed by 

Menter-Kuntz [31] and by Spalart [32] through the SST-DES model and the DDES models, the 

inclusion of grid metrics in the HRL model formulation can still lead to unsatisfactory model 

performance in complex flows. To alleviate some of these issues, Walters and Bhushan [35,36] 

proposed an alternate HRL modeling approach. The Dynamic Hybrid RANS-LES (DHRL) 

modeling framework was developed to combine any RANS model with any LES model using a 

more physics-based approach compared to traditional HRL models. The model transitioned from 

RANS-to-LES using the ratio of resolved to modeled stress production ensuring a continuity of 

total turbulence production. Some of the key characteristics of the DHRL modeling framework 

are: i) relative insensitivity to changes in grid resolution due to the lack of explicit grid metrics in 

the RANS-LES switch, ii) ability to combine any RANS and LES model, and iii) recovery of 

RANS model for steady flows. The DHRL model has shown improved predictions compared to 

traditional HRL models for a variety of flow problems [55-57].  
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This study proposes a new Dynamic Hybrid RANS-LES model for complex turbulent 

flows. Since the baseline DHRL model uses the ratio of resolved to modeled turbulent stress in 

RANS-to-LES blending, it was observed that for some types of flows the RANS component of the 

DHRL model can significantly overpredict turbulent stress in regions where appreciable levels of 

LES fluctuation could be sustained. As a representative example, for the flow in a vortex cell [58], 

the RANS component of the DHRL modeled overpredicted turbulent stress inside the cell/cavity. 

Although significant velocity fluctuations were observed inside the cell, the DHRL model 

remained in RANS mode. A new statistical variable is introduced in this study and implemented 

into a modified blending function to facilitate model transition from RANS to LES based on the 

presence of appreciable levels of resolved turbulence. Initially, three variants of the transition 

parameter are investigated for a variety of cases with increasing levels of complexity; i) fully 

developed turbulent channel flow, ii) flow over a three-dimensional axisymmetric hill, and iii) 

non-stationary turbulent flow in a pulsating channel. Results indicate that the new model 

successfully addresses some of the shortcomings of the baseline DHRL model for each of the test 

cases investigated. Major improvements include a better resolution of the mean-flow statistics in 

the log-layer and improved prediction of second-moment statistics. 

7.2 Development of a new Dynamic Hybrid RANS-LES (DHRL) model 

The following sections discuss the development of the new DHRL model. 

7.2.1 Governing Equations and Turbulence Modeling Approach  

Recall, the governing equations for mass and momentum for a single-phase, single-species 

compressible fluid with negligible body forces are given by Eq. (78 and 79).  

𝜕𝜌̂

𝜕𝑡
 + 

𝜕

𝜕𝑥𝑗
(𝜌̂𝑢̃𝑗)  = 0                                      (78) 
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𝜕

𝜕𝑡
(𝜌̂𝑢̃𝑖)  +  

𝜕

𝜕𝑥𝑗
(𝜌̂𝑢̃𝑖𝑢̃𝑗)  =  −

𝜕𝑝

𝜕𝑥𝑖
 +  

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗 + 𝜏𝑖𝑗)                 (79) 

where the hat overbar symbol (^) signifies an undefined filtering operation. Variables in the 

equations are expressed in terms of either filtered or mass-weighted filtered variables as shown in 

the Eq. (80): 

𝑢̃𝑖 = 𝜌𝑢𝑖̂/𝜌̂                                                              (80) 

For example, if the filter were defined as a Reynolds average, then ũi would represent the Favre-

averaged velocity. The viscous and turbulent stress tensors are defined as:  

𝜎𝑖𝑗 =  𝜇 [(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
]                                              (81) 

𝜏𝑖𝑗 = − (𝜌𝑢𝑖𝑢𝑗̂ − 𝜌̂𝑢̃𝑖𝑢̃𝑗)                                                   (82) 

Since the filtering operation is not defined, the above equations are formally valid for either LES 

or RANS. Closure of the equations requires modeling of the turbulent stress tensor τij. 

7.2.2 Baseline Dynamic Hybrid RANS-LES (DHRL) model 

The baseline Dynamic Hybrid RANS-LES (DHRL) modeling framework was developed 

by Walters and Bhushan [35,36] to allow for a more physics-based blending of any RANS model 

with any LES model. Recall, that for an incompressible single species fluid, the Navier-Stokes 

equation can be written as : 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢̂𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃̂

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(σij + 𝜏𝑖𝑗)                                 (83) 
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where (^) is an undefined filtering operation, σij represents the viscous stress, and 𝜏𝑖𝑗 is the sub-

filter stress term given by the following equation. 

𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̂ − 𝑢𝑖̂𝑢𝑗̂                                                       (84) 

In the DHRL framework, the instantaneous velocity is decomposed into three components: 

Reynolds averaged (𝑢𝑖̅), resolved fluctuating (𝑢𝑖
"), and unresolved fluctuating (𝑢𝑖

,
) as shown in 

Eqs. (85-86) : 

𝑢𝑖  =  𝑢𝑖̅ + 𝑢𝑖
" + 𝑢𝑖

,
                                                       (85) 

𝑢𝑖̂ = 𝑢𝑖̅ + 𝑢𝑖
"                                                            (86) 

 

where the filtered velocity, 𝑢𝑖̂, is computed by the LES model as the solution to the momentum 

equation. The first two terms in Eq. (85) are directly computed via the solution of the momentum 

equation. The contribution of the third term is modeled using the sub-filter stress term. Substituting 

Eq. (85) in Eq. (84) and assuming negligible correlation between resolved and unresolved velocity 

fluctuations, the sub-filter stress can be approximated as. 

