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Major Field: GEOLOGY 
 
Abstract: This study examines known fault systems in northeastern Oklahoma, analyzing 
their relationship to producing reservoirs and their link to the recent increase in seismic 
activity. By collecting fault information from previous publications and unpublished 
industry maps, this study, using GIS techniques, compiled a detailed fault map for 
northeastern Oklahoma, including the type of faulting, where possible. The Nemaha, 
West Stillwater – Ramsey – Labette, Wilzetta, and Keokuk fault zones are the more 
prominent in the area of study; characterized by highly faulted networks that show a 
conjugate pattern and an almost orthogonal pattern. Although most faults in northeastern 
Oklahoma are reported to be normal in terms of apparent displacement, high-angle 
reverse faults have been mapped along the major fault zones. During multi-tectonic 
events, strike-slip displacement is an essential component for the fault systems in north-
central Oklahoma.  
 
A comparison of the age of the producing reservoirs maps with the interpretive fault map 
reveals that the predominance of production from Lower Paleozoic reservoirs is from 
structure-related traps. There is significant production from stratigraphic traps in 
Pennsylvanian reservoirs. It seems clear that Pennsylvanian and Permian producing 
reservoirs reflect reactivation of pre-existing faults and vertical migration of 
hydrocarbons through faults to shallower reservoirs.  
 
A comparison of the distribution of earthquake foci with the fault map and the top of 
basement in northeastern Oklahoma shows that the majority of earthquakes have 
occurred well below the basement and that most of these earthquakes occurred between 
the major fault systems. The three earthquakes with moment magnitudes (Mw) of 5.0 or 
greater occurred quite near major fault zones, but apparently along their individual 
branches.   
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Previous Works 

In northeastern Oklahoma, even though fault occurrences are rather well-documented, recent 

studies suggest that the area is even more highly faulted than generally thought (Gay, 2003a, 

2003b). Luza and Lawson (1980) considered previously recognized vertically faulted uplifts to be 

responsible for the formation of significant structures in northeastern Oklahoma. Major fault 

systems, associated with strike-slip movements (e.g., Nemaha Fault Zone, Wilzetta Fault Zone, 

and Keokuk Fault Zone), have been proposed as being responsible for the complex fault patterns 

resulting from multi-tectonic events (Gay, 1999; Dycus, 2013; Dudek, 2014). As illustration, 

along the Nemaha Fault Zone in Kay County, Oklahoma, several smaller fold-fault structures 

have been proposed to be the result of strike-slip faults (Davis III, 1985).       

The current fault databases of Oklahoma, available from the Oklahoma Geological Survey 

(OGS), show known faults and some of their attributes in Oklahoma. The fault information has 

been significantly updated through various Oklahoma Fault Maps published since 2014 (e.g., 

Holland, 2015; Marsh and Holland, 2016).  

In this study, faults in the existing Oklahoma fault databases, were compiled with unpublished 

faults and others not shown in the existing databases, thereby providing more information on 

faults in northeastern (and north-central) Oklahoma, in order to have an up-to-date map of faults 

mapped in northeastern Oklahoma. 
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Although the relationship between the occurrence of hydrocarbon traps and fault patterns along 

major fault zones in Oklahoma is generally understood (Dolton and Finn, 1989), the relationship 

of producing reservoirs and fault systems in northeastern Oklahoma, especially Pennsylvanian-

Permian reservoirs and the role of vertical migration of hydrocarbons, is less well known. 

Added to distribution of faults and their association with producing reservoir is the relatively 

recent high occurrence of earthquakes in northeastern, central, and north-central Oklahoma, 

especially after 2009. Most studies (e.g., Keranen et al., 2014; Hough and Page, 2015; Walsh and 

Zoback, 2015; Boak, 2018) propose the earthquakes are possibly related to waste-water injection; 

this study focuses on the relationship between the recent earthquakes and existing fault systems.  

1.2 Objectives 

The objectives of this study are to: (1) compile, using GIS techniques, the most accurate map of 

faults in northeastern Oklahoma possible from all available maps in the study area, make a 

reasonably sound interpretive map, and determine the relation of the faults to two groups of 

producing reservoirs (pre-Pennsylvanian and Pennsylvanian-Permian) and (2) relate recent 

earthquakes to the mapped faults, to producing reservoirs, and to the basement. 

1.3 Significance 

This research will further contribute to the completion of the fault system information in 

northeastern Oklahoma and advance our understanding of the occurrence and nature of the fault 

systems in northeastern Oklahoma. The study of the distribution pattern of producing reservoirs 

in different ages relative to the fault systems will help us to understand more clearly the 

distribution of hydrocarbon reserves and thereby lead to a better predictor of undiscovered oil and 

gas reserves remaining along the fault zones in northeastern Oklahoma. 
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Knowing the relation of earthquakes to the mapped faults and to previously unknown faults 

should improve the understanding of the seismicity of the area. The relation of the foci to the top 

of the basement (base of the sedimentary section) should help in determining with more accuracy 

the relation of petroleum exploration and production in generating earthquakes. 

1.4 Study Area  

As shown in Figure 1, the study area is within the Cherokee Platform, which is bounded by the 

Ozark Uplift to the east, and the Nemaha Uplift to the west. The major tectonic structural 

elements of southern Oklahoma, the Wichita, Arbuckle, and Ouachita uplifts, are associated with 

its southern boundary, and they had a structural influence on the Cherokee Platform (Johnson, 

2008). The study area lies north of the Arkoma Basin and the southernmost part of the Cherokee 

Platform, and the Kansas border delineates its northern limit. Fourteen counties are included 

within it. The Nemaha Fault Zone and Wilzetta Fault Zone are two of the major fault zones in the 

study area. 

