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Abstract: The looming crisis of drinking water scarcity and rapidly depleting fresh water 

resources in the world mandate that we minimize waste and maximize reuse of water. In 

the oil and gas (O&G) industry, produced water is a byproduct of O&G extraction, and is 

a major cause of wastewater generation. Current produced water handling practices 

include reinjection in disposal wells, evaporation in open, with minimal reuse. Recycling 

and re-use of produced water is the only solution to minimize the impact of the growing 

O&G operations on the future of fresh water supply and the environment. For this 

purpose, water treatment and technologies for handling the residual waste are required. 

 

Membrane filtration, which relies on the pore size to separate contaminants is promising 

for produced water treatment. Commercial polymeric membranes are not suitable for 

produced water treatment due to their substantial maintenance and operation costs. 

Ceramic membranes on the other hand promise several advantages, including longer 

membrane life, high mechanical strength, superior chemical compatibility, and reduced 

process residuals. Unfortunately, the relatively high fabrication cost of ceramic 

membranes, which can range from hundreds to thousands of dollars per square meter of 

surface area, has restricted their wider application. 

 

This study is the first-ever attempt to develop low-cost ceramic membranes with 

controlled porosity using geopolymers for produced water treatment. Membranes were 

processed as ceramic composites using geopolymers as the matrix phase and natural 

zeolites or biochar as the filler phase. A range of compositions, varying both the 

concentration and type of the filler phase, were processed under different conditions. The 

membranes were characterized for their microstructure and mechanical properties. The 

membrane performance was evaluated for flow rate and ability to remove particulate and 

dissolved impurities from produced water. This study confirmed that zeolite is an 

excellent choice as a filler phase to develop geopolymer composite membranes for 

treating produced water. In addition, the use of pure geopolymer phase to encapsulate 

residual waste was also evaluated. This study provides a framework for future studies on 

the development of novel geopolymer composites as membranes for water treatment and 

for residual waste encapsulation. 
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CHAPTER I 
 

 

LITERATURE REVIEW 

 

1.1 Produced water 

With the increasing awareness about imminent threat of drinking water scarcity and rapidly 

depleting fresh water resources in the world, it is very important to minimize waste and maximize 

reuse of water in industry applications. In the oil and gas industry water produced as a byproduct 

along with oil and gas is referred to as produced water, and is a major cause of waste water 

generation. According to global estimates produced water volumes exceed three times the product 

volume (Veil, 2011), which translates to about 21 billion barrels per year in the US and 50 billion 

barrels per year in the rest of the world over 2009 (Georgie, 2002). Figure 1.1 gives an estimate 

of onshore and offshore produced water production since 1990, and forecast in 2015. 

Produced water contains both organic and inorganic substances. Some factors such as 

geological location of the field, its geological formation, lifetime of its reservoirs, and type of 

hydrocarbon product being produced affect the physical and chemical properties of produced 

water (Veil et al., 2004). Produced water usually includes the formation water and the injected 

fluids from previous treatments. As oil and gas are produced, large quantities of water containing 

high levels of total dissolved solids (TDS), hydrocarbons, suspended solids and residual 

production chemicals are produced in this process (Lord and LeBas, 2013). The major 

compounds of produced water can be  
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classified into the following categories: 

a. Dissolved and dispersed oil compounds 

b. Dissolved formation minerals 

c. Production chemical compounds 

d. Production solids (including formation solids, corrosion and scale products, 

bacteria, waxes, and asphaltenes) 

e. Dissolved gases (Hansen and Davies, 1994) 

Produced water usually contains elevated concentrations of inorganic (see Table 1.1) and 

organic constituents. The total dissolved solids (TDS) concentration in produced water can vary 

between 1,000 mg/L and over 400,000 mg/L. Sodium chloride was found to be most dominant 

salt found in produced water. Oil and grease, ethyl benzene, benzene, phenols, and toluene are the 

most common organic contaminants found in produced water. The total oil content in produced 

water can range from 40 mg/L to 2,000 mg/L. 

  

Figure 1.1 Global onshore and offshore water production.(Fakhru’l-Razi et al., 2009) 
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Table 1.1 Ranges of common inorganic constituents in produced water.(Benko and Drewes, 

2008) 

 

1.2 Current practices in produced water handling 

Interestingly, discharge of produced water from oil and gas industries into the environment is a 

common practice(Neff et al., 1992). Current produced water handling practices are dominated by 

disposal in underground injection control wells, evaporation, with minimal reuse (without 

treatment). Based on 2015 data from injection wells in Oklahoma, produced water disposal 

ranged from 0 barrels per day (BPD) to 1,041,173 BPD per county(Oklahoma-PWWG, 2017; 

OWRB, 2012). Disposal of produced water in underground injection control wells may lead to 

increased risks of induced seismicity, surface water contamination due to spills during transport, 

and subsurface fresh water aquifer contamination. In addition, each barrel of produced water that 

is disposed requires an additional barrel of fresh water as a replacement. 

Produced water’s toxic substances can cause a lot of harmful effects on the environment. 

The environmental impact of produced water’s salt can also be significant and occur in any area. 

If discharged in surface water bodies such as rivers or flowing streams, dispersed oil and droplets 

will float on the surface of the water and the volatile and/or toxic substances will evaporate into 

the air. These materials increase the biochemical oxygen demand (BOD) of the affected waters 
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(Stephenson, 1992). Hydrogen sulfide and hydrocarbons are the major toxics compounds to 

aquatic animals (Neff et al., 1992). Recognizing these possibilities, every region has strict 

requirements on the quality of discharged sewage. In the North Sea Region, OSPAR regulations 

set the upper limit for oil content in discharged water at 30 mg/L (Blanchard, 2013). 

Currently, the feasibility of reuse of produced water is undermined by the costs of 

transporting and storing produced water and, particularly, of treating it to a “fit for purpose” level 

can be cost-prohibitive. Potential risks to health and environment, must be well understood and 

appropriately managed in order to prevent unintended consequences of reuse. Produced water is 

complex, and in most cases further research and analysis is needed to better understand and 

define the “fit for purpose” quality goals for treatment and permitting programs. Environmental 

considerations beyond direct health or ecosystem impacts include emissions from treatment, 

managing waste materials from treatment, cumulative ecosystem impacts, or other localized 

issues. 

1.3 Potential for reuse of produced water 

The shale oil field requires a large amounts of fresh water in the process of producing oil using 

hydraulic fracturing. In some cases, each well needs about 4 to 6 million gallons of fresh water. 

As the restrictions on the availability of underground or surface water sources increases, fresh 

water will become more and more difficult to obtain. Therefore, increasing produced water reuse 

holds promise for making available a substantial volume of water that could potentially offset, or 

supplement, fresh water demands in some areas. Reuse also can be beneficial to oil and gas 

producers as an alternative to disposal in underground injection control wells, which can be 

costly, locally unavailable, or subject to volume restrictions. Purposeful intent is also evident in 

the recent directives to local regulators by some state governments to investigate and consider 

reuse of produced water for reasons ranging from drought and groundwater depletion to disposal-

related induced seismicity. 
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Water treatment requirements for reusing produced water in hydraulic fracturing are far 

less demanding than for uses outside the industry. Advances in hydraulic fracturing chemistry 

have enabled the use of produced water with minimal treatment by addressing only a few specific 

constituents to create “clean brine.” The approach is significantly less costly than more advanced 

treatment regimes such as those necessary to remove salts.  

Treating produced water for reuse in oil and gas industry also brings huge economic 

benefits. During hydraulic fracturing, a single drilled well is injected up to 4 million gallons of 

water-based fluid, to create and expand rock fractures, as well as for transport the proppant such 

as sand or other ceramic materials. 10–70% of the water-based fluid is subsequently pumped back 

up as produced water. In hydraulic fracturing, the reuse of treated produced water has many 

advantages such as reduced cost of processing produced water, and also reduced need for fresh 

water for production. 

In some basins, the use of produced water in oil and gas drilling and slickwater-based 

fracturing treatments has been explored. Typically, these applications use water with low TDS 

levels. Little work has been done on the use of produced water with high TDS levels (>200,000 

ppm) in fracturing fluids designed with linear or crosslinked gel bases. To reuse high-TDS 

produced water effectively in crosslinked gel-based hydraulic fracturing fluids, the water must 

first be treated. The goal of the treatment here is to remove only minerals that hinder the 

development of the crosslinked fluid or that cause scale buildup in the well. Furthermore, if such 

treatment for reuse can be performed near the production site, recycling and reuse programs will 

not only have economic benefits, but will also be environmentally beneficial.  

In addition, the economic attractiveness of reuse depends on whether the supply of 

produced water is predictable, whether it can be delivered reliably to the point of use, and how 

the cost compares to other available sources of water after factoring in the costs of its treatment 

and transportation as well as the disposal of treatment residuals. The recent emergence of water 

midstream solutions (coordinating water sourcing for completion operations with produced water 
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reuse across multiple producing companies) holds promise for smoothing out the peaks and 

valleys of individual company water demands, reducing transportation and disposal, and reducing 

demands on infrastructure through shared use. The scale of water midstream could allow reuse to 

grow steadily, especially in the most active areas in the Permian, Appalachia, West Texas and 

Oklahoma where disposal options have been or may become limited and disposal costs have been 

high or are increasing. In addition, several of the top basins are in arid regions with limited 

availability of sourced water. 

1.4 Membrane filtration 

Different treatments such as chemical and biological methods have been developed to treat 

wastewater. The following reasons hamper wider application of these methods: 

a. High cost of treatment,  

b. Using toxic chemicals,  

c. Space for installation,  

d. Secondary pollution. 

As a result, physical, membrane-based separation became the promising technology for the 21st 

century. 

Membranes are thin films of synthetic organic or inorganic materials, which selectively 

separate a fluid from its components. The membrane pressure-driven process relies on the pore 

size of the membrane to separate the feed stream components according to their pore sizes 

(Sonune and Ghate, 2004). Membranes can remove the smallest (<10 µm) and most stable oil 

droplets. Membranes are used in various applications, from desalination of sea water to treatment 

of wastewater from the food, leather and oil industry (Cheryan and Rajagopalan, 1998). For all 

these different applications, appropriate membranes need to be selected. A first classification of 

membranes can be made based on pore size (Figure 1.2). Microfiltration (MF) membranes, with 

pores down to 0.1 µm, remove suspended particles, bacteria and some viruses, ultrafiltration (UF) 
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removes viruses, proteins and colloidal particles and nanofiltration (NF) is selective for 

multivalent ions and dissolved compounds. Reverse osmosis (RO) membranes usually allow only 

water to pass through. In produced water treatment, the focus is on microfiltration and 

ultrafiltration. Reverse osmosis membranes are sometimes used in combination with one of the 

former. 

 

 

Membranes can be operated in either dead-end filtration or cross-flow filtration modes. In 

dead-end filtration, the retentate concentrates on the membrane, whereas in cross-flow filtration, 

the permeate leaves through the pores of the membrane, and the concentrated retentate flows 

away over the membrane. Depending on the operating conditions of the membrane, flat-sheet or 

hollow fiber membranes can be used. Flat sheet membranes can be rolled into spiral-wound 

modules or used in a plate-and-frame setup, which is often used in membrane bed reactor (MBR) 

(Judd, 2010). Hollow fiber modules, on the other hand, contain several hundred to thousands of 

fibers. 

Figure 1.2 Classification of membranes based on pore size. 
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Membrane systems can compete with more complex treatment technologies for treating water 

with high oil content; low mean particle size, and flow rates greater than 150 m3/h and is, 

consequently, suitable for medium and large offshore platforms (Ciarapica and Giacchetta, 2003). 

UF is one of the most effective methods for oily wastewater treatment, especially for 

produced water, in comparison with the traditional separation methods because of its high oil 

removal efficiency, there is no necessity for chemical additives, energy costs are low, and space 

requirements small (Duxson et al., 2007). In a study, Li et al. (Li et al., 2006) studied a tubular 

UF model equipped with polyvinylidene fluoride membranes modified by inorganic nano-sized 

alumina particles to treat oilfield-produced water. Nano-sized alumina particles can improve 

antifouling performance of membranes. Results of their experiments showed that chemical 

oxygen demand (COD) and total organic carbon (TOC) removal efficiencies of the system were 

90% and 98%, respectively, and oil residue was less than 1%. 

Bilstad and Espedal (Bilstad and Espedal, 1996) compared MF and UF membranes in 

pilot trial to treat the North Sea oilfield-produced water. Results showed that UF, but not MF, 

could meet effluent standards for total hydrocarbons, suspended-sediment (SS), and dissolved 

constituents. By UF membrane treatment with molecular weight cut-off (MWCO) was between 

100,000 and 200,000 Da, total hydrocarbon concentration could be reduced to 2 mg/L from 50 

mg/L (96% removal). Benzene, toluene, and xylene (BTX) were reduced by 54%, and some 

heavy metals like Cu, and Zn were removed to the extent of 95%. 

Lee and Frankiewicz (Lee and Frankiewicz, 2005) tested a hydrophilic UF membrane of 

0.01µm pore size, in crossflow mode to treat oilfield-produced water. A hydrocyclone was first 

used to desand and de-oil the wastewater. The hydrocyclone pretreated the raw produced water 

removing solids and oil content by 73% and 54%, respectively. Oil and gas concentration after 

UF could be reduced to less than 2 mg/L. The preferred feed-water specification for ideal 

performance of UF was oil and solids less than 50 and 15 ppm, respectively. 
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Low-pressure-driven membranes for MF of membrane pore size between 0.1 and 5µm or 

UF with membrane pore size less than 0.1µm or a combination of MF/UF polymeric or ceramic 

membranes are suitable for removing oil content of oilfield-produced water. However, ceramic 

membranes are preferred over delicate polymeric membranes because the former have a better 

tolerance to high temperature, high oil content, foulants, and strong cleaning agents (Bader, 

2007). Ceramic ultra- and NF-membranes are a relatively new class of materials for the treatment 

of produced water (Bader, 2007). 

Chen et al. (Chen et al., 1991) tested performance of ceramic crossflow MFs to separate 

oil, grease, and SS from produced water. Permeate quality of dispersed oil and gas was 5 mg/L 

and of SS was less than 1 mg/L. 

Combined membrane pretreatment and RO technology are effective methods for 

produced water treatment (Szép and Kohlheb, 2010). Xu et al. (Xu et al., 2008) investigated a 

two-stage laboratory-scale membrane to treat gas field produced water generated from sandstone 

aquifers as shown in Figure 1.3. They studied ultra-low-pressure RO and NF membranes to meet 

quality standards for potable and irrigation water, and iodide concentration in brine. 