𝜏𝑖𝑗 = (𝑢𝑖̂𝑢𝑗̂̂ − 𝑢𝑖̂𝑢𝑗̂) + 𝑢𝑖′𝑢𝑗′̂                                                 (87) 

In the DHRL framework, 𝑢𝑖̂𝑢𝑗̂̂ − 𝑢𝑖̂𝑢𝑗̂ is modeled as a linear function of the sub-grid stress 

obtained from an LES model and 𝑢𝑖′𝑢𝑗′̂  is modeled as a linear function of the Reynolds stress 

obtained from a RANS model. Following the concept of scale similarity, the sub-filter stress is 

expressed as a weighted average of the modelled sub-grid stress and the modelled Reynolds 

stress.  

𝜏𝑖𝑗 = 𝛼𝜏𝑖𝑗
𝑆𝐺𝑆 + (1 − 𝛼)𝜏𝑖𝑗

𝑅𝐴𝑁𝑆
                                            (88) 
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Assuming that the turbulent resolved scales and Reynolds stress are uncorrelated in the RANS-

LES transition region, Reynolds averaging Eq. (87) and substituting in Eq.(85) yields: 

𝜏𝑖𝑗
𝑅𝐴𝑁𝑆 − 𝜏𝑖𝑗̅̅ ̅ = (𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢𝑖̅𝑢𝑗̅) − (𝑢𝑖𝑢𝑗̂ − 𝑢𝑖̂𝑢𝑖̂̅̅ ̅̅ ̅) =  𝑢𝑖̂𝑢𝑖̂̅̅ ̅̅ ̅ − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ =  𝑢𝑖′′𝑢𝑗′′̅̅ ̅̅ ̅̅ ̅̅ ̅           (89) 

which can be interpreted as the difference between the Reynolds average of the modeled stress and 

the Reynolds stress predicted by the RANS model i.e., the Reynolds average of the resolved 

velocity components. Finally, combining Eqs. (88 & 89) and taking scalar product of the result 

with the Reynolds averaged strain rate yields an expression for the blending parameter : 

𝛼 = 
𝑢𝑖"𝑢𝑗"
̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅

(𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅ − 𝜏𝑖𝑗

𝑆𝐺𝑆̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅ )
⁄                                            (90)   

where 𝛼 is used to switch between LES and RANS based on the ratio of resolved turbulence 

production (𝑢𝑖"𝑢𝑗"
̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅ ) to modeled turbulent stress production (𝜏𝑖𝑗

𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅ − 𝜏𝑖𝑗
𝑆𝐺𝑆̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅ ) from the RANS 

and sub-grid scale model. Hence, transition is solely based on local flow conditions as the sub-

filter stress term transitions between a modeled Reynolds stress  (𝜏𝑖𝑗
𝑅𝐴𝑁𝑆) and an LES sub-grid 

stress (𝜏𝑖𝑗
𝑆𝐺𝑆).  

For the present study and the initial development of the DHRL model, the SST k-ω model 

is used as the RANS component and MILES as the LES component. Recall that MILES does not 

incorporate a sub-grid stress model. Using Eq. (88), the sub-filter stress and the blending parameter 

can be expressed as:  

𝜏𝑖𝑗 = (1 − 𝛼)𝜏𝑖𝑗
𝑅𝐴𝑁𝑆

                                                  (91) 

𝜏𝑖𝑗
𝑅𝐴𝑁𝑆 = 

2

3
𝑘𝛿𝑖𝑗 − 2𝑡𝑆𝑖𝑗̅̅̅̅                                                (92) 
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𝛼 =
𝑢𝑖
"𝑢𝑗
"̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅

𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅

⁄                                                (93) 

since 

𝜏𝑖𝑗
𝑆𝐺𝑆̅̅ ̅̅ ̅̅ = 0                                                           (94) 

and Eq. (83) can be written as, 

 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢̂𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃̂

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(σij) −

𝜕

𝜕𝑥𝑗
((1 − 𝛼)𝜏𝑖𝑗

𝑅𝐴𝑁𝑆)                  (95) 

where the value of 𝛼 is limited between 1 and 0. For regions with significant levels of resolved 

turbulent fluctuations, in which the resolved turbulent stress production is larger than the modeled 

turbulent stress production , i.e., 𝑢𝑖"𝑢𝑗"
̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅ ≥  𝜏𝑖𝑗

𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅ , the model recovers “pure” LES as 𝛼 → 1. 

In regions where the modeled turbulent stress production is larger than resolved turbulent stress 

production, i.e.  𝑢𝑖"𝑢𝑗"
̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗̅̅̅̅ ≪  𝜏𝑖𝑗

𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅ , the model recovers pure RANS as 𝛼 → 0. In all other 

regions, the sub-filter stress is represented as a weighted function of resolved and modeled 

turbulent stress production. 

Key improvements of the DHRL modeling framework over traditional hybrid RANS-LES 

modeling techniques include: 

i) since the blending parameter includes only the ratio of resolved to modeled turbulent 

stress production, any appropriate RANS model with a turbulent stress production 

term can be coupled with any LES model 
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ii) the lack of any explicit grid terms in the blending parameter 𝛼 making the model 

relatively insensitive to changes in grid resolutions as supported by past studies [14-

16].  

iii) since the RANS model terms are calculated using the mean (Reynolds Averaged) 

velocity field, all RANS model terms obtained within the DHRL framework are 

calculated using the mean, rather than the instantaneous resolved field. Hence, for 

statistically stationary flows for example, the RANS eddy viscosity does not dampen 

fluctuations that tend to arise in unstable regions of the flowfield. 

