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Abstract: Identifying socially vulnerable groups is an important step toward creating resilient 

communities and reducing future losses of property and human life. A population’s vulnerability 

to a hazard is not based solely on its proximity to a dangerous event. Instead, vulnerability to a 

hazard is the product of a complex combination of the socioeconomic, institutional, and 

environmental systems that affect a group of people, and the disruption of those systems by a 

hazardous event. Measurement of social vulnerability is already a focus within the hazard’s 

literature. One area of particularly intensive research attention has been the development and 

application of indices of social vulnerability, which are constructed from a range of measures 

meant to serve as proxies of aspects of vulnerability. There is an ongoing need to create reliable, 

useful, and accurate indexes that can inform policymakers and natural hazards scientists for better 

decision making at various stages of the disaster cycle. However, less attention has been devoted 

to the validation of these indexes, which is critical to their practical use. The purpose of this work 

is to validate two alternative social vulnerability indexes within the state of Oklahoma. The indexes 

included the well-established Social Vulnerability Index (SoVI) and a tornado-specific social 

vulnerability index (TSVI). A first objective was to examine the spatial distribution of social 

vulnerability in Oklahoma as defined by the SoVI and TSVI. The indexes identified different areas 

of the state as more socially vulnerable. A second objective was to externally validate the SoVI 

and TSVI against a second, independent dataset that measures actual damages and loss from 

tornado events. Using 4 case studies from the study period and correlation analysis, we found that 

the SoVI and TSVI were not externally valid. The indexes did not display expected relationships 

and high damages and losses did not necessarily occur in areas of high social vulnerability. These 

findings reinforce prior findings that the relationship between social vulnerability and loss is 

complex, and that further revision of indexes and more validation studies are needed to fully 

understand their value in hazard planning. 
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CHAPTER I 

 

INTRODUCTION 

 

Vulnerability is a key component of hazards research and identifying socially vulnerable 

groups is a first step in creating resilient communities and reducing future losses of property and 

human life (Cutter 1996; Cutter et al. 2000; Flanagan et al. 2011). Natural hazards pose 

challenges to society, the built environment, and the natural landscape, and also stress 

interconnections among those systems. Developing resilient communities to decrease hazard-

related losses is a top priority for local governments, policymakers, and researchers (McBean 

and Ajibade 2009; Murphy et al. 2015). Climate change will increase the frequency and intensity 

of extreme weather events and may exacerbate these stressors, increasing losses significantly 

(O’Brien et al. 2006). Lessons from past hazardous events such as Hurricane Katrina in 2005 and 

the 2010 earthquake in Haiti are prime examples of the need and importance of identifying 

socially vulnerable groups before the onset of extreme events (Tate 2012). 

Measurement of social vulnerability is already a focus within the hazard’s literature. One 

area of particularly intensive research attention has been the development and application of 

indices of social vulnerability. Indices of social vulnerability produce single metrics used to 

measure social vulnerability (Tate 2013). There is an ongoing need to create reliable, useful, and 

accurate indexes that can inform policymakers and natural hazard’s scientists for better decision 

making (Eriksen and Kelly 2007; Schmidtlein et al. 2008; Tate 2012; Rufat et al. 2015) at 
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various stages of the disaster cycle (Flanagan et al. 2011). However, while much research 

attention has gone into developing indices, less attention has been given to their validation. This 

lack of attention is surprising given the fact that validation of these indices is critical to their 

practical use (Fekete 2009; Rufat et al. 2015). 

The purpose of this study is to assess the validity of two different social vulnerability 

indicators in the state of Oklahoma. This work has two primary research objectives. Objective 1 

is to replicate a commonly used general index of social vulnerability, develop a tornado-specific 

social vulnerability index, and compare the spatial pattern of vulnerability identified by each 

index in the state of Oklahoma. The goal of a general index is to identify the social vulnerability 

of a population across a range of environmental hazards. In contrast, a specific index focuses on 

characteristics that would make a population vulnerable to a specific hazard. In this case, the 

tornado-specific index will try to highlight areas of the state that are especially vulnerable to 

tornado events. Comparing the spatial pattern of social vulnerability identified by each index can 

contribute to the body of literature of place-specific case studies, index construction methods, 

and adaptability of pre-existing indexes. Objective 2 is to externally validate these indexes 

against a second, independent dataset measuring observed losses from tornadoes. Examining the 

relationship between indices and actual losses might provide information on whether social 

vulnerability indices of different types can inform policy decisions. 

 

 1.1 Study Context 

  1.1.1 Where and Why 

The study area for this work focused on the state of Oklahoma. Oklahoma is 

prone to a range of environmental hazards including drought, severe 
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thunderstorms, and tornadoes due to its geographic location. Situated in Tornado 

Alley, Oklahoma and other states in this region experience higher concentrations 

of strong and violent tornadoes (F2-F5 on the Fujita Scale) compared to other 

regions in the United States (U.S.) (Daley et al. 2005, Romanic et al. 2016). The 

climate and meteorological conditions in this area are favorable for the 

construction of supercell thunderstorms that have the capacity to produce 

tornadoes (Lim et al. 2017). Due to its susceptibility to frequent and extreme 

tornado events and losses, Oklahoma has been the focus of many tornado-related 

studies including the works of Brooks and Doswell (2002), Daley et al. (2005), 

Hout et al. (2010), and Romanic et al. (2016). During the 2010-2014 study period 

alone, Oklahoma endured 449 tornado events (NOAA, NCEI n.d.). In addition to 

the state’s inherent, physical risk, Oklahoma is home to a variety of social groups 

known to be especially vulnerable to environmental hazards and tornado events. 

There is extensive history of catastrophic tornado events in Oklahoma that 

resulted in substantial economic and human losses. The deadliest tornado in 

Oklahoma occurred in April of 1947 in the city of Woodward (Romanic et al. 

2016; NOAA, NWS n.d.). The F5 tornado destroyed over 1,000 homes and 

businesses, killed at least 116 people in and around Woodward, and caused nearly 

1,000 additional injuries; some individuals were never found or identified 

(NOAA, NWS n.d.). See Figures 1-4 to observe some of the damage in 

Woodward, Oklahoma provided by the National Oceanic and Atmospheric 

Administration’s (NOAA) National Weather Service (NWS) (n.d.). In May of 

1999, over 70 tornadoes struck Oklahoma, accounting for the largest recorded 
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tornado outbreak in the state (Romanic et al. 2016). During this event, a tornado 

with an F5 rating struck counties with densely populated communities in the 

counties of Grady, McClain, Cleveland, and Oklahoma (Daley et al. 2005). The 

most financially damaging tornado event recorded in the state transpired in May 

of 2013 in Moore, Oklahoma. A powerful tornado with a rating of EF5 caused 

extreme damage in Moore and the Oklahoma City metropolitan area, resulting in 

many injuries, causalities, and more than $2 billion in damages (Romanic et al. 

2016; Lim et al. 2017). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Tornado Damage in Woodward, OK 1947 (NWS n.d.) 
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Figure 2: Tornado Damage in Woodward, OK 1947 (NWS n.d.) 

Figure 3: Tornado Damage in Woodward, OK 1947 (NWS n.d.) 
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1.1.2 Scale and Study Period 

This work was conducted primarily at the Census tract level because tornadoes 

are relatively short, localized events. This scale allows for better representation of 

the distribution of Oklahoma’s population and can help identify socially 

vulnerable areas. Census tracts are small subdivisions of a county that typically 

represent an average population size of 4,000 but can range between 1,200 to 

8,000 people (U.S. Census Bureau 2012). See Figure 5 for a map of Oklahoma’s 

Census tracts. The map also includes the Oklahoma City and Tulsa metropolitan 

statistical areas (MSA), two major cities in the state with relatively high 

population densities. Since the observed losses are recorded at the county scale, 

this work also includes some county level analyses when necessary. 

Figure 4: Tornado Damage in Woodward, OK 1947 (NWS n.d.) 
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The study period covers the 5-year period from 2010-2014 and 

incorporated American Community Survey (ACS) data. The ACS provides up-to-

date community estimates in between the full Census counts conducted every ten 

years (U.S. Census Bureau 2018). This study period was chosen because this 

work is an extension of a larger project focused on social vulnerability in 

Oklahoma. The project was supported by an Oklahoma Established Program to 

Stimulate Competitive Research (EPSCoR) grant (OIA-1301789) through the 

National Science Foundation. 

 

 

Figure 5: Map of Census Tracts in Oklahoma 2014 
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 Defining Vulnerability and Social Vulnerability 

Many authors have stressed the importance of establishing a conceptual framework prior to 

conducting studies of vulnerability because social vulnerability has different meanings 

throughout the natural hazards and social sciences literature. Fluctuations in the definition of 

social vulnerability are related to variation in what related concepts are prioritized (e.g., adaptive 

capacity, resilience, etc.). These decisions are not trivial. Changing how social vulnerability is 

measured can alter the outputs of a study and recommendations for policy (Ciurean et al. 2013; 

Murphy et al. 2015). Researchers commonly adjust the definition used to the purpose of a study 

(Cutter et al. 2003; Ciurean et al. 2013). Some scholars have defined vulnerability as the 

“potential for loss” (Cutter 1996, Cutter et al. 2000, 2003; Ciurean et al. 2013), the “likelihood to 

experience harm” (Boruff et al. 2003; Turner et al. 2003), and “the exposure and sensitivity of a 

system” (Cutter et al. 2008). What constitutes “loss” is rarely explicitly declared in definitions, 

but typically refers to a loss of property or life (Cutter et al. 2000). 

Across definitions, the concept of social vulnerability incorporates characteristics of both 

societies and the built environment. Flanagan et al. (2011) explain social vulnerability as, 

“socioeconomic and demographic factors that affect the resilience of communities.” Social 
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vulnerability therefore describes the susceptibility of social groups to potential losses from 

extreme natural events due to innate characteristics (e.g., ethnicity) or acquired characteristics 

(e.g., beliefs, customs) (Cutter et al. 1996). Social vulnerability is a result of various conditions 

including risk, exposure, adaptive capacity, sensitivity, and hazard mitigation measures (Cutter 

1996; Cutter et al. 2008). A summation of terms associated or substituted with social 

vulnerability can be found in Appendix A. 

Across definitions, research frameworks integrating social components and vulnerability 

recognize the interconnectedness of the natural systems, social systems, and the built 

environment. Each of these frameworks stress that biophysical risk (the likelihood of an event 

occurring at a defined location or the proximity to an event) and societal risk to environmental 

hazards cannot be separated (Cutter 1996; Cutter et al. 2008; Ciurean et al. 2013). Social 

vulnerability therefore combines these two ideas and focuses on examining vulnerability from a 

socioecological perspective. It also includes other factors that influence vulnerability such as 

economic, social, environmental, institutional, and political characteristics (Ciurean et al. 2013). 

This approach to vulnerability science also highlights equity and human rights issues because 

people are not affected equally by extreme weather events (Cutter et al. 2003, 2008; Flanagan et 

al. 2011). Socially vulnerable groups are more likely to experience greater losses from a 

hazardous event and are less likely to recover afterwards (Flanagan et al. 2011). 

 

2.2 Tornado Risk 

In addition to constructing a general social vulnerability index, a tornado-specific social 

vulnerability index will be produced (Objective 1). Tornadoes are localized, violent hazards that 

have the capacity to cause detrimental effects on communities (Simmons and Sutter 2011; Dixon 
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and Moore 2012; Widen 2016). They can, and have, caused considerable economic damage and 

loss of human life (Romanic et al. 2016; Lim et al. 2017). In the U.S., tornadoes are most 

commonly reported in a region known colloquially as Tornado Alley. The historic Tornado 

Alley, which encompasses most of the Great Plains, includes Texas, Oklahoma, Kansas, 

Nebraska, and Iowa (Coleman and Dixon 2013). However, tornadoes can affect all communities 

in the U.S.; therefore, all people have some level of tornado vulnerability. The amount of tornado 

vulnerability varies across space and time due to the different degrees of physical exposure, 

societal risk (Pielke and Pielke 1997; Dixon and Moore 2012; Romanic et al. 2016), and adaptive 

capacity (Widen 2016). Understanding the characteristics of society and the built environment 

that leave groups vulnerable to these hazards can assist in the effort to reduce future losses. 

Many studies have explored tornado risk from a biophysical perspective while 

incorporating tornado-related fatalities such as the works of Boruff et al. (2003), Ashley (2007), 

Ashley et al. (2008), Coleman and Dixon (2013), and Shen and Hwang (2015). As discussed by 

Simmons and Sutter (2011), tornado-related causality data are used far more frequently than 

property damage and economic loss. While examining tornado-related fatalities, Ashley (2007) 

found the American South to have the greatest fatality rate over any other region in the U.S. from 

1985-2005. The author attributed the elevated fatality count to the onset time of the tornado 

events because this region has a greater occurrence of nocturnal events. These findings, further 

explored by Ashley et al. (2008), suggest communities in the southern U.S. are more vulnerable 

to nocturnal tornadoes because they are less likely to seek shelter when woken up during the 

night (if woken up at all) by a tornado siren system. In addition, tornado siren systems are not 

uniformly effective (see Mathews et al. 2017). Complementary to these works, Coleman and 

Dixon (2013) sought to identify regions of the U.S. with the greatest amount of tornado risk from 
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1973-2011. They used the pathlength of tornadoes rather than the number of events or fatalities, 

which allows for a more comprehensive understanding of the areas impacted by an event. They 

found the areas of greatest risk during this study period stretch from Oklahoma to Alabama, with 

a significant maximum extending from central Mississippi into northern Alabama (Coleman and 

Dixon 2013). 