 

 

  

Figure 1.3 Proposed MF and two-stage RO/NF membrane treatment.(Xu et al., 2008) 
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Membranes can be divided in two groups based on the materials they are made of, 

namely polymeric or ceramic. Polymeric membranes are used in many separation processes in 

industry. A wide range of polymers can be used, such as cellulose derivatives, 

polyvinylidenedifluoride (PVDF), polysulfone (PS), polyether sulfone(PES), polyacrylonitrile 

(PAN), polytetrafluoroethylene (PTFE) and polyvinylchloride (PVC). These membranes can be 

tailored to the specific needs of the process they are used in, thus giving the opportunity of 

selective separation. Selecting a polymeric membrane for a certain task is not a trivial exercise, 

because the polymer has to have the right affinity and has to withstand the environment of the 

separation. Polymeric membranes can be either made from pure polymers or from polymers 

blended with compounds to improve the membrane performance (Lalia et al., 2013). Polymeric 

membranes can be made both dense and porous, depending on the application. Modifications to 

the membrane surface can be made to improve the functionality of the membrane (Khulbe et al., 

2010). 

Ceramic or inorganic membranes, made from materials such as silica, metal oxides or 

carbon, have superior thermal and chemical stability, and their use in industrial application of oil 

recovery is an emerging technology (Alpatova et al., 2014; Deriszadeh et al., 2010; Emani et al., 

2014). Most ceramic membranes, in contrast to polymeric membranes, are inert to treatment with 

steam, solvents, strong acids, and have a very long expected lifespan. Although these membranes 

do suffer from fouling, the flux can be restored by harsh cleaning methods. Unlike polymeric 

membranes, ceramic membranes do not suffer from swelling in the presence of solvents. Ceramic 

membranes are used for MF (Barukčić et al., 2014), UF (Murić et al., 2014) and NF (Zeidler et 

al., 2014). The drawback of ceramic membranes is their high production costs and their weight, 

although the latter is compensated by a relatively high flux in return. Furthermore, ceramic 

membranes work mainly on size exclusion, and modifying ceramic membranes for molecular 

affinity separation is much more difficult than for polymeric membranes. 
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1.5 Disposal of treatment residuals 

Treatment of produced water by membrane filtration and/or other methods such as evaporation-

condensation, also generates residual waste. Disposal and/or handling of such waste in the form 

of solids or sludge, is of considerable concern due to its perceived detrimental impact on the 

environmental. So far, there is no established technology to address this challenge. Reuse of the 

dried solids to prepare hydraulic fracturing fluids may not be a viable option due to the presence 

of radioactive content. A potential solution may exist in technologies that encapsulate these solids 

and prevent their release to the environment. 
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CHAPTER II 
 

 

OBJECTIVES 

 

The overall goal of this research was to explore the use of inexpensive ceramic materials for 

produced water treatment and encapsulation of the resulting waste. Accordingly, the research 

comprises of two major thrust areas with the following specific objectives: 

 

Objective 1: Evaluate the use of geopolymer based composites to develop inexpensive ceramic 

membranes for the treatment of produced water. 

 

In this research thrust, the microstructure and chemistry of the ceramic membranes will 

be engineered. The performance of the developed membranes will be characterized for their 

ability to reduce the turbidity, total dissolved solids content, and divalent cations concentration in 

produced water.  

 

Objective 2: Assess the use of geopolymeric materials to encapsulate waste generated from 

produced water treatment. 

 

For this objective, the waste comprised of both concentrated solution and dried solids 

obtained by evaporating produced water. The concentrate solution was used to supplement the 

water required to produce the geoplymeric phase. The solid waste, which is essentially  
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crystallized water soluble salts present in produced water along with all the inorganic 

contaminants, was “sealed” inside a geopolymer capsule. The ability of the geopolymeric phase 

to successfully contain the inorganic waste in both of the above cases was evaluated by leaching 

studies in water. 
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CHAPTER III 
 

 

MATERIALS AND METHODS 

 

3.1 Materials 

Inexpensive ceramic membranes were processed as composites using geopolymers as the matrix 

phase and naturally abundant zeolites or biochar as the filler phase. Due to geopolymer’s 

chemical composition, natural zeolites are among the possible raw materials for the production of 

geopolymers. Zeolites are crystalline hydrated alumino-silicates, composed of silicon and 

aluminium tetrahedra (SiO4 and AlO4) and linked by one oxygen atom (Nikolov et al., 2017). 

Biochar is commonly used as an adsorbent material for pollutant removal. Using zeolites or 

biochar as additives with geopolymeric matrix phase is promising for processing of geopolymer 

composite membranes with tailored porosity to enable filtration functionality. Besides physical 

properties of the additive phase (see Table 3.1) , the physical properties of the synthesized 

composite can be influenced by the processing conditions such as curing conditions, the particle 

size (of additives) and concentration and type of the alkaline activator solution. 

Table 3.1 Additive material characteristics 

Additive Particle size (mm) Pore structure Functional group 

Clinoptilolite > 5 mm Macroporous Aluminosilicate 

Biochar 0.25-1.25 Macroporous Carboxylate 
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3.1.1 Geopolymers 

The reaction of a solid aluminosilicate with a highly concentrated aqueous alkali hydroxide or 

silicate solution produces a synthetic alkali aluminosilicate material generically called a 

‘geopolymer’, after Davidovits (Zeidler et al., 2014), but probably more appropriately referred to 

as an example of what is more broadly termed an ‘inorganic polymer’ (Davidovits, 1989). These 

materials can provide comparable performance to traditional cementitious binders in a range of 

applications, but with the added advantage of significantly reduced Greenhouse emissions 

(Gartner, 2004). 

‘Geopolymer’ is generically used to describe the amorphous to crystalline reaction 

products from synthesis of alkali aluminosilicates from reaction with alkali hydroxide/alkali 

silicate solution, geopolymeric gels and composites are also commonly referred to as ‘low-

temperature aluminosilicate glass’ (Rahier et al., 1996). ‘alkali-activated cement’ (Palomo and 

López dela Fuente, 2003), ‘geocement’ (Krivenko and Kovalchuk, 2007), ‘alkali-bonded 

ceramic’ (Sonune and Ghate, 2004), ‘inorganic polymer concrete’ (Sofi et al., 2007), and 

‘hydroceramic’ (Bao et al., 2005). Despite this variety of nomenclature, these terms all describe 

materials synthesized utilizing the same chemistry, which can be described as a complex system 

of coupled alkali mediated dissolution and precipitation reactions in an aqueous reaction 

substrate.  

Figure 3.1 presents a highly simplified reaction mechanism for geopolymerization. 

Dissolution of the solid aluminosilicate source by alkaline hydrolysis (consuming water) 

produces aluminate and silicate species. Once in solution the species released by dissolution are 

incorporated into the aqueous phase, which may already contain silicate present in the activating 

solution. A complex mixture of silicate, aluminate and aluminosilicate species is thereby formed 

(Swaddle, 2001; Swaddle et al., 1994). Dissolution of amorphous aluminosilicates is rapid at high 

pH, and this quickly creates a supersaturated aluminosilicate solution. In concentrated solutions 
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this results in the formation of a gel, as the oligomers in the aqueous phase form large networks 

by condensation. This process releases the water that was nominally consumed during 

dissolution. As such, water plays the role of a reaction  

 

 

medium, but resides within pores in the gel. This type of gel structure is commonly referred to as 

bi-phasic, with the aluminosilicate binder and water forming the two phases. The system 

continues to rearrange and reorganize, as the connectivity of the gel network increases, resulting 

in the three-dimensional aluminosilicate network commonly attributed to geopolymers (Figure 

3.2) (Duxson et al., 2007; Fernández-Jiménez et al., 2006). Figure 3.2 describes the activation 

reaction as an outcome of two successive and controlling stages. Nucleation, or the dissolution of 

Figure 3.1 Conceptual model for geopolymerization. (Duxson et al., 2007) 
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the aluminosilicate material and formation of polymeric species, is highly dependent on 

thermodynamic and kinetic parameters and encompasses the two first steps. Growth is the stage 

during which the nuclei reach a critical size and crystals begin to develop. These processes of 

structural reorganization determine the microstructure and pore distribution of the material, which 

are critical in determining many physical properties (Fernández-Jiménez et al., 2006; van 

Jaarsveld and Van Deventer, 1999). Their microstructure consists of chains or networks of 

inorganic molecules linked by covalent bounds (Davidovits, 2008). These molecules are 

composed from one silicon or aluminium atom connected by four oxygen atoms forming 

tetrahedrons, which are connected to each other in a three-dimensional network sharing one 

common oxygen atom. 

 

 

The settling and hardening reactions take place at room temperature, but sometimes 

slightly elevated curing temperatures (up to 80°C) are used to enhance some properties. Hardened 

products may possess mechanical properties comparable to ordinary Portland cement concrete 

(OPC) or even better. Geopolymers exhibit good thermal and fire resistance of up to 1300 °C (He 

et al., 2010) excellent sulphate resistance (Bhutta et al., 2013; Bhutta et al., 2014), high acid 

Figure 3.2 Theoretical structure of sodium based geopolymer. (Škvára, 2007) 
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resistance (Bakharev, 2005; Thokchom et al., 2009) and satisfactory adhesion to iron, steel and 

concrete (Castel and Foster, 2015; Temuujin et al., 2009). 

 

 

 

 

Depending on the raw material selection and processing conditions, geopolymers can exhibit a 

wide variety of properties and characteristics, including high compressive strength, low 

shrinkage, fast or slow setting, acid resistance, fire resistance and low thermal conductivity. 

Porosimetry analysis (see Figure 3.3) had confirmed that the average pore size in geopolymers is 

less than four nanometers and that 95% of the internal surface area is present in pores of diameter 

less than ten nanometers. Geopolymers are, however, impermeable materials, with a measured 

permeability value of 10-9 cm/s (Mallicoat et al., 2005). Accordingly, geopolymers are used in 

thermal insulation material, polishing-resistant material and building material. 

Geopolymer samples are commonly prepared by using commercially available 

metakaolin and reactive ingredients as raw materials. The reactive ingredients include a solution 

Figure 3.3 Integral pore volume vs pore radius shows 1-10 nm pores. (Duxson et al., 2005) 
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of water glass (prepared by dissolving potassium hydroxide (KOH) flakes in distilled water) and 

silica fume. Based on these raw materials, the slurry with 33.1 wt% metakaolin content results in 

the following theoretical oxide molar ratios: SiO2 /Al2O3 = 4, K2O/ SiO2 = 0.25 and H2O/K2O = 

11/13. 

3.1.2 Natural zeolites - Clinoptilolite 

Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents and 

catalysts (Korkuna et al., 2006). The term zeolite was originally coined in 1756 by Swedish 

mineralogist Axel Fredrik Cronstedt, who observed that rapidly heating the material, believed to 

have been stilbite, produced large amounts of steam from water that had been adsorbed by the 

material. Based on this, he called the material zeolite (Cronstedt et al., 1993). 

 

 

Zeolites have a porous structure that can accommodate a wide variety of cations, such as 

Na+, K+, Ca2+, Mg2+ and others. These positive ions are rather loosely held and can readily be 

exchanged for others in a contact solution. Some of the more common mineral zeolites are 

analcime, chabazite, clinoptilolite, heulandite, natrolite, phillipsite, and stilbite. An example of 

the mineral formula of a zeolite is: Na2Al2Si3O10·2H2O, the formula for natrolite. These cation 

exchanged zeolites possess different acidity and catalyze several acid catalysis (Marakatti, 2015a, 

b). 

For this research commercially available clinoptilolite zeolite (Clinoptilolite Zeolite 97% 

+ Purity, KMI Zeolite, Amargosa Valley, NV) with the chemical formula Na6[Al6Si30O72]24H2O 

Figure 3.4 Crystal structure of zeolite. (https://www.rotamining.com/what-is-zeolite/) 
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was used. Three different sizes of clinoptilolite were used, and their properties, as provided from 

the vendor, are included in Table 3.2. 
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Table 3.2 Physical appearance and properties of the three different types of Clinoptilolite Zeolite 

(from KMI Zeolite) that were used in this research. 

Coarse Medium Fine 

   

Mesh Size: 20/30- Mesh Size: 14 x 30 Mesh Size: 4 x 8 

  

Parameters Values 

Chemical Formula Na6[Al6Si30O72]24H2O 

Clinoptilolite Content 97%+ 

Form Granules and powders 

Pore Diameter 4.0 - 7.0 angstroms 

Specific Gravity 1.89 

Specific Surface Area 40 m2/g 

Bulk Density 45 - 54 lbs/ft3 

pH stability 3.0 - 10.00 

Hardness 4.0 – 5.0 Mohs 

Swelling Index Nil 

Cation Exchange 1.6 – 2.0 meg/g 
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Table 3.3 Chemical analysis of commercial Clinoptilolite Zeolite (from KMI Zeolite) 

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O MnO TiO2 

66.7% 11.48% 0.9% 1.33% 0.27% 3.96% 3.42% 0.025% 0.13% 

 

The chemical composition of the zeolites as provided from the vendor is included in Table 3.3 as 

oxide phases. The composition analysis was also confirmed by X-Ray Fluorescence (XRF), and 

the results are included in Table 3.4. Details on the XRF measurements and analysis are included 

in section 3.3.6. 

Table 3.4 XRF analysis of the Clinoptilolite Zeolite (from KMI Zeolite) 

 

Elements Content (ppm) 

Si 587000 

Ca 113000 

Al 101000 

K 95600 

Fe 42900 

Na 31400 

Mg 8240 

P 5210 

Ti 4570 

Sr 2460 

Mn 2200 

Ba 1890 

S 1390 

Rb 805 

Re 495 

Cl 494 

Zr 470 

As 167 

Nb 94 

Ga 87 
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(a) 

 

 
(b) 

 

  

Figure 3.5 SEM images of Clinoptilolite powder (a) fine grade and (b) medium grade at low 

magnification. 



 

24 

 

 

 

In addition to the compositional analysis, a thorough examination of the morphology of the 

clinoptilolite was conducted using scanning electron microscopy (SEM). Details of the SEM 

sample preparation and analysis are included in section 3.3.5. Low magnification images of the 

fine and medium grade clinoptilolite powders are shown in Figure 3.5 (a) and (b) respectively. 

The powders showed a range of sizes and shapes, both large grains as well as acicular grains. For 

the purpose of high magnification studies using SEM, coarse clinoptilolite particles were first 

embedded in epoxy, polished to < 1 m surface finish, and finally coated with gold (Au). Figure 

3.6 shows the SEM micrograph at 50,000 X magnification. Large particles were comprised of 

several smaller grains < 1m in size. This observation is consistent with most naturally occurring 

zeolites. 

  

 

Figure 3.6 SEM image of Coarse Clinoptilolite powder at high magnification. 
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3.1.3 Biochar 

Biochar is charcoal used as a soil amendment. Biochar is a stable solid, rich in carbon, and can 

endure in soil for thousands of years (Glaser et al., 2002). Like most charcoal, biochar is made 

from biomass via pyrolysis. 

Biochar is a high-carbon, fine-grained residue that today is produced through modern 

pyrolysis processes; it is the direct thermal decomposition of biomass in the absence of oxygen 

(preventing combustion), which produces a mixture of solids (the biochar proper), liquid (bio-

oil), and gas (syngas) products. The specific yield from the pyrolysis is dependent on process 

condition, such as temperature, residence time and heating rate (Tripathi et al., 2016). These 

parameters can be optimized to produce either energy or biochar (Gaunt and Lehmann, 2008). 