7.2.3 New Dynamic Hybrid RANS-LES (DHRL) Model 

While the DHRL model has been extensively validated for numerous test cases [13-18], 

the dependence on the RANS model from RANS-to-LES remains to be a key weakness highlighted 

in previous studies [46,47,58]. As a consequence, in complex flow regions where the RANS model 

substantially overpredicts Reynolds stress, the DHRL model will in effect add a non-physical 

RANS stress component even when the flowfield is sufficiently resolved by the LES model. For 

example, in pulsating channel flows [46,47], a deviation from mean velocities was observed in the 

center of the channel as a direct consequence of the model remaining in a RANS biased mode 

despite the presence of significant turbulent fluctuations. 

To address this issue, a new statistical dimensionless variable is introduced to represent 

regions in the flowfield that are able to be resolved in a purely LES mode. For the velocity field, 

it is possible to define a scaling variable based on the ratio of the inverse time scale of resolved 

fluctuations to the large-eddy time-scale, to adequately represent regions that contain sufficient 

resolved turbulent energy to sustain an LES mode. The new variable ς is defined as: 
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ς =  
SijSij̅̅ ̅̅ ̅̅ ̅ − S̅ijS̅ij

S̅ijS̅ij
                                                                            (96) 

where 𝑆𝑖𝑗 is mean rate-of-strain. It is apparent that in regions of numerically steady solution, ς =  

SijSij̅̅ ̅̅ ̅̅ ̅ − S̅ijS̅ij

S̅ijS̅ij
 ~ 0, whereas in regions with highly resolved turbulent fluctuations,  ς =  

SijSij̅̅ ̅̅ ̅̅ ̅ − S̅ijS̅ij

S̅ijS̅ij
 >> 

1.  

The new, alternate parameter proposed to smoothly transition RANS-to-LES in regions of 

sufficient resolved fluctuations is denoted by γ, with the requirement that γ → 0 as ς → 0 and γ 

→ 1 as ς → ∞.  The initial form of the alternative blending parameter implemented and 

investigated is given by:  

γ = 1 − [1 + (
ς

ςc
)
𝑚

]
−1

                                                          (97) 

where m is used to determine the shape of the curve, and ςc is a constant of calibration used to 

determine a critical value of ς that dictates where the model shifts to LES mode. Figure 1 shows 

the behavior of γ plotted against ς for three different values of m. 

 

Figure 1. Illustration of new blending function 𝛄 using different coefficients 
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Finally, a new blending parameter can be constructed as the maximum of the original 

blending parameter (α) and the new parameter (γ) such that: 

𝛼𝑒𝑓𝑓 = 𝑚𝑎𝑥(𝛼, 𝛾)                                            (98) 

 

𝜏𝑖𝑗 = 𝛼𝑒𝑓𝑓𝜏𝑖𝑗
𝑆𝐺𝑆 + (1 − 𝛼𝑒𝑓𝑓)𝜏𝑖𝑗

𝑅𝐴𝑁𝑆                              (99) 

where αeff is the new blending parameter and the sub-filter stress term.  

Similar to previous studies, the SST k-ω model is used as the RANS component and MILES 

as the LES component. Recall that MILES does not incorporate a sub-grid stress model. Using Eq. 

(98) and Eq. (99), the sub-filter stress and the blending parameter can be expressed as:  

𝜏𝑖𝑗 = (1 − 𝛼𝑒𝑓𝑓)𝜏𝑖𝑗
𝑅𝐴𝑁𝑆

                                            (100) 

since 

𝜏𝑖𝑗
𝑆𝐺𝑆̅̅ ̅̅ ̅̅ = 0                                                           (101) 

and Eq. (83) can be written as, 

 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢̂𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃̂

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(σij) −

𝜕

𝜕𝑥𝑗
((1 − αeff)𝜏𝑖𝑗

𝑅𝐴𝑁𝑆)                  (102) 

 

For highly resolved separated flow regions, the parameter γ → 1 and the simulation 

operates in a pure LES mode. For attached boundary layers and regions for which the resolved 

fluctuations are small, γ < 1 and the simulation operates in the baseline DHRL mode, in which the 

RANS contribution is governed by the original blending parameter α. The parameters m and ςc 

should ideally be selected so that the DHRL model merges smoothly into the LES mode as the 

wall distance increases for resolved turbulent flow. Initial simulations have been performed for a 
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turbulent channel flow case. Results using the combination m = 2, ςc = 2 showed a reasonable 

delineation of the LES and DHRL regions. Figure 2 shows the predicted values of α and γ for a 

low Mach number turbulent channel flow at Re=180, for a mesh containing 1283 hexahedral cells. 

It is apparent that, in the near wall region, the value of γ tends to zero and the original blending 

function α will determine the RANS contribution. Near the centerline of the channel (y/δ → 1) 

the new parameter γ dominates and the simulation will operate in a pure LES mode rather than the 

blended HRL mode as dictated by α in that region. The difference between the original blending 

function α and the new function αeff is illustrated in Figure 3. Because the mean strain rate is small 

near the centerline, this difference may not be significant to the overall mean flow results. 

However, the figure does indicate that, for simulations in which turbulent fluctuations are well 

resolved, the new parameter can potentially identify LES behavior independent of the details of 

the RANS model used.  