 

2.3 Tornadoes and Social Vulnerability 

Due to geographic and climatic differences, certain areas are more prone to violent tornado 

events. Over the past 50 years, tornado-related causalities and injuries have decreased due to the 

improvements in radar and warning technologies (Boruff et al. 2003) and social media 

engagement (Ripberger et al. 2014), but socially vulnerable groups are still disproportionately 

affected by hazardous events (Flanagan et al. 2011; Lim et al. 2017). In addition, areas with high 

tornado-related deaths do not necessarily mirror the areas exposed to tornadoes with greater 

Enhanced Fujita (EF) scale ratings (Lim et al. 2017). A brief description of the tornado 

classification scheme can be found in Appendix B. To account for these discrepancies, some 

works have identified socioeconomic factors that may increase tornado vulnerability. Many of 

these characteristics overlap with those known to influence social vulnerability to a range of 

environmental hazards. Some of these drivers include lack of access to resources, rural 

populations, physically limited individuals, and non-English speaking minorities (Chaney et al. 

2013; Lim et al. 2017). 

Income can serve as an indicator for tornado vulnerability. Dixon and Moore (2012) 

found income tightly linked to people’s ability to recover from hazard-related losses, suggesting 

people below the poverty line are socially vulnerable. In contrast, Chaney et al. (2013) found 
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individuals with higher incomes tend to exercise enhanced preparedness measures, reducing 

losses from extreme events. Households with an average annual income less than $40,000 are 

significantly less likely to have a plan for seeking shelter and their homes are less likely to have a 

tornado-resistant space (e.g., basement or storm shelter) compared to those with higher incomes 

(Chaney et al. 2013). Lim et al. (2017) also found per capita income (PCI) to be indicative of 

tornado impacts; counties with higher levels of PCI had fewer tornado-related fatalities, whereas 

counties with greater poverty rates and more income disparities had significantly more tornado-

related damages. Generally, as discussed by Fothergill and Peek (2004), individuals below the 

poverty line are significantly more vulnerable to natural hazards due to their, “type of residence, 

building construction, access to information, low quality infrastructure, and social exclusion” 

(Lim et al. 2017, 6). 

Residents living in mobile homes are especially vulnerable to tornado events. Mobile 

home residents have an extremely high tornado-related fatality rate and are 20 times more likely 

to endure a tornado-related casualty than residents in other structures (Brooks and Doswell 2002; 

Ashley 2007; Chaney and Weaver 2010; Dixon and Moore 2012; Chaney et al. 2013; Lim et al. 

2017). NOAA and the U.S. Census Bureau note that despite mobile homes only making up 8% 

of housing in the U.S. from 1996-2000, mobile home residents made up almost half of all 

tornado-related deaths during this period (Lim et al. 2017). Similarly, Ashley (2007) found 

mobile homes residents accounted for 44% of all tornado related fatalities in the U.S. during 

their study period (1985-2005), and this number has only continued to rise. Mobile homes 

provide poor physical protection and are extremely vulnerable to the elements, particularly the 

intensity of tornado events. Residents in these structures are also less likely to devise a plan for 

seeking proper, safe shelter during tornadoes compared to people living in permanent, traditional 



 

13 

 

style homes (brick or wood-frame) (Chaney and Weaver 2010; Chaney et al. 2013). They often 

seek shelter within their homes, which may contribute to their high tornado-related fatality rate 

(Chaney and Weaver 2010). 

People living in mobile homes are also perceived to have lower incomes and lower 

education levels, increasing their level of tornado vulnerability (Chaney and Weaver 2010; 

Chaney et al. 2013). These factors can pose challenges for residents because they may not 

receive tornado warnings, and/or may be unsure how to properly respond to warnings if they do 

not have pre-existing risk-reduction plans in place (Chaney and Weaver 2010). Lim et al. (2017) 

also found educational attainment (population 25 years or older with a Bachelor, or higher 

degree) to decrease peoples’ vulnerability to tornadoes because it is associated with efficient 

emergency decision-making and likelihood to perform proper evacuation measures when 

necessary (e.g., seeking shelter). This group is also found to be more likely to have access to 

recovery information and resources after an event (Lim et al. 2017). In addition, Chaney et al. 

(2013) found that increases in community involvement and bonding of citizens in tornado-prone 

areas were less socially vulnerable and more likely to participate in tornado drills. However, 

mobile homes residents often rent and are not homeowners, reducing the likelihood of having 

tight ties to the community and less likely to have participated in a tornado drill prior to an event 

(Chaney and Weaver 2010; Chaney et al. 2013). 

Elderly populations are vulnerable to extreme weather events (Ashley 2007; Dixon and 

Moore 2012; Chaney et al. 2013). Ashley (2007) found this group (65 and older) to be 

statistically significant among vulnerable groups and Chaney et al. (2013) suggest they are less 

likely to be prepared for a tornado event. Elderly groups are also less likely to have participated 

in a tornado drill compared to younger populations, increasing their susceptibility to harm 
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(Chaney et al. 2013). This difference may also be attributed to the increased access that younger 

populations (aged 20-39, 40-59) have to tornado preparedness exercises at work or school, while 

older populations likely have fewer opportunities and exposure. In addition, elderly populations 

can be less mobile and may have pre-existing health conditions or challenges that interfere with 

their ability to seek shelter during tornado events that often require quick reaction times (Dixon 

and Moore 2012). 

Family structure and household dynamics are also indicators of tornado vulnerability. 

While evaluating household preparedness, Chaney et al. (2013) found no difference between 

homes with or without children regarding the presence of a plan to seek adequate shelter during a 

tornado event. However, homes with children are more likely to have participated in tornado 

drills and practiced their plans compared to homes without children; they were better prepared. 

This suggests that homes without children are more socially vulnerable and more likely to suffer 

tornado-related losses (Chaney et al. 2013). In addition, Blaikie et al. (1994) and Lim et al. 

(2017) argue that women-headed households are among the most socially vulnerable. Wisner et 

al. (2004) note that it is not women individually who are more socially vulnerable due to their 

gender, but rather their heightened vulnerability stems from the situations they are more 

susceptible to (compared to men). For example, women often face challenges during the 

recovery stage of an event due to their employment status, lower wages, and family care 

responsibilities (Blaikie et al. 1994; Lim et al. 2017). Further support of this was found by Lim et 

al. (2017). Results from their study convey a positive correlation of women-headed households 

and tornado-related causalities. This suggests that women and women-headed households are 

disproportionately affected by tornadoes because they have limited access to resources (Lim et 

al. 2017). 
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Few studies have attempted to quantify social vulnerability to tornadoes. Adapting 

methods from Cutter et al. (2003) SoVI, Dixon and Moore (2012) explored the spatial 

distribution of tornado vulnerability in Texas using the framework presented by Pielke and 

Pielke (1997). This framework defines tornado vulnerability as a sum of the incidence of 

tornadoes and societal exposure to the hazardous event. Dixon and Moore (2012) presented three 

different methods to assess tornado vulnerability (using significant and violent events EF2-EF5 

on the Enhanced Fujita scale), by assigning scores for each county in Texas. They considered the 

most vulnerable counties to be those with both high incidences of events and high societal 

exposure. After comparing three different methods to quantify tornado vulnerability, Dixon and 

Moore (2012) found the spatial distribution of vulnerability is reliant on and sensitive to the 

choice of method employed. 

 

2.4 Existing Approaches to the Measurement of Social Vulnerability 

Social vulnerability cannot be directly measured because it is not an observed phenomenon 

(Fekete 2009; Hinkel 2011; Tate 2012). Efforts to analyze vulnerability and the complex human-

environment system that generates it are grounded in different conceptual frameworks and 

models. Some noteworthy models include the pressure-and-release (PAR) model (Turner et al. 

2003; Cutter et al. 2008; Ciurean et al. 2013), the vulnerability/sustainability framework (Turner 

et al. 2003; Cutter et al. 2008), the hazards-of-place model (Cutter 1996; Cutter et al. 2008), and 

the disaster-resilience-of-place model (Cutter et al. 2008). The PAR model views risk as a 

function of the various stressors on a system (from a hazard) and inherent vulnerability of 

communities (Turner et al. 2003; Ciurean et al. 2013). Criticism of the PAR model suggests it 

does not incorporate the vulnerability of the biophysical stressors on a system and exclusively 
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focuses on social vulnerability, missing the other half of the human-environment system (Turner 

et al. 2003; Cutter et al. 2008). The vulnerability/sustainability framework by Turner et al. (2003) 

focuses on place-based, local vulnerability but lacks a temporal component and does not 

differentiate between exposure and sensitivity (Cutter et al. 2008). The hazards-of-place model 

analyzes vulnerability as both a biophysical risk and social response within a defined geographic 

area. This model provides the foundation for the social vulnerability index, SoVI (Cutter et al. 

2003). More recently, the disaster-resilience-of-place (DROP) model was introduced to attempt 

to measure resilience and highlight the relationship between resilience and vulnerability with 

respect to the built environment and the natural and social systems. The DROP model focuses on 

the social resilience of places to natural hazards (Cutter et al. 2008). 

 

2.5 Measuring Social Vulnerability 

Objective 1 of this study is to replicate a commonly used general index of social vulnerability 

(SoVI), develop a tornado-specific social vulnerability index (TSVI), and compare the spatial 

pattern of vulnerability identified by each in the state of Oklahoma. Adopting the hazards-of-

place framework, this work will measure social vulnerability using a set of variables to create 

indexes that work as a proxy. The variables reflect the drivers known to influence social 

vulnerability such as characteristics of social groups, places, and the built environment (Cutter et 

al. 2003; Ciurean et al. 2013; Tate 2013). To attempt to ensure the indexes are meaningful and 

valid, individual variable selection should reflect the adopted conceptual framework (Tate 2012, 

2013) and be supported by existing literature and case studies (Cutter et al. 2003; Eriksen and 

Kelly 2007; Hinkel 2011; Murphy et al. 2015). Throughout the vulnerability and natural hazards 

literature, there is general agreement about the overarching factors that influence social 
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vulnerability. However, differences arise in the selection of specific variables to reflect these 

broader concepts (Cutter et al. 2003). Indicators attempt to quantify social vulnerability to 

natural hazards and aid in simplifying the complex reality of the interconnected systems (Eriksen 

and Kelly 2007; Hinkel 2011; Tate 2012; Murphy et al. 2015; Rufat et al. 2015). Quantifying 

social vulnerability can help identify areas that are most susceptible to loss of property and life 

during hazardous events and allow for objective comparisons of levels of vulnerability across 

scales and boundaries (Cutter 1996; Cutter et al. 2003; Eriksen and Kelly 2007; Tate 2012; Rufat 

et al. 2015). 

Although several alternative social vulnerability indexes exist, those by Cutter et al. 

(2003) SoVI and Flanagan et al. (2011) SVI are the most commonly used. The SoVI was initially 

constructed from 42 U.S. Census Bureau variables to represent the major components known to 

influence social vulnerability. These components are generally well understood throughout the 

hazards and vulnerability literature; however, there is variation in the individual variables used to 

represent them. The major themes influencing social vulnerability include, “lack of access to 

resources, limited access to political power and representation, social capital, beliefs and 

customs, building stock and age, frail and physically limited individuals, and the type and 

density of infrastructure and lifelines” (Cutter et al. 2003, 245). To reduce data using this index, 

principal component analysis (PCA) condenses the variables into factors that represent the larger 

dataset and provide SoVI scores for each county (or geographic area being examined). 

The SoVI has been used in numerous studies including work led by Armaș and Gavriș 

(2013), Letsie and Grab (2015), and Zebardast (2013). Most frequently, scores are mapped to 

display the most and least socially vulnerable areas based on standard deviations from the mean 

(Cutter et al. 2003). The SoVI and related work at the University of South Carolina’s (USC) 
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Hazards & Vulnerability Research Institute (HVRI) has received funding from a range of 

government entities including the Federal Emergency Management Agency (FEMA), the 

National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation 

(NSF), and the National Aeronautics and Space Administration (NASA) (FEMA 2018). 

While the SoVI is designed as a general index, it is not the only one. One alternative to 

the SoVI is the SVI established by the U.S. Centers for Disease Control and Prevention (CDC) 

through a collaboration of the Office of Terrorism Preparedness and Emergency Response 

(OTPER) and the Agency for Toxic Substances and Disease Registry’s Geospatial Research, 

Analysis, and Services Program (ATSDR). Four “domains” form the base of the SVI and within 

each domain are U.S. Census Bureau variables that influence social vulnerability. The four 

domains include socioeconomic status (e.g., poverty, education), household 

composition/disability (e.g., age, disability), minority status/language (e.g., race, ethnicity), and 

housing/transportation (e.g., housing structure, vehicle access). Together, 15 indicator variables 

describe the four domains and are assigned SVI values, followed by SVI values applied to each 

of the four domains. The geographic areas also receive SVI scores in addition to percentile ranks 

for the 15 variables (Flanagan et al. 2011). Most importantly, the SVI construction procedures 

can form the basis of the creation of specific indices. Specific indices are needed because they 

can be more descriptive and informative than general indices and potentially identify groups that 

were not detected in the general index. These indexes can also inform policy and decisions 

surrounding specific hazardous events, like tornadoes. Various agencies have adapted the CDC’s 

SVI in practice including the state of Vermont’s Department of Public Health, New Hampshire’s 

Department of Health and Human Services, and the U.S. Climate Resilience Toolkit (CDC, 

ATSDR 2013). 
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2.5.1 Index Construction Procedures 

The construction of a social vulnerability index and the subjective decisions required to 

develop it are rooted in the chosen conceptual framework and, ultimately, what is being 

measured (the purpose of the study) (Schmidtlein et al. 2008; Tate 2012, 2013; Yoon 

2012). Following the stages of index construction discussed by Tate (2012) and outlined 

in Figure 6, after formulating a conceptual framework and identifying what the index will 

measure, the index structure (deductive, hierarchical, or inductive) must be chosen. After 

identifying the variables that will serve as indicators, the geographic scale at which it will 

be applied, and a validation medium must be chosen. In addition to these steps, Rufat et 

al. (2015) expresses the importance of specifying the phase of an event being studied 

because social groups may be vulnerable at different stages of a hazardous event 

(preparedness, response, and recovery). 