Temperatures of 400–500 °C (673–773 K) produce more char, while temperatures above 700 °C 

(973 K) favor the yield of liquid and gas fuel components (Winsley, 2007). Pyrolysis occurs more 

quickly at the higher temperatures, typically requiring seconds instead of hours. The increasing 

heating rate will also lead to a decrease of pyrolysis biochar yield, while the temperature is in the 

range of 350–600 °C (623–873 K) (Aysu and Küçük, 2014). Typical yields are 60% bio-oil, 20% 

biochar, and 20% syngas. By comparison, slow pyrolysis can produce substantially more char (≈

35%) (Winsley, 2007); it is this which contributes to the observed soil fertility of terra preta. 

Once initialized, both processes produce net energy. For typical inputs, the energy required to run 

a “fast” pyrolyzer is approximately 15% of the energy that it outputs (Gaunt and Lehmann, 2008). 

Modern pyrolysis plants can use the syngas created by the pyrolysis process and output 3–9 times 

the amount of energy required to run. 

Besides pyrolysis, torrefaction and hydrothermal carbonization process can also 

thermally decompose biomass to the solid material. However, these products cannot be strictly 

defined as biochar. The carbon product from the torrefaction process still contains some volatile 

organic components, thus its properties are between that of biomass feedstock and biochar 
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(Kambo and Dutta, 2015). Furthermore, even the hydrothermal carbonization could produce a 

carbon-rich solid product, the hydrothermal carbonization is evidently different from the 

conventional thermal conversion process (Bridgwater et al., 2002). Therefore, the solid product 

from hydrothermal carbonization is defined as "hydrochar" rather than "biochar". 

For this research biochar prepared from almond shells was  used. The composition 

analysis was also confirmed by X-Ray Fluorescence (XRF), and the results are included in Table 

3.5. Details on the XRF measurements and analysis are included in section 3.3.6. 

Table 3.5 XRF analysis of the biochar used in this research . 

 

Elements Content (ppm) 

Si 587000 

Ca 113000 

Al 101000 

K 95600 

Fe 42900 

Na 31400 

Mg 8240 

P 5210 

Ti 4570 

Sr 2460 

Mn 2200 

Ba 1890 

S 1390 

Rb 805 

Re 495 

Cl 494 

Zr 470 

As 167 

Nb 94 

Ga 87 
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(a) 

 

 
(b) 

 

  

Figure 3.7 SEM images of biochar powder at (a) 5,000 X and (b) 10,000 X magnification. 
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A thorough examination of the morphology of the biochar was conducted using SEM. Low 

magnification images of the biochar powders are shown in Figure 3.6 (a) and (b). The powders 

showed a range of sizes but were largely prismatic. This was further confirmed through high 

magnification studies using SEM, Figure 3.8. Particles were usually single granular with smooth 

surfaces, which is  consistent with most reports in the literature. 

 

3.2 Methods – Synthesis and Processing 

3.2.1 Geopolymer synthesis 

Geopolymer samples were prepared by mechanical mixing of stoichiometric amounts of 

metakaolin (Al2O3.2SiO2) and the reactive alkali solution, a solution of potassium hydroxide 

(KOH), silica fume (SiO2) and water, to give K2O/Al2O3=1. Figure 3.9 shows a schematic 

diagram of the process used for geopolymer processing. The Thinky mixer (ARE-310 Thinky,  

 

Figure 3.8 SEM image of biochar powder at high magnification. 
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CA, USA), shown in Figure 3.10, was used for this purpose and mixing was conducted for 10 

min at 1500 rpm, followed by defoaming for 5 min at 2000 rpm. All mixing was done at room 

temperature, and resulted in the formation of a homogenous slurry. Once the pure geopolymer 

slurry was successfully prepared, additives were added (if desired) to the slurry and mixed in the 

Thinky mixer for additional 5 minutes at 1500 rpm. After mechanical mixing of the additive, the 

slurry was vibrated for further 5 min (using Syntron Paper Jogger, J-1 Flat Deck; D.L. Williams 

Company, Bluefield, VA, USA) to remove entrained air before being transferred to plastic 

moulds and sealed from the atmosphere. Samples were cured in Controlled Temperature and 

Humidity Chamber (TestEquity 123H Controlled Temperature and Humidity Chamber, 

TestEquity, CA, USA) in two steps (Figure 3.11). In the first step, the sealed container was kept 

overnight at 40 °C, to prevent cracking due to an abrupt loss of water and promote the 

geopolymerization reaction. Subsequently, the temperature and conditions were changed to 60 °C  

Figure 3.9 Schematic showing the various steps involved in processing geopolymers and 

geopolymer composites. 
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Figure 3.10 ARE-310 Thinky mixer used for geopolymer composite processing in this research. 

 

 

Figure 3.11 Temperature and humidity control chamber used for geopolymer composite processing. 
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and 80% relative humidity and maintained for 5 days, to consolidate the structure (Bai et al., 

2017). Figure 3.12 shows the actual process of making geopolymers. 

 

3.3 Methods - Characterization 

3.3.1 pH 

Produced water and filtered water samples were characterized with pH meter (SevenCompact pH 

meter S220, Mettler-Toledo, LLC, Columbus, OH) to verify the water quality before and after 

filtration. The instrument was calibrated regularly, as per the instrument manual using standard 

buffer solutions. 

  

   

(a) (b) (c) 

 

Figure 3.12 Process of making geopolymers (a) Weigh the weight of the waterglass. (b) Add 

metakaolin in the waterglass. (c) Mechanical mixing the geopolymer slurry. 



 

32 

 

 

3.3.2 TDS/Conductivity 

Total dissolved solids (TDS) is a measure of the dissolved combined content of all inorganic and 

organic substances present in a liquid in molecular, ionized, or micro-granular (colloidal sol) 

suspended form. Generally, the operational definition is that the solids must be small enough to 

survive filtration through a filter with 2-micrometer (nominal size, or smaller) pores. 

The two principal methods of measuring total dissolved solids are gravimetric analysis 

and conductivity (EPA Method 160.1). Gravimetric methods are the most accurate and involve 

evaporating the liquid solvent and measuring the mass of residues left. This method is generally 

the best, although  

Figure 3.13 SevenCompact pH meter S220 was used for pH measurement of water samples. 
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it is time-consuming. If inorganic salts comprise the great majority of TDS, gravimetric methods 

are appropriate. 

Electrical conductivity of water is directly related to the concentration of dissolved 

ionized solids in the water. Ions from the dissolved solids in water create the ability for that water 

to conduct an electric current, which can be measured using a conventional conductivity meter or 

TDS meter. When correlated with laboratory TDS measurements, conductivity provides an 

approximate value for the TDS concentration, usually to within ten-percent accuracy 

The relationship of TDS and specific conductance of groundwater can be approximated by the 

following equation: 

TDS = keEC 

where TDS is expressed in mg/L and EC is the electrical conductivity in microsiemens 

percentimeter at 25 °C. The correlation factor ke varies between 0.55 and 0.8. 

 
 

Figure 3.14 The Oakton Con 700 Total Dissolved Solid (TDS) meter (Oakton Instruments, Vernon 

Hills, IL). 
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For this study the Oakton Con 700 Total Dissolved Solid (TDS) meter (Oakton 

Instruments, Vernon Hills, IL) was used. The instrument was calibrated following the procedures 

outlined by the instrument manufacturer. 

3.3.3 Turbidity 

Turbidity is the cloudiness or haziness of a fluid caused by large numbers of individual particles 

that are generally invisible to the naked eye, similar to smoke in air. The measurement of 

turbidity is a key test of water quality. Fluids can contain suspended solid matter consisting of 

particles of many different sizes. While some suspended material will be large enough and heavy 

enough to settle rapidly to the bottom of the container if a liquid sample is left to stand (the 

settable solids), very small particles will settle only very slowly or not at all if the sample is 

regularly agitated or the particles are colloidal. These small solid particles cause the liquid to 

appear turbid. 

 

The most widely used measurement unit for turbidity is the Formazin Turbidity Unit 

(FTU). ISO refers to its units as FNU (Formazin Nephelometric Units). ISO 7027 provides the 

method in water quality for the determination of turbidity. It is used to determine the 

 
 

Figure 3.15 The  LaMotte 1970-EPA Model 2020we Portable Turbidity Meter (LaMotte Company, 

Chestertown, MD). 
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concentration of suspended particles in a sample of water by measuring the incident light 

scattered at right angles from the sample. The scattered light is captured by a photodiode, which 

produces an electronic signal that is converted to a turbidity. Open source hardware has been 

developed following the ISO 7027 method to measure turbidity reliably using an Arduino 

microcontroller and inexpensive LEDs. 

For this study the LaMotte 1970-EPA Model 2020we Portable Turbidity Meter (LaMotte 

Company, Chestertown, MD) shown in Figure 3.15 was used. The instrument was calibrated 

following the instrument manual provided by the manufacturer. 

3.3.4 Optical microscopy 

The microstructure of the processed geopolymer composite membranes was studied using an 

optical microscope. Digital images were acquired using the Carl Zeiss' AxioLab A1 Modular, 

upright Optical Microscope for Materials Science (Carl Zeiss Microscopy, LLC, White Plains, 

NY) with 5X, 20X and 100X magnifying lenses. Optical microscope was used to observe the 

porosity and filler phase distribution on the surface of the geopolymer and geopolymer composite  

 
 

Figure 3.16 The Carl Zeiss' AxioLab A1 Modular, upright Optical Microscope for Materials 

Science (Carl Zeiss Microscopy, LLC, White Plains, NY) that was used for this study. . 
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membrane samples. The samples used for these measurements were thin membrane discs cut 

using the slow action diamond saw. The sample surface was not polished, and represented the 

surface of the membrane after it was cut using the diamond saw. The magnification of the optical 

microscope was calibrated using a standard, and scale bars were included on each image to 

denote the length scale of the observed features. 

3.3.5 SEM 

A Hitachi S-4800 field emission scanning electron microscope (FE-SEM) coupled with an 

Oxford Instruments (Tubney Woods, Abingdon, Oxon, UK) energy dispersive spectroscopy 

(EDS) silicon drift detector was used to characterize the microstructure and determine the 

elemental composition and distribution of the samples (see Figure 3.17). These included 

powder/granular samples of the biochar and the clinoptilolite zeolite, and solid samples of the 

The solid membranes samples included membrane samples before and after they had been tested 

for their filtration performance. 

The post-test membrane samples were small pieces of the composite membrane with 

particles retained on their surface when produced water was filtered through them. The top 

surface of these samples (where separation occurs) was coated with a thin layer of gold (Au) 

using Edwards Sputter Coater S150B (Edwards Vacuum LLC, Albany, NY), shown in Figure 

3.18, for 30 s to prevent any charging of the surface during SEM studies. Elemental distribution 

on the surface was carefully examined to observe the residual particles that were retained by the 

filter. Elemental maps were acquired using an accelerating voltage of 30 keV at a working 

distance of 15mm. Samples for SEM were prepared by gold spray or carbon spray, this did not 

produce fully dense samples but was satisfactory for the intended analysis. 

The pre-test or virgin filter samples were first vacuum impregnated (using Citovac, 

Struers Inc., Cleveland, OH) with epoxy (Epothin, Buehler, Lake Bluff, IL), and polished to  
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< 1m surface finish using Struers LaboPol-35 Polishing/Grinding System, (Struers Inc., 

Cleveland, OH) and SiC polishing papers of different grades. Subsequently, these samples were 

cleaned with DI water, dried overnight in vacuum oven (VWR Symphony, VWR International, 

 
 

Figure 3.17 Hitachi S-4800 field emission scanning electron microscope (FE-SEM) coupled with 

an Oxford Instruments (Tubney Woods, Abingdon, Oxon, UK) energy dispersive spectroscopy 

(EDS) silicon drift detector that was used for this study. . 

 
 

Figure 3.18 The  Edwards Sputter Coater S150B (Edwards Vacuum LLC, Albany, NY) that was 

used for this study to coat Au on powder/granular and solid membrane samples. . 
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LLC., Radnor, PA) at room temperature, and then coated with a thin layer of Au for 

approximately 30s. The SEM investigations on these samples was primarily focused on 

evaluating the bonding between the filler phase (i.e. clinoptilolite) and the matrix (geopolymer) at 

high magnifications using 20 KeV accelerating voltage 

3.3.6 XRF 

Chemical composition of the filler phases, produced water, filtered water and water from the 

leaching tests (Chapter 5), was characterized with the Rigaku Primus IV Wavelength Dispersive 

X-ray Fluorescence (WDXRF) spectrometer (Rigaku, Tokyo, Japan) (shown in Figure 3.19). The 

filler phase samples were studied as fine powders, which were mounted in plastic cup sample 

holders. The top surface of the powdered samples was covered with 2.5m thick Mylar thin-film 

(Chemplex Industries, Inc., Palm City, FL) and is shown in Figure 3.20a. The produced water, 

filtered water and samples from leaching studies were all liquid samples, and their chemical 

composition was analyzed to assess the removal of ions dissolved in the produced water during  

 
 

Figure 3.19 Rigaku Primus IV Wavelength Dispersive X-ray Fluorescence (WDXRF) spectrometer 

(Rigaku, Tokyo, Japan) in the Helmerich Research Center, Core Laboratories was used for 

determining chemical composition of filler phase, and water samples in this study. . 
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the filtering step as well as to confirm dissolution of any ions during the leaching tests (for waste 

encapsulation studies, Chapter 5). Samples for these measurements were prepared by first 

sampling 200 µl of the solution using a pipette gun, and then spreading the solution evenly over 

acircular filter paper (Whatman 42, GE Healthcare Life-Sciences, see Figure 3.20b) with a 

diameter of 50.8 mm. The filter paper was dried at 70°C for 12 hours, and then mounted in the 

XRF sample holder (30mm diameter window) for analysis. The chemical composition of virgin 

filter paper was also experimentally determined and used as background levels, which was 

subtracted from the measurements made on filter paper samples where water/solution had been 

absorbed. Table 3.6 shows the results of XRF analysis on virgin Whatman 42 filter paper. These 

values were compared with the nominal chemical composition reported by the filter paper 

manufacturer, and were found to be different. As filter paper from the same batch was used to 

determine chemical composition of all solution samples in this study, the experimentally 

determined values (reported in Table 3.6) were considered adequate and used as background.  

 

 

  
(a) (b) 

Figure 3.20 Samples for XRF investigations (a) Clinoptilolite powder samples mounted in a plastic 

holder (20 mm diameter), and covered with a 2.5mm thick Mylar film; (b) 50.8mm diameter 

Whatman 42 filter paper disk; known volumes of liquid samples was absorbed on these disks and 

dried. 
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Table 3.6 XRF analysis of the virgin Whatman 42 filter paper used in this research. 