 

Figure 1: Study area in relation to the major tectonic provinces of Oklahoma (modified from 

Johnson, 2008). Dashed areas of Grant and Garfield Counties are located at the west of Nemaha 

Fault Zone and fault information in these areas are briefly collected.  
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1.5 Stratigraphy 

The strata in the study area formed from sediments deposited mainly during the Paleozoic Era 

(Figure 2a and Figure 2b; Dolton and Finn, 1989; Boyd, 2008). They are usually divided into two 

segments: pre-Pennsylvanian strata consisting primarily of dolomites, limestones, and shale, with 

fewer siliciclastic deposits, and Pennsylvanian-Permian strata. The latter are known for their 

cyclic deposits containing terrigenous deposits and marine deposits (carbonates and shales, 

primarily) (Dolton and Finn, 1989). Pre-Pennsylvanian and Pennsylvanian-Permian strata are 

separated by a major unconformity at the close of the Mississippian. Furthermore, tectonic 

movements during the Ordovician and Devonian resulted in regional unconformity(ies) and local 

erosion on structural highs. 
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Figure 2a: The schematic pre-Pennsylvanian stratigraphic column of the Cherokee Platform in 

northeastern Oklahoma (adapted and modified from Dolton and Finn, 1989; Boyd, 2008). 
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Figure 2b: The schematic Pennsylvanian-Permian stratigraphic column of the Cherokee Platform 

in northeastern Oklahoma (adapted and modified from Dolton and Finn, 1989; Boyd, 2008).
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CHAPTER II 
 

 

TECTONIC HISTORY OF STUDY AREA 

2.1 Late Mesoproterozoic Mid-Continent Rift in Central Oklahoma 

Around 1.1 Ga, the Laurentia supercontinent underwent intracratonic rifting in the present-day 

midwestern United States, forming the Mid-Continent Rift System (MRS). Rifting started around 

Lake Superior and extended southward across Minnesota, Iowa, southeastern Nebraska, and 

northeastern Kansas (Whitmeyer and Karl, 2007). Some studies (Berendsen and Blair, 1986; 

Keller et al., 2016) indicate the continuation of the MRS into central Oklahoma, as the initial 

trace of the Nemaha Fault Zone; volcanic intrusions and deep Precambrian sedimentary basins in 

Osage County provide some evidence for the rift zone in Oklahoma (Elebiju et al., 2011). 

Additionally, gravity and well-log data suggest further a southward extension of the MRS under 

the Anadarko Basin and into Texas (Keller et al., 2016). 

2.2 Middle Ordovician, Middle to Late Devonian Regional Uplift in Oklahoma  

After development of the WNW-trending Southern Oklahoma Aulacogen during the Cambrian 

(e.g., Ham et al., 1964; Keller, 2014), there was movement along the Nemaha Fault Zone, 

probably during middle Ordovician and middle to late Devonian; included were rejuvenated fault 

activities in Oklahoma (Johnson, 2008), such as at the Oklahoma City Field Uplift (McGee and 

Jenkins, 1946) and localized uplifts in Noble and Kay County (Davis III, 1985; Tarr et al., 1965). 

In the uplifted areas, the Hunton Limestone underwent erosion; in some locations, erosion 
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extended through the Wilcox Sand to the Cambro-Ordovician Arbuckle Group (McGee and 

Jenkins, 1946; Tarr et al., 1965). The widespread Woodford Shale lies unconformably on eroded 

earlier Paleozoic units. 

2.3 Late Mississippian and Pennsylvanian Orogenic Events in Oklahoma 

During late Mississippian and early Pennsylvanian, the Wichita Orogeny of southwestern 

Oklahoma, the Nemaha Uplift of central Oklahoma and Ozark Uplift of northeastern Oklahoma 

were active (Johnson, 2008). The Nemaha and Ozark Uplifts faulted and deformed pre-

Pennsylvanian strata in north-central and northeastern Oklahoma (Jordan, 1962). The Ouachita 

Orogeny of southeastern Oklahoma probably started during the Mississippian and was active 

during early to middle Pennsylvanian up to the end of the Desmoinesian (Johnson, 2008). The 

last major orogenic event in Oklahoma, the Arbuckle Orogeny, occurred during the Virgilian and 

ceased at the end of the Pennsylvanian (Johnson, 2008). After the Pennsylvanian, there were 

minor uplift and reactivation of faults and folds in Oklahoma (Johnson, 2008).  
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CHAPTER III 
 

 

METHODOLOGY 

The study began by collecting information on faults, particularly their surface and/or subsurface 

extents, from fourteen counties in northeastern Oklahoma using all available publications and 

publically available data.  

Arc GIS 10.4 software, a geographic information system for map compilation and geographic 

information analysis, was used effectively to compile all available information on faults, thereby 

providing a visual template for studying the relationship between the location of faults, 

distribution of oil fields, and earthquake foci.  

In ArcMap, the World Geodetic System (WGS) 1984 was used as the project coordinate system. 

The land survey system in Oklahoma is the Public Land Survey System (USGS, 2019). The 

Oklahoma County Map (Oklahoma Office of Geographic Information, 2019) is added into the 

project as a reference map. Previous structure maps showing fault extents were scanned into 

digital files and imported into the ArcMap Project. By using the Arc GIS georeference tool, the 

township boundaries in the scanned maps were georeferenced with respect to township outlines in 

the Oklahoma County Map; the real position of a fault was defined and digitized (Figure 3). 

Then, information from the faults, including their attributes, were input into a database. 
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Figure 3: Georeference of a scanned geologic map by Shelton et al. (1979) into ArcGIS.  

(A) Georeferenced a Noble County structure contour map to the county location in ArcMap; (B) 

Georeferenced boundary of the scanned Noble County structure contour map to match the Noble 

County boundary in ArcMap; (C) Digitized fault traces in ArcMap, red lines show the fault traces 

digitized from scanned Noble County structure contour map.  

 

The Index Maps to surface and subsurface mapping in Oklahoma (Roberts, 1981; Roberts et al., 

1981; Luza et al., 1983; Jordan and Roberts, 1986) were examined for calibration in collecting 

detailed published and unpublished references of the geological mapping in the study area. In 

addition to the fault information collected from the literature from local studies, the following 

represent critical sources of information:  
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U.S. Geological Survey:  

• A Digital Geologic Map Database of Oklahoma (Heran et al., 2003); 

Oklahoma Geological Survey: 

• Comprehensive Fault Database and Interpretive Fault Map of Oklahoma (Marsh and 

Holland, 2016), 

• Oklahoma Fault Database Contributions from the Oil and Gas Industry (Holloway et al., 

2016), 

• Preliminary Fault Map of Oklahoma (Holland, 2015). 

All of these sources were used in the compilation and comprised the comprehensive database for 

the ArcMap project basic to this study.  

After fault compilation and interpretation, primarily for deletion of duplication, information 

relating to oil and gas fields was plotted on the interpretive fault map. Sources for the information 

on oil and gas fields are: 

• Map of Oil and Gas Field in Oklahoma by Reservoir Age (Boyd, 2002a),  

• Map of Oklahoma Oil and Gas Fields (Boyd, 2002b), 

• Herndon Maps, 

• Other related publications (Akin, 1964; Schramm, 1965; Chenoweth, 1966, Harris, 1975; 

Bloesch, 1987; Lyons, 1987; Dolton and Finn, 1989).  