 

 

 

 

 

 

 

 

 

 

Figure 6: Stages of Index Construction (Adapted from Tate (2012)) 
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An index can be constructed using deductive, hierarchical, or inductive designs. 

Deductive designs are constructed with normalized variables that are aggregated to an 

index. This arrangement was most dominant in early social vulnerability indexes and 

typically have up to 10 indicator variables that are individually selected. Hierarchical 

designs, such as the CDC’s SVI, consist of 10-20 indicator variables that are organized 

into thematic groups to represent the various factors known to influence social 

vulnerability. These index designs are the foundation for the TSVI. Lastly, indexes 

constructed inductively are characterized by larger datasets that are aggregated to a few 

representative components. These designs, which include the SoVI, typically employ 20 

or more variables (Eriksen and Kelly 2007; Tate 2012, 2013; Yoon 2012). These 

variables are reduced to smaller groups, usually through factor analysis, most notably 

done by Cutter et al. (2003). Inductive indexes frequently incorporate z-score 

standardization and principal components analysis (PCA). With PCA, factor selections 

are commonly chosen based on the Kaiser criterion, supporting the inclusion of all factors 

with an eigenvalue greater than 1 (Rogerson 2015). Work led by O’Connor (2000) and 

Patil et al. (2008) suggest the Kaiser criterion may overvalue the number of “important” 

factors (those with an eigenvalue greater than 1), leading to an increase in the 

components (factors) that describe social vulnerability (Tate 2012). 

One possible solution to these concerns, as discussed by Schmidtlein et al. (2008), 

is to incorporate local experts from the study area to help interpret and name the factors 

presented by the PCA analysis. The guidance and incorporation of their expert 

geographic knowledge of the study area and vulnerable groups can aid in understanding 

the factor loadings and may even assist in validation of the results (Schmidtlein et al. 
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2008). Authors have also discussed the option to weight variables during this stage 

(Schmidtlein et al. 2008; Hinkel 2011; Tate 2012, 2013; Yoon 2012; Rufat et al. 2015). 

Greater weights can be assigned to variables known to have a larger influence on social 

vulnerability. Equal weights suggest all variables contribute equally to identify socially 

vulnerable groups. The decision to weight variables versus the decision to use equal 

weights is highly subjective (Brooks et al. 2005; Tate 2012, 2013). 

Another important step in index construction is designing the index best suited for 

the scale at which it will be applied. Relationships between variables change at different 

scales, so tailoring index construction to the anticipated scale is crucial (Tate 2012, 2013; 

Yoon 2012). As discussed by Fekete et al. (2010), the chosen scale of analysis is most 

influenced by data availability, policy demand, and the adopted conceptual framework. 

Social vulnerability is not yet fully understood at regional, national, or global scales, so 

focusing on the local scale first may assist in measuring and understanding social 

vulnerability at larger scales (Eriksen and Kelly 2007; Schmidtlein et al. 2008; Fekete et 

al. 2010; Rufat et al. 2015). Local-level studies are also a good starting point because one 

can observe the interaction of different systems and components influencing social 

vulnerability best at this scale (Eriksen and Kelly 2007; Fekete et al. 2010). Hinkel 

(2011) elaborates, suggesting indicator studies work best when applied locally, and when 

constructed mindfully can successfully identify vulnerable people, regions, or sectors 

with a narrowly defined index. 
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2.5.2 Index Validation 

Objective 2 is to externally validate the constructed indexes (SoVI and TSVI) against 

actual tornado-related damages and loss. Social vulnerability indexes are largely 

descriptive measures and report the characteristics of a community (Eriksen and Kelly 

2007; Murphy et al. 2015; Rufat et al. 2015). They may suggest relationships between 

variables that are solely hypothetical and might not exist in the real world. Indexes also 

tend to be outcome-oriented (focused on populations and losses rather than the broader 

system) (Murphy et al. 2015), linear (have a narrow and simplistic view of vulnerability 

as physical risk and exposure) (Hinkel 2011; Murphy et al. 2015), and used to inform 

decision makers (to communicate areas of greatest social vulnerability), which is why 

validation of an index is essential (Eriksen and Kelly 2007; Hinkel 2011; Tate 2012; 

Ciurean et al. 2013). Validation of indexes provide insight into whether or not an index 

measures what it is intended to and can be performed externally or internally. External 

validation can be achieved using a second, independent dataset and internal validation is 

typically done through sensitivity analysis and changes to the construction of an index 

(Fekete 2009; Tate 2012). 

Just as there is no best index (Cutter et al. 2003), there is no universal validation 

medium for social vulnerability indexes (Schmidtlein et al. 2008). Attempts to validate 

these indexes externally have resulted in varied degrees of success using presidential 

disaster declarations (Cutter et al. 2003), hazard zone delineation (Cutter et al. 2000), 

disaster property damages (Yoon 2012), and built environment damage (Burton 2010), 

among others (see Brooks et al. 2005; Myers et al. 2008; Finch et al. 2010; Flanagan et 

al. 2011). External validation helps to uncover if the index is representative of the areas 
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and social groups suffering losses compared to other data. For example, in their study 

examining the validity of a social vulnerability index (SVI) against extreme river-floods 

in Germany, Fekete (2009) created an independent second dataset consisting of three 

binary dependent variables. This allowed for the index to be compared against external 

data. Independent second datasets can be scarce, so Fekete (2009) generated the 

dependent variables from a series of interviews of households affected by the floods 

during the study period. With a regression model, Fekete (2009) identified the 

independent variables that are significant and was able to isolate the ones (9 out of the 

original 41) that described vulnerability for this study area. 

Alternatively, validation of indicators can also be conducted internally through 

sensitivity analyses. This is done through alterations to the construction of an index or via 

simulations to compare any differences or similarities in output results and reveal what 

the index is sensitive to at different stages (Schmidtlein et al. 2008; Fekete 2009; Tate 

2012; Ciurean et al. 2013). As discussed by Tate (2012), sensitivity analysis can be 

achieved using local analysis or global analysis tests. Local sensitivity analysis is simple 

and usually involves correlation and analyses of variance. The local sensitivity tests can 

only change one aspect of the index at a time, such as variable selection or the scale to 

which the index is implemented (Tate 2012). 

Global sensitivity analysis is more complex and allows for multiple stages of an 

index to be assessed simultaneously (Fekete 2009; Tate 2012). There are four crucial 

steps to global sensitivity analysis including sample selection, Monte Carlo simulation, 

uncertainty analysis, and sensitivity analysis (Tate 2012). The global sensitivity tests 

explore model structure, indicator set, analysis scale, weighting, and other components. 
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Tate (2012) also suggests no index structure (deductive, inductive, or hierarchical) is 

better or worse for measuring social vulnerability. Rather, the construction of the index 

and its sensitivities should influence the type of index structure adopted. Ultimately, 

Eriksen and Kelly (2007) and Tate (2012) stress the need to justify and explain the 

decisions underlying the construction of a social vulnerability index. Since there are 

different ways to construct an index, which requires subjective input, (Schmidtlein et al. 

2008; Fekete 2009; Tate 2013), it is vital to communicate to the reader why it is designed 

a certain way (Tate 2012, 2013; Ciurean et al. 2013). 

 

2.5.3 Advantages and Drawbacks of Social Vulnerability Indexes 

Based on the discussion above, there are several benefits and shortcomings to indicator 

studies. They are typically cost effective because data can be obtained from readily 

available and accessible sources such as the U.S. Census Bureau. Indexes are also 

inherently spatial and can be tailored to localized areas. In addition, the results of 

vulnerability indicators can be mapped at various scales that allow for the examination of 

patterns or hot spots to assess the spatial distribution of social vulnerability. With 

constant changes in societies due to population growth, migration, aging, and other 

influences, understanding the relationship between scale and social vulnerability through 

index implementation can assist in future mitigation measures, as climate change will 

increase the frequency and intensity of hazardous events (O’Brien et al. 2006; Fekete et 

al. 2010). 

However, social vulnerability indicators may not always measure what they are 

designed to and can oversimplify complex relationships between variables (Murphy et al. 
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2015). The indicating variables included in an index are just as important as those that are 

not. Variables known to increase social vulnerability to natural hazards but are more 

challenging to quantify are the perceptions and attitudes of citizens, especially in areas 

with higher incidences of tornadoes. These characteristics, as discussed by Cohen and 

Nisbett (1998), Ashley (2007), and Ashley et al. (2008), are typically not included in an 

index. Various studies (see Sims and Baumann 1972; Biddle 1994; Cohen and Nisbett 

1998) have tried to quantify these perceptions and behavioral trends and connect them to 

the spatial distribution of tornado events and fatality reports in the U.S. (Ashley 2007). 

The attitudes and perceptions of citizens directly influence their will to prepare for 

extreme weather events, and a lack of preparedness increases risk and will leave 

individuals more vulnerable and susceptible to losses (Chaney et al. 2013). Rufat et al. 

(2015) challenge readers to consider the validity and application of indicators when 

characteristics that greatly influence social vulnerability (such as fatalistic attitudes) are 

not included. To account for the shortcomings of indexes and fill the gaps of the 

characteristics left out, qualitative analysis techniques can help provide a holistic 

understanding of social vulnerability (Ashley et al. 2008; Schmidtlein et al. 2008). 
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CHAPTER III 

 

DATA 

 

This work has two primary objectives. Objective 1 is to replicate a commonly used 

general index of social vulnerability, develop a tornado-specific social vulnerability index, and 

compare the spatial pattern of vulnerability identified by each in the state of Oklahoma. A 

general index of social vulnerability was constructed following Cutter et al. (2003), while a 

tornado-specific index was constructed deductively based on tornado-focused studies (see 

Blaikie et al. (1994), Brooks and Doswell (2002), Ashley (2007), Mulilis et al. (2000), Chaney 

and Weaver (2010), Dixon and Moore (2012), Chaney et al. (2013), Widen (2016), and Lim et 

al. (2017). The construction of each index required the measurement of several socioeconomic 

variables at the county and Census tract levels. Necessary data were collected from the U.S. 

Census Bureau (2014). Objective 2 is to externally validate the two social vulnerability indexes 

against a secondary, independent dataset measuring observed losses from tornadoes. The data 

used in this comparison was collected from NOAA and included information on tornado events 

and observed losses related to those events. 
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3.1 Data Used in the Construction of Social Vulnerability Indices 

 

This work incorporated a general social vulnerability index (SoVI), designed to measure social 

vulnerability to a range of environmental hazards and a tornado-specific social vulnerability 

index (TSVI), intended to measure social vulnerability to tornado events. Data used in the SoVI 

and TSVI were gathered from the U.S. Census Bureau’s American Community Survey (ACS) 5-

year estimates for 2010-2014. Data measuring total population was gathered from the 2010 

Census summary, from which one table was utilized. The variables were collected and analyzed 

at the county and tract scale. The county and tract boundaries for Oklahoma were also obtained 

from the U.S. Census Bureau. These boundary files were sourced from the Topologically 

Integrated Geographic Encoding and Referencing (TIGER) products and reflect the 2014 data, 

the last year of the study period. 

Due to missing data, 1 Census tract was eliminated from the TSVI and 24 tracts were 

removed from the SoVI. These tracts, and the variable data they are missing (why they were 

withheld from index construction), are outlined in Appendix C. Some of these tracts lack data 

because they represent airports, college campuses, or reservations. 

The construction of the general Social Vulnerability Index, SoVI, followed the work of 

Cutter et al. (2003) and Tate (2012). Cutter et al. (2003) identifies the 7 major themes known to 

influence social vulnerability and selected variables to represent these drivers in the index. These 

themes include lack of access to resources, limited access to political power and representation, 

social capital, beliefs and customs, building stock and age, frail and physically limited 

individuals, and type and density of infrastructure and lifelines. Many of the variables in the 

index represent more than one theme. These variables can be found in Table 1 and more detailed 

information about these variables and their data source can be found in Appendix D. 
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Table 1: Variables Included in the SoVI 

VARIABLE DESCRIPTION  VARIABLE DESCRIPTION 

QFHH Percent, families with female-headed 

households, no spouse present 

QRENTER Percent, renter-occupied housing units 

PPUNIT Estimate, households by type, average number 

of people per household 

QNOAUTO Percent, housing units with no car 

available 

QED12LES Percent, educational attainment, population 

over 25 years old, no high school diploma 

MHSEVAL Estimate, median dollar value of 

owner-occupied housing units, home 

value 

QESL Percent, population speaking English as a 

second language, limited English proficiency 

MDGRENT Estimate, median gross rent for renter-

occupied housing units 

QCVLUN Percent, civilian labor force unemployed QFEMALE Percent, female population 

QFEMLBR Percent, female participation in the labor force QBLACK Percent, Black population 

QSERV Percent, population in service occupations QNATAM Percent, Native American population 

QEXTRCT Percent, employment in extractive industries 

(fishing, farming, mining, etc.) 