Elements Content (ppm) 

Cellulose 963000 

Zn 31500 

I 2750 

Fe 1970 

Cr 208 

Cl 114 

Mo 72 

Mn 64 

Cu 63 

Si 62 

Ga 52 

Al 43 

Zr 39 

Ca 35 

Mg 17 

S 10 

K 10 

Nb 94 

Ga 87 

 

3.4 Analytical methods 

3.4.1 Porosity and Density 

The porosity of the geopolymer and geopolymer composite membrane samples was analyzed by 

the Archimedes method according to ASTM standard C373-18. This method is commonly used 

for determination of water absorption and associated properties by (a) vacuum method for pressed  

ceramic tiles and glass tiles and (b) boil method for extruded ceramic tiles and non-tile fired 

ceramic whiteware products. As a first step, the test specimens were dried to constant mass by 

heating in a vacuum oven (VWR Symphony, VWR International, LLC., Radnor, PA) at 70°C and 

-60 mmHg (-8 kPa) vacuum for 24 hours, followed by cooling in a desiccator. Next, the dry mass, 
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D, was measured. The specimens were then placed in a small beaker, and positioned inside the 

Citovac (Struers Inc., Cleveland, OH) chamber. The chamber was them evacuated, and the 

vacuum (645 mm of Hg, i.e. 0.086 MPa) was maintained for approximately 15 minutes. While 

maintaining the vacuum, sufficient water was admitted into the beaker to fully submerge the 

specimens under water. The test specimens were then soaked for approximately 15 minutes, 

before the vacuum was released and the vessel was returned to atmospheric pressure. 

Subsequently, the Suspended Mass, S, was determined using the Mettler Toledo weighing 

balance (Model: XS205DU) and density kit. After the determination of the suspended mass, the 

specimen was blotted lightly with a damp microfiber cloth to remove all visible water droplets 

from the surface, and the Saturated mass, M, was measured.  

With the dry mass, suspended mass and saturated mass, the parts of the physical properties could 

be calculated. In the following calculations, the assumption is made that 1 cm3 of water weighs 1 

g. 

Exterior volume, V, was calculated in cubic centimeters, as follows: 

V = M - S 

Volumes of open pores, VOP , and impervious portions, VIP was determined using the following 

formulae: 

VOP = M - D 

VIP = D - S 

The apparent porosity, P, expressed as a percent, the relationship of the volume of the open pores 

of the specimen to its exterior volume. The apparent porosity was calculated as follows: 

P = [( M - D ) / V ] × 100 

The bulk density, B, in grams per cubic centimeter, of a specimen is the quotient of its dry mass 

divided by the exterior volume, including pores. The formula used to calculate the bulk density is 

as follows: 

B = D / V 
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In addition, the density of the coarse, medium and fine zeolites, and the biochar was also 

determined by the He pycnometry method using  the AccuPyc 1340 pycnometer (Micromeritics, 

Atlanta, GA). At least 30 measurements were made on each powder/granular sample to ensure the 

reproducibility of the measurements. 

3.4.2 Compressive strength 

The compressive strength was measured using an Instrton machine according to the ASTM 

C39/C39M-18. The test was on the Cylindrical samples with ~25.4mm diameter and 21-28 mm 

height. The top view and side view of samples for compressive test are shown in the Figure 3.21. 

 

The diameter used for calculating the cross-sectional area of the test specimen was determined by 

averaging at least two diameters measured at right angles to each other at about mid height of the 

specimen. Similarly, the length of the specimen was determined by averaging length values 

measured at more than three locations spaced evenly around the circumference.  

  

 

 

Figure 3.21 Top view and side view of the samples for compressive test. 
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For these measurements the cylindrical sample was placed on the lower bearing block of the 

testing machine such that the axis of the specimen aligned with the center of thrust of the upper 

bearing block (Figure 3.22). Prior to testing the specimen, it was verified that the load indicator 

was set to zero. During the testing the load was applied continuously, without shock. The load 

was applied at a rate of movement (platen to crosshead measurement) corresponding to a stress 

rate on the specimen of 160 N/s (equivalent to 0.25 MPa/s for the investigated samples). The 

designated rate of movement was maintained at least during the latter half of the anticipated 

loading phase. The compressive strength of the specimen was calculated as follows: 

𝑓𝑐𝑚 =
4000𝑃𝑚𝑎𝑥
𝜋𝐷2

 

fcm = compressive strength, MPa, 

Pmax = maximum load, kN 

Figure 3.22 Schematic sketch of typical sample loading for compressive strength testing. 
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Thirty-five samples were tested. The mechanical strength of the samples was tested at the age of 

7 day after casting. 

 

  
(a) (b) 

Figure 3.23 (a) Photograph of the Instron Universal Testing System, and (b) Load cell and sample 

mounting fixtures, used for measuring the compressive strength properties of the geopolymer and 

geopolymer composites in this study. 
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CHAPTER IV 
 

 

GEOPOLYMER MEMBRANES 

 

4.1 Introduction 

The purpose of this study was to examine the influence of different types of additive materials on 

potassium based geopolymers in order to produce inexpensive geopolymer-based filter 

membranes. The properties and performance of the developed membranes were analyzed for their 

microstructure, compressive strength, and filtration performance. The microstructure analysis was 

conducted by microscopic methods (optical and SEM) and by XRF. Potassium based geopolymer 

with composition of 4SiO2·Al2O3·K2O·nH2O was used as the matrix phase and natural zeolites 

and biochar were the two types of additives that were explored to process geopolymer composite 

membranes. 

This study was structured in a way to identify optional: 

⚫ Geopolymer composition 

⚫ Geopolymer curing conditions 

⚫ Biochar concentration, and 

⚫ Zeolite concentration  

for the design of composite ceramic membrane with superior mechanical, microstructure and 

filtration performance. For this purpose a systematic approach was adopted which in represented 

in Figure 4.1. 
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4.2 Processing of geopolymer-based membranes 

Pure geopolymer and geopolymer composite slurry mixtures (with additive phases of 

clinoptilolite or biochar) were prepared following the procedure outlined in Figure 3.9. The slurry 

was then cast as a 25.4 mm diameter cylinder in a plastic mold, sealed and allowed to cure under 

predefined conditions. Once cured, the cylindrical sample was removed from the mold and 

membranes were prepared by sectioning the cured geopolymer composite (or pure) cylindrical 

sample using a slow action diamond saw (Minitom, Struers, Inc., Cleveland, OH, USA) shown in 

the Figure 4.2(c) and 4.3. 

 

Figure 4.1 Schemcatic illustrating the step-wise approach followed in this study to develop optimal 

geopolymer based ceramic composite membranes for produced water filtration. 
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Figure 4.2 Diagram showing the step-wise process for making geopolymer membrane samples. 

Figure 4.3 Struers Minitom slow-action diamond saw was used to cut thin membranes from 

cylindrical cast samples. 
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4.3 Characterization of geopolymer-based membranes 

The processed membranes were characterized for their microstructure, mechanical properties and 

filtration performance. The details on the methods used for microstructure and mechanical 

properties characterization were included in Chapter 3. The filtration performance of the 

membranes was determined using an in-house developed equipment and the details and the 

procedure used is presented in the following section. 

4.3.1 Filtration performance 

The filtration performance was evaluated using 25.4 mm diameter membranes of 0.9mm 

thickness. Figure 4.4 shows an optical image of a virgin geopolymer+zeolite composite 

membrane. The surface of the membrane was not polished beyond what was obtained by the 

slow-action diamond cutting action. Table 4.1 lists the physical characteristics of the membranes 

where porosity was determined by the Archimedes’ method. The filtration performance was 

evaluated by determining the flow rate and filtered water quality (pH, turbidity, TDS 

concentration, impurity concentration) under a range of applied pressures (see Table 4.2).  

 

 

Figure 4.4 Optical image of a geopolymer+zeolite composite member used to test filtration 

performance. 
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Table 4.1 Typical physical characteristics of geopolymer membranes used to determine filtration 

performance. 

Characteristics Values 

Appearance Smooth and clean surface 

Dimensions Diameter: 25.4 mm, Thickness: 0.9mm 

Porosity 28%~ 40% 

 

Table 4.2 Parameters studied in the filtration performance test 

Parameters Value 

Pressure  1bar – 9 bar 

Time 10 min constant 

Flow rate In ml/min 

Turbidity - 

TDS - 

pH - 

Filtered water impurity concentrations (by XRF) B to U concentrations in ppm 

 

For all of these studies, produced water was used. Turbidity, TDS, pH and impurity 

concentrations of produced water were analyzed first, and served as a benchmark to evaluate the 

performance of the membranes as a filter. All the filtration experiments were conducted in dead-

end filtration mode, and required application of nominal pressures to “force” produced water 

through the membranes. For this purpose an in-house filtration set-up was designed, and is shown 

in Figure 4.5. Filtration set up includes one funnel, two valves and one pipe joint. The membrane 

was supported on a perforated aluminum metal disc in the specially configured pipe joint, Figure 

4.6. Silicone sealant was applied on the edges of the membrane and cured for 30 minutes to 

prevent any leakage. This ensured that water flowed only through the membrane when pressure 

was applied. To conduct the filtration test, the vertical column was first filled with produced 
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water while keeping the Valve 2 closed. Once filled, the Valve #1 was closed and pressure was 

applied through Valve 2 using pressurized air. Filtered water was collected over a fixed duration 

of time at the bottom under different pressures and its quantity and quality were determined (see 

parameters listed in Table 4.2) to evaluate the filtration performance of the tested membrane.  

 

 

Figure 4.5 Filtration set up design (left) and actual photo (right) 
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4.4 Pure Geopolymer membrane 

Geopolymer’s porosity and pores’ size could be controlled by curing temperature and water 

content inside the geopolymer. Understanding how to control the pore’s size is very important 

since the pore’s size affects the efficiency of the filtration and determines whether certain ions 

could be filtered.  

Compositions of geopolymer with different amounts water and different curing 

temperatures were synthesized according to the process discussed in sections 3.2 and 4.2. After 

synthesis selected membrane samples were characterized for their compressive strength and 

Figure 4.6 Detail diagram of the piper joint and membrane 
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filtering performance. In order to determine the optimal composition and processing conditions 

for the pure geopolymer, the samples and conditions shown in the Table 4.3 were studied. 

Table 4.3 Composition and processing conditions evaluated for the pure geopolymer membrane 

samples 

Water Content       

“n” (moles) 

Curing Temperature 

(ºC) 

Chamber Humidity 

(%) 

Curing Time      

Days) 

11 60 80% 5 

13 40 80% 5 

13 60 80% 5 

13 80 80% 5 

 

After five days of curing, the geopolymer samples cured at 40ºC were still not solidified. It was 

observed that samples cured at low temperatures i.e. 40°C needed more time to react than those 

samples which curried at higher temperatures i.e. 60°C and 80°C). On the other hand, samples 

curried at 80 ºC, on the other hand showed cracks on the surface. This was most likely due to 

rapid loss of water from the surface at higher temperatures. Therefore, 60°C was identified as the 

optimal temperature for curing the geopolymer membrane samples. 

 

 

  

Figure 4.7 Pure geopolymer membrane samples cured at 60°C for a) 11 mol water and b) 13 mol 

water compositions. 
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4.4.1 Compressive strength and flow properties of pure geopolymer membrane samples 

Pure geopolymer samples with 11 and 13 mol water content, and cured at 60°C for five days were 

tested for their compressive strength properties as well as for flow performance. Compressive 

strength was determined on cylindrical samples, approximately 28 mm in diameter and 22 mm in 

height. The details on the testing procedures were included in section 3.4.2. Measurements were 

made on at least three samples and average values are reported in Table 4.4. Flow properties were 

measured on membrane samples, approximately 25 mm in diameter and 0.9 mm in thickness, 

following the procedures presented in section 4.3.1.  

Table 4.4 Compressive strength and water flow rate of pure geopolymer membrane samples cured 

at 60°C for 5 days 

Water Content         

“n” (moles) 

Sample 

Diameter (mm) 

Sample Height 

(mm) 

Compressive 

Strength  

(MPa) 

Water Flow 

Rate at 0.3MPa  

(ml/min) 

11 28.56 21.42 21.40±3.39 0.013 

13 29.42 23.81 23.96±2.19 0.707 

 

Based on the compressive strength and water flow rate measurements, pure geopolymer samples 

processed with 13 moles of water had superior compressive strength as well as flow properties. 

However, these samples were found to be unstable when left outside in the open, and developed 

cracks. Comparable properties of the sample processed with 11 moles of water were considered 

adequate for the purpose of this study. Hence, 11 moles of water was selected as optimum 

composition for the geopolymer matrix phase to process geopolymer composite membranes for 

further studies. Based on these investigations on the pure geopolymer samples, curing conditions 

were decided as 60°C for 5 days for all geopolymer composite samples.  
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4.5 Effect of biochar addition on properties of geopolymer composite membranes 

Biochar was explored as an additive to the geopolymer to process composite membranes. Due to 

superior adsorption properties biochar is widely used in water purification applications. In this 

study, addition of biochar was expected to enhance the filtration capabilities of the pure 

geopolymer phase. However, the effect of biochar addition on the compressive strength and flow 

rate properties of the composite membranes were unknown. Therefore, a comprehensive 

experimental study was devised to examine the effect of biochar addition on the compressive 

strength and the filtration performance. Table 4.5 provides the details on the range of biochar 

content that was added and the processing conditions that were used to process and test the 

geopolymer+biochar composite membranes. 

Table 4.5 Geopolymer with biochar membrane samples investigated in this study. 

Biochar Content 

(vol %) 

Water Content 

“n” (moles) 

Curing 

Temperature (ºC) 

Humidity 

(%) 

Curing Time 

(Days) 

2% 11 60 80% 5 

4% 11 60 80% 5 

6% 11 60 80% 5 

10% 11 60 80% 5 

 

Calculated amount of biochar powder was weighed and mixed with the pure geopolymer slurry 

according to the preparation process discussed in section 3.2 for each of the compositions 

included in Table 4.5 (i.e. for 2, 4, 6 and 10 vol%). After the curing, the cylindrical samples were 

either tested for their compressive strength properties, or were cut into thin discs (0.9mm 

thickness). Samples of geopolymer+biochar composite membranes are shown in the Figure 4.9. 
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As biochar absorbed significant amounts of water from the geopolymer slurry, the resulting slurry 

was very viscous which made casting very difficult. More importantly, reduced amount of water 

was available for the geopolymerization reaction, and resulted in fragile samples. Examination of 

the surface of a small piece from the geopolymer+biochar sample prepared with 10 vol% biochar 

was conducted using the optical microscope. As shown in Figure 4.10, the sample had excessive  

 

 

Figure 4.8  Geopolymer + biochar membrane samples cured at 60°C for a) 2 vol%, b) 4 vol% and 

c) 6 vol%  compositions. 

Figure 4.9 Optical micrograph of the geopolymer+biochar composite membrane with 10 vol % 

biochar. 

25.4 mm 25.4 mm 25.4 mm 

a) b) c) 
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number of large pores (approximately 1 mm diameter). Therefore, it was decided to restrict the 

biochar addition to less than 10 vol% and only geopolymer+biochar samples with 2 vol%, 4 

vol%, and 6 vol% were further investigated for their mechanical and filtration performance. 

 

4.5.1 Effect on the compressive strength 

Addition of biochar significantly deteriorated the compressive strength of the 

geopolymer+biochar composites. Table 4.6 shows the effect of biochar addition on the 

compressive strength of geopolymer membrane. As can be seen, addition of 2 vol% of biochar 

did not have much effect on the compressive strength when compared with the pure geopolymer 

sample. However, addition of 4 vol% and 6 vol% reduced the compressive strength by about 33% 

and 37%, respectively. 