 

Figure 2. Distribution of original RANS dependent blending function 𝛂 and the and new 

RANS independent blending function 𝛄, for turbulent channel flow simulation. 
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Figure 3. For turbulent channel flow, distribution of original DHRL blending function 𝛂 

and proposed new blending 𝛂𝐞𝐟𝐟 function to be implemented for modified DHRL model. 

For the present study, the following combinations of 𝑚 , ςc will be investigated for a 

variety of complex turbulence flows discussed in the following sections. 

Table 1. Transition parameter coefficients investigated  

Model Variant 𝐦 𝛓𝐜 

DHRL22 2 2 

DHRL24 2 4 

DHRL44 4 4 

 

7.3 TEST CASES  

The performance of the new DHRL model is validated against the baseline DHRL model, 

RANS models, hybrid RANS-LES models described in the previous sections for i) fully developed 

turbulent channel flow at Re =350 and Re = 590,  ii) flow over a three-dimensional axisymmetric 

hill, and iii) non-stationary pulsatile flow in a channel.  
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7.3.1 Fully Developed Turbulent Channel Flow 

Channel flows are perhaps the simplest form of wall-bounded turbulence. These types of 

flows have provided useful insights about statistical and structural characteristics of flow in the 

near-wall regions. These flows also have significant relevance to many engineering applications, 

such as in pipe flows and heat exchangers. Importantly, these flows also serve as canonical test 

cases for validation and verification of newly developed turbulence models and numerical 

methods. Two fully developed channel flows are investigated in this study at Re=350 and 

Re=590, respectively. Performance of RANS, HRL, and DHRL model variants are compared 

against the DNS study conducted by Scotti et al. [24] for Re=350, and Moser et al. [48] for 

Re=590 using the same grids used in Chapters V and VI. 

7.3.1.2 Results and Discussion  

Fully developed flow through a channel was investigated for two Reynolds numbers equal 

to 350 and 590, based on friction velocity and channel half height. Figure 4 compares the profiles 

of normalized mean-velocity, 𝑢̅+, and figure 5 compares the blending function for the DHRL mode 

variants at Re = 350. All the models predict the velocity profile with relatively high accuracy 

except the SST Multiscale model. Since the mesh cells in the near-wall regions are relatively well 

resolved, the model is in close agreement with DNS however, in the log-layer as the cells get 

stretched, the model transitions between RANS and LES modes before finally predicting the 

correct velocity profile in the outer layer. The baseline DHRL model also tends to underpredict 

velocity in the log-layer due to increased RANS contribution to the sub-filter stress. The new 

DHRL variants address this issue by accurately resolving the correct LES fluctuations and 

remaining in LES mode. All the new models however, become partially RANS biased in the center 
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of the channel due to extremely large grid spacing and the inability of MILES to resolve these 

fluctuations accurately.   

Figure 6 compares the trace of resolved Reynolds stress 𝑢𝑖′𝑢𝑖′̅̅ ̅̅ ̅̅  and resolved Reynolds shear 

stress 𝑢′𝑣′̅̅ ̅̅ ̅ at Re = 350. Since DES operates in RANS mode, this section does not include resolved 

statistics from DES model. All the DHRL model variants are in general agreement with the data 

in [24]. All the new DHRL models are similar to MILES as they operate in the LES mode with 

some disagreement in the log-layer observed which can be attributed to under-resolved LES. Once 

again, the SST Multiscale model has difficulty accurately resolving the flow because of the grid. 

Similar to Figure 6, the SST Multiscale performance is significantly improved in the log and outer 

layer as it correctly switches to LES. In the near-wall regions, the model operates in a pseudo-

RANS mode leading to underpredicted stress.  

 

Figure 4. Profiles of normalized mean-velocity for Re = 350. Scotti et al. [24];    

MILES; SST k- ;  SST Multiscale, - - - DHRL;  DHRL22;  DHRL24; and  

DHRL44 
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Figure 5. Profiles of blending parameter (α) for Re = 350.  DHRL;  DHRL22;  

DHRL24; and  DHRL44 

 

 

(a)                                                                (b) 

Figure 6. Profiles of resolved (a) 𝒖𝒊′𝒖𝒊′̅̅ ̅̅ ̅̅  , and (c) 𝒖′𝒗′̅̅ ̅̅ ̅ for Re = 350. Scotti et al. [24];    

MILES; SST k- ;  SST Multiscale, - - - DHRL;  DHRL22;  DHRL24; and  

DHRL44 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1 101 201 301

u+

y+

0

4

8

12

1 10 100

u+

log y+

0

0.25

0.5

0.75

1

1 10 100

u+

log y+



145 | P a g e  
 

Figure 7 compares the profiles of normalized mean-velocity 𝑢̅+ while figure 8 compares 

the blending function for the DHRL mode variants at Re = 590. One of the major differences 

observed for Re = 590 from Re = 350 is the more pronounced log layer with a shorter buffer 

layer. All the models capture the general trend of DNS with varying degrees of accuracy. MILES 

significantly overpredicts velocity in the log-layer as it is unable to resolve appreciable levels of 

turbulence while, the traditional RANS (SST k-) and HRL (SST Multiscale) model behavior is 

similar to Re = 350. All the DHRL model variants, once again, resolve the velocity field 

accurately. The baseline DHRL results are also improved from Re = 350 as the blending parameter 

is more LES biased as shown in Fig. 7 (b). 