Because of the pre-Pennsylvanian tectonic activity, the producing reservoirs were divided into 

two groups, Cambro-Ordovician Arbuckle Group, Ordovician Simpson Group, Siluro-Devonian 

Hunton Group and Mississippi Lime, and Pennsylvanian to Permian reservoirs.  
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By integrating the fault map and field locations in ArcMap, two maps that were generated (Figure 

7 and Figure 8) show relationships between faults and the occurrence of hydrocarbon production 

from two mega - stratigraphic intervals Cambro - Ordovician - Mississippian and Pennsylvanian -

Permian.  

To relate fault occurrences and recent earthquake activity, two sources were used. 

Oklahoma Earthquakes from 09/10/1918-10/31/2019, Database in: 

• Oklahoma Geological Survey, 

• U.S. Geological Survey.  

From these databases, earthquake foci were loaded into ArcGIS for plotting the location of 

earthquakes, with their attributes (location, time, depth, and magnitude). The map of earthquake 

distribution (location) includes magnitude and depth, and it is combined with the fault map 

(Figure 9) to analyze the spatial relationship between the earthquake parameters and faults in the 

study area. Additionally, faults estimated from the earthquake (seismic) data (Figure 10, 

McNamara et al., 2015a, 2015b) are also shown with the fault map to use in showing the 

relationship between recent earthquakes and mapped fault systems in the study area. The 

structural contour map on the top of the basement in northeastern Oklahoma by Denison (1982) 

was digitized and the earthquake foci and basement surface are shown in 3D/front views, utilize 

Petra software to aid in analyzing the spatial relationship between earthquakes and the basement.  
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CHAPTER IV 
 

 

RESULTS 

4.1 Faults in Northeastern Oklahoma  

The comprehensive fault map of northeastern Oklahoma (Plate I) shows the fault database built in 

this study (red) with the fault database from Oklahoma Geological Survey (blue). An interpretive 

fault map of northeastern Oklahoma (Plate II) is interpreted based on these databases. 

 Major fault zones in the study area (Plate II) are the Nemaha Fault Zone (NFZ, red color), West 

Stillwater – Ramsey – Labette Fault Zone (WSRLFZ, orange color), Wilzetta Fault Zone (WFZ) 

with parallel faults (dark-blue color) to the east, and East-West-trending faults between NFZ and 

WFZ (green color).  Most of the faults in the study area are high-angle normal faults. However, 

reverse faults are reported along the Nemaha Fault Zone, West Stillwater – Ramsey – Labette 

Fault Zone in Pawnee County, Wilzetta Fault Zone in Lincoln County, and Weleetka Fault Zone 

east of the study area (Appendix I, Plate II). In some cases, the reverse faults, thought to extend 

upward from the basement displace shallow Pennsylvanian to Permian strata (Appendix I).  In 

addition to the major fault systems, shallow-rooted en echelon fault zones (grey color, plate II) 

but associated in most cases with deep-seated faults show several trends; the dominant trend is 

northwest-southeast, especially in the west, and northeast-southwest trend in the easternmost area 

(Arbenz, 1956). They commonly are clues (trend and direction of relative movement) to the 

underlying strike-slip faults.  
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4.1.1 Nemaha Fault Zone (NFZ) 

The Nemaha Fault Zone (Figure 4) extends beyond the study area, along or near the western 

boundary of the area, from Oklahoma City into western Logan County, easternmost Garfield 

County, through Kay County into Kansas. In Oklahoma, the NFZ broadly is convex westward. To 

the north into Kansas it trends NNW. The NNW-SSE-trending major Nemaha Fault trace in 

western Logan County is mapped by Holloway et al. (2016) using 2D seismic data; a reverse fault 

is reported at a branch fault of the major Nemaha Fault Zone (Gay, 2003b). Although the NFZ is 

generally down-to-the-west (Ford, 1955; Luza and Lawson, 1980); in the northwestern corner of 

Logan County (T19N R4W), the fault is down-to-the-east (Luza and Lawn, 1980).  

The Nemaha Fault Zone in Kay and Grant Counties is adapted mainly from Rogers (2001), who 

provides an interpretation at the top of the Mississippian. In these counties, the Nemaha Fault 

Zone is trending NE to NNE, and the major Nemaha Fault trace splits into several subparallel-

trending faults. In addition, there are parallel northeast-southwest-trending faults in Noble and 

Garfield Counties (Luza and Lawson, 1980; Northcutt and Campbell, 1995). Other fault traces are 

mapped from Ford (1955), Bross (1961), Shelton et al. (1979), Gay (1999), and Holloway et al. 

(2016). Most of the mapped faults are normal faults. However, there are eight reverse fault 

locations reported from Gay (2003b) (Plate II).  

In summary, the Nemaha Fault Zone primarily consists of high-angle normal faults (Ford, 1955; 

Gatewood, 1970; Gay, 1999; Gay, 2003a, 2003b) with localized high-angle reverse faults (Gay, 

2003b). It has been interpreted to have left-lateral movement (Blair and Berendsen, 1988; 

Berendsen and Blair, 1995); however, recent studies propose a more right-lateral nature to the 

NFZ (Toelle et al., 2008; Chopra et al., 2018). The displacement of the Nemaha Fault is reported 

from dozens of feet to over 500 feet (Bross, 1961). Currently, the literatures have not constrained 

the actual strike-slip displacement along the Nemaha.  
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Figure 4: Interpretive Fault Map of Nemaha Fault Zone (NFZ) (after Ford, 1955; Bross, 1961; 

Shelton et al., 1979; Gay, 1999; Rogers, 2001; Gay, 2003b; Holloway et al., 2016).  
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The earliest movement of the Nemaha Fault Zone probably occurred during the late-

Mesoproterozoic Mid-Continent Rift event (Berendsen and Blair, 1986; Keller et al., 2016), 

underwent reactivation during the Ordovician, more intense reactivation during the end of 

Mississippian and early Pennsylvanian, and reactivated again during middle-Pennsylvanian and 

post-Permian time (Gay, 2003b). 

4.1.2 West Stillwater – Ramsey – Labette Fault Zone (WSRLFZ) 

Located east of the Nemaha Fault Zone, the West Stillwater – Ramsey – Labette Fault extends 

northeastward from easternmost Logan County into Payne County into Pawnee County, where it 

is referred to as the Labette Fault Zone, which probably continues its northeastward trend into 

Kansas (Figure 5).  