Table 4.6 Compressive strength of geopolymer + biochar composite samples 

Sample Sample Diameter 

(mm) 

Sample 

Height (mm) 

Compressive 

Strength (MPa) 

Pure Geopolymer 28.56 21.42 21.40±3.39 

2 vol% Biochar 29.36 23.81 21.72±1.69 

4 vol% Biochar 29.62 27.49 14.16±0.86 

6 vol% Biochar 29.45 28.41 13.42±0.34 

 

4.5.2 Effect on filter performance 

The filtration performance of the geopolymer+biochar membranes was evaluated for composite 

samples with 2 vol%, 4 vol%, and 6 vol % biochar. The membrane discs (25.4 mm diameter, and 

0.9 mm thick) were supported on aluminum perforated discs for these tests (see section 4.3.1). 

The membrane with 4 vol% biochar cracked during the test, and was not pursued further. Results 

on the produced water and the filtered water composition, as determined using the XRF, are 

shown in Table 4.6 for the membranes with 2 vol%, and 6 vol % biochar. Based on these studies,  
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Table 4.6 XRF results of produced water before and after filtration using the geopolymer+biochar 

composite membranes (unit: ppm). 

Sample Ca Zn Mg Sr Br Fe K Si S 

Before Filtration 15900 3290 2410 1030 780 309 289 47.5 33.9 

2 vol% Biochar 16100 2360 2190 944 750 107 4140 69.9 31.1 

          

Before Filtration 20200 17600 2480 1040 811 2720 242 39.0 51.1 

6 vol% Biochar 20500 16300 2500 1000 772 5330 2240 31.0 37.4 

 

it was observed that the geopolymer+biochar composite membranes could reduce, although 

marginally only, the concentration of larger cations including Sr, Br, and Fe. There was 

unremarkable change in the concentration of the cations such as Ca, Zn, Mg, and S. The observed 

increase in the concentration of K and Si cations in the filtered water is most likely due to their 

leaching from the geopolymeric matrix phase. Therefore it was concluded that 

geopolymer+biochar composite membranes are not adequate for filtration of produced water. 

 

4.6 Effect of zeolite addition on properties of geopolymer membranes 

The structure of geopolymer is very close to the structure of zeolites but without regular ordering 

to longer distance – it has amorphous character. The clinoptilolite zeolite, Na6[Al6Si30O72]24H2O, 

like kaolinite (Al2SiO5(OH)4) is hydrated aluminosilicate phase. Metakaolin, on the other hand, is 

dehydroxyalted kaolinite, lacks any long range ordering and shows enhanced reactivity towards 

alkali silicate solutions to form the geopolymer phase. Due to the similarity in chemical 

composition of clinoptilolite and metakaolin, clinoptilolite is expected to demonstrate some 

reactivity with the alkali silicate solutions, at least at the interface. Therefore, it was a suitable 

additive for geopolymber based composite ceramic membranes. An additive with microporous 

channels, which can bond well with the geopolymer matrix phase, can enhance the strength and 
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the enable improved filtration properties of the geopolymeric phase. This hypothesis formed the 

basis for exploring the clinoptilolite as an additive phase in geopolymers to develop ceramic 

composite filtration membranes. Table 4.7 provides the details on the range of commercial 

clinoptilolite type and content that was added to the pure geopolymer phase, and the processing 

conditions that were used to process and test the geopolymer+zeolite composite membranes.  

Table 4.7 Geopolymer with zeolite membrane samples 

Zeolite Water Content         

“n” (moles) 

Curing 

Temperature (ºC) 

Chamber 

Humidity 

Curing Time 

(Days) 

Granularity Percentage 

Fine 20% 11 60 80% 5 

Fine 40% 11 60 80% 5 

Medium 20% 11 60 80% 5 

Medium 40% 11 60 80% 5 

Coarse 20% 11 60 80% 5 

Coarse 40% 11 60 80% 5 

 

Calculated amount of zeolite particles was weighed and mixed with the pure geopolymer slurry 

according to the preparation process discussed in section 3.2 for each of the compositions 

included in Table 4.7. After the curing, the cylindrical samples were either tested for their 

compressive strength properties, or were cut into thin discs (0.9 mm thickness). Samples of 

geopolymer+zeolite composite membranes are shown in the Figure 4.10. During the cutting of 

geopolymer+coarse zeolite sample, the coarse zeolite particles would often pull-off from the 

membrane, an example is shown in the Figure 4.10 (e). This observation was unique to the coarse 

zeolite composite membranes only, and was not observed in the case of fine or medium zeolite 

composites. It is possible that the low surface area of the coarse zeolite particles available for 

reaction with the geopolymer phase results in weaker bonding, and allows easier pull-out of the 

coarse zeolite particles from the geopolymer matrix.  
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Examination of the surface of a small piece from the geopolymer+zeolite sample prepared with 

10 vol% fine zeolite did not reveal any particle pull-out. However, as shown in the optical 

micrograph in Figure 4.11, the sample had excessive number of large pores (approximately 0.03-

0.1 mm diameter). In order to verify the bonding of the zeolite particles and the geopolymer 

matrix a small piece from the geopolymer+zeolite sample prepared with 20 vol% medium zeolite 

 

Figure 4.10  Geopolymer + zeolite membrane samples for a) Fine 20 vol%, b) Fine 40 vol%, c) 

Medium 20 vol%, d) Medium 40 vol% and e) Coarse 40 vol% zeolite compositions. 

Figure 4.11 Optical micrograph of the geopolymer+zeolite composite membrane with 10 vol % fine 

zeolite. 
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(a) 

 
(b) 

 

was examined using the SEM. As shown in Figure 4.12, zeolite and geopolymer were seamlessly 

connected with each other. The gap between the zeolite and geopolymer is ≤ 15-20 nm. 

Figure 4.12 SEM images of the virgin geopolymer+zeolite composite membrane with 20 vol % fine 

zeolite at magnification (a) 700 X, and (b) 120000 X. 

Zeolite Geopolymer 
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4.6.1 Effect on the compressive strength 

Addition of zeolite significantly improved the compressive strength of the geopolymer+zeolite 

composites. Table 4.8 shows the effect of zeolite addition on the compressive strength of 

geopolymer composite. At least five samples were tested for each composition and the values 

reported are average values. Figure 4.13 is a graphical comparison of the compressive strength of 

the pure geopolymer sample and the various geopolymer+zeolite composite samples. As can be 

seen, addition of 20 vol% of fine zeolite had a remarkable effect on the compressive strength 

when compared with the pure geopolymer sample. No change was observed in the compressive 

strength of the composite with 20 vol% of medium zeolite from that of the pure geopolymer 

sample. Increase in the volume percentage of the fine and medium zeolite to 40%, however, 

decreased the compressive strength of the geopolymer+zeolite composites. Addition of coarse 

zeolite particles, in contrast, significantly deteriorated the compressive strength properties. Based 

on these observations, the composite samples with coarse zeolite particles were not considered 

suitable for membrane applications, and were not considered for filtration performance studies. 

Geopolymer with 20 vol% of fine zeolite sample had the highest compressive strength. 

 

Table 4.8 Results from compressive strength tests on geopolymer+zeolite samples 

Zeolite Sample 

Diameter (mm) 

Sample 

Height (mm) 

Compressive 

Strength (MPa) Granularity Percentage 

Fine 20% 29.33 24.22 32.20±7.19 

Fine 40% 29.40 26.88 21.82±4.41 

Medium 20% 29.38 23.60 21.43±1.86 

Medium 40% 29.50 26.42 14.19±3.45 

Coarse 20% 29.39 23.00 11.87±4.77 

Coarse 40% 29.88 27.44 11.48±4.97 

Pure Geopolymer 0% 28.56 21.42 21.40±3.39 
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4.6.2 Effect on filter performance 

The produced water flow rate observed for the fine and medium zeolite particle geopolymer 

composite membranes is compared with the pure geopolymer membranes in Figure 4.14. The 

geopolymer composite membrane with 40 vol% of fine zeolite had the highest flow rate. Although 

composite samples with 20 vol% of fine/medium zeolite particles or with 40 vol% of medium 

zeolite have lower compressive strength than pure geopolymer sample, they had significantly 

higher flow rate than pure geopolymer membrane sample. The composite sample with 20 vol % of 

fine zeolite, on the other hand, had cracked at 0.4 MPa of applied pressure. This could be due to the 

variance in the presence of flaws from one sample to another of the same composition. With the 

Figure 4.13 Graphical comparison of the compressive strength of pure geopolymers with 

geopolymer+zeolite samples with different types and concentration of zeolite particles. 
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higher compressive strength, it is expected that the membrane samples can withstand higher 

pressures, thereby permitting a higher flor rate.  

 

 

Besides the flow rate measurements, the ability of the membrane to remove impurities, both 

particulate as well as dissolved, was evaluated by examining the membrane with optical 

microscope, by SEM/EDS and by measuring the change in water quality. Figure 4.15 shows the  

 

 

Figure 4.14 Water flow rate of geopolymer with zeolite samples 

Figure 4.15 Before and after filtration image of the same geopolymer composite membrane with 

medium 40 vol% zeolite. a) Membrane before filtration b) c) Membrane after filtration. 
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optical images of surface of the same filter membrane before and after  filtration. The retention of 

the brown colored particles on the membrane surface is clearly seen in Figure 4.15 (b) and (c). 

The produced water before and after filtration through a geopolymer composite membrane with 

20 vol% medium zeolite is shown in the Figure 4.16. The change in turbidity, pH and TDS upon 

filtration through the geopolymer+zeolite composite membranes under different pressures is 

presented in Table 4.9. Before filtration, the turbidity of the produced water was 74.7 NTU. After 

filtration through pure geopolymer membrane at 0.1 MPa (1 bar) pressure, the turbidity of the 

produced water was reduced by approximately 90% to 7.92 NTU. This confirmed that almost all 

visible particles floating in the produced water were filtered. Turbidity values after filtration 

through the geopolymer+zeolite composite membranes, however, ranged between 4.32 and 15.95 

NTU for all the membranes tested (see Table 4.9). The pH of produced water was tested at 4.12, 

and after filtration through any of the membranes it increased to values ranging between 5.35 and 

6.65. No specific trend in change in pH was observed with pressure or membrane type. The 

increase in the pH after filtration is most likely due to unreacted KOH present in the geopolymer 

 
 

Figure 4.16 Produced water before and after filtration of geopolymer with medium 20 vol% 

membrane at 0.1MPa pressure. 
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phase of the membranes. The TDS of produced water was measured at 65100 ppm, and 

unremarkable change was observed upon filtration through the membranes. This confirmed that 

the membranes were unable to separate out the chloride or the sodium ions, which constitute the 

major components that contribute towards the high TDS concentrations observed for produced 

water.  

The XRF results of produced water before and after filtration through the 

geopolymer+zeolite membranes using 0.1 MPa pressure are shown in the Table 4.10. The 

percentage of ions removed is included in Table 4.11 for each membrane type. These results 

further confirm the observed changes in the pH and TDS. Significant reduction in the 

concentrations of all ions except K was observed after filtration through the fine zeolite 

composite membranes. The filtration performance of the fine zeolite composite membranes, in 

terms of removal of each element, improved by increasing the concentration of the fine zeolite 

particles form 20 vol% to 40 vol%. The only exception to this was the Si content, which may be 

biased by unusually high Si concentration in the produced water. It is possible that presence of 

some sand particles in the produced water sampled for the XRD analysis could have resulted in 

the unusually high Si content for that sample. The filtration performance of the membrane 

samples with medium zeolite was much inferior to the fine zeolite composite membranes. 

However, removal of Fe and P from produced water using these membranes was comparable to 

the fine zeolite composite membranes. In increase in the K concentration of water after filtration 

is attributable to dissolution of unreacted KOH from the geopolymeric phase of the composite 

membranes, and is consistent with the increase in pH observed, as discussed earlier. Overall, 

these results indicate that the filtration performance of geopolymer composite membranes with 

fine zeolite is better than geopolymers with medium zeolite. 
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Table 4.9 Changes in turbidity, TDS and pH observed after filtration through the geopolymer+zeolite composite membranes under pressure. 

 

 

Sample Parameter Pressure (bar) 

1 2 3 4 5 6 7 8 

Pure Geopolymer 

Turbidity (NTU) 7.92        

TDS (1000 ppm) 54.2        

pH 5.607        

Fine 20 vol% 

Turbidity (NTU) 7.82 4.38 6.54 5.13     

TDS (1000 ppm) >60 54.2 >60 >60     

pH 5.607 6.342 5.793 5.347     

Fine 40 vol% 

Turbidity (NTU) 12.17 13.13 10.59 15.95 16.51 12.87 14.31 13.43 

TDS (1000 ppm) 55.1 57.8 >60 57.4 59.3 >60 >60 >60 

pH 5.492 5.426 6.492 6.643 5.945 6.221 6.137 6.654 

Medium 20 vol% 

Turbidity (NTU) 9.37 5.43 6.24 7.14     

TDS (1000 ppm) >60 54.7 >60 >60     

pH 5.677 5.939 5.427 5.631     

Medium 40 vol% 

Turbidity (NTU) 7.27 4.32 6.59 8.37     

TDS (1000 ppm) 58.7 >60 51.3 >60     

pH 5.879 5.931 6.434 6.471     
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Table 4.10 XRF results of water tested before and after filtration through the geopolymer+zeolite composite membranes at 0.1 MPs 

pressure (unit: ppm). 
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Table 4.11 The removal rate of different elements from produced water by the four geopolymer+zeolite composite membranes. These 

results are based on values reported in Table 4.10. 
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 Besides evaluating the concentration of different ions in the filtered water it was of 

interest to observe surface of the membranes to identify particles that were retained. For this 

purpose, sections of the membranes which had been subjected to filtration studies at various 

pressures, were analyzed using the SEM. In addition, elemental distribution on the surface of 

the membranes was also mapped using the EDS. The results of these investigations are 

summarized in Figures 4.17 through 4.20, with each figure corresponding to a specific 

geopolymer+zeolite composite membrane. Each one of the tiled images in the bottom half of 

each figure shows distribution of a specific element in the examined region of the filter, while 

the top larger size image shows the SEM image of the analyzed region. It should be reiterated 

that the virgin membranes comprise of a distribution of the clinoptilolite zeolite particles with 

composition Na6[Al6Si30O72]24H2O (along with Ca, Al, K, Fe and some impurities, see Table 

3.4), in the geopolymeric matrix phase which is best represented as 4SiO2.Al2O3.K2O.11 H2O. 

Therefore, elements such as Al, Si, and K are expected to overlap and be widely distributed as 

seen in all the figures, and is most clearly seen at low magnification in Figure 4.19. The 

presence of different particles and their approximate composition is also evident from this 

analysis. For example the correspondence of Na and Cl in Figure 4.17 strongly indicates that 

the particle being observed was a NaCl salt particle. Similarly, Figure 4.18 suggests that the 

particle was rich in Fe, Ca, Si and O. The presence of a BaSO4 particle in Figure 4.20 is 

supported by the common region shared by Ba, S and O. Interestingly Ba was not detected at 

other locations, and perhaps is present only as particles of its sulfate compound.  