QASIAN Percent, Asian population 

QRICH200K Percent, income and benefits, families earning 

more than $200,000 per year 

QHISP Percent, Hispanic population 

QSSBEN Percent, households receiving Social Security 

benefits 

MEDAGE Median age 

PERCAP Estimate, income and benefits, per capita 

income (dollars) 

QAGEDEP Percent, population under 5 years of 

age or 65 and over, the sum of six 

categories, divided by TOTPOP from 

2010 Census 

QNOHLTH Percent, population without health insurance QFAM Percent, children living in married 

couple families 

QPOVTY Percent, persons living in poverty QMOHO Percent, population living in mobile 

homes, sum of ownership types (owner, 

renter) divided by total MOHO 

QUNOCCHU Percent, unoccupied housing units, vacancy QNRES Percent, population living in nursing 

facilities, sum and then divided by 

TOTPOP from 2010 Census 

 

To represent lack of access to resources in the SoVI, the variables QFHH, QED12LES, 

QESL, QCVLUN, QNOHLTH, QPOVTY, QNOAUTO, QFEMALE, QBLACK, QNATAM, 

QASIAN, QHISP, and QFAM were included; limited access to political power and 

representation was represented with QFHH, QED12LES, QESL, QCVLUN, QFEMLBR, 

QSERV, QEXTRCT, QPOVTY, QRENTER, QFEMALE, QBLACK, QNATAM, QASIAN, and 

QHISP; and the variables for social capital included PPUNIT, QRICH200K, QSSBEN, 

MHSEVAL, MDGRENT, and MEDAGE. Also, in the SoVI, beliefs and customs were included 

using QFHH, PPUNIT, QRICH200K, QSSBEN, QNATAM, QASIAN, and QHISP; and the 
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variables QUNOCCHU, QRENTER, MHSEVAL, MDGRENT, and QMOHO represented 

building stock and age. To include frail and physically limited individuals the variables QNRES 

and QAGEDEP were used; and the variables PPUNIT, QRENTER, QMOHO, and QNRES were 

added to characterize the type and density of infrastructure and lifelines. 

The tornado-specific social vulnerability index, TSVI, was constructed using variables 

following a review of related tornado-focused studies (see Blaikie et al. (1994), Brooks and 

Doswell (2002), Ashley (2007), Mulilis et al. (2000), Chaney and Weaver (2010), Dixon and 

Moore (2012), Chaney et al. (2013), Widen (2016), and Lim et al. (2017)). Building on this prior 

work, 10 variables were selected for the TSVI including QPOVTY, QRICH200K, QMOHO, 

QED12LES, QELDERLY, QESL, QCVLUN, QFHH, QFAM, and QRENTER. These variables 

can be found in Table 2 and more detailed information about these variables and their data 

source can be found in Appendix E. 

Table 2: Variables Included in the TSVI 

VARIABLE DESCRIPTION LITERATURE SOURCE 

QPOVTY Percent, persons living in poverty Dixon and Moore 2012; Widen 2016; Lim et 

al. 2017 

QRICH200K Percent, income and benefits, families 

earning more than $200,000 per year 

Chaney et al. 2013; Lim et al. 2017 

QMOHO Percent, population living in mobile 

homes, sum of ownership types (owner, 

renter) divided by total MOHO 

Brooks and Doswell 2002; Ashley 2007; 

Chaney and Weaver 2010; Dixon and Moore 

2012; Chaney et al. 2013; Widen 2016; Lim et 

al. 2017 

QED12LES Percent, educational attainment, 

population over 25 years old, no high 

school diploma 

Chaney and Weaver 2010; Widen 2016 

QELDERLY Population 65 and over, the sum of 5 

categories 

Ashley 2007; Dixon and Moore 2012; Chaney 

et al. 2013; Widen 2016 

QESL Percent, population speaking English as a 

second language, limited English 

proficiency 

Chaney et al. 2013; Widen 2016; Lim et al. 

2017 

QCVLUN Percent, civilian labor force unemployed Widen 2016 

QFHH Percent, families with female-headed 

households, no spouse present 

Blaikie et al. 1994; Lim et al. 2017 

QFAM Percent, children living in married couple 

families 

Chaney et al. 2013 

QRENTER Percent, renter-occupied housing units Mulilis, Duval, and Bovalino 2000 
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3.2 Data Used to Assess Tornado-Related Damage and Loss 

 

Objective 2 required the allocation of damages and losses related to tornadoes to the Census 

geographies used in index construction. Observed tornado event data were obtained from 

NOAA’s NWS Storm Prediction Center (SPC) database (www.spc.noaa.gov/gis/svrgis/) as a 

Geographic Information System (GIS) shapefile. The tornadoes were mapped as straight-line 

paths for each event with several characteristics including the date, time, EF scale rating (see 

Appendix B), and start and end locations. This work recognizes that tornadoes do not always 

occur in perfectly straight lines and do not necessarily remain in contact with the ground along 

the entire path (Widen 2016). In addition, the intensity of an event often changes throughout a 

tornado path, but the EF ratings included in this dataset catalog the largest EF rating reached for 

the entire path. 

Observed losses were collected from the NOAA Storm Events Database 

(https://www.ncdc.noaa.gov/stormevents/) and the National Centers for Environmental 

Information (NCEI). These databases contain counts of observed losses including injuries, 

deaths, and property damages in dollars at the county level. Only the losses that occurred during 

the study period (2010-2014) and classified as “Tornado” under the “Event Type” category 

(losses related to a tornado event) were included in this work. It is possible that other 

documented losses were related to these tornado events, such as those categorized as “High 

Wind” or “Flood,” but were not included. 

A total of 449 events were reported for the study period. Loss information was matched 

to event path information giving 381 tornadoes with losses. Further data processing eliminated 

tornado paths with a shapelength of 0. This included the removal of 102 tornado events; these 

were a majority of EF0 (92 records) and EF1 (10 records) ratings. These events were likely 
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touchdown points or events without tornado path information. Finally, 3 more tornado events 

were removed and will be discussed further in the Methods section. For the 2010-2014 study 

period, there were 276 usable tornado paths. 

 

3.3 Tornado Frequency 

 

Tornado paths were used to identify the tracts and associated losses related to tornado events 

(Objective 2). For the 2010-2014 study period there were 276 tornado events after removing the 

necessary records as discussed in the Data and Methods sections. The number of events, EF 

ratings, total injuries, deaths, and property damages for the study period can be found in Table 3. 

The largest number of injuries, deaths, and property damages were caused by tornadoes with EF5 

ratings. There were 0 recorded injuries and deaths for EF0 events and $0 recorded property 

damages for EF4 events. Tornadoes with an EF4 rating are very strong and often cause damages 

to property. Despite there being $0 recorded for property damages for the study period from EF4 

events, it is possible there is information missing from the dataset. Spatially, tornadoes with EF0-

2 ratings were relatively dispersed throughout the state. Tornadoes with EF ratings of 4 and 5 

were primarily found in central Oklahoma. Those with an EF3 rating were also concentrated in 

the central part of the state, in addition to northwest and northeast Oklahoma. A map of the 

tornado events included in the study period can be found in Figure 7. 

Table 3: Tornado Events and Associated Losses From 2010-2014 

 NUMBER OF EVENTS TOTAL INJURIES TOTAL DEATHS TOTAL PROPERTY DAMAGES 

EF0 99 0 0 $425,500 

EF1 124 42 0 $4,720,000 

EF2 34 88 2 $16,730,000 

EF3 12 135 17 $1,375,000 

EF4 5 200 6 $0 

EF5 2 393 33 $2,000,000,000 
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To understand how the study period compared to other years of tornado activity in 

Oklahoma, Table 4 provides a breakdown of the number events over 5-year periods for almost 

25 years from NOAA’s Storm Events Database (https://www.ncdc.noaa.gov/stormevents/). The 

number of tornado events for the study period, broken down by EF ratings, are relatively similar 

to the other years in terms of proportioned frequency. One notable difference for the study period 

is that there are less EF0 than EF1 events, whereas the opposite is true for the 5-year periods that 

had a greater number of EF0 than EF1. However, recent improvements and changes in 

Figure 7: Oklahoma Tornado Events From 2010-2014 
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technology and radar have increased the quantity and quality for detecting tornado events. These 

technologies include but are not limited to social media, storm chasers, and the Oklahoma 

Mesonet (http://www.mesonet.org/). The Oklahoma Mesonet, founded in 1994, hosts a 

collection of 120 environmental monitoring stations throughout the 77 counties in Oklahoma. It 

is important to note how changes in detection and environmental monitoring influences years of 

comparison. 

Table 4: Tornado Activity in Oklahoma for 25 Years 

5-YEAR PERIOD TOTAL EVENTS F0/EF0 F1/EF1 F2/EF2 F3/EF3 F4/EF4 F5/EF5 

1995-1999 484 304 114 45 15 4 2 

2000-2004 292 173 87 23 8 1 0 

2005-2009 238 140 67 25 4 2 0 

2010-2014 (study period) 449 219 164 36 20 8 2 

2010-2014 (included in this work) 276 99 124 34 12 5 2 

2015-April 2019 351 171 141 31 7 1 0 
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CHAPTER IV 

 

METHODS 

 

This work builds on Cutter et al. (2003) Social Vulnerability Index (SoVI) and the works 

of Chaney and Weaver (2010), Dixon and Moore (2012), Widen (2016), Lim et al. (2017), and 

others, to construct a tornado-specific social vulnerability index (TSVI) for Oklahoma. The SoVI 

and TSVI are alternative means of identifying socially vulnerable groups in Oklahoma. Though 

it is understood that different social groups may be vulnerable at different stages of a hazardous 

event (Rufat et al. 2015), these indexes seek to measure general social vulnerability and tornado-

related social vulnerability (Objective 1). The purpose of this study is to externally validate 

these indexes against observed tornado-related losses in Oklahoma (Objective 2). 

 

4.1 Social Vulnerability Index Construction 

 

To examine the distribution of social vulnerability throughout Oklahoma (Objective 1) the 

commonly applied SoVI was built at the county and tract scale following the inductive procedure 

of Cutter et al. (2003) and Tate (2012) using ACS variables. The first step to building this index 

was to standardize each variable and eliminate outliers’ values. Directionality adjustments were 

performed on four variables including QRICH200K, PERCAP, MHSEVAL, and MDRENT. As 
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discussed by Tate (2011), these directionality changes were needed because for variables 

representing income and wealth, high values are associated with low social vulnerability. 

To reduce data and gather the variable weights, principal components analysis (PCA) or 

factor analysis was implemented. Factor analysis groups correlating variables into groups known 

as “factors” (Rogerson 2015). Factor analysis was conducted with a varimax rotation in 

accordance with Cutter et al. (2003). A varimax rotation, developed by Kaiser, is the most 

common rotation method and maximizes the variance of the factor loadings. This helps simplify 

the interpretation of factors to identify the strongest loading variables (Abdi 2003). The factors, 

representing the main drivers of social vulnerability in Oklahoma, provided the different weights 

of the variables. These weights demonstrated how much the variables were contributing to each 

factor. The factors were chosen using the Kaiser criterion. All factors with an eigenvalue greater 

than 1 were included. With this method, 7 factors had an eigenvalue greater than one. 

After obtaining the factors, the z-score of each variable was multiplied by the 

contributing weight of the 7 factors for all counties and tracts. The social vulnerability scores 

were created by adding all 7 factors together. Using the social vulnerability scores, the counties 

and tracts were ranked from most vulnerable (smallest negative value) to least vulnerable 

(greatest positive value). These ranks were used to assign percentiles so the SoVIs could be 

mapped using quintiles, or five equal classes ranging from low social vulnerability to high social 

vulnerability. These steps are outlined in Figure 8. 
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4.2 Tornado Social Vulnerability Index Construction 

 

The tornado social vulnerability index, TSVI, was constructed as an alternative measure of 

tornado-specific social vulnerability and used to identify areas of Oklahoma that were more 

socially vulnerable to tornadoes (Objective 1). Unlike the SoVI, the TSVI was constructed 

following a deductive design using ACS variables. A deductive design does not incorporate 

factor analysis since there are not as many variables included in the index. The variables that 

served as indicators were based on existing literature (see Blaikie et al. (1994), Brooks and 

Figure 8: Methodology Flowchart (Adapted from Cutter et al. (2003) and Tate (2012)) 
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Doswell (2002), Ashley (2007), Mulilis et al. (2000), Chaney and Weaver (2010), Dixon and 

Moore (2012), Chaney et al. (2013), Widen (2016), and Lim et al. (2017). Like the construction 

of the SoVI, z-scores were used to standardize the data and eliminate any influence of larger 

values and extreme outliers. Directionality adjustment was performed on one variable, 

QRICH200K, since high values are associated with low social vulnerability (Tate 2011). The 

social vulnerability scores were created by adding together the z-scores for all 10 variables. 

Using the social vulnerability scores, the tracts were ranked from most vulnerable (smallest 

negative value) to least vulnerable (greatest positive value). These ranks were used to assign 

percentiles so the TSVI could be mapped using quintiles, or five equal classes ranging from low 

social vulnerability to high social vulnerability. 