Figure 9 compares the resolved normal stresses ( 𝑢′𝑢′̅̅ ̅̅ ̅, 𝑣′𝑣′̅̅ ̅̅ ̅, 𝑤′𝑤′̅̅ ̅̅ ̅̅  ) and resolved Reynolds 

shear stress 𝑢′𝑣′̅̅ ̅̅ ̅ at Re = 590. None of the models accurately capture the streamwise Reynolds 

stress (𝑢′𝑢′̅̅ ̅̅ ̅) accurately. Significant disagreements are observed in the log-layer with all the DHRL 

model variants and MILES significantly overpredicting stresses. The performance of the new 

DHRL model variants are a slight improvement over the baseline model and MILES. However, 

the new DHRL models predict wall-normal, spanwise and Reynolds shear stress profiles with 

greater accuracy. All the model variants are an improvement over the baseline DHRL model, 

MILES, and SST Multiscale model.          
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Figure 7. Profiles of normalized mean-velocity for Re = 590. Moser et al. [48];    

MILES; SST k- ;   SST Multiscale, - - - DHRL;  DHRL22;  DHRL24; and  

DHRL44 

 

 

Figure 8. Profiles of blending parameter α for Re = 590.  DHRL;  DHRL22;  DHRL24; 

and  DHRL44 
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(a)                                                                (b) 

 

(c)                                                                (d)                                             

Figure 9. Profiles of (a) mean-velocity, (b) 𝒖′𝒖′̅̅ ̅̅ ̅̅  , (c) 𝒗′𝒗′̅̅ ̅̅ ̅, (d) 𝒘′𝒘′̅̅ ̅̅ ̅̅ , and (e) 𝒖′𝒗′̅̅ ̅̅ ̅ Moser et 

al. [48];    MILES; SST k-;  SST Multiscale, - - - DHRL;  DHRL22;  DHRL24; 

and  DHRL44 
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good agreement with experimental [2,15] and high-resolution LES study [11]. This problem is 

investigated once again to verify the performance of the new DHRL model variants. 

7.3.2.1 Results and Discussion 

The performance of the DHRL model variants are evaluated against experimental studies 

conducted by Simpson et al. [2] and Ma et al. [15], and a high resolution LES study performed by 

Garcia et al. [11]. Results are compared and contrasted for several different flow metrics. 

7.3.2.2 Distribution of Pressure Coefficient on the Centerline z/H = 0 

Figure 10 compares the Pressure Coefficient (Cp) distribution on the surface on the hill 

between experiments and all the DHRL model variants. In the approach region on the windward 

side, a small recirculation zone at the foot of the hill is formed at approximately at x/H = -2 because 

of the high-pressure region created due to the geometry of the hill. This recirculation zone 

represents itself as a small kink in the Cp profiles predicted by the new DHRL model variants. 

Persson et al. [8] observed the presence of this recirculation zone along with more recent studies 

by our research group [5,42]. Past the small recirculation zone, Cp values start to decrease as the 

curvature of the hill slowly changes and flow is accelerated towards the top of the hill. The 

minimum value of Cp is recovered at the apex of hill, at x/H=0, where the lowest mean pressure is 

recorded. As flow travels downward into the lee-side of the hill, separation occurs around x/H~0.8 

as indicated by the inflection in the plot. Flow reattachment takes place between x/H=1.85 and 

2.25.  

All the DHRL model variants predict the Cp with close reasonable accuracy and close 

agreement to one another. As shown in [14], traditional RANS and HRL model predictions for Cp 

are relatively poor as they tend to over-exaggerate the separation region caused by inaccurate stress 
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prediction. The new DHRL model variants show slight improvement over the baseline DHRL 

model in predicting the pressure distribution in the reattachment location slightly more accurately. 

 

 

Figure 10. CP profiles along the centerline z/H = 0.  Simpson et al. [2]; baseline 

DHRL Model;  DHRL22; DHRL24;  DHRL44 

 

 

7.3.2.3 Streamwise and Spanwise Velocity Distribution at x= 3.69H 
 

Normalized streamwise and spanwise velocity profiles in Figure 11 are compared for all 

the DHRL model variants against experimental data. All model variants predict the velocity 

distribution with considerable accuracy. The new DHRL models provide an improvement over the 

baseline DHRL model in the near-hill regions which are dominated by strong downwash and 

rotation-curvature effects. The discrepancies observed for x/h > 0.5 for z/H ≥ -0.81 can be 

attributed to under-resolved LES caused by large grid aspect ratio away from the boundary.  

-1.4

-1

-0.6

-0.2

0.2

0.6

-4 -2 0 2 4x/h

Cp



150 | P a g e  
 

 
(a) 

 

  
(b) 

 
Figure 11. Profiles of (a) < 𝒖̅ >/𝑼𝒊𝒏 , (b) < 𝒘̅ >/𝑼𝒊𝒏 at x= 3.69H.  Simpson et al. [2];

baseline DHRL Model;  DHRL22; DHRL24; and   DHRL44 

 

7.3.2.4 Streamwise and Spanwise Velocity Distribution at x=3.63H 
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is predicted more accurately. The GVR and LL simulations [30] used grids of approximately 134.5 

x106 and 36.7x106 cells respectively compared to the grid size of 4.5x106 cells used in this study. 

Hence, the general agreement of the DHRL model velocity profiles with the GVR and LL results 

is a testament to the performance of the DHRL model. 