  



 

70 

 

 

 

 

 

 

Figure 4.17 EDS mapping of geopolymer + fine 20% zeolite sample at 10,000x magnification. 
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Figure 4.18 EDS mapping of geopolymer + fine 40% zeolite sample at 11,000x magnification. 
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Figure 4.19 EDS mapping of geopolymer + medium 20% zeolite sample at 250x magnification. 
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Figure 4.20 EDS mapping of geopolymer + medium 40% zeolite sample in 10,000 magnification. 
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Another aspect of a membrane’s filtration performance is its ability to filter consistently for 

several cycles. Instead of repeated measurements of flow rate and water quality testing over 

several cycles when operated under constant pressure, testing water quality of filtered water under 

different pressures on the same membrane can also provide invaluable insight into long-term 

performance of the membranes. Recognizing that this was the first ever attempt to evaluate 

geopolymer composite membranes for filtering produced water, this approach was considered 

adequate for the present study. For this purpose, filtered water quality was compared for each 

data point shown in Figure 3.14 for each geopolymer composite membrane. Figure 4.21 shows 

optical images of the geopolymer+zeolite membrane with 40 vol% of fine zeolite after filtration 

studies were completed up to different pressures. Please note that these are images of the same 

membrane, which was subjected to filtration tests starting at 0.1 MPa for 10min, followed by 

subsequent studies conducted at higher pressures in steps of 0.1MPa. As can be seen, the quantity 

of particles retained on the membrane surface increased after each filtration step. Turbidity, TDS 

and pH values were presented in Table 4.9, the corresponding XRF analysis of the filtered water 

after each filtration study at different pressures are presented in Tables 4.12 through 4.15. The 

data shows that the filtration performance of each membrane remained invariant throughout. 

 
 

 

Figure 4.21 Photographs of a geopolymer+zeolite membrane with 40 vol% of fine zeolite after 

filtration studies conducted at (a) 0.1 MPa, (b) 0.5 MPa. (c) 0.9 MPa. 
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Table 4.12 XRF analysis of produced water filtered through geopolymer+zeolite (20 vol% of fine zeolite) composite membrane under 

different pressures. (unit: ppm) 

Water 

Pressure 
Cl Na Ca Zn Fe Mg Sr P S Br K Si 

0.1 MPa 169000 224000 20400 1670 56.6 2590 1160 4.90 32.6 792   

             

0.2 MPa 145000 95100 17200 622  2210 1180  31.3 844 805 46.7 

             

0.3 MPa 147000 96500 18000 2170 63.8 2280 1000 4.02 21.1 747 740 50.4 

             

0.4 MPa 172000 116000 20300 118  2670 1130  34.6 818 1080 62.8 

 

Table 4.13 XRF analysis of produced water filtered through geopolymer+zeolite (40 vol% of fine zeolite) composite membrane under 

different pressures. (unit: ppm) 

Water Pressure Cl Na Ca Zn Fe Mg Sr P S Br K Si 

0.1 MPa 186000 114000 20900 18200 5220 2640 861 3.80 37.0 692 3010 74.1 

             

0.2 MPa 168000 99800 20900 23300 2740 2660 1000  26.7 776 1090 30.9 

             

0.3 MPa 183000 119000 20500 27500 3100 2360 942 2.58 36.0 715 745 24.6 

             

0.4 MPa 179000 115000 20500 16600 1790 2520 985  31.8 731 586 41.7 

             

0.5 MPa 179000 114000 21000 25000 3330 2490 1020 4.84 26.2 763 499 29.9 

             

0.6 MPa 155000 88300 19400 17100 3870 2550 949  28.5 783 461 36.3 

             

0.7 Mpa 136000 77400 17200 14100 5890 2270 907  28.8 706 374 34.6 

             

0.8 Mpa 132000 61500 16600 23900 3230 2210 919  28.4 636 334 29.9 
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Table 4.14 XRF analysis of produced water filtered through geopolymer+zeolite (20 vol% of medium zeolite) composite membrane under 

different pressures. (unit: ppm) 

 

 

Table 4.15 XRF analysis of produced water filtered through geopolymer+zeolite (40 vol% of medium zeolite) composite membrane under 

different pressures. (unit: ppm) 

Water Pressure Cl Na Ca Zn Fe Mg Sr P S Br K Si 

0.1 MPa 81600 26400 15900 1890 61.1 2290 969  27.6 701 1800 28.6 

             

0.2 MPa 98300 41900 15800 4700 77.6 2250 1020  19.5 743  24.0 

             

0.3 MPa 83800 28900 15200 3160 102.0 2220 978 3.67 17.4 676 755 30.3 

             

0.4 MPa 93700 39000 15000 1880 62.0 2220 937  25.1 672 718 18.1 

 

Water Pressure Cl Na Ca Zn Fe Mg Sr P S Br K Si 

0.1 MPa 141000 81800 18300 2660 60.0 2410 1020  27.4 791 4020 45.2 

             

0.2 MPa 145000 89600 18000 3140 79.1 2440 1070 4.36 25.3 781 2240 57.6 

             

0.3 MPa 145000 80900 19300 3130 168.0 2780 1010  31.9 763 1540 34.2 

             

0.4 MPa 133000 74100 17700 2690 74.0 2550 1050  26.9 805 1110 43.1 

             

0.5 MPa 138000 79000 17800 4830 79.7 2680 1030 1.50 24.9 813 971 33.5 

             

0.6 MPa 128000 71700 16200 3800 57.7 2360 1000  23.2 681 850 32.3 
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4.7 Summary  

This study examined the potassium based geopolymer composition, processing conditions and 

two different types of additives to produce inexpensive geopolymer-based ceramic membranes 

for produced water filtration. The properties and performance of the developed membranes were 

analyzed for their microstructure, compressive strength, and filtration performance. Optimum 

composition for geopolymers for use in these applications was identified as 4SiO2.Al2O3.11H2O, 

with best curing obtained at 60°C in 5 days.  

Addition of biochar in excess of 6 vol% impeded the geopolymer phase formation. For 

smaller concentrations of biochar as an additive, the compressive strength reduced significantly. 

Insignificant reduction in impurity ion concentrations was observed when produced water was 

filtered through the geopolymer+biochar composite membranes. Therefore, it was concluded that 

geopolymer+biochar composite membranes are not suitable for filtration of produced water. 

 The results from the investigations on the geopolymer+zeolite composites were very 

promising. Geopolymer composites with fine or medium size particles of commercially available 

clinoptilolite could be processed as membranes for up to 40 vol% zeolite phase addition. Zeolite 

particles bonded well with the geopolymer matrix phase. Addition of zeolite phase can improve 

both the compressive strength and the filtration performance of geopolymer based ceramic 

membranes. The geopolymer+zeolite composite membrane sample with 40 vol% of fine zeolite 

particles showed a combination of high compressive strength, and flow rate. Although the most 

remarkable effect observed in water quality on filtration using these membranes was the decrease 

in turbidity, significant reduction in the concentrations of all ions except K was observed after 

filtration through the fine zeolite composite membranes. Overall, filtration performance of 

geopolymer composite membranes with fine zeolite was better than geopolymers with medium 
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zeolite. Preliminary studies also indicated that the filtration performance of the 

geopolymer+zeolite membranes was invariant under different pressures. 
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CHAPTER V 
 

 

GEOPOLYMER CAPSULES 

 

 

5.1 Overview 

The disposal routes such as landfilling and incineration, used for the disposal of solid waste, are 

coming under increasing pressure due to restrict in land use and stringent environmental 

legislations. Therefore, there is a need of an environmentally safe and cost-effective method for 

the disposal or utilization of the solid waste for making valuable products. The immobilization of 

the waste into a solid matrix is an attractive method for the disposal or recycling of the exhausted 

adsorbent as the solidified adsorbent matrix could be disposed off in the landfill or recycled as a 

construction material like bricks (Wang et al. 2015a, b). The purpose of this study was to assess 

the use of geopolymeric materials to encapsulate waste generated from produced water treatment. 

It is anticipated that the waste from produced water treatment could be in either of the following 

two different forms (a) concentrated solutions of salts after filtration, or (b) powders of salts 

obtained after evaporation of produced water. Encapsulation of both these two types of wastes 

using geopolymers was evaluated in this study. For concentrated solution waste encapsulation, 

the role of the geopolymeric phase as waste entrapment matrix was evaluated. On the other hand, 

the solid waste, which is essentially crystallized water soluble salts present in produced water 
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along with all the inorganic contaminants, was “sealed” inside a cured geopolymer capsule. The 

ability of the geopolymeric phase to successfully contain the water soluble inorganic waste was 

evaluated by leaching studies in water. 

5.2 Solid waste from produced water 

As a first step it was important to understand the inorganic constituents present in produced water 

waste. For this purpose 500 ml of the produced water was evaporated to yield dried solid powder 

waste. The powder was ground and homogenized and analyzed by XRF. The results of XRF 

investigations on the solid waste are shown in the table 5.1.  

Table 5.1 Elemental composition of the solid waste from produced water as analyzed by XRF 

(unit: ppm) 

Na Mg Al Si P S Cl 

194421 18484 56 166 1156 178 631692 

K Ca Fe Br Sr Tl  

2039 143991 427 3326 3956 108  

 

As expected, Na and Cl were the major constituents, with appreciable amounts of Ca and Mg 

besides other impurity elements. 

5.3 Leaching test 

The leaching studies were conducted following the standard method EA NEN 7375:2004. The 

purpose of this diffusion test is to determine the leaching of inorganic components from moulded 

and monolithic materials under aerobic conditions. Other parameters that can be deduced from 

the test include the extent of surface rinsing and the effective diffusion coefficient that can be 

used to estimate the leaching over longer periods. The test was performed on the cylindrical 
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samples with ~50.8 mm diameter and 21-28 mm height. The top view and side view of samples 

for compressive test are shown in the Figure 5.1 

 
 

In this test a glass beaker with volume between two and five times the test piece volume (Vp) and 

of dimensions such that the test piece was surrounded by at least 2 cm of water on all sides. 

Demineralized water with a maximum conductivity of 1 µS/cm was used as the leaching medium. 

This test was carried out in eight stages at room temperature, with temperature ranging between 

18 and 22 ºC. The glass beaker was rinsed with nitric acid, and subsequently with water before 

performance of the test. Then the test piece was placed in the beaker, and the beaker was filled 

with predetermined volume V of demineralized water such that 2 × Vp ≤ V ≤ 5 × Vp . The 

beaker was then covered to minimize evaporation while allowing for the stirrer paddle access into 

the beaker (see Figure 5.2). Throughout these measurements the water was stirred at 60 rpm. The 

first sampling of water quality was done after 6 ± 0.5 h, when the entire eluate was drained from 

the beaker, and this is the fraction from period 1. The resulting eluate was tested for the pH (± 

0.05), total conductivity, TDS, and turbidity, and precisely 200 l was extracted from the eluate 

for XRF testing. The remaining eluate was stored in plastic bottles for further testing, if required. 

Immediately after drainage at the end of period 1, the beaker was refilled with the same quantity 

Figure 5.1 Top view and side view of the samples for leaching test 
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V of water. The leaching test procedure described above was repeated for five more time periods 

as detailed in Table 5.2. 

 
 

Table 5.2 Times at which the water was sampled and replenished during the leaching studies. 

Period (n) Time (days) 

1 0.25 ± 10% 

2 1 ± 10% 

3 2.25 ± 10% 

4 4 ± 10% 

5 9 ± 10% 

6 16 ± 10% 

 

5.4 Encapsulation in geopolymer matrix 

To evaluate the use of geopolymer matrix to encapsulate the concentrated waste from produced 

water treatment, the waste solution itself was used to make geopolymer. The aim was to examine 

the possibility of using the geopolymer network to trap the ions in the produced water and prevent 

them from entering the environment by leaching. For this purpose, the following three samples 

were tested (a) Geopolymer prepared with 70% concentrated produced water (Gp-70), (b) 

Geopolymer with 80% concentrated produced water (Gp-80), and (c) Gp with 90% concentrated 

produced water (Gp-90).  

Figure 5.2 Experimental set up for leaching tests on geopolymer sample with encapsulated solid 

waste from produced water inside (left) and the control pure geopolymer sample (right). 
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5.4.1 Sample processing  

Separate concentrated solutions were prepared by evaporating 500 ml of produced water to 

reduce the volume to 70 %, 80 % and 90 % for use in processing the Gp-70, Gp-80, and Gp-90 

samples respectively. Same amount of concentrated produced water (approximately 35 ml) was 

used to make geopolymer samples. The process for making geopolymer with concentrated 

produced water is shown in the Figure 5.3 and the details of the three samples are shown in the 

Table 5.3. 

 

 

Figure 5.3 Schematic of the procedure followed for processing samples for geopolymer matrix 

encapsulation studies. 

70 vol%
80 vol%

90 vol%

Water Glass 

KOH SiO2 Concentrated produced water + + 

Mechanical Mixing 

+ Metakaolin 

Mechanical Mixing 

Geopolymer Slurry 

Cure Process 

Geopolymer Sample 



 

84 

 

 

Table 5.3 Details of geopolymer samples prepared with concentrated produced water 

 

5.4.2 Leaching test results from geopolymer matrix encapsulation studies 

The leaching tests were conducted for up to 16 days. Figure 5.4 and Table 5.4 shows the pH, 

TDS, turbidity and conductivity values for the leaching test. Four groups of sample were used for 

each leaching test, and pure geoplymer sample served as the benchmark or control. 

As shown in Figure 5.4, very high TDS and conductivity values were measured at the 

onset of leaching, and gradually decreased to values coinciding with the control or the pure 

geopolymer sample. The turbidity values showed an initial spike during the testing period 1 (i.e. 

after 6 hours of leaching), and immediately subsided to values similar to the control sample. The 

TDS, conductivity and turbidity of the control samples were remarkably lower from the onset of 

the leaching experiment. The pH of all the sample solutions and the control sample started high, 

and gradually decreased. The trends observed in the TDS values measured for each sample could 

be explained by rapid leaching of all the ions present in the concentrated produced water used to 

prepare the samples. The low turbidity values reported in these studies just reaffirm that no 

insoluble particulate matter was released to the water, and only soluble species were leached out. 