The major fault traces of WSRLFZ were mapped from Luza and Lawson (1980), Shelton et al. 

(1985), Holloway et al. (2016), J. Puckette (2016, personal communication), and Matson (2015). 

Also, the dash-grey line included in Figure 6 is a lineament shown by Matson (2015), which may 

be related to WSRLFZ. The northeast-southwest trending Labette Fault (Figure 5; Holloway et 

al., 2016) represents the northern extension of the WSRLFZ. It has been proposed to correspond 

to a boundary separating Upper Proterozoic metarhyolite to the northwest and Upper Proterozoic 

rhyolite, dacite, and andesite flows to the southeast (Sims, 1987). The Watchorn Fault (Figure 5, 

green color; Gearhart, 1958; Holloway et al., 2016) intersect with West Stillwater – Ramsey – 

Labette Fault Zone in northwestern Pawnee County.  

It has been proposed that the West Stillwater – Ramsey Fault is a high-angle normal fault, with 

the downthrown block to the southeast, and with left-lateral strike-slip movement (Mckenny, 

1955; Umpleby, 1956; Hollrah, 1979). To the north, reverse faults have been reported at Morrison 

field and along the East Watchorn Fault (Gearhart, 1958). 
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Figure 5: Interpretive Fault Map of West Stillwater – Ramsey – Labette Fault Zone (WSRLFZ), along with north-trending East Watchorn Fault 

(Green). Fault that intersects the WSRL Fault Zone in northwest Pawnee County (after Gearhart, 1958; Luza and Lawson, 1980; Shelton, 1985; 

Matson, 2015; Holloway et al., 2016; J. Puckette, 2016, personal communication). The Mw 5.8 Pawnee earthquake (yellow star; USGS, 2016a) 

occurred along the previously unmapped NW-SE trending Sooner Lake Fault (pink dashed line) (Pennington and Chen, 2017).
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In the Ramsey Oilfield the Mississippian and Viola Limestones have approximately 700 feet of 

left-lateral slip (Umpleby, 1956), or five times more than its vertical displacement. Umpleby 

(1956) concluded that horizontal movement there was prior to the deposition of the 

Pennsylvanian Inola Limestone and after Mississippian deposition. There was a brief episode of 

rejuvenation of the faulting during Middle Pennsylvanian and a vertical movement of the West 

Stillwater – Ramsey Fault between the deposition of the Inola Limestone and the deposition of 

the Oswego Limestone.  

On September 3rd, 2016, the Mw 5.8 Pawnee Earthquake occurred at the junction of the WSRLFZ 

and the East Watchorn Fault, which activated a previously unmapped fault, the Sooner Lake Fault 

(Figure 5, pink dashed line; Pennington and Chen, 2017). The focus of that earthquake is 5.6 km, 

and the movement has been interpreted as left-lateral along a northwest-southeast-trending strike-

slip fault (USGS, 2016a). This earthquake likely resulted from the effects of numerous 

wastewater disposal wells in the area that changed the basement stress field (Keranen et al., 2013; 

Keranen et al., 2014; Kolawole et al., 2017; Pennington and Chen, 2017).  

4.1.3 Wilzetta Fault Zone (WFZ) with Parallel Fault Zones to the East 

A series of northeast-southwest trending fault zones (Figure 6) are mapped in the eastern part of 

the study area. From west to east, they are the Wilzetta Fault Zone (dark blue), Keokuk Fault 

(green), Wewoka Fault (brown), Weleetka Fault (yellow) and East Mountain Fault system 

(black). In addition, several belts of en echelon faults occur along these fault zones (Plate II). The 

belts trend N to NNE, parallel to the Nemaha uplift, and are composed of faults that strike NW. 

The faults that make up the en echelon belts strike N45-70°W and dip 50 to 65° either northeast 

or southwest. All are normal faults. The longest is about 5 km and the greatest throw about 40 m. 

The fault belts parallel the strike of Upper Pennsylvanian strata in this part of Oklahoma. 

Mapping of these faults tied to what may be the earliest recognition of strike-slip faulting in the 
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American Midcontinent, by Fath (1920) and Foley (1926). Using simple clay models for 

analogues, Fath and Foley proposed that the en echelon zones are the surface expression of left-

lateral movement on faults in Precambrian basement. Phanerozoic strike-slip faulting in the 

continental interior platform of the United States: examples from the Laramide Orogeny, 

Midcontinent, and Ancestral Rocky Mountains (Marshak et al., 2003). 

4.1.3.1 Wilzetta Fault Zone (WFZ)  

Wilzetta Fault Zone (Figure 6; Dycus, 2013; Holloway et al., 2016) is a northeast-trending fault 

zone in Lincoln County. In Creek County, it splits into two fault traces. One fault extends 

northeastward, and the other trends northwest for approximately 5 miles, where it intersects with 

the major fault that extends northeastward. Further north, in southeasternmost Pawnee County, it 

shows a more northerly direction, which is characteristic in Osage County.  

The WFZ has a complex fault nature which includes normal faults (Cutolo-Lozano, 1970; 

Pulling, 1979, Verish, 1979; Baurenfeind, 1982; Way, 1983; Hopper, 2005), and reverse faults 

(Gay, 2003b), as vertical expressions of the strike-slip faults (Verish, 1979). Dycus (2013) 

characterized the movement as right-lateral. The structure patterns along WFZ may be divided 

into three parts: Southern Seminole-Cushing Ridge WFZ, Cushing Uplift WFZ, and northern 

north-south trending WFZ with surface en echelon faults (Dycus, 2013). 

The southern part of the WFZ is characterized by almost vertical dip, with the downthrown block 

to the northwest (Joseph, 1986), and it offsets strata up through the Pennsylvanian Verdigris 

Limestone. Detailed mapping and interpretation by Dycus (2013) show that the major Wilzetta 

Fault trace trends N 30° E and is associated with minor east-northeast normal faults. Near the 

Cushing structure, WFZ is a high-angle normal fault zone with up to 700 feet of vertical 

separation, and it consists of several fault blocks (Bennison, 1964; Witt et al., 1971).  
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Figure 6: Interpretive Fault Map of Wilzetta Fault Zone and Parallel Fault Zones to the east 

(Dycus, 2013; Dude, 2014; Holloway et al., 2016; Toelle et al., 2008): Keokuk Fault Zone 

(green), Wewoka Fault Zone (brown), Weleetka Fault Zone (yellow) and East Mountain Fault 

System (black). The red dashed line represents the Mw. 5.7 Prague Earthquake Fault (from after-

shocks). Earthquake foci is shown (USGS, 2011; Dycus, 2013) as yellow star. Red circle marks 

the location of dip reversal.  
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The northern extension of the Wilzetta Fault Zone is not well constrained, and the faults are 

mapped following the surface north-south trending en echelon faults (Plate II, Fath, 1920; Luza 

and Lawson, 1980; Way, 1983; Dycus, 2013; Matson, 2015). Fath (1920) proposed that the en 

echelon faults were possibly generated from the shearing of crystalline basement faults. 