 

 

(a) 

 

(b) 

Figure 12. Plots of (a) < 𝒖̅ >/𝑼𝒊𝒏 and (b) < 𝒘̅ >/𝑼𝒊𝒏 at x= 3.63H.  Ma et al. [15],  LL 

and  GVR [11], baseline DHRL Model;  DHRL22; DHRL24; and   

DHRL44 
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7.3.2.5 Turbulent Kinetic Energy (
𝟏

𝟐
𝒖′𝒊𝒖′𝒊̅̅ ̅̅ ̅̅ ̅) and Reynolds Shear Stress (𝒖′𝒗′) at x=3.63H  

Figure 13 compares profiles of resolved Turbulent Kinetic Energy (TKE) and Reynolds Shear 

Stress at x=3.63H for the DHRL model variants against experimental data [15] and high-resolution 

LES results [11]. When compared to tradition HRL models, DHRL results are a significant 

improvement. However, discrepancies can be observed for both TKE and Reynolds shear stress. 

Resolved TKE is overpredicted away from the centerline due to lack of dissipative scales in the 

flow in these regions of high aspect ratio cells. The resolved Reynolds stress profiles are also in 

good agreement with experimental and numerical data. Overall, the new DHRL models provide 

little to no improvement over the baseline model for resolved TKE and Reynolds shear stress 

prediction.  

 

 

 

 

 

 

 

 

 



153 | P a g e  
 

 

(a) 

 

(b) 

Figure 13. Plots of (a) Resolved TKE/𝑼𝒊𝒏
𝟐
, (b) Resolved Reynolds Stress (𝒖′𝒗′)/𝑼𝒊𝒏

𝟐
 at x= 

3.69H.  Ma et al. [15];  LL and  GVR [11]; DHRL; DHRL22; 

DHRL24; and DHRL44 
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7.3.3 Pulsating Channel 

Chapters IV and V highlighted some of the difficulties in accurately predicting turbulence 

generated in non-stationary pulsatile flows. During parts of the pulsation cycle for low-frequency 

oscillation, the DHRL model would remain in a RANS-biased mode despite the presence of 

resolvable turbulence. The implementation of the DTF technique alleviated the issue to a certain 

degree but a more robust blending parameter was desired. Results from fully developed channel 

flow at Re = 350 and Re = 590 indicate the effectiveness of the new blending parameter however, 

because of the complexity of the pulsating channel and the challenge it presents for modern 

turbulence models, the case is investigated once again to evaluate the performance of the new 

DHRL model variants. 

7.3.3.1 Results and Discussion 

Time-varying mean statistic of normalized velocity and Reynolds stresses are discussed in 

this section. All the DHRL model variants are coupled with the DTF technique discussed in 

Chapter IV. Similar to past studies, data analysis of all flow statistics is carried out using planar-

averaging. 

7.3.3.2 Time Varying Mean Velocity 

Figures 14, 15, and 16 show the distribution of normalized mean velocity (u̅+) against 

dimensionless wall distance at (y+) at 8 equally spaced phases during a pulsation cycle. In each 

figure, t/T=0.75 and t/T=0.25 mark the beginning of the acceleration and deceleration phases 

respectively.   

One of the interesting features observed for the pulsating channel flow is the change in 

modulation and structure of the log-layer based on forcing frequency. For the high frequency case, 
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shown in Figure 14, a distinct log-layer is visible that is modulated upwards and downwards 

throughout the cycle as the forcing term follows a sinusoidal function. Interestingly however, the 

outer layer remains intact throughout the cycle. MILES reproduces the general structure of the 

flow profile qualitatively. Deviations from LES data can be observed in the log-layer where 

MILES tends to overpredict velocity. The DHRL model variants accurately describe the flow 

throughout the cycle and no significant disagreements from LES data is observed. 

As the forcing is reduced, the physics of the flow is significantly altered, as seen in Figure 

15. A major distinction from the high frequency case is the lack of a well-defined log-layer for 

parts of the cycle. LES data also suggests a strong coupling between log and outer layers in the 

deceleration phase as a direct consequence of the reduced forcing. Once again, MILES 

overpredicts the velocity in the log layer with major disagreements with LES data appearing the 

deceleration phase. This is due to MILES not being able to resolve the dissipative scales 

appropriately. The DHRL models better predict the time-varying velocity field in the acceleration 

phase. Some minor deviations are observed in the log-layer but overall, the DHRL model 

predictions are in good agreement with LES data. In the deceleration phase, the flow behavior is 

reasonably well described by all the DHRL models.  

In past studies [46,47], the accurate description of flow features at low-frequency have 

proven to be difficult for RANS and HRL models. Similar to the high and medium frequency 

cases, MILES overpredicts velocity in the log-layer. Discrepancies grow during the deceleration 

phase due to the lack of dissipative scale resolution in MILES. The DHRL model variants are close 

to each other and are in good agreement with LES data during the acceleration phase. However, 

the effects of the alternate blending are evident in the improved RANS-to-LES transition for the 

all the new DHRL model variants.  
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Figure 14. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for high-frequency case.  Scotti et al. [24]; --MILES; DHRL 

DTF;  DHRL22 DTF,  DHRL24 DTF,  DHRL44 DTF  
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Figure 15. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for medium-frequency case.  Scotti et al. [24]; --MILES; 

DHRL DTF;  DHRL22 DTF,  DHRL24 DTF,  DHRL44 DTF  
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Figure 16. 𝐔+ 𝐯𝐬 𝐥𝐨𝐠 (𝐘+) for low-frequency case.  Scotti et al. [24]; --MILES; DHRL 

DTF;  DHRL22 DTF,  DHRL24 DTF,  DHRL44 DTF  
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7.3.3.3 AC and DC Comparison Reynolds Stresses  

Figure 17 compares the alternating and direct, AC and DC, components of resolved 

Reynolds Stresses of the DHRL model variants against DNS and LES data [24]. All the DHRL 

model variants are in good agreement with the DC component of Reynolds stress. AC components 

are however relatively difficult to predict because of the inability of these models to accurately 

represent flow features a wide range of scales due to grid resolution and numerical dissipation. 