The trends in the pH can be explained on the basis of unreacted KOH from the   

Sample Original amount of produced 

water (ml) 

Concentrated amount of 

produced water (ml) 

Gp-70 500.44 153.23 

Gp-80 497.38 102.74 

Gp-90 499.75 51.62 
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Table 5.4 pH, TDS, Turbidity and Conductivity results of leached water 

Time 

(Days) 

Sample 

Group 

pH TDS (ppm) Conductivity (µS) Turbidity (NTU) 

0.25 

Control 10.928 338 660 0.7 

Gp-70 11.164 2160 4500 0.14 

Gp-80 11.832 5270 10800 2.59 

Gp-90 11.664 6270 13440 2.41 

 
     

1 

Control 10.715 225 463 0.14 

Gp-70 11.137 1220 2510 0.25 

Gp-80 11.735 2700 5050 0.4 

Gp-90 11.629 3400 7040 0.91 

 
     

2.25 

Control 10.087 163 337 0.06 

Gp-70 10.688 511 1066 0.14 

Gp-80 11.375 1200 2520 0.3 

Gp-90 11.175 1340 2760 0.75 

 
     

4 

Control 9.851 128 266 0.02 

Gp-70 10.471 304 633 0.27 

Gp-80 10.917 596 1236 0.19 

Gp-90 10.783 656 1359 0.24 

 
     

9 

Control 9.349 182 379 0.07 

Gp-70 10.021 362 753 0.11 

Gp-80 10.206 530 1105 0.89 

Gp-90 10.197 587 1217 0.35 

 
     

16 

Control 8.825 136 285 0.10 

Gp-70 9.517 252 523 0.11 

Gp-80 9.925 322 666 0.08 

Gp-90 9.940 360 750 0.39 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

geopolymer matrix, with potentially more unreacted KOH available for leaching from the Gp-70, 

Gp-80 and the Gp-90 samples. These studies lead to the conclusion that although geopolymers 

could be processed and cured using the concentrate waste from produced water treatment, the 

geopolymer network is unable to trap the water soluble ions in the produced water and prevent 

them from entering the environment by leaching. 

5.5 Geopolymer capsule 

The purpose of this part of the study was to evaluate the use of geopolymers to fabricate a dense 

capsule enclose the solid waste from produced water evaporation, to prevent it from leaching to 

Figure 5.4 pH, turbidity, TDS and conductivity plots from the leaching studies conducted to 

evaluate the feasibility of concentrated waste encapsulation in the geopolymer matrix. 
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the environment. Geopolymers are porous, but they lack permeability. This property of the 

geopolymer was the primary factor that motivated this part of the study. Details on the processing 

of the capsule, encapsulation of the solid waste, and subsequent evaluation of leaching properties 

are presented in the following sections.  

5.5.1 Processing of geopolymer capsule 

A two step process was followed to make the geopolymer capsule. In the first step, a cylindrical 

geopolymer mold with a cylindrical cavity was processed. Once cured, approximately 9.15 g of 

solid waste from produced water evaporation was placed inside the cavity. In the second step, the 

cavity was sealed with geopolymer slurry (after placing a geopolymer spacer above the solid 

waste), and allowed to cure to process the capsule. The procedure followed for making the 

geopolymer capsule is shown in the Figure 5.5.  

 

Figure 5.5 Schematic diagram of the process followed for making geopolymer capsule samples 
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5.5.2 Leaching test result of geopolymer capsule 

Two groups of sample were been use for leaching test. First group is the geopolymer capsule with 

the solid waste inside it (Sample group), the other group is pure geopolymer in the same size with 

sample group (Control group).The leaching tests were conducted for up to 9 days following the 

same procedures as outlined in section 5.3. Table 5.5 shows the pH, TDS, turbidity and 

conductivity values for the leaching tests after 6 hours, 1 day, 2.25 days, 4 days and 9 days. 

Figure 5.6 is graphical representation of the data presented in Table 5.5 to assist with visual 

observation of any trends. 

Table 5.5 pH, TDS, Turbidity and Conductivity results of leaching water 

Time 

(Days) 

Sample 

Group 

pH TDS (ppm) Conductivity (µS) Turbidity (NTU) 

Produced Water 4.120 55100 184500 77.7 

      

0.25 Sample 9.649 1190 2420 0.15 

Control 10.764 621 1269 0.05 

      

1 Sample 8.421 840 2960 0.07 

Control 10.689 396 1338 0 

      

2.25 Sample 8.470 860 2940 0.05 

Control 10.512 229 778 0.08 

      

4 Sample 8.452 1020 3450 0.06 

Control 10.378 153 520 0.04 

      

9 Sample 7.975 1840 6170 0.04 

Control 10.163 168 608 0.14 

 

As shown in Figure 5.6, TDS and conductivity values for the sample group was only marginally 

higher than the control group at the onset of leaching. However, with time, these values gradually 

increased in contrast to the pure geopolymer samples which decreased over the same time period. 

The turbidity values were remarkably low for both the sample and control group samples. The pH 

of all the sample group and the control sample started high, and gradually decreased. The trends   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

observed in the TDS and conductivity values measured for the sample group could be explained 

by dissolution followed by slow leaching of the elements present in the solid waste from the 

produced water secured inside the geopolymer capsule. The trends in the pH can be explained on 

the basis of unreacted KOH from the geopolymer matrix. Interestingly the pH of the eluate in the 

control group studies was higher than the sample group. These studies are quite preliminary, 

however they do highlight the potential of geopolymer capsules to arrest water soluble wastes. 

Further investigations in this direction should focus on optimization of pure geopolymer 

compositions, and certainly leaching studies over a longer duration of time. 

Figure 5.6 pH, turbidity, TDS and conductivity plots from the leaching studies conducted to 

evaluate the feasibility of solid waste encapsulation in the geopolymer capsule. 
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5.6 Summary 

This study successfully evaluated the use of geopolymeric materials to encapsulate waste 

generated from produced water treatment. Encapsulation of two different forms of waste from 

produced water treatment that was investigated included, (a) concentrated solutions of salts after 

filtration, and (b) powders of salts obtained after evaporation of produced water. For concentrated 

solution waste encapsulation, the geopolymeric phase itself was used to entrap the impurity ions. 

The solid waste, on the other hand, was “sealed” inside a cured geopolymer capsule. The ability 

of the geopolymers to successfully contain these water soluble inorganic waste forms was 

evaluated by leaching studies in water. 

The key findings of this study were that although geopolymers could be processed and cured 

using the concentrate waste from produced water treatment, the geopolymer network is unable to 

trap the water soluble impurity ions and prevent them from entering the environment by leaching. 

On the other hand, the studies conducted to evaluate the use of geopolymer capsules to contain 

solid waste forms from produced water evaporation were quite encouraging. Geopolymer 

capsules do hold promise as encapsulating containers to restrain water soluble salts from leaching 

into the environment. However, these studies were preliminary, and further investigations are 

required to establish this. 
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CHAPTER VI 
 

 

CONCLUSIONS AND FUTURE WORK 

 

This research investigated the use of inexpensive metakaolin based potassium geopolymers for 

produced water treatment. Towards this goal two different research directions were pursued. The 

focus of the first research thrust was to develop and evaluate the use of geopolymer based 

ceramic composite membranes for filtration of produced water. The second effort examined the 

feasibility of the use of geopolymers to encapsulate the waste resulting from produced treatment. 

Entrapment of two different types of waste, specifically concentrated solutions from produced 

water and solid waste resulting from evaporating produced water, was investigated. The findings 

of this research are summarized in the following sections, and suggestions are also provided to 

serve as guidelines for future work. 

6.1 Conclusions 

6.1.1 Geopolymeric ceramic membranes: 

The key findings of this research thrust are: 

• The optimum composition of geopolymers to develop composite membranes was identified 

as 4SiO2.Al2O3.11H2O. For this composition, best curing occurred at 60°C in 5 days. 

• Biochar was not a suitable additive for geoplymers to process ceramic composite 

membranes. The geopolymer+biochar composites had reduced compressive strength, and 
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• the membranes showed poor filtration performance. 

• Natural zeolite (clinoptilolite) addition to geopolymers holds considerable promise to 

develop ceramic composite membranes for produced water treatment. Zeolite particles 

bonded well with the geopolymer matrix phase. Addition of zeolite phase can improve both 

the compressive strength and the filtration performance of geopolymer based ceramic 

membranes. Filtration using these composite membranes not only decreased the turbidity, 

but significant reduction in the concentrations of all ions except K was also observed. 

Overall, filtration performance of geopolymer+zeolite composite membranes improved 

with decrease in particle size of the zeolite. 

6.1.2 Waste encapsulation using geopolymers 

The key findings of this research thrust are: 

• Geopolymers can be successfully processed and cured using the concentrate waste from 

produced water treatment, however the geopolymer network is unable to trap the water 

soluble impurity ions and prevent them from entering the environment by leaching. 

• Geopolymer capsules do hold promise as encapsulating containers to restrain water soluble 

salts from leaching into the environment. However, these studies were preliminary, and 

further investigations are required to establish this. 

6.2 Future work 

This research was the first-ever systematic effort to explore the use of geopolymers for the 

development of ceramic membranes for produced water treatment, and for encapsulation of 

resulting waste. Promising directions for future work as well as some limitations that may need to 

be addressed for development of this application are presented below:  

• Optimization of the concentration of fine zeolite powders in geopolymer+zeolite 
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membranes should be explored to produce microstructures that can enable even 

nanofiltration capabilities. 

• Design and development of porous scaffolds that can support thin (<100 micron) ceramic 

composite membranes should be pursued to enable much higher flux. 

• Experimental set-up should be developed to test these membranes in cross-filtration mode. 

• The procedure for the use of XRF to determine the water quality should be standardized. 

This is particularly important for the analysis of solutions which have suspended particles 

as well as dissolved ions. 

• Geopolymeric waste encapsulation containers holds considerable promise. The flexibility 

in composition to form geopolymeric phase, can be an advantage in designing containers 

for low grade radioactive waste. 

 

 



 

94 

 

REFERENCES 

 

Alpatova, A., Kim, E.-S., Dong, S., Sun, N., Chelme-Ayala, P., and Gamal El-Din, M., 2014, 

Treatment of oil sands process-affected water with ceramic ultrafiltration membrane: 

Effects of operating conditions on membrane performance: Separation and Purification 

Technology, v. 122, p. 170-182. 

Aysu, T., and Küçük, M. M., 2014, Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis 

parameters on product yields and characterization of products: Energy, v. 64, p. 1002-

1025. 

Bader, M. S. H., 2007, Seawater versus produced water in oil-fields water injection operations: 

Desalination, v. 208, no. 1, p. 159-168. 

Bai, C., Franchin, G., Elsayed, H., Zaggia, A., Conte, L., Li, H., and Colombo, P., 2017, High-

porosity geopolymer foams with tailored porosity for thermal insulation and wastewater 

treatment: Journal of Materials Research, v. 32, no. 17, p. 3251-3259. 

Bakharev, T., 2005, Resistance of geopolymer materials to acid attack: Cement and concrete 

research, v. 35, no. 4, p. 658-670. 

Bao, Y., Grutzeck, M. W., and Jantzen, C., 2005, Preparation and Properties of Hydroceramic 

Waste Forms Made With Simulated Hanford Low-Activity Waste: Journal of the 

American Ceramic Society, v. 88, p. 3287-3302.



 

95 

 

Barukčić, I., Božanić, R., and Kulozik, U., 2014, Effect of pore size and process temperature on 

flux, microbial reduction and fouling mechanisms during sweet whey cross-flow 

microfiltration by ceramic membranes: International Dairy Journal, v. 39, no. 1, p. 8-15. 

Benko, K. L., and Drewes, J. E., 2008, Produced water in the Western United States: 

geographical distribution, occurrence, and composition: Environmental Engineering 

Science, v. 25, no. 2, p. 239-246. 

Bhutta, M. A. R., Ariffin, N. F., Hussin, M. W., and Lim, N. H. A. S., 2013, Sulfate and sulfuric 

acid resistance of geopolymer mortars using waste blended ash: Jurnal teknologi, v. 61, 

no. 3. 

Bhutta, M. A. R., Hussin, W. M., Azreen, M., and Tahir, M. M., 2014, Sulphate resistance of 

geopolymer concrete prepared from blended waste fuel ash: Journal of Materials in Civil 

Engineering, v. 26, no. 11, p. 04014080. 

Bilstad, T., and Espedal, E., 1996, Membrane separation of produced water: Water Science and 

Technology, v. 34, no. 9, p. 239-246. 

Blanchard, E., 2013, Oil in water monitoring is a key to production separation: EOR, mature 

fields push discharge amounts higher: Offshore, v. 73, no. 11. 

Bridgwater, A., Toft, A., and Brammer, J., 2002, A techno-economic comparison of power 

production by biomass fast pyrolysis with gasification and combustion: Renewable and 

Sustainable Energy Reviews, v. 6, no. 3, p. 181-246. 

Castel, A., and Foster, S. J., 2015, Bond strength between blended slag and Class F fly ash 

geopolymer concrete with steel reinforcement: Cement and Concrete Research, v. 72, p. 

48-53. 



 

96 

 

Chen, A. S. C., Flynn, J. T., Cook, R. G., and Casaday, A. L., 1991, Removal of Oil, Grease, and 

Suspended Solids From Produced Water With Ceramic Crossflow Microfiltration: SPE 

Production Engineering, v. 6, no. 02, p. 131-136. 

Cheryan, M., and Rajagopalan, N., 1998, Membrane processing of oily streams. Wastewater 

treatment and waste reduction: Journal of Membrane Science, v. 151, no. 1, p. 13-28. 

Ciarapica, F., and Giacchetta, G., 2003, The Treatment of "Produced Water" in Offshore Rig: 

Comparison Between Traditional Installations and Innovative Systems. 

Cronstedt, A. F., Schlenker, J. L., and Kühl, G. H., Observations and Descriptions: On an 

Unknown Mineral-Species Called Zeolites, in Proceedings Proceedings from the Ninth 

International Zeolite Conference1993, Elsevier, p. 3-9. 

Davidovits, J., 1989, Geopolymers and geopolymeric materials: Journal of Thermal Analysis and 

Calorimetry, v. 35, no. 2, p. 429-441. 

Davidovits, J., 2008, Geopolymer Chemistry and Applications. 

Deriszadeh, A., Husein, M. M., and Harding, T. G., 2010, Produced Water Treatment by 

Micellar-Enhanced Ultrafiltration: Environmental Science & Technology, v. 44, no. 5, p. 

1767-1772. 

Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., and van Deventer, J. S. 

J., 2005, Understanding the relationship between geopolymer composition, 

microstructure and mechanical properties: Colloids and Surfaces A: Physicochemical and 

Engineering Aspects, v. 269, no. 1-3, p. 47-58. 



 

97 

 

Duxson, P., Provis, J. L., Lukey, G. C., and van Deventer, J. S. J., 2007, The role of inorganic 

polymer technology in the development of ‘green concrete’: Cement and Concrete 

Research, v. 37, no. 12, p. 1590-1597. 

Emani, S., Uppaluri, R., and Purkait, M. K., 2014, Microfiltration of oil–water emulsions using 

low cost ceramic membranes prepared with the uniaxial dry compaction method: 

Ceramics International, v. 40, no. 1, Part A, p. 1155-1164. 

Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., and Abidin, 

Z. Z., 2009, Review of technologies for oil and gas produced water treatment: Journal of 

hazardous materials, v. 170, no. 2-3, p. 530-551. 

Fernández-Jiménez, A., Palomo, A., Sobrados, I., and Sanz, J., 2006, The role played by the 

reactive alumina content in the alkaline activation of fly ashes: Microporous and 

Mesoporous Materials, v. 91, no. 1, p. 111-119. 

Gartner, E., 2004, Industrially interesting approaches to “low-CO2” cements: Cement and 

Concrete Research, v. 34, no. 9, p. 1489-1498. 