Early movement of the Cushing structure occurred during the deposition of the Ordovician 

Arbuckle Group (Bennison, 1964), due to the earliest movement of Wilzetta Fault. Later faulting 

and associated structures resulted during the Middle Devonian (post-Hunton) (Bennison, 1964; 

Pulling, 1979; Dycus, 2013). Influenced by the Ouachita Orogeny, major fault movement of WFZ 

occurred from the Mississippian to the Desmoinesian. According to Pulling (1979) and Dycus 

(2013) movement of Paul’s Valley Uplift during Early Pennsylvanian changed the local stress 

directions and activated east-west trending fault and folds along the Wilzetta Fault Zone. From 

middle to late Pennsylvanian and from the Permian to the Cretaceous, minor reactivation of pre-

existing faults further attenuated the faults and folds along the WZF (Arbenz, 1956; Pulling, 

1979; Bauernfeind, 1982). 

On November 6th, 2011, the Mw 5.7 Prague earthquake occurred along the Wilzetta Fault Zone, 

seemingly forming new northeast-southwest-trending Meeker-Prague Fault (Figure 6, red dashed 

line, Dycus, 2013). The earthquake focal depth is 5.5 km, well below the top of the basement 

(Figure 6, USGS, 2011; Dycus, 2013). It is thought that the earthquake resulted from wastewater 

injection by oil and gas production in this area (Keranen et al., 2013; McNamara, et al., 2015a, 

2015b; Walsh and Zoback, 2015).  

4.1.3.2 Keokuk Fault Zone (KFZ) 

The Keokuk Fault Zone (KFZ; Figure 6) is a north-northeast-trending high-angle normal fault 

zone with the downthrown block(s) to the east (Blumenthal, 1958; Cutolo-Lozano, 1970; Dudek, 

2014). Detailed interpretation of the southern KFZ fault by Dudek (2014) shows a right-stepping 
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NNE-SSW en echelon normal fault zone. The fault probably originated in the basement and 

extends upward and dies out in a Middle Pennsylvanian limestone (Dudek, 2014). Associated 

north-south trending folds become subtle upward (Dudek, 2014). Evidence from the en echelon 

faults and folds suggest left-lateral movement (Fath, 1920; Miser and Oakes, 1954; Tanner, 1956; 

Oakes and Jordan, 1959). The Keokuk Fault Zone was active during Middle Devonian and from 

the end of the Mississippian to the Permian (Tanner, 1956; Dudek, 2014).  

4.1.3.3 Wewoka Fault Zone, Weleetka Fault Zone, and East Mountain Fault System 

Wewoka Fault Zone (Figure 6; Holloway et al., 2016) is a north-northeast-trending fault zone 

parallel to, and east of, the Keokuk Fault Zone. Reverse separation is reported along the southern 

part of Wewoka Fault Zone (Dudek, 2014). The Weleetka Fault Zone (Figure 6; Toelle et al., 

2008) east of the Wewoka Fault Zone, is mapped as a northeast-trending graben system with left-

lateral strike-slip movement. Further to the east, the East Mountain Fault System (Figure 6; 

Toelle et al., 2008) is composed by NNE-SSW-trending high-angle normal faults to form a horst. 

These faults cut Lower Pennsylvanian strata (Musgrove, 1967; Toelle et al., 2008). The 

paralleling trend of Wewoka, Weleetka, and East Mountain Fault zones suggest a similar history 

to the Wilzetta and Keokuk Fault Zones.  

4.2 Faults and Producing Reservoirs in Northeastern Oklahoma 

In northeastern Oklahoma, producing reservoirs range from Cambrian to Permian, mainly 

including the Cambro-Ordovician Arbuckle Group, Ordovician Simpson Group, Siluro-Devonian 

Hunton Group, Mississippi Lime, and Pennsylvanian-Permian sandstones (Figure 2a and Figure 

2b; Dolton and Finn, 1989; Boyd, 2008). Two maps show the relationship of these producing 

reservoirs and the fault zones in the study area:  reservoirs coupled with the fault map have been 

completed: (1) Fault Map and Pre-Pennsylvanian Producing Reservoir Map (Figure 7) and (2) 

Fault Map and Pennsylvanian to Permian Producing Reservoir Map (Figure 8). 
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4.2.1 Fault Map with Map of Pre-Pennsylvanian Producing Reservoirs 

The primary producing reservoirs (Figure 7) include the Cambro-Ordovician Arbuckle Group 

(purple color), middle Ordovician Simpson Group (orange color), Siluro-Devonian Hunton Group 

(olivine yellow color), Mississippi Lime (blue color) and unassigned pre-Pennsylvanian 

reservoirs in structurally controlled traps (dark green color, Lyons, 1987).  

Along the Nemaha Fault Zone, pre-Pennsylvanian reservoirs produce along or near faults, in 

fault- and/or fault-related folds. These include a trap-door structure at Billings field in Noble 

County and a prominent structure at the intersection of the West Stillwater-Ramsey and an east-

west fault in Payne County (Shelton, et al., 1979). Major production has been a significant feature 

of the Nemaha and Wilzetta fault zones. The Mississippian Lime probably has the poorest 

relation to faults of the pre-Pennsylvanian reservoirs, although in Osage County, basement highs 

in Osage County, with associated production, are generally considered paleo-topographic features 

(e.g., Rottmann, 2018).       

In summary, there are four typical distribution trends of pre-Pennsylvanian producing reservoirs. 

First of all, large oil fields are created by structural traps at the upthrown blocks of the major fault 

zones (Nemaha Fault Zone, Wilzetta Fault Zone, West Stillwater-Ramsey Fault Zone and East-

West Trending Fault Zone). For example, Arbuckle producing reservoirs and Simpson producing 

reservoirs of Cushing Oilfield occur in the western upthrown fault block of Wilzetta Fault Zone. 