Overall, the DHRL model results are in fair agreement with DNS and LES results and further 

improvements can likely be achieved by using a more refined grid. 

7.3.3.4 Comparison of ui'ui'̅̅ ̅̅ ̅̅  

Figures 18-20 compare the trace of resolved Reynolds stresses against LES study conducted 

by Scotti et al. [24]. The new DHRL model variants predict Reynolds stresses more closely than 

the MILES model for high and medium-frequency oscillations. The DHRL model also 

appropriately adjusts RANS contribution to the sub-filter stress in regions where MILES predict 

inaccurate stresses. For low-frequency oscillations, major discrepancies can be observed during 

the deceleration phase t/T>0.5. This part of the cycle is dominated by enhanced mixing along with 

flow transition which are difficult to predict. Overall, the new DHRL model variants capture the 

general trends with reasonable accuracy and are an improvement over the baseline DHRL model. 

 

 



160 | P a g e  
 

  

 

 

 

Figure 17. AC and DC Components of resolved Reynolds stresses for high-frequency 

oscillations. DNS and LES [24];  MILES;  DHRL DTF; --- DHRL22; DHRL24;  

and  DHRL44 
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Figure 18. Plots of resolved (ui'ui'̅̅ ̅̅ ̅̅ ) vs y+ high-frequency oscillations. LES [24];  MILES; 

 DHRL DTF; --- DHRL22; DHRL24;  and  DHRL44 
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Figure 19. Plots of resolved (ui'ui'̅̅ ̅̅ ̅̅ ) vs y+ medium-frequency oscillations. LES [24];  

MILES;  DHRL DTF; --- DHRL22; DHRL24;  and  DHRL44 
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Figure 20. Plots of resolved (ui'ui'̅̅ ̅̅ ̅̅ ) vs y+ low-frequency oscillations. LES [24];  MILES; 

 DHRL DTF; --- DHRL22; DHRL24;  and  DHRL44 
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7.3.3.5 Comparison of Reynolds Shear Stress (u1'u2'̅̅ ̅̅ ̅̅ ̅) 

Figures 21-23 compare Reynolds shear stress profiles throughout the forcing spectrum. 

Correlations during the acceleration phase are relatively difficult to predict for traditional HRL 

models and the baseline DHRL model as it requires an accurate prediction of increased momentum 

and energy transfer between u and v components of the velocity.  Surprisingly, MILES 

performance is superior to the baseline DHRL model. During the majority of the flow in medium 

and low-frequency cases, the RANS stress contribution in the DHRL model is too large. This issue 

is alleviated by the new DHRL model variants which not only provide improvements over the 

baseline DHRL model but also show enhanced resolution of flow physics in parts of the flow cycle 

where MILES tends to inaccurately predict flow statistics by appropriately blending the RANS 

and LES contribution to the sub-filter stress.  Overall, the new blending parameters significantly 

improve the predictive capability of Reynolds shear stresses for the DHRL model. 
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Figure 21. Plots of resolved (u1'u2'̅̅ ̅̅ ̅̅ ̅) vs y+ high-frequency oscillations. LES [24];  

MILES;  DHRL DTF; --- DHRL22; DHRL24;  and  DHRL44 
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Figure 22. Plots of resolved (u1'u2'̅̅ ̅̅ ̅̅ ̅) vs y+ medium-frequency. LES [24];  MILES;  

DHRL DTF; --- DHRL22; DHRL24;  and  DHRL44 
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Figure 23. Plots of resolved (u1'u2'̅̅ ̅̅ ̅̅ ̅) vs y+ low-frequency. LES [24];  MILES;  DHRL 

DTF; --- DHRL22; DHRL24;  and  DHRL44 
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7.3.3.6 AC and DC component of Blending Parameter 

Figure 24 shows the variation of the RANS-to-LES blending parameter for the new DHRL 

model variants against the baseline DHRL model throughout the forcing frequency spectrum. All 

the DHRL model variants show similar response to the time-dependent imposed pressure gradient 

for the high and medium frequency oscillations. The new DHRL model variants show a significant 

increase in LES content for both, AC and DC, components of the blending parameter which 

resulted in a significant improvement in Reynolds Stress prediction.  

 

 

 
 

Figure 24. Plots of the blending parameter. DHRL DTF;  DHRL22;  DHRL24,  

DHRL44 
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7.4 CONCLUSIONS 

 In this study, an alternate blending parameter is proposed for the Dynamic Hybrid RANS-

LES (DHRL) model. The new blending parameter is calculated using a statistical variable based 

on the ratio of inverse time-scale of resolved fluctuations to large-eddy time scale. This statistical 

variable is used to identify the presence of resolvable LES content in the flowfield. The variable 

is incorporated in a blending function that smoothly transitions the model from RANS-to-LES 

even in regions where RANS stress is significantly overpredicted. Performance of three different 

variants of the blending parameter is investigated for a flow in a fully developed turbulent channel, 

flow over a three-dimensional axisymmetric hill, and non-stationary pulsating flow in a channel. 