 

4.3 Comparison of Indexes 

  

4.3.1 Rank Order Comparison 

 

After the tract SoVI and TSVI were created, Spearman’s rank correlation coefficient was 

used to compare the indexes at the tract scale (Objective 1). This comparison included 

the tract SoVI and TSVI. The county SoVI could not be included because it was at a 

different spatial scale. Spearman’s rank correlation coefficient is a nonparametric test that 

measures the strength of a relationship and direction of association of 2 ranked variables. 

A nonparametric test does not require any assumptions about the data to be held other 

than the minimum requirements to use the statistic. Relationships are represented with 

Spearman’s r. An r value of 0 suggests there is no relationship and an r value of +/- 1 

indicates a perfectly correlated relationship (Rogerson 2015). 
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 4.3.2 Spatial Analysis 

 

Further comparison of the SoVIs and TSVI incorporated spatial analysis (Objective 1). 

The spatial distribution of social vulnerability scores from all indexes were analyzed 

using Hot Spot Analysis (Getis-Ord Gi*) and Cluster and Outlier Analysis (Anselin Local 

Moran’s I). Spatial analysis was conducted in ArcMap 10.6.1 to detect statistically 

significant areas of social vulnerability scores. Based on the Getis-Ord Gi* statistic, Hot 

Spot Analysis identifies spatial clusters of high values (hot spots) and low values (cold 

spots). Alternatively, based on the Anselin Local Moran’s I statistic, Cluster and Outlier 

Analysis identifies statistically significant hot spots, cold spots, and outliers. Outliers 

identify areas where high values are near low values and vice versa, something that Hot 

Spot Analysis does not highlight. With Getis-Ord Gi*, the value of each feature is 

included in determining hot and cold spots, whereas Anselin Local Moran’s I only 

include the neighboring features to produce outputs (Rogerson 2015). Both analyses were 

performed to observe if the minor differences in statistical foundations would result in 

different outputs. Additionally, Cluster and Outlier Analysis includes an extra measure 

compared to Hot Spot Analysis and provides more details of statistically significant 

clusters. 

The Hot Spot Analysis and Cluster and Outlier Analysis tools used a weights 

matrix file to determine results. The weights matrix files were made for each index using 

the Incremental Spatial Autocorrelation tool to measure the spatial autocorrelation for the 

county SoVI, tract SoVI, and TSVI. Spatial autocorrelation describes how objects in 

space are or are not like nearby objects (Rogerson 2015). The Incremental Spatial 

Autocorrelation tool provides a line graph output that describes the strength of 
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relationships at different distances (in feet). The distance with the strongest relationship, 

the greatest instance of spatial autocorrelation, was used to generate a weights matrix for 

each index using the Generate Spatial Weights Matrix tool. The statistically significant 

areas were used to visually compare the indexes for any major similarities and/or 

differences. 

 

4.4 Observed Losses 

 

To assess how closely the SoVI and TSVI are linked to tornado-related losses, the spatial 

distribution of social vulnerability was compared to observed losses from tornadoes (Objective 

2). From the observed losses dataset, only those that matched the date, time, and locations of the 

tornado events from the SPC database were included in this work. This allowed for the observed 

losses to be linked to individual tornado events. However, because losses were recorded at the 

county scale, they needed to be allocated to the Census tract scale for finer spatial comparison. 

Census tracts were the more desirable scale of comparison since tornadoes are relatively short, 

localized events. Other works, such as Shen and Hwang (2015), have used loss data for 

comparison and validation but only analyzed relationships at the county and state scale. 

When a tornado event occurred within a single tract regardless of the method, the losses 

were assigned to that location. When a tornado spanned multiple tracts, losses were distributed 

using 3 different methods: (i) averages, (ii) impervious surface area, and (iii) randomization. 

Three distribution methods were chosen to help identify and account for sensitivities to 

allocation method. 

(i) Averages: When tornado paths overlapped with multiple tracts within a county the 

losses (e.g., injuries) were divided among those tracts. If the number of losses did not 
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divide evenly with the number of engaged tracts, greater values (e.g., 33, 33, 34) were 

placed in the tracts with the greatest proportion of tornado path. This approach assumed 

the losses were evenly distributed throughout an event and tracts with a greater 

proportion of tornado path had a higher probability of experiencing a tornado-related 

loss. 

(ii) Impervious Surface Area: Impervious surface areas are areas of highly developed 

land where people reside or work and often include artificial structures. The impervious 

surface data was gathered from the National Land Cover Database (NLCD) 2011 Land 

Cover published by the Multi-Resolution Land Cover Characteristics (MRLC) 

Consortium (https://www.mrlc.gov/). Buffers were created around the tornado paths 

based on the width reported and the losses were assigned to tracts with the greatest 

percent of impervious surface area. This approach assumes the injuries, deaths, and/or 

property damages were more likely to have occurred in areas of dense human activity and 

development. 

(iii) Randomization: When tornado paths overlapped with multiple tracts within a county 

the losses were distributed to the tracts randomly. This method was used as a baseline to 

compare with the other distribution methods. Random numbers for the tract placement 

and amount of losses assigned were generated in Microsoft Office Excel 2016 using the 

RANDBETWEEN function. When given a range of numbers (e.g., 1 to 6 tracts and $0 to 

$5,000 damages), this functions output provides a random integer between the values. To 

randomly assign losses to the tracts, first, the random tract number was generated, 

followed by the amount of losses to delegate to that tract. Random numbers were 

generated until the number of losses were reached. 
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Three tornadoes from the SPC database did not match any date or time stamps of the 

losses in the Storm Events Database and were removed from analysis. Two of the tornadoes had 

an EF rating of 0 (4/14/2011, 4/13/2012) and the third had an EF rating of 1 (5/13/2010). After 

removing these events, a total of 276 tornadoes were included in analyses for the study period. 

 

 

4.5 External Validation 

 

To assess if the SoVIs and TSVI demonstrated expected relationships with tornado-related 

losses, the indices were compared to observed loss data (Objective 2). Since the injuries, deaths, 

and property damages were collected and distributed by county, the county data were used as a 

static reference. Spearman’s rank correlation coefficient was used to examine how the different 

methods of loss distribution were related to the social vulnerability rankings. The Spearman’s 

rank correlation coefficient analysis measured how strongly the SoVIs and TSVI social 

vulnerability scores related to the different methods of loss distribution of averages, impervious 

surface area, and randomization. Spearman’s rank correlation coefficient is a nonparametric test 

that measures the strength of a relationship and direction of association of 2 variables. A 

nonparametric test does not require any assumptions about the data to be held other than the 

minimum requirements to use the statistic. Relationships are represented with Spearman’s r. An 

r value of 0 suggests there is no relationship and an r value of +/- 1 indicates a perfectly 

correlated relationship (Rogerson 2015). Spearman’s r is used as an alternative to Pearson’s r 

because the data did not meet the assumptions to use that measure (the data were not normally 

distributed). 

To further examine the relationship between the tract SoVI, TSVI, and observed losses, 

select tornado events were discussed. The 4 case studies presented examples including how 
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tornadoes of the same EF rating caused different losses across space, how losses varied across 

different areas of impervious surface areas, and how well the indexes described the tracts that 

experienced the most damages during the study period. 
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CHAPTER V 

 

RESULTS 

 

5.1 Indexes 

 

 5.1.1 Factor Analysis 

 

Factor analyses were performed at the county and tract levels to create the general social 

vulnerability index, SoVI. The number of factors were chosen using the Kaiser criterion. 

This method retains all factors with an eigenvalue greater than 1. Scree plots display 

eigenvalues and are used to identify the number of factors to be used. As shown in 

Figures 9 and 10, the county and tract analyses produced 7 factors with eigenvalues 

greater than 1. Indexes were constructed using all 7 factors explaining 75.5% (county) 

and 69.9% (tract) of the variance. The strongest contributing factors are those with the 

greatest number of variances explained. Factor 1 contributed the most to the total 

variance explained for the county and tract SoVI. For the county SoVI, factor 1 

contributed 28.04% of the variance and for the tract SoVI, factor 1 contributed 26.21%. 

The interpretations of the factors and the percent of variance explained can be found in 

Table 5. 
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Figure 9: County SoVI Scree Plot 

Figure 10: Tract SoVI Scree Plot 
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Table 5: Factor Interpretations and Variance Explained 

 

The variables for factor 1 were related to income and home value (QRICH200K, 

QPOVTY, PERCAP, MHSEVAL, and QNOHLTH) and all had loadings above .8 for the 

county and tract levels. For factor 2, age and elderly variables loaded strongly for the 

county SoVI, including QSSBEN and MEDAGE. For the tract SoVI, in addition to the 

age-related variables, QCVLUN, describing civilian unemployment, had a strong loading 

above .8. For both SoVIs, the variables that best described factor 3 were QHISP and 

QESL and all had values greater than .9. For factor 4, variables relating to race and 

gender (QBLACK and QFHH) loaded highly and described this factor. Factor 5 had 

different loadings for the county and tract. At the county level, this factor was strongly 

driven by the QFAM and QFEMALE variables, whereas the factor for the tract level had 

high loadings for QRENTER and QPPUNIT. For the county, factor 5 was driven by 

gender and family variables and factor 5 for the tract was described relating to house type 

and status (renter). The variable with the strongest loading for factor 6 was QNRES. For 

the county and tract, this factor was described as loading high for elderly individuals and 

assisted living residents (related to elderly). Finally, for factor 7, the strongest 

 COUNTY 

INTERPRETATIONS 

COUNTY 

VARIANCE EXPLAINED 

(CUMULATIVE) 

TRACT 

INTERPRETATIONS 

TRACT 

VARIANCE EXPLAINED 

(CUMULATIVE) 

Factor 1 Income, Home Value 28.038 Income, Home Value 26.208 

Factor 2 Age, Elderly 18.459 (46.497) Elderly, Unemployment 16.391 (42.599) 

Factor 3 Hispanic, Non-English 

Speaking 

9.375 (55.872) Hispanic, Non-English 

Speaking 

8.662 (51.261) 

Factor 4 Black, Race 7.250 (63.122) Race, Gender 5.538 (56.799) 

Factor 5 Gender, Family 4.794 (67.916) House Type, Status 

(renter) 

5.251 (62.050) 

Factor 6 Assisted Living, 

Elderly 

3.867 (71.783) Assisted Living, Elderly 4.164 (66.213) 

Factor 7 Mobile Homes 3.713 (75.496) Native American, 

Extractive Employment 

3.689 (69.896) 
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contributing variables were different for the county and tract. For the county level 

QMOHO described the factor best and for the tract, the strongest loading variables were 

QNATAM and QEXTRCT. 

 

5.1.2 County SoVI 

 

The results of the SoVIs and TSVI reveal the spatial distribution of social vulnerability 

throughout the state of Oklahoma (Objective 1). The county SoVI found the most 

socially vulnerable groups in southeastern and southwestern Oklahoma. This index also 

classified central and northeastern Oklahoma as having medium to low social 

vulnerability as shown in Figure 11. 

 Figure 11: County SoVI 2010-2014 
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5.1.3 Tract SoVI 

 

The distribution of social vulnerability scores for the Oklahoma tract SoVI can be found 

in Figure 12. The tract SoVI suggested the most socially vulnerable groups were in the 

panhandle, central, and northeastern Oklahoma. The Oklahoma City and Tulsa 

metropolitan areas showed great variability in the assigned social vulnerability scores. 

 

 

  

 

 

 

Figure 12: Tract SoVI 2010-2014 
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5.1.4 TSVI 

 

The TSVI, found in Figure 13, classified parts of the panhandle, southern, and western 

Oklahoma as the most socially vulnerable. Northwestern Oklahoma was described with 

low to medium low social vulnerability. The Oklahoma City and Tulsa metropolitan 

areas showed variability in the assigned social vulnerability scores with distinct 

concentrations of areas of high to low social vulnerability. 

 

 

 

 

Figure 13: TSVI 2010-2014 
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5.2 Comparison of Indexes 

 

 5.2.1 Rank Order Comparison 

 

The tract SoVI and TSVI were compared to identify any major similarities or differences 

between the indexes (Objective 1). The results of the Spearman’s rank correlation 

coefficient produced an r value of -.293. This suggests a weak relationship between the 

two indexes and demonstrates that the tract SoVI and TSVI did not rank the social 

vulnerability of Census tracts similarly. 

 

 5.2.2 Spatial Analysis 

 

Hot Spot Analysis (Getis-Ord Gi*) and Cluster and Outlier Analysis (Anselin Local 

Moran’s I) were used to identify statically significant areas of the SoVIs and TSVI. The 

SoVIs and TSVI were then compared visually to identify any major similarities or 

differences between the indexes (Objective 1). 

5.2.2.1 County SoVI 

 

Statistically significant areas of the county SoVI were found in the northwestern 

and southeastern regions of Oklahoma using the Hot Spot Analysis tool. The hot 

and cold spots generated can be found in Figure 14. The northwestern part of the 

state was designated as a cold spot because this area and the surrounding region 

had lower than average values of low social vulnerability. This part of Oklahoma 

has more open space and fewer people. Southeastern Oklahoma was recognized 

as a hot spot due to the higher than average concentration of high values or high 

social vulnerability scores. This region has less tornadoes and a more socially 

vulnerable population. The outputs of the Cluster and Outlier Analysis tool also 
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identified northeastern Oklahoma with significant low-low clustering (low values 

near other low values) and southeastern Oklahoma as an area of high-high 

clustering. An instance of high-low outliers was detected in northeastern 

Oklahoma, indicating that high social vulnerability scores were closely related in 

space to an area of low social vulnerability. Similar relationships were found in 

southeastern Oklahoma. These clusters can be observed in Figure 15. 