Also, the structurally controlled plays (dark green color) along the East-West trending faults at 

the north of Logan County (Lyons and Dobrin, 1972; Lyons, 1987). Secondly, smaller producing 

fields are distributed along the junctions of major faults and subsidiary faults in the Nemaha Fault 

Zone and Wilzetta Fault Zone. For example, the upthrown blocks at the junctions of N 60° E 

faults and the N 30° E major fault traces of the WFZ. Thirdly, the typical location producing 

reservoirs is where the East-West striking faults terminate against the NFZ and WFZ. 
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Figure 7: Fault map with map of pre-Pennsylvanian producing reservoirs. 
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The upthrown blocks in the junctions between the East-West Trending Fault and the Nemaha 

Fault Zone or the Wilzetta Fault Zone are ideal locations to form structural traps for hydrocarbon 

accumulation. The last major producing reservoir type is the Arbuckle Group producing 

reservoirs distributed in Osage County and Tulsa Counties. They are controlled by basement 

highs, normally referred to Tulsa Ridges or Tulsa Mountains, which form the structural highs for 

overlying sediments. 

4.2.2 Fault Map with Map of Pennsylvanian to Permian Producing Reservoirs (Figure 8) 

The major fault systems in northeastern Oklahoma probably do not play a role in the distribution 

of Morrowan age producing reservoirs in northeastern Oklahoma.  

Pennsylvanian reservoirs produce from both structural traps, basically resulting from faulting, and 

stratigraphic traps. The former has in most cases resulted in larger reserves, whereas the latter 

seemingly are more numerous. Permian production in the study area is insignificant, compared to 

the Pennsylvanian.   
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Figure 8: Fault map with map of Pennsylvanian to Permian producing reservoirs.  
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4.3 Faults and Earthquake Occurrences in Northeastern Oklahoma 

4.3.1 Faults and Earthquake Occurrences 

The comprehensive map of faults with an overlay of earthquake foci (Figure 9) shows the foci of 

the earthquakes in the study area from 1918-2019. The fault map is the compilation from all 

available fault databases. The earthquakes have occurred mainly between Nemaha Fault Zone and 

Wilzetta Fault Zone. Most of the earthquakes have occurred between the major fault systems; 

relatively few have occurred directly on the fault traces of the major fault zones in the study area. 

Three earthquakes with Mw of 5.0 or greater have been recorded in the study area; they occurred 

at depths between 4km to 6km. They are the Mw 5.7 Prague earthquake (Figure 6 and Figure 9; 

USGS, 2011), the Mw 5.8 Pawnee earthquake (Figure 5 and Figure 9; USGS, 2016a) and the Mw 

5.0 Cushing earthquake (Figure 9; USGS, 2016b). The Prague earthquake occurred at a previous 

unmapped northeast-southwest-trending fault in the Wilzetta Fault Zone (USGS, 2011; Dycus, 

2013). The Cushing earthquake occurred on a southwest-northeast-trending fault that intersects a 

prominent NNE-SSW trending fault east of Wilzetta Fault Zone (McNamara et al., 2015a). The 

Pawnee earthquake occurred at the intersection of West Stillwater-Ramsey Fault Zone, Labette 

Fault Zone and Watchorn Fault and on a previously unmapped northwest-southeast fault (Sooner 

Lake Fault) (Pennington and Chen, 2017). These high magnitude earthquakes occurred on or near 

previously mapped major faults and apparently formed new subsidiary faults that intersect the 

major fault traces. However, for the earthquakes below magnitude five, most do not show a 

significant relationship with the north-south-trending fault zones, but with the easterly trending 

(unnamed) fault zones. 
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Figure 9: Faults with earthquake foci in northeastern Oklahoma. In order to avoid the duplication of the earthquake foci from USGS and OGS, 

only earthquake foci from OGS are shown in detailed information. 
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4.3.2 Fault Map and Earthquake Fault Map 

Earthquake faults (Figure 10) are interpreted from (1) “the distribution of seismicity and focal 

mechanism nodal plane” by McNamara (2015b) or (2) the distribution of seismicity using the 

1918-2019 earthquake information. The interpretive fault zones in the study area are the mapped 

faults from all databases compiled in the study area. Most earthquake fault trends are consistent 

with the N 53° E and N 113o E optimal fault orientations given the maximum horizontal stress of 

N 80°-90° E estimated by Alt and Zoback (2016). Apparently, most of the earthquake faults do 

not directly coincide with the geologically mapped faults.  

 

Figure 10: Geologically determined faults and seismically determined faults in northeastern 

Oklahoma.  
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4.3.3 Earthquake Foci and the Top of the Basement in Northeastern Oklahoma 

After combining earthquake foci and the map of the top of the basement (Denison, 1982) of the 

study area, we projected the foci and top of the basement into 3D view (Figure 11) and front view 

(Figure 12). It shows that most earthquakes were generated below the top of the basement, 

whereas only a few originated above the basement. 

 

Figure 11: 3D view of earthquake foci (OGS), top of the basement (Denison, 1982) and surface 

topography in northeastern Oklahoma.  

Elevation 
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Figure 12: Front view of earthquake foci (OGS) distribution (left vertical axis shows the 

elevation of foci in feet and the right vertical axis shows the depth of foci in feet).  

W E 
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CHAPTER V 
 

 

DISSCUSION AND CONCLUSION 

5.1 Strike-Slip Feature of the Fault Systems in Northeastern Oklahoma  

Strike slip, as the dominant movement along faults in the study area is based on: high-angle to 

vertical fault surfaces, change in dip direction along the same fault, reverse as well as normal 

separation, en echelon surficial faults, pop-up, flower (Figure 13), and trap-door structures, and 

Riesel fractures (due to recent earthquake-induced faulting).  

 

Figure 13. E-W Seismic Section (8 miles width) of HW 60 Trend, Osage County, Oklahoma 

(Matson, 2013; Watney, 2014).
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5.2 Relationship between Pennsylvanian-Permian Producing Reservoirs and Pre-

Pennsylvanian Producing Reservoirs 

Comparison of the Fault Map with Pre-Pennsylvanian and with Pennsylvanian Reservoirs shows 

that the former produce dominantly in fault-related traps, whereas the latter produce from some of 

the same traps as the former, but also produce from stratigraphic traps. The common trapping 

feature indicates reactivation of the faults over a long period of time. It also implies a common 

dominant source rock, the Devonian Woodford Shale.   

 5.3 Association of Earthquakes with Paleozoic Faults in Northeastern Oklahoma   

The Fault and Earthquake Fault Map (Figure 10) shows that the earthquake faults are not strongly 

associated with the currently known faults in northeastern Oklahoma. However, there is 

correlation when the stronger earthquakes are considered (magnitude of Mw 4.6 and above 4.6, 

Figure 14).  The majority of the earthquakes originated well below the top of the basement 

(Figure 11, 12). A recent study by (Shah and Crain, 2018) based on aeromagnetic data showed 

some earthquake faults in northeastern Oklahoma were associated with the basement faults. In 

addition, R. J. Springman (2018, personal communication) confirmed that one earthquake 

occurrence coincides with a fault based on seismic data that was acquired before the earthquake. 

Therefore, earthquake faults might be the reactivation of basement faults. It is likely that 

basement faults are much more common than subsurface geologic data permits, as suggested by 

Gay (1999, 2003a, 2003b). It is also conceivable that some of the earthquakes represent new 

faults associated with changes in the stress field.  
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Figure 14. Earthquake foci in different movement magnitudes with faults. From left to right, diagrams are earthquake foci of Mw 2.5-3.5 (green), 

Mw greater than 3.5 and less than or equal to 4.5 (yellow), and Mw greater than 4.5 (red).  
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5.4 Conclusions 

1. The fault information collected from this study shows complex fault patterns in northeastern 

Oklahoma. The most dominant fault zones are the Nemaha Fault Zone (NFZ) and the Wilzetta 

Fault Zone (WFZ). Other major zones that are named are the West Stillwater – Ramsey – Labette, 

Keokuk, Wewoka, and Weleetka. Strike-slip is the primary fault movement, and its associated 

fault systems. Essentially, strike-slip movement is one of the most important components of these 

fault systems.  

2. Pre-Pennsylvanian reservoirs produce largely from structural traps associated with the fault 

zones noted above. Yet, several potential traps exist along fault zones that are interpreted from 

the databases utilized and others interpreted from earthquake data. 

Pennsylvanian producing reservoirs also occur in fault-related traps, but they also are present in 

stratigraphic traps. Additional production potential is likely in the presence of traps along fault 

zones delineated in this study and in those interpreted from the earthquakes themselves.   

3. Earthquakes that occurred recently in northeastern Oklahoma were predominantly less than 3 

Mw magnitude. However, three were 5.0-5.8 Mw. Those three show a relation to the major faults, 

seemingly along or forming subsidiary faults. The foci from most of the earthquakes were below 

the top of the basement. Overall, the map of earthquake faults and geologically mapped faults in 

the study area does not show strong link between the faults and the earthquakes. Yet this would 

indicate that a large number of pre-existing faults have not been mapped or unmapped faults were 

recently generated, as recorded by a large number of the earthquakes. It seems reasonable to think 

that fractures, indeed faults, are present at least in the basement and may extend to the overlying 

sedimentary section. 
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5.5 Future Study 
 
The following are features related to this study in northeastern Oklahoma that are recommended 

for future study: 

• Depth of open fractures in the basement, 

• History of injection pressure in wells in areas of Mw greater than 4.5, 

• Delineation of faults, with aid of considerable seismic data in Osage County, 

• Relation of faults to “buried hills”, 

• Permeability of rock into which fluids are injected.
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APPENDICES 
 

Appendix I. Reported reverse fault locations. 

References Location Comments 
Gay (2003b) sec. 21, R. 1 W., T. 29 N.  Braman North Field-Horst block showing 400+ ft of 

uplift on the west.  
sec. 9, R. 2 W., T. 25 N. Thomas field  
R. 2E., T. 25 N.  Ponca City Field-Magnetic data by Applied 

Geophysics, Inc. show west dip to fault, hence reverse 
throw.   

sec. 7, R. 2W., T. 24 N.  Three Sands field  
sec. 33, R. 4 W., T 17 N.  Crescent field  
R. 3 E., T. 8 N. to R. 7 E., T. 17 N.  "Wilzetta" fault. Extends 55 mi from north central 

Pottawatomie Co. to western Creek Co. 
Dudek (2014) sec. 23, R. 11 N, T. 18 E. A reverse fault mapped from Viola to Pre-Atokan 

Unconformity, the fault dips to the east. 
Greer (1961) NE 1/4 SE 1/4 NE 1/4 sec. 9, T. 14 N, 

R. 6 E. 
The well encontered Mississppian rocks two times, so 
the repeat sections indicates reverse fault in this area.  

Robbins (1979) sec. 12, 24, 25 R. 5 E, T. 18 N & sec. 7, 
17, 18, 30 R. 6 E, T. 18 N. 

The cross sections of the fualts show high angle 
reverse fault cutting upper Pennsylvanian strata.  

Gearhart (1958) Marrison (?) Fault, sec. 28, 32, 33, R. 3 
E, T. 22 N, sec. 5, 8, R. 3 E, T. 21 N; 
East Watchorn Fault, sec. 13, 24, 25, 36, 
R. 3 E, T. 23 N.  

The down dip sides of Marrison (?) Fault and East 
Watchorn Fault have been upthrown.  
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Appendix II Fault references in this study, list by County (continues to next page). 

Creek Kay Lincoln Logan 
Bauernfeind (1982) Bradshaw (1959) Andrews (2003)* Bebout et al. (1993)* 
Bennison (1964) Clark & Cooper (1927)# Bauernfeind (1982) Bross (1961) 
Busch (1956)* Clark & Daniels (1929) Beckwith (1927)* Cardott et al. (1985)* 
Buttram (1914)# Clements (1961) Blumenthal (1958)# Ford (1955)# 
D'Lugosz et al. (1986)* Davis III (1985) Cole (1958)# Gay (1999)# 
Fath (1920) D'Lugosz et al. (1986)* D'Lugosz et al. (1986)* Heinzelmann (1967) 
Gay (1999)# Gay (1999)# Ferguson (1964) Hollrah (1979) 
Hanke (1967) Jordan (1962) Gay (1999)# Jordan (1962) 
Hyde (1957) Luza & Lawson (1980)# Greer (1961) Kousparis (1979) 
Jordan (1962) Matson (2013) Heinzelmann (1967) Luza & Lawson (1980)# 
Luza & Lawson (1980)# Matson (2015) Hollrah (1979) Lyons (1987) 
Matson (2013) Mikkelson (1966)* Hyde (1957) Matson (2013) 
Matson (2015) Murray (2014)* Jordan (1962) Matson (2015) 
Miser & Oakes (1954)# Northcutt & Campbell (1995)# Joseph (1986)# McKenny (1955)# 
Murray (2014)* Querry (1958) Luza & Lawson (1980)# Mcnamara (2015b) 
Northcutt & Campbell (1995)# Ratre (2017)  Masters (1958) Miller (1959) 
Oakes & Jordan (1959)* Rogers (2001) Matson (2015) Murray (2014)* 
Ratre (2017)   Mcnamara (2015b) Nolte (1951) 
Toelle et al. (2008)  Miser & Oakes (1954)# Northcutt & Campbell (1995)# 