Results from the fully developed channel flow at Re = 350 and Re = 590 suggest that the 

new DHRL model variants are an improvement over the baseline model. The new variants prevent 

the model from being RANS-biased and underpredicting the velocity in the log-layer where RANS 

stresses are overpredicted. The new models also predict second moment statistics with improved 

accuracy. For flow over a three-dimensional axisymmetric hill, the new model variants tend to 

behave in a similar fashion to the baseline model with minor improvements observed in Cp and 

velocity profiles. More substantial improvements in performance can be observed for non-

stationary pulsating channel flow. The new model variants significantly improve velocity 

predictions and second moment statistics especially for low-frequency oscillations, when 

compared against the baseline DHRL model. Overall it is concluded that the new DHRL model is 

an improvement over the baseline DHRL model for complex turbulent flows. Results suggest that 

the blending parameter with optimum performance throughout the spectrum of cases investigated 

is the DHRL22 with blending coefficients m=2 and zc=2.  
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Future work will include additional canonical tests cases such as flow over a backward 

facing step, film-cooling, and flow in a vortex cell. Current work is underway to develop more 

advanced blending for the DHRL model which is completely independent of the RANS model. 
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CHAPTER VIII 

 

 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

This Dissertation presents advanced turbulence modeling strategies within the hybrid 

RANS-LES framework. The performance of the Dynamic Hybrid RANS-LES (DHRL) model is 

first compared against traditional Reynolds Averaged Navier-Stokes (RANS), Hybrid RANS-LES 

(HRL), DNS, and experimental data for canonical test cases including stationary and non-

stationary flows. Based on results, different modeling techniques are developed and implemented 

to improve the predictive capabilities of the DHRL model and the cases are reinvestigated.     

In Chapter IV of this Dissertation, performance of RANS, HRL and the Dynamic Hybrid 

RANS-LES (DHRL) are comprehensively studied. Behavior of these models has been cataloged 

for the canonical case of flow over a three-dimensional axisymmetric hill. The results indicate 

some of the shortcomings of RANS and traditional HRL models in predicting complex turbulent 

flows, while highlighting some of the key features of the DHRL modeling technique. Results also 

show that the HRL models are unable to resolve appreciable levels of turbulent fluctuation energy 

unless a low-dissipation numerical scheme is used.  

In Chapter V, two implementations of the new time filtering techniques are considered: 

initially a filter width based on imposed oscillation frequency was used to determine a filter width 

for averaging purposes. For almost all the cases, the filtering method allowed simulation results in 
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qualitative agreement with experimental data. Next, a dynamic filtering method based on turbulent 

statistics rather than on imposed frequency was proposed to eliminate the shortcomings of the 

initial method. The new time filtering technique substantially improved the predictive capability 

of the Dynamic Hybrid RANS-LES (DHRL) model for non-stationary flows while suffering from 

minimal detrimental effects when used in stationary flows. In addition, the new method requires 

less user input than the previously proposed method and dynamically adjusts filter width based on 

local turbulent statistics.  

In Chapter VI, a new variation of the dynamic time filtering is implemented suing double 

exponential averaging to help the DHRL model predict trends in flows with monotonically 

changing turbulent statistics. The study also included additional DNS data to supplement the 

existing DNS database for pulsating channel flow. Following the validation of the DNS data, the 

newly proposed DDTF technique was validated for pulsating channel and temporally evolving 

turbulent channel flow. It was observed that the DDTF effectively incorporated trends in its 

velocity predictions and damped out some of sharp variations in velocity for the low-frequency 

oscillations in a pulsating channel. However, the model consistently underpredicted velocity in the 

outer layer. For a temporally evolving turbulent mixing layer, the DHRL-DDTF model was in 

good agreement with DNS however, temporal evolution of turbulent statistics were not accurately 

predicted due to differences in initial perturbations from DNS. Future work would involve fine 

tuning the initial perturbations to help the DHRL-DDTF model predict accurate temporal evolution 

of the flow.  

In Chapter VII, an alternate blending parameter is proposed for the Dynamic Hybrid 

RANS-LES (DHRL) model. The new blending parameter is calculated using a new statistical 

variable based on the ratio of inverse time-scale of resolved fluctuations to large-eddy time scale 



173 | P a g e  
 

to identify the presence of sufficient LES content which allows the model to transition from 

RANS-to-LES even in regions where RANS stress is significantly overpredicted. Performance of 

three different variants of the blending parameter are investigated for a flow in a fully developed 

turbulent channel, flow over a three-dimensional axisymmetric hill, and non-stationary pulsating 

flow in a channel. The new implementation of the DHRL model considered in this study mitigated 

some of the key deficiencies of the baseline DHRL model such as an improvement in calculation 

of transition parameters to aid the hybrid models in the RANS to LES transition while improving 

predictive capabilities of the DHRL model for all cases. Results indicate a significant improvement 

in predictive capability of the DHRL models with new blending parameters without any additional 

detrimental effects.   

8.2 Future Work 

Future work will incorporate more improved RANS models within the DHRL framework. 

Since traditional RANS models based on Linear Eddy Viscosity framework are unable to resolve 

flows with system rotation, curvature, and anisotropy with accuracy, work has been ongoing on a 

newly proposed Algebraic Reynolds Stress Model (ARSM) with an Algebraic Heat Flux Model 

(AHFM). The model is currently being evaluated for a variety of test cases that include complex 

flow physics such as buoyancy and spanwise heat transfer typically observed in nuclear reactor 

cooling applications.    
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