 

 

 

 

Figure 14: County SoVI - Hot Spot Analysis 
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5.2.2.2 Tract SoVI 

 

Statistically significant areas of the tract SoVI were found in the panhandle, 

north-central, and east-central regions of Oklahoma. The hot and cold spots 

generated from the Hot Spot Analysis tool can be found in Figure 16. The 

panhandle and north-central part of the state were designated with areas of hot 

spots because this area had higher than average values of high social vulnerability 

for tract SoVI. East-central Oklahoma was recognized as a cold spot due to the 

higher than average concentrations of low values (low social vulnerability scores). 

Figure 15: County SoVI - Cluster and Outlier Analysis 
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The Cluster and Outlier Analysis tool also identified similar areas of Oklahoma of 

notable clustering. Low-high outliers were found in north-central and northeastern 

Oklahoma, whereas high-low outliers were detected in east-central Oklahoma. 

These clusters suggested high social vulnerability scores were closely related in 

space to low social vulnerability scores. High-high clustering was found in 

northeastern Oklahoma and low-low clustering was found in the east-central 

region. These relationships can be observed in Figure 17. 

 

 

 

 

 

Figure 16: Tract SoVI - Hot Spot Analysis 
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5.2.2.3 TSVI 

 

The Hot Spot Analysis tool found significant hot spots in southeastern Oklahoma, 

along the eastern border, and in parts of the panhandle. The hot spots are areas of 

higher than average values of high social vulnerability. The cold spots were 

detected around the Oklahoma City and Tulsa metropolitan regions with higher 

than average concentrations of low social vulnerability scores. These statistically 

significant areas are shown in Figure 18. The Cluster and Outlier Analysis tool 

also identified the same general areas of Oklahoma of notable clustering. 

Figure 17: Tract SoVI - Cluster and Outlier Analysis 
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Southeastern Oklahoma and along the eastern border had high-high clustering, 

meaning the TSVI assigned high values for this region (high social vulnerability 

scores). This area of the state also had low-high outliers meaning that extremely 

low values were found near extremely high ones. Low-low clustering, 

concentrations of low values, were assigned to Oklahoma City, Tulsa, and the 

surrounding region. These regions also had clusters of high-low outliers. These 

relationships can be observed in Figure 19. 

 

 

 

 

 

 

Figure 18: TSVI - Hot Spot Analysis 



 

55 

 

 

 

 

 

5.2.3 Visual Comparison of the Indexes 

 

The county SoVI identified northwestern and southeastern Oklahoma as statistically 

significant regions. Northwestern Oklahoma was designated a cold spot and had a higher 

concentration of low values (less socially vulnerable). The TSVI did not mark this a 

region of interest, but the tract SoVI found significant hot spots (high values, high social 

vulnerability). This demonstrated that the county and tract SoVIs assigned different social 

vulnerability scores for this part of the state. 

Figure 19: TSVI - Cluster and Outlier Analysis 



 

56 

 

The county SoVI described the southeastern region as a hot spot due to the large 

concentration of high values (more socially vulnerable). The TSVI also identified 

southeastern Oklahoma as a hot spot in addition to the eastern border. This is a major 

similarity between the two indexes. The tract SoVI highlighted some geographies in this 

region with high values but not to the extent of the county SoVI and TSVI. The TSVI 

was the only index to recognize the greater Oklahoma City and Tulsa metropolitan areas 

as statistically significant. 

 

5.3 External Validation 

 

 5.3.1 County Losses 

 

To assess if the SoVI demonstrated expected relationships with tornado-related losses the 

county SoVI was compared to observed losses as a static reference since this data was 

distributed at this scale (Objective 2). The results of the Spearman’s rank correlation 

coefficient are shown in Table 6. All r values are negative, implying that as one value 

increased (number of losses) the other value decreased (social vulnerability score). The 

injuries and deaths had a moderately strong relationship with the county SoVI with r 

values of -.491 and -.553, and the property damages had a weak relationship with an r 

value of -.293. The p values represent the statistical significances of the correlations. A p 

value of .1 demonstrates there is a 90% likelihood that the results are not due to chance. 

Variables with a p value of .1 or below are desired. The p values of the Spearman’s rank 

correlation coefficient are all <.1, suggesting they are statistically significant. 
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Table 6: Spearman’s r Values and p Values for County Losses 

  

  

 

5.3.2 Tract Losses 

 

To assess if the tract SoVI and TSVI demonstrated expected relationships with tornado-

related losses, both indices were compared to observed losses (Objective 2). The 

observed tornado-related losses were allocated to the Census tracts using averages, 

impervious surface area, and randomization since the original data were at the county 

scale. To assess the relationship between the indexes and loss allocation methods 

Spearman’s rank correlation coefficient was used; these results can be found in Table 7. 

All r values indicated weak relationships with the SoVI and TSVI. The strongest 

relationship with the SoVI was an r value of .151 with the injuries allocated with 

averages (AVG_INJ). This value described a weak relationship between the two. The 

positive loading showed that as the SoVI values increased (more socially vulnerable) the 

number of observed deaths increased, which is expected. The strongest relationship 

presented was with the TSVI and deaths allocated by averages (AVG_DTH) with an r 

value of -.313. This value suggests that as social vulnerability scores increased (more 

socially vulnerable) the observed deaths decreased. The only positive relationship with 

the TSVI was with the deaths allocated by impervious surface area (IMPV_DTH). This 

relationship was described with an r value of .178, which is very weak. 

The p values represent the statistical significances of the correlations. A p value of 

.1 demonstrates there is a 90% likelihood that the results are not due to chance. Variables 

with a p value of .1 or below are desired. The correlations between the tract SoVI and 

 COUNTY SOVI p VALUE 

INJURIES -.491 .013 

DEATHS -.553 .078 

PROPERTY DAMAGES -.293 .083 
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losses are all >.1, indicating they are not statistically significant. The only significant 

correlations occurred between the TSVI and AVG_INJ (.004), AVG_DTH (.098), 

IMPV_INJ (.002), and IMPV_PROPERTYD (.004). 

Table 7: Spearman's r Values and p Values for Tract Losses 

 

  

 

 

 

 

 

 

 

5.3.3 Tornado Events 

 

To further examine the relationship between the tract SoVI, TSVI, and observed losses 

from tornado events, select tornado events were used (Objective 2). The 4 case studies 

below present examples including how tornadoes of the same EF rating caused different 

losses across space, how losses varied across different areas of impervious surface areas, 

and how well the indexes described the tracts that experienced the most damages during 

the study period. See Appendix F for a county SoVI reference map. 

 

5.3.3.1 Case 1 

 

Two EF3 tornadoes (EF3A and EF3B) produced different losses while interacting 

with similar tracts of social vulnerability. Tornado EF3A was smaller in length, 

width, and duration than tornado EF3B but had the same level of intensity. EF3A 

did not produce any tornado-related losses in Carter County on 5/10/2010 and 

 TRACT SOVI p VALUE TSVI p VALUE 

AVERAGES 

AVG_INJ .151 .146 -.295 .004 

AVG_DTH .135 .484 -.313 .098 

AVG_PROPERTYD -.071 .377 -.080 .317 

IMPERVIOUS SURFACE AREA 

IMPV_INJ -.004 .966 -.308 .002 

IMPV_DTH -.139 .449 -.178 .330 

IMPV_PROPERTYD -.122 .146 -.243 .004 

RANDOMIZATION 

RAND_INJ .010 .936 -.093 .439 

RAND_DTH .022 .926 -.191 .420 

RAND_PROPERTYD -.033 .698 -.066 .435 
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passed through 3 Census tracts. Of the area covered, EF3A encountered 4.08% of 

impervious surface area in Carter County. The SoVI identified these tracts with 

medium and medium high (2 tracts) social vulnerability ratings. The TSVI found 

these tracts to have medium low (2 tracts) and medium high levels of social 

vulnerability as shown in Figure 20. 

Tornado EF3B was connected to 40 injuries and 2 deaths in Atoka County 

on 4/14/2011. EF3B also passed through 3 tracts and engaged with 10.28% of 

impervious surface area. These tracts were described as having high, low, and 

medium low levels of social vulnerability by the SoVI. The TSVI identified all 3 

tracts with medium social vulnerability as displayed in Figure 21. 

 

 

 

 

 

Figure 20: Case 1 – EF3A 
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5.3.3.2 Case 2 

 

Despite their lower rating on the scale, tornadoes with EF1 ratings have the 

capacity to cause damages to property and human life. During the study period, 

two EF1 tornadoes engaged with tracts with considerable amounts of impervious 

surface area and were credited with different losses. These EF1 tornadoes, EF1A 

and EF1B, both happened in Oklahoma County. Tornado EF1A, found in Figure 

22, occurred on 5/19/2013 and was not credited with any losses. It covered an 

area with 60.57% of impervious surface area, lasted 8 minutes, was 2,700 feet 

Figure 21: Case 1 – EF3B 
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wide and more than 4 miles long. The SoVI described the affected tracts with 

medium low, medium high, and high social vulnerability. The TSVI labeled them 

as having medium low and low (2 tracts) social vulnerability. 

Tornado EF1B, shown in Figure 23, occurred on 5/31/2013 and caused 8 

injuries and $80,000 worth of property damages. It passed through an area of 

100% impervious surface area, lasted 2 minutes, was 900 feet wide, and about 1 

mile long. The SoVI described the disturbed tracts as having medium high social 

vulnerability. The TSVI suggested they had medium high and high social 

vulnerability. EF1B was a shorter and smaller event than EF1A but caused more 

damages despite having the same relative intensity. 

 Figure 22: Case 2 – EF1A 
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5.3.3.3 Case 3 

 

Tornadoes also caused losses in places with minimal areas of impervious surfaces. 

All EF4 events from the study period caused injuries and/or deaths but did not 

encounter substantial areas of impervious surfaces. The EF4 tornado event with 

the greatest number of injuries is explained here. An EF4 tornado that passed 

through Grady County and McClain County on 5/24/2011 was responsible for 61 

injuries in McClain County. This EF4 event was more than 23 miles long, 2,640 

feet wide, and lasted 9 minutes. Despite the amount of area this event covered, it 

Figure 23: Case 2 – EF1B 
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only encountered 3.55% of impervious surface area in McClain. This event 

engaged with 3 census tracts that were described as having medium low, medium, 

and medium high social vulnerability by the SoVI. The TSVI identified these 

tracts as having medium, low, and medium low scores of social vulnerability. 

This case is displayed in Figure 24.  

 

 

 

 

 

 

 

 

 

Figure 24: Case 3 – EF4 
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5.3.3.4 Case 4 

 

To see how well the indexes predicted the areas with the greatest losses during the 

study period, two of the most damaging events are discussed. The most damaging 

tornado event during the study period, tornado EF5A, was an EF5 tornado that 

occurred in Cleveland County on 5/20/2013. The aftermath of this tornado 

included 212 injuries, 24 deaths, and $2 billion in property damages. EF5A 

tornado lasted about 5 minutes, was more than 13 miles long, and 5,700 feet wide. 

Passing through 20 Census tracts, of the area covered, the tornado was in contact 

with 32.57% of impervious surface area. The SoVI classified the 20 tracts with all 

classes of social vulnerability including low (3 tracts), medium low (2 tracts), 

medium (4 tracts), medium high (4 tracts), and high (7 tracts). The TSVI 

identified these tracts differently assigning social vulnerability ratings of low (17 

tracts), medium (2), and medium high (1). These details can be observed in Figure 

25. 

The tornado that caused the second greatest number of damages, tornado 

EF5B, occurred on 5/24/2011 and passed through 3 counties. The EF5B tornado 

mostly occurred in Canadian County and Logan County, but all three counties, 

including Kingfisher County, experienced losses. This event lasted over 1 hour, 

was more than 63 miles long, and 5,280 feet wide. In total, this event was credited 

with causing 181 injures and 9 deaths. Canadian County suffered 112 injuries and 

7 deaths. The EF5B event passed through 3 tracts in this county and encountered 

4.44% of impervious surface area. The SoVI identified these tracts as having 
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medium high and high (2 tracts) levels of social vulnerability. The TSVI 

described these tracts to have medium (2 tracts) and low social vulnerability. 

The tornado also passed through 1 tract in Kingfisher County that resulted 

in 46 injuries and encountered 5% of impervious surface area. The SoVI 

designated this tract as having medium social vulnerability and the TSVI 

classified it as having medium low social vulnerability. Lastly, the EF5B event 

met 5 tracts in Logan County resulting in 23 injuries and 2 deaths. Of the area 

covered, the tornado passed through 11.49% of impervious surface area. The 

SoVI marked these tracts of social vulnerability as medium high (2 tracts), 

medium low (2 tracts), and medium. The TSVI described these tracts has having 

low, medium high (3 tracts), and medium social vulnerability. Tornado EF5B is 

shown in Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 25: Case 4 – EF5A 
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Figure 26: Case 4 – EF5B 
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CHAPTER VI 

 

DISCUSSION 

 

Identifying socially vulnerable groups is an important step toward creating resilient 

communities and reducing future losses of property and human life (Cutter 1996; Cutter et al. 