  
Murray (2014)* J. Puckette (2016, personal 

communication) 
  Northcutt & Campbell (1995)# Ratre (2017)  

  
J. Puckette (2016, personal 
communication) Shah & Crain (2018) 

  Ratre (2017)  Toelle et al. (2008) 
  Rottmann (2000)  
  Shah & Crain (2018)  
  Smith (1948)  
  Toelle et al. (2008)  
  Verish (1979)  
  West (1961)  
 
* Fault references of Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
# Fault references of fault database of this study and Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
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Appendix II Fault references in this study, list by County (continues to next page). 
 
Noble Okfuskee Okmulgee Osage 
Chandler (1979)# Andrews (2003) * Andrews (2003) * Beckwith (1927)* 
Clark & Cooper (1927)# Andrews et al. (1998)* Clark (1926)* Bingham & Bergman (1980) 
Clements (1961) Blumenthal (1958)# Hamric (1961) Blakeley (1959) 
Denison (1982)* Cutolo-lozano (1970) Hemish & Beyma (1988) Denison (1982)* 
Gay (1999)# D'Lugosz et al. (1986) Jordan (1962) D'Lugosz et al. (1986) 
Gearhart (1958) Dudek (2014) Luza & Lawson (1980)# Fath (1920) 
Jordan (1962) Gay (1999)# Matson (2015) Gay (1999)# 
Luza & Lawson (1980)# Jordan (1962) Miser & Oakes (1954)# Gearhart (1958) 
Lyons (1987) Luza & Lawson (1980)# Musgrove (1967) Hyde (1957) 
Matson (2013) Matson (2013) Oakes & Motts (1963) Jordan (1962) 
Matson (2015) Matson (2015) Toelle et al. (2008) Luza & Lawson (1980)# 
McDuffie (1964) Miser & Oakes (1954)#  Matson (2013) 
Mcnamara (2015b) Murray (2014)*  Matson (2015) 
Murray (2014)* Musgrove (1967)  Millikan (1920) 
Northcutt & Campbell (1995)# Northcutt & Campbell (1995)#  Miser & Oakes (1954)# 
Page (1955)# Ratre (2017)   Pennington & Chen (2017) 
Pennington & Chen (2017) Ries (1954)#  Ratre (2017)  
J. Puckette (2016, personal 
communication) 

Smith (1948) 
 

Rountree (1994)# 
Tanner (1956)* Sims (1987) 

Ratre (2017)  Toelle et al. (2008)  Stanley (2010)* 
Rogers (2001)   Tanner (1956)* 
Shah & Crain (2018)    
Shelton et al. (1979)#       
Ward (1958)    
 
* Fault references of Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
# Fault references of fault database of this study and Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
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Appendix II Fault references in this study, list by County (continues to next page). 
 
Pawnee Payne Tulsa Washington 
Baker (1958) Backer (1958) Bennison (1972) Hemish (1990) 
Bingham & Bergman (1980) Dalton (1960) Bingham & Bergman (1980) Jordan (1962) 
Blakeley (1959) D'Lugosz et al. (1986) Fath (1920) Matson (2013) 
Denison (1982) Gay (1999)# Hemish (1990) Matson (2015) 
D'Lugosz et al. (1986) Graves (1958)# Jordan (1962) Oakes (1940) 
Fath (1920) Heinzelmann (1967) Luza & Lawson (1980)#  
Gay (1999)# Hollrah (1979) Matson (2013)  
Gearhart (1958) Hyde (1957) Matson (2015)  
Greig (1959) Jordan (1962) Miser & Oakes (1954)#  
Hyde (1957) Luza & Lawson (1980)# Oakes (1952)  
Jordan (1962) Lyons (1987) Ratre (2017)   
Luza & Lawson (1980)# Matson (2013) Reeder (1976)  
Matson (2013) Matson (2015) Stanley (2010)*  
Matson (2015) McKenny (1955)# Stanley et al. (2011)*  
Miser & Oakes (1954)# Mcnamara (2015b) Toelle et al. (2008)  
Pennington & Chen (2017) Miser & Oakes (1954)#   
J. Puckette (2016, personal 
communication) 

J. Puckette (2016, personal 
communication)   

Ratre (2017)  J. Puckette (2016, personal 
communication)   Rountree (1994)# 

Shah & Crain (2018) Ratre (2017)    
Sims (1987) Robbins (1976)   
Toelle et al. (2008) Rottmann (2000)   
 Rountree (1994)#   
 Shah & Crain (2018)   
 Shelton et al. (1985)   
 Shipley (1976)   
  Stringer (1958)#   
 Umpleby (1956)*     
 
* Fault references of Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
# Fault references of fault database of this study and Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
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Appendix II Fault references in this study, list by County. 
 
Garfield Grant   
Fritz (1978) Gay (1999) #   
Luza & Lawson (1981) Luza & Lawson (1981)    
Lyons (1987) Matson (2013) 
Matson (2013) Matson (2015)   
Matson (2015) Rogers (2001)   
McDuffie (1964)    
Rogers (2001)    
Toelle et al. (2008)    
 
* Fault references of Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
# Fault references of fault database of this study and Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
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Appendix III Regional fault references and fault databases of northeastern Oklahoma. 
 
Region Fault References  Fault Database of OGS Fault Database of USGS 
Arbenz (1956) Holland (2015) Heran et al. (2003) 
Bingham & Bergman (1980) Holloway (2016) Miser & Oakes (1954)* 
Fath (1920) Marsh & Holland (2016)  
Fritz (1978)   
Gay (1999)   
Jordan (1962)   
Luza & Lawson (1981)   
Matson (2013)   
Matson (2015)   
Northcutt & Campbell (1995)   
Shah & Crain (2018)   
Tarr et al. (1965)   
Toelle et al. (2008) 
 
* Fault references of Comprehensive Fault Database of Oklahoma (Marsh and Holland, 2016). 
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