Gaunt, J. L., and Lehmann, J., 2008, Energy Balance and Emissions Associated with Biochar 

Sequestration and Pyrolysis Bioenergy Production: Environmental Science & 

Technology, v. 42, no. 11, p. 4152-4158. 

Georgie, W. J., 2002, Effective and Holistic Approach to produced Water Management for 

Offshore Operation, Offshore Technology Conference: Houston, Texas, Offshore 

Technology Conference, p. 13. 

Glaser, B., Lehmann, J., and Zech, W., 2002, Ameliorating physical and chemical properties of 

highly weathered soils in the tropics with charcoal–a review: Biology and fertility of 

soils, v. 35, no. 4, p. 219-230. 



 

98 

 

Hansen, B., and Davies, S., 1994, Review of potential technologies for the removal of dissolved 

components from produced water: Chemical engineering research & design, v. 72, no. 2, 

p. 176-188. 

He, P., Jia, D., Lin, T., Wang, M., and Zhou, Y., 2010, Effects of high-temperature heat treatment 

on the mechanical properties of unidirectional carbon fiber reinforced geopolymer 

composites: Ceramics International, v. 36, no. 4, p. 1447-1453. 

Judd, S., 2010, The MBR Book: Principles and Applications of Membrane Bioreactors for Water 

and Wastewater Treatment, Elsevier Science. 

Kambo, H. S., and Dutta, A., 2015, A comparative review of biochar and hydrochar in terms of 

production, physico-chemical properties and applications: Renewable and Sustainable 

Energy Reviews, v. 45, p. 359-378. 

Khulbe, K. C., Feng, C., and Matsuura, T., 2010, The art of surface modification of synthetic 

polymeric membranes: Journal of Applied Polymer Science, v. 115, no. 2, p. 855-895. 

Korkuna, O., Leboda, R., Skubiszewska-Zie, b. J., Vrublevs’Ka, T., Gun’Ko, V., and 

Ryczkowski, J., 2006, Structural and physicochemical properties of natural zeolites: 

clinoptilolite and mordenite: Microporous and Mesoporous Materials, v. 87, no. 3, p. 

243-254. 

Krivenko, P., and Kovalchuk, G. Y., 2007, Directed synthesis of alkaline aluminosilicate minerals 

in a geocement matrix: Journal of Materials Science, v. 42, no. 9, p. 2944-2952. 

Lalia, B. S., Kochkodan, V., Hashaikeh, R., and Hilal, N., 2013, A review on membrane 

fabrication: Structure, properties and performance relationship: Desalination, v. 326, p. 

77-95. 



 

99 

 

Lee, J. M., and Frankiewicz, T. C., 2005, Treatment of Produced Water with an Ultrafiltration 

(UF) Membrane-A Field Trial, SPE Annual Technical Conference and Exhibition: 

Dallas, Texas, Society of Petroleum Engineers, p. 6. 

Li, Y. S., Yan, L., Xiang, C. B., and Hong, L. J., 2006, Treatment of oily wastewater by organic–

inorganic composite tubular ultrafiltration (UF) membranes: Desalination, v. 196, no. 1, 

p. 76-83. 

Lord, P. D., and LeBas, R., 2013, Treatment Enables High-TDS Water Use as Base Fluid for 

Hydraulic Fracturing: Journal of Petroleum Technology, v. 65, no. 06, p. 30-33. 

Mallicoat, S., Sarin, P., and Kriven, W. M., 2005, Novel, alkali-bonded, ceramic filtration 

membranes, in Brito, M. E., Filip, P., Lewinsohn, C., Sayir, A., Opeka, M., and Mullins, 

W. M., eds., 29th Internationa Conference on Advanced Ceramics and Composites: 

Cocoa Beach, FL, The American Ceramic Society. 

Marakatti, V. S., Rao, P. V.C., Choudary, N. V., Ganesh, G. S., Shah, G., Maradur, S. P., Halgeri, 

A. B., Shanbhag, G. V. and Ravishankar, R., 2015a, Influence of Alkaline Earth Cation 

Exchanged X-Zeolites Towards Ortho-Selectivity in Alkylation of Aromatics: Hard-Soft-

Acid-Base Concept: Advanced Porous Materials, v. 2, no. 4, p. 221-229. 

Marakatti, V. S., 2015b, Metal ion-exchanged zeolites as highly active solid acid catalysts for the 

green synthesis of glycerol carbonate from glycerol: RSC Advances, v. 5, p. 14286-

14293 

Murić, A., Petrinić, I., and Christensen, M. L., 2014, Comparison of ceramic and polymeric 

ultrafiltration membranes for treating wastewater from metalworking industry: Chemical 

Engineering Journal, v. 255, p. 403-410. 



 

100 

 

Neff, J., Sauer, T., and Maciolek, N., 1992, Composition, Fate and Effects of Produced Water 

Discharges to Nearshore Marine Waters, p. 371-385. 

Nikolov, A., Rostovsky, I., and Nugteren, H., 2017, Geopolymer materials based on natural 

zeolite: Case studies in construction materials, v. 6, p. 198-205. 

Oklahoma-PWWG, 2017, Oklahoma Water for 2060 Produced Water Reuse and Recycling: 

OWRB. 

OWRB, 2012, Update of the Oklahoma Comprehensive Water Plan. 

Palomo, A., and López dela Fuente, J. I., 2003, Alkali-activated cementitous materials: 

Alternative matrices for the immobilisation of hazardous wastes: Part I. Stabilisation of 

boron: Cement and Concrete Research, v. 33, no. 2, p. 281-288. 

Rahier, H., Mele, B., Biesemans, M., Wastiels, J., and Wu, X., 1996, Low-temperature 

synthesized aluminosilicate glasses: Journal of Materials Science, v. 31, p. 71-79. 

Škvára, F., Alkali activated material–geopolymer, in Proceedings International Conference Alkali 

Activated Materials–Research, Production and Utilization, Česká rozvojová agentura, 

Praha2007, p. 21-22.26. 

Sofi, M., Deventer, J. S. J., Mendis, P. A., and Lukey, G. C., 2007, Bond performance of 

reinforcing bars in inorganic polymer concrete (IPC): Journal of Materials Science, v. 42, 

p. 3107-3116. 

Sonune, A., and Ghate, R., 2004, Developments in wastewater treatment methods: Desalination, 

v. 167, p. 55-63. 



 

101 

 

Stephenson, M. T., 1992, A Survey of Produced Water Studies, in Ray, J. P., and Engelhardt, F. 

R., eds., Produced Water: Technological/Environmental Issues and Solutions: Boston, 

MA, Springer US, p. 1-11. 

Swaddle, T. W., 2001, Silicate complexes of aluminum(III) in aqueous systems: Coordination 

Chemistry Reviews, v. 219-221, p. 665-686. 

Swaddle, T. W., Salerno, J., and Tregloan, P. A., 1994, Aqueous aluminates, silicates, and 

aluminosilicates: Chemical Society Reviews, v. 23, no. 5, p. 319-325. 

Szép, A., and Kohlheb, R., 2010, Water treatment technology for produced water: Water Science 

and Technology, v. 62, no. 10, p. 2372-2380. 

Temuujin, J., Minjigmaa, A., Rickard, W., Lee, M., Williams, I., and Van Riessen, A., 2009, 

Preparation of metakaolin based geopolymer coatings on metal substrates as thermal 

barriers: Applied clay science, v. 46, no. 3, p. 265-270. 

Thokchom, S., Ghosh, P., and Ghosh, S., 2009, Acid resistance of fly ash based geopolymer 

mortars: International Journal of Recent Trends in Engineering, v. 1, no. 6, p. 36. 

Tripathi, M., Sahu, J. N., and Ganesan, P., 2016, Effect of process parameters on production of 

biochar from biomass waste through pyrolysis: A review: Renewable and Sustainable 

Energy Reviews, v. 55, p. 467-481. 

van Jaarsveld, J., and Van Deventer, J., 1999, Effect of the alkali metal activator on the properties 

of fly ash-based geopolymers: Industrial & engineering chemistry research, v. 38, no. 10, 

p. 3932-3941. 



 

102 

 

Veil, J. A., 2011, Produced Water Management Options and Technologies, in Lee, K., and Neff, 

J., eds., Produced Water: Environmental Risks and Advances in Mitigation Technologies: 

New York, NY, Springer New York, p. 537-571. 

Veil, J. A., Puder, M. G., Elcock, D., and Redweik, R. J., Jr., 2004, A white paper describing 

produced water from production of crude oil, natural gas, and coal bed methane. 

Winsley, P., 2007, Biochar and bioenergy production for climate change mitigation: New Zealand 

Science Review Vol, v. 64. 

Xu, P., Drewes, J. E., and Heil, D., 2008, Beneficial use of co-produced water through membrane 

treatment: technical-economic assessment: Desalination, v. 225, no. 1, p. 139-155. 

Zeidler, S., Puhlfürß, P., Kätzel, U., and Voigt, I., 2014, Preparation and characterization of new 

low MWCO ceramic nanofiltration membranes for organic solvents: Journal of 

Membrane Science, v. 470, p. 421-430. 

 



 

 

 

VITA 

 

Ying Xu 

 

Candidate for the Degree of 

 

Master of Science 

 

Thesis: STUDIES ON THE USE OF METAKAOLIN GEOPOLYMER FOR 

PRODUCED WATER TREATMENT 

 

 

Major Field:  Material Science and Engineering 

 

Biographical: 

 

Education: 

Completed the requirements for the Master of Science in Materials Science and 

Engineering at Oklahoma State University, Tulsa, Oklahoma in December, 

2019. 

 

Completed the requirements for the Bachelor of Engineering in Metallurgical 

Engineering at University of Science and Technology Beijing, Beijing, China 

in 2015. 

 

Experience:  

Teaching Assistant, Oklahoma State University, Stillwater, Oklahoma (2018-

2019) 

 

Professional Memberships: 

Member, American Ceramic Society 

Member, American Chemical Society 
 

 

 


	STUDIES ON THE USE OF METAKAOLIN GEOPOLYMER FOR PRODUCED WATER TREATMENT
	By
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	Literature Review
	1.1 Produced water

	Table 1.1 Ranges of common inorganic constituents in produced water.(Benko and Drewes, 2008)
	1.2 Current practices in produced water handling
	1.3 Potential for reuse of produced water
	1.4 Membrane filtration
	1.5 Disposal of treatment residuals

	CHAPTER II
	Objectives
	CHAPTER III
	Materials and Methods
	3.1 Materials

	Table 3.1 Additive material characteristics
	3.1.1 Geopolymers
	3.1.2 Natural zeolites - Clinoptilolite

	Table 3.2 Physical appearance and properties of the three different types of Clinoptilolite Zeolite (from KMI Zeolite) that were used in this research.
	Table 3.3 Chemical analysis of commercial Clinoptilolite Zeolite (from KMI Zeolite)
	Table 3.4 XRF analysis of the Clinoptilolite Zeolite (from KMI Zeolite)
	3.1.3 Biochar

	Table 3.5 XRF analysis of the biochar used in this research .
	3.2 Methods – Synthesis and Processing
	3.2.1 Geopolymer synthesis

	3.3 Methods - Characterization
	3.3.1 pH
	3.3.2 TDS/Conductivity
	3.3.3 Turbidity
	3.3.4 Optical microscopy
	3.3.5 SEM
	3.3.6 XRF


	Table 3.6 XRF analysis of the virgin Whatman 42 filter paper used in this research.
	3.4 Analytical methods
	3.4.1 Porosity and Density
	3.4.2 Compressive strength


	CHAPTER IV
	Geopolymer Membranes
	4.1 Introduction
	4.2 Processing of geopolymer-based membranes
	4.3 Characterization of geopolymer-based membranes

	Table 4.1 Typical physical characteristics of geopolymer membranes used to determine filtration performance.
	Table 4.2 Parameters studied in the filtration performance test
	4.4 Pure Geopolymer membrane

	Table 4.3 Composition and processing conditions evaluated for the pure geopolymer membrane samples
	4.4.1 Compressive strength and flow properties of pure geopolymer membrane samples

	Table 4.4 Compressive strength and water flow rate of pure geopolymer membrane samples cured at 60 C for 5 days
	4.5 Effect of biochar addition on properties of geopolymer composite membranes

	Table 4.5 Geopolymer with biochar membrane samples investigated in this study.
	4.5.2 Effect on filter performance

	Table 4.6 XRF results of produced water before and after filtration using the geopolymer+biochar composite membranes (unit: ppm).
	4.6 Effect of zeolite addition on properties of geopolymer membranes

	Table 4.7 Geopolymer with zeolite membrane samples
	4.6.1 Effect on the compressive strength

	Table 4.8 Results from compressive strength tests on geopolymer+zeolite samples
	4.6.2 Effect on filter performance

	Table 4.9 Changes in turbidity, TDS and pH observed after filtration through the geopolymer+zeolite composite membranes under pressure.
	Table 4.10 XRF results of water tested before and after filtration through the geopolymer+zeolite composite membranes at 0.1 MPs pressure (unit: ppm).
	Table 4.11 The removal rate of different elements from produced water by the four geopolymer+zeolite composite membranes. These results are based on values reported in Table 4.10.
	Table 4.12 XRF analysis of produced water filtered through geopolymer+zeolite (20 vol% of fine zeolite) composite membrane under different pressures. (unit: ppm)
	Table 4.13 XRF analysis of produced water filtered through geopolymer+zeolite (40 vol% of fine zeolite) composite membrane under different pressures. (unit: ppm)
	Table 4.14 XRF analysis of produced water filtered through geopolymer+zeolite (20 vol% of medium zeolite) composite membrane under different pressures. (unit: ppm)
	Table 4.15 XRF analysis of produced water filtered through geopolymer+zeolite (40 vol% of medium zeolite) composite membrane under different pressures. (unit: ppm)
	4.7 Summary

	CHAPTER V
	Geopolymer Capsules
	5.1 Overview
	5.2 Solid waste from produced water

	Table 5.1 Elemental composition of the solid waste from produced water as analyzed by XRF (unit: ppm)
	5.3 Leaching test

	Table 5.2 Times at which the water was sampled and replenished during the leaching studies.
	5.4 Encapsulation in geopolymer matrix
	5.4.1 Sample processing


	Table 5.3 Details of geopolymer samples prepared with concentrated produced water
	5.4.2 Leaching test results from geopolymer matrix encapsulation studies

	Table 5.4 pH, TDS, Turbidity and Conductivity results of leached water
	5.5 Geopolymer capsule
	5.5.1 Processing of geopolymer capsule
	5.5.2 Leaching test result of geopolymer capsule


	Table 5.5 pH, TDS, Turbidity and Conductivity results of leaching water
	5.6 Summary

	CHAPTER VI
	Conclusions and Future Work
	6.1 Conclusions
	6.1.1 Geopolymeric ceramic membranes:
	6.1.2 Waste encapsulation using geopolymers

	6.2 Future work

	REFERENCES
	VITA
	Ying Xu
	Candidate for the Degree of
	Thesis: STUDIES ON THE USE OF METAKAOLIN GEOPOLYMER FOR PRODUCED WATER TREATMENT
	Major Field:  Material Science and Engineering