2000; Flanagan et al. 2011). Measurement of social vulnerability is typically achieved using 

social vulnerability indexes, such as the Social Vulnerability Index, SoVI, introduced by Cutter 

et al. (2003) and the SVI by Flanagan et al. (2011). Despite the popularity and flexibility of 

incorporating these social vulnerability indexes to research, decision making, and policy, less 

attention has been given to their validation. Validation of social vulnerability indices is critical to 

their practical use (Fekete 2009; Rufat et al. 2015). In response, this work had two primary 

research objectives. The goal of Objective 1 was to replicate a commonly used general index of 

social vulnerability, develop a tornado-specific social vulnerability index, and compare the 

spatial pattern of vulnerability identified by each in the state of Oklahoma. A general index of 

social vulnerability was constructed following Cutter et al. (2003) SoVI and a tornado-specific 

social vulnerability index, TSVI, was constructed deductively based on tornado-focused studies 

(see Blaikie et al. (1994), Brooks and Doswell (2002), Ashley (2007), Mulilis et al. (2000), 

Chaney and Weaver (2010), Dixon and Moore (2012), Chaney et al. (2013), Widen (2016), and 

Lim et al. (2017). The goal of Objective 2 was to examine the relationship between social 
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vulnerability and tornado-related losses (injuries, deaths, property damages) in Oklahoma and 

observe how closely related they were during the study period. 

 

6.1 Objective 1 

 

To examine the spatial distribution of social vulnerability throughout Oklahoma two social 

vulnerability indexes, the SoVI and TSVI, were constructed. The SoVI was constructed at the 

county and tract scale, and the TSVI was only implemented for the tracts. The construction of the 

SoVI used factor analysis, which produced many of the same factors for the county and tract 

SoVI. Factor analysis found income and home value, age and elderly (in addition to 

unemployment for the tract SoVI), and the Hispanic population and non-English speaking 

minorities to be the main drivers of social vulnerability in Oklahoma. The amount that each of 

these factors, in addition to the remaining 4, contributed to social vulnerability varied across 

space. 

Based on the factor loadings and literature about social vulnerability to tornadoes, the 

most important factors for focusing on tornado-related losses include factors 1 (income, home 

value), 2 (age, elderly), and 7 (mobile homes) for the county SoVI, and factors 1 (income, home 

value), 2 (elderly, unemployment), and 3 (race, gender) for the tract SoVI. These factors have 

been found to be indicators of one’s access to information, and one’s ability to prepare for and 

recover from tornado events. 

The county SoVI, tract SoVI, and TSVI classified different areas of the state as more or 

less socially vulnerable. The county SoVI and TSVI identified similar areas of Oklahoma with 

higher social vulnerability scores compared to the tract SoVI. The county SoVI and TSVI 

classified southeastern Oklahoma with a large concentration of high values, suggesting this area 

of the state was more socially vulnerable during the study period. This part of Oklahoma has 
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more Native American reservations and a large Native American population. Literature suggests 

this group, and other minority groups, are more socially vulnerable and more likely to endure 

losses (see Cutter 1996; Cutter et al. 2003). Regions of Oklahoma that were highlighted as more 

socially vulnerable by the county SoVI and TSVI were generally labeled as less socially 

vulnerable by the tract SoVI. 

There was a notable change in the locations of the high and low social vulnerability 

scores when shifting from the county SoVI to the tract SoVI. This may have occurred due to the 

influence of different tracts when they are aggregated to describe the county. It also shows how 

social vulnerability changes (drastically or minimally) when focusing on different spatial scales. 

As discussed in the literature, the outputs from a social vulnerability index are very sensitive to 

the construction methods used. Depending on the type of index implemented, it can produce 

different results. Since social vulnerability indexes are used by decisionmakers and vulnerability 

scientists, this could lead to poor policy and decision making. 

Hot Spot Analysis and Cluster and Outlier Analysis identified significant hot and cold 

spots of the assigned social vulnerability scores of the tract SoVI and TSVI. The results of the 

two different tools were relatively consistent and did not produce vastly different outputs. The 

TSVI was the only index that identified the Oklahoma City and Tulsa metropolitan areas as 

statistically significant. The Oklahoma City and Tulsa metropolitan areas are more urban and 

diverse and were identified as having a mix of extreme high (more socially vulnerable) and 

extreme low values (less socially vulnerable). Literature explains that minority groups are more 

socially vulnerable, so the high social vulnerability rankings seem appropriate for these regions. 

The low social vulnerability rankings may be sensitive to the composition of the tracts and how 

the tract boundaries were selected. 
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Further comparison of the indexes was performed using Spearman’s rank correlation 

coefficient. The results of this found the tract SoVI and TSVI to have a weak relationship. This 

demonstrated that the tract SoVI and TSVI did not rank the social vulnerability of the Census 

tracts similarly. This may be attributed to the different weights of the variables in the indexes. 

The TSVI was constructed with 10 variables whereas the tract SoVI had 28, and then later 

reduced to 7 factors. One of the 10 variables included in the TSVI included the percent of the 

population living in mobile homes (QMOHO). Literature suggests this is a crucial indicator for 

identifying socially vulnerable groups, especially to tornado events (see Brooks and Doswell 

2002; Ashley 2007; Chaney and Weaver 2010; Dixon and Moore 2012; Chaney et al. 2013; and 

Lim et al. 2017). Results of the factor analysis for the tract SoVI did not find mobile homes to be 

a significant or strongly loading variable for this study period. Of the remaining 9 variables used 

to construct the TSVI (QED12LES, QESL, QRENTER, QRICH200K, QFAM, QFHH, 

QCVLUN, QELDERLY, and QPOVTY) 5 variables had strong loadings in the results of the 

tract SoVI factor analysis. These included QESL, QRENTER, QRICH200K, QFHH, and 

QCVLUN. Other variables not included in the TSVI had stronger loadings than these 5 for the 

tract SoVI. The influence of these variables in the construction of the tract SoVI could explain 

why the indexes had a weak relationship and assigned different social vulnerability scores to the 

Census tracts. 

 

6.2 Objective 2  

 

To examine the relationship between social vulnerability and observed losses in Oklahoma, 

statistical analyses and select tornado events were used. The results of the Spearman’s rank 

correlation coefficient did not find any strong relationships between the injuries, deaths, and 

property damages and the county SoVI. In addition, all the relationships were negative. Negative 
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relationships suggest that as the number of losses increased, the social vulnerability scores 

decreased (less socially vulnerable). This showed that higher losses occurred in areas described 

as being less socially vulnerable, which is the opposite of what was expected or intended of the 

indices. The significance values found these results to be statistically significant. 

The observed losses of injuries, deaths, and property damages were allocated from the 

county level to the tract level using averages, impervious surface area, and randomization. The 

results of the Spearman’s rank correlation coefficient did not find any strong relationships 

between the different methods of loss allocation with the tract SoVI and TSVI. For the tract 

SoVI, the directionalities of the relationships were both positive and negative. For the TSVI, all 

methods, apart from one, were negative relationships. Negative relationships imply that as values 

for one of the variables (e.g., losses) increased, the values for the other decreased (e.g., social 

vulnerability scores). The weak relationships suggested the indexes did not assign a proper social 

vulnerability ranking to the areas experiencing losses. Additionally, the significance values only 

found 4 of the correlations to be statistically significant. These findings did not display expected 

relationships between the observed losses and indexes. If the indexes worked as they were 

designed to, higher losses would have been detected in areas with higher social vulnerability 

scores. 

The select tornado events presented in cases 1-4 provided insight into the relationship 

between the tract SoVI, TSVI, and observed losses. The 4 case studies included examples of 

instances when tornadoes with the same EF rating caused different losses across space, how 

losses varied across different areas of impervious surface areas, and how well the indexes 

described the tracts that experienced the most damages during the study period. These cases 

showed how complex social vulnerability and observed losses are. It also suggests there is more 
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happening at the hyper-local level than can by described solely with Census variables. As 

discussed by Schmidtlein et al. (2008), it would be wise to incorporate local experts to more 

refined study areas to understand what is going on and possibly understand why the indexes did 

not work well. 

The case studies illustrated that the SoVI and TSVI were not externally valid and did not 

accurately identify where the greatest number of losses were likely to have occurred. The SoVI 

and TSVI did not display the expected relationships; we expected the greatest number of losses 

in areas with high social vulnerability scores. Although neither index was externally valid, the 

SoVI was a better predictor of identifying where the losses occurred compared to the TSVI. 

Externally validating indexes requires more data and information about places and 

tornado-related losses. With the data used in this work, we do not know the specifics of those 

that endured the actual damages and losses. Understanding exactly who and/or what experienced 

the tornado-related losses in Oklahoma could introduce ways the indexes could be adjusted. 

Having this information could also help explain why the indexes were not great predictors of 

identifying the tracts most likely to endure losses. The losses during the study period may have 

been experienced by social groups and/or properties not included in the SoVIs and TSVI. 

 

6.3 Limitations, Shortcomings, and Future Work 

 

This work addressed a gap in the social vulnerability and natural hazards literature concerning 

index validation. It proposed an external validation source and method to examine if social 

vulnerability indexes measure what they are intended to. However, this work was restricted by 

some limitations and shortcomings of the data and decisions utilized. Some limitations and 

shortcomings of this work include the study period, tornado data, observed loss data, and the 

methods of loss allocation to the tracts. 
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 The findings from this work are strongly dependent on the 5-year study period chosen. 

The results and patterns identified may be specific to this particular time period (2010-2014) and 

may not be generalizable across other years. The study period also limited the number of 

tornado-related losses. A longer study period would have supplied more data and more 

observations. More data would provide more information and ultimately, more descriptive, 

comprehensive results. This would improve future works because sample size was a concern for 

some of the analyses undertaken here. At the county scale, there are 77 counties in Oklahoma 

and the number of observations included 26 (injuries), 12 (deaths), and 37 (property damages), 

which is not desirable, especially for statistical analyses. For the observed losses at the tract 

scale, there were more injuries and property damages than deaths. The smallest sample size of 

the different losses were the deaths distributed randomly (RAND_DTH) with 21 observations 

and the largest dataset was property damages allocated with averages (AVG_PROPERTYD) 

with 158 observations. A longer study period would increase the number of observations, likely 

yielding more robust results. 

The tornado data from the SPC database is known to have some discrepancies as 

discussed by Widen (2016). Researchers in the tornado research community acknowledges the 

database’s inconsistencies in rating assessments and data collection procedures of tornado 

damage, pathlength, width, and other attributes. The data are also known to vary from one NWS 

Office to another (Widen 2016). This dataset maps the tornadoes as straight-line paths with 

several attributes including the EF ratings. This work recognized that tornadoes do not always 

occur in perfectly straight lines and do not necessarily remain in contact with the ground along 

the entire path. In this work, no attempt was made to identify the breaks in the tornado paths. In 

addition, the intensity of an event and the width of the tornadoes often change throughout a 
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tornado path, but the EF ratings and widths included in this dataset catalog the largest ratings 

reached for the entire path. 

If the SPC or alternative databases incorporated more detailed information, future works 

could incorporate more accurate tornado path data. This information could provide researchers 

with a better understanding of how tornado events behave across space and identify more precise 

areas affected. They would be able to identify the people and places exposed to these hazards 

more precisely. 

The SoVI and TSVI were externally validated using observed losses from the Storm 

Events Database. The database of observed losses collects injuries, deaths, and property damages 

(in dollars) at the county level. In this work, only the losses that occurred during the study period 

(2010-2014) and classified as “Tornado” under the “Event Type” category (losses related to 

tornado events) were included. It is possible that other documented losses were related to the 

tornado events from the study period but were not included. It would be useful to compare loss 

data across sources and various databases to obtain this information. Depending on the size of 

the study area, future works could contact local authorities for more precise information of 

observed losses. 

Additionally, this work required the loss data at the tract scale. The losses were 

distributed to the tracts by averages, impervious surface area, and randomization. It is likely that 

losses were assigned to tracts that did not actually experience a tornado-related loss or that the 

number of losses assigned were incorrect. Three different methods were used to try and account 

for this. Future works could incorporate newspaper reports and or other records to help identify 

where these losses occurred and delegate the losses to the tracts accordingly. They could also 

focus on the onset time of tornadoes in relation to loss records to identify if the greatest number 
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of losses occurred at nighttime when people are more socially vulnerable (see Ashley 2007; 

Ashley et al. 2008). 

The SoVI and TSVI were constructed and applied to the study area without any internal 

adjustments. Future works should incorporate methods used by Tate (2012) and test for any 

internal sensitivities of the social vulnerability indexes. Sensitivities can be identified, and the 

indexes can be adjusted as needed to best serve the study area. A better understanding of those 

who experienced tornado-related losses in Oklahoma could provide insight to how these indexes 

could be improved upon. 

 

6.4 Conclusion 

 

The SoVI and TSVI did not perform as expected. This is likely due to the variable selections and 

data availability of the tornado-related losses. Moving forward, the SoVI and TSVI could benefit 

from alterations to the index construction. One index is not necessarily better than the other 

based solely on the methods used. Instead, careful consideration of the variables included in an 

index are needed to identify whether they are representative of those who experienced losses in 

the study area. More insight into this could supply better indexes for describing social 

vulnerability to tornadoes in Oklahoma. Additionally, works could incorporate on-site validation 

using qualitative methods and collaboration with local experts or agencies. Qualitative 

investigations may help better identify the specific groups that experienced tornado-related 

losses in Oklahoma. Index validation in this work required fine spatial data at the tract scale, 

which was not directly available. There is a need for data at this scale, especially for focusing on 

very localized hazards like tornadoes. 

