Using Zircon Geochronology to Determine Sand Provenance in Northeast Oklahoma

Kable Kleck, Jim Puckette, and Zac Tunin

Introduction

Research Question:
- What is the provenance for the sediment that composes the Cleveland and Seminole Sandstone in Oklahoma?

What's New:
- Detrital zircon provenance studies have shown that Appalachian synorogenic grains are present in Pennsylvanian age strata in the western North American Craton.
- Using provenance studies combined with detrital zircon geochronology, it is possible to minimize the sediment sources that contributed to detrital compositions.

Why do we care:
- Sediment provenance places initial influences on the composition of sedimentary rocks.
- Sandstones lose primary porosity due to silica cementation, but gain secondary porosity via acid dissolution. The amount of secondary porosity formed depends on detrital composition.

Background/Study Area

Methods

Zircon geochronology is implemented to better determine the origin of sandstone components. The hardy nature of a zircon preserves its crystallization age, keeping it in a chemically closed system, which allows for U-Pb dating to determine provenance age signatures of a sedimentary unit.

Results

Sandstone Petrography

Fig. 3 Ternary diagram based on normalized point counts of quartz, chert, and metamorphic rock fragments. Modified from Battle 2017.

Fig. 4-6 Photomicrographs of the Cleveland Sandstone collected from Southern Hills Country Club, Tulsa, OK. (a) Quartz; (b) metamorphic rock fragments (MRF). Plane polarized light. (c) Cross polarized light. (d) Plane polarized light. (e) Cross polarized light.

Fig. 7-9 Photomicrographs of the Seminole Sandstone collected from the Susan’s outcrop, Seminole Co., OK. (a) Quartz; (b) Chert. Plane polarized light. (c) Cross polarized light.

U-Pb Dating

Fig. 8 Normalized relative age probability plots for the Cleveland and Seminole samples.

Fig. 9 Chart detailing age ranges for zircon provinces for North America. Cleveland CL-TH n=206 Seminole SSK n=199.

Interpretation and Discussion

Results differ from the hypothesis such that the petrography of the two samples differs considerably as expected, but the zircon geochronology data is remarkably similar. These results, along with the scarcity of feldspars and metamorphic rock fragments in the Seminole sample implies that the non-clay detrital grains are recycled, while the chert is still mostly likely derived from the Ouachita Mts. The reason for the similar zircon geochronologies is due to the resilient and near-immutable zircons staying in the system even when other evidence of the original source was removed via dissolution and/or weathering.

Future Work

- Acquire additional samples from the Cleveland Sandstone and compare provenance of samples from Northeast OK with samples from subsurface Anadarko Basin.
- Compare detrital composition of the Cleveland Sandstone with composition of the Hepler Sandstone in Kansas.
- Build comprehensive sediment dispersal model for the late Pennsylvanian in North America.

Acknowledgements

Thank you to the Wentz Scholars Program and the Wentz foundation for supporting this research endeavor.