The findings from this work reinforce prior findings that the relationship between social 

vulnerability and loss is complex, and that further revision of indexes and more validation 
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studies are needed to fully understand their value in hazard planning and decision making. This 

need also includes more empirical validation studies in different places at various scales, and 

with different hazards and temporal components (Rufat et al. 2019). As discussed by Rufat et al. 

(2019), indexes should not be used for informing policy or decision making until they 

consistently explain loss outcomes. The indexes in this work did not consistently identify the 

areas that experienced the greatest number of losses as more socially vulnerable, so they should 

not be considered for informing policy and/or decision making in Oklahoma as they currently 

are. 
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APPENDICES 

 

APPENDIX A: Terms 

TERM MEANING 

Adaptive Capacity A key element of vulnerability (Murphy et al. 2015), it is “the ability of a system to adjust to 

change, moderate the effects, and cope with a disturbance” (Cutter et al. 2008, 600). Also, “a 

combination of characteristics that are internal to an individual, community or organization 

and external factors that are beyond their control that either enable or constrain their ability to 

respond to change” (Murphy et al. 2015, 3). 

Coping Actions used, “to describe shorter-term adjustments made to simply survive a disturbance” 

(Murphy et al. 2015, 5). The way, “people act within the limits of existing resources and 

range of expectations to achieve various ends” (Wisner et al. 2004, 113). 

Disaster “The result of the impact of hazards on vulnerable people” (Wisner et al. 2004; 87). 

Exposure “A measure of the people or property that are subject to a given risk” (Boruff et al. 2003, 

104). “The proximity of units or systems to disturbances” (Murphy et al. 2015, 3). 

Hazard/Natural 

Hazard 

“A dangerous phenomenon…that may cause loss of life, injury, or other health impacts, 

property damage, loss of livelihoods and services, social and economic disruption, or 

environmental damage” (Ciurean et al. 2013, 5). They can be large scale, such as forest fires, 

or relatively local, like tornadoes (Flanagan et al. 2011). “The interaction between physical 

systems and human-use systems that produce a ‘loss” (Boruff et al. 2003, 104). 

Hazard Mitigation “Any action taken to reduce or avoid risk or damage from hazard events…the use of 

mitigation techniques and planning can increase a system’s or society’s resilience to hazards” 

(Cutter et al. 2008, 600). 

Resilience “The ability of a social system to respond and recover from disasters and includes those 

inherent conditions that allow the system to absorb impacts and cope with an event, as well as 

post-event, adaptive processes that facilitate the ability of the social system to re-organize, 

change, and learn in response to a threat.” This includes “a system’s capacity to absorb 

disturbance and re-organize into a fully functioning system” (Cutter et al. 2008, 599). 

Resources “The physical and social means of gaining a livelihood and access to safety” (Wisner et al. 

2004, 113). 

Risk “Risk is the likelihood of occurrence (or probability) of the hazard. Risk has two domains: it 

includes the potential sources of risk (industrial, flooding, transportation) and the contextual 

nature of the risk itself (high consequence, low consequence)” (Cutter 1996, 536; Cutter et al. 

2008). Ciurean et al. (2013, 5) describes risk as, “the combination of the probability of an 

event and its negative consequences.” 

Sustainability The capacity to, “tolerate – and overcome – damage, diminished productivity, and reduced 

quality of life from an extreme event without significant outside assistance” (Mileti 1999, 4). 
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APPENDIX B: Tornado Classification Scheme 

Tornado events have traditionally been evaluated using the Fujita scale (F scale). The F 

scale was introduced in 1971 by T. Theodore Fujita to assign ratings to tornado intensity based 

on observed damages. This rating system was adopted by organizations including the NWS and 

later utilized in the U.S. in 1973. The F scale assigns ratings based on levels of destruction and 

classifies tornadoes from F0 (minimal damages) to F5 (catastrophic damages) (Edwards et al. 

2013). Tornado events prior to 1973 were evaluated using photographs and newspaper articles to 

assess damages and later included in the SPC database, an extension of NOAA’s NWS (Coleman 

and Dixon 2013). Since the implementation of the F scale, there has been an increase in annual 

reported tornado events due to improved spotting techniques and radar, and NWS warning 

verification procedures (Coleman and Dixon 2013). Due to concerns regarding the consistency 

and accuracy of the F scale, a new tornado rating system was introduced shortly after; the 

Enhanced Fujita scale (EF scale). The EF scale is based on wind speeds, providing a clearer, 

objective approach to classifying these extreme hazard events. The EF scale also organizes 

tornadoes into categories ranging from EF0 to EF5, increasing in intensity the larger the rating. 

These classes also align with the original F scale (Edwards et al. 2013). 
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APPENDIX C: Tracts Removed from the Indexes 

EXCLUDED 

INDEX 

TRACT NUMBER COUNTY MISSING VARIABLE(S) 

SoVI and TSVI 107.01 Oklahoma ALL 

TSVI 2007 Cleveland PPUNIT, MHSEVAL 

TSVI 24.01 Comanche MHSEVAL, MDGRENT 

TSVI 24.03 Comanche MHSEVAL 

TSVI 24.04 Comanche MHSEVAL 

TSVI 1075 Oklahoma MHSEVAL 

TSVI 1026 Oklahoma MHSEVAL 

TSVI 76.41 Tulsa MHSEVAL 

TSVI 104 Payne MHSEVAL 

TSVI 4863 Pittsburg MHSEVAL, MDGRENT 

TSVI 1027 Oklahoma MHSEVAL 

TSVI 1036.01 Oklahoma MHSEVAL 

TSVI 1025 Oklahoma MHSEVAL 

TSVI 1036.02 Oklahoma MHSEVAL 

TSVI 1091 Oklahoma MHSEVAL 

TSVI 1081.01 Oklahoma MDGRENT 

TSVI 76.38 Tulsa MDGRENT 

TSVI 1081.07 Oklahoma MDGRENT 

TSVI 2018.01 Cleveland MDGRENT 

TSVI 1085.29 Oklahoma MDGRENT 

TSVI 1067.08 Oklahoma MDGRENT 

TSVI 1085.24 Oklahoma MDGRENT 

TSVI 54.01 Tulsa MDGRENT 

TSVI 1037 Oklahoma MDGRENT 
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APPENDIX D: Variables Included in the SoVI 

TABLE SOURCE ACS/CENSUS ID VARIABLE DESCRIPTION SV THEME 

DP02 ACS HC03_VC10 QFHH Percent, families with female-

headed households, no spouse 

present 

Lack of access to resources, 

limited access to political power 

and representation, beliefs and 

customs 

 

DP02 ACS HC01_VC21 PPUNIT Estimate, households by type, 

average number of people per 

household 

Social capital, beliefs and 

customs, type and density of 

infrastructure and lifelines 

DP02 ACS HC03_VC87 QED12LES Percent, educational attainment, 

population over 25 years old, no 

high school diploma 

Lack of access to resources, 

limited access to political power 

and representation 

DP02 ACS HC03_VC173 QESL Percent, population speaking 

English as a second language, 

limited English proficiency 

Lack of access to resources, 

limited access to political power 

and representation 

DP03 ACS HC03_VC09 QCVLUN Percent, civilian labor force 

unemployed 

Lack of access to resources, 

limited access to political power 

and representation 

DP03 ACS HC03_VC15 QFEMLBR Percent, female participation in 

the labor force 

Limited access to political 

power and representation 

DP03 ACS HC03_VC42 QSERV Percent, population in service 

occupations 

Limited access to political 

power and representation 

DP03 ACS HC03_VC50 QEXTRCT Percent, employment in extractive 

industries (fishing, farming, 

mining, etc.) 

Limited access to political 

power and representation 

 

DP03 ACS HC03_VC84 QRICH200K Percent, income and benefits, 

families earning more than 

$200,000 per year 

Social capital, beliefs and 

customs 

 

DP03 ACS HC03_VC91 QSSBEN Percent, households receiving 

Social Security benefits 

Social capital, beliefs and 

customs 

DP03 ACS HC01_VC118 PERCAP Estimate, income and benefits, per 

capita income (dollars) 

Social capital 

 

DP03 ACS HC03_VC134 QNOHLTH Percent, population without health 

insurance 

Lack of access to resources 

DP04 ACS HC03_VC05 QUNOCCHU Percent, unoccupied housing units, 

vacancy 

Building stock and age 

 

DP04 ACS HC03_VC65 QRENTER Percent, renter-occupied housing 

units 

Limited access to political 

power and representation, 

building stock and age, type and 

density of infrastructure and 

lifelines 

DP04 ACS HC03_VC84 QNOAUTO Percent, housing units with no car 

available 

Lack of access to resources 
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DP04 ACS HC01_VC127 MHSEVAL Estimate, median dollar value of 

owner-occupied housing units, 

home value 

Social capital, building stock 

and age 

DP04 ACS HC01_VC189 MDGRENT Estimate, median gross rent for 

renter-occupied housing units 

Social capital, building stock 

and age 

 

DP05 ACS HC03_VC05 QFEMALE Percent, female population Lack of access to resources, 

limited access to political power 

and representation 

DP05 ACS HC03_VC50 QBLACK Percent, Black population Lack of access to resources, 

limited access to political power 

and representation 

DP05 ACS HC03_VC51 QNATAM Percent, Native American 

population 

Lack of access to resources, 

limited access to political power 

and representation, beliefs and 

customs 

DP05 ACS HC03_VC56 QASIAN Percent, Asian population Lack of access to resources, 

limited access to political power 

and representation, beliefs and 

customs 

DP05 ACS HC03_VC88 QHISP Percent, Hispanic population Lack of access to resources, 

limited access to political power 

and representation, beliefs and 

customs 

B09002 ACS HD01_VD010 

HD01_VD02 

QFAM Percent, children living in married 

couple families 

Lack of access to resources 

 

B25033 ACS HD01_VD06 

HD01_VD12 

HD01_VD01 

QMOHO Percent, population living in 

mobile homes, sum of ownership 

types (owner, renter) divided by 

total MOHO 

Building stock and age, type and 

density of infrastructure and 

lifelines 

S0101 ACS HC01_EST_VC35 MEDAGE Median age Social capital 

 

S0101 ACS, 

CENSUS 

HC01_EST_VC03 

HC01_EST_VC20 

HC01_EST_VC19 

HC01_EST_VC18 

HC01_EST_VC17 

HC01_EST_VC16 

QAGEDEP Percent, population under 5 years 

of age or 65 and over, the sum of 

six categories, divided by 

TOTPOP from 2010 Census 

Frail and physically limited 

individuals 

S0601 ACS HC01_EST_VC67 QPOVTY Percent, persons living in poverty Lack of access to resources, 

limited access to political power 

and representation 

SF1_P42 

SF1DP1 

ACS, 

CENSUS 

D005 

HD01_S001 

QNRES Percent, population living in 

nursing facilities, sum and then 

divided by TOTPOP from 2010 

Census 

Frail and physically limited 

individuals, type and density of 

infrastructure and lifelines 
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APPENDIX E: Variables Included in the TSVI 

 

 

 

TABLE SOURCE ACS/CENSUS ID VARIABLE DESCRIPTION LITERATURE 

SOURCE 

S0601 ACS HC01_EST_VC67 QPOVTY Percent, persons living in 

poverty 

(Dixon and Moore 

2012; Widen 2016; 

Lim et al. 2017) 

DP03 ACS HC03_VC84 QRICH200K Percent, income and 

benefits, families earning 

more than $200,000 per 

year 

(Chaney et al. 2013; 

Lim et al. 2017) 

B25033 ACS HD01_VD06 

HD01_VD12 

HD01_VD01 

QMOHO Percent, population living 

in mobile homes, sum of 

ownership types (owner, 

renter) divided by total 

MOHO 

(Brooks and Doswell 

2002; Ashley 2007; 

Chaney and Weaver 

2010; Dixon and 

Moore 2012; Chaney 

et al. 2013; Widen 

2016; Lim et al. 2017 

DP02 ACS HC03_VC87 QED12LES Percent, educational 

attainment, population 

over 25 years old, no high 

school diploma 

(Chaney and Weaver 

2010; Widen 2016) 

S0101 ACS HC01_EST_VC16 

HC01_EST_VC17 

HC01_EST_VC18 

HC01_EST_VC19 

HC01_EST_VC20 

QELDERLY Population 65 and over, 

the sum of 5 categories 

(Ashley 2007; Dixon 

and Moore 2012; 

Chaney et al. 2013; 

Widen 2016) 

DP02 ACS HC03_VC173 QESL Percent, population 

speaking English as a 

second language, limited 

English proficiency 

(Chaney et al. 2013; 

Widen 2016; Lim et 

al. 2017) 

DP03 ACS HC03_VC09 QCVLUN Percent, civilian labor 

force unemployed 

(Widen 2016) 

DP02 ACS HC03_VC10 QFHH Percent, families with 

female-headed 

households, no spouse 

present 

(Blaikie et al. 1994; 

Lim et al. 2017) 

B09002 ACS HD01_VD010 

HD01_VD02 

QFAM Percent, children living in 

married couple families 

(Chaney et al. 2013) 

DP04 ACS HC03_VC65 QRENTER Percent, renter-occupied 

housing units 

(Mulilis, Duval, and 

Bovalino 2000) 
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APPENDIX F: County SoVI Reference Map